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Abstract 
Magnetorheological dampers (MRD) are nowadays among the most promising semi-active devices used in 

automotive and structural engineering since they have small power requirements and low cost. Several 

models are studied to simulate the behavior of magnetorheological fluids which are characterized by 

strongly nonlinear viscoelastic hysteresis phenomena. These nonlinearities make many control logics 

ineffective because they fail when interfaced with complex models. The aim of this work is to optimize the 

damper behavior by controlling the mechanical vibrations of the system by a novel control algorithm. The 

magnetorheological behavior is modelled by a Volterra’s equation which allows the use of an indirect 

optimal feedback control algorithm, named Proportional-Nth-order-Derivatives or PD(N). Numerical results 

show how the PD(N) achieves excellent results when compared with conventional controls. 

1 Introduction 

Hysteresis is a phenomenon that has always fascinated mathematicians and physicists and it is still a subject 

of great interest today. The hysteresis, which was originally formulated by Greeks to indicate a lag in arrival, 

was first studied in 1882 by Ewing J. A. to describe the magnetic properties of metals. Nowadays, the 

mathematical models of hysteresis are used in many fields, from chemistry, to biology, engineering, etc. The 

physical models describe properly the phenomena such as ferromagnetism, ferroelectricity, 

superconductivity, friction and shape memory materials.  

A systematic analysis of this hysteresis phenomena under a strict mathematical point of view began 40 years 

ago, with the seminal work of Bouc R. [1]. Later, several Russian mathematicians studied systematically 

the concept of hysteresis operator [2]. In the eighties, other contributions emerged in connection with partial 

differential equations and applicative problems [3]. 

Magnetorheological fluids (MR) are materials with rheological properties that depend on the magnetic field. 

Hysteresis behavior is an intrinsic nonlinear property of MR fluids that makes them very complex to control, 

limiting their application in turn. 

The MR fluid consists of a mixture of a fluid with dispersed metal particles, the equivalent viscosity of 

which depends on an external magnetic field, for example generated by a solenoid excited by an electric 

current. Understanding the working mechanism of the hysteresis rheological fluids characteristics is 

significant for studying the MR actuators and implementing high-efficiency control systems.  

The MRD are usually studied by different mathematical models, and among them Bouc–Wen, Duhem, 

Dahal and LuGre models [19-24]. According to Naser [25], the hysteretic behaviour of causal systems can 

be described analytically by the so-called “hysteresis loops”, involving fractional calculus. Naser shows 
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how these systems can be modelled with Riemann–Liouville integral, an approximated form of which , in 

some cases, is provided by the integrals of Volterra, as shown in [7]. 

Magnetorheological fluids are nowadays applied to dissipative actuators, clutches and brakes [4, 5] and 

experimental tests show that the hysteresis only occurs about the direction-change points under sinusoidal 

displacement excitations [6].  

In this paper is a novel model is presented, recently proposed by the authors in the context of optimal control 

of integral differential equations (IDE), including Volterra-type integrals, and called Proportional-Nth-

order-Derivatives or PD(N) [7]. This kind of control belongs to the category of Variational Feedback 

Controls (VFC) [8-10]. The PD(N) is based on the classical variational control approach formulated by 

Pontryagin, implying the solution of a two-boundary values problem. Usually, the integro-differential 

equations (IDE) are solved by direct methods, except for those cases in which closed form analytical 

solutions are obtainable thanks to special properties of the kernel [11-13]. Direct methods imply the 

discretization and solution of the problem passing through a nonlinear programming [14, 15]. Instead, the 

proposed indirect method permits to solve the problem minimizing the computational efforts that usually 

grows at a nonlinear rate with the number of grid points used for the quantization [16-18].  

The present paper shows how to control the hysteresis of a system including Magnetorheological dampers 

(MRD) that presents Bouc-Wen hysteresis and approximated by a convolution integral of Volterra. The 

optimal feedback PD(N) control is applied to a quarter, car model the suspension of which includes a MRD, 

exhibiting excellent performances. 

2 Optimal control of Volterra equation 

In this section the optimal control algorithm is derived for a prototypal Volterra integro-differential equation 

as: 

 �̇� = 𝑎𝑥 + 𝐾 ∗ 𝑥 + 𝑏𝑢 (1) 

where 𝑎 and 𝑏 are constants, 𝑢 is a scalar control variable, and 𝐾 is the kernel which includes the hysteresis 

behaviour of the damper. 

The optimal control law is based on the minimization of a generic quadratic cost function 𝐽 which depends 

on the state and the control variables together with the Lagrange multiplier 𝜆 that permits to introduce a 

compact form of the minimization constrained problem: 

 𝐽(𝑥, 𝑢, 𝜆) = ∫
1

2
𝑞𝑥2 +

1

2
𝑟𝑢2𝑇

0
+ 𝜆[�̇� − 𝑎𝑥 − 𝐾 ∗ 𝑥 − 𝑏𝑢]𝑑𝑡 (2) 

The variational calculus finds a solution to the stated problem by using the stationary condition 𝛿𝐽(𝑥, 𝑢, 𝜆) =
0, that produces: 

 

�̇� = 𝑞𝑥 − 𝑎𝜆 − 𝐾 ⋄ 𝜆
�̇� = 𝑎𝑥 + 𝑏𝑢 + 𝐾 ∗ 𝑥

𝑢 =
𝑏

𝑟
𝜆

𝜆(𝑇) = 0 , 𝑥(0) = 𝑥0

 (3) 

where 𝐾 ⋄ 𝜆 is a term borne from the variations of the convolution term 𝐾 ∗ 𝑥. In fact, in [16] the authors 

demonstrate that, for a causal kernel, i.e. if 𝑘(𝑡 − 𝜏) = 0 for 𝑡 < 0 and 𝜏 > 𝑡, it follows: 

 𝛿 ∫ 𝑥(𝑡) ∫ 𝐾(𝑡 − 𝜏)𝑥(𝜏)𝑑𝜏
𝑡

0
𝑑𝑡

𝛵

0
= ∫ ∫ 𝐾(𝜏 − 𝑡)𝑥(𝜏)𝑑𝜏

𝑇

𝑡
𝛿𝑥𝑑𝑡

𝛵

0
= ∫ 𝐾 ⋄ 𝑥 𝛿𝑥 𝑑𝑡

𝛵

0
 (4) 

The problem reduces to a pair of coupled integral-differential equations for the optimal state 𝑥 and costate 

𝜆, and a single algebraic equation involving the control u. The optimal solution is constrained with two-

points boundary conditions. The existence of a trasversality condition 𝜆(T)=0, makes the problem difficult 

to solve precluding, in general, the chance of a direct feedback control. Nevertheless, the authors in [16] 
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proposed a technique based on an iterative MPC-based algorithm that solves the problem in a satisfactory 

way. 

The present paper attacks the problem of the infinite time horizon that engineers could prefer in many ways. 

In this case, and in the absence of the integral contributions, the classical infinite time-horizon permits a 

feedback solution 𝜆 = 𝑃𝑥, where 𝑃 can be set constant.  

In the present case, however, a simple solution as 𝜆 = 𝑃𝑥 is not permitted and an alternative solution 

technique has to be determined. 

We can limit our attention to the case in which the kernel has the form (𝑡) = ∑𝛼𝑖𝑒−𝑐𝑖𝑡 . In this case: 

 ℒ{𝐾 ∗ 𝑥} = 𝑋(𝑠) ∑
𝛼𝑖

𝑠+𝑐𝑖 
= 𝑋(𝑠)

𝑃(𝑁−1)(𝑠)

𝐷(𝑁)(𝑠)
 

 ℒ{𝐾 ⋄ 𝑥} = 𝑋(𝑠) ∑
𝛼𝑖

𝑠−𝑐𝑖 
= −𝑋(𝑠)

𝑃(𝑁−1)(−𝑠)

𝐷(𝑁)(−𝑠)
 

(5) 

indicating with  𝑃 and 𝐷 general N-1 and N order polynomials, respectively. With these properties, the 

Laplace transform of equations (3) produces: 

 𝑠𝑋 − 𝑥0 = 𝑎𝑋 +
𝑏2

𝑟
𝛬 +

𝑃(𝑁−1)(𝑠)

𝐷(𝑁)(𝑠)
 

 𝑠𝛬 − 𝜆0 = 𝑞𝑋 − 𝑎𝛬 +
𝑃(𝑁−1)(−𝑠)

𝐷(𝑁)(−𝑠)
𝛬 

(6) 

or rearranging: 

 [(𝑠 − 𝑎)𝐷(𝑁)(𝑠) − 𝑃(𝑁 − 1)(𝑠)]𝑋 − 𝑥0𝐷(𝑁)(𝑠) −
𝑏2

𝑟
𝐷(𝑁)(𝑠)𝛬 = 0 

 −𝑞𝑋𝐷(𝑁)(−𝑠) + [(𝑠 − 𝑎)𝐷(𝑁)(−𝑠) − 𝑃(𝑁 − 1)(−𝑠)]𝛬 − 𝜆0𝐷(𝑁)(−𝑠) = 0 
(7) 

Backward transform to the time domain, produces:  

 ∑ 𝐶𝑖𝑥(𝑖)𝑁+1
𝑖=0 + ∑ 𝐷𝑖𝜆(𝑖)𝑁

𝑖=0 = 0 

 ∑ 𝐹𝑖𝜆(𝑖)𝑁+1
𝑖=0 + ∑ 𝐸𝑖𝑥(𝑖)𝑁

𝑖=0 = 0 
(8) 

where 𝑥(𝑖) =
𝑑𝑖𝑥

𝑑𝑡𝑖, and the problem is reduced to a pure differential equation set, linear and time-invariant. 

Collecting the variables into  𝝃 = [𝑥 … 𝑥(𝑖) … 𝑥(𝑁)] and 𝜼 = [𝜆 … 𝜆(𝑖) … 𝜆(𝑁)], equations (8) can be reduced 

to a first order normal form differential problem: 

 [
�̇�
�̇�

] = [
𝑯𝝃𝝃 𝑯𝝃𝜼

𝑯𝜼𝝃 𝑯𝜼𝜼
] [

𝝃
𝜼

] (9) 

The general solution of system (9) can be expressed, in function of its 2N eigenvectors 𝝍𝒌 𝜽𝒌 and 

eigenvalues 𝒑 = [𝑝1, …  𝑝𝑘 , … , 𝑝2𝑁], as follow: 

 𝒒 = [
𝝃
𝜼

] = ∑ 𝑐𝑘
2𝑁
𝑘=1 [

𝝍𝒌 
𝜽𝒌

] 𝑒𝑝𝑘𝑡 (10) 

where the 𝑐𝑘 are the unknown coefficients founded by imposing the boundary conditions. Rearranging the 

eigenvalues 𝑝𝑘 between R positive and J-negative real part, equation (10) becomes: 

 𝒒 = [
𝜉
𝜂

] = ∑ 𝑐𝑘
(𝑅)𝑅

𝑘=1 [
𝝍𝒌

(𝑅)
 

𝜽𝒌
(𝑅)

] 𝑒𝑝𝑘
(𝑅)

𝑡 + ∑ 𝑐𝑘
(𝐽)𝐽

𝑘=1 [
𝝍𝒌

(𝐽)
 

𝜽𝒌
(𝐽)

] 𝑒𝑝𝑘
(𝐽)

𝑡 (11) 

where 𝑅 + 𝐽 = 2𝑁 and the superscript (R) identifies the set of values 𝝍𝒌, 𝜽𝒌 and 𝑐𝑘 referred to the positive 

real parts Â{𝑝𝑘} > 0 and vice versa the superscript (J) refers to the set of with Â{𝑝𝑘} < 0.  
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The system in (11) can be solved in two different ways based on the number of eigenvalues of matrix 𝑯 =

[
𝑯𝝃𝝃 𝑯𝝃𝜼

𝑯𝜼𝝃 𝑯𝜼𝜼
] with Â{𝑝𝑘} > 0. 

In the first case, 𝑅 > 𝐽, where the number of eigenvalues 𝑝𝑘 with negative real part are more than the others 

the relation between the 𝜼 and 𝝃 vectors can be found as 

 𝜼 = 𝜣𝜳−𝟏𝝃 (12) 

where 𝚯, 𝚿 are the eigenvalues and eigenvectors of matrix 𝑯, respectively. On the other hand, when 𝑅 < 𝐽, 

the relation become: 

 𝜼 = 𝜣𝜳+𝝃 (13) 

where Ψ+ is pseudo transpose eigenvectors matrix. 

In general, the control law and its derivative, 𝜼, is proportional to the state and its derivatives, 𝝃 as follows: 

 𝜼 = 𝑷𝝃 = [
𝑃11 ⋯ 𝑃1𝑁

⋮ ⋱ ⋮
𝑃𝑁1 ⋯ 𝑃𝑁𝑁

] 𝝃 (14) 

Finally, the analytical form of the control law can be found by combining the third equation of (3) and (14) 

as 

 𝑢 =
𝑏

𝑟
∑ 𝑃𝑁𝑖𝑥(𝑖−1)𝑁

𝑖=1  (15) 

which depends on the coefficients and order of the kernel function, on the state variable and on combination 

of state derivatives of N-order. For these reasons, the proposed control algorithm is called Proportional-

hyper-derivative, PD(N).  

The obtained control law is not a casual one, because it is depending on the derivatives of the state 𝑥(𝑖). 

However, by computing a direct expression of 𝑥(𝑖) starting from the Laplace formulation of equation (1), 

after some manipulations, the  𝑥(𝑖) can be expressed by the integral of the state and of the control. For sake 

of simplicity, this general mathematics is omitted, and the complete formulation can be found in [26]. 

3 Active control of MR damper 

The system chosen to test the PD(N) behavior is a simple quarter-car model. The sprung mass 𝑀 is the 

quarter vehicle mass and the unsprang mass 𝑚 represents the wheel mass, both are controlled by an active 

actuator 𝑢, which considers the presence of the MR damper with 𝐹𝑑 force. The MR damper has been 

modelled to consider the hysteresis effects typical in magnetorheological fluids. 

The prototypal system in Figure 1 shows a 2-Dof system including the vertical displacements 𝑧, 𝑧𝑡 on which 

the road roughness 𝑧𝑟  is acting as an external disturbances. 𝑘 and 𝑘𝑡 are stiffness of the suspension and tyre, 

respectively. The equation of motion of the quarter-car model follows as: 

 𝑀�̈� + 𝑘(𝑧 − 𝑧𝑡) +  𝐹𝑑 = 𝑢 

 𝑚�̈�𝑡 + 𝑘(𝑧𝑡 − 𝑧) − 𝐹𝑑 + 𝑘𝑡(𝑧𝑡 − 𝑧𝑟) = −𝑢 
(16) 
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Figure 1: Quarter-car model with active control in parallel with a MR damper.  

Many mathematical models are employed to describe the hysteresis phenomena, but the specific 

magnetorheological behavior is mainly studied by the Bouc model. This start from the representation of a 

hysteresis force 𝐹𝑑. Bouc proposes, under the rate-independent assumption, the following model [23]: 

 
𝑑

𝑑𝑡
𝐹𝑑 = 𝑔 (𝛥, 𝐹𝑑 , 𝑠𝑖𝑔𝑛(�̇�)) �̇� (17) 

for some given initial conditions 𝐹𝑑(𝑡0) and 𝛥(𝑡0). Due to the nonlinearities of the 𝑔 function, Bouc 

proposed a hysteresis formulation based on the solution of the following Riemann-Stieltjes integral: 

 𝐹𝑑(𝑡) = 𝑐Δ(𝑡) + ∫ 𝑓(𝑉𝑠
𝑡)dΔ(s)

𝑡

𝜏
 (18) 

where 𝑐 is a parameter and 𝜏 is the time instant after which the displacement and force are defined and the 

term 𝑉𝑠
𝑡 is the total variation of Δ in the time interval [𝑠 − 𝑡]. The function 𝑓 is called the hereditary kernel 

and it takes into account hysteretic phenomena. In the special case of an exponential kernel 𝑓(𝑥) =
𝐴𝑒−𝛽𝑥with , 𝛽 > 0 , a differential formulation of the second terms of (18) can be easily deduced: 

 �̇� = 𝐴Δ̇ − β𝑟|Δ̇| (19) 

indicating 𝑟 = ∫ 𝑓(𝑉𝑠
𝑡)dΔ(s)

𝑡

𝛽
. The derivation of these equations is detailed in Reference [23]. Equation (19) 

has been extended in reference [22] to describe restoring forces with hysteresis in the following form: 

 �̇� = 𝐴Δ̇ − β𝑟𝑛|Δ̇| − γΔ̇|𝑟𝑛|  (20) 

with 𝑛 odd and 𝛾 an additional tuning parameter. The equation (20) is called Bouc-Wen model and it was 

modified by the contributions of several authors that has proposed different variants [27].  

The system dynamics (16) can host a simplified form of the hysteresis force (18). Linearizing the Bouc-

Wen model, one obtains for 𝐹𝑑: 

 𝐹𝑑 ≈ cΔ + K ∗ Δ (21) 

where 𝐾(𝑡) = ∑𝛼𝑖𝑒−𝑐𝑖𝑡.  

The parameters 𝛼𝑖 and 𝑐𝑖 can be set to match the cycle of hysteresis of the original Bouc-Wen model. This 

last depends on the current injected into the MRD coils [28], that means a best fitting of 𝛼𝑖 and 𝑐𝑖 can be 

determined for any flowing current. An example of this approximation is show in Figure 2 where the 

behaviour of a MR with LORD MR fluid of RD-1005-3 Serie, is excited by an harmonic signal at 2.5Hz, 

5mm amplitude and a current of 1.5A, (see [28] for more details). In this case a second order kernel 

expansion has been employed, 𝑐 = 16.7𝑒3; 𝛼1 = 9.6𝑒6; 𝛼2 = 73𝑒3; 𝑐1 = 130; 𝑐2 = 0.05. 

𝑘 

𝑧(𝑡) 
  𝑀 

  

𝑧𝑟(𝑡) 

  𝑚 

𝑘𝑡 

𝑧𝑡(𝑡) 

  𝑢 
𝐹𝑑 
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Figure 2: Comparison of MR damper between the Bouc-Wen model and the Volterra integral 

approximation. 

4  Numerical simulation 

The following numerical results concern the simulation of the quarter-car model passing on a bump in order 

to control the car speed in urban streets. The bump is characterized by 7 cm height and 60 cm length. The 

crossing car velocity has been chosen constant as 15 m/s. Figure 3 - Figure 6 show the numerical results 

comparing the passive suspension with the controlled one when the PD(N) algorithm is applied and also 

with the classical LQR method. In Table 1 the simulation and control parameters are reported. 

Table 1: Simulation parameters 

Description Parameters Value 

Quarter-car stiffness [N/m] 𝑘 2.2 ∙ 104 

Tyre stiffness [N/m] 𝑘𝑡 2.5 ∙ 105 

Tyre mass [kg] 𝑚 35 

Quarter-car mass [kg] 𝑀 380 

Control Gains 𝑸 [

70 0 0 0
0 1 0 0
0 0 300 0
0 0 0 0.03

] ∙ 107 

 𝑟 0.01 

 𝑲𝑙𝑞𝑟 [2.4 0.34 −6.3 −0.0078] ∙ 105 

 

 

Starting from equation (16) and reducing it at the first order, it is possible to derive the dynamic system in 

the state space form as follow: 

 �̇� = 𝑨𝒙 + 𝑲 ∗ 𝒙 + 𝑩𝒖 + 𝒅 (22) 

where 𝒙 = [𝑧, �̇�, 𝑧𝑡 , �̇�𝑡], 𝑨 is the dynamic matrix 4x4, 𝑩 is the control vector 4x1, 𝒅 is the external disturb 

including the road profile 𝑧𝑟 and the convolution integral 𝑲 ∗ 𝒙 represents the hysteresis memory effects 

(a) (b) 
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with 𝑲 a 4x4 matrix. The passive suspension behavior is simulated by imposing 𝒖 = 𝟎 in equation (22). 

The LQR control is found solving the classical Algebraic Riccati Equation with the stationary conditions, 

𝒖 = −𝑲𝒍𝒒𝒓𝒙, where the LQR control gain 𝑲𝒍𝒒𝒓 is only depending on 𝑨 and 𝑩, neglecting the convolution 

term, as it is unable to incorporate it into the solution. Differently, the PD(N) algorithm starts from the cost 

function that can consider the memory effects: 

 𝐽(𝒙, 𝒖, 𝝀) = ∫
1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖

𝑇

0
+ 𝝀𝑇[�̇� − 𝑨𝒙 − 𝑲 ∗ 𝒙 − 𝑩𝒖]𝑑𝑡 (23) 

where the 𝑸  and 𝑹  gain matrices are the same for both tested controls so that the results in terms of 

performance and cost function can be compared. Starting form (23) and following the same mathematical 

approach illustrated in Section 2, which for reasons of clarity has been exposed for a scalar problem so as 

not to burden the mathematical formulation, the PD(N) optimal feedback control can be expressed as:  

 𝒖 = 𝑹−1𝑩𝑇 ∑ 𝑷𝑁𝑖
𝑁
𝑖=1 𝒙(𝑖−1) (24) 

Eq. (24) has the same structure of (15) where the 𝑷 matrix is now composed by submatrices 𝑷𝑁𝑖. For all the 

simulations a kernel function 𝐾(𝑡) characterized by the parameters 𝑐 = 8𝑒3; 𝛼1 = 9.6𝑒6; 𝑐1 = 130 has 

been chosen. 

The following Figure 3 - Figure 6 show the numerical results in term of masses displacement 𝑧, 𝑧𝑡 and tyre 

deflection. This last parameter, which is the handling measure 𝑧𝑡 − 𝑧𝑟, is important to guarantee a good 

stability and maneuverability of the car. In fact, when a vehicle crosses asymmetric potholes or bumps in 

the road, it can skid or lose stability due to a bad tyre-to-road contact. The quality of this contact can then 

be assessed based on the tyre bending. 

Figure 3 and Figure 4 show the time evolution of the car and tyre displacement, respectively, when the 

system is uncontrollable (passive) and when it is controlled by the LQR and PD(N) algorithms. Both the 

controller can minimize the car oscillations due to the external bump on the road in comparison to the passive 

system. Moreover, the novel PD(N) solution can overcome the bump peak better than LQR, managing to 

improve the attenuation of the car and tyre displacement even for times after the peak itself. 

 

Figure 3 Car-body displacement in time 
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Figure 4 Tyre displacement in time 

At the same level of forces applied, lower tyre deflections has been obtained with the PD(N) control 

compared to the LQR one, because the standard method does not take into account memory effects due to 

the hysteresis phenomena of the damper. 

The better PDN performance targeted are evidenced also by the presence of a faster and smoother control 

law (Figure 5) and a lower value of cost function in time (Figure 6) respect to the LQR. 

 

Figure 5 Control law evolution in time 

 

Figure 6 Cost function in time 
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Conclusions 

In this work a novel feedback control has been formulated to control dynamic system with hysteresis effects. 

The analytical solution of the optimal control of integral-differential Volterra equations, allows to control 

the memory effects typical of ferromagnetic fluids such as the MRD. These dampers are normally 

represented by nonlinear mathematical models that make many control logics ineffective because they fail 

when interfaced with these complex models. In this preliminary study, the damper has been approximated 

by a convolution integral allowing to apply the Proportional-Nth-order-Derivatives or PD(N) to a quarter-

car model passing on a bump. The numerical results show how the proposed PD(N) controller has better 

performance, in terms of minimization of mass displacement and tyre bending, compared to the standard 

LQR method.  
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