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Abstract

This work presents a set of neural network applications to health insurance pricing.
In recent years, the actuarial literature involving machine learning in insurance
pricing has flourished. However, most actuarial machine learning research focuses on
car and property and casualty insurance. While, the use of such techniques in health
insurance is yet to be explored. In this manuscript, we discuss the use of neural
networks to set the price of an health insurance coverage following the structure of
a classical frequency-severity model. We consider neural networks to estimate claim
frequency and severity. In particular, we introduce Negative Multinomial Neural
Networks to jointly model the frequency of possibly correlated medical claims. We
then complete the frequency-severity approach proposing Gamma Neural Networks
to estimate the expected claim severity.
We then go beyond the frequency-severity framework adopting a quantile approach
that allows gauging the potential riskiness of a given policyholder. Namely, we discuss
the estimation of conditional quantiles of aggregate claim amounts embedding the
problem in a quantile regression framework using the Neural Network approach. As
the first step, we consider Quantile Regression Neural Networks (QRNN) to compute
quantiles for the insurance ratemaking framework. As the second step, we propose
a new Quantile Regression Combined Actuarial Neural Network (Quantile-CANN)
combining the traditional quantile regression approach with a Quantile Regression
Neural Network. In both cases, we adopt a two-part model scheme where we fit
a logistic regression to estimate the probability of positive claims and the QRNN
model or the Quantile-CANN for the positive outcomes.
Through a case study based on a health insurance dataset, we highlight the overall
better performances of the different neural network models with respect to more
established regression models (such as GLMs and quantile regression), both in terms
of accuracy and risk diversification.
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1

Introduction and motivation

The use of statistical learning in actuarial sciences is a long-time common practice
dating back to the 1980s. The actuarial profession, specifically in the pricing domain,
quickly gravitated around linear models and generalized linear models (GLM), which
have gradually become the go-to approach when building actuarial models for pricing.
Meanwhile, the statistical learning and computer science literature continued to flour-
ish, expanding machine learning and designing more advanced models outperforming
traditional ones in several fields. Until recent years, the actuarial literature passed
over these models since they mainly belonged to the computer science community.
Computer scientists, compared to actuaries, have a different approach when it comes
to modeling. They are largely based on the so-called algorithmic culture, where the
modeler is primarily interested in the model’s accuracy rather than explainability.
Actuaries, instead, are more familiar with the data modeling culture, where the main
concern is model interpretability. The distance between the different cultures [8] has
prevented actuaries from exploring new modeling techniques for a long time.
A seminal work encompassing the use of several machine learning algorithms for
insurance ratemaking was put forward by [17] where the authors compare: linear
regression, generalized linear models, Tree-based models, neural networks, and
supporting vector machines. As also reported in [7], [17] in their conclusion state
"We hope this paper goes a long way towards convincing actuaries to include neural
networks within their set of modeling tools for ratemaking". A little more than a
decade after this work, machine learning algorithms, particularly neural networks,
have consistently started appearing in the actuarial literature and practice. This
resurgence is mainly due to the vertiginous increase in the amount of data available
and the rapid advances in computation and information technology that greatly
benefit the accuracy of machine learning models. Such flood of information and
the availability of new tools to leverage it inevitably affect the insurance industry,
disrupting all aspects of insurance firms, including pricing.
The use of machine learning in insurance pricing has grown in recent years, and the re-
lated literature is increasing accordingly. For example, [27] adopts gradient boosting
for auto insurance cost modeling; [55] performs insurance pricing optimization using
several machine learning models; [29] use Tree-Based techniques such as GBM in
order to produce car insurance tariffs; [53] employs neural networks to enhance GLMs
performances in non-life insurance; [63] proposes two different techniques to overcome
the unbiasedness of neural network models for insurance portfolios. Machine learning
techniques have also found extensive application in the context of insurance claim
reserving: [25] improve the performances of the over-dispersed Poisson model for gen-
eral insurance claims reserving through neural networks embedding, and [62] propose



2 Contents

several machine learning algorithms for individual claim reserving. For an exten-
sive state-of-the-art review on machine learning in actuarial sciences, see [7], and [52].

While Machine learning models are slowly making their way in insurance pric-
ing, GLMs remain the workhorse of non-life insurance pricing. Such models allow
expressing the mean of a random variable of interest as a function of the linear
combination of its covariates (a.k.a. features). GLMs are simple to understand,
highly informative, and with good statistical properties. However, they struggle to
learn complex data structures. This is often the case in non-life insurance pricing,
where the linear relationship behind these models is too restrictive and prevents
the model from capturing all the relevant information from the data; for example,
non-linear trends and interactions between covariates may be helpful to have an
accurate reflection of reality. For the modeler, it is still possible to manually plug
non-linear features and interactions in a GLM. However, this feature engineering
is rather tedious and time-consuming since the structural form of the relationship
between the covariates, and the response variable is frequently unknown; thus, only
a limited number of possibilities are explored when building a model. In this regard,
the great advantage of Machine Learning models, particularly of neural networks,
is that non-linear transformations and interactions between covariates are directly
learned by the algorithm, without any need for a prior specification from the modeler.
For this reason, after a first inception between the end of the last century and the
very beginning of the 2000s, literature on pricing via Neural Networks has started
growing in recent years.
Early attempts at applying neural networks for insurance pricing include [12], [49],
[56], [20] and of course the aforementiond contribution by [17]. Neural Networks
are also used in [13], that compared statistical learning models for estimating the
pure premium. Neural Networks are also used in recent work of [51] to estimate a
posteriori claim frequencies. However, the recent revival of the discussion around
neural networks in actuarial pricing is due to the work put forward by M. Wutrich
and the Swiss actuarial community in recent years: In [64] and [53] the authors,
first propose a Poisson Neural Network to estimate the claim frequencies for a
car insurance dataset, and then present an innovative technique called Combined
Actuarial Neural Network (CANN) where a GLM is nested with a neural network in
order to model non linear relationships not captured by the GLM; [65] deepens the
discussion around the CANN approach; [63] addresses the problem portfolio biased
neural networks; [39] introduce a suite of model agnostic tools that allow to extract
useful and interpretable information from neural network models.

Even though the use of neural networks in insurance pricing has already been
explored, most of the research has focused on car and property insurance, while
little work has been done towards the application of such models in the health
insurance realm. In this work, we try to fill this gap by proposing a suite of neural
network applications for health insurance pricing. First, we present the use of neural
networks to price a health insurance coverage following the structure of a classical
frequency-severity model, where the product between the expected values of the
claim frequency and claim severity returns the pure premium of a specif policy. In
particular, we consider neural networks to estimate both claim frequency and claim
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severity. Then, following a quantile regression approach, we use neural networks to
evaluate the potential riskiness of a given health insurance coverage.
This research project is organized into four chapters. The first one serves as a
cornerstone for the rest of the work since we will discuss some general concepts and
models that are vital to the other chapters. More specifically: Section 1.1 provides
some context to our work by offering an overview of the Italian health insurance
market; In Section 1.2, we briefly discuss the Frequency-Severity framework that we
will consider to compute the pure premium for a health insurance policy; Section
1.3 is devoted to a short exposition of GLMs; In Section 1.4, we talk through the
theory behind neural networks offering a general framework for the different models
proposed in the following chapters. In Chapter 2, we introduce a novel Negative
Multinomial Neural Network approach to jointly model the frequency of a class of
correlated medical claims. We chose to explore the multivariate approach because
health insurance policies frequently cover a wide range of medical events, which may
often be strongly correlated. Such as medical visits and diagnostic testing, where the
referral given by a medical visit is frequently an essential requirement to undergo a
diagnostic test. The use of a Negative Multinomial approach in the context of neural
networks is a novelty in actuarial sciences since all research work on neural networks
for claim frequency estimation is based on the univariate Poisson distributional
assumption. In order to test if the proposed model has some added value w.r.t. to a
standard approach, we compare its performance against the estimates produced by
a Negative Multinomial GLM (see [69]).
In Chapter 3 we complete the Frequency-Severity approach introducing Gamma
Neural Networks to estimate the expected claim severity, i.e., the average cost of
a given claim. The actuarial literature regarding the use of neural networks to
estimate the average claim severity is still scarce (see [47] and [68]), and to the best
of our knowledge, Gamma Neural Networks have never been proposed. A similar
approach, but for Tree-based models, is explored in [29] where the models are trained
to minimize a Gamma deviance. The premiums produced with neural networks are
then compared to those issued by GLMs by means of the methodologies proposed in
[15] and that we will extensively discuss in Section 3.4. Moreover, we deepen the
understanding of our models by applying a set of model agnostic tools proposed in
[39], that allow us to shed light on the data representation learned by the models.
The new techniques proposed above are devoted to estimating the expected value of
a given variable of choice (claim frequency and claim severity) since they are designed
to return the pure premium of a specific health insurance policy in the context of a
frequency-severity approach. Hence, these models, even if they offer insight into the
average loss of a policy, useful to set a price, cannot provide the modeler with some
valuable information about the potential riskiness of the policy, e.g., the quantile of
the total claim amount. To overcome this problem, a quantile regression approach,
initially introduced by [35], may be considered since it provides information on
the whole distribution of a given phenomenon. The Quantile regression technique
represents a robust distribution-free methodology that has been widely used in the
financial literature to compute risk measures like the Value-at-Risk (see for example
[58], [61], [38], [3], [50], [59]).
The quantile regression approach appears particularly suitable in the insurance
context when assessing the Solvency II capital requirements and calculating the
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premium safety loadings. Furthermore, it enables the insurer to gauge the portfolio
riskiness (i.e., computing the Value-at-Risk of a given portfolio). Modeling the
quantile claim amount through the Quantile Regression (QR) has already been
discussed by a handful of authors: [36] was the first introducing the use of the
two-stage QR model to estimate the quantile of the total claim amount; [30] propose
a refinement of the previous model since they take into account heterogeneous claim
probabilities, whereas [36] only considers a single probability of having claims for
each type of policyholder; [5] propose an alternative two-stage approach, where the
risk margin considered in the ratemaking is calibrated on the claim’s severity for
each risk class in the portfolio, avoiding some of the drawbacks that characterize the
technique proposed by [30].
The standard QR methods, similarly to GLMs, require the specification of a prede-
termined dependence structure between the dependent variable and the covariates or
to elaborate its complex functional form to account for non-linearity or interactions
among regressors. Unfortunately, the structural form of the dependence is often
unknown to the modeler. So a different approach should be pursued in this context.
Also in this context, neural networks appear to be an interesting modeling technique
overcoming these limitations since they can fit a complex data structure without
any apriori assumption on the dependence structure.
Therefore, Chapter 4 proposes two innovative methods to estimate the conditional
quantile of the total claim amount for a group of health insurance policies employing
neural networks. The first one uses the Quantile Regression Neural Network (QRNN),
a particular specification of a feed-forward Neural Network originally introduced by
[57], devoted to quantile estimation. Up to our knowledge, this model has never
been used in the context of actuarial sciences.
The second model we propose considers a new extension of the Combined Actuarial
Neural Network (CANN) proposed by [53] in a quantile regression framework. The
original CANN formulation, as mentioned above, is devoted to claim frequency
estimation and combines a Poisson GLM with a neural network. In our model, since
we are interested in the conditional quantile of the total claim amount, we nest the
QR model into the structure of a Neural Network (Quantile-CANN henceforth).
This approach is able to represent additional information incorporated in the data
and not captured by the simple QR model.
The structure of the approach here considered is based on a two-part model. This
framework involves a model for a binary indicator variable and a model for the
response variable, given that the binary indicator takes the value one. Following
this approach, we fit a logistic regression for the binary variable to estimate the
claim probability while we use a QRNN or a Quantile-CANN model for the positive
outcomes, i.e., the total claim amount to calculate its quantile. Using the estimated
quantiles of the claim amount, we finally calculate a loaded premium following
the Quantile Premium Principle (QPP) considered in [30]. Then, as an analogy
to Chapter 3, we compare the tariff structure produced by the different models
(Quantile Regression, QRNN and Quantile-CANN) using a set of techniques put
forward by [23].
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Chapter 1

Pricing in health insurance

1.1 Health insurance in Italy

The Italian health insurance market serves as a complement to the public health
supply provided by the National Health Service (NHS). The NHS is a regional-based
healthcare system founded on the principles of universal coverage, equality in access,
and solidarity in financing. It guarantees uniform health care across the country
based on a national statutory benefits package (the essential levels of assistance [6]).
The service is financed primarily by national and regional taxes and supplemented by
co-payments. Even though the state has extensively financed the Italian NHS from
its inception in 1978, an increasingly high number of families choose to subscribe
some form of health insurance. Most explanations for the increase in subscriptions
of health insurance policies focus on the factors related to the demand side of NHS,
including long waiting lists, rising co-payments, expenditure oriented behaviour of
the policyholders, perceptions of the public system’s inadequacy, and changes in
individual attitudes about supporting the redistributive role of public healthcare.
Some numbers in order to give an idea on the increasing relevance of voluntary
health insurance in Italy: at the very end of the last century in 1999 only around
2% of the population was covered by an health insurance, it increased up to a 12%
in 2013 and reached 23% of the total population in 20191 [11].
The increase in the market share for health insurance in Italy is also due to incentives
provided by the public authority in order to complement the supply given by the
NHS, in particular for a class of services that are excluded or not entirely covered
by the public supply, such as long term care assistance, dental care, cosmetic,
thermal treatments and alternative medicine. In fact, until the late 1990s, the health
insurance market in Italy was marginal. Private insurance was principally purchased
by high-income, well-educated, healthy people for themselves and their families or
by large companies as a benefit for their high-level employees. However, especially
after the 2007-2008 economic crisis, Italy’s government has progressively limited the
growth of its own contributions to public health care financing. Indeed, from 2010 to

1In spite of its increase, the health insurance sector still plays a modest role in terms of healthcare
funding. The share of current health expenditures intermediated via health insurance rose from
2.2% in 2012 (53.1 euros per capita) to 2.6% in 2017 (66 euros per capita), and recent estimates
suggest that these numbers would double in the next decade
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2017, public health expenditure as a percentage of GDP decreased from 7% in 2010
to 6.5% in 2017, and public health expenditure’s share of total health expenditures
dropped from 78.5% in 2010 to 73.9% in 2017. The cost-containment policies adopted
by the Government have increased the out-of-pocket payment, which reached 23.5%
of total health expenditure in 2017 [40], and the expenditure for voluntary health
insurance. Another driver that contributed significantly to the increasing importance
of health insurance is the spreading of employer-paid private health insurance, which
is often provided as an employee benefit and as an alternative to wage increases
[19], and [48]. Such seems to have been the case for Italy, where wages have seen a
long stagnation period, and trade unions often exchanged more occupational welfare,
particularly health care coverage, for less remuneration [28].
The voluntary health insurance market in Italy is characterized by a plethora of
institutions with heterogeneous purposes, products, and regulations. From a product
perspective, it is possible to define classes kind of health insurance coverage:

• Collective health insurance is mainly driven by the Integrated Health Funds
(IHFs) introduced in 1992 for financing healthcare services that were supple-
mentary and complementary to the NHS. The IHFs are entities, associations,
and mutual aid companies, that are regularly registered in the National Regis-
ter of Funds established by the Ministry of Health in 2008. These funds are
managed as non-profit organizations based on mutuality and solidarity; they
cannot carry out risk selection policies. Therefore, they must accept everyone
who demands health insurance without discrimination based on age, health
status, medical history, or other individual characteristics. By 2020 more than
14 million people in Italy have joined some sort of IHF. The National Register
of Funds encompasses two types of funds, Type-A and Type-B funds, that
provide different healthcare services. Type-A funds, which provide individual
or group plans to individuals for themselves and their families, have been
regulated since 1999 to complement and supplement the NHS benefits package.
They cannot offer coverage for health services already provided by the NHS,
but they can cover cost-sharing and offer other services listed by the law (i.e.,
alternative medical services, thermal treatments, and dental services) that
supplement those of the NHS. Type-B Funds are group insurance schemes
offered to employees, mainly as part of the occupational welfare included in
collective agreements or employer-specific conditions (employer-based insur-
ance), and may duplicate, complement, or supplement NHS coverage. At least
20 percent of the premiums collected by Type B funds must be allocated to
health services supplementary to the NHS benefits package (such as dental and
long-term care). Both types of IHFs can either choose to directly manage the
risk coming from coverage or transfer the risk to a private insurance company.
The latter are commonly known as Reinsured IHFs, while the former are called
Autoinsured IHFs.
Collective health insurance is also provided by private insurance companies.
This kind of product is generally designed for firms without a category health
fund to provide risk coverage for their workers. However, such products are
often proposed as an alternative to employees that already have an employer-
based IHF, creating competition in the market.
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• Individual health insurance: this market share belongs exclusively to private
insurance companies. Unlike health funds, the insurance company can carry
out risk selection policies based on age, health status, etc., and the coverage
price is tailored to the individual policyholder characteristics, as usual in the
insurance market.

Even though insurance companies and IHF compete roughly for the same market,
they have some crucial differences that should be discussed. First, insurance com-
panies are profit-driven organizations, and IHF are non-profit ones; this leads to
different market policies as discussed above. For instance, given their non-profit
nature, IHF can afford to underwrite bad risks, while insurance companies cannot.
A clear example is the possibility for IHF policyholders to extend their policy when
they retire from work; often, this is not possible in insurance companies, where
pensioners are not allowed to hold their policy. For the same reason, insurance
companies need to apply individual price discrimination since this is where profits
arise; in contrast, IHF generally apply the same flat premium for all the policyholders
in their portfolio 2.
Another fundamental difference concerns the regulatory framework: insurance com-
panies must ensure financial stability by meeting the capital requirements defined
by Solvency II and EIOPA regulations, while IHFs are both missing a regulatory
framework and a vigilance authority; still, in recent years, different guidelines for IHF
have been proposed ([41]). According to such guidelines, the best practice to assess
the long-term sustainability of IHF is the so-called technical balance sheet, a popular
actuarial technique that consists of a ten-year projection of the fund’s assets and
liabilities. Despite the recent development of health funds in terms of membership,
their accounts show a limited capitalization, which is likely to undermine their
long-term solvency. Therefore in the coming years, it will be paramount for the
Italian legislation to develop appropriate regulations for such institutions to provide
additional protection to policyholders by ensuring long-term financial sustainability
for IHF.
The market of voluntary health insurance in Italy is divided as follows: 38% of the
market is coverered by Autoinsured IHF3, 42% belongs to Reinsured IHF and the
last 20% is covered by private insurance companies either via Individual insurance
policies or Collective insurance policies.
Although insurance companies and IHF have some relevant differences, they share
a common objective: carefully gauging the riskiness of their policyholders. In par-
ticular, insurance companies must evaluate the expected cost of a policyholder to
make sound pricing policies resulting in effective risk control and hopefully into
a profit. From an IHF perspective, estimating the potential cost of a group of
policyholders is paramount to ensure its long-term sustainability. Since having an
effective costing model with an excellent predictive ability allows the institution to
thoroughly evaluate the consistency of its future expected liabilities. In the next

2Often some IHF consider a set of flat premium to be applied at different policyholder based on
their working status.

3Also considering Mutual funds
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section, we tackle the Frequency-Severity approach, which is the standard framework
employed by actuaries when evaluating the expected cost (or pricing) of a non-life
insurance coverage.

1.2 Frequency-Severity approach
Setting the price of an insurance policy is strictly related to evaluating the cost
associated with the risk coverage provided by the insurance contract. In other
terms, in order to price a contract, insurers predict the expected total claim amount
Si for each policyholder based on his or her observable characteristics xi. The
insurer therefore develops a predictive model f(.), mapping the risk factors xi to
the predicted loss cost with E(Si/xi) = f(xi). Therefore, determining the price
of a health insurance coverage is strictly connected to determining the medical
expenditure of the policyholders during the time of coverage.
Models for medical expenditure are usually designed using a two-part approach,
where the medical expenditure of a group of individuals is modeled in two steps.
First, the population is split between users of medical services and non-users using a
logit model. While in the second part, the expenditure amount is modeled using a
classical regression model.
The use of a two-part model approach to model an individual’s expenditure during
a year is only suitable when analyzing a specific illness. However, over one year,
individuals may face multiple illness events, see [21]. Hence, a more viable approach
is to consider frequency-severity modeling, which is the primary statistical approach
for modeling non-life insurance claims. This approach splits the total claim amount4

for a given insured i, into a compound sum that accounts for the number of filed
claims and determines the individual medical claim sizes. Thus, the total claim
amount Si is represented using a compound random variable with Ni describing
the number of claims that occur over one year and S̃i,1, . . . ,S̃i,Ni describing the
individual claim sizes defined as claim severities. More formally:

Si = S̃i,1 + S̃i,2 + · · ·+ S̃i,Ni =
Ni∑
j=1

S̃i,j (1.1)

this approach is built upon three standard assumptions:

• Ni is a discrete random variable which takes values in N;

• S̃i,1, . . . , S̃i,j , . . . , S̃i,Ni are independent and identically distributed (i.i.d.);

• Ni and S̃i,1, . . . , S̃i,Ni are independent.

for such properties we have that:

E(Si) = E(Ni) · E(S̃i,j), (1.2)

where S̃i,j is the cost for a generic claim filed by policyholder i, for proofs see [34].
Basically, the goal of a health insurance company, given a set of risk drivers xi, is

4from now on we will use an insurance based vocabulary, hence we will use terms such as claim
amount rather than health expenditure
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to asses the expected total claim amount E(Si/xi) of an insurance coverage over
one year, for costing or pricing purposes. In Chapters 2 and 3 we explore how to
model the claim frequency5 E(Ni/xi) and the claim severity E(S̃i,1/xi) for a set of
different claim types using neural networks and drawing a comparison with GLMs.

1.3 GLM
To assess the possible merits of neural networks for health insurance pricing, we first
have to establish a benchmark model that meets industry standards. Generalized
linear models, first introduced by [45], provide a unified procedure to model responses
with a distribution belonging to the exponential family with respect to a given
transformation of a set of covariates. Today, GLMs are state-of-the-art statistical
models in many applied fields; in actuarial science, these models are mainly used
for predictive modeling, and they represent by far the most popular choice in the
industry when it comes to developing pricing models. They are commonly employed
to model claim frequency and claim severity. In this Section, without aiming to be
exhaustive, we briefly highlight the main features characterizing GLM.
We start by defining the set of observations {Y ,x}, where Y = (Y1, . . . , YI) is the
vector gathering the observations for the phenomenon of interest and x = (x1, . . . ,xI)
is the I × p matrix of covariates.
A GLM specifying the relationship between Y and x is built upon the following
hypothesis:

• Distributional hypothesis: the responses Y1, . . . , YI are i.i.d. following a distri-
bution belonging to the exponential family;

• Structural hypothesis: the relationship between the expectation µi = E(Yi/xi)
and xi is represented as:

g(µi) = x′iβ, for i = 1, 2, . . . , I, (1.3)

where β = (β1, . . . , βp) is the vector of parameters to be estimated via Max-
imum Likelihood by the model and g(.) is a monotonic, differentiable and
invertible link function such that:

E(Yi/xi) = µi = g−1(x′iβ), for i = 1, 2, . . . , I. (1.4)

The choice of the distribution for Yi depends on the specific task at hand. For
instance, in a claim frequency model, the response variable typically follows a count
distribution such as the Poisson or the Negative Binomial. While in a claim severity
model, the response variable generally follows a right-skewed distribution with a
long right tail such as the Gamma or the Log-normal. In the following lines, we
provide some details on the exponential distribution family that characterizes the
distributional assumption on Yi.

5A proper definition for the claim frequency involves scaling the claim counts Ni using the
exposure at risk during the year ei ∈ (0, 1] for policyholder i. Resulting in the claim frequency
Fi = Ni

ei
. However, as we will discuss in Section 2.1, in this work we consider a portfolio where each

insured is exposed for the entire year, i.e. ei = 1. Therefore we neglect the exposure ei.
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Exponential distribution family

As discussed above Y1, . . . , YI are distributed accordingly to the same exponen-
tial family, such that:

Yi ∼ f(y; θi, φ, ωi) = exp
{
ωi
φ

[yθi − b(θi)]
}
c(y, φ, ωi), i = 1, . . . , I, (1.5)

where θi is the canonical parameter which is strictly connected to the mean of the
distribution, φ is the dispersion parameter (also known as nuisance), b(.) and c(.)
are known functions and ωi > 0 is the weight. It is also worth mentioning that:

• Given an exponential family, b(.) does not depend on i;

• φ does not depend on i;

• both θi and ωi do depend on i.

For the properties of such family of distributions, as proven in [45], we have:

E(Yi) = b
′(θi) var(Yi) = φ

ωi
b
′′(θi) (1.6)

As shown in Table 1.1 by changing the parameters displayed in Eq.(1.5) we obtain
different popular distributions, that can be particularly useful to describe specif
phenomena in the context of insurance pricing.

Family distribution θi φ/ωi b(θi) c(y, φ, ωi)

Normal µi σ2
i /ωi θ2

i /2 (2πφ/ωi)−0.5exp(−y2/2(φ/ωi))

Poisson log(µi) 1/ωi exp(θi) 1/y!

Negative Binomial log(µi/(α+ µi)) 1/ωi −αlog(1− expθ) Γ(α+ y)/(Γ(α)y!)

Gamma −1/µi 1/(α · ωi) −log(−θ) (1/(φ/ωi))1/(φ/ωi)y1/(φ/ωi)−1/Γ(1/(φ/ωi))

Table 1.1. Some possible parametrizations for the exponential distribution family

In the next section, we present the theoretical background for neural networks. We
will not dwell on using such models for insurance pricing since this issue will be
addressed in the following chapters. Still, the section serves as a cornerstone for the
different network models proposed in this work.

1.4 Neural networks
Neural networks are popular machine learning models inspired by brains’ function-
ality, having their roots in the 1940s. In essence, neural networks can be used as
high-dimensional nonlinear regression functions, and the resulting model can be seen
as a parametric regression model. However, due to their high dimensionality and
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non-interpretability of parameters, they are often called non-parametric regression
models6.
Let us begin with the description of the elements characterizing the generic architec-
ture of a neural network.

1.4.1 Neural network architecture

Activation function
The first important element of a neural network architecture is the choice of the
activation function φ : R→ R. There are plenty of choices available in the literature
for such function, but since we would like to approximate non-linear regression
functions, the activation function φ should be non-linear, too. The most popular
choices of activation functions are:

• exponential activation function:

φ(x) = exp(x); (1.7)

• hyperbolic tangent activation function:

φ(x) = tanh(x); (1.8)

• rectified linear unit (ReLU) activation function:

φ(x) = x · Ix≤0; (1.9)

• sigmoid activation function:

φ(x) = (1 + exp(−x))−1. (1.10)

Layers
A neural network consist of several network layers. A network layer z(s), given an
activation function φ, is a mapping from dimension qs−1 to dimension qs defined as:

z(s) : Rqs−1 → Rqs , z(s)(θ(s)) =
(
z

(s)
1 (θ(s)

1 ), · · · , z(s)
qs (θ(s)

qs )
)′

(1.11)

where z(s)
j (θ(s)

1 ) with j = 1, . . . , qs are the neurons composing the network layer,
defined as:

z
(s)
j (θ(s)

j ) = φ

(
θ

(s)
j,0 +

qs−1∑
l=1

θ
(s)
j,l · z

(s−1)
l (θ(s−1)

l )
)

= φ(a(s)
j ) (1.12)

6In this work, we only focus on Feed-forward Neural Networks, nonetheless, the computer science
literature has developed a plethora of Network architectures, such as Recurrent Neural Networks,
Convolutional Neural Networks, Self Organizing Maps, Generative Adversial Networks etc.
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where a(s)
j represents the neuron value before the activation is applied and θ(s)

j =
(θ(s)
j0 , θ

(s)
j,1 , . . . , θ

(s)
j,qs−1

)′ is the vector of parameters belonging to j-th neuron in the
s-th hidden layer. More specifically θ(s)

j,0 is the parameter (known as bias), for the
j-th neuron in the s-th hidden layer, that works as a sort of intercept. While θ(s)

j,l is
the parameter (a.k.a. weight) connecting the l-st neuron in the (s− 1)-th layer to
the j-th neuron in the s-th layer. Considering the vector of parameters θ(s)

1 , . . . ,θ
(s)
qs

for each neuron in Eq.(1.11), we can define the matrix of parameters for the s-th
hidden layer as θ(s) = (θ(s)

1 , . . . ,θ
(s)
j , . . . ,θ

(s)
qs )′ of dimension qs × (1 + qs−1). It is

interesting to observe that neuron z(s)
j describes a regression function with respect

to the neurons in layer z(s−1), that consists of a scalar product (similar to GLMs)
and then measures the resulting activation of this scalar product in a non-linear
fashion via the activation function φ. All things considered, a neural network layer
can be abbreviated in a vectorial notation as:

z(s)(θ(s)) = φ(a(s)) (1.13)

As mentioned above, a feed-forward neural network architecture is a composition of
several neural network layers. Namely, we define the number of layers composing
the network K (a.k.a. the network dept), the network architecture starts with the
input layer z0, which coincides with the set of covariates z0 = x, where x is the
I × p matrix of observations used as the training set. Then, the network continues
with the composition of K hidden layers. The layer in the last hidden layer K is
defined as:

z(K:1)(xi) =
(
z(K)(θ(K)) ◦ · · · ◦ z(s)(θ(s)) ◦ · · · ◦ z(1)(θ(1))

)
(xi), for i = 1, 2, . . . , I, (1.14)

The neurons in the last hidden layer are transformed in the output layer using a
final activation function ψ and a set of parameters for the output layer.

zF (xi)(θ) = ψ(θK+1
0 +

∑qK
l=1 θ

K+1
l z

(K:1)
l (xi)) = ψ(a(F )(xi)), for i = 1, 2, . . . , I, (1.15)

Figure 1.1 provides a graphical representation of the architecture for a neural
network with K = 2. It is possible to denote with θ the full set of parameters for
the network gathering the matrix of parameters of each layer:

θ =
{
θ(1), · · · ,θ(s), · · · ,θ(K),θ(K+1)

}
(1.16)

In other terms θ encompasses all weights and biases in the network.

1.4.2 Training neural networks: gradient descent and backpropaga-
tion

Now that we have drawn a general framework to define neural networks, here we
discuss the gradient descent method employed to obtain the optimal set of parameters
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Figure 1.1. Neural network architecture for a network with K = 2, q0 = 7, q1 = 5, q2 = 3,
and z0 = xi

θ̂ for Eq.(1.16). Assume we have a training set of observations Yi and a training set
of covariates xi for i = 1, . . . , I, the neural network defined in Eq.(1.15) is fitted in
order to find the set of parameters θ̂ that minimizes a loss function (or deviance) of
choice, defined w.r.t. to the set of observations Y = (Y1, . . . , YI). A common choice
in general regression problems is to use to classical sum-of-squared errors as the loss
function. As we will see in the following chapters different loss functions can be used
to meet the specific requirements of the modeler. However, for this section we stick
with the sum-of-squared error for ease of discussion. Therefore, let us define the loss
function as:

L(θ) =
I∑
i=1

Li =
I∑
i=1

(Yi − zF (xi)(θ))2 = [Y − zF (x)(θ)]2, (1.17)

the objective when training the network is:

argmin
θ

L(θ) (1.18)

The generic approach to minimize L(θ) is by gradient descent, called back-propagation
in this setting. The goal of backpropagation is to compute the partial derivative
∂L/∂θ

(s)
j,l and ∂L/∂θ(s)

j,0 of the loss function with respect to any weight or bias in the
network, where L = (L1, . . . , Li, . . . , LI). These derivatives are computed iteratively
by the algorithm in order to update the parameters in the network the algorithm
iterates over until an optimum is found. Because of the compositional form of the
model, the gradient can be easily derived using the chain rule for differentiation.
In order to properly discuss the Backpropagation algorithm we introduce δ(s)

j =
∂L/∂a

(s)
j defined as the error in the j-th neuron in s-th hidden layer before the

activation φ is applied. As we will see in the following this error is crucial in order to
compute the desired derivatives ∂L/∂θ(s)

j,l and ∂L/∂θ(s)
j,0 . For ease of discussion we

drop the x notation from z(K:1)(xi), however all the operations we will discuss are
meant to be performed by feeding the entire training set x into the the input layer.
The Backpropagation algorithm is based around four fundamental equations, that
provide a way to compute δ(s)

j and the derivatives of the loss mentioned above.
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• The first equation defines the error produced in the in the output layer, as:

δF = ∂L

∂aF
= 2 · [Y − zF (θ)] · ψ′(aF ), (1.19)

for a proof of Eq.(1.19) see Appendix A. The interpretation of Eq.(1.19) is
straightforward, the first term in the right hand side measures how fast the loss
is changing as a function of the output layer after the activation ψ is applied.
While the second term measures how fast the activation reacts to the output
neuron aF .

• The second equation consists in expressing the error δ(s)
j in terms of the error

in the next layer:

δ
(s)
j = ∂L

∂a
(s)
j

=
qs∑
l=1
δ

(s+1)
l θ

(s+1)
l,j φ′(a(s)

j ), (1.20)

for proof see Appendix A. In words, Eq.(1.20), moves the error backward
through the network from layer (s+ 1) to the j-th neuron in layer s, using the
vector of weights and biases connecting the neuron to the next layer.
By combining Eq.(1.19) and Eq.(1.20) we can compute the error δ(s) =
(δ(s)

1 , . . . , δ
(s)
j , . . . , δ

(s)
qs ) for any layer in the network. We start by using 1.19to

obtain δF , then we apply Eq.(1.20) to compute δK , then we employ again
Eq.(1.20) to obtain δK−1, and so on, all the way back through the network.

• We then define the rate of change in the loss with respect to a given bias in
the network θ(s)

j,0 as:
∂L

∂θ
(s)
j,0

= δ
(s)
j , (1.21)

see proof in Appendix A. We are now able to compute the partial derivative
of the loss with respect to any given bias in the network, since we can obtain
δ

(s)
j from Eq. 1.20.

• We obtain an equation for the rate of change of the loss with respect to any
weight in the network:

∂L

∂θ
(s)
j,k

= δ
(s)
j · z

(s−1)
k ((θ)(s−1)), (1.22)

see proof in Appendix A. We are now aswell able to provide a closed formula
to obtain the partial derivative of the loss w.r.t. to any given weight in the
network.

The backpropagation equations provide us with a way of computing the gradient
of the loss function. The backpropagation algorithm is structured as follows:

1. Define the input x and set z0 = x as the input layer. Define the set of
observations for the response Y . Define the maximum number of iterations E
(known as epochs) to be performed by the algorithm, hence the algorithm will
iterate over for e = 0, . . . , E;
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2. Randomly initialize the parameters for the network θ(0), where the number
between brackets represents the number of the iteration i.e. e = 0;

3. Feedforward the input x through the network using Eq.(1.14) and (1.15),
compute L(θ(e));

4. Output the error computing δF using Eq.(1.19);

5. Backpropagate the error through all the layers in the network using Eq.(1.19)
and Eq.(1.20) and obtain δ(s) for each s = K,K − 1, . . . , 1;

6. Compute the gradient of the loss function with respect to all weights ∂L/∂θ(s)
j,k(e)

and biases ∂L/∂θ(s)
j,0 (e) in the network as in Eq.(1.21) and Eq.(1.22);

7. Update the weights and biases in the network using the gradient obtained in
the previous point:

θ
(s)
j,k(e+ 1) = θ

(s)
j,k(e)− γr

N

N∑
i=1

∂Li

∂θ
(s)
j,k(e)

(1.23)

θ
(s)
j,0 (e+ 1) = θ

(s)
j,0 (e)− γr

N

N∑
i=1

∂Li

∂θ
(s)
j,0 (e)

(1.24)

where γr > 0 is an hyperparameter known as learning rate, that defines the pace
at which the network learn a representation of the data. This hyperparameter
is chosen sufficiently small so that the update is still in the region of a locally
decreasing loss function. Generally a value close to 0.001 is a good default
value;

8. Repeat point 3 to 7 until e = E and return the final set of of parameters as
the optimal set for the network θ̂ = θ(e).

Examining the algorithm, the name backpropagation sounds rather intuitive since
we compute the error vectors δ(s) starting from the last layer backward to the very
first layer. The backward movement is a consequence of the fact that the loss is a
function of outputs from the network. Hence, to understand how the cost varies
with earlier weights and biases, we need to repeatedly apply the chain rule, working
backward through the layers to obtain usable expressions.
The backpropagation algorithm described above computes, at each iteration e, the
gradient of the loss function for the whole training data (x,Y ). However, if the
number of records in the training data is very large, then the gradient calculation
involves high-dimensional matrix multiplications, resulting in long computational
times. In practice, to avoid this problem, it is common to employ a learning algorithm
known as stochastic gradient descent. The stochastic gradient descent (SGD) method
considers for each epoch only a sub-sample (known as batch) of the training data.
Using the SGD involves a slight change in the algorithm discussed in points 1.
through 7., resulting in:

1. Define the maximum number of epochs E for the algorithm, hence the algorithm
will iterate over for e = 0, . . . , E;
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2. Initialize the parameters for the network θ(0);

3. Extract a random sample of dimension m (xsub,Y sub) from (x,Y ). Define
the input layer as z0 = xsub;

4. Feedforward the input xsub through the network using Eq.(1.14) and (1.15),
then compute L(θ(e));

5. Output the error computing δF using Eq.(1.19);

6. Backpropagate the error through all the layers in the network using Eq.(1.19)
and Eq.(1.20), then obtain δ(s) for each s = K,K − 1, . . . , 1;

7. Compute the gradient of the loss function with respect to all weights ∂L/∂θ(s)
j,k(e)

and biases ∂L/∂θ(s)
j,0 (e) in the network as in Eq.(1.21) and Eq.(1.22);

8. Update the weights and biases in the network using the gradient obtained in
the previous point:

θ
(s)
j,k(e+ 1) = θ

(s)
j,k(e)− γr

m

m∑
i=1

∂Li

∂θ
(s)
j,k(e)

(1.25)

θ
(s)
j,0 (e+ 1) = θ

(s)
j,0 (e)− γr

m

m∑
i=1

∂Li

∂θ
(s)
j,0 (e)

(1.26)

;

9. Repeat point 3 to 8 until e = E and return the final set of of parameters as
the optimal set for the network θ̂ = θ(e).

1.4.3 Some issue regarding neural networks

Despite their ability to fit more complex data structures, network models have some
relevant drawbacks that should be discussed. Indeed training neural networks is
quite an art. For this reason, in this subsection, we summarize some critical issues:

• Given the high number of parameters, neural networks are often prone to
overfitting, resulting in a model with a good in-sample performance but poor
generalization properties to other datasets, i.e., on the out-of-sample data. A
handful of techniques to avoid overfitting has been proposed in the literature;
for an extensive discussion, see [26]. In this work, we exclusively consider
early stopping. In the early stopping procedure, the data is divided between
training, testing, and validation set, then the neural network is trained over a
large number of epochs on the training set, and its performance in terms of loss
function on the validation set is recorded at each step. Once the performance
of the model, measured in terms of loss function on the validation set, degrades
for a given amount of epochs (defined as patience), the training process is
stopped. Then the network parameter θ̂ that gives the lowest loss function on
the validation set is returned.
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• Neural networks have many hyperparameters: learning rate, number of hidden
layers, number of neurons in each layer, and the form of the activations φ and
ψ. Therefore, finding the optimal structure for the network is problematic
since a high number of hyper-parameters need to be tuned. Recent advances
in data science research propose Population Based Training (PBT) [32], which
trains and optimizes a series of networks at the same time, allowing the optimal
set-up to be quickly found. Finding the optimal network architecture is beyond
the scope of this work as in the following we will consider a standard structure
that has already proven to be effective in a similar context, see [53].7

• Given a specific network structure, the problem’s solution is not unique as
the final estimate of θ̂ will depend on the randomly set starting values of θ0.
Hence, different seeds in the algorithm will lead to different parametrization.
This is particularly annoying in insurance pricing because taking different seeds
for the network algorithm will lead to different results.

• Network models are often criticized for their black box nature and their conse-
quent lack of explainability. However, as argued by [8], this is not the main
focus of the algorithmic modeling culture (where neural networks belong)
which focuses more on training the models to obtain the best possible pre-
diction, while the focal point of the statistical modeling approach is models’
explicability. However, as discussed in this work, the literature is progressively
filling the gap by providing interpretable tools for Machine Learning models.

1.4.4 The CANN approach

Here we discuss the Combined Actuarial Neural Network Approach (CANN) proposed
by [53], which provides a systematic way to improve classical actuarial regressions
(such as GLM) using the neural networks toolbox. More specifically, the CANN
approach nests a classical actuarial model into a neural network architecture in
order to improve the performance given by the first model. Here we combine the
two models presented in Eq.(1.3) and Eq.(1.15) i.e. a GLM with a neural network.
However, this approach can be extended to any other regression (see Chapter 4).
The idea behind this approach is that we start from a basic regression model, say
a GLM, and we improve its performance by using a second regression model in
order to analyze its residuals, to see whether it finds additional information in those
residuals that the first model failed to account for.
The main advantage of the CANN approach is that it combines the high flexibility
of the networks with the interpretability of a classical regression, thus providing
higher explainability. Besides, according to [64], when the reference regression model
is already close to optimal, its maximum likelihood estimator can be used as initial-
ization of the neural network fitting algorithm, then obtaining lower computational

7The choice of standard structure for the network models is motivated by a Grid Search analysis,
where different network architectures both in terms of network depth, width (number of neurons in
each hidden layer) and activation functions have been tested. Such analysis showed no relevant
improvement w.r.t. the architecture adopted in [53].
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Figure 1.2. CANN architecture

time for the network parameters calibration than a classical neural network model.
Formally we define the regression designed by the CANN model as:

zF (xi)(ϑ) = φ(x′iβ + a(F )(xi)), for i = 1, 2, . . . , I, (1.27)

where ϑ is the network parameter and the first term inside the g−1(.) is the GLM
regression displayed in Eq.(2.9) while the second term refers to the output layer
before activation in Eq.(1.15). Therefore, the CANN regression, combines the models
discussed in this section and in Subsection 1.3. Of course, for Eq.(1.27) to make
sense, the GLM and the network need to be defined on the same set of observation
(Y ,x).
The embedding produced by the CANN is obtained through a skip connection 8 that
links the input given by the GLM estimates to the output layer (see Figure 4.2 for a
graphical representation), where the models are merged by summing the two parts.
The network parameter ϑ in for the CANN model consists of:

ϑ = {β,θ} =
{
β,θ(1), · · · ,θ(K),θ(K+1)

}
(1.28)

The optimal set for the network parameter ϑ̂ of Eq.(1.27) is obtained training
the CANN by minimizing a given loss function L9:

argmin
ϑ

1
I

I∑
i=1

L(Yi, zF (xi)(ϑ)). (1.29)

The optimization process to estimate ϑ works as follows:

1. We first obtain β̂ parameters via MLE for the GLM in Eq.(2.9);
8Skip connections are feed-forward connections that connect one or more elements of a given

layer to another element or more elements of a forward but not subsequent layer, thus skipping a
given number of hidden layers. In this specific case, the connection skips over all the hidden layers
and lands directly into the output layer.

9The choice of the loss function has to be coherent with loss minimized by the GLM (or classical
model) to boost with the CANN. For instance if the base model is a Poisson GLM, the appropriate
choice for the loss is Poisson deviance.
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2. then we use such parameters to initialize the network parameter of the Quantile-
CANN by considering ϑ0 =

{
β̂,θ0

}
, where θ0 is the starting value of the

network parameter belonging to the neural network part of model in Eq.(1.27);

3. starting from ϑ0, we optimize ϑ minimizing Eq.(1.29) by means of stochasting
gradient descent. During the optimization process both the θ0 parameters and
the β̂ are trained;

4. return ϑ̂.

The gradient descent algorithm investigates the network architecture seeking addi-
tional information not captured by the classical regression, returning a lower loss
function. If the CANN model does not return any improvement with respect to the
GLM, it means that the latter is already able to capture all the relevant information
incorporated in the data. In Chapter 4, we extend the CANN approach to the
quantile estimation task by combining a Quantile Regression with a neural network.

1.4.5 Preprocessing

In order to feed the training data into a neural network, it is first necessary to
pre-process it. Pre-processing consists of a series of operations that are needed to
bring the data into a suitable form so that they can enter the network in the input
layer z0.
Categorical features in classical regression models are commonly treated via dummy
coding, which provides full rank design matrices. For neural network modeling, the
full rank property is not essential because we neither have a single (local) minimum
of the objective function nor want to calculate the MLE of the network parameter.
Typically, in Neural Network modeling one uses one-hot encoding for categorical
variables that encodes every level by a unit vector. Let us consider a I × pR raw
covariate matrix xR, assume that the xRj column vector gathers the observations
belonging to a categorical variable j with n different levels {a1, . . . , an}. One-hot
encoding results in:

xRji 7→ xji =
(
I{xRji=a1}, . . . , I{xRji=an}

)T
εRn (1.30)

for each i = 1, . . . , I. In other terms, One-hot encoding tranforms the I × 1 vector
xRj into an I × n matrix xj .
However, when the categorical variable has a considerable number of possible values,
the dimension of xj may become difficult to handle since the Neural Network would
likely offer a poor representation of the information provided by this variable. In
order to avoid this problem, [52] puts forward the idea of using embedding layers10

to take care of high dimensional categorical variables. This approach has the
10Embedding layers are commonly used in Natural Language Processing in order to represent

words by numerical coordinates in a low dimensional space.
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great advantage of reducing the dimension of the problem compared to one-hot
encoding. An embedding layer consists of a layer that we put in front of the network,
transforming the n-dimensional inputs from the one-hot encoded variable into an m-
dimensional input, where m is a dimension of choice. In other terms, the embedding
e is a mapping such that:

e : {a1, . . . , an} 7→ Rm (1.31)

therefore each element {a1, . . . , an} is associated with an m dimensional vector of
parameters (or weights) {e(a1), . . . , e(an)}, such parameters are normally learned
during the model training. Using the embedding introduces n × m parameters and
at same times it lowers the number of parameters by n × q1.

Continuous covariates do not need pre-processing, but they can directly enter
the network, which will take care of representation learning. However, efficient use
of gradient descent methods typically requires that all feature components live on
a similar scale and that they are roughly uniformly spread across their domains.
This makes gradient descent steps more efficient in exploiting the relevant directions.
Therefore, in many cases, the so-called MinMaxScaler is used. Let us define with
xRk the column vector gathers the observations belonging to a continuous variable,
denote with xRk− the minimum value in such vector and with xRk+ the maximum.
MinMaxScaling consist in the following mapping:

xRji 7→ xji = 2
xRji − xRk−
xRk+ − xRk−

− 1 (1.32)

for i = 1, . . . , I. The resulting feature values xji should roughly be uniformly spread
across the interval [−1, 1]. If this is not the case, for instance, because we have
outliers in feature values, we may first transform them non-linearly to get more
uniformly spread values.

1.4.6 Choice of the loss function

As discussed above, Network models require the specification of a loss (or cost)
function that is minimized during the training phase of the models. Here we present
a general discussion on the importance of choosing the correct loss function, while
in the following chapters, we motivate the choice of different loss functions for the
different problems at hand.
The standard loss function for regression problems is the sum of square loss already
seen in Eq.(1.17) and Eq.(1.29):

L(Yi, f(xi)) =
I∑
i=1

(Yi − f(xi))2 (1.33)

where Yi is the observed response and f(xi) is the prediction produced by a given
model for covariates xi. However, when modeling count data for medical claim
frequency or right-skewed claim severity data, the sum of squared errors may not be
a good choice. In order to clarify this idea, as in [29], we use the concept of deviance,
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that is defined as D(Y, f(x)) = −2 · ln[`(f(x))/`(Y )], consisting in a likelihood ratio
where `(f(x)) is the model likelihood and `(Y ) is the likelihood of the saturated
model (i.e., the model in which the number of parameters equals the number of
observations). When comparing different models we choose the one returning the
lowest deviance on the test data. Following the idea of [60] we consider a loss L
function such that D(Y , f(x)) =

∑I
i L(Yi, f(xi))).

Let’s take for instance the normal (or: Gaussian) deviance, under the assumption of
constant variance, we have:

D(Y , f(x)) = 2ln
I∏
i=1

exp[− 1
2σ2 (Yi − f(xi)))2] = 1

σ2

I∑
i

(Yi − f(xi))2 (1.34)

which consists in a scaled version of the sum of squared errors in Eq. (1.33).
Meaning that a loss function based on the squared error is suitable when the normal
assumption makes sense.
However, claim frequency and severity data do not follow such distribution. Therefore,
in an actuarial context, [66] employs more suitable loss functions inspired by the
GLM pricing framework. For instance, claim frequency modeling involves count
data, typically assumed to be Poisson distributed in GLM. Therefore, an appropriate
loss function is the Poisson deviance, defined as follows:

D(Y , f(x)) = 2ln
I∏
i=1

1
YiΓ(α)

(
αYi
f(xi)

)α
exp

(
αYi
f(xi)

)
=

2
I∑
i=1

[
Yiln

Yi
f(xi)

− (Yi − f(xi))
] (1.35)

As we will discuss in the following chapters, in this work, we will adopt different loss
functions that will change w.r.t. to the problem we are trying to solve via neural
networks. However, we will always follow a specific guideline: we first define the
problem at hand and the corresponding standard model used to solve this problem;
we challenge the model using neural networks trained on loss function (or deviance)
consistent with the deviance minimized by the reference model. For instance: when
challenging a Negative Multinomial GLM for claim frequency modeling, we use a
Neural Network trained on a Negative Multinomial deviance see Chapter 2.
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Chapter 2

Modeling health insurance claim
frequency

In this chapter, we propose a new neural network approach to claim frequency
modeling for a set of different health insurance claim types. In particular, we refer
to a dataset encompassing three claim types: medical visits, dental care treatments,
and diagnostic testing. A typical modeling approach could involve fitting a separate
univariate Negative Binomial regression to estimate the frequency for each single
claim type. The Negative Binomial is a widespread distributional assumption for
health insurance claim counts since it has the great advantage of capturing the
overdispersion characterizing such claims, see for instance [31] and [21]. However,
using a univariate technique would miss possible correlations between the occurrence
of the different claim types, which is often observed in the health insurance realm
[18].
For this reason, here, we adopt a multivariate approach. More specifically, we
propose Negative Multinomial1 Neural Networks to estimate the claim frequency
for the different claim types. The advantage of this technique is twofold. First, it
models the claim frequency of the various claim types via neural network machinery,
accounting for non-linearities, covariates interactions, and overdispersion. Second,
the multivariate approach provided by the Negative Multinomial distribution allows
capturing possible correlations between the different claim types.
The remainder of this chapter is organized as follows: In Section 2.1, we present the
health insurance dataset considered in this work, we perform a descriptive analysis
on the data, and we motivate our choice of a Negative Multinomial approach. In
Section 2.2, we introduce the Negative Multinomial Neural Networks (NM-NN),
and we discuss Negative Multinomial GLM (NM-GLM) by [33] that serves as a
benchmark to compare the performance of our neural network model. Section 2.3 is
devoted to results and discussion, at first we evaluate the in-sample and out-of-sample
performance returned by NM-NN w.r.t NM-GLM, then we use a class of model
agnostic tools to unveil the data representation learned by the models.

1The Negative Multinomial distribution is the multivariate extension of the Negative Binomial
distribution, see [54]
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2.1 The Data
The dataset considered in this project stems from an Italian insurer and reports
the claims collected in a general health insurance plan during 2018. The plan
is an employer-based insurance since it provides risk coverage for managers and
retired managers belonging to a specific industry in Italy. More specifically, the
dataset consists of 132,499 policyholders (employees or former employees). Since
each policyholder can also enroll his relatives (parents, spouse, and children below
25 years of age) in the insurance coverage, we totally have 273,950 insured. The
dataset covers three classes of claims:

• Medical visits with a wide range of specialist doctors, such as cardiologists,
peadiatricians, neurologists and many more.

• Dental care treatments, including, among others, dental braces, implants, and
oral surgery.

• Diagnostic tests, e.g. magnetic resonance imaging, blood tests, and electrocar-
diogram.

For each insured, the dataset reports the following information: number of claims
filed during the year (split between Visits, Dentalcare, and Diagnostic), total claim
amount per year, a binary variable signaling whether the insured submitted at least
a claim during the year, age, gender, regional area, firm dimension, family member
type, years of permanence in the coverage, and ID code2. Table 2.1 provides a
summary for the information available in the dataset. The response variables for
the frequency models discussed in Section 2.2 are the claim counts N1,i, N2,i, N3,i,
while the responses INi and Si will be employed later on to characterize the models
discussed in Chapter 4.
Therefore the dataset is composed of 273, 950 observations and six covariates. Among
the insured, we count a total of 205,625 claimants. The monetary volume of the
submitted claims is about euro 233 m.
Below, we explore the dataset via summary and descriptive statistics.

2.1.1 Covariates

We start the descriptive analysis by offering a deeper insight into the covariates
reported in the dataset. In Figure 2.1 and Table 2.2, we report the histograms and
the frequency tables for the covariates in the dataset. The age (AG) variable is
strongly concentrated at older ages, signaling a fairly senior population. In particular,
we notice a ’dip’ in the distribution between 25 and 40 years. This ’dip’ is due to
the specific subscription policies of the Italian insurer: since the policyholders are
firm managers, it is unfrequent that they have less than 40 years of age3. Moreover,

2It is worth mentioning that the dataset displayed above reports no information about the
exposure at risk during the year ei for the insured, hence we assume an exposure equal to one for
each insured ei = 1.

3The Italian labor market is seniority driven, hence it is particularly difficult to become a
manager at younger ages.
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Variable Description

Claim counts - discrete dependent variable
N1,i (Visits claim counts) number of medical visits claims submitted by the insured during the year.
N2,i (Dentalcare claim counts) number of dentalcare claims submitted by the insured during the year.
N3,i (Diagnostic claim counts) number of diagnostic claims submitted by the insured during the year.

Covariates
AG (age) Age of the insured (in years)
GE (gender) Gender of the insured (male/female)
PE (permanence) Years of permanence in the insurance coverage for the insured
RE (region) Italian region of residence for the insured

(categorical variables with 21 classes)
DM (dimension) Dimension of the company the policyholder is working

for (number of employees), for insured different than
the policyholder the dataset reports the value of the policyholder

FA (Family member) Categorical variable reporting the family member type:
Policyholder, Spouse, Ex-Spouse, Parents, and Children

Additional information
Insured ID Insured identifier used to join this dataset with the data set

presented in Chapter 3

Binary dependent variable
INi (claims binary variable) Binary variable reporting 1 if the insured filed at least a claim

and 0 otherwise.

Positive dependent variable
Si (total claim amount) Total claim amount submitted by the insured during the year (in euros).

If the insured submits no claims Si = 0. This variable takes into account
the aggregate claim amount for the three claim types.

Table 2.1. Summary of the variables available in the dataset.

managers are not allowed to enroll in the insurance coverage their children above 25
years of age. That is why we observe only a small number of insured between 25
and 40 years. The gender (GE) is rather balanced between males and females. The
permanence (PE) is an integer variable that reports the years of permanence in the
insurance plan, its minimum is 1 (for newcomers), and its maximum is 41 (for early
adopters). The histogram of this variable shows a decreasing trend. However, there
is a strong peak at 38 years, connected to the subscription of the health coverage
by a large number of firms whose employees (or pensioners) are still enrolled in
the insurance plan. For the region, we observe an intense concentration in 2 of 21
Italian regions: ’Lombardia’ and ’Lazio’, where most firms have their head office.
The dimension variable (DM) is a proxy for the firm’s dimension the policyholder
belongs to. More specifically, the variable reports the number of managers working
in the firm. The value of this variable is the same across all the insured belonging
to the same family. It ranges from 1 to 1500, with a strong concentration below
100, representing the small to medium-sized firms (that are specific to the Italian
economy). The family member type (FA) is a categorical variable representing
which kind of family member the insured is. From Figure 2.1, we observe that the
most relevant classes are: Policyholder, Spouse, and Children. In contrast, Parents
and Ex-Spouse are almost negligible since they cover, on aggregate, less than 200
insured in the dataset.
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Figure 2.1. Histograms for the covariates in the dataset.

Variable Absolute frequency Relative frequency Variable Absolute frequency Relative frequency

AG (age) RE (region)
[0, 10) 15,000 0.054755 Lombardia 103,193 0.376686
[10, 20) 32,022 0.11689 Lazio 43,881 0.160179
[20, 30) 11,622 0.042424 Emilia Romagna 27,443 0.100175
[30, 40) 4,267 0.015576 Piemonte 25,034 0.091382
[40, 50) 32,161 0.117397 Veneto 19,931 0.072754
[50, 60) 48,274 0.176215 Toscana 11,716 0.042767
[60, 70) 45,134 0.164753 Liguria 11,410 0.04165
[70, 80) 56,108 0.204811 Others 31,342 0.114408

[80, 90) 25,312 0.092396 DM (dimension)
[90,∞) 4,050 0.014784 [0, 9) 116,327 0.424629

GE (gender) [10, 19) 41,229 0.150498
F 139,664 0.509816 [20, 49) 42,267 0.154287
M 134,286 0.490184 [50, 99) 25,703 0.093824

PE (permanence) [100,∞) 48,424 0.176762

[1, 5) 49,856 0.181989 FA (family member)
[5, 10) 46,074 0.168184 Children 59,886 0.275965
[10, 15) 41,499 0.151484 ex-Spouse 43,237 0.199243
[15, 20) 34,800 0.12703 Parent 46,224 0.213008
[20, 25) 29,501 0.107688 Policyholder 36,067 0.166203
[25, 30) 25,619 0.093517 Spouse 24,145 0.111264
[30, 35) 19,434 0.07094
[35,∞) 27,167 0.099168

Table 2.2. Covariates frequency tables

Before moving on, it is worth discussing some selected associations between covariates
reported in Figure 2.2. First, with no surprise, we notice a strong association between
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the age and family member (top-left pane). For instance, it is evident that Children
are younger than Policyholders. The opposite holds for Parents and Policyholders.
Therefore the family member type (FA) seems a categorical version of the age
variable, so dropping the variable would be an option. However, we prefer to keep
this variable since, as we will see in Section 2.3, it still provides some valuable
information for our models. Age and gender (top-right pane) show almost no
association effect since the two curves are almost identical. In the bottom-left
sub-plot of Figure 2.2, we report the correlogram for the continuous variables, where
we notice a strong positive correlation between age and permanence. A correlation
between the two variables is rather obvious since an older insured is more likely to
have been in the coverage for a long time. Again, we could consider setting down
this variable. However, we prefer to keep also this variable because the information
it provides may be helpful to capture the phenomenon of experienced consumers,
i.e., insured that have a sound knowledge of the health services provided by the
insurance plan and that each year undergoes a set of predefined medical check-ups.
The last plot reports the possible associations between age and region for the most
frequent regions in our dataset. Some regions show slight differences compared to
others, e.g., Liguria seems to have a more aged population. Nevertheless, there is no
radical difference between the Italian regions.

Figure 2.2. Some selected associations between the covariates. We report the AG histogram
conditional on FA (top-left), GE (top-right), and some values of RE (bottom-right).
The bottom-left pane reports the correlogram matrix for the continuous variables in the
dataset.
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2.1.2 Response variable: claim counts

Here we provide some insight into the response variables employed in the frequency
models discussed in the next section. In Figure 2.3, Table 2.3, and Table 2.4 we give
a general overview of the different claim counts in the dataset N1,i, N2,i, and N3,i.
The figure displays the histograms for the different claim types, Table 2.3 reports
their summary statistics, and Table 2.4 displays their frequency tables.

Figure 2.3. Histograms for the different claim counts N1,i, N2,i, and N3,i.

Summary statistics N1,i N2,i N3,i

Median 1 0 1
Mean 1.91 1.59 7.49

95% Quantile 7 9 37
Variance 8.15 19.40 233.08

Claim probability 0.59 0.27 0.56

Table 2.3. Claim counts summary statistics

From Figure 2.3, we observe that the claim counts display a relevant number of
zeros. However, taking a closer look at Table 2.3, we notice that a considerable
portion of insureds submit a least a claim (last row in the table), which is peculiar
to health insurance, where events have a higher frequency w.r.t. other non-life
insurance types, i.e., auto insurance or property insurance. More specifically, 50%
of the insureds request at least a medical visit or a diagnostic test during the year,
while 25% undergo some sort of dental treatment. The average claim frequency
for an average insured during the year is 1.91 for medical visits, 1.59 for dental
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Variable Absolute frequency Relative frequency

N1,i (Visits claim counts)
0 110,397 0.402982
1 54,667 0.199551

[2, 5) 85,318 0.311436
[5, 10) 18,548 0.067706
[10,∞) 5,020 0.018325

N2,i (Dentalcare claim counts)
0 197,332 0.720321
1 15,851 0.057861

[2, 5) 36,075 0.131685
[5, 10) 14,051 0.05129
[10,∞) 10,641 0.038843

N3,i (Diagnostic claim counts)
0 118,640 0.433072
1 29,089 0.106184

[2, 5) 50,718 0.185136
[5, 10) 19,367 0.070695
[10,∞) 56,136 0.204913

Table 2.4. Frequency tables for the response variables

treatments, and 7.49 for diagnostic tests. The frequency for the latter claim type
appears to be exceptionally high, and this is also due to the approach used by the
insurer to record the claim when an insured undergoes a diagnostic test4.
The high frequency characterizing such claims generates an overdispersion, as shown
in Table 2.3, where the variance is much higher than the mean. To choose the correct
discrete distribution for the marginals of the claim counts N1,i, N2,i, N3,i, we compare
the Poisson distribution with a Negative Binomial distribution by considering two
Goodness-of-fit (G.o.f.) measures: the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC), see [1] and [43]. The Poisson is a typical
distributional assumption when it comes to claim frequency modeling. However, a
different distribution may be more appropriate when the data is characterized by
overdispersion. The results in Table 2.5 clearly show that the Negative Binomial
distribution better describes the claim counts.

Given the nature of the claim types, it is interesting to evaluate the correlation
between their occurrence. In Figure 2.4, we report the Spearman correlogram
between the claim counts. The results show that diagnostic exams are strongly
correlated to visits; this is a mild surprise since the referral given by a medical
visit is frequently an essential requirement to undergo an in-depth diagnostic test.
Therefore, we choose to jointly model the different claim counts to capture such
correlation using a multivariate approach via the Negative Multinomial distribution.
Given the low correlation between dental care claims and the other types of claims,

4For instance, a blood test claim is split up in each of its components, such as: hemoglobin (Hgb)
test, Red cell distribution width (RDW) test, Bilirubin test, Calcium test, and so on. For each
single component the insurance company registers a different claim, leading to inflated claim counts.
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Type of claim G.o.f. measure Poisson Negative Binomial

Visits N1,i
AIC 1,340,309 1,017,746
BIC 1,340,320 1,017,767

Dentalcare N2,i
AIC 1,772,291 729,530
BIC 1,772,302 729,551

Diagnostic N3,i
AIC 5,723,392 1,428,572
BIC 5,723,402 1,428,593

Table 2.5. G.o.f. statistics for the distribution of the different claim counts. We report the
Akaike and Bayesian information criterions. A lower value for the information criterion
signals a better fit.

an argument could be made for modeling the dental claims alone while using a
multivariate approach for visits and diagnostic tests. However, for simplicity, we
still decide to model the three kinds of claims jointly.

Figure 2.4. Correlogram for the claim counts

In the next section we introduce the Negative Multinomial regression framework
that we will use to model the claim frequencies of visits, dental treatments and
diagnostic tests.



2.2 Multivariate approach for claim frequency modeling 31

2.2 Multivariate approach for claim frequency modeling
This section discusses the models employed to model the claim frequencies in a
multivariate setting. At first, a theoretical framework for the Negative Multinomial
distribution is provided. Then we explore Negative Multinomial GLMs, a standard
modeling technique for multivariate counts presented in [33]. At last, we present a
novel neural network approach to multivariate claim frequency modeling: Negative
Multinomial Neural Networks.

2.2.1 Negative Multinomial distribution

The Negative Multinomial distribution, extensively discussed in [54], provides a model
for positively correlated multivariate count data characterized by overdispersion,
i.e., where the variance is greater than the mean. Regression models relying on this
distributional assumption have already been implemented in different fields, such as
genomics [33] and medical statistics [2].
More formally, let us consider an r-dimensional vector of counts Ni = (N1,i, . . . , Nr,i),
in our case we have r = 3 for the claim counts Ni = (N1,i, N2,i, N3,i) presented in
Table 2.1. The probability mass for Ni under a negative multinomial distribution
with parameters p = (p1, . . . , pr+1) and shape parameter α, where

∑r+1
j=1 pj = 1 and

α > 0, is:

f(Ni/p, α) =
Γ(α+

∑r
j=1Nj,i)

Γ(α)
∏r
j=1Nj,i!

·
r∏
j=1

p
Nj,i
j pαr+1 (2.1)

Where the vector of parameters p = (p1, . . . , pr+1) is composed as:

pj = µj,i
α+

∑r
k=1 µk,i

, for j = 1, . . . , r, pr+1 = α

α+
∑r
k=1 µk,i

(2.2)

with µi = (µ1,i, . . . , µr,i) as the mean parameter vector.
For ease of discussion we set mi =

∑r
j=1Nj,i and rearrange the probability mass

function in Eq. 2.1 as:

f(Ni/µi, α) = Γ(α+mi)
Γ(α)

∏r

j=1 Nj,i!

(
α

α+
∑r

j=1 µj,i

)α∏r
j=1

(
µj,i

α+
∑r

k=1 µk,i

)Nj,i
(2.3)

As shown in [2], the expectation of the count random variable Ni characterized by a
Negative Multinomial distribution is defined as

E(Ni) = µi = (µ1,i, . . . , µr,i) (2.4)

and its covariance matrix is

Cov(Ni) = α ·
[
diag

( p
pr+1

)
+
( p
pr+1

)( p
pr+1

)T]
(2.5)

The Negative Binomial can be viewed as a particular case of the Negative Multinomial,
where r = 1. Resulting in the following probability mass function:

f(Ni/µi, α) = Γ(α+Ni)
Γ(α)Ni!

(
α

α+ µi

)α ( µi
α+ µi

)Ni
(2.6)
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with
E(Ni) = µi, and V ar(Ni) = µi + µ2

i

α
(2.7)

It worth noting that, for both Negative Multinomial and Binomial, if the dispersion
parameter α is unknown the distribution does not belong to the exponential family.
Fitting the distribution involves estimating the parameters µ and α presented in
Eq. 2.3, which are usually obtained via MLE. Thus it is paramount to define the
Log-likelihood of the distribution l(.). More formally, given I independent data
points Ni we have:

l(N,µ, α) =
I∑
i=1

log[Γ(α+mi)]−
I∑
i=1

log[Γ(α)]−
I∑
i=1

log(
r∏
j=1

Nj,i!)

−α
I∑
i=1

log(α+
r∑
j=1

µj,i) +
I∑
i=1

r∑
j=1

Nj,ilog
(

µj,i
α+

∑r
k=1 µk,i

) (2.8)

Below, we briefly discuss the Negative Multinomial GLM that serves as a benchmark
for our neural network model.

2.2.2 Negative Multinomial GLM (NM-GLM)

The general framework for GLMs with a Negative Multinomial distribution for the
response variable was first introduced in [33]. This approach models the relationship
between the multivariate response count variable and a set of covariates capturing
the inner correlation structure between counts.
Following the structure presented in Section 1.3, the Negative Multinomial GLM
builts upon the following hypothesis:

• Distributional hypothesis: the multivariate 3-dimensional5claim count re-
sponses N1, . . . ,NI with Ni = (N1,i, N2,i, N3,i) are i.i.d. following the Negative
Multinomial distribution displayed in Eq. 2.3;

• Structural hypothesis: the relationship between the expectation E(Ni/xi) and
the p-dimensional vector of covariates xi is represented as:

µi = exp(x′iβ), for i = 1, 2, . . . , I, (2.9)

where β = (β1,β2,β3) is the p× 3 regression parameters matrix. Then, from
Eq. 2.7 and 2.2 we have:

E(Ni/xi) = exp(x′iβ), for i = 1, 2, . . . , I, (2.10)

and the vector p = (p1, p2, p3, p4) in Eq. 2.1 is given by:

pj = exp(x′iβj)
α+
∑3

k=1 exp(x′iβk)
, for j = 1, . . . , 3, p4 = α

α+
∑3

k=1 exp(x′iβk)
(2.11)

5Note that from now on we drop the generic r notation for the dimension of the multivariate
response and we directly refer to the tridimensional nature of the claim types discussed in Section
2.1
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where β and α is the set of parameters to be estimated via Maximum Likelihood.
Then, the covariance matrix is obtained feeding back Eq. 2.11 in Eq. 2.5.

The set of parameters β and α is obtained maximizing the following loglikelihood:

l(β, α) =
I∑
i=1

log[Γ(α+mi)]−
I∑
i=1

log[Γ(α)]−
I∑
i=1

log(
3∏
j=1

Nj,i!)

−
I∑
i=1

(mi + α)log(α+
3∑
j=1

exp(x′iβj)) +
I∑
i=1

r∑
j=1

Nj,i · x′iβj

(2.12)

where mi =
∑3
j=1Nj,i.

The authors [33] propose the use of an iteratively reweighted Poisson regression
(IRPR) scheme in order to achieve the MLE of the regression model.
Since the GLM, in this context, works as a benchmark model for the neural network,
it is worth keeping in mind that maximizing l(β, α) in Eq. 2.12 is equivalent to
minimizing the deviance DNM(N ,β, α):

DNM(N ,β, α) = 2·
I∑
i=1

−(mi + α−1)log
(

1 +mi

1 +
∑3
j=1 exp(x′iβj)

)
+

3∑
j=1

Nj,i

(
log(Nj,i)
x′iβj

)
(2.13)

The same deviance is used to train neural network presented in the next subsection.
Once we have the estimated matrix of regression parameters β̂ we obtain the vector
of expected claim frequencies as:

Eglm(Ni/xi) =
(
Eglm(N1,i/xi), Eglm(N2,i/xi), Eglm(N3,i/xi)

)
= exp(x′iβ̂), (2.14)

for i = 1, 2, . . . , I. Where the superscript ’glm’ denotes that the expectation is
obtained via a GLM.

2.2.3 Negative Multinomial Neural Networks (NM-NN)

The Neural network approach we propose consists of a feed-forward neural network
with three output layers in order to model the multivariate claim count response Ni

w.r.t. to the features set xi. The higher flexibility of Neural Networks provided by
their intricate inner structure should account for the dependence that characterizes
the different types of claim counts. Given our set of covariates xi and considering a
network on dept K, we can rearrange the expression for the output layer already
shown in Eq. 1.15 of Chapter 1 as:

zNM(xi)(θ) = ψ(θK+1
0 +

∑qK
l=1 θ

K+1
l z

(K:1)
l (xi)) = ψ(a(F )(xi)), for i = 1, . . . , I, (2.15)

where zNM(xi)(θ) = (zNM
1 (xi)(θ), zNM

2 (xi)(θ), zNM
3 (xi)(θ)) is the tridimensional

output produced by network for the xi string of observations. Note that in this
specific formulation θK+1

0 is a tridimensional vector of output biases and θK+1
l is the

tridimensional vector of weights connecting the l-th neuron in the last hidden layer
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to the output layer. While z(K:1)
l (xi) in Eq. 2.15 can be expressed as in Eq. 1.14.

In the expression above, we denote with θ the full set of weights for the network
gathering the matrix of parameters of each layer:

θ =
{
θ(1), · · · ,θ(s), · · · ,θ(K),θ(K+1)

}
(2.16)

For a visual representation of the Network with K = 2, see Figure 2.5

Figure 2.5. Negative Multinomial Neural Network architecture for with K = 2, q0 =
7, q1 = 5, q2 = 4, and z0 = xi

As discussed in Section 1.4, the network has to be trained to minimize a given
loss function. Following the idea exposed in [60], when training a machine learning
model, it is crucial to choose a proper loss function in order to solve the problem at
hand. Since our goal is to model multivariate correlated count data, a logical choice
for the loss function is the Negative Multinomial Deviance. Rearranging Eq. 2.13
we have:

DNM(N ,θ) = 2 ·
∑I
i=1

[
−(mi + α−1)log

(
1+mi

1+
∑3

j=1 z
NM
j (xi)(θ)

)
+
∑3
j=1Nj,ilog

(
Nj,i

zNM
j (xi)(θ)

)]
, (2.17)

the objective when training the network is:

argmin
θ

DNM(N ,θ) (2.18)

thus the optimal set of parameters θ̂ is obtained minimizing the Negative Multinomial
deviance via Stochastic Gradient Descent. Note that in the estimation process the
scale parameter α is considered as a given, and is obtained by preemptively performing
a Negative Multinomial GLM on the same set of data (N,x).
Given the optimal set of parameters θ̂ we can compute the expected number of
claims as:

Enn(Ni/xi) = (Enn(N1,i/xi), Enn(N2,i/xi), Enn(N3,i/xi)) = zNM(xi)(θ̂) (2.19)

for i = 1, 2, . . . , I. Where the apex ’nn’ denotes that the expectation is obtained via
a Neural Network.
In the following section we explore the results obtained in the application of the
models discussed in this section.
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2.3 Results and discussion

To evaluate the general performance of the NM-NN w.r.t. the benchmark NM-GLM,
we test the model over the dataset presented in Section 2.1. The results discussed
in this section are obtained through five-fold cross-validation, where the dataset is
divided into five-folds, and at each iteration, three of the five folds are used as a
training set for the models (NM-NN and NM-GLM), one as a validation set, and
one as a testing set.
The Network model is trained over 2, 000 epochs using early stopping on the valida-
tion set in order to avoid overfitting. The model adopts a five hidden layer structure
of dimension (50, 40, 30, 20, 10) with the ReLu (see Eq. 1.9) as the activation function.
As for the variables presented in Table 2.1: AG, PE6, DM are Min-Max scaled,
RE and FA are treated using a d = 1 embedding layer, and GE is one-hot encoded.
As for the GLM model, AG, PE, and DM are treated as continuous variables, while
RE, FA, and GE are dummy encoded.

2.3.1 Performance

The performance of each model is measured in terms of Negative Multionomial
deviance (see Eq. 2.13 and Eq. 2.17), where a lower deviance signals a better
model. For both models, we estimate the claim frequencies for medical visits, dental
treatments, and diagnostic tests. Figure 2.6 compares the in-sample (left pane) and
the out-of-sample (right pane) performance for the NM-GLM and the NM-NN. In
particular, we report the Negative Multinomial deviance over the five data folds.
The results are very stable over the different folds, both in-sample and out-of-sample.
In fact, the Neural Network model consistently achieves a better performance w.r.t.
GLM since it returns a lower deviance.

The results illustrated in Figure 2.6 suggest that using a Neural Network approach
can be appealing. Neural networks are often celebrated for their outstanding pre-
dictive performance since they easily learn a good representation of the training
data that generalize well to new data, of course, if carefully trained. However, such
models often face one major criticism: the lack of explainability. Indeed, neural
networks have a huge number of parameters and a complex inner structure made up
of several hidden layers that make it very difficult for the modeler to understand the
results. To overcome such limitations, in recent years, a vast literature covering the
topic of model agnostic tools has flourished, see [24], and for an actuarial case study
[39] or [29], aiming at providing interpretative tools for Machine Learning models.
The corresponding literature has a plethora of well-established model agnostic tech-
niques. In this work, we exploit Permutation Variable Importance [9] to gauge the
relevance of each covariate in the model, Individual Conditional Expectation curves
and Partial Dependence plots to showcase the marginal effect of a covariate over the
prediction produced by the model, and the H-Squared statistic [24] in order to spot

6This variable is first log transformed. The log transformation of this variable is used also for
the NM-GLM.
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Figure 2.6. Performance for both NM-GLM and NM-NN, in-sample (left pane) and
out-of-sample (right pane). On the y-axis we report the Negative Multinomial deviance,
while the x-axis stores the reference data fold.

potential interaction effects between the covariates.

2.3.2 Permutation Variable Importance

Permutation Variable Importance by [9] measures the increase in the deviance of
a model after permuting the values of a given covariate. The basic idea of this
technique is quite simple: the importance of a covariate in a given model is measured
by computing the increase in the model’s deviance after permuting the covariate
values. In other terms, the variable importance is the increase in model deviance
when the information provided by an explanatory variable is destroyed. Such variable
is deemed important if randomly shuffling its values increases the model deviance
because, in this case, the model relied on the variable for the prediction. While a
covariate is redundant if shuffling its values produces little to no increase in the
model’s deviance.
In what follows the general framework for the algorithm.
Let f(x) be the generic prediction function given by a model, where x is the covariate
matrix, y is the vector of observations and D(y, f(x)) is the model’s deviance. For
instance, for the NM-NN we have f(x) = zNM(x)(θ̂) and D(y, f(x)) = DNM(N , θ̂).

1. We estimate the original model Deviance D0 = D(y, f(x));

2. For each covariate j = 1, ..., p:

• take the covariate matrix xi, that can also be represented as xi =
{x.,j ,x.,−j}, where x.,j is the column vector belonging to covariate j and
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x.,−j is the matrix for the other covariates. Then get the set of covariates
xperm by permuting the values in x.,j ;

• estimate model deviance Dperm = D(y, f(xperm));
• compute the Permutation Variable Importance for covariate j as Ij =
Dperm −D0

3. Sort covariates by descending order Ij for j = 1, ..., p.

Permutation Variable Importance can be either performed on the training set or the
test set. Performing the analysis on the test set informs on how much the model
relies on the covariate for its predictions. In contrast, using the test set would hint
at the relevance of the covariate for the model’s performance on new and unseen
data.
In Figure 2.7, we report the Variable Importance metric to find the most relevant
variables in our claim frequency models. The variables are ranked from top to
bottom, from the most important to the less relevant. For both models, the two
most relevant variables are age (AG) and region (RE). However, their ranking is
different: the age variable is by far the most important variable for NM-NN, while
it only achieves second place in NM-GLM. In particular, the increase in deviance
is much higher in the Network model (0.12) than in the GLM (0.06). Signaling
that probably the GLM is missing some information when modeling the relationship
between the age variable and the claim frequencies. As for the regional variable, even
though it scores first in the NM-GLM and second in the NM-NN, it has almost the
same importance for the two models 0.07. In both models, the other variables are
far less relevant, however, some of them seem to have a somewhat higher importance
in Network models with respect to the GLM (GE and PE), with the exception of
the family member variable (FA) which is more relevant in the GLM than in the
neural network. Note that even though the some covariates seem irrelevant in the
GLM, their paramaters appear to be significant as shown in Appendix A.

2.3.3 Individual Conditional Expectation and Partial dependence

Individual Conditional Expectations (ICE) profiles are a valuable tool to study the
marginal effect of a covariate over the response provided by the model. For a given
covariate j, such a profile shows how the prediction provided by the model for an
observation obsi = xi reacts when the covariate xi,j slides over its range of possible
values.
In particular, producing ICE profiles for a set of observations gives a hint on how
the response evolves with respect to the different values of the variable. An ICE
plot represents the relationship between the prediction and a specific covariate for
every single observation separately, producing one profile (or line) per observation.
The values for a line of the data matrix are obtained by fixing the values of all other
covariates and creating variants of this observation by replacing the covariate’s value
with values coming from a grid and producing predictions with the model for these
new observations. For a specific observation, this procedure results in a set of points
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Figure 2.7. Variable Importance for GLM (left) and Negative Multinomial Neural Network
(right). The results reported are obtained on the last testing fold of the five-fold
crossvalidation.

given by the feature value from the grid and the respective predictions.
From an algorithmic standpoint, we have:

1. take an observation obsi = xi and the corresponding prediction f(xi) given by
the model.

2. xi is a p dimensional vector that can also represented as xi = {xi,j ,xi,−j},
where j is the covariate we want to study.

3. Consider the grid of V possible values (v1, . . . , vV ) for the selected covariate j.
Then for each vk with k = 1, ..., V we repeat:

• xi,j = vk.
• obsi = xi = {vk,xi,−j}.

• ICEji,vk = f(obsi).

Once the process ends, we obtain a curve
{
ICEji,vk

}V
k=1

corresponding to
{vk,xi,−j}Vk=1.

The process is repeated potentially for each observation in the dataset and each
variable.
The ICE profiles are helpful to highlight the presence of interactions. The stronger
the interaction effects associated with the variable j, the greater the differences in
shape observed across ICE profiles. However, this model agnostic tool does not
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reveal with which other variable the interaction arises. Note that, by construction,
ICE profiles of a given covariate j are parallel as long as the underlying model does
not incorporate interactions (like in a GLM on the log scale transformation).

Friedman’s Partial Dependence (PD) profiles [24] are obtained averaging differ-
ent ICE profiles of a given variable. PD profiles can be viewed as the main effect of
covariate j merged over the whole set of observations. In other terms, they represent
the average effect of variable j and can display whether the relationship between
the response and a covariate is linear, monotonic, or more complex.
Partial dependence marginalizes the model’s prediction over the distribution of the
covariates in x.,−j , so that the profile displays the relationship between variable j
and the output produced by the model.
If we consider the ICE profiles obtained for variable j over a set of n observations,
ICEji,vk where i = 1, ..., n and k = 1, ..., V , the partial dependence profile is obtained
as:

PDj =
(
PDj

v1 , . . . , PD
j
vV

)
, with

{
PDj

vk = 1
n

n∑
i=1

ICEji,vk

}V
k=1

, (2.20)

where, again, V is the grid of possible values for the selected covariate. The PDj
vk

function, for a given value vk of variable j, reveals the average marginal effect on
the prediction returned by the model. The computation of partial dependence
plots is intuitive: the partial dependence function at a particular covariate value
represents the average prediction if we force all data points to assume that feature
value. Note that PD profiles are not restricted to a single variable. It is also possible
to consider multiple variables at the same time in order to study their joint effect on
the response.
We analyze the marginal effect for the different covariates considered in the NM-GLM
and the NM-NN in the following lines. In particular, for each dependent variable in
the models, we will discuss their marginal effect on the claim frequencies of medical
visits, dental treatments, and diagnostic tests.
In particular we observe:

Visits: Figure 2.8 displays the partial dependence plots produced by the neural
network and the GLM for the Visits claim frequency, where each pane reports the PD
plot for a different covariate. We notice a first significant difference when comparing
the PD plot for the age variable (AG). The marginal effect captured by GLM (in
red) is exponential. It starts at a claim frequency of 0 and caps at 5. In contrast,
the behaviour captured by the NM-NN (in blue) is more complex. This PD plot
starts at 2, and then the curve decreases to its minimum around 15 years of age,
reaching a frequency of 1. Then the curve starts slowly increasing then followed
by a substantial increase after the age of 50, reaching a maximum of 3.3 at around
80 years. Therefore the marginal effect produced by the Network captures specific
features, such as the higher frequency of medical visits associated with younger
ages connected to pediatric visits and the steady claim frequency at older ages.
The PD plot for the family member covariate (FA) shows a similar marginal effect
for the Policyholder and Spouse values for both models. However, the PD plot
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corresponding to the GLM assigns a higher frequency to the children value since the
model attempts at capturing the phenomenon of pediatric visits already captured
by the Network model with age. The region effect is somewhat different for the two
models. The GLM captures a strong claim frequency for ’Lazio’, which does not
happen for the neural network. In contrast, the gender covariate (GE) has the same
effect in both models. The effects for the permanence (PE) and dimension (DM)
are pretty similar, and their trend seems to be relatively flat (maybe with a slight
increase towards higher values), hence with a negligible main effect over the claim
frequency of medical visits.

Figure 2.8. Partial dependence plots for Visits

Dentalcare: Figure 2.9 reports the PD plots for Dentalcare claim frequency. Also this
kind of claim shows some different behaviours for the PD plot age. The GLM’s PD
plot shows an exponential trend, while the marginal effect produced by the neural
network is almost parabolic, capping at 75 years of age, with a slight bump around
15 years of age. The bump is connected to dental braces and teenage oral surgery.
Looking at the PD plots for the FA, we notice that the effect of this variable for
the NM-NN is almost flat, while the GLM effects change across the different types
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of family members. Similar to Visits claim frequency, the GLM tries to capture
the effects not registered by the AG PD plots. The region marginal effect is rather
similar for the two models, even though some regions have different effects. The
gender covariate (GE) has precisely the same effect in both models. The effects for
the permanence (PE) and dimension (DM) are pretty similar, and their trend seems
to be relatively flat, hence with a negligible main effect over the claim frequency of
medical visits. For instance, the PD plots for (DM) range between 1.63 and 1.68

Figure 2.9. Partial dependence plots for Dentalcare

Diagnostic: Figure 2.10 reports the PD plots for the Diagnostic claim frequency.
The gender (GE) variable has almost the same effect for the GLM and the neural
network. The same holds for the region (RE) and the dimension (DM). The age
(AG) has a quasi-linear trend in the neural network with two small bumps around
the thirties and eighties, while the trend is exponential in the GLM. As for the
visits and dental care, the FA GLM PD plot displays different values for Children,
Parents, and Former Spouse, to capture the effect not captured by the age variable.
The neural network PD plot for permanence (PE) shows a substantial effect on the
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claim frequency for a high value of the permanence, while the GLM fails at doing so.

Figure 2.10. Partial dependence plots for Diagnostic

As shown via the different PD plots, the major difference between the two models is
related to the age AG main effect. This difference is primarily due to the GLM’s
structural form, which lacks the flexibility to capture the shape of the main effect.
In contrast, the NM-NN seems to capture all the information provided by the age
variable. The NM-GLM recovers some information via the family member FA
main effect. In particular, the model gives a higher (Visits) or lower (Dentalcare)
frequency to Children, thus capturing part of the age main that was lacking in the
GLM. Therefore the first reason for the performance gap in Figure 2.6 is probably
due to a poor modelization of the AG main effect from the GLM. This issue could
be addressed using a polynomial variate or a spline. However, this is only part
of the story since the different performances may also be associated with possible
interactions between variables, which the PD plot cannot detect.
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2.3.4 Studying interactions

After having a look at main effects, here we closely study possible interaction effects
between covariates captured by the Network model. A model agnostic way to
measure the interaction between two variables is based on partial dependence profiles
introduced by [24]. In particular, when a given model incorporates an interaction
effect, its predictions cannot be expressed as the sum of its variables’ main effects
because the effect of one variable depends on the value of another variable. In
particular, considering the PD properties, if two covariates do not interact, the joint
Partial Dependence function between x·,j and x·,k can be decomposed as:

¯PDjk(xi,j , xi,k) = ¯PDj(xi,j) + ¯PDk(xi,k) (2.21)

where ¯PDj and ¯PDk are the centered7 partial dependence function belonging to
covariates j and k. Whereas if the two variables interact with each other in the
model, the joint PD cannot be expressed as the sum of the two marginal effects as
in (2.21).
Therefore, to assess the presence of interaction effects, we adopt the H-statistic
introduced by [24], which estimates the interaction strength between two covariates
by measuring how much of the prediction variance originates from their interaction.
The H-statistic to measure the interaction strength between covariates j and k, is
defined as follows:

H2
jk =

∑n
i=1

[
¯PDjk(xi,j , xi,k)− ¯PDj(xi,j)− ¯PDk(xi,k)

]2
/
∑n
i=1( ¯PDjk(xi,j , xi,k))2 (2.22)

where the sums run over a subset of n randomly selected observations, and ¯PDk

is the centered version of the PD profile for variable k, and ¯PDjk is the centered
Two-way PD for variable j and k. In other words, H2

jk measures the proportion of
variability in the joint effect of x.,j and x.,k unexplained by their main effects. A
value close to zero indicates almost no pairwise interaction, while a value close to
one means that most effects come from the pairwise interaction. The H-statistic can
also be larger than 1, this can happen when the variance of the joint interaction is
larger than the variance of the 2-dimensional partial dependence plot.

In Figure 2.11, we plot the values of the H-statistic in Eq. 2.22 for the NM-NN and
each possible pairwise interaction between covariates. We do not report the plot for
the GLM since the model is not designed to capture pairwise interactions between
variables. Each pane in Figure 2.11 reports the interactions detected for the different
claim types: for Visits the age AG has a weak interaction with both permanence
PE and gender GE; Dentalcare claim frequency shows two strong interactions for
the permanence PE variable with dimension DM and gender GE; Diagnostic claims
have two relevant pairwise interactions for the gender GE variable with permanence
PE and dimension DM, moreover we also notice a small interaction between age
AG and region RE.

7The centered version for the Partial Dependence profile is obtained via Eq. 2.20 where instead
of using the ICE profiles discussed above we consider a set of ICE profiles that are centered around
zero.
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Figure 2.11. H-statistic - for the NM-NN

To gain insight into the behaviour on such interaction effects, we use grouped PD
plots to visualize the effect given by the interaction on claim frequencies in the
following lines. A grouped PD plot represents the main effect of a variable condi-
tioned on the different values of another variable. Therefore the plot reports v PD
curves where v is the number of possible values for the conditioning covariate. The
interaction appears to be relevant if the curves display a different behaviour when
conditioned to the different values of the conditioning variable. In particular, we
expect the different PD curves to be non-parallel.

Visits: The interaction between gender GE and age AG displayed in Figure 2.12
displays a different behaviour for age PD plot conditioned on females. In particular,
we notice a higher claim frequency for female insured between 20 and 60 years of
age. This increased frequency is probably associated with gynecologic visits and
pregnancy-related visits.
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Figure 2.12. Visits claim frequency Grouped PD plots for AG and GE produced by the
NM-NN.

In Figure 2.13 we study the interaction between age AG and permanence PE for
the Visits claim frequencies. We notice that insured aged between 15 and 75 have
an increasing Visits claim frequencies w.r.t. permanence PE, while insured below 15
and above 75 years of age have higher frequencies when the value for the permanence
is low.

Figure 2.13. Visits claim frequency Grouped PD plots for AG and PE produced by the
NM-NN.

Dentalcare: The interaction between the dimension DM variable and gender GE in
Figure 2.14 shows two different effects for males and females. When the insured is a
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male, the dimension has a negligible effect on his claim frequency. In contrast, when
the insured is a female, the dimension has a decreasing effect on claim frequencies.
In other terms, for the NM-NN, the dimension variable only has some significant
effect for females, while for males, the effect of this variable seems irrelevant. It is
also worth noting that the Group PD plot ranges 1.55 and 1.77, which is a somewhat
narrow interval.

Figure 2.14. Dentalcare claim frequency Grouped PD plots for DM and GE produced by
the NM-NN. Here the dimension variable is reported on a log-scale.

Figure 2.15 displays the Grouped PD plots for gender GE and dimension DM.
All the conditional main effects reported in the figure show a positive relationship
between the claim frequency and both the company’s dimension and the years of
permanence within the insurance plan. However, it is possible to observe a different
slope for the PD plots conditioned on a permanence below 20 and above 20. The
latter group of plots has a timidly growing trend, while a steep increase characterizes
the first one. Thus, having a low permanence in a big company seems to have a
boosting effect on the number of dental treatment claims submitted by the insured;
this may often be the case when big corporates have commercial partnerships with
dental clinics.
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Figure 2.15. Dentalcare claim frequency Grouped PD plots for DM and PE produced by
the NM-NN. Here the dimensione variable is reported on a log-scale.

Diagnostic: The interaction between the dimension DM and gender GE is exposed
in Figure 2.16. In this case, gender has an opposite effect on the PD plot produced
by the dimension. Conditioning to females induces a definite increasing trend in the
DMmain effect, while having a male insured produces a slightly decreasing trend.
Thus, this interaction assigns a higher diagnostic tests claim frequency to females
insured from big-sized firms.

Figure 2.16. Diagnostic claim frequency Grouped PD plots for DM and GE produced by
the NM-NN. Here the dimensione variable is reported on a log-scale.
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The interaction between the age AG variable and region RE in Figure 2.17 displays
a plethora of different effects w.r.t. the different Italian regions. It is interesting to
notice a steep increase of the claim frequency, at older ages, for Lazio, which has
an inefficient regional health service with long waiting lists. This lack in the public
supply is often supplemented by the private sector, which is partially financed by
health insurance. The opposite is true for some virtuous regions, such as Veneto.
The effect induced by the ’bad’ regions is stronger when the insured is old and needs
diagnostic tests. Figure 2.18 displays the Grouped PD plots for gender GE and

Figure 2.17. Diagnostic claim frequency Grouped PD plots for AG and RE produced by
the NM-NN. We only report the PD plots belonging to relevant regions.

permanence PE. In both curves the trend is increasing. However, males have a
steeper increase w.r.t to females.

Figure 2.18. Diagnostic claim frequency Grouped PD plots for PE and GE produced by
the NM-NN.
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2.3.5 Final remarks

From the results discussed in this section, the Negative Multinomial Neural Network
appears as a clear winner over the benchmark GLM. The network model performs
better in-sample and out-of-sample. These results are achieved thanks to the neural
network’s flexibility, which is not restricted by a multiplicative structural form like
the GLM. The network architecture offers sufficient complexity so that it is capable
of reflecting non-linearities in the explanatory variables and interactions between
them. As mentioned during the discussion, the GLM’s performance could greatly
benefit from using polynomial variates or splines to improve the modeling of main
effects. Moreover, it would also be possible to improve further the GLM by plugging
manually the different pairwise interactions spotted by the NM-NN. In this sense,
neural networks can also serve as a complementary tool for GLMs. Where, in a
first step, the modeler using a neural network spots the weaknesses of the simpler
regression model (GLM, GAM, or others), such as missing interactions or main
effects. Then, in a second step, the modeler improves the simpler regression model
via brute force modeling of its functional form. To complete the frequency-severity
approach discussed in Section 1.2, we will assess the possible merits of Neural
Networks for claim cost modeling in the next chapter.
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Chapter 3

Modeling claim severity

This chapter addresses the traditional actuarial problem of claim severity estimation
by proposing a novel Gamma regression model based on neural networks. This
model is employed to compute the claim severities for the health insurance claims
presented in Section 2.1. Following the same reasoning discussed in the previous
chapter, we compare our model with a Gamma GLM, which is the standard approach
when modeling claim severity. The expected claim severities obtained using the two
techniques are then used to complete the Frequency-Severity model (Section 1.2)
involved in the calculation of the pure premium for each insured in the dataset.
This chapter is organized as follows: In Section 3.1, we briefly report some descriptive
statistics for the claim severities corresponding to the dataset presented in Section
2.1; Section 3.2 provides a short discussion of the different models employed in this
chapter (Gamma-GLM and Gamma-Neural Networks); In Section 3.3, following the
same structure of Section 2.3, at first we evaluate the in-sample and out-of-sample
performance returned by Gamma-Neural Network w.r.t Gamma-GLM, then we
employ the set of model agnostic tools presented in Section 2.3 to gain insight on
the data representation captured by the models; In Section 3.4 we compute the pure
premiums, and we assess them using a set of metrics proposed in[15].

3.1 Data description:

Recalling the definition given in Eq. 1.2, the severity for a generic claim j submitted
by policyholder i is denoted as S̃i,j . The claim dataset presented below, reports
the cost of each single claim submitted by the portfolio of insured discussed in
Section 2.1. In particular, the claim dataset, has three different type of claims:
Visits, Dentalcare, and Diagnostic. Table 3.1 reports the information available in
such dataset.
This chapter is interested in claim severity estimation for the different claim types
conditional on the policyholder’s characteristics x. The matrix x is not immediately
available in the dataset presented in Table 3.1. Nonetheless, it is possible to retrieve
it by connecting the Insured ID in the table above to the Insured ID presented in
Table 2.1. Thus, the set of covariates (or risk factors) considered in the regression
models discussed in the next section is the same as the one described in Section 2.1.
Before moving to the actuarial modeling of claim severities, in this section, we
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Variable Description

Positive dependent variable
S̃1
ij (Visits claim severity) Visits claim severity (EUR) for the j-th claim submitted

by policyholder i.
S̃2
ij (Dentalcare claim severity) Dentalcare claim severity (EUR) for the j-th claim submitted

by policyholder i.
S̃3
ij (Diagnostic claim severity) Diagnostic claim severity (EUR) for the j-th claim submitted

by policyholder i.

Additional information
Insured ID ID number for the insured that allows to connect the claim dataset

to the dataset presented in 2.1 and described in Table 2.1.

Table 3.1. Summary of the variables available in the claim dataset.

provide some descriptive statistics to characterize the claim costs. In Figure 3.1, we
report the claim severity histograms for the different claim types, Table 3.2 presents
the corresponding frequency tables, and in Table 3.3 we display some summary
statistics. The distributions of the different claim severities are right-skewed (see
Figure 3.1). This feature is commonly well described through a Gamma distribution.
In particular, we notice that Diagnostic and Dentalcare claims seem far more skewed
than medical visits. In particular, dental treatments are characterized by a fat tail be-
tween 500 and 1000 euros, probably due to oral surgery claims that have a higher cost.

Figure 3.1. The plots report the claim severity trimmed histograms for medical visits,
dental treatments and diagnostic tests.

Unlike the claim frequency models discussed in the previous chapter, we will not
model the claim severities using a multivariate approach since there is non-correlation
between the cost of the different claims (see Figure 3.2). Therefore, we will work
with a different Gamma regression model for each type of claim.
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Variable Absolute frequency Relative frequency

S̃1
ij (Visits claim severity)

(0-50] 29,775 0.056
(50-100] 262,426 0.501
(100-150] 172,013 0.328
(150-200] 39,592 0.075
(200-1000] 18,566 0.035
(1000,∞) 1,285 0.002

S̃2
ij (Dentalcare claim severity)

(0-100] 211,652 0.460
(100-200] 100,241 0.218
(200-500] 60,656 0.131
(500-1000] 71,817 0.156
(1000-1500] 11,528 0.025
(1500,∞) 3,861 0.008

S̃3
ij (Diagnostic claim severity)

(0-30] 1,127,155 0.685
(30-50] 119,646 0.072
(50-100] 220,297 0.134
(100-200] 131,331 0.079
(200-1000] 43,412 0.026
(1000,∞) 1,330 0.000

Table 3.2. Frequency tables for the response variables

Summary stats Visits Dentalcare Diagnostic

Min. 0,01 1 0,01
1st Qu. 70 60 4
Median 100 120 10,5
Mean 105,75 266,53 38,70
3rd Qu. 130 330 49
Max. 7800 10100 18080
95% 198,39 950 150

Table 3.3. Claim cost summary statistics
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Figure 3.2. Correlogram for the claim severities

Note that we do not distinguish between regular and large claims in this study, and
we consider all of them together. However, a case could be made for using two
different approaches when modeling small and large claims, as in [4] and [14]. We
explore the different gamma regression models employed for claim severity estimation
in the following lines.

3.2 Regression models for claim severity estimation:

This section provides a formal description of the two competing regression models
employed in the claim severity estimation. We first report a short description of
Gamma GLM, which is the go-to technique for claim cost modeling, then we intro-
duce the novel Gamma Neural Networks.

3.2.1 Gamma GLM

We define with S̃i,j the cost for the j-th generic1 claim submitted by policyholder
i, and we assume the claim severities S̃i,j with i = 1, . . . , Ip and j = 1, . . . , Ni to
be independent. Where Ip is the number of policyholders with positive claims (i.e.
Ni > 0) and Ni is the number of claims submitted by insured i during the year (that
we assume to be a positive integer). Here we change the notation from Ni to ni to
emphasize that the number of claims is treated as a known quantity. The Gamma
GLM assumes that the cost of the individual claim S̃i,j is distributed as:

S̃i,j ∼ f(S̃i,j/λi, α) = λi
Γ(α)(λiS̃i,j)α−1e−λiS̃i,j (3.1)

1For ease of discussion, here, we refer to a generic claim S̃i,j , but the concepts exposed in the
rest of the section still apply to S̃1

i,j , S̃2
i,j , or S̃3

i,j .
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where λi > 0 is the rate parameter and α > 0 is the constant shape paramater. The
mean and variance for the distribution are defined as:

E(S̃i,j) = α

λi
= µ, and V ar(S̃i,j) = α

λ2
i

= µ2φ (3.2)

where φ > 0 is the dispersion parameter. Using the expectation in Eq. 3.2 it is
possible to reparametrize the distribution in Eq. 3.1:

S̃i,j ∼ f(S̃i,j/µ, α) = exp−
α
µ
S̃i,j

Γ(α)

(
α

µ
S̃i,j

)α 1
S̃i,j

(3.3)

Referring to Eq.1.4, in a GLM, the relationship between the conditional expectation
E(S̃i,j/xi) and the set of covariates xi is defined as:

E(S̃i,j/xi) = µi = exp(x′iβ), for, i = 1, 2, . . . , Ip, and j = 1, . . . , ni. (3.4)

where we set g(.) = log(.).
Given the vector of observations for the individual claims S̃ = (S̃1,1, . . . , S̃1,n1 , . . . , S̃Ip,1,
. . . , S̃Ip,nIp ), the set of regression parameters β is obtained maximizing the loglikeli-
hood:

l(β, α,S) =
∑Ip
i=1

∑ni
j=1

{
α

[
− S̃i,j

exp(x′iβ) − (x′iβ)
]
− ln(Γ(α)) + αln(S̃i,j)− ln(S̃i,j)

}
(3.5)

which translates in the minimization of the following deviance

DG(β,S) = −2 [l(µ, α,S)− l(S, α,S)] = −2
Ip∑
i=1

ni∑
j=1

[
ln S̃i,j
µi
− S̃i,j − µi

µi

]
(3.6)

Note that in Eq. 3.6 the shape parameters α phases out.
Therefore, given the estimated set of parameters β̂ we can compute the expected
claim severity given the information set xi:

Eglm(S̃i,j/xi) = exp(x′iβ̂), for i = 1, 2, . . . , Ip, and j = 1, . . . , ni (3.7)

where the superscript ’glm’ signals that the estimate is produced by the GLM.

3.2.2 Gamma Neural Network (Gamma-NN)

The Gamma-NN is a feed-forward neural network with a one dimensional output
layer. Considering the typical set of covariates xi and a network on dept K, keeping
in mind the notation of Section 1.4, we can define the output layer of the network as:

zG(xi)(θ) = ψ(θK+1
0 +

∑qK
l=1 θ

K+1
l z

(K:1)
l (xi)) = ψ(a(F )(xi)), for i = 1, 2, . . . , Ip, (3.8)

where zG(xi)(θ) is the one-dimensional output produced by network for the vector
of covariates xi. Unlike the r-dimensional output Network of Section 2.2, here θK+1

0
is a scalar representing the output bias and θK+1

l is the weight connecting the l-th
neuron in the last hidden layer to the output layer. The z(K:1)

l (xi) term in Eq. 3.8
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Figure 3.3. Gamma Neural Network architecture for with K = 2, q0 = 7, q1 = 5, q2 = 3
and z0 = xi

can be expressed as in Eq. 1.14. The output activation ψ is taken to be exponential,
and θ denotes the entire set of network weights. The network architecture is shown
in Figure 3.3.

The expected claim severity is given by the output produced by the network:

E(S̃i,j/xi) = zG(xi)(θ) (3.9)

In order to estimate the set of parameters θ we have to define an appropriate loss
function for the network model. Given that we are in a Gamma setting, we train
the model on Gamma deviance, tweaking Eq. 3.6 we have:

DG(S,θ) = −2
Ip∑
i=1

ni∑
j=1

[
ln S̃i,j
zG(xi)(θ) −

S̃i,j − zG(xi)(θ)
zG(xi)(θ)

]
, (3.10)

the objective when training the network is:

argmin
θ

DG(S,θ) (3.11)

In particular, we employ Stochastic Gradient Descent in order to obtain the estimate
for the set of parameters θ̂. We can compute the expected claim severity for the
i-th policyholder as:

Enn(S̃i,j/xi) = zG(xi)(θ̂) (3.12)

where the superscript ’nn’ shows that the expectation is obtained via a neural
network.
In this particular case we estimate the expected claim severity for the three claim
type, resulting in: Enn(S̃1

i,j/xi), Enn(S̃2
i,j/xi), and Enn(S̃3

i,j/xi).

3.3 Results and discussion
This section assesses the possible merits of the Gamma Neural Network w.r.t. the
GLM for claim severity estimation by testing this approach over the dataset pre-
sented in Section 3.1. As briefly mentioned above, we fit a different Gamma GLM
and a Gamma-NN for each claim type (Visits, Dentalcare, and Diagnostic). In the
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GLM, continuous variables are treated via cubic splines, while categorical variables
are One-Hot encoded. As concerns Gamma Neural Networks, the models are trained
over 1, 000 epochs using early stopping on the validation set in order to prevent
overfitting. Each network model adopts a standard three hidden layer structure of
dimension (30, 20, 10) ([53]) with a ReLu activation function. Data is preprocessed
as follows: AG,PE, DM are Min-Max scaled, RE and FA are treated using a d = 1
embedding layer, and GE is dummy encoded. The results discussed below stem
from a five-fold cross-validation.

3.3.1 Performance

We evaluate the performance of the different models using the Gamma Deviance. In
particular, to assess the estimates produced by each model, we compute the Gamma
Deviance (Eq. 3.6 for Gamma GLM and Eq. 3.10 for Gamma-NN), where the lower
the deviance, the better the model. Given the set of features x, each model returns
an estimate for the expected claim severity E(S̃i,j/xi) of a medical visit, dental
treatment, or diagnostic test. Figure 3.4 compares the in-sample (left panes) and the
out-of-sample (right panes) performance for the Gamma-GLM and the Gamma-NN.
In each plot, we report the Gamma Deviance over the five data folds to evaluate
our results’ stability. The outcomes seem relatively robust for each claim severity
model across the five-folds, both in-sample and out-of-sample. In fact, neural net-
work models outperform GLMs consistently since they always return a lower deviance.

Figure 3.4. Performance for both GLM and NN, in-sample (left pane) and out-of-sample
(right pane). On the y-axis we report the Gamma deviance, while the x-axis stores the
reference data fold.
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In the remainder of this section, we motivate this performance gap by analyzing the
data representation learned by the different models using the set of model agnostic
tools presented in Section 2.3: Variable Importance, PD plots, and interaction
strength.

3.3.2 Importance

To learn which variables are more relevant in claim severity prediction, in Figure
3.5, we compare the variable importance for the different regression techniques.
The covariates are ranked from top to bottom, starting with the most important
one. The left plots report the variable importance for GLMs, while the right plots
display the variable importance for neural networks. Claim severity models for Visits
(Figure 3.5a) show some radical differences when it comes to variable importance.
The only variable that seems to be relevant for the GLM is the region (RE), while
the NN has several important covariates, age (AG) and region (RE) above all. In
particular, the region’s importance is comparable between the two models, while the
age is where the real difference comes up since the variable is the most important
in the NN, whilst it is almost irrelevant for the GLM. Other differences between
GLM and NN are given by the FA and PE variables, which are relevant only in the
latter model. In contrast, Dentalcare models (Figure 3.5b) show a similar variable
importance plot. Both models strongly rely on the age variable for their predictions,
with minor but still relevant importance for the region. Even though the plots
are roughly the same, we notice a slightly higher importance for variables in the
NN model. In a similar fashion to Visits, the claim severity models for Diagnostic
display two different variable importance plots. Indeed, except for region (RE),
the variables entering the GLM are deemed irrelevant. While the neural network
extracts important information also from the age (AG), the permanence (PE) and
the family member type (FA).
The results reported below suggest that probably GLM models are unable to exploit
the entire informative set provided by the covariates. Nevertheless, even if some of
the variables characterizing GLMs display a low level of importance, their parameters
appear to be often significant, as shown in Tables B.2, B.3, and B.4.

In the following, we further investigate our models looking at main effects.
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(a) Visits (b) Dentalcare

(c) Diagnostic

Figure 3.5. Variable Importance for GLM (left) and neural network (right). The results
reported are obtained on the last testing fold of the five-fold crossvalidation. Each plot
reports the results for a different claim type.

3.3.3 Individual Conditional Expectation and Partial dependence

In order to study the covariates’ main effects, in this subsection, we present the
partial dependence plots for the claim severity models (Gamma GLM and Gamma
NN) and the different claim types.

Visits: Comparing the PD plots for the GLM and the neural network in Figure
3.6, we notice some significant differences for the age (AG) and permanence (PE)
variables, followed by a minor difference for the family member’s main effect. Such
divergences reflect the differences reported in the importance plots in Figure 3.5a.
The age (AG) displays by far the wider distance between the curves. Its main effect
in the neural network follows an almost concave up parabolic trend that associates
higher claim severities to younger ages, probably connected to pediatric visits. In
contrast, the GLM age main effect is mostly flat. The right-bottom pane shows the
region’s (RE) main effect for the two models. Such effect is roughly the same for
the two models, and it displays a relevant variability w.r.t. the region in which the
claim occurs. In this context, ’Lombardia’ appears as the priciest region when it
comes to medical visits. We also notice some slight differences for the permanence
(PE) and the family member’s (FA) main effects. While GE and DM show roughly
the same PD plot.
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Figure 3.6. Partial dependence plots for Visits - NN

Dentalcare: Consistently with the importance plot in Figure 3.5b, except for the age
(AG), all the PD plots in Figure 3.7 for the two models look almost alike. Moreover,
the main effects for gender (GE), permanence (PE), dimension (DM), and family
member (FA) are almost horizontal. In contrast, the region effect shows different
claim severities for the Italian regions. ’Lombardia’ still presents a considerable
unitary claim cost. However ’Trentino Alto Adige’ is clearly the region with the
highest cost associated with dental treatments.
As mentioned above, the only variable with a substantial divergence in the PD plot
is the age (top-left). Such difference is connected to younger ages, where the GLM
shows a decreasing unitary claim cost between 0 and 35 years of age; while the NN
main effect starts at a really low value and it starts increasing reaching a peak at 15
years, capturing the high cost associated to dental braces that characterize teenagers.
In this case, the neural network seems to fit this specific effect better.

Diagnostic: Figure 3.8 reports the PD plots for diagnostic test claim severity models.
Major distances in the PD plots are observed for the age (AG), permanence (PE),
and a specific value of the family member variable (FA). At the same time, the
other variables show approximately the same pattern for the main effect plot, almost
flat for gender (GE) and dimension (DM), and with a fairly relevant effect for the
region (RE). The great difference in the age main effect (top-left plot) is mainly
connected to younger ages, where the GLM has an almost flat effect, and the neural
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Figure 3.7. Partial dependence plots for Dentalcare - NN
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network reports a higher, though decreasing, claim severity. The difference in the
family member effect is related to the Ex-Spouse policyholder value. There is no real
reason for that; hence it may be a potential signal for overfitting the learning data.

Figure 3.8. Partial dependence plots for Diagnostic - NN

3.3.4 Studying interactions

This subsection looks for two-way interaction effects using the H-statistic [24] pre-
sented in Eq. 2.22. In Figure 3.9, we report the H-statistic for each possible pairwise
interaction between variables entering the Gamma Neural Networks. Note that we
compute the H-statistic only for neural network models since GLM are not designed
to capture variable interactions.
Namely, interactions captured by the Gamma-NN for medical visits are presented
in Figure 3.9a. The most relevant interaction is the one between permanence PE
and age AG. Such interaction is quite peculiar since its H-static exceeds 1; this
happens when the variance of joint interaction between the variables is greater than
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that of their 2-dimensional PD plot. This anomaly could also be due to the strong
and positive correlation between the two covariates observed in Figure 2.2. Other
relevant interactions are observed between gender and family member type, firms
dimension and gender, permanence and dimension.
From Figure 3.9b, we notice that all the relevant interactions for dental treatment
Gamma-NN model lean on the company dimension variable (DM). In particular,
this variable interacts with permanence (PE), gender (GE), and family member type
(FA). It is curious to observe such relevance for the dimensional variable since this
covariate has a low importance (Figure 3.5b) and an almost flat PD plot (Figure 3.7).
The grouped PD plots that will be discussed in the second part of this subsection
will allow understanding if such interactions are really relevant.
Figure 3.9c reports variable interactions for the Diagnostic Gamma-NN model. The
plot reports a plethora of relevant interactions, among the most relevant ones we
have those between: the permanence and the gender, the dimension and the gender,
the permanence and the age, the gender, and the family member.
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(a) Visits (b) Dentalcare

(c) Diagnostic

Figure 3.9. H-statistic - for the NN.

The H-statistic informs us on the strength of the interaction between two variables
relative to their joint main effect. However, this statistic does not explain how the
effect behaves on the prediction produced by the model. Grouped partial depen-
dence plots, presented in Section 2.3, help shed light on the effect produced by the
interaction. Below we present and discuss the grouped PD plots to investigate the
interactions mentioned above.

Visits: In the top-left pane of Figure 3.10, we present the grouped PD plot for
the age variable w.r.t. the family member type (for ease of discussion, we drop
Ex-Spouse and Parents). The plots display a different slope at younger ages (below
50 years). Signaling that Children at younger ages present higher claim severities
than policyholders. In contrast, the claim cost at older ages is roughly the same
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for each insured type. This grouped PD plot is a decomposition of the main effect
represented in the top-left pane of Figure 3.6. The PD plot at younger ages only
makes sense for Children since it is implausible to observe a Policyholder or a Spouse
below 25 years of age (see top-left plot in Figure 2.2). While the opposite is true for
the PD plots at higher ages, only the Policyholders or Spouses have such a level of
seniority.
The interaction between DM and GE (in the top-right plot) presents an increased
claim severity for females insured belonging to large-sized firms. However, this
interaction only has a limited effect on the claim cost. The Grouped PD plots for
the family member type conditional to the insured gender (bottom-right pane) are
almost parallel for males and females insured, with a lower claim severity associated
with females. However, when the policyholder is a female, the cost for an individual
claim is roughly at the same level (if not higher) as a male. Such interaction may
signal that when the insured is the policyholder (i.e., the owner of the insurance
coverage), the effect produced by the gender is ruled out. For the interaction between
age AG and permanence PE (bottom-right plot in Figure 3.10), that displayed
an anomalous value in Figure 3.9, we notice a strong decreasing slope for younger
insured (below 50 years of age) associated with a mid to high permanence (from
20 to 40 years)2. However, this does not make much sense since it is impossible to
have a young insured with many years of permanence, i.e., a teenager with 20, 30,
or 40 years of permanence. Therefore, the grouped plots for this interaction are only
marginally informative. For instance, the PD plot conditional on a permanence of
40 years in the bottom-right pane of Figure 3.10 (in light blue) only makes sense for
insured with more than 40 years of age. It is possible to conclude that the anomaly
detected by this interaction does not seem to be highly informative, and the value of
its H-statistic is probably due to the strong correlation between age and permanence.

2In order to have an easily readable plot we present Grouped PD plots conditional only on a
representative set of permanence values (i.e. 1, 10, 20, 30, 40)
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Figure 3.10. Grouped PD plots to study the interactions presented in Figure 3.9a.

Dentalcare: In Figure 3.11, we present the Grouped PD plots of the interactions
captured by the Gamma-NN for dental treatment claims. The top-left pane displays
the Grouped PD plots of the dimension (DM) w.r.t. to the family member type (for
ease of discussion, we remove the Ex-Spouse from the plot). The interaction between
DM and FA seems to spot an effect for Parents of policyholders working in big-sized
firms since the behaviour of this PD profile (in green) is radically different from those
of other types of insured (Policyholder, Spouse, and Children). In particular, for
Parents, we notice an increasing claim severity when associated with more prominent
firms, while for other family member types, we observe a slightly decreasing trend.
The interaction between DM and GE (top-right pane) produces two utterly different
PD plots. The dimension (DM) PD plot conditional on females is concave down,
while the plot conditional on males is concave up. However, even though the two
curves have radically different behaviour, their range of claim severity is relatively
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small (between 260 and 275 euros). Hence the relevance of this interaction is fairly
limited.
The bottom-left pane displays the Grouped PD plot to study the interaction between
dimension (DM) and (PE). Considering all possible values for permanence would
result in a messy plot with over 40 PD profiles. Looking at the graph, it is clear that
more prominent firms (with a high DM value) have an increasing effect on the cost
of dental treatment claims for insured with high permanence. In contrast, they have
a decreasing effect on the claim severity for insured with a mid to low permanence.

Figure 3.11. Grouped PD plots to study the interactions presented in Figure 3.9b.

Diagnostic: The interaction between permanence and gender, depicted in the top-
left plot of Figure 3.12, seems to increase the cost of diagnostic claims filed by
male insured with many years of permanence. Again, gender has another relevant
interaction with the dimension (top-right plot in Figure 3.12). In particular, the
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effect is more relevant in more prominent companies, where females tend to submit
increasingly larger claims, while males present cheap Diagnostic claims. The bottom-
right plot apparently spots a strong interaction between the type of family member
and gender. In particular, the interaction signals huge claims for male ’Parents’.
It is worth noting that ’Parents’ are usually older insured, as witnessed in Figure
2.2, who often need expensive diagnostic tests that result in bigger claim severities.
However, the strong peak observed in the PD plot appears to be excessive since it is
unlikely for male ’Parents’ to have a higher claim cost than female ’Parents’. This
result is possibly due to overfitting produced by the neural network model on the
training data. Namely, the overfitting may be caused by the dataset’s low number
of ’Parents’ (see Figure 2.1)
We neglect the bottom-right Grouped PD plot between age and permanence since it
has the same issues as the bottom-left plot reported in Figure 3.10 discussed above.

Figure 3.12. Grouped PD plots to study the interactions presented in Figure 3.9c.
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Similarly to Section 2.3, we observe that the proposed neural network models
outperform GLMs by better representing the main effects and incorporating possible
interactions (even though, as argued above, some of those interactions have proven to
be irrelevant). The comparison we have drawn up until now between neural networks
and GLMs only focuses on the statistical performance of our models. However, this
is not enough to determine whether it is worth choosing neural networks over GLMs.
In fact, when determining the price (or the potential cost) of a risk coverage, it
is also vital to consider business-related metrics. Therefore, in the next section,
we combine the frequency models discussed in Chapter 2 and the claim severity
model in a pricing model and compare the different tariff structures using practical
economic metrics relevant for an insurance company.
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3.4 Evalute Premiums - Model Lift

Now that we have extensively discussed claim frequency models (Section 2.2) and
claim severity models (Section 3.2) we can combine them to complete the Frequency-
Severity approach displayed in 1.2 devoted to pure premium evaluation. For instance,
it is possible to compute the pure premium for a set of insureds according to their
characteristics by combining the NM-NN and the Gamma-NN. In our specific case,
in order to obtain the pure premium for the health insurance plan presented in this
work, we must tweak Eq. 1.2 in order to account for the different claim types. In
particular, the pure premium obtained via neural network models is defined as:

π̂nn(xi) =
3∑

k=1
Enn(Ski /xi) =

3∑
k=1

Enn(Nk,i/xi) · Enn(S̃ki,j/xi), (3.13)

for i = 1, . . . , I, where Enn(Nk,i/xi) is defined as in Eq. 2.19 and Enn(S̃ki,j/xi) is
obtained as in Eq. 3.12.
While, using the GLM models we have:

π̂glm(xi) =
3∑

k=1
Eglm(Ski /xi) =

3∑
k=1

Eglm(Nk,i/xi) · Eglm(S̃ki,j/xi), (3.14)

for i = 1, . . . , I, where Eglm(Nk,i/xi) is defined as in Eq. 2.14 and Eglm(S̃ki,j/xi) is
obtained as in Eq. 3.7.
As it is common in actuarial pricing, the claim frequency and claim severity models
discussed in this work are calibrated to optimize a goodness-of-fit measure. Thus,
until now, when comparing neural networks to GLMs, we have mainly focused on
the statistical performance of the models. Therefore, even if neural networks have
outperformed GLMs from a statistical standpoint both in Section 2.3 and Section
3.3, it is crucial to understand if the premium produced by such models provides
added value to the business in which the premium is to be implemented. Thus, it is
also important to consider an economic criterion when deciding whether it is worth
implementing a given model in insurance applications. Therefore it is crucial to go
beyond the classical deviance metric. That is where model lift metrics come in handy.
In brief, the model’s lift refers to the pricing model’s ability to prevent adverse
selection. Precisely, the lift quantifies the model’s ability to charge each insured an
actuarially fair rate, thereby minimizing the potential risk of losing insured attracted
by competitors using finer price lists.
In this section, we discuss two model lift methods proposed by [15] in order to eval-
uate the performance of a set of candidate premiums. The metrics proposed by the
authors aim at assessing the two following aspects of a given premium: the variability
of the resulting premium amounts, as larger premium differentiation induces greater
lift, and the ability of the premium amount to match the actual total claim amount
S for increasing risk profiles. The first objective is tackled using Lorenz curves that
evoke the concept of convex orders, which are often used in applied probability to
compare the variability of probability distributions beyond variance. The second
point is assessed considering concentration curves. Given an insurance portfolio, if
we consider the subset of insured gathering a certain percentage of policies associated
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with smaller premiums (i.e., those insured that are likely to be lost to a potential
competitor because of their low-risk profile), the concentration curve compares the
premium amounts belonging to such group to their aggregate losses. The respective
positions of the graphs of the Lorenz and concentration curves allow the actuary to
assess the premium’s performance under consideration accurately.
Before moving on, let us first define a generic working premium π(x). This working
premium π(x) is an a approximation of the so-called true premium µ(x), which
is the unknown regression function representing the insured riskiness w.r.t. to the
information set x. Then it is possible to assess the quality of a pricing model
comparing π(x) to µ(x) since it is crucial to evaluate the ability of a given model of
predicting the true premium µ(x).
As mentioned above, the performance lift metrics proposed by the authors for the
predictor are based upon concentration and Lorenz curves, whose definitions are
recalled next.

Concentration curve - CC

In order to properly discuss the concentration curve it is crucial to define the
cumulative distribution function for the working premium π(x), as:

Fπ(t) = P [π(x) ≤ 1], t ≥ 0, (3.15)

and F−1
π is the associated quantile loss function.

Now, the concentration curve of the true premium µ(x) with respect to the working
premium π conditional on the information set x is defined as:

α 7→ CC [µ(x), π(x);α] = E
[
µ(x) · I

[
π(x) ≤ F−1

π (α)
]]

E [µ(x)] (3.16)

the curve represents the proportion of the total true premium income corresponding
to the sub-portfolio π(x) ≤ F−1

π (α) , i.e. to the 100α% of contracts with the smallest
premium π(x). This set of policies is characterized by a low risk profile, thus it is
crucial to provide them with a proportionally low premium. Otherwise the insurance
company is likely to lose such insured to a competitor offering lower premiums. In
other terms, the concentration curve is a tool to assess the appropriateness of the
premium π(x) under consideration w.r.t. the insured risk profile.

Lorenz curve - LC

However, a concentration curve alone is not enough to assess performance of π(x).
For this reason, [15] propose to consider the Lorenz curve of the predictor, in addition
to the concentration curve of the response with respect to the predictor.

α 7→ LC [π(x);α] = CC [π(x), π(x);α] = E
[
π(x) · I

[
π(x) ≤ F−1

π (α)
]]

E [π(x)] (3.17)

The Lorenz curve represents the share of the total income produced by the working
premium belonging to the sub-portfolio π(x) ≤ F−1

π (α). Note that for Eq, 3.17 and
3.16 we have:

α 7→ CC [π(x), π(x);α] = LC [π(x);α] (3.18)
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In other words, if µ(x) = π(x), the two performance curves reduce to the Lorenz
curve of µ(x). Meaning that the sub-portfolio corresponding to π(x) ≤ F−1

π (α) is
in equilibrium, as the premium matches the conditional expectation on average.
Hence, a large difference between the CC and the LC suggests that the predictor
π(x) provides a poor approximation for the true premium.

Estimating curves and premium ranks

When it comes to curves estimation, it is important to note that the true pre-
mium µ(x) is not observed in reality. Which of course is a big problem when
estimating CC [µ(x), π(x);α]. However, as discussed in [15], it is possible to replace
µ(x) with the total claim amount S3, thus we have:

CC [µ(x), π(x);α] = CC [S, π(x);α] = E
[
S · I

[
π(x) ≤ F−1

π (α)
]]

E [µ(x)] (3.19)

Therefore, in this case, the concentration curve describes the proportion of the total
losses S belonging to the sub-portfolio gathering a given proportion α of policies
with the lowest predictions. The concentration curve of the pure premium can be
estimated as follows:

ĈC [S, π̂(x);α] =
∑
i|π̂(xi)≤F̂−1

π (α) Si∑I
i=1 Si

(3.20)

Where, π̂(xi) is the estimated premium, produced by the frequency and severity mod-
els with their estimated parameters, and F̂−1

π (α) denotes the empirical distribution
function of the estimated premium:

F̂−1
π (α) = 1

I

I∑
i=1

I [π̂(xi) ≤ α] (3.21)

The empirical ĈC can be interpreted as the ratio of the total loss produced by those
policies with estimated predictor π̂ below its empirical quantile at level α and the
total loss of the whole portfolio. It means that ĈC represents the sub-portfolio losses
in relative terms, as a percentage of the aggregate loss at the entire portfolio level.
The empirical version of the Lorenz curve is defined as:

L̂C [π̂(x);α] =
∑
i|π̂(xi)≤F̂−1

π (α) π̂(xi)∑I
i=1 π̂(xi)

(3.22)

In other terms, L̂C is the percentage of the total premium income corresponding to
the 100α% smaller premiums when the latter are computed using a predictor π.

The estimated premium π̂(x) allows to define a specific rank for the different
insured. In particular, we notice that

π̂(x) ≤ F−1
π̂ (α)⇔ Fπ̂ (π̂(x)) ≤ α (3.23)

3Where S = (S1, . . . , Si, . . . , SI) is the vector of total claim amounts briefly mentioned in Table
2.1
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it follows that we can represent the rank induced by the premium as:

Π = Fπ̂ (π̂(x)) (3.24)

In other terms, Πi is the rank of insured i once all contracts have been ordered in
ascending order according to their corresponding premiums.

Below we present the metrics proposed by [15] to assess the predictive perfor-
mance of a pricing model. Such indicators, known as ICC (Integrated Concentration)
and ABC (Area Between Curves), are based on the concentration and Lorenz curves
discussed above. These metrics allow to measure the level of lift achieved by the
pricing (or costing) model in consideration.

ICC - Integrated Concentration

To evaluate model lift a first method is to consider the area below the CC, i.e.
the integral of the CC. The integrated curve is defined as:

ICC [µ(x), π(x), α] =
∫ α

0
CC [µ(x), π(x), ε] dε =

= Cov [µ(x), (α−Π)+]
E(S) + E [(α−Π)+]

(3.25)

where E [(α−Π)+] is a constant and Π is the ordering (Eq. 3.24) induced by the
technical premium µ(x).
By ICC, we mean the integral of the concentration curve over the whole interval
[0, 1], i.e.

ICC = ICC [µ(x), π(x), 1] = Cov [µ(x), 1−Π]
E(S) + 1

2 =

= 1
2 −

Cov (µ(x),Π)
E(S)

(3.26)

Let us now provide an intuitive interpretation for ICC. The ICC is based on the
covariance between the real premium µ(x) and the rank Π. The idea is that, the
smaller (grater) Π the lower (larger) the true premium should be. Hence, a positive
relationship between π(x) and µ(x) translates into a positive covariance between
µ(x) and Π. Hence a more positive covariance term in the ICC, the better the
corresponding candidate premium, resulting in a lower ICC value. In other terms,
ICC measures the strenght of the association between the insured ordering Π given
by our working premium and their true riskiness µ(x).
In order to compute the ICC we can replace µ(x) with S in Eq. 3.26.

ABC - Area Below Curve

Another interesting solution to assess model lift is to compare the Lorenz curve
of the working premium to the concentration curve of the response with respect
to the working premium. As stated in Eq. 3.17, if π(x) = µ(x), LC[π(x);α] and
CC[µ(x), π(x);α] coincide. Hence, considering both curves, and computing the area
between them provides a good indicator of the performance of a given predictor.
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Since the closer π(x) to µ(x) the smaller the area between the CC and the LC. The
area between the curves, ABC in short, is given by

ABC [π(x)] =
∫ 1

0
(CC[S, π(x);α]− LC[π(x);α])dα =

= 1
E[π(x)] (Cov[π(x),Π]− Cov[S,Π]) =

= 1
E[π(x)]Cov[π(x)− S,Π]

(3.27)

If we define π(x)− S as the profit associated with a given working premium, then
ABC is proportional to the covariance between profits and the rank of premiums Π.
Clearly, a lower ABC signals a better model.

Results
We now employ the two lift metrics discussed above (ABC and ICC) to compare
the of premiums obtained via GLMs πglm(x) (Eq. 3.14) and neural networks πnn(x)
(Eq. 3.13).
In Table 3.4 we report the ABC and ICC for the two set of premiums. Both premiums
are computed on the out-of-sample data, more specifically on the first fold of the
5-fold cross-validation. In particular, we notice that premiums issued from neural
network models return both a lower ABC and ICC, signaling that neural network
models produce a better lift if compared to GLMs. In other terms, the lower ABC
registered by NN signals that the premium produced by this model is closer to the
actual risk presented in the insurance portfolio, while the lower ICC means that
such premiums cover the expected share of true premiums in the portfolio.

Model ABC ICC

GLM 0.00827 0.37760
NN 0.00562 0.37706

Table 3.4. ABC and ICC measure of lift for the two set of premiums

Thus, even from a business metric standpoint, neural network models have proven to
have some added value if compared to GLMs, since their greater precision translates
into better premiums.
In order to furtherly improve the discussed premiums, it would be necessary to
complement the informative set presented in Section 2.1 including, for instance,
additional covariates such as policyholders yearly income and level of education, that
are generally good drivers for health expenditure.

In the next chapter, we revisit the quantile approach presented in [30] using neural
network machinery in order to build a framework to gauge the potential riskiness
for the insured enrolled in the health insurance coverage analyzed in this work.
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Chapter 4

Modeling policyholders potential
riskiness using a quantile
approach

The Frequency-severity approach discussed in the previous chapters is purely devoted
to estimating the expected value for the total claim amount E(Si) since it is designed
to produce the pure premium for a health insurance coverage. Such a pure premium
represents the average loss for a given policyholder. However, an insurance company
(or an IHF) may also be interested in going beyond the pure premium, measuring,
for instance, the potential loss associated with a given policyholder. A good metric
to evaluate the potential riskiness of a policyholder is given by the quantile of the
aggregate claim amount, which is equivalent to the Value-at-Risk defined on Si. This
risk measure is well established in the insurance industry, it works as a cornerstone
for the definition of the Solvency II regulatory capital requirements, and it can be
employed to compute a premium risk margin (or safety loading) to face possible
adverse deviations from the expected value of Si.
Therefore, this chapter discusses the estimation of conditional quantiles of the
aggregate claim amount for health insurance, embedding the problem in a quantile
regression framework using a neural network approach. More specifically, as the first
step, we consider the Quantile Regression Neural Network (QRNN) procedure to
compute conditional quantiles for the aggregate claim severity. We then propose a
new model combining the traditional quantile regression approach with a Quantile
Regression Neural Network that we call Quantile Regression Combined Actuarial
Neural Network (Quantile-CANN). In both models, we adopt a two-part model
scheme, see [30], where we fit a logistic regression to estimate the probability of
positive claims and the QRNNmodel or the Quantile-CANN for the positive outcomes.
We exploit the health insurance dataset presented in Section 2.1 to highlight the
overall better performances of the proposed models with respect to the classical
quantile regression one proposed in [30], [36] and [5]. We then use the estimated
quantiles for Si to calculate a loaded premium following the Quantile Premium
Principle, showing that the proposed models provide a better risk differentiation
w.r.t. the classical quantile regression.
The remainder of the chapter is structured as follows: Section 4.1 is devoted to
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data description, in particular, we deepen the discussion on the binary variable INi
and on the aggregate claim amount Si, that we have briefly mentioned in Section
2.1; Section 4.2 explores the two-part model considered in this work; Section 4.3
introduces the use of QRNN and Quantile-CANN for the estimation of the quantile
of the total claim amount; in Section 4.4 we debate the performance of our models
also with the help of agnostic tools; Section 4.5 presents the actual quantile-based
ratemaking for the health insurance coverage discussed in the previous chapters.

4.1 Data description

As previously mentioned, two-part Quantile models rely on two variables for their
definition: a binary variable INi1 signaling whether the insured files at least a claim
during the year; and a positive continuous variable representing the aggregate claim
severity S̃i which is defined as the sum of the monetary cost of all claims submitted
by a given insured within the year. The dataset presented in Section 2.1 reports
the claim binary variable INi and the aggregate claim amount Si representing the
aggregate loss of a given insured during the year, this variable can either be null
(when the insured submits no claim, i.e., INi = 0) or positive (when the insured
submits at least a claim, i.e., INi = 1). From Si it is possible to retrieve the aggregate
claim severity S̃i by considering the positive part of the aggregate claim amount.
Table 4.1 displays a summary for the variables in the dataset involved in the quantile
modeling. Figure 4.1 plots the histogram of the aggregate claim amount Si for
the 273,500 insured in our dataset. The histogram shows the semicontinuos [44]
nature of this variable, with a consistent number of zeros due to insured submitting
no claims, with the right-skewed positive part of the distribution. From the plot
we observe the existence of some large claims, however the tail doesn’t seem to
be particularly fat. It is worth mentioning that Si aggregates all the three claim
types discussed in the previous chapters (Visits, Dentalcare, and Diagnostic) in
one single variable. Therefore, we won’t follow a multivariate approach for the
response variable as in Section 2.2, but we will build our models on the aggregate
loss encompassing the risk arising from all the different type of claims in the dataset. 2

1Where Ni is the number of claims submitted by the policyholder. Here we consider all the
claim types discussed in the previous chapter all together (Visits, Dentalcare, and Diagnostic). In
other terms, using the notation introduced in Chapter 2, Ni = N1,i +N2,i +N3,i.

2The adoption of a multivariate approach could be an interesting topic for further research.
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Variable Description

Binary dependent variable
INi (claims binary variable) Binary variable reporting 1 if the insured filed

at least a claim and 0 otherwise.

Positive dependent variable
Si (total claim amount) Total claim amount submitted by the insured during

the year (in euros). If the insured submits no claims Si = 0.
This variable takes into account the aggregate claim amount
for the three claim types (Visits, Dentalcare, and Diagnostic).

Additional information
Insured ID Insured identifier used to join this dataset with

the data set presented in Section 2.1

Table 4.1. Summary of the variables available in the dataset.

Figure 4.1. The plots report the histogram for the aggregate claim amount Si.

To provide further insight into the data at hand in Table 4.2, we report the frequency
table for the response variables characterizing the two-part model discussed in the
next section. Observing the frequency table for the binary variable we observe
205,625 claimants (i.e. INi = 1) and 68,325 insured with no claims (i.e. INi = 0).
Again, as mentioned in the previous chapters, the high proportion of claimants is
peculiar to the health insurance context. For the aggregate claim amount Si we
observe that most claimants submit an yearly aggregate loss between 100 and 3,000
euros, while the top 5% insured has an aggregate claim amount grater than 3,000
euros.
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Variable Absolute frequency Relative frequency Variable Absolute frequency Relative frequency

Si (Visits claim severity) INi
0 68325 0.249 0 68325 0.249

(0-100] 16675 0.060 1 205625 0.751
(100-500] 79311 0.289
(500-1000] 44376 0.161
(1000-3000] 48097 0.175
(3000-5000] 9978 0.036
(5000-∞] 7188 0.026

Table 4.2. Frequency tables for the response variables

Note that the covariates characterizing the quantile models are those presented in
Chapter 2. As we will discuss in the following, the goal of the quantile modeling
approach is to study the cost associated to those insured that submit larger claim
amounts to provide the insurance company (or the IHF) with a valuable risk
management tool when evaluating the potential riskiness of a given insured.

4.2 The two part quantile model

In this section, we discuss the two-part quantile regression framework, first considered
by [30], devoted to conditional quantile estimation of the aggregate claim amount
Si at level τ and for a specific insured i. As briefly mentioned above, two-part
models involve a mixture distribution consisting in mixing a discrete point mass,
with all mass at zero, and a continuous random variable. In particular, they are
described by two equations: a binary choice model is fitted for the probability of
observing a positive-versus-zero outcome. Then, conditional on a positive outcome,
an appropriate regression model is fitted for the continuous outcome. The common
structure of such models assumes that the effect of the covariates influence the mean
of the conditional distribution of the response. In many real applications like the
actuarial ones, however, the effect of the covariates can be different on different
parts of such distribution. For this reason, a quantile regression approach for the
continuous part of the model may be more appropriate when studying the potential
riskiness of an insured. In particular, here, we focus our attention on the effect of
covariates on the quantile of the aggregate claim amount Si. In order to build the
two-part quantile model (see [16], [22], and [42]) we consider the indicator random
variable INi . If Ni > 0 then a positive aggregate claim severity S̃i is observed.
Consistently with this approach, given a set covariates xi, we model the τ -th
conditional quantile of the total claim amount QSi(τ |xi) in two stages:

• the first stage allows to estimate the no claim probability pi = Pr(INi = 0) =
Pr(Ni = 0) as function of covariates . To achieve this goal we use the logistic
regression:

log

(1− pi
pi

)
= x′iβ, (4.1)

where the no claim probability is obtained as pi = 1
1−exp(x′iβ) ;

• The second stage uses pi to obtain the τ?i conditional quantile level of S̃i,
QS̃i(τ

?
i |xi), corresponding to the τ quantile level defined on the total claim
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amount Si, QSi(τ |xi). Following [30] the τ?i level can be calculated as:

τ?i = τ − pi
1− pi

(4.2)

for which

QS̃i(τ
?
i |xi) = QSi(τ |xi). (4.3)

In the literature QS̃i(τ
?
i |xi) is generally calculated using the well known quantile

regression approach of [35]. In the next section we will generalized this approach
by introducing two alternative methods, the Quantile Regression Neural Network
(QRNN), a particular specification of neural networks introduced by [57], and the
Quantile Combined Actuarial Neural Network (Quantile-CANN) which is a new
method to calculate quantiles embedding the CANN approach of [53] in a quantile re-
gression framework. These approaches allow performing quantile estimation without
imposing any predetermined structure for the relations between the claim severity
and the related covariates. In the following section we briefly introduce the classi-
cal quantile regression and then we explore the new techniques proposed in this work.

4.3 Quantile claim severity models
The standard approach to tackle the problem of quantile claim severity estimation
refers to traditional QR models, see for example [36], [30] and [5]. In this paper,
we generalize this approach by proposing neural network models to estimate the
conditional quantile of the aggregate claim severity. This approach allows performing
these calculations without imposing any predetermined structure for the relations
between the aggregate claim severity and the related covariates. In this way, we
can capture non-linear and complex patterns in the data and possible interactions
between predictors.
The first model we introduce is Quantile Regression Neural Network (QRNN), which
is basically a feed-forward neural network minimizing the same quantile loss function
minimized by a QR model. The second one is a new model that generalizes the
CANN approach introduced by [53] by combining the QR model with a QRNN to
improve the model’s performance. We call this model Quantile-CANN.
Since all the models mentioned above are based on Quantile Regression, we give a
light insight into QR models in the following subsection.

4.3.1 Quantile regression

Quantile Regression, originally introduced by [35], is a distribution free method
providing a way to model the conditional quantiles of a response variable with
respect to a set of covariates in order to have a more robust and complete picture
of the entire conditional distribution with respect to the classical mean regression.
Quantile regression approach is quite suitable method used in all the situations
where specific features, like skewness, fat-tails, outliers, truncation, censoring and
heteroscedasticity arise. In this section we show how to calculate QS̃i(τ

?
i |xi) using

QR standard tools, in particular we analyze how to calculate the quantile of the
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log(S̃i). The use of the logarithmic function derives from the need to transform the
dependent variable from R+ to R to apply the QR approach. Moreover, the use
of the logarithmic transformation is coherent within the insurance pricing context,
since it allows to consider multiplicative tariffs. In addition, by considering the
equivariance under monotone transformation property of the quantile it is possible to
retrive the quantity of interest, i.e. Qlog(S̃i)(τ

?
i |xi) = log(QS̃i(τ

?
i |xi)). For notational

simplicity hereafter we will use τ? instead of τ?i in the formulas below.
The quantile regression model can be stated as follows:

log(S̃i) = x′iβ(τ?) + εi, for all i = 1, 2, . . . , Ip, (4.4)

where β(τ?) = (β1(τ?), β2(τ?), . . . , βq0(τ?)) ∈ Rq0 is the vector of unknown regression
parameters , Ip is the number of claimants, and εi has the τ?-th conditional equal to
zero for all i = 1, 2, . . . , Ip. The estimation of the regression parameters β(τ?) can
be obtained by solving the following minimization problem:

β̂(τ?) = argmin
β(τ?)

1
Ip

Ip∑
i=1

ρτ?(log(S̃i)− x′iβ(τ?)), (4.5)

where ρτ? is the quantile loss function defined as:

ρτ?(u) = u (τ? − I(u<0)) (4.6)

with I(u) being the indicator function. The conditional quantile of S̃i is then estimated
as Q̂S̃i(τ

?|xi) = exp(x′iβ̂(τ?)).
In what follows we explore the model proposed based on the neural network approach.

4.3.2 Quantile Regression Neural Networks

Quantile Regression Neural Network (QRNN) is a modeling technique introduced by
[57] based on neural networks that enables to estimate the conditional probability
distribution of multiperiod financial return within a quantile regression framework.
With this approach, it is possible to estimate potential non-linear quantile relations
without imposing any distributional assumption or functional relations between
dependent and independent variables. Several applications of the methodology have
already been implemented in different fields, see for instance [67] and [10]. Up to
our knowledge, the QRNN methodology has never been considered in an insurance
pricing context.
At a deeper insight QRNN model, for a fixed depth K ∈ N, and fixed τ?, follows a
typical feed-forward structure:

Qlog(S̃i)(τ
?) = exp

〈
θ(K+1),

(
z(K)(θ(K)) ◦ · · · ◦ z(s)(θ(s)) ◦ · · · ◦ z(1)(θ(1))

)
(xi)

〉
, (4.7)

for i = 1, 2, . . . , Ip. Where the output of the network is given by the exponential
activation function applied to the scalar product between the readout parameter
vector θ(K+1) returning one neuron in the output layer and the composition of the
different K hidden layers z(1)(θ(1)), · · · , z(K)(θ(K)), where θ(1), · · · ,θ(K) are the
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parameters belonging to each layer.
The generic s-th hidden layer s(s)(θ(s)) of dimension qs ∈ N is defined as:

z(s)(θ(s)) : Rqs−1 → Rqs , z(s)(θ(s)) =
(
z

(s)
1 (θ(s)

1 ), · · · , z(s)
j (θ(s)

j ), · · · , z(s)
qs (θ(s)

qs )
)′
,

(4.8)
where the j-th neuron in the s-th hidden layer is given by:

z
(s)
j (θ(s)

j ) = φ

(
θ

(s)
j,0 +

qs−1∑
l=1

θ
(s)
j,l · z

(s−1)
l (θ(s−1)

l )
)

= φ
〈
θ

(s)
j , z(s−1)(θ(s−1))

〉
, (4.9)

where φ is the activation function and θ(s)
j = (θ(s)

j,0 , θ
(s)
j,1 , . . . , θ

(s)
j,qs−1

)′ is the vector of
parameters belonging to j-th neuron in the s-th hidden layer. Considering the vector
of parameters θ(s)

1 , . . . ,θ
(s)
qs for each neuron in (4.8), we can define the matrix of

parameters for the s-th hidden layer as θ(s) = (θ(s)
1 , . . . ,θ

(s)
j , . . . ,θ

(s)
qs )′ of dimension

qs × (1 + qs−1).
Since the network in (4.7) has K hidden layers, it is possible to denote with θ the
full set of parameters for the network gathering the matrix of parameters of each
layer:

θ =
{
θ(1), · · · ,θ(s), · · · ,θ(K),θ(K+1)

}
(4.10)

with dimension r, where r =
∑K+1
s=1 qs(1 + qs−1).

To obtain the optimal set of parameters θ̂ for (4.10) we train the network (4.7)
minimizing the quantile loss function:

argmin
θ

1
Ip

Ip∑
i=1

ρτ?(log(S̃i)−Qlog(S̃i)(τ
?)) (4.11)

where we fix the starting value of the network parameter θ0 at the beginning of the
training.
From (4.7) and (4.11) we estimate Q̂log(S̃i)(τ

?), then given the equivariance to mono-
tone transformation of the quantile function we retrive Q̂S̃i(τ

?) = exp(Q̂log(S̃i)(τ
?)).

It is worth noting that if we replace the exp and the φ activation functions in (4.7)
and in (4.9) with the linear activation function and we consider no hidden layers,
then the QRNN boils down to the classical QR model in (4.5)

4.3.3 Quantile-CANN

The innovative model we propose in this section to estimate the quantiles for the
distribution of interest is an extension of the Combined Actuarial Neural Network
(CANN) approach proposed by [53] and launched in the editorial of [64]. In particular,
the CANN framework nests a generic regression model into the neural network
architecture to enhance the estimates given by the generic regression model. Following
the CANN approach, but in a quantile framework, we boost the QR model with
the neural network features proposing the so-called Quantile-CANN model. Our
approach allows for exploiting the quantile neural networks to improve the conditional
quantile estimates given by a QR model. In such a way, the neural network directly
improves the classical QR estimates, preserving the information contained therein.
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Figure 4.2. Quantile-CANN architecture

The main advantage of the Quantile-CANN approach compared to the QRNN is
that it combines the flexibility of the networks with the interpretability of a QR
approach, thus providing higher accountability. According to [64], when the reference
regression model is already close to optimal, its maximum likelihood estimator can
be used as initialization of the neural network fitting algorithm. We use the QR
estimator to initialize the network parameter of the Quantile-CANN, then obtaining
lower computational time for the network parameters calibration than the QRNN
model.
Formally, we define the Quantile-CANN as:

QCANNlog(S̃i)
(τ?) = 〈β(τ?),xi〉+

〈
θ(K+1),

(
z(K)(θ(K)) ◦ · · · ◦ z(1)(θ(1))

)
(xi)

〉
, for i = 1, 2, . . . , Ip,

(4.12)
where the first term of the right hand side of (4.12) refers to the QR model in
(4.4) with vector of parameters β(τ?), while the second term is the QRNN model
displayed in (4.7) (except for the missing exponential activation in the output layer).
Therefore, the Quantile-CANN model, combines the models discussed in the two
previous sub-sections (4.3.1 and 4.3.2) by embedding the QR into the network
architecture using a skip connection that links the input given by the QR estimates
to the output layer (see Figure 4.2 for a graphical representation), where the models
are merged by summing the two parts as in (4.12). The network parameter of the
Quantile-CANN model is denoted by ϑ and consists of:

ϑ = {β(τ?),θ} =
{
β(τ?),θ(1), · · · ,θ(K),θ(K+1)

}
(4.13)

The optimal set for the network parameter ϑ̂ of (4.13) is obtained training the
Quantile-CANN (4.12) minimizing the quantile loss function:

argmin
ϑ

1
Ip

Ip∑
i=1

ρτ?(log(S̃i)−QCANNlog(S̃i) (τ?)). (4.14)

The optimization process to estimate ϑ in (4.13) works as follows: we first obtain
β̂(τ?) parameters minimizing the quantile loss function for the quantile in (4.5). Then
we use such parameters to initialize the network parameter of the Quantile-CANN
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by considering ϑ0 =
{
β̂(τ?),θ0

}
, where θ0 is the starting value of the network

parameter belonging to the QRNN part of model (4.12). Therefore, starting from
ϑ0, we optimize ϑ minimizing (4.14) by means of the gradient descent algorithm.
During the optimization process both θ0 and β̂(τ?) parameters are trained.
Given the optimal set of parameters ϑ̂, from (4.12) we estimate:

Q̂CANNlog(S̃i) (τ?) =
〈
β̂(τ?),xi

〉
+
〈
θ̂(K+1),

(
z(K)(θ̂(K)) ◦ · · · ◦ z(1)(θ̂(1))

)
(xi)

〉
(4.15)

then, the quantile of the claim severity is obtained as Q̂CANN
S̃i

(τ?) = exp(Q̂CANNlog(S̃i)
(τ?)).

Note that if the Quantile-CANN model does not return any improvement with re-
spect to the QR model it means that the latter is already able to capture all the
relevant information incorporated in the data.
In the following of this chapter we analyze the results obtained using the models
presented in this section to the health insurance portfolio presented in Sections 2.1
and 4.1.

4.4 Results and discussion

In order to have a general overview of the performance of the QR, QRNN, and
Quantile-CANN models, in this section, we estimate the conditional quantile of the
aggregate claim severity (S̃i) at different τ? levels for each insured in our portfolio.
Precisely, the performance of each model is measured in terms of the quantile loss
function (see Eq. 4.6), where the lower the loss, the better the model.
The network models are trained over 2, 000 epochs using early stopping on the
validation set in order to prevent overfitting. Both models adopt a three hidden
layer structure of dimension (20, 15, 10), we consider the hyperbolic tangent Eq. 1.9
activation function for QRNN, while we use the ReLu Eq. 1.9 activation function
for Quantile-CANN. As for the variables presented in Table 2.1: AG, PE, DM are
Min-Max scaled, GE is dummy encoded, while RE and FA are treated using a d = 1
embedding layer. As for the QR model we consider a splines function to model the
AG and the PE effects. Also in this case here we adopt a five-fold crossvalidation.

4.4.1 Performance

For each model and each fold in the cross-validation process we estimate the condi-
tional quantile of the total claim severityQS̃i(τ

?) at levels τ? = (0.7, 0.75, 0.80, 0.85, 0.9)
and compute the respective in sample and out of sample quantile loss function to
evaluate their performance. From the results reported in Figure 4.3 we clearly
observe that QRNN and Quantile-CANN exhibit an overall better performance in
terms of the quantile loss function compared to the classical QR, for each quantile
level τ? and each fold. It is also worth mentioning that the Quantile-CANN always
yields a lower quantile loss function than the QRNN on the out-of-sample set, while
the two network models display approximately the same score on the in-sample.
This result suggests that building the network around the QR has not only improved
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the performance given by the QR model but also beats the QRNN since it provides
the model with a greater ability to generalize to new and unseen data.

(a) τ? = 0.75 (b) τ? = 0.80

(c) τ? = 0.85 (d) τ? = 0.9

(e) τ? = 0.9

Figure 4.3. Quantile deviance for the different models at different τ? levels for the five
folds in the cross-validation process.

As discussed in the previous chapters, assessing the model’s performance is not
enough to decide which model is better. It is also necessary to consider the model’s
explainability. Therefore, in the remainder of this section, we present the results
issued by the different well-known model agnostic tools. More specifically, for the
sake of brevity, we will carry out our analysis on the quantile models defined at the
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τ? = 0.80 level and fitted on the first fold of the cross-validation process.

4.4.2 Importance

In Figure 4.4, we report the Variable Importance metric to find the most relevant
variables in our dataset for the quantile models. The variables are ranked from
top to bottom, starting with the most important one as measured by the Variable
Importance. For all models, the most important variable is the age (AG) followed by
the regional variable (RE) and the family member type (FA). The latter (FA) scores
second in the Quantile-CANN, while it reaches third place in the QR and the QRNN.
With regards to the regional variable (RE), we have a second place in the QR and
the QRNN models and a third place in the Quantile-CANN. The other variables are
less relevant, with the sole exception for the permanence (PE) that registers higher
importance in the Quantile-CANN. It is also worth mentioning that the age variable
(AG) seems to have greater importance in QRNN models w.r.t to Quantile-CANN
and QR. Moreover, it is possible to note that, in general, all the variables are more
relevant in network models rather than in the QR. These results may be a potential
sign that network models capture more information from the data w.r.t. the classical
quantile regression. Note that notwithstanding the low importance measured for the

Figure 4.4. Variable Importance

variables entering the QR, the parameters corresponding to such variables appear to
be significant as shown in Table B.5.
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4.4.3 Individual Conditional Expectation and Partial dependence

In Figures 4.6 and 4.5, we consider PD plots and individual conditional expectations
to gain an understanding of the main effects of the variables over the conditional
quantile of the total claim severity for the different models. The top-left plot in
Figure 4.6 compares the PD plots for the AG variable produced by the different
models. At first glance, the curves look quite similar, however taking a closer look,
we notice an important difference in the leftmost part of the plot for the values
below 30 years of age. More specifically, for the Quantile-CANN, we observe an
upward trend in the riskiness of the insured, starting from 1, 000 euros and peaking
at almost 2, 000 euros at around 15 years of age, then the curve falls off down to
approximately 1, 000 euros at 30 years. In contrast, the QRNN’s age main effect
displays a clear upward trend starting at 400 euros for newborns and reaching 1, 000
at 30 years of age. The QR shows an almost flat trend kicking off at around 1, 000
euro and slowly increasing after 25 years of age. The behaviour displayed by the
Quantile-CANN seems to be more reasonable since it captures the cost for dental
treatments at younger ages, as it is usually low for children below ten years, while
it raises significantly for teenagers often associated with the use of dental braces.
The ICE curves associated with the PD plot displayed in the top-left plot of Figure
4.5 seem to reveal some interactions within the Quantile-CANN model since the
plot shows some very wild profiles. Also, the QRNN seems to have an interaction.
Of course, the ICE profiles for the QR are always parallel (on a log scale) since
the variables are always modeled additively, and the model does not incorporate
interactions.
The permanence (PE) PD plots display a similar evolution but at different levels
(top-right pane in Figure 4.6). Furthermore, for this variable, we observe some
messy ICE profiles (top-right pane in Figure 4.5) that may signal the presence of
interactions with other variables. The gender (GE) variable does not seem to have a
particular behaviour. In fact, the range for the y-axis is pretty narrow, even though
the range of values appears to be larger for the quantile regression model. As for the
regional variable (RE), the PD plots show almost identical profiles, with particular
riskiness associated with insured living in Lazio and Lombardia. The main effect for
the dimension variable (DM), reported in the bottom-left plot, shows almost the
same increasing behaviour for the three models. Moreover, the y-axis range is rather
limited, swinging between 1, 520 and 1, 620 euros. The PD plots for family member
type (FA) reported in the bottom-right pane of Figure 4.6 shows an almost flat effect
for the QRNN, while it has a diversified effect in the QR and the Quantile-CANN.
In particular, such models associate lower riskiness to ’Children’ and ’Ex-Spouse’
and slightly higher riskiness to ’Policyholders’.
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Figure 4.5. Individual conditional expectation

Figure 4.6. Partial dependance

In the following we deepen the analysis studying possible interactions between
variables.

4.4.4 Studying interactions

In order to study possible interactions, in Figure 4.7 we plot the values of the
H-statistic, introduced in 2.22, for each model and each possible pairwise interaction.
Both QRNN and Quantile-CANN display some specific interactions. The strongest
interaction for the QRNN are those between: age (AG) and family member type
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(FA), gender (GE) and family member type (FA), permanence (PE) and gender
(GE), dimension (DM) and family member type (FA). While for the Quantile-
CANN we observe the following relevant interactions: permanence (PE) and gender
(GE), age (AG) and permanence (PE), firms dimension (DM) and permanence
(PE), age (AG) and gender (GE).

(a) QRNN

(b) Quantile-CANN

Figure 4.7. H-statistic - for the possible interactions characterizing network QRNN and
Quantile-CANN.

Following the same reasoning of the previous chapters, looking at the H-statistic
can be misleading since the value of this statistic does not necessarily prove the
interaction to be relevant. In particular, this may happen when the covariates
interacting are correlated. Therefore, in order to properly evaluate the soundness of
such interactions, we try to gain knowledge on their behaviour using the Grouped
PD plots reported in Figures 4.8 and 4.9.

Figure 4.8 displays the different grouped PD plots for the top four interactions



4.4 Results and discussion 89

captured by the QRNN. The top-left pane of Figure 3.10 presents the grouped PD
plot for the age variable w.r.t. the family member type, where for ease of discussion,
Ex-Spouse and Parents are dropped. The curves show almost the same shape. How-
ever, we observe a strong peak at younger ages for ’Children’ insured that motivates
the interaction. The effect displayed by the top-right plot of Figure 4.8 is pretty
straightforward. The interaction returns a higher risk for non-Policyholder male
insured w.r.t to their female peer. While male and female ’Policyholders’ display
almost the same riskiness. The interaction between permanence (PE) and gender
(GE) is represented in the Grouped PD plots in the bottom-left pane. The graphs
look almost parallel for low permanence values (below 20 years), while we observe
increasingly high riskiness for male insured at higher permanence values. Meaning
that enfranchised insured are more prone to have a high expenditure if they are male.
As shown by the bottom-left plot of Figure 4.8, the interaction between DM and
FA does not seem to be significant since the different PD plots are nearly parallel.

Figure 4.8. Grouped Partial dependance

In Figure 4.9 we report the grouped PD plots for the four interactions in terms of
H-statistic in the Quantile-CANN. The interaction between PE and GE presented in
the top-left plot of Figure 4.9 displays an higher riskiness for males with a permanence
above 20 years. While the grouped PD plots below 20 years of permanence present
nearly the same behaviour. The interaction between age (AG) and permanence
(PE) (top-right plot) should be taken with a grain of salt since, as already discussed
in the previous chapter for Figure 3.10, some associations between the permanence
and age values are incompatible. For instance, it is impossible to have a 25 years
old insured with 40 or 30 years of permanence. In fact, the PD plot conditional on a
permanence of 40 years in the top-right pane of Figure 4.9 (in light blue) only makes
sense for an insured with more than 40 years of age. Moreover, we observe that most
PD plots look roughly alike. The only big difference we notice is connected to the
PD plot conditional on a permanence of 40 years, which, as discussed above, is only
marginally informative. Hence, the relevance of this interaction is rather dubious,
and its high H-statistic (0.27) may also be due to the correlation between AG and
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PE.
The bottom-left pane in Figure 4.9 presents the grouped PD plots for the interaction
between DM and PE. From the pane, we observe that some PD curves look
almost parallel with an increasing trend w.r.t. DM (i.e., those conditional to a low
permanence), while others have a heterogeneous behaviour or a decreasing trend.
Therefore, the permanence seems to have some diversified effect on the main effect
of the dimension.
The interaction between age AG and gender GE, presented in the last pane, shows
a strongly relevant effect for insured below 25 years of age. In particular, the
interaction associates higher riskiness for young male insured w.r.t. female teenagers.

Figure 4.9. Grouped Partial dependance

As shown in this section, the network models (QRNN and Quantile-CANN) seem
to have a hedge over the classical QR model. In particular, we have seen that our
models offer strong flexibility that results in a better in-sample and out-of-sample
performance. This versatility is partially motivated by their ability to obtain a better
fit for the covariates’ main effects and their ability to automatically detect covariates
interactions (even though some have proven to be scarcely informative). However,
as an analogy to the third chapter, to assess the possible merits of a given pricing
(or costing) model, it is also essential to consider its ability to produce reasonable
premiums. For this reason, in the next section, we compare the premium produced
by the different quantile models using a widespread insurance-based metric discussed
in [23].
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4.5 Ratemaking and Premium evaluation
Above we have investigated models’ behaviours evaluated at different quantile
levels. We are now interested in evaluating models’ performances when the focus is
estimating the Quantile Premium Principle introduced by [30], where the premium
paid by the insured is loaded according to its potential riskiness. In particular, we
consider the convex combination of the quantile claim severity QS̃i(τ

?
i |xi) and the

conditional expected value of the total claim amount Si:

πLi = γ · Q̂S̃i(τ
?
i |xi) + (1− γ) · E(Si|xi), (4.16)

where 0 < γ < 1 is the loading factor and E(Si|xi) the conditional expected value of
the total claim amount computed in Eq. 3.13 using the network models proposed in
Chapter 2 and 3. Thus, in order to compute Eq. 4.16 we need to obtain Q̂S̃i(τ

?
i |xi)

using the two-part model discussed in Section 4.2.
The two-part model is estimated taking the first fold in the 5 fold cross-validation,
where we consider a 60-20-20 split between learning, validation, and testing set.
The first step of the two-part model consists in estimating the no claim probability
pi for each insured using logistic regression. Then as discussed in Section 4.2, the
estimated pi is employed to compute the τ?i level as in Equation 4.2 for each insured
setting τ = 0.95. As a result of this first step we obtain 47,120 unique values for τ?i
ranging between 0.799 and 0.896. Following the two part approach designed by [30]
would involve fitting a regression model for each different quantile level τ?i . Doing
this would be rather time-consuming. Thus, to avoid that, we approximate the τ?i
values up to the second digit, where the second digit is rounded to the closest even
digit.3 Lastly, we perform the second step of the two-part model by computing
the conditional quantile of the claim severity Q̂S̃i(τ

?
i |xi) using QR, QRNN, and

Quantile-CANN.
In order to test the ability of the different models to accurately estimate the desired
quantile level of S̃i, we use the backtest criteria approach. More specifically, the
models are backtested using the unconditional coverage (UC) test proposed by [37]
(see Appendix C), which is a widespread testing technique generally employed to
validate VaR models in the financial literature. This technique consists in a binomial
test checking if the proportion of insured with a claim severity above the conditional
quantile is consistent with the predefined quantile level τ?. The UC test performs
a likelihood ratio test, where the null hypothesis states that the unconditional
probability of a violation4 is equal to (1− τ?).
In Table 4.3, we report the backtesting results for QR, QRNN, and Quantile-CANN.
In the left part of the table, we report the unconditional coverage test statistic LRuc,
while on the right side of the table, we display the corresponding p-values. QRNN
and Quantile-CANN pass the backtest at all quantile levels, with the sole exception
of the τ? = 0.86 and τ? = 0.88 levels for the QRNN and the Quantile-CANN respec-
tively, while QR fails the backtest at two quantile levels: 0.86 and 0.88. Therefore,
QRNN and Quantile-CANN seem more able to accurately estimate the quantile of

3For instance: τ?i = 0.815 is rounded up to 0.82, while τ?i = 0.805 is rounded down to 0.80. This
approximation results in six different quantile levels τ?i for the testing set.

4We have a violation when we observe an insured submitting a larger total claim severity w.r.t.
the estimated conditional quantile at level τ?
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the total claim severity Q̂S̃i(τ
?
i |xi) accurately.

τ? LRuc P-values

QR QRNN Q-CANN QR QRNN Q-CANN

0.8 0.892* 0.892* 0.892* 0.344 0.344 0.344
0.82 0.277* 0.000* 0.000* 0.598 0.984 0.984
0.84 0.145* 0.026* 0.002* 0.702 0.869 0.958
0.86 6.436 6.436 1.072* 0.011 0.011 0.300
0.88 13.722 0.366* 5.769 0.000 0.544 0.016
0.9 1.666* 0.092* 2.342* 0.196 0.761 0.125

Table 4.3. For the different models we report the values for the LRuc statistic and its
corresponding p-values. The critical values of the LRuc statistic is 3.84, denoting that
the null hypothesis is rejected at the 5% significance level. When an asterisk is reported
the model passes the test.

Once the models are estimated, we can compute tariffs πi as in Eq. (4.16) and
evaluate them using the ordered Lorenz curve introduced by [23]. Below we do not
consider the goodness of lift metrics presented in Section 3.4 since such metrics are
not designed to gauge the suitability of a loaded premium, such as the πi of Eq. 4.16.
The ordered Lorenz curve is a twist on the classical Lorenz curve usually employed
in welfare economics to represent social inequality via the Gini index, see [23]. In
insurance literature, the ordered Lorenz curve is employed to compare different tariff
structures issued by a set of competing models. Given a base tariff structure πbasei

and a competing tariff πcompi the Lorenz curve proposed by [23] is ordered according
to the relativity ri:

ri = πcompi

πbasei

(4.17)

A relativity ri consistently below 1 reveals a largely profitable policy for the company,
that is likely to be lost to a competing insurance company proposing a cheaper
premium. Instead a relativity ri greater than 1 signals an underpriced policy.
Of course these statement hold true only if we assume P compi to give a sharper
representation of the real risk compared to πbasei .
Given ri, the ordered Lorenz curve can be defined as follows:(∑n

i=1 SiI {Fn(ri) ≤ s}∑n
i=1 Si

,

∑n
i=1 π

base
i I {Fn(ri) ≤ s}∑n
i=1 π

base
i

)
. (4.18)

for s ∈ [0, 1] where Fn(ri) is the empirical cumulative distribution function of the
relativities ri. The idea behind the ordered Lorenz curve is that a model producing
tariffs with a greater Gini index produces a more robust separation among premiums
paid by the insured, signaling that such a model can distinguish good risks from
bad risks. Hence, a tariff structure πcompi that yields a larger Gini index is likely to
result in a more profitable portfolio because of a better risk differentiation.
Table 4.4 displays the two-way comparison of Gini indices for the Network models
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and the QR. The rows report the model generating the base tariff structure πbasei

whereas the column stores the model from which the competing tariff structure πcompi

is generated. The approach we use for selecting a tariff based on the Gini index is
the ’mini-max’ strategy designed by [23], which consists of selecting the model that
provides the minimum Gini index among the maximal Gini indices taken over the
competing models. The strategy is relatively intuitive: if we have to choose a base
premium, we choose the one with the minimal maximum improvement compared
to other models, meaning that the selected base premium is the least vulnerable to
alternatives. In practice, we look for the base model with the lowest value in bold in
Table 4.4. The Quantile-CANN appears as a clear winner since the other models
cannot achieve a high Gini index when considered an alternative (see the last row),
signaling that this model leads to a tariff structure that is the least likely to incur in
adverse selection. The QRNN tariff structure achieves second place, followed by QR.

Competing model

Base model QR QRNN Q-CANN

QR - 2.07 3.44
QRNN 1.32 - 2.87
Q-CANN 0.47 0.047 -

Table 4.4. Two-Way Comparison of Gini Indices for the models

Hence, the proposed quantile network models not only outperformed the quantile
regression from a mere statistical standpoint, as shown in Section 4.4, but they also
produce more competitive loaded premiums that seem more able to differentiate
between good and bad risks.
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Chapter 5

Final remarks, limitations and
further developments

In the domain of insurance ratemaking, neural networks may be considered as a
tool to perform high-dimensional non-linear regressions. The actuarial literature on
neural networks has mainly focused on car and property insurance, while little work
has been done towards the application of such models in health insurance. Following
this line, in this work, we have explored three applications for such techniques
within the context of health insurance pricing. At first, we have proposed a neural
network with multivariate response to model possibly correlated health claim counts.
In particular, we have implemented a deep neural network with a three output
layer structure minimizing a Negative Multinomial deviance to account for different
health claim types, namely medical visits, dental care treatments, and diagnostic
exams. In order to define the pure premium of the considered health insurance
coverage, we have coupled the Negative Multinomial model with Gamma Neural
Networks, a novel approach designed to compute the expected cost of a given claim.
Such network models have been tested against a traditional GLM approach. More
specifically, we have considered a Negative Multinomial GLM and Gamma GLMs
for claim frequency and claim severity estimation, respectively. The comparison
highlighted that the proposed neural network approach holds some value over the
traditional GLM. In fact, not only do our models outperform the classical GLMs in
terms of the loss function, as shown in Figures 2.6 and 3.4, but they also provide the
modeler with additional information on the data structure learned by the model. In
particular, this kind of information is retrieved using a suite of model agnostic tools
presented in Section 2.3. Our analysis shows that the neural networks, which as
known present a high degree of flexibility, allow us to find a good fit and to capture
eventual non-multiplicative interactions among the variables involved in the model.
However, these model agnostic tools display somewhat simplified trends that only
hint at the effect captured by the model, e.g., Partial Dependence plots and Grouped
Partial Dependence plots. This insight is valuable and increases the interpretability
of such models but is often insufficient in the insurance pricing industry, where the
regulator demands strong model transparency 1. Bearing in mind these limitations,

1Note that the issue related to the model’s transparency does not hold in the context of Integrated
Health Funds (IFHs) characterizing the Italian market of employer-based collective health insurance
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we still believe that neural networks, if properly combined with the model agnostic
tools discussed in this work and put forward by [39], do offer a relevant added
value to the analyst that can be used to enhance a simpler model such as a GLM.
Moreover, as shown in Section 3.4 via model lift metrics, the merits of the proposed
network models go beyond the mere statistical performance and translate into a set
of more efficient pure premiums that result in a better risk diversification for the
insurance coverage considered in this work.

Moreover, we have proposed a new quantile neural network approach to compute
the quantile of the aggregate claim amount, which serves as a risk measure for the
insured. In particular, we have proposed two different models: Quantile Regression
Neural Networks (QRNN) and the Quantile-CANN. The performance of such models
was tested the traditional quantile regression model over the health insurance dataset
presented in Section 2.1. The results have shown that, not only our models outper-
form quantile regression in terms of quantile loss function, but they also exhibit a
better tariff structure w.r.t QR since they provide a better separation among the
risks in the portfolio. This feature is paramount for the insurer since a better differen-
tiation between good and bad risks is likely to produce higher profits for the company.

However, even if neural networks have proven to perform better than a classical
regression approach, they should not be regarded as a straightforward substitute for
more established methods such as GLMs and GAMs (or even Quantile regression).
Machine learning models shall be regarded as complementary tools to improve
simple regression models. In fact, nowadays, AI and Machine Learning are used
by pricing teams across Europe as a tool to perform in-depth exploratory analysis,
while they still struggle to find use in production due to their complexity and lack
of transparency. For instance, networks can be used to inform the analyst on how
to improve a given basic model by changing the shape of the marginal effect of a
variable (using a polynomial variate or a spline) or by factoring a specific interaction
effect between variables spotted via the network model. Another clear example for
the complementarity of network models is the CANN approach discussed in Chapter
4, where it is possible to build a neural network on top of a simple regression model.
Using the CANN framework, the performance of the starting model is enhanced
via the network structure, which allows incorporating additional information in the
model. For these reasons, the pricing industry is slowly moving towards transparent
use of automated machine learning solutions used in conjunction with GLMs and
GAMs to provide more accurate and competitive insurance tariffs.

A possible development of this work could consider using Recurrent Neural Networks
(RNN) to model the health expenditure for the policyholders according to their
past health consumption. A recurrent neural network (RNN) is a class of neural
networks that model sequential data or time-series data. State of the art in this field
is represented RNNs with Long short-term memory (LSTM) cells that have already
found application in mortality forecasting [46]. In particular, we could implement a

since this kind of institution dramatically lacks a clear regulatory framework and a vigilance
authority.
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Negative Binomial LSTM network that recursively predicts the claim counts for each
policyholder based on its past claim counts. This approach may allow the model
to incorporate past policyholder behaviour to predict its future claim frequency.
This feature would be particularly interesting in health insurance, where the poli-
cyholder medical expenditure is often correlated over time. For instance, think of
policyholders that each year undergo a sample of predefined medical check-ups or
policyholders that have an increasingly high number of claims due to a worsening
of their health condition, or even policyholders that make great use of preventive
healthcare at younger ages that may result in future lower claim counts.In order to
explore this approach, more details on the claims reported in Section 2.1 would be
needed since the partition provided by the three groups of claims (Visits, Dentalcare
and Diagnostic) is far too broad. In particular, each group of claims should be
disaggregated into the single health care services belonging to a said group; this is
key to providing more insight into the policyholder’s health expenditure.
With reference to the models discussed in Chapters 2 and 3 it would be interesting
to extend the CANN approach adopted in Chapter 4. Given the promising results
obtained via the Quantile-CANN, we could expect to earn a good performance for a
future Negative Multinomial CANN and a Gamma CANN, which could also exceed
the results achieved via the Negative Multinomial NN and the Gamma NN.
Another possible development of this work, concerning Chapter 4, might consider a
multivariate QRNN or Quantile-CANN approach to jointly model the conditional
quantile of the total claim severity for different and possibly correlated claim types.
It would also be worth exploring quantile models designed on the claim frequency
rather than the aggregate claim amount. This idea makes sense in the health insur-
ance domain since most riskiness stems from the claim frequency rather than the
claim size.
Despite the above-mentioned limitations, this thesis delivers an in-depth discussion
on the application of neural networks and model agnostic tools to health insurance
pricing. The implementation of such techniques to health insurance is a hopefully
valuable innovation, since this specific insurance branch is often disregarded by
actuarial literature compared to car and P&C insurance. Hence, we believe that the
original contribution provided by this work could foster the discussion around the
use of neural networks in health insurance.
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Appendix A

Proofs for Back propagation

Proof Eq.(1.19) Let us start with Eq.(1.19), which given an expression of the
error in the output layer δF :

δF = ∂L

∂aF
(A.1)

Applying the chain rule, we can re-write the partial derivative above in terms of
partial derivatives with respect to the output activation

δF = ∂L

∂zF
∂zF

∂aF
(A.2)

recalling, from Eq.(1.15), that zF = ψ(aF ), we have

δF = ∂L

∂zF
ψ′(aF ) (A.3)

Furthermore from Eq.(1.17) ∂L
∂zF

= 2 · [Y − zF (θ)]. Hence we have:

δF = 2 · [Y − zF (θ)] · ψ′(aF ) (A.4)

Proof Eq.(1.20) Here the goal is to express δ(s)
j in terms of the errors in the next

layer δ(s+1)
j . Hence, starting from

δ
(s)
j = ∂L

∂a
(s)
j

(A.5)

we rephrase it as:

δ
(s)
j =

qs∑
l=1

∂L

∂a
(s+1)
l

∂a
(s+1)
l

∂a
(s)
j

=
qs∑
l=1
δ

(s+1)
j

∂a
(s+1)
l

∂a
(s)
j

(A.6)

To evaluate the second term on the right hand side, note that:

a
(s+1)
l =

qs∑
k=1

θ
(s+1)
lk φ(a(s)

k ) + θ
(s+1)
l0 (A.7)
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Differentiating, we have
∂a

(s+1)
l

∂a
(s)
j

= θ
(s+1)
lj φ′(a(s)

j ) (A.8)

Feeding back into Eq.(A.6):

δ
(s)
j =

qs∑
l=1
δ

(s+1)
l θ

(s+1)
lj φ′(a(s)

j ) (A.9)

Proof Eq.(1.21) To prove Eq.(1.21) we simply apply the chain rule to ∂L

∂θ
(s)
0j

:

∂L

∂θ
(s)
0j

= ∂L

∂a
(s)
j

∂a
(s)
j

∂θ
(s)
0j

(A.10)

note that the first term in the right hand side is equivalent to δ(s)
j while the second

derivative is equal to one, thus we have:

∂L

∂θ
(s)
0j

= δ
(s)
j · 1 = δ

(s)
j (A.11)

Proof Eq.(1.22) Also to prove Eq.(1.22) we apply the chain rule to ∂L

∂θ
(s)
jk

:

∂L

∂θ
(s)
jk

= ∂L

∂a
(s)
j

∂a
(s)
j

∂θ
(s)
jk

(A.12)

for the first term in the right hand side we have ∂L

∂a
(s)
j

= δ
(s)
j . While, to evaluate the

second term, we note that:

a
(s)
j = θ

(s)
j,0 +

qs−1∑
l=1

θ
(s)
j,l · z

(s−1)
l (θ(s−1)

l ) (A.13)

Differentiating w.r.t. θ(s)
jk we have

∂a
(s)
j

∂θ
(s)
jk

= z
(s−1)
k (θ(s−1)) (A.14)

Substituing back into Eq.(A.12):

∂L

∂θ
(s)
jk

= δ
(s)
j · z

(s−1)
k (θ(s−1)) (A.15)
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Appendix B

Covariates Wald Test for
NM-GLM

Unlike regression for univariate responses, the NM-GLM has a matrix of parameters
β = (βj , . . . ,βp) ∈ R r × p, with each column corresponding to the effect of one
predictor. As discussed by the authors [33], the significance of the parameters
belonging to a given covariate is assessed via a Wald test on β. Below we report the
Wald test for the different covariates, where the categorical variables are dummy
encoded. As it is possible to see in Table B.1 almost every covariate turns out to be
significant.

Covariate Wald statistic P-value Covariate Wald statistic P-value

AG 3617.68* - RE - Piemonte 126.64* 0.00
DM 522.73* 0.00 RE - Puglia 199.00* 0.00
PE 406.56* 0.00 RE - Sardegna 73.60* 0.00
RE - Abruzzo 130.10* 0.00 RE - Sicilia 154.60* 0.00
RE - Basilicata 90.79* 0.00 RE - Toscana 168.85* 0.00
RE - Calabria 193.23* 0.00 RE - Trentino Alto Adige 60.10* 0.00
RE - Campania 305.52* 0.00 RE - Umbria 199.83* 0.00
RE - Emilia Romagna 153.46* 0.00 RE - Val d’Aosta 60.81* 0.00
RE - Estero 167.96* 0.00 RE - Veneto 99.31* 0.00
RE - Friuli 112.47* 0.00 FA - Coniuge 21.35* 0.00
RE - Lazio 218.46* 0.00 FA - ex-Coniuge 4.77 0.19
RE - Liguria 172.12* 0.00 FA - Figlio 55.85* 0.00
RE - Lombardia 91.90* 0.00 FA - Titolare 29.46* 0.00
RE - Marche 103.86* 0.00 GE - M 1007.71* 0.00
RE - Molise 68.80* 0.00

Table B.1. Wald test for the covariates parameters in the NM-GLM A P-value below 0.05
denotes the significance of the covariate parameters at a 95% confidence level. When
the parameter is significant an asterisk is reported.
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Covariate Estimate Std Error T-statistic P-value

(Intercept) 4.56* 0.01 325.89 -
AG-s1 0.01 0.02 0.54 0.59
AG-s2 -0.06* 0.01 - 5.73 0.00
AG-s3 0.05 0.03 1.64 0.10
AG-s4 0.02 0.02 0.86 0.39
PE-s1 - 0.01* 0.00 - 2.19 0.03
PE-s2 0.01 0.01 1.54 0.12
PE-s3 0.02* 0.00 4.50 0.00
RE-Basilicata - 0.02 0.04 - 0.55 0.58
RE-Calabria 0.03 0.03 0.75 0.46
RE-Campania - 0.09* 0.01 - 6.55 0.00
RE-Emilia Romagna - 0.00 0.01 - 0.26 0.80
RE-Estero - 0.05* 0.02 - 2.73 0.01
RE-Friuli 0.01 0.01 0.40 0.69
RE-Lazio 0.02 0.01 1.77 0.08
RE-Liguria 0.05* 0.01 3.52 0.00
RE-Lombardia 0.12* 0.01 9.51 0.00
RE-Marche - 0.01 0.02 - 0.57 0.57
RE-Molise - 0.02 0.05 - 0.48 0.63
RE-Piemonte - 0.05* 0.01 - 3.94 0.00
RE-Puglia - 0.04* 0.02 - 2.57 0.01
RE-Sardegna - 0.17* 0.02 - 7.80 0.00
RE-Sicilia - 0.09* 0.02 - 5.59 0.00
RE-Toscana 0.01 0.01 1.02 0.31
RE-Trentino Alto Adige - 0.07 0.02 - 4.19 0.00
RE-Umbria - 0.04* 0.02 - 2.64 0.01
RE-Val d’Aosta 0.11* 0.03 3.21 0.00
RE-Veneto 0.02 0.01 1.74 0.08
GE-M 0.00 0.00 1.09 0.28
DM-s1 0.03* 0.00 7.73 0.00
DM-s2 0.02* 0.01 2.84 0.00
DM-s3 0.04* 0.01 6.76 0.00
FA-Ex-Spouse - 0.11 0.09 - 1.32 0.19
FA-Parent 0.05 0.08 0.68 0.49
FA-Policyholder 0.05* 0.01 4.95 0.00
FA-Spouse 0.03* 0.01 3.49 0.00

Table B.2. Parameters significance for the covariates entering the Visits Gamma GLM.
A P-value below 0.05 denotes the significance of the covariate parameters at a 95%
confidence level. When the parameter is significant an asterisk is reported.
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Covariate Estimate Std Error T-statistic P-value

(Intercept) 6.05* 0.03 179.42 -
AG-s1 - 0.53* 0.04 - 12.75 0.00
AG-s2 - 0.18* 0.03 - 6.22 0.00
AG-s3 - 1.77* 0.08 - 21.13 0.00
AG-s4 0.08 0.05 1.61 0.11
PE-s1 - 0.10* 0.01 - 7.60 0.00
PE-s2 - 0.01 0.02 - 0.30 0.77
PE-s3 0.01 0.01 1.06 0.29
RE-Basilicata - 0.04 0.09 - 0.47 0.64
RE-Calabria - 0.01 0.08 - 0.09 0.93
RE-Campania - 0.19* 0.03 - 6.19 0.00
RE-Emilia Romagna 0.15 * 0.03 5.32 0.00
RE-Estero 0.14* 0.05 2.96 0.00
RE-Friuli 0.07* 0.03 2.18 0.03
RE-Lazio 0.02 0.03 0.92 0.36
RE-Liguria - 0.00 0.03 - 0.17 0.86
RE-Lombardia 0.19* 0.03 7.00 0.00
RE-Marche - 0.00 0.04 - 0.08 0.93
RE-Molise - 0.06 0.09 - 0.67 0.50
RE-Piemonte 0.13* 0.03 4.60 0.00
RE-Puglia - 0.08* 0.04 - 2.06 0.04
RE-Sardegna 0.13* 0.06 2.40 0.02
RE-Sicilia - 0.00 0.04 - 0.11 0.91
RE-Toscana 0.24* 0.03 8.08 0.00
RE-Trentino Alto Adige 0.33* 0.04 8.41 0.00
RE-Umbria - 0.02 0.04 - 0.57 0.57
RE-Val d’Aosta 0.25 * 0.08 3.29 0.00
RE-Veneto 0.09* 0.03 3.08 0.00
GE-M - 0.02* 0.01 - 3.31 0.00
DM-s1 0.00 0.01 0.11 0.92
DM-s2 - 0.02 0.02 - 1.35 0.18
DM-s3 - 0.02 0.01 - 1.42 0.15
FA-Ex-Spouse - 0.02 0.13 - 0.15 0.88
FA-Parent 0.16 0.16 1.04 0.30
FA-Policyholder 0.13* 0.03 5.13 0.00
FA-Spouse 0.12* 0.03 4.55 0.00

Table B.3. Parameters significance for the covariates entering the Dentalcare Gamma
GLM. A P-value below 0.05 denotes the significance of the covariate parameters at a
95% confidence level. When the parameter is significant an asterisk is reported.
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Covariate Estimate Std Error T-statistic P-value

(Intercept) 3.83* 0.04 91.65 -
AG-s1 0.01 0.04 0.24 0.81
AG-s2 - 0.10* 0.03 - 3.29 0.00
AG-s3 - 0.42* 0.09 - 4.56 0.00
AG-s4 - 0.75* 0.04 - 17.34 0.00
PE-s1 0.00 0.01 0.04 0.96
PE-s2 - 0.05* 0.02 - 2.54 0.01
PE-s3 0.04* 0.01 4.54 0.00
RE-Basilicata - 0.30* 0.11 - 2.79 0.01
RE-Calabria 0.01 0.09 0.17 0.86
RE-Campania - 0.85* 0.04 - 23.62 0.00
RE-Emilia Romagna - 0.29* 0.04 - 8.21 0.00
RE-Estero 0.20* 0.05 3.98 0.00
RE-Friuli - 0.42* 0.04 - 10.86 0.00
RE-Lazio - 0.44* 0.03 - 12.65 0.00
RE-Liguria - 0.57* 0.04 - 16.15 0.00
RE-Lombardia 0.03 0.03 0.79 0.43
RE-Marche 0.09* 0.05 1.93 0.05
RE-Molise 0.03 0.13 0.22 0.83
RE-Piemonte - 0.44* 0.03 - 12.56 0.00
RE-Puglia - 0.35* 0.04 - 8.27 0.00
RE-Sardegna 0.07 0.07 1.04 0.30
RE-Sicilia - 0.24* 0.04 - 5.50 0.00
RE-Toscana - 0.21* 0.04 - 5.70 0.00
RE-Trentino Alto Adige 0.34* 0.06 5.72 0.00
RE-Umbria - 0.54* 0.04 - 12.90 0.00
RE-Val d’Aosta 0.20 0.11 1.88 0.06
RE-Veneto 0.07 0.04 1.99 0.05
GE-M - 0.02* 0.01 - 3.06 0.00
DM-s1 0.02* 0.01 2.30 0.02
DM-s2 0.03* 0.02 2.03 0.04
DM-s3 0.03 0.01 1.97 0.05
FA-Ex-Spouse 0.08 0.17 0.45 0.65
FA-Parent - 0.30* 0.13 - 2.37 0.02
FA-Policyholder 0.13* 0.03 4.85 0.00
FA-Spouse 0.14* 0.03 5.35 0.00

Table B.4. Parameters significance for the covariates entering the Diagnostic Gamma
GLM. A P-value below 0.05 denotes the significance of the covariate parameters at a
95% confidence level. When the parameter is significant an asterisk is reported.
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Covariate Estimate Std Error T-statistic P-value

(Intercept) 6.82* 0.08 89.42 -
AG-s1 0.24* 0.07 3.53 0.00
AG-s2 0.81* 0.05 15.37 -
AG-s3 - 0.10 0.14 - 0.71 0.48
AG-s4 0.15 0.10 1.57 0.12
PE-s1 - 0.12* 0.03 - 4.49 0.00
PE-s2 - 0.06 0.04 - 1.41 0.16
PE-s3 - 0.01 0.03 - 0.39 0.69
RE-Basilicata - 0.56* 0.27 - 2.11 0.03
RE-Calabria - 0.05 0.16 - 0.32 0.75
RE-Campania - 0.06 0.07 - 0.74 0.46
RE-Emilia Romagna 0.02 0.07 0.28 0.78
RE-Estero 0.20 0.13 1.52 0.13
RE-Friuli - 0.04 0.08 - 0.58 0.56
RE-Lazio 0.42* 0.07 6.42 0.00
RE-Liguria 0.12 0.07 1.73 0.08
RE-Lombardia 0.23* 0.06 3.53 0.00
RE-Marche - 0.13 0.09 - 1.52 0.13
RE-Molise 0.05 0.13 0.40 0.69
RE-Piemonte 0.16* 0.07 2.41 0.02
RE-Puglia - 0.11 0.08 - 1.48 0.14
RE-Sardegna - 0.18* 0.07 - 2.45 0.01
RE-Sicilia - 0.12 0.09 - 1.29 0.20
RE-Toscana - 0.05 0.07 - 0.67 0.50
RE-TRE-ntino Alto Adige 0.01 0.11 0.07 0.95
RE-Umbria - 0.12 0.07 - 1.61 0.11
RE-Val d’Aosta 0.19 0.40 0.49 0.63
RE-Veneto - 0.08 0.07 - 1.10 0.27
GE-M - 0.08* 0.01 - 6.00 0.00
DM 0.01 0.00* 3.33 0.00
FA-Ex-Spouse - 0.34* 0.14 - 2.51 0.01
FA-PaRE-nt 0.28 0.53 0.52 0.60
FA-Policyholder 0.25* 0.04 6.34 0.00
FA-Spouse 0.15* 0.04 3.72 0.00

Table B.5. Parameters significance for the covariates entering the Quantile Regression.
A P-value below 0.05 denotes the significance of the covariate parameters at a 95%
confidence level. When the parameter is significant an asterisk is reported.
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Appendix C

Backtesting - Kupiec test

Since the end of the 90’s a wide variety of tests have been proposed to assess the
accuracy and the predictive ability of VaR models. Although those tests may differ
in some details many of them focus on the comparison of the predicted risk measure
(in our case Q̂S̃i(τ

?|xi)) and the actual loss. In particular, let S̃i be the aggregate
claim severity for the i-th claimant, we de

fine the following hit function:

HTi(τ?) =
{

0 if S̃i ≤ Q̂S̃i(τ
?|xi) or 1 S̃i > Q̂S̃i(τ

?|xi)
}

(C.1)

where we say that a violation occurs whenever the loss suffered by the claimant is
higher than the predicted risk measure. Hence the HTi(τ?) function yields 1 when a
violation is observed, while it returns 0 instead.
A good Value-ar-Risk model must be able to satisfy the so-called unconditional
coverage property. According to this property the probability of observing a violation
must be exactly τ?, more formally P(HTi(τ?) = 1) = τ?. If the proportion of
violations is systematically greater (less) than the confidence level τ?, the model
overestimates (underestimates) the true level of risk. In other terms, in the former
case the model is thick tailed compared to the data; in the latter the model is thin
tailed and excessively conservative.
Conventional tests proposed by [37] can be conducted to examine if the unconditional
coverage property is fulfilled. Kupiec’s unconditional coverage (LRuc), by means of
a likelihood ratio, inspects whether the true probability of having a violation is equal
to the tail level τ? of the risk measure, meaning that such risk measure correctly
estimates the desired quantile.
Given a sample of Ip observations and T violations, the aim of this test is to determine
whether p̂ = T

Ip
is statistically equivalent to τ? (that is the level of the tail selected

to compute the VaR). Thus we have this null hypothesis:

H0 : p̂ = E(HTi) = τ? (C.2)

where HTi is the same as in Eq. C.1. The number of violations is obtained as
T =

∑Ip
i=1 HTi. The probability of observing T violations over a sample of Ip

observations follows the Binomial distribution. The aforementioned null hypothesis
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can be tested using the following statistic:

LRuc = 2ln p̂T (1− p̂)Ip−T

τ?T (1− τ?)Ip−T (C.3)

that follows a chi-squared distribution with one degree of freedom. The interpretation
of the LRuc is straightforward: indeed, if the number of violations is greater (less)
than the tail level τ? , the model overestimates (underestimates) the true level of
risk. In other terms, in the former case the model is thick tailed compared to the
data; in the latter the model is thin tailed.
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