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Abstract: In the present study, we successfully synthesized N-doped carbon quantum dots (N-CQDs)
using a top-down approach, i.e., hydroxyl radical opening of fullerene with hydrogen peroxide, in
basic ambient using ammonia for two different reaction times. The ensuing characterization via
dynamic light scattering, SEM, and IR spectroscopy revealed a size control that was dependent on
the reaction time, as well as a more pronounced -NH2 functionalization. The N-CQDs were probed
for metal ion detection in aqueous solutions and during bioimaging and displayed a Cr3+ and Cu2+

selectivity shift at a higher degree of -NH2 functionalization, as well as HEK-293 cell nuclei marking.

Keywords: fullerene; carbon quantum dots; heavy metals; photoluminescence; bioimaging; quench-
ing; spectroscopy

1. Introduction
Carbon-based nanomaterials, such as zero-dimensional fullerenes, 1D carbon nan-

otubes, and 2D graphene, have received considerable attention as useful materials for
various applications in electronics, optoelectronics, photovoltaics, and sensing [1–3]. Car-
bon quantum dots (CQDs) not only inherit the excellent optical properties of traditional
semiconductor quantum dots [4,5] but also compensate for the deficiencies of the tradi-
tional materials in terms of biocompatibility, cytotoxicity, and biohazards [6,7]. Other
relevant aspects of these nanomaterials are their excellent solubility in an aqueous envi-
ronment, chemical stability, photobleaching resistance, large-scale preparation, and ease
of surface functionalization [8]. Due to quantum confinement effects and localized sur-
face states, CQDs exhibit a variable photoluminescence emission [9,10]. The subsequent
interaction of ions or molecules can modify the localized surface states, thus causing a
photoluminescence quenching or enhancement effect. As a consequence, these materials
are promising candidates for replacing the metal-based quantum dots in various appli-
cations, such as bioimaging [11–13], biosensing [14,15], drug delivery [16,17], adjuvant
selection in vaccines [18], and photocatalysis [19]. The working mechanism in sensing and
imaging applications is related to the presence of functional groups, which can coordinate
the metals being detected, thus affecting the optical properties. The coordinating role is
often played by oxygenated functional groups, such hydroxyls and carboxylates, that are
attached to CQDs, but additional N-doping is sought for shifting selectivity parameters or
spectral features [20].
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The efficacy of the CQDs for detection purposes needs to meet application require-
ments, which privilege facile syntheses without further treatments prior to their use, in
order to achieve a practical ready-to-use tool. Important progress in the synthesis methods
of these materials was achieved, adopting either bottom-up or top-down approaches, de-
pending on starting materials, target size, and target ion detection. In the case of bottom-up
approaches, the starting point is a mix of small organic molecules that undergo pyrolysis.
Through polymerization, the carbonization of the precursors can be achieved by means
of microwave, ultrasonication, hydrothermal, or solvothermal treatments. Citric acid con-
densation or pyrolysis is the progenitor of a set of bottom-up syntheses [21], which was
used in a large number of applications [22,23]. In a typical synthesis, CQDs are synthe-
sized using citric acid pyrolysis at 180–200 �C, followed by water addition upon color
changing of the solution to pale yellow/orange, centrifugation, and dialysis (a lengthy,
yield-affecting procedure). Bottom-up strategies were further extended to the condensation
of saccharides [24], biopolymers [25], ascorbic acid [26], and humic acid [27], as well as
different plant species, including fruits and vegetables [28], and waste materials, such as
waste-paper and frying oil [29]. In terms of ion detection, pyrolysis-derived CQDs are
usually sensitive to Fe3+ or Fe2+ only [30]. N-doping in the bottom-up synthesis of CQDs
is achieved using a hydrothermal procedure after mixing a reagent acting as a C-donor
and one acting as a N-donor. Such mixtures include CCl4/1,2-ethylenediamine, CCl4/1,3-
propanediamine, CCl4/1,4-butanediamine [31], citric acid/glycine [32], folic acid/ethylene
glycol [33], and a mixture of seaweed-derived -carrageenan/lemon juice/belzalkonium
chloride [34] and shift the selectivity to multiple ions [31] or different ions [33]. Although
in some cases, the bottom-up synthesized N-doped CQDs (N-CQDs) appear to be effective,
reagents such as CCl4 are toxic or even carcinogenic and consequently banned from lab use
in some countries. In other cases, the source of nitrogen is part of the biomass, such as in
rice residues, whose pyrolysis generated the N-CQDs [35], or Tulsi leaves, which yielded
N-CQDs by hydrothermal treatment after fine grinding [36]. The top-down synthesis of
CQDs is derived from the separation of large carbon precursors, which are usually pre-
pared from carbonic materials, including nanotubes, graphene, carbon black, and fullerene.
These carbonic materials with an sp2 carbon structure are abundant but have an infinite
Bohr diameter and lack an effective bandgap to produce luminesce on excitation [37]. Thus,
breaking down these large carbon sources into nanoscale particles is an essential step to
endow them with photoluminescence (PL) through quantum confinement effects [38]. This
can usually be achieved via physical and chemical methods, such as laser ablation and
electrochemistry, as well as redox reactions, which are variants of the Hummer method and
employ sulfonitric attacks [39]. The redox top-down synthesis, especially when applied
to fullerene, allows for size control due to the unfolding of regularly sized units, such as
Buckminster buckyballs. The opening or unfolding procedure leaves oxygen-containing
functional groups, such as hydroxyls or carboxylic acids on the fullerene halves. However,
N-doping ensuing unfolding is not a common procedure.

In the present paper, we present a simplified and low-cost top-down synthesis for
obtaining N-doped CQDs, with a size control that depends on the initial material (fullerene)
and can be further refined through the reaction time. The synthesized N-CQDs were
subsequently used as fluorescent probes for metal ion detection sensing and imaging of
cell nuclei. In defining the synthetic strategy, we privileged easiness, i.e., we proceeded
with a one-step synthesis, that did not require a hydrothermal treatment, and avoided the
dialysis procedure, which can be costly and lengthy, using fullerene as the starting material
for better size control. Since the opening requires an active breaking action, we used a
mixture of hydrogen peroxide (H2O2) and ammonia (NH4OH), which exerts their opening
action via oxidation, and provides both of the required oxygenated and nitrogenated
functional groups. The whole procedure was followed by sheer centrifugation. This simple
procedure was carried out for different lengths of time to determine possible differences.
The N-CQDs were, then, characterized using dynamic light scattering (DLS), scanning
electron microscope (SEM) imaging, and infrared spectroscopy. The efficacy of the N-CQDs
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was probed in the application as fluorescent tools for metal ion detection in water and cell
imaging. We found that longer reaction times for the N-CQDs’ preparation favored the
introduction of a larger amount of -NH2. The concomitant effects were a shift in selectivity
toward Cu2+ and Cr3+ metal detection and more efficient imaging of cell nuclei.

2. Materials and Methods
2.1. Materials and Equipment

Fullerene C60 flakes and hydrogen peroxide solution (30%) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Ammonium hydroxide solution (28%) was ordered
from VWR Chemicals (VWR International, Radnor, PA, USA). The water used in all the
experiments was doubly distilled and purified using a Milli-Q system (Millipore, Milford,
MA, USA). All metal salts (Cd(NO3)2·5H2O, Cu(NO3)2, AgNO3, CrCl3·6H2O, SnCl2·6H2O,
ZnCl2, AlCl3) were purchased from Merck KGaA (Darmstadt, Germany). The metal salts
solutions were prepared at the concentration of 10,000 µM. Infrared spectra were taken
with a Shimadzu Prestige-21 FT-IR instrument (Shimadzu Corp., Nakagyo-ku, Kyoto,
Japan), which was equipped with an attenuated total reflectance (ATR) diamond crystal
(Specac Golden Gate, Specac Ltd., Orpington, Kent, UK), in the range 400–4000 cm�1, with
a resolution of 4 cm�1. A layer of N-CQDs was deposited on a clean Al foil using drop-
casting and the deposits were dried in air before measurements were taken. SEM images
were taken with a Zeiss Auriga Field Emission–Scanning Electron Microscope instrument
(Carl Zeiss Microscopy, Cambridge, UK) operating at 7 kV on N-CQDs diluted 1:100 with
deionized water and deposited on a clean Si wafer surface. Measurements were taken
upon complete solvent evaporation. The size distribution was measured using a Nano
ZS90 (Malvern, UK) at room temperature using disposable plastic cuvettes. Fluorescence
measurements were performed using a laboratory setup for photoluminescence, which
was equipped with a 200 W Hg (Xe) continuous discharge lamp (Oriel Corp., Stratford,
CT, USA) with an excitation 25 cm monochromator (Photon Technology International, Inc.,
Birmingham, NJ, USA) and an emission 25 cm monochromator (Cornerstone 260, Oriel
Instruments, Stratford, CT, USA). The spectral response of the setup was calibrated over
the wavelength range of interest using reference fluorophore solutions of quinine sulfate
and a certified spectral fluorescence standard kit (Sigma-Aldrich) [40]. The samples were
investigated in rectangular fused silica cuvettes with an optical length of 10 mm. The PL
signal was collected at the conventional 90� geometry by quartz lenses with appropriate
rejection filters. All the emission spectra were generally recorded using the excitation
wavelength of �exc = 360 nm with a spectral bandwidth of approximately 3 nm. UV-Vis
absorption spectra were recorded using a Cary 50 spectrophotometer (Varian Inc., Palo Alto,
CA, USA). All the PL and UV-Vis spectra were elaborated with the Origin Pro program. The
PL spectra were deconvolved using Gaussian functions to determine the peak position and
the higher full width at half maximum (FWHM). Human embryonic kidney 293 (HEK-293)
cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
2 mM glutamine and 10% fetal bovine serum (FBS) maintained in a humidified incubator
at 10% CO2 and periodically tested to ensure the absence of mycoplasma contamination.
Afterward, the cells were incubated with 2.2 mM N-CQDs-40 min or N-CQDs-15 h in
DMEM for 30 min, 1 h, or 2 h. Nuclei of the cells were labeled with DAPI (40,6-diamidin-
2-fenilindolo) fixed in 4% paraformaldehyde for 15 min and then washed three times
with PBS. Images were taken with an ApoTome System (Zeiss) that was connected to an
AxioObserver Z1 inverted microscope (Carl Zeiss Microscopy GmbH, Jena, Germany).

2.2. Synthesis of N-CQD-Based Nanomaterials
The synthesis of N-CQD-based nanomaterials was performed using a hydroxyl-radical

related method to open and cut down fullerene into N-CQDs. Ariga and co-workers
reported the decomposition of H2O2 into hydroxyl radicals at a high NaOH concentra-
tion [41,42]. In order to increase the optical properties and electrocatalytic activities of
the CQDs, heteroatom doping was evaluated to improve the properties and enhance the
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selectivity of these materials toward the detection of specific heavy metal ions. For this
reason, NH4OH was used instead of NaOH during the synthetic process. In a three-neck
round-bottom flask, 20 mL of fullerene that was dispersed in ultrapure water (5 mg/mL)
was sonicated for 1 h 30 min. Afterward, N-CQDs were prepared by loading 4 mL of
NH4OH (28%) to the fullerene dispersion and slowly adding 16 mL of H2O2 (30%). Subse-
quently, the resulting solution was heated in an oil bath at 120 �C for 40 min or for 15 h to
produce N-CQDs. The final products were centrifuged at 4500 rpm for 10 min, followed
by centrifugation at 15,000 rpm for 15 min. The precipitate was then removed and the
supernatant of each solution was used for the subsequent analyses without any further
treatment. The achieved samples were named N-CQDs-40 min and N-CQDs-15 h. The
reaction scheme is shown in Figure 1.
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Figure 1. Preparation of fluorescent N-CQDs through hydroxyl radical-induced decomposition of fullerene C60.

3. Results
The synthesized samples were characterized with different techniques. In particular,

the average size of the quantum dots was estimated using DLS and SEM imaging. The
presence of functional groups on the surface of the quantum dots was assessed using
infrared spectroscopy. Subsequently, the optical and fluorescence properties and metal
detections were determined using absorption and fluorescence spectroscopies and the
bioimaging was achieved using fluorescence microscopy.

3.1. Characterization of the N-CQDs-Based Nanomaterials
The average size of the N-CQDs was estimated using DLS. The size distribution

is reported in Figure 2a,b for the two samples. It was 4.19 ± 0.02 nm for the 40 min
preparation, decreasing to 2.81 ± 0.02 nm for the 15 h preparation, with a size distribution
range of ±0.8 nm in both cases. This indicated the efficacy of the hydroxyl-radical-opening
procedure, as well as the erosion of the quantum dots’ edges as an effect of the reaction
time due to the continuous action of the reaction mixture.

SEM images are reported in Figure 2c,d for diluted samples of N-CQDs-40 min and
N-CQDs-15 h, respectively, and indicate the presence of CQDs in a size range that was in
line with the DLS measurements. The shapes and boundaries, though difficult to estimate
at these large magnifications, were irregular.

The introduction of functional groups on the unfolded moieties was evaluated using
ATR-FT-IR spectroscopy, especially for determining the simultaneous presence of oxygen
and nitrogen derivatives. ATR-FT-IR spectra of the QDs dispersions were registered after
drop-casting the aqueous solutions on clean aluminum foils and subsequently drying the
deposits in air.

In Figure 3, the ATR-FT-IR spectrum of pristine fullerene powder is compared with
the spectra of N-CQDs-40 min and N-CQDs-15 h.
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Both N-CQDs samples appeared quite different with respect to the pristine fullerene
powder since they showed broad absorptions in the region between 3500–2500 cm�1, as
well as evident peaks below 1700 cm�1. In contrast, pristine fullerene was characterized by
only four vibration modes located at 522 cm�1, 572 cm�1, 1180 cm�1, and 1427 cm�1 due
to radial displacements of the carbon atoms (lower wavenumber peaks) and tangential
modes of the carbon atoms (absorptions above 1000 cm�1) [43]. During the hydroxyl-
radical-induced opening of fullerene, the surface of the obtained CQDs was modified by
several functional groups, such as hydroxyl (–C-OH), carboxyl (-CHO, -COOH), ether
and/or epoxy (-C-O-C-), amine (-C-NH2), and amide (-CO-NHx, x = 1, 2) moieties. The
FT-IR spectra of the two samples of unfolded fullerene showed four broad absorptions
between 3500 cm�1 and 2500 cm�1 due to the overlap of hydroxyl –OH stretching centered
at 3440 cm�1 with -NHx stretching (3199 cm�1), -CH=CH- (3044 cm�1) aromatic stretching,
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and -CH bond stretching of sp3 carbons (2860 cm�1). The most prominent peaks in this
region were the –NHx stretching and -C=C- aromatic stretching motions, indicating the
formation of amine/amide group functionalized aromatic carbon particles. The weak but
quite sharp peak registered at 1753 cm�1 could be assigned to –C=O carboxylic group
stretching. The broad, weak signal centered around 1614 cm�1 conveyed signals from
–OH bending, -C=C- aromatic stretching, -NH2 scissoring, and/or carboxylic acid -C=O
stretching, thus hampering a one-to-one assignment [44]. The very intense and broad
peak located at 1414 cm�1 could be related to –C-N- stretching of primary amides and to
–C-O- stretching of hydroxyl groups in fullerenols [43,45]. Both N-CQD samples showed a
prominent broad and intense absorption around 1319 cm�1, which could be ascribed to the
–C-N- stretching vibration of secondary amines bound to fullerene moieties [43], as well
as to the -C-O- stretching of the carboxylic acid bonds. The weak and broad absorption
registered at 1093 cm�1 could be ascribed to the –C-O-C- ether group stretching and
the weak and sharp signal at 1042 cm�1 derived from –C-C-O- asymmetric stretching of
hydroxyl groups. Two sharp absorptions were observed in both samples below 1000 cm�1

and might have been related to the symmetric –C-C-O- hydroxyl stretching (827 cm�1) or –
C-O-C- bending of isolated epoxy moieties on the CQDs’ surfaces [46]. Fingerprint wagging
motions of –NH2 containing functional groups (amines, amides) were observed as a sharp
absorption centered at 716 cm�1. After 15 h of reaction time, the intensities ascribed to
-NHx stretching (3236 cm�1) and –C-N- stretching of the amide groups (1408 cm�1) tended
to increase. The largest increase of features occurred to the fingerprint -NH2 wagging,
thus reasonably indicating a larger introduction of amine and/or primary amide groups
over 15 h of synthesis. In addition, the peak assigned to epoxy group formation located at
827 cm�1 gained intensity in the N-CQDs-15 h sample, which might be ascribed to a more
favorable/efficient cutting of the fullerene molecules. The summary of the IR bands of the
samples and corresponding assignments is reported in Table 1.

Table 1. Main IR peaks of the pristine fullerene C60, N-CQDs-40 min, and N-CQDs-15 h, as well as
the corresponding assignments; s = strong, m = medium, w = weak, vw = very weak, br = broad,
sp = sharp, sh = shoulder.

Fullerene C60 N-CQDs-40 min N-CQDs-15 h Assignments

3440 w br 3454 w br -O-H stretching
3199 m br 3236 s br -N-H stretching

3204 s sh -N-H stretching
3044 m br 3068 m br -CH aromatic stretching
2860 w br 2866 w br -CHx stretching
1753 vw sp 1753 w sp -C=O stretching
1614 w br 1614 w br -C=C-, -C=O stretching

-NH2 scissoring

1427 m sp -C=C- tangential
displacement

1414 w br 1408 s -C-N-/-C-O- stretching

1319 m–s br 1319 s br -C-OH carboxylic acid
stretching

1093 w br 1101 w br -C-O-C- ether stretching

1180 m sp -C=C- tangential
displacement

1042 w sh 1041 m sp -C-C-O- hydroxyl
stretching

827 m sp 827 s sp -C-O-C- epoxy bending
716 w sp 715 w sp -NH2 wagging

572 s sp -C-H radial displacement
522 s sp -C-H radial displacement
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3.2. Optical Properties of N-CQDs-Based Nanomaterials
The optical properties of the N-CQDs-40 min and N-CQDs-15 h were probed using

UV-Vis and fluorescence spectroscopies. The prepared N-CQDs displayed slight differences
in the absorption spectra. More in detail, the N-CQDs-40 min showed a typical absorption
shoulder at 275 nm, whereas the N-CQDs-15 h presented a pronounced peak at 300 nm,
which could be assigned to the ⇡–⇡* transition of aromatic �C=C– bonds in the sp2-
hybridized domain of the graphitic core (Figure 4).
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Figure 4. Absorption spectra of N-CQDs-40 min (blue solid line) and N-CQDs-15 h (red solid line).

In addition, both samples showed a peak at 350 nm, which was more evident in the
N-CQDs-40 min sample and could be assigned to the n–⇡* transition of �C=O, -C–N-, or
�C–OH bonds in the sp3-hybridized domains. This transition could be related to hydroxyl
(-OH), carboxylic (�COOH), or amine (�NH2) groups on the surface of CQDs [47–50].

In Figure 5, the PL spectra of the N-CQDs-40 min and N-CQDs-15 h excited at 360 nm
are reported. Both samples displayed a blue-green emission in the visible spectrum with
rather similar PL profiles. More in detail, fairly broad PL bands were observed with an
FWHM of roughly 140 nm that peaked at 457 nm and 451 nm for N-CQDs-40 min and
N-CQDs-15 h, respectively, highlighting a peak displacement that was compatible with the
average size variation. The photograph in the inset of Figure 5 shows the emission of the
N-CQDs upon excitation at 360 nm.

The measured values of the fluorescence quantum efficiency of the two compounds
were F = 4.5 ± 0.5% and F = 10 ± 1% for the syntheses over 40 min and 15 h, respectively.
These values compared well with those found in carbon dots prepared through bottom-up
strategies (though in the lower efficiency range). However, they were significantly higher
than the value previously reported for undoped fullerene-derived quantum dots [51]. In
this regard, the appreciable increase observed for 15 h of synthesis was consistent with the
larger introduction of amine and/or primary amide groups indicated by the FT-IR spectra
discussed above (see Figure 3) and agreed with the hypothesis that nitrogen introduces
new surface states that trap electrons, thus easing radiative recombination [9,20]. The
photostability of the samples was also good, with a fluorescence signal at 99.6% and
99.8% of the initial value for N-CQDs-40 min and N-CQDs-15 h, respectively, after 1 h of
irradiation at 360 nm.
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3.3. Selectivity of the N-CQDs as a Probe for Heavy Metal Detection
Selectivity is an important parameter to evaluate the performance of the N-CQDs as a

fluorescent probe for heavy metal detection. Therefore, the fluorescence intensities of the N-
CQDs were analyzed in the presence of various metal ions including Cu2+, Cd2+, Ag+, Zn2+,
Al3+, Cr3+, and Sn2+ at the same concentration. Different studies [51–53] demonstrated that
metal ions can interact with carbon quantum dots to induce quenching of the PL signal. In
this scenario, the present study showed how the aqueous solutions of N-CQDs synthetized
for different reaction times exhibited a significant response to two heavy metal ions: Cu2+

and Cr3+ but with different behaviors. In Figure 6a,b, the PL spectra of N-CQDs-40 min
and N-CQDs-15 h upon interaction with the different metal ions are reported. N-CQDs-
40 min displayed a fluorescence variation that depended on the metal in the solution. This
fluorescence quenching was largest for Cr3+ and Cu2+ with intensity decreases of 25% and
32%, respectively (Figure 6a). At variance with this, N-CQDs-15 h showed comparatively
very small fluorescence intensity variations with the various metals (Figure 6b), with the
exception of Cr3+ and Cu2+, which caused significant quenching, both in comparison with
the other metals and the interaction with N-CQDs-40 min. More in detail, the fluorescence
intensity decreased by 44% and 60% for Cr3+ and Cu2+, respectively, whereas it was lower
or negligible for the other ions. In summary, both the sensitivity and selectivity of N-
CQDs-15 h were significantly higher as compared to N-CQDs-40 min. All these results
are summarized in the histograms plot in Figure 6c, where F0 and F correspond to the
fluorescence intensities of the N-CQDs at 452 nm in the absence and presence of metal
ions, respectively. Assuming a linear behavior of the fluorescence quenching effect with
decreasing ion concentrations, as is generally observed in fluorescent CQDs (see [28–31,50]),
LODs of 2 µM and 1.5 µM could be estimated for Cr3+ and Cu2+, respectively. The LOD for
Cr3+ just equals the current limit of 2 µM suggested by WHO for drinking water, whereas
the LOD for Cu2+ is well below the current limit of 30 µM.
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Figure 6. Photoluminescent spectra after excitation at 360 nm of (a) N-CQDs-40 min and (b) N-CQDs-15 h in the presence
of different metal ions at the concentration of 100 µM. (c) Fluorescence quenching response of N-CQDs-40 min (blue bars)
and N-CQDs-15 h (red bars) to different metal ions with the same concentration (100 µM). N-CQDs in the absence of metal
ions are indicated as Ref. (black bars).

The different behaviors of N-CQDs-40 min and N-CQDs-15 h with respect to Cr3+ and
Cu2+ can be correlated with the larger presence of amine groups on N-CQDs-15 h, which



Nanomaterials 2021, 11, 2249 10 of 14

may have given a more specific interaction, i.e., a larger affinity toward N-derivatives as
compared to the other probed ions, such as in Reinecke’s salt (NH4[Cr(NCS)4(NH3)2]·H2O)
or other stable Cr3+ complexes with N-derivatives, which can form with multiple bonds [54].
Similarly, Cu2+ may undergo a substitution of oxygen-dented ligands bonded to Cu2+ by
nitrogen-dented ones [55], thus shifting the selectivity as well.

The comparison with previously reported studies is limited because there are very
few investigations on top-down syntheses of CQD for the detection of Cu2+ and we did
not find any for the detection of Cr3+. Top-down syntheses of CQDs for Cu2+ detection
were achieved using nitric or sulfonitric attacks of activated carbon or graphite fibers,
respectively [56,57]. They both displayed a better LOD than N-CQDs-15 h, but the QY was
not reported and no full assessment could be made. It must be added that the selectivity of
the graphite-fiber-derived CQDs was achieved only via the addition of biothiol cysteine
to the metal–CQDs water solution. A sulfonitric attack of carbon dusk in the presence of
aminophenylboronic acid yields CQDs with a better LOD and worse QY as compared to
our samples [58]. As for Cr3+, we made a comparison with bottom-up synthesized CQDs.
In this case, we achieved both a better LOD and QY [59]. A summary of the data is reported
in Table 2, along with the main synthesis details.

Table 2. Comparison between N-CQDs-15 h and literature data of top-down synthesized CQDs
for Cu2+ detection. For Cr3+, literature data of a bottom-up synthesis was taken. App = approach,
TD = top-down, BU = bottom-up, QY = quantum yield, LOD = limit of detection.

Method App Precursors Analyte QY (%) LOD (µM) Ref.

Chemical
oxidation TD

Activated carbon was
added to an HNO3
(5 mol/L) solution

and refluxed at
T = 125 �C for 72 h

Cu(II) - 0.5 [56]

Chemical
oxidation TD

Graphite fibers in
H2SO4 and HNO3

(3:1) were heated at
T = 70 �C for 24 h

Cu(II) - 0.33 [57]

Thermal
decompo-

sition
TD

Aminophenylboronic
acid and carbon dusk

in HNO3/H2SO4
were refluxed at

T = 80 °C for 12 h

Cu(II) 1.6 0.3 [58]

Hydroxyl
radical TD

Fullerene in H2O2
and NH4OH were

heated at T = 120 �C
for 40 min or 15 h

Cu(II) 10 1.5 This
study

Thermal
treatment BU

Sucrose and H3PO4
water solutions were
incubated at T = 85 �C

for 30 min

Cr(III) 0.18 24.5 [59]

Hydroxyl
radical TD

Fullerene in H2O2
and NH4OH were

heated at T = 120 �C
for 40 min or 15 h

Cr(III) 10 2 This
study

3.4. Fluorescence of the N-CQDs—HEK293 Cell Cultures
The cultured HEK-293 cells, which were stained with DAPI and incubated for 30 min

with either N-CQDs-40 min or N-CQDs-15 h, are shown in Figure 7a,b. In both cases,
the HEK-293 cells could be clearly visualized after the internalization of the N-CQDs and
exhibit a bright green fluorescence due to the particle endocytosis [60–62]. In addition, the
fluorescence of N-CQDs-15 h was much more marked as compared to the N-CQDs-40 min.
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This could be attributed to a better piercing due to the smaller size of the N-CQDs-15 h,
the -NH2 rich functionalization, and the higher quantum yield, which was twofold higher
in the case of N-CQDs-15 h as compared to N-CQDs-40 min, or to a combination of the
three factors. More importantly, the overlap of blue (nuclei) and green (N-CQDs related)
fluorescence revealed the penetration of the N-CQDs in the nuclei membrane, although a
slight diffusion in the cell cytosol was also visible. Typically, CQDs are cell markers of the
cell cytoplasm [63,64].
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Figure 7. Images of the HEK-293 cells treated with (a) N-CQDs-40 min and (b) N-CQDs-15 h.
Magnification: 40⇥. In each layer, the blue fluorescence of the nuclei stained with DAPI is reported,
followed by the green fluorescence due to the N-CQDs and the overlap of the two.

Only recently, cases of nuclei penetration and marking were reported [65], such as
the red-emission CQDs synthesized from hydrothermal treatment of p-phenylenediamine
and doped with Ni, which showed the labeling of A549 cells nuclei, or the three-week-
long electrochemical synthesis of CQDs from citric acid, followed by dialysis and used to
stain the HEK-293 cell nuclei [66]. Comparatively, the present synthesis provided nuclei
permeating N-CQDs without using potentially toxic material, such as Ni, and in relatively
short time spans. The employment of N-CQDs-40 min or N-CQDs-15 h was also relatively
safe since their incubation with HEK-293 for 1 or 2 h was characterized by cell viability of
99% and 98%, respectively, regardless of the type of quantum dots used.

4. Conclusions
In the present study, we successfully performed a one-step top-down synthesis of

N-doped carbon quantum dots via hydroxyl-radical fullerene opening with H2O2 and
NH4OH with different reaction times. The obtained N-CQDs were then characterized and
probed regarding metal ion detection and bioimaging. We found a positive correlation
between the reaction time, size, functionalization, and quantum yield. In particular, a
longer reaction time (15 h) determined the formation, on average, of smaller quantum
dots with a larger presence of -NH2 groups. This resulted in a metal ion selectivity shift
toward the detection of Cr3+ and Cu2+ in an aqueous solution with a fluorescence intensity
decrease by 44% and 60%, respectively, at 100 µM.

As far as the bioimaging properties are concerned, N-CQDs-15 h displayed a signifi-
cant capability of penetrating and marking cell nuclei, which is a property that has been
detected only for a limited number of CQDs so far.
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