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Abstract
We study the one-dimensional asymmetric simple exclusion process on the lattice
{1, . . . , N } with creation/annihilation at the boundaries. The boundary rates are time
dependent and change on a slow time scale N−a with a > 0. We prove that at
the time scale N 1+a the system evolves quasi-statically with a macroscopic density
profile given by the entropy solution of the stationary Burgers equation with boundary
densities changing in time, determined by the corresponding microscopic boundary
rates. We consider two different types of boundary rates: the “Liggett boundaries” that
correspond to the projection of the infinite dynamics, and the reversible boundaries,
that correspond to the contact with particle reservoirs in equilibrium. The proof is
based on the control of the Lax boundary entropy–entropy flux pairs and a coupling
argument.

Mathematics Subject Classification 82C22 · 82C70 · 60K35

This work was partially supported by ANR-15-CE40-0020-01 Grant LSD.

B Stefano Olla
olla@ceremade.dauphine.fr

Anna De Masi
demasi@univaq.it

Stefano Marchesani
stefano.marchesani@gssi.it

Lu Xu
lu.xu@gssi.it

1 Università dell’Aquila, 67100 L’Aquila, Italy

2 GSSI, 67100 L’Aquila, Italy

3 Ceremade, CNRS, Université Paris-Dauphine, PSL Research University, 75010 Paris, France

4 Institute Universitaire de France, Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-022-01140-1&domain=pdf
http://orcid.org/0000-0003-0845-1861
http://orcid.org/0000-0001-9973-6090


A. De Masi et al.

1 Introduction

The one-dimensional open asymmetric simple exclusion process (ASEP) is one of the
most interestingmodels in non-equilibrium statisticalmechanics, in particular because
its stationary state can be explicitly computed (cf. [3, 6, 12, 14]). Particles perform
asymmetric random walks on the finite lattice {1, . . . , N } with the exclusion rule (the
jump is suppressed if the site is occupied), and at the boundaries particles are created
and absorbed with given rates. The dynamics is then characterized by 5 parameters
(the asymmetry of the random walks and the 4 boundary rates).

In a seminal article [9], Liggett introduced special boundary rates such that the
corresponding dynamics approximates optimally the dynamics of the infinite system
with different densities at ±∞. These boundary conditions correspond to the projec-
tion of the infinite dynamics with respect to the Bernoulli measures with different
densities on the left and on the right of the system. Under this choice of bound-
ary conditions Bahadoran [1] proved the hydrodynamic limit for the density profile:
under the hyperbolic space-time scaling the density profile converges to the unique
L∞ entropy solution of the Burgers equation satisfying the Bardos–Leroux–Nédélec
boundary conditions [2] in the sense of Otto [11]. Hydrodynamic limit for general
boundary conditions has been recently proven in [15]. In [1] Bahadoran also proves
the hydrostatic limit, i.e., the macroscopic limit of the stationary profile satisfies the
stationary Burgers equation with same boundary conditions. This is the solution of the
variational problem maximizing the stationary flux in case of a density gradient with
opposite sign to the drift generated by the asymmetry, or minimizing the stationary
flux in the other case. This is consistent with the phase diagram proved in [6, 12].
The proof in [1] relies on an extension of the coupling argument used by Rezakhanlou
in [13] in the infinite dynamics, and on the particular boundary conditions which are
such that at equal density (balanced case) the stationary measure is known explicitly
(given by the Bernoulli measure at the boundary density).

In this article we study the quasi-static hydrodynamic limit for the open ASEP.
This limit is taken in a time scale that is larger than the typical one where the system
converges to equilibrium. Changing the boundary condition at this time scale, the
system is globally close to the corresponding stationary state. Quasi-static evolutions
are usually presented as idealization of real thermodynamic transformations among
equilibrium states. They are necessary concepts in order to construct thermodynamic
potentials, for example, to define the thermodynamic entropy fromCarnot cycles. Here
we are interested in the quasi-static evolution amongnon-equilibrium stationary states.
These quasi-static hydrodynamic limits have been already studied in the symmetric
simple exclusion as well as in other diffusive systems [4]. We are here interested in
the asymmetric case where currents of density do not vanish in the limit. Since in
ASEP the typical time scale of convergence to stationarity is hyperbolic, we look at
larger time scales changing the boundary rates in this time scale. Consequently, at each
instant of time the system is close to the corresponding stationary state determined by
the varying boundary conditions. We prove that the density profile converges to the
entropy solution of the quasi-static Burgers equation with the boundary conditions
given by some time dependent functions ρ±(t). We derive this quasi-static evolution
for two types of boundary rates:
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Quasi-static limit for the asymmetric simple exclusion

(1) Liggett boundaries: if p > 1
2 is the probability of jumping to the right in the bulk

of the system, at a macroscopic time t we choose [pρ−(t), (1− p)(1−ρ−(t))] as
rates of creation and annihilation on the left side, respectively [(1− p)ρ+(t), p(1−
ρ+(t))] on the right side.

(2) Reversible boundaries: we choose [λ−(t)ρ−(t), λ−(t)(1−ρ−(t))] as rates of cre-
ation and annihilation on the left side, [λ+(t)ρ+(t), λ+(t)(1−ρ+(t))] on the right
side, by accelerating this boundary rates and the symmetric part of the exclusion
process in the bulk. These rates correspond to contact with reversible reservoirs of
particles at the corresponding densities ρ±(t), i.e. they separately satisfy detailed
balance with respect to the Bernoulli measure of the corresponding density for
any choice of the functions λ±(t), and are independent from the asymmetry bulk
parameter p. Even when ρ− = ρ+ and time independent, the stationary probabil-
ity distribution is not a product measure in general.

The proof of the result for both cases will proceed as follows.
We first prove it in the balanced but time dependent cases (ρ−(t) = ρ+(t)). Sur-

prisingly this is the most difficult part, and it is proven by controlling the time average
of the microscopic boundary entropy flux. The unbalanced situation is then proven by
a coupling argument.

The use of the microscopic entropy production associated to a Lax entropy–entropy
flux pair is already present in the seminal article of Rezakhanlou [13]. J. Fritz and col-
laborators combined this idea with a stochastic version of compensated compactness
in order to deal with non-attractive dynamics [7, 8]. Otto [11] introduced the bound-
ary entropy–entropy flux pairs in order to characterize the boundary conditions in the
scalar hyperbolic equations. The main point of this article is to prove that, in the bal-
anced case when we take the same density on the boundaries, the time average of the
microscopic boundary entropy flux is negligeable in the quasi-static time scale, even
when boundary conditions change in time (see Propositions 8.3 and 8.4).

Notice that these results and themethods are very different from the symmetric case
(p = 1

2 ) studied in [4], where the quasi-static time scale is larger than the diffusive
one and the quasi-static profile satisfies the Laplace equationwith boundary conditions
ρ±(t).

2 ASEP with open boundaries

The asymmetric simple exclusion process (ASEP) with open boundary conditions is
the Markov process on the configuration space

�N := {η = (η1, η2, . . . , ηN ), ηi ∈ {0, 1}}, (2.1)

with the infinitesimal generator

LN f = λ0Lexc f + L− f + L+ f , (2.2)
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where λ0 > 0, f is any function on �N , Lexc is the generator of the simple exclusion:

Lexc f :=
N−1∑

i=1

ci,i+1

[
f
(
ηi,i+1

)
− f (η)

]
,

ci, j := pηi (1 − η j ) + (1 − p)η j (1 − ηi ),

(2.3)

where 1/2 < p ≤ 1, ηi,i+1 is the configuration obtained from η upon exchanging ηi
and ηi+1. L± are the generators of creation/annihilation processes at the boundaries
i = 1 and i = N :

L− f := [α(1 − η1) + γ η1
] [

f (η1) − f (η)
]
,

L+ f := [δ(1 − ηN ) + βηN ]
[
f (ηN ) − f (η)

]
,

(2.4)

where α, γ, β, δ > 0, ηi is the configuration obtained from η by shifting the status at
site i from ηi to 1 − ηi .

Remark 1 (Stationary states). In general the stationary probability distribution has a
complicate structure [6, 12, 14]. But for the choice of the boundary rates such that
(see [3,Proposition 2])

p̄ := 2p − 1 = (α + β + γ + δ)(αβ − γ δ)

(α + δ)(β + γ )
, (2.5)

the stationary state is given by the Bernoulli product measure with density

ρ(α, β, γ, δ) = α + δ

α + β + γ + δ
. (2.6)

In this article, we consider time-dependent parameters (α, γ, β, δ)(t). As in (2.2),
define the Markov generator

LN ,t = λ0Lexc + L−,t + L+,t , t ≥ 0, (2.7)

where L±,t are the operators defined by (2.4).
We multiply LN ,t by N 1+a for some a > 0 and study the macroscopic limit of

the corresponding dynamics. We now distinguish two cases: the Liggett boundaries
where we only speed up the generator by N 1+a to the quasi-static time scale, and
the general reversible boundaries where there is a further speeding of the symmetric
exclusion and of the boundary rates.

2.1 Liggett boundaries

Take λ0 = 1, 1/2 < p ≤ 1 and two C1 functions ρ± : [0,∞) → (0, 1). Choose the
parameters in (2.7) as
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α(t) := pρ−(t), γ (t) := (1 − p)(1 − ρ−(t))

β(t) := p(1 − ρ+(t)), δ(t) := (1 − p)ρ+(t).
(2.8)

Under this choice, if ρ+(t) = ρ−(t) = ρ(t), then (2.5) is satisfied and by (2.6) we
have

ρ
(
α(t), β(t), γ (t), δ(t)

) = ρ(t). (2.9)

First introduced by Liggett [9] with time-independent ρ±, this choice of boundary
rates corresponds to the projection on the finite interval {1, 2, . . . , N } of the infinite
ASEP dynamics with Bernoulli distribution with density ρ− on the left of 1, and with
density ρ+ on the right of N (see formulas (5) and (6) in [1]). This choice allows
an effective coupling between the dynamics with open boundaries and the infinite
dynamics, which plays a central role in the proof of the corresponding hydrodynamic
limit [1].

2.2 Reversible boundaries

In the Liggett case the boundary rates are chosen in accordance with p. To deal with
more general cases in which the boundary rates are independent of p, and model
the contact with reversible reservoirs of particles, we need to speed up the boundary
operators. We also need to add symmetric exchanges at a higher rate. Let σN and σ̃N

be two sequences satisfying

lim
N→∞

σN

N
= 0, lim

N→∞ σ̃N = ∞, lim
N→∞

σN σ̃N√
N

= ∞. (2.10)

The boundary rates are defined by the choice of two C1 functionsρ± : [0,∞) → (0, 1)
and two C1 functions λ± : [0,∞) → R+, and

α(t) := σ̃Nλ−(t)ρ−(t), γ (t) := σ̃Nλ−(t)(1 − ρ−(t)),

β(t) := σ̃Nλ+(t)(1 − ρ+(t)), δ(t) := σ̃Nλ+(t)ρ+(t).
(2.11)

In order to speed up the symmetric part of the bulk dynamics we fix p̄ ∈ (0, 1] and
we choose

λ0 = σN , p = 1

2
+ p̄

2σN
, (2.12)

The resulting generator of the bulk dynamics is

λ0Lexc = p̄L tasep + σN − p̄

2
Lssep, (2.13)
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where Lssep and L tasep are respectively given by

Lssep f :=
N−1∑

i=1

[
f
(
ηi,i+1

)
− f (η)

]
,

L tasep f :=
N−1∑

i=1

ηi (1 − ηi+1)
[
f
(
ηi,i+1

)
− f (η)

]
.

(2.14)

This dynamic should not be confused with the so called weakly asymmetric exclusion,
since with the choice of the parameters we make in Theorem 3.3 below the asymmetry
is always strong.

3 Quasi-static evolution

3.1 Quasi-static Burgers equation

For any ε > 0, letρε ∈ L∞([0, 1]×R+)be the entropy solution to the initial–boundary
problem of the scalar conservation law

{
ε∂tρ

ε(x, t) + ∂x J (ρε(x, t)) = 0, J (ρ) = p̄ρ(1 − ρ),

ρε|x=0 = ρ−, ρε|x=1 = ρ+, ρ|t=0 = ρ0,
(3.1)

where ρ± ∈ C1(R+) and ρ0 ∈ L∞([0, 1]). The definition, existence and uniqueness
of the entropy solution follow from the work of Otto [11], by the characterization of
the boundary entropy–entropy flux pairs defined below.

Definition 3.1 A boundary Lax entropy–entropy flux pair for (3.1) is a couple of C2
functions (F, Q) : [0, 1] × R → R

2 such that

J ′(u)∂u F(u, w) = ∂uQ(u, w), F(w,w) = Q(w,w) = ∂u F(w,w) = 0 (3.2)

for all u ∈ [0, 1] and w ∈ R. Moreover, we say that the pair (F, Q) is convex if
F(u, w) is convex in u for all w ∈ R.

Otto’s boundary conditions read in this case as

esslimr→0+
∫ ∞

0
Q
(
ρε(r , t), ρ−(t)

)
β(t)dt ≤ 0,

esslimr→0+
∫ ∞

0
Q
(
ρε(1 − r , t), ρ+(t)

)
β(t)dt ≥ 0,

(3.3)

for any boundary entropy flux Q for a convex entropy pair, and test function β ∈
Cc(R+) such that β ≥ 0. In the case of bounded variation solutions, this coincides
with the Bardos–Leroux–Nédélec boundary conditions [2].
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The entropy solution ρ ∈ L∞([0, 1] × R+) to the quasi-static conservation law

∂x J (ρ(x, t)) = 0, x ∈ (0, 1), ρ|x=0 = ρ−, ρ|x=1 = ρ+, (3.4)

is then defined as the weak- limit, for ε → 0+ of ρε. The existence and uniqueness
of this limit is proven in [10] as explained below. Define the critical line

� := {(a, b) ∈ (0, 1)2; a < 1/2, a + b = 1}. (3.5)

If (ρ−, ρ+)(t) /∈ �, then ρ is constant in x and it is independent of the initial condition
ρ0 in (3.1). It is explicitly given by

ρ(x, t) =

⎧
⎪⎨

⎪⎩

ρ−(t), if ρ−(t) < 1/2, ρ−(t) + ρ+(t) < 1 (low density),

ρ+(t), if ρ−(t) > 1/2, ρ−(t) + ρ+(t) > 1 (high density),

1/2, if ρ−(t) ≥ 1/2, ρ+(t) ≤ 1/2 (max current).

(3.6)

Moreover, ρ satisfies the variational conditions ([1, 6, 10, 12]):

J (ρ(x, t)) =
{
sup{J (ρ); ρ ∈ [ρ+(t), ρ−(t)]}, if ρ−(t) > ρ+(t),

inf{J (ρ); ρ ∈ [ρ−(t), ρ+(t)]}, if ρ−(t) ≤ ρ+(t).
(3.7)

The characterization of the limit ρ is open when (ρ−, ρ+)(t) ∈ �. The variational
formula (3.7) remains true, but ρ may attain two values ρ−(t) and ρ+(t). For time-
independent boundary data (ρ−, ρ+) ∈ �, (3.4) has infinitely many stationary entropy
solutions: for each x∗ ∈ [0, 1], ρx∗(x) := ρ−1[0,x∗)(x)+ ρ+1[x∗,1](x) is one of them.
The choice of x∗ in the limit ε → 0+ may rely on the initial data ρ0 in (3.1). Time-
dependent boundary data could further complicate the problem by creating a moving
shock.

3.2 Quasi-static hydrodynamics

For some a > 0, denote by η(t) = (η1(t), . . . , ηN (t)) ∈ �N the process generated
by N 1+a LN ,t and some initial distribution μN ,0. For i = 0, . . . , N , let χi,N be the
indicator function

χi,N (x) := 1{[ i
N − 1

2N , i
N + 1

2N

)
∩[0,1]

}(x), x ∈ [0, 1]. (3.8)

For each N , define the empirical density ζN = ζN (x, t) as

ζN (x, t) :=
N∑

i=1

χi,N (x)ηi (t), (x, t) ∈ [0, 1] × [0,∞). (3.9)
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Our aim is to show that, as N → ∞, ζN converges to the homogeneous density ρ(t)
given by (3.6). Observe that for reversible boundaries case, the boundary conditions
of the macroscopic quasi-static equation do not depend on the choice of λ±(t).

Denote byPN the distribution on the path space ofη(·). LetEN be the corresponding
expectation. For ρ ∈ [0, 1], denote by νρ the product Bernoulli measure with density
ρ. Given a local function f on �N , denote

〈 f 〉(ρ) :=
∫

f dνρ, ∀ ρ ∈ [0, 1]. (3.10)

Theorem 3.2 (Liggett boundaries). Assume that one of the following holds almost
everywhere in a time interval [s, s′]:

{
ρ−(t) − ρ+(t) ≤ 0

(ρ−, ρ+)(t) /∈ �
, or

{
ρ−(t) − ρ+(t) ≥ 0

(ρ−, ρ+)(t) /∈ �
, (3.11)

where � is given by (3.5). Suppose further that a > 1/2, then for any sequence of
initial distributions {μN ,0; N ≥ 1}, the following convergence holds in probability

lim
N→∞

∫ s′

s

1

N

N−�∑

i=0

ϕ

(
i

N
, t

)
f
(
τiη(t)

)
dt =

∫ s′

s

∫ 1

0
ϕ(x, t)〈 f 〉(ρ(t)

)
dx dt (3.12)

for any �, any local function f supported on {1, . . . , �} and ϕ ∈ C([0, 1]×R+), where
τi is the shift operator and ρ(t) is given by (3.6).

Remark 2 Condition (3.11) means that ρ−(t)−ρ+(t) keeps its sign for t ∈ [s, s′] and
prevents (ρ−(t), ρ+(t)) from staying in � for an interval of time of positive measure.
This is necessary when applying the variational formula and the coupling argument,
see Sect. 4.

Theorem 3.3 (Reversible boundaries). Assume that one of the conditions in (3.11)
holds almost everywhere in [s, s′]. In additional, assume (2.10) and

lim
N→∞ Na− 1

2 σN = ∞. (3.13)

Then, the convergence in (3.12) holds with ρ(t) given by (3.6).

Remark 3 In both cases we need a certain amount of symmetric exchanges in the bulk
that contribute to the entropy production estimates (see Sect. 6). In the Liggett case the
condition a > 1/2 provides enough symmetric exchanges. In the general reversible
case, we accelerate the symmetric exchanges with σN , and as long as condition (3.13)
is satisfied there is enough entropy production.

Remark 4 For the asymmetric current Ji,i+1 = p̄ηi (1− ηi+1), the quasi-static hydro-
dynamic limit holds also on �: for any ϕ ∈ C([0, 1] × R+),
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lim
N→∞

∫ s′

s

1

N

N−1∑

i=1

ϕ

(
i

N
, t

)
Ji,i+1(t)dt =

∫ s′

s

∫ 1

0
ϕ(x, t)J (t)dx dt (3.14)

holds in probability, where J (t) is given by (3.7).

4 Proof of themain theorems

In this section we prove Theorem 3.2 and 3.3 by several main steps that will be
proven in the following sections. In the following we fix some T > 0 and denote
�T = [0, 1] × [0, T ].

For k ≤ N , define the left-sided uniform block average

η̄i,k := 1

k

k−1∑

j=0

ηi− j , ∀ i = k, k + 1, . . . , N . (4.1)

We choose some mesoscopic scale K = K (N ) such that K → ∞ and K = o(N ) as
N → ∞. Modify the empirical process ζN in (3.9) as

ρN (x, t) = ρN ,K (N )(x, t) :=
N∑

i=K

χi,N (x)η̄i,K (t), (x, t) ∈ [0, 1] × R+. (4.2)

4.1 Youngmeasures

By a Young measure ν we mean a family {νx,t ; (x, t) ∈ �T } of probability measures
on [0, 1] such that the mapping

(x, t) �→
∫ 1

0
f (x, t, y)νx,t (dy)

is measurable for all f ∈ C(�T × [0, 1]). Denote by Y the set of all Young measures,
endowed with the vague topology: a sequence {νn} converges to some ν ∈ Y as
n → ∞, if for all g ∈ C([0, 1]) and ϕ ∈ C(�T ),

lim
n→∞

∫∫

�T

ϕ(x, t)dx dt
∫ 1

0
g dνnx,t =

∫∫

�T

ϕ(x, t)dx dt
∫ 1

0
g dνx,t . (4.3)

Under this topology, Y is metrizable, separable and compact.
AsρN ∈ [0, 1] is uniformlybounded, the correspondingDirac typeYoungmeasures

νN := {νN
x,t = δρN (x,t); (x, t) ∈ �T

} ∈ Y . (4.4)

Denote by QN the distribution of νN on Y .
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Since Y is compact, the sequence {QN , N ≥ 1} is tight, thus we can extract a
subsequence {Nh, h ≥ 1} such thatQNh converges weakly to some measureQ on Y ,
namely for all g ∈ C([0, 1]) and ϕ ∈ C(�T ),

lim
h→∞ENh

[∫∫

�T

ϕ(x, t)g
(
ρNh (x, t)

)
dx dt

]

= lim
h→∞ EQNh

[∫∫

�T

ϕ(x, t)dx dt
∫

g dνx,t

]

= EQ

[∫∫

�T

ϕ(x, t)dx dt
∫

g dνx,t

]
.

(4.5)

Hereafter, we fix such a subsequence and relabel QNh by QN .

4.2 Proof of the quasi-static limit

In both Liggett and reversible cases, we replace the function f (τiη) in (3.12) with the
mesoscopic canonical average 〈 f 〉(η̄i,K ) by some local equilibrium argument. Then,
we prove thatQ, the limit distribution of the random Young measures associated with
η̄i,K , is concentrated on the quasi-static profile ρ = ρ(t) given by (3.6). The proof is
divided into several steps.

4.2.1 Local equilibrium

The next lemma allows us to replace ηi with its mesoscopic block average defined by
(4.1). It holds for both Liggett and reversible cases.

Lemma 4.1 If 1 � K � √
N, then for any � and local function f = f (η1, . . . , η�),

lim
N→∞EN

[∫ T

0

1

N

∣∣∣∣∣

N−�∑

i=0

ϕ

(
i

N
, t

)
f (τiη) −

N∑

i=K

ϕ

(
i

N
, t

)
〈 f 〉(η̄i,K

)
∣∣∣∣∣
dt

]

= 0.

(4.6)

Recall the empirical process ρN ,K associated with η̄i,K and the distribution Q
satisfying (4.5). With Lemma 4.1, it suffices to prove that

Q
{
νx,t = δρ(t), �T − a.e.

} = 1, (4.7)

for some K such that 1 � K � √
N ,

4.2.2 Balanced dynamics

Recall that the dynamics is called balanced when ρ−(t) = ρ+(t) for t ∈ [0, T ].
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Proposition 4.2 Suppose ρ−(t) = ρ+(t) = ρ(t) for t ∈ [0, T ]. Then (4.7) holds if

for Liggett case 1 � K � min{Na, N }; (4.8)

for reversible case 1 � K � min{NaσN , σ̃NσN , N }. (4.9)

Hereafter, we fix some K such that 1 � K � √
N , then conditions in both Lemma

4.1 and Proposition 4.2 are fulfilled.

4.2.3 Macroscopic current

The macroscopic current is defined by

J (T ) := EQ

[∫∫

�T

dx dt
∫

Jdνx,t

]
, J (ρ) = p̄ρ(1 − ρ). (4.10)

Lemma 4.1 with f = p̄η1(1 − η2), ϕ ≡ 1 and formula (4.5) yield that

J (T ) = lim
N→∞EN

[∫ T

0

1

N

N∑

i=K

J
(
η̄i,K

)
dt

]

= lim
N→∞EN

[∫ T

0

1

N

N−1∑

i=1

Ji,i+1(t)dt

]

, Ji,i+1 = p̄ηi (1 − ηi+1).

(4.11)

In view of Proposition 4.2, the current for balanced dynamics reads

J (T ) =
∫ T

0
J
(
ρ(t)

)
dt, when ρ±(t) = ρ(t). (4.12)

4.2.4 Coupling

The next two lemmas are proved by coupling the unbalanced dynamics with the
balanced one with boundary rate between ρ−(t) and ρ+(t).

Lemma 4.3 If ρ−(t) ≤ ρ+(t) for all t ∈ [0, T ], then Q-almost surely

νx,t
{
ρ ∈ [ρ−(t), ρ+(t)]} = 1, (x, t) − a.e. in �T . (4.13)

If ρ−(t) ≥ ρ+(t) on [0, T ], the above holds with [ρ+(t), ρ−(t)].
Lemma 4.4 If ρ−(t) ≥ ρ+(t) for all t ∈ [0, T ],

J (T ) ≥
∫ T

0
sup
{
J (ρ); ρ+(t) ≤ ρ ≤ ρ−(t)

}
dt . (4.14)
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If ρ−(t) ≤ ρ+(t) for all t ∈ [0, T ],

J (T ) ≤
∫ T

0
inf
{
J (ρ); ρ−(t) ≤ ρ ≤ ρ+(t)

}
dt . (4.15)

By using (4.10) and Lemma 4.3 and 4.4 we prove the following proposition:

Proposition 4.5 Suppose that ρ− ≥ ρ+, a.e. in [0, T ] or ρ− ≤ ρ+, a.e. in [0, T ], then
the equalities hold in (4.14) and (4.15).

From Proposition 4.5 it follows (3.14).

4.2.5 Quasi-static hydrodynamics

We now conclude the proof of the quasi-static limits from Lemma 4.1, 4.3 and Propo-
sition 4.5.

Proofs of Theorem 3.2 and 3.3 Recall that Q is the limit distribution, as N → ∞, of
the Young measures associated with ρN in (4.2). We first prove that if ρ− − ρ+ keeps
its sign in [0, T ],

Q
{
νx,t = δρ(t), (x, t) − a.e. in �T

} = 1. (4.16)

withρ(t) the entropy solution of (3.4) characterized by (3.6). Indeed, ifρ−(t) ≥ ρ+(t),
then is a unique ρ(t) solution of

J
(
ρ(t)

) = sup
{
J (ρ), ρ+(t) ≤ ρ ≤ ρ−(t)

}
. (4.17)

By Proposition 4.5, J (T ) = ∫ T0 J (ρ(t))dt . Together with (4.10) and (4.13),

EQ

[∫∫

�T

dx dt
∫ ρ−(t)

ρ+(t)

[
J (ρ) − J (ρ(t))

]
νx,t (dρ)

]

= 0. (4.18)

Since J (ρ) − J (ρ(t)) ≤ 0 for ρ ∈ [ρ+(t), ρ−(t)], the Young measure can only
be concentrated in its zero set, so (4.16) holds. The argument is similar for the case
ρ−(t) ≤ ρ+(t) and (ρ−, ρ+)(t) /∈ �.

For f = f (η1, . . . , η�) and ϕ ∈ C(�T ), using Lemma 4.1 and (4.16),

lim
N→∞EN

[∫ T

0

1

N

N−�∑

i=0

ϕ

(
i

N
, t

)
f (τiη)dt

]

=
∫∫

�T

ϕ(x, t)〈 f 〉(ρ(t)
)
dx dt,

(4.19)

along the chosen subsequence. The uniqueness of the entropy solution implies the
uniqueness of the limit point Q and thus the convergence in probability.

For general [s, s′]where ρ−−ρ+ does not change sign, denote byμN ,t the distribu-
tion of η(t) on �N . Consider the process generated by N 1+a LN ,t , 0 ≤ t ≤ s′ − s and
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initial distribution μN ,s . As the arguments above are valid for any fixed time interval
and initial distribution, the result holds almost surely in [s, s′]. ��

The remaining part of this article is organized as follows.We first present in Sects. 5
and 6 some estimates on the microscopic currents and the Dirichlet forms. These
bounds are used repeatedly throughout the article. Then in Section 7 we prove Lemma
4.1 as a consequence of a general one-block estimate.

In Sect. 8, we treat the balanced dynamics and prove Proposition 4.2. The proof
exploits the boundary entropy–entropy flux pair defined in Definition 3.1. In fact in the
balanced case, we expect equality in (3.3), and we see in Sect. 8.2 that the time average
of the boundary entropy flux on the microscopic scale is negligible, see Proposition
8.3 and 8.4. This is the hard part of the proof. Finally in Sect. 9 we deal with the
unbalanced dynamics. We prove there Lemma 4.3 and 4.4 by constructing a coupling
between the unbalanced and balanced dynamics.

5 Microscopic currents

The microscopic currents ji,i+1 associated to the generator LN ,t are defined by the
conservation law LN ,t [ηi ] = ji−1,i − ji,i+1 and they are equal to

ji,i+1 =

⎧
⎪⎨

⎪⎩

pρ−(t) − [pρ−(t) + (1 − p)(1 − ρ−(t))
]
η1, i = 0,

Ji,i+1 + 1− p̄
2 (ηi − ηi+1), Ji,i+1 = p̄ηi (1 − ηi+1), 1 ≤ i ≤ N − 1,

[
p(1 − ρ+(t)) + (1 − p)ρ+(t)

]
ηN − (1 − p)ρ+(t), i = N .

(5.1)
in the case of Liggett boundary rates and

ji,i+1 =

⎧
⎪⎨

⎪⎩

σ̃Nλ−(t)(ρ−(t) − η1), i = 0,

Ji,i+1 + σN− p̄
2 (ηi − ηi+1), 1 ≤ i ≤ N − 1,

σ̃Nλ+(t)(ηN − ρ+(t)), i = N .

(5.2)

in the case of reversible boundary rates.
Follow the argument as in [5,Section 2], for i = 1, . . . N − 1 define the counting

processes associated to the process {η(t)}t≥0 generated by N 1+a LN ,t by

h+(i, t) := number of jumps i → i + 1 in [0, t].
h−(i, t) := number of jumps i + 1 → i in [0, t].
h(i, t) := h+(i, t) − h−(i, t).

(5.3)

These definitions extend to the boundaries i = 0 and i = N as

h+(0, t) := number of particles created at 1 in [0, t],
h−(0, t) := number of particles annihilated at 1 in [0, t],
h+(N , t) := number of particles annihilated at N in [0, t],
h−(N , t) := number of particles created at N in [0, t].

(5.4)
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The conservation law is microscopically given by

ηi (t) − ηi (0) = h(i − 1, t) − h(i, t), ∀ i = 1, . . . , N . (5.5)

Furthermore, for i = 0, . . . , N there is a martingale Mi (t) such that

h(i, t) = N 1+a
∫ t

0
ji,i+1(s)ds + Mi (t). (5.6)

As |ηi (t)| ≤ 1, (5.5) yields that |h(i, t) − h(i ′, t)| ≤ |i − i ′|. Therefore,

EN

[∫ t

0

(
ji,i+1(s) − ji ′,i ′+1(s)

)
ds

]
= O(N−a), ∀ i, i ′ = 0, 1, . . . , N . (5.7)

Now fix T > 0 and recall the macroscopic current defined in (4.10). By (4.11),
(5.1) and (5.2),

∣∣∣∣∣
EN

[∫ T

0

1

N

N−1∑

i=1

ji,i+1(t)dt

]

− J (T )

∣∣∣∣∣
−→
N→∞ 0. (5.8)

Hence, one concludes from (5.7) and (5.8) that

J (T ) = lim
N→∞EN

[∫ T

0
ji,i+1(t)dt

]
, ∀i = 0, 1, . . . , N . (5.9)

In particular for reversible case, since i = 0, N are included in (5.7) and (5.9),

σ̃NEN

[∫ T

0
λ−(t)

(
η1(t) − ρ−(t)

)
dt

]
= −J (T ) + O(N−a),

σ̃NEN

[∫ T

0
λ+(t)

(
ηN (t) − ρ+(t)

)
dt

]
= J (T ) + O(N−a).

(5.10)

Since inf [0,T ] λ± > 0, we obtain the boundary estimates

∣∣∣∣EN

[∫ T

0

(
η1(t) − ρ−(t)

)
dt

]∣∣∣∣ ≤
C

σ̃N
,

∣∣∣∣EN

[∫ T

0

(
ηN (t) − ρ+(t)

)
dt

]∣∣∣∣ ≤
C

σ̃N
.

Since T is arbitrary, this means the acceleration of the boundary rates (̃σN → ∞)
forces the boundary conditions ρ±(t) in this microscopic sense.
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6 Microscopic entropy production: bounds on the Dirichlet forms

For any ρ ∈ [0, 1], let νρ be the product Bernoulli measure on �N = {0, 1}N with
rate ρ. In particular, for the time dependent parameters ρ± = ρ±(t) denote

ν±,t (η) := νρ±(t)(η) =
N∏

i=1

ρ±(t)ηi
[
1 − ρ±(t)

]1−ηi , ∀ η ∈ �N . (6.1)

Recall that η(t) is the process generated by N 1+a LN ,t and denote by μN ,t the distri-
bution of η(t) in �N . For N ≥ 2, define the Dirichlet form

Dexc,N (t) := 1

2

∑

η∈�N

N−1∑

i=1

(√
μN ,t (ηi,i+1) −√μN ,t (η)

)2
. (6.2)

Let f ±
N ,t be the density of μN ,t with respect to ν±,t and define the boundary Dirichlet

forms as

D−,N (t) := 1

2

∑

η

ρ
1−η1− (1 − ρ−)η1

(√
f −
N ,t (η

1) −
√

f −
N ,t (η)

)2
ν−,t (η),

D+,N (t) := 1

2

∑

η

ρ
1−ηN+ (1 − ρ+)ηN

(√
f +
N ,t (η

N ) −
√

f +
N ,t (η)

)2
ν+,t (η).

(6.3)

In this section we establish some useful bounds for these Dirichlet forms. We start
from the Liggett case and prove the next result.

Proposition 6.1 (Liggett boundary). For all t < t ′, there exists C such that

∫ t ′

t

[
D−,N (s) + Dexc,N (s) + D+,N (s)

]
ds ≤ C (6.4)

for all N . Moreover if ρ−(s) = ρ+(s) for all s ∈ [t, t ′], then
∫ t ′

t

[
D−,N (s) + Dexc,N (s) + D+,N (s)

]
ds ≤ C

Na
. (6.5)

Proof In this proof, any function f on �N is viewed as a local function on {0, 1}Z in
the standard way.

Given any probabilitymeasureμ on�N , for a given t ≥ 0we extend it as ameasure
μ̄ on {0, 1}Z ∼ �N ×∏i /∈{1,...,N }{0, 1}where outside {1, . . . , N } is a product measure
with μ̄{ηi = 1} = ρ−(t) for i ≤ 0 and μ̄{ηi = 1} = ρ+(t) for i > N .

Recall that LN ,t is the generator with Liggett boundary rates in (2.8). Also define
for all local function f on {0, 1}Z
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LZ

exc f :=
∑

i∈Z
ci,i+1

[
f
(
ηi,i+1

)
− f (η)

]
, ci, j = pηi (1 − η j )+(1 − p)η j (1 − ηi ).

LZ
exc generates the asymmetric simple exclusion process on {0, 1}Z. As obtained in

[9,p. 244] in the proof of Theorem 2.4, for a function g = g(η1, . . . , ηN ),

LN ,t g(η) − LZ

excg(η)

= [
p(ρ− − η0)(1 − η1) + (1 − p)(η0 − ρ−)η1

][
g(η1) − g(η)

]

+ [(1 − p)(ρ+ − ηN+1)(1 − ηN ) + p(ηN+1 − ρ+)ηN
][
g(ηN ) − g(η)

]
.

(6.6)
Observe that the integral of the right-hand side is 0 with respect to a measure μ̄ on
{0, 1}Z obtained by extending any measure μ on �N as above.

Recall the Bernoulli measure ν±,t defined in (6.1) and the corresponding density
function f ±

N ,t : μN ,t = f ±
N ,tν±,t . Consider the relative entropy H±,N (t) given by

H±,N (t) :=
∑

η∈�N

f ±
N ,t (η) log f ±

N ,t (η)ν±,t (η) =
∑

η∈�N

log f ±
N ,t (η)μN ,t (η).

Using Kolmogorov equation and (6.6), we obtain for the entropy production that

d

dt
H−,N (t) = N 1+a

∑

η∈�N

LN ,t [log f −
N ,t ]μN ,t −

∑

η∈�N

f −
N ,t

d

dt
ν−,t

= N 1+a
∑

η∈{0,1}Z
LZ

exc[log f −
N ,t ]μ̄N ,t −

∑

η∈�N

f −
N ,t

d

dt
ν−,t

= N 1+a
∑

η∈{0,1}Z
f −
N ,t L

Z

exc

[
log f −

N ,t

]
ν̄−,t −

∑

η∈�N

f −
N ,t

d

dt
ν−,t ,

(6.7)

where ν̄−,t =∏i≤N νρ−(t)(ηi )
∏

i>N νρ+(t)(ηi ). Observe that the last term in (6.7) is
bounded by CN .

Exploiting the inequality x(log y − log x) ≤ 2
√
x(

√
y − √

x) for all x , y > 0, and
denoting that p̄ = 2p − 1, g−

N ,t = ( f −
N ,t )

1/2,

∑

η∈{0,1}Z
f −
N ,t L

Z

exc

[
log f −

N ,t

]
ν̄−,t ≤ 2

∑

η∈{0,1}Z
g−
N ,t L

Z

exc

[
g−
N ,t

]
ν̄−,t

=
∑

η∈{0,1}Z

∑

i∈Z

[
1 + p̄(ηi − ηi+1)

] [
g−
N ,t (η

i,i+1) − g−
N ,t

]
g−
N ,t ν̄−,t

= I1 + I2 + I3 + I4,

(6.8)
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where the right-hand side reads

I1 = −1

2

∑

η∈{0,1}Z

∑

i∈Z

[
g−
N ,t (η

i,i+1) − g−
N ,t (η)

]2
ν̄−,t (η),

I2 = −1

2

∑

η∈{0,1}Z

∑

i∈Z
(g−

N ,t )
2(η)

[
ν̄−,t (η) − ν̄−,t (η

i,i+1)
]

= 1

2

∑

η∈{0,1}Z
f −
N ,t (η)

[
ν̄−,t (η

N ,N+1) − ν̄−,t (η)
]
,

I3 = p̄
∑

η∈{0,1}Z

∑

i∈Z
(ηi − ηi+1)g

−
N ,t (η

i,i+1)g−
N ,t ν̄−,t

= p̄

2

∑

η∈{0,1}Z
(ηN+1 − ηN )g−

N ,t (η
N ,N+1)g−

N ,t

[
ν̄−,t (η

N ,N+1) − ν̄−,t
]
,

I4 = p̄
∑

η∈{0,1}Z

∑

i∈Z
(ηi − ηi+1)

[
−(g−

N ,t )
2(η)

]
ν̄−,t (η) = p̄

[
ρ+(t) − ρ−(t)

]
.

Notice that I2, I3, I4 are uniformly bounded in N and they vanish when ρ− = ρ+.
On the other hand, since f −

N ,t depends only on {η1, . . . , ηN },

I1 = −Dexc,N (t) − I1,l − I1,r ,

where I1,l and I1,r are computed respectively as

I1,l = 1

2

∑

η∈�N

[
g−
N ,t (η

1) − g−
N ,t

]2
ν−,t (η)

∑

η0

(
η0(1 − η1) + η1(1 − η0)

)
νρ−(t)(η0)

= 1

2

∑

η∈�N

(
ρ−(t)(1−η1) + η1(1 − ρ−(t))

) [
g−
N ,t (η

1) − g−
N ,t

]2
ν−,t =D−,N (t),

I1,r = 1

2

∑

η∈�N

[
g−
N ,t (η

N ) − g−
N ,t

]2
ν−,t (η)

∑

ηN+1

(
ηN (1 − ηN+1) + ηN+1(1 − ηN )

)
νρ+(t)(ηN+1) ≥ 0.

Hence, from (6.8) we obtain a constant C > 0 such that

∑

η∈{0,1}Z
f −
N ,t L

Z

exc

[
log f −

N ,t

]
ν−,t ≤ −D−,N (t) − Dexc,N (t) + C .
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Plugging this into (6.7) and integrating in time,

∫ t

0

[
D−,N (s) + Dexc,N (s)

]
ds ≤ C .

The proof of (6.4) is completed by repeating the argument with H+
N ,t .

Now suppose that ρ−(t) = ρ+(t), then ν−,t = ν+,t and we have I1,r = D+,N (t).
Therefore, (6.8) yields that

∑

η∈Z
fN ,t L

Z

exc

[
log fN ,t

]
νt ≤ −D−,N (t) − Dexc,N (t) − D+,N (t).

Since HN (0) = O(N ), (6.5) follows similarly. ��
For reversible boundaries, the following estimate holds instead.

Proposition 6.2 (Reversible boundary) For all t < t ′, there exists C such that

∫ t ′

t

[
σ̃Nλ−(s)D−,N (s) + σNDexc,N (s) + σ̃Nλ+(s)D+,N (s)

]
ds ≤ C (6.9)

for all N . Moreover if ρ−(s) = ρ+(s) for all s ∈ [t, t ′], then
∫ t ′

t

[
σ̃Nλ−(s)D−,N (s) + σNDexc,N (s) + σ̃Nλ+(s)D+,N (s)

]
ds

≤ p̄

σ̃N

∫ t

0

[ J (s)

λ−(s)
+ J (s)

λ+(s)

]
ds + C

Na
≤ C ′

(
1

σ̃N
+ 1

Na

)
.

(6.10)

Proof Similarly to (6.7), we obtain for the entropy production that

d

dt
H−,N (t) ≤ N 1+a

∑

η∈�N

f −
N ,t LN ,t [log f −

N ,t ]ν−,t + CN . (6.11)

Applying the argument used in (6.8),

∑

η∈�N

f −
N ,t

(
LN ,t − σ̃Nλ+(t)L+,t

)[log f −
N ,t ]ν−,t

≤ −σ̃Nλ−(t)D−,N (t) − σNDexc,N (t) + p̄
∑

η∈�N

(ηN − η1) f
−
N ,tν−,t .

In view of (5.10), the last term can be bounded as

p̄
∑

η

(ηN − η1) f
−
N ,tν−,t = p̄

[
ρ+(t) − ρ−(t) + J (t)

σ̃Nλ−(t)
+ J (t)

σ̃Nλ+(t)

]
+ C

Na
.
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For L+,t , since f −
N ,tν−,t = f +

N ,tν+,t ,

∑

η

f −
N ,t L+,t [log f −

N ,t ]ν−,t ≤ −D+,N (t) +
∑

η

f −
N ,t L+,t

[
log

(
ν+,t

ν−,t

)]
ν−,t .

Noting that ρ± ∈ (0, 1), standard manipulation shows that

L+,t

[
log

(
ν+,t

ν−,t

)]
= −

{
log

[
ρ+(t)

1 − ρ+(t)

]
− log

[
ρ−(t)

1 − ρ−(t)

]}
(ηN − ρ+(t)).

Let F(ρ) = ρ log ρ + (1−ρ) log(1−ρ), so that F ′(ρ) = log(ρ/(1−ρ)). By (5.10),

∑

η

f −
N ,t L+,t

[
log

(
ν+,t

ν−,t

)]
ν−,t ≤ −[F ′(ρ+(t)) − F ′(ρ−(t))

]J (t) + O(N−a)

σ̃Nλ+(t)
.

Putting all these estimates together, we obtain from (6.11) that

d

dt
H−,N (t) ≤ − N 1+a[2σ̃Nλ−(t)D−,N (t) + σNDexc,N (t) + 2σ̃Nλ+(t)D+,N (t)

]

+ N 1+a[C(ρ±, t) + σ̃−1
N C(λ±, t)

]+ CN ,

where C(ρ±, t) and C(λ±, t) are constants given by

C(ρ±, t) = p̄
[
ρ+(t) − ρ−(t)

]− J (t)
[
F ′(ρ+(t)) − F ′(ρ−(t))

]
,

C(λ±, t) = p̄J (t)
[
λ−1+ (t) + λ−1− (t)

]
.

We can then conclude (6.9) by integrating in time. For (6.10), it suffices to observe
that C(ρ±, t) = 0 when ρ−(t) = ρ+(t). ��
Remark 5 The condition ρ−(s) = ρ+(s) is necessary for C(ρ±, s) = 0. Indeed, in
view of Proposition 4.5, if ρ+(s) < ρ−(s), J (s) = sup{J (ρ); ρ+(s) ≤ ρ ≤ ρ−(s)},
so

C(ρ±, s) =
∫ ρ−(s)

ρ+(s)

( J (s)

ρ(1 − ρ)
− p̄

)
dρ =

∫ ρ−(s)

ρ+(s)

J (s) − J (ρ)

ρ(1 − ρ)
dρ > 0.

Meanwhile if ρ+(s) ≥ ρ−(s), J (s) = inf{J (ρ); ρ−(s) ≤ ρ ≤ ρ+(s)}, so

C(ρ±, s) =
∫ ρ+(s)

ρ−(s)

(
p̄ − J (s)

ρ(1 − ρ)

)
dρ =

∫ ρ+(s)

ρ−(s)

J (ρ) − J (s)

ρ(1 − ρ)
dρ > 0.

Hence, better bounds are available only when ρ− = ρ+.
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7 Local equilibrium

Recall that μN ,t is the distribution of the dynamics at time t .
We prove in this section Lemma 4.1, as a direct consequence of the following

one-block estimate.

Proposition 7.1 There exists some constant C, such that for any � ≥ 1, function f
supported on {η1, . . . , η�}, N ≥ k ≥ � and t ≥ 0,

∫ N∑

i=k

∣∣ fi−�,k−� − 〈 f 〉(η̄i,k)
∣∣2dμN ,t ≤ C�[k3Dexc,N (t) + N ]

k − � + 1
, (7.1)

where fi,k := (k + 1)−1
[
f (τi−kη) + f (τi−k+1η) + . . . + f (τiη)

]
.

Remark 6 From the proof below, it is easy to see that the uniform average fi,k in can be
replaced with weighted average f ∗

i,k = ∑
0≤ j≤k ak, j f (τi− jη) for any weight {ak, j }

such that
∑

j ak, j = 1 and
∑

j a
2
k, j = O(k−1).

Proof For ρ∗ ∈ Ik := {i/k; i = 0, 1, . . . , k}, define

�k,ρ∗ :=
{

η = (η1, . . . , ηk) ∈ �k

∣∣∣∣
1

k

k∑

i=1

ηi = ρ∗

}

. (7.2)

Let νk( · |ρ∗) be the uniform measure on �k,ρ∗ . For i = k, k + 1, . . . , N , let

μ̄
i,k
N ,t (ρ∗) := μN ,t

{
(ηi−k+1, . . . , ηi ) ∈ �k,ρ∗

}
,

μ
i,k
N ,t (ηi−k+1, . . . , ηi |ρ∗) := μN ,t (ηi−k+1, . . . , ηi )

μ̄
i,k
N ,t (ρ∗)

.
(7.3)

Write Fi,k := fi−�,k−� − 〈 f 〉(η̄i,k). By the relative entropy inequality,

∫ ∣∣Fi,k
∣∣2dμN ,t =

∑

ρ∗∈Ik
μ̄
i,k
N ,t (ρ∗)

∫ ∣∣Fi,k
∣∣2dμ

i,k
N ,t ( · |ρ∗)

≤ 1

a

∑

ρ∗∈Ik
μ̄
i,k
N ,t (ρ∗)

{
H
(
μ
i,k
N ,t ( · |ρ∗); νk( · |ρ∗)

)

+ log
∫

exp
{
a|Fi,k |2

}
dνk( · |ρ∗)

}
, ∀ a > 0,

(7.4)

where H is the relative entropy: for two measures μ, ν on �k,ρ∗ ,

H(μ; ν) :=
∫

(logμ − log ν)dμ. (7.5)
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The logarithmic Sobolev inequality (A.2) yields that there is a universal constant CLS,
such that for each i , k and ρ∗,

H
(
μ
i,k
N ,t ( · |ρ∗); νk( · |ρ∗)

)
≤ 2−1CLSk

2Di,k
N ,ρ∗(t), (7.6)

where the Dirichlet form in the right-hand side is defined as

Di,k
N ,ρ∗(t) := 1

2

∑

η∈�k,ρ∗

k−1∑

i ′=1

(√
μ
i,k
N ,t (η

i ′,i ′+1|ρ∗) −
√

μ
i,k
N ,t (η|ρ∗)

)2
. (7.7)

Plugging (7.6) into (7.4) and using Schwarz inequality, we obtain

N∑

i=k

∫ ∣∣Fi,k
∣∣2dμN ,t ≤ CLSk3

2a
Dexc,N (t)

+ 1

a

N∑

i=k

∑

ρ∗∈Ik
μ̄
i,k
N ,t (ρ∗) log

∫
eaF

2
i,k dνk( · |ρ∗).

(7.8)

The desired estimate then follows if we can find constants c, C such that

∫
exp
{
a|Fi,k |2

}
dνk( · |ρ∗) ≤ C, ∀ a <

ck

�
. (7.9)

We are left with the proof of (7.9). Without loss of generality, we assume that the
local function f ∈ [0, 1]. By Hoeffding’s lemma, for all ρ ∈ [0, 1],

log
∫

ea[ f−〈 f 〉(ρ)]dνρ ≤ a2

8
, ∀ a ∈ R. (7.10)

By splitting the family { f (τi ′η), i ′ = i − k, . . . , i − �} into independent groups and
applying the generalized Hölder’s inequality,

log
∫

exp

⎧
⎨

⎩
a

k − � + 1

i−�∑

i ′=i−k

[
f (τi ′η) − 〈 f 〉(ρ)

]
⎫
⎬

⎭
dνρ ≤ �a2

8(k − � + 1)
. (7.11)

Standard manipulation then shows that if a ≤ �−1(k − � + 1),

log
∫

exp

⎧
⎨

⎩
a

∣∣∣∣
1

k − � + 1

i−�∑

i ′=i−k

[
f (τi ′η) − 〈 f 〉(ρ)

]
∣∣∣∣

2
⎫
⎬

⎭
dνρ ≤ 3. (7.12)

123



A. De Masi et al.

In order to obtain (7.9) it suffices to replace νρ with its conditional measure νk( · |ρ∗).
It follows from an elementary estimate that

νk
(
η|� = η̃

∣∣ ρ∗
) ≤ Cνρ∗(η|� = η̃) (7.13)

for all � ⊂ {i − k + 1, . . . , i} such that |�| ≤ 2k/3. ��
With Proposition 7.1 and the estimates on the Dirichlet forms proved in Sect. 6,

one easily concludes Lemma 4.1.

Proof of Lemma 4.1 Let g = 〈 f 〉. As K � �, Proposition 7.1 yields that

EN

[∫ T

0

1

N

N∑

i=K

∣∣ fi−�,K−� − g
(
η̄i,K

)∣∣2dt

]

≤ C ′
∫ T

0

[
K 2

N
Dexc,N (t) + 1

K

]
dt .

(7.14)

In view of (6.4) and (6.9), for K such that 1 ≤ K ≤ √
N , the expression above

vanishes as N → ∞. Using Schwarz inequality,

lim
N→∞EN

[∫ T

0

1

N

N∑

i=K

ϕ

(
i

N
, t

) [
fi−�,K−� − g

(
η̄i,K

)]
dt

]

= 0. (7.15)

Meanwhile, since K � N and ϕ is continuous, we can replace f (τiη) by its block
average with a uniformly vanishing error for each t ∈ [0, T ]:

lim
N→∞

1

N

N∑

i=K

ϕ

(
i

N
, t

) [
f (τi−�η) − fi−�,K−�

] = 0. (7.16)

Lemma 4.1 follows from (7.15) and (7.16). ��

8 Balanced dynamics

In this section, we focus on the balanced dynamics: ρ−(t) = ρ+(t) = ρ(t) for
t ∈ [0, T ]. Our aim is to prove Proposition 4.2 for both Liggett case and reversible
case.

Recall the uniform block averages η̄i,k defined by (4.1) and the mesoscopic scale
K = o(N ). Define the smoother weighted averages

η̂i,K := 1

K

K−1∑

j=0

η̄i+ j,K = 1

K 2

∑

| j |<K

(
K − | j |)ηi− j , i = K , . . . , N − K + 1.

(8.1)
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The empirical process ρ̂N = ρ̂N ,K (N ) associated with η̂i,K reads

ρ̂N (x, t) :=
N−K∑

i=K+1

χi,N (x)η̂i,K (t), (x, t) ∈ [0, 1] × R+, (8.2)

with χi,N in (3.8). Observe that (η1, ηN ) does not appear in (8.2), so the boundary
generators do not contribute to the time evolution of ρN .

We prove Proposition 4.2 via two lemmas. First, we observe that ρ and ρ̂ are
essentially equivalent across different mesoscopic scales.

Lemma 8.1 If the dynamics is balanced and K , K ′ satisfy that

for Liggett case 1 � K , K ′ � min
{√

N 1+a, N
}; (8.3)

for reversible case 1 � K , K ′ � min
{√

N (Na + σ̃N )σN , N
}
, (8.4)

then for any ϕ ∈ C([0, 1] × R+) and g ∈ C([0, 1]),

lim
N→∞E

μN ,0
N

[∫∫

�T

ϕ(x, t)
[
g
(
ρN ,K (x, t)

)− g
(
ρ̂N ,K ′(x, t)

)]
dx dt

]
= 0. (8.5)

Then we show that ρ̂N ,K converges to ρ(t) with some specific K = K (N ).

Lemma 8.2 If the dynamics is balanced and K satisfies that

for Liggett case
√
N � K � min{Na, N }; (8.6)

for reversible case max
{√

N , σN
}� K � min

{
NaσN , σ̃NσN , N

}
, (8.7)

then for any ϕ ∈ C([0, 1] × R+) and g ∈ C([0, 1]),

lim
N→∞

∫∫

�T

ϕ(x, t)g
(
ρ̂N ,K (x, t)

)
dx dt =

∫∫

�T

ϕ(x, t)g
(
ρ(t)

)
dt (8.8)

holds in probability for any sequence of initial distributions μN ,0.

The assumption a > 1/2 for Liggett case and (2.10), (3.13) for reversible case
assure the existence of a common sequence K = K (N ) satisfying the conditions in
Lemma 8.1 and 8.2. Proposition 4.2 then follows straightforwardly.

8.1 Proof of Lemma 8.1

For the balanced dynamics we can prove a stronger version of Lemma 4.1.
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Proof of Lemma 8.1 Observe that with ϕ̄i (t) := N
∫ 1
0 χi,N (x)ϕ(x, t)dx ,

∫∫

�T

ϕ(x, t)g(ρN (x, t)) dx dt = (2K − 1)Tg(0)

2N
+
∫ T

0

1

N

N∑

i=K

ϕ̄i (t)g
(
η̄i,K

)
dt .

(8.9)

As g ∈ C([0, 1]) can be uniformly approximated by polynomials, it is enough to
consider g(ρ) = ρ� for all fixed �. For a choice of f = η1η2 . . . η� we have 〈 f 〉 (ρ) =
g(ρ).

Fix some K satisfying the conditions of Lemma 8.1. Combining Proposition 7.1
with (6.5) for Liggett case, or (6.10) for reversible case, we obtain

lim
N→∞EN

[∫ T

0

1

N

N∑

i=K

∣∣g
(
η̄i,K

)− fi−�,K−�

∣∣2dt

]

= 0. (8.10)

Schwarz inequality then yields that

lim
N→∞EN

[∫ T

0

1

N

N∑

i=K

ϕ̄i (t)
[
g
(
η̄i,K

)− fi−�,K−�

]
dt

]

= 0. (8.11)

Similarly to (7.16), fi−�,K−� can be replaced by f (τi−�η) with a uniformly vanishing
error. Therefore, from (8.9) we see that ρN ,K are identical for different K :

lim
N→∞EN

[∫∫

�T

ϕg(ρN ,K )dx dt −
∫ T

0

1

N

N∑

i=�

ϕ̄i f (τi−�η)dt

]

= 0. (8.12)

To extend the argument to ρ̂N ,K ′ , observe that |g′(x)| = �x�−1 ≤ �,

EN

⎡

⎣
∫ T

0

1

N

N−K ′+1∑

i=K ′

∣∣g
(
η̂i,K ′

)− g
(
η̄i+K ′−1,2K ′−1

)∣∣2dt

⎤

⎦

≤ EN

⎡

⎣
∫ T

0

�

N

N−K ′+1∑

i=K ′

∣∣η̂i,K ′ − η̄i+K ′−1,2K ′−1
∣∣2dt

⎤

⎦ .

(8.13)

Using Proposition 7.1 and Remark 6 with f = η1, k = 2K ′ − 1 and ak, j be the
weights in η̂i,K ′ , the right-hand side above vanishes as N → ∞. Therefore,

lim
N→∞EN

[∫∫

�T

ϕg(ρ̂N ,K ′)dx dt −
∫ T

0

1

N

N∑

i=�

ϕ̄i f (τi−�η)dt

]

= 0. (8.14)

Lemma 8.1 then follows from (8.12) and (8.14). ��
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8.2 The boundary entropy production

We are left with the proof of Lemma 8.2. Recall the boundary entropy–entropy flux
pair (F, Q) in Definition 3.1. For ψ ∈ C1(�T ) and w ∈ C1(R+), define the boundary
entropy production

X F
N (ψ,w) = N−a

∫∫

�T

[
F(ρ̂N , w)∂tψ + ∂wF(ρ̂N , w)w′ψ

]
dx dt

+
∫∫

�T

Q(ρ̂N , w)∂xψ dx dt,
(8.15)

where ρ̂N = ρ̂N ,K is the empirical process defined in (8.2).
From now on we fix an arbitrary ρ ∈ C1([0, T ]) such that ρ(t) ∈ [0, 1]. We see in

below that balanced dynamics has zero boundary entropy production.

Proposition 8.3 (Liggett boundary). If ρ−(t) = ρ+(t) = ρ(t) and (8.6) holds, then

lim
N→∞E

μN ,0
N

[∣∣∣XF
N (ψ, ρ)

∣∣∣
]

= 0, (8.16)

for any initial distribution μN ,0, boundary entropy–entropy flux pair (F, Q) and ψ ∈
C2(�T ) such that ψ(·, 0) = ψ(·, T ) = 0.

Proposition 8.4 (Reversible boundary). If ρ−(t) = ρ+(t) = ρ(t) and (8.7) holds,
then the result in Proposition 8.3 still holds.

The proofs of Proposition 8.3 and 8.4 are similar and are postponed to Sections 8.3
and 8.4. From (8.16) we can conclude the proof of Lemma 8.2 as follows.

Proof of Lemma 8.2 Given any boundary entropy–entropy flux pair (F, Q), define the
boundary entropy flux of a Young measure ν ∈ Y with respect to boundary data
w ∈ C([0, T ]) as the functional

Q̃(ψ; ν,w) :=
∫∫

�T

ψ(x, t)dx dt
∫ 1

0
Q(y, w(t))νx,t (dy), ∀ψ ∈ C(�T ).

(8.17)
Let ν̂N be the Young measure associated to ρ̂N , i.e., ν̂N

x,t = δρ̂N (x,t). Since F and ∂wF
are bounded and a > 0, for all ψ ∈ C1(�T ),

lim
N→∞E

μN ,0
N

[∣∣∣Q̃(∂xψ; ν̂N , ρ) − XF
N (ψ, ρ)

∣∣∣
]

= 0, (8.18)

where ρ(t) = ρ±(t). Since the map ν �→ Q̃(∂xψ; ν, ρ) is a bounded linear functional
on Y , it is continuous and consequently the set {ν; |Q̃(∂xψ; ν, ρ)| < ε} is open.
Thanks to Lemma 8.1, the distribution of ν̂N converges to Q. By (8.16) we have

Q
(∣∣Q̃(∂xψ; ν, ρ)

∣∣ > ε
) ≤ lim inf

N→∞ PN

(∣∣∣XF
N (ψ, ρ)

∣∣∣ > ε
)

= 0 (8.19)
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for any ε > 0 andψ ∈ C2(�T ) such thatψ(·, 0) = ψ(·, T ) = 0. Hence, the following
holds with Q-probability 1:

Q̄(x, t) :=
∫ 1

0
Q
(
y, ρ(t)

)
νx,t (dy) = 0, (x, t) -a.e. in �T . (8.20)

To prove Lemma 8.2, it suffices to show that νx,t = δρ(t) if (8.20) holds for all
boundary entropy flux Q. We make use of the boundary entropy

F(u, w) =
{

w ∧ 1
2 − u, u ∈ [0, w ∧ 1

2 ),

0, u ∈ [w ∧ 1
2 , 1],

(8.21)

The corresponding boundary entropy flux is

Q(u, w) =
{
J (w ∧ 1

2 ) − J (u), u ∈ [0, w ∧ 1
2 ),

0, u ∈ [w ∧ 1
2 , 1].

(8.22)

As Q(u, w) ≥ 0 for all (u, w) but Q̄(x, t) = 0, we conclude that νx,t concentrates on
the zero set of Q, which is [ρ(t) ∧ 1/2, 1]. Similarly, choose

F(u, w) =
{
0, u ∈ [0, w ∨ 1

2 ],
u − w ∨ 1

2 , u ∈ (w ∨ 1
2 , 1],

Q(u, w) =
{
0, u ∈ [0, w ∨ 1

2 ],
J (u) − J (w ∨ 1

2 ), u ∈ (w ∨ 1
2 , 1].

As Q(u, w) ≤ 0. the condition Q̄(x, t) = 0 then implies that νx,t concentrates on
[0, ρ(t) ∨ 1/2]. Hence, νx,t (�t ) = 1 almost surely on �T , where

�t =
[
ρ(t) ∧ 1

2
, ρ(t) ∨ 1

2

]
. (8.23)

Finally, to close the proof we choose

F(u, w) = |u − w|, Q(u, w) = sign(u − w)(J (u) − J (w)). (8.24)

If ρ(t) < 1/2, Q(u, ρ(t)) ≥ 0 on �t = [ρ(t), 1/2] and the only zero point is ρ(t),
so that Q̄ = 0 implies ν(x,t) = δρ(t). If ρ(t) ≥ 1/2 the argument is similar. ��

Now we prepare some notations for the proofs of Proposition 8.3 and 8.4. Let

BN :=
[
0,

2K + 1

2N

)
∪
[
1 − 2K − 1

2N
, 1

]
, N ≥ 1. (8.25)
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For ψ : �T → R and each i = 1, . . . , N ,

ψ̄i (t) := N
∫ 1

0
ψ(x, t)χi,N (x)dx, ψ̃i (t) := ψ

(
i

N
− 1

2N
, t

)
. (8.26)

Recall the non-gradient current Ji,i+1 = p̄ηi (1 − ηi+1) and let

Ĵi,K := 1

K 2

∑

| j |<K

(
K − | j |)Ji− j,i− j+1. (8.27)

We shall fix some boundary Lax entropy–entropy flux pair (F, Q) and write XN

instead of XF
N for short. We also omit the arbitrary initial measure μN ,0 and denote

the expectation with respect to {η(t); t ∈ [0, T ]} by EN .

8.3 Proof of Proposition 8.3

We begin with a decomposition lemma. Recall that for a sequence {ai , i ∈ Z}, ∇ai =
ai+1 − ai and ∇∗ai = ai−1 − ai .

Lemma 8.5 XN satisfies the following decomposition:

XN (ψ,w) = MN (ψ,w) −
4∑

i=1

A(i)
N (ψ,w), (8.28)

where MN is a square integrable martingale and A(i)
N are given by

A(1)
N :=

∫ T

0

N−K∑

i=K+1

ψ̄i∂u F(η̂i,K , w)∇∗ [ Ĵi,K − J (η̂i,K )
]
dt,

A(2)
N := 1 − p̄

2

∫ T

0

N−K∑

i=K+1

ψ̄i∂u F(η̂i,K , w)�η̂i,K dt,

A(3)
N := 1

N

∫ T

0

N−K∑

i=K+1

ψ̄i

(
ε
(1)
i,K + ε

(2)
i,K

)
dt −

∫ T

0

∫

BN

Q(0, w)∂xψ dx dt,

A(4)
N :=

∫ T

0

N−K∑

i=K+1

[
ψ̄i∂uQ(η̂i,K , w)∇∗η̂i,K − ∇ψ̃i Q(η̂i,K , w)

]
dt .

(8.29)

Here ε
(1)
i,K and ε

(2)
i,K are respectively given by

ε
(1)
i,K := N

2

i+K−1∑

j=i−K

(
p̄ηi + 1 − p̄

2

)
∂2u F(η̃i, j,K , w)

(
η̂
j, j+1
i,K − η̂i,K

)2
,

ε
(2)
i,K := N

[∇∗ J (η̂i,K ) − J ′(η̂i,K )∇∗η̂i,K
]
.

(8.30)
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where η̃i, j,K is some intermediate value between η̂i,K and η̂
j, j+1
i,K .

Proof We omit in this proof the dependence on w in (F, Q). Observe that

∫ 1

0
F
(
ρ̂N (x, t)

)
ψ(x, t)dx = 1

N

N−K∑

i=K+1

ψ̄i (t)F
(
η̂i,K (t)

)+ F(0)
∫

BN

ψ(x, t)dx .

Noting that ψ(x, 0) = ψ(x, T ) = 0, Dynkin’s formula yields that

MN (ψ,w) := N−a
∫∫

�T

[
F(ρ̂N , w)∂tψ + ∂wF(ρ̂N , w)w′ψ

]
dx dt

+ N−a
∫ T

0

1

N

N−K∑

i=K+1

ψ̄i N
1+a LN ,t [F(η̂i,K )] dt

(8.31)

is a square integrable martingale. For the second integral in (8.15), straightforward
computation shows that it equals to

QN (ψ,w) :=
∫ T

0

N−K∑

i=K+1

Q(η̂i,K )∇ψ̃i dt +
∫ T

0
Q(0)

∫

BN

∂xψ dx dt . (8.32)

Therefore, (8.15) can be rewritten as

XN (ψ,w) = −
∫ T

0

N−K∑

i=K+1

ψ̄i LN ,t [F(η̂i,K )] dt + QN (ψ,w) + MN (ψ,w).

Since η̂i,K is independent of (η1, ηN ) for K + 1 ≤ i ≤ N − K ,

LN ,t [F(η̂i,K )] =
i+K−1∑

j=i−K

(
p̄ηi + 1 − p̄

2

)[
F
(
η̂
j, j+1
i,K

)
− F(η̂i,K )

]

= ∂u F(η̂i,K )Lexc[η̂i,K ] + N−1ε
(1)
i,K .

(8.33)

Recall that Lexc[ηi ] = �ηi + ∇∗ Ji,i+1, �ηi = ∇∗ηi − ∇∗ηi+1 and ∇∗ Ji,i+1 =
Ji−1,i − Ji,i+1. Therefore, Lexc[η̂i,K ] reads

Lexc[η̂i,K ] = 1 − p̄

2
�η̂i,K + ∇∗ [ Ĵi,K − J (η̂i,K )

]

+ J ′(η̂i,K )∇∗η̂i,K + N−1ε
(2)
i,K .

(8.34)
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We then obtain that

XN (ψ,w) =
∫ T

0

N−K∑

i=K+1

[
ψ̄i J

′(η̂i,K )∇∗η̂i,K + Q(η̂i,K )∇ψ̃i

]
dt

− A(1)
N − A(2)

N − A(3)
N + MN (ψ,w).

(8.35)

Since J ′∂u F = ∂uQ, the conclusion then follows. ��
We have to evaluate each term in the right-hand side of (8.28).

Lemma 8.6 limN→∞ EN [|MN (ψ, ρ)|] = 0.

Proof The quadratic variation of MN satisfies that

〈MN 〉 =
∫ T

0

N−1∑

j=1

c j, j+1

N 1+a

[
N−K∑

i=K+1

ψ̄i
(
F(η̂

j, j+1
i,K ) − F(η̂i,K )

)
]2

dt

≤ 1

N 1+a

∫ T

0

N−1∑

j=1

[
N−K∑

i=K+1

ψ̄i∂u F(η̃i, j,K )
(
η̂
j, j+1
i,K − η̂i,K

)
]2

dt,

where η̃i, j,K is some intermediate value between η̂i,K and η̂
j, j+1
i,K . Direct computation

shows that

η̂
j, j+1
i,K = η̂i,K − sgn

(
i − j − 1

2

) ∇η j

K 2 , j − K + 1 ≤ i ≤ j + K (8.36)

and otherwise η̂
j, j+1
i,K − η̂i,K = 0. Hence, define the block

� j := {K + 1 ≤ i ≤ N − K } ∩ { j − K + 1 ≤ i ≤ j + K }. (8.37)

Since |� j | ≤ 2K , we obtain from (8.36) the estimate

〈MN 〉 ≤ |∂u F |2∞
N 1+a

∫ T

0

N−1∑

j=1

∑

i∈� j

ψ̄2
i

∑

i∈� j

(
η̂
j, j+1
i,K − η̂i,K

)2
dt

≤ C |∂u F |2∞
N 1+aK 3

∫ T

0

N−1∑

j=1

∑

i∈�z

ψ̄2
i dt = C |∂u F |2∞

NaK 2 ‖ψ‖2L2(�T )
.

(8.38)

The conclusion then follows from Doob’s inequality. ��
For the remaining terms in (8.28), we make use of the following block estimates.

They are corollaries of the one-block estimate in Proposition 7.1.
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Corollary 8.7 (One-block estimate for current). For balanced dynamics,

EN

[∫ T

0

N−K∑

i=K

[
Ĵi,K − J (η̂i,K )

]2
dt

]

≤ C

(
K 2

Na
+ N

K

)
, (8.39)

with some constant C independent of K or N.

Corollary 8.8 (H1 estimate). For balanced dynamics,

EN

[∫ T

0

N−K∑

i=K

(∇η̂i,K )2dt

]

≤ C

(
1

Na
+ N

K 3

)
, (8.40)

with some constant C independent of K or N.

Proof of Corollary 8.7 Similarly to Lemma 8.1, take � = 2, f = p̄η1(1−η2), k = 2K
and observe that the weighted average Ĵi−K ,K = f ∗

i−2,2K−2, where

f ∗
i,k :=

2K∑

j=0

a2K , j f (τi− jη), a2K , j = K + 1 − | j − K |
(K + 1)2

. (8.41)

Since 〈 f 〉(ρ) = p̄ρ(1 − ρ) = J (ρ), by Remark 6 and Proposition 7.1,

∫ N∑

i=2K

[
Ĵi−K ,K − J

(
η̄i,2K

)]2
dμN ,t ≤ C

[
K 2Dexc,N (t) + N

K

]
. (8.42)

Similarly, take � = 1, f = η1, k = 2K − 2 and

f ∗
i,k :=

2K−2∑

j=0

K − | j − K + 1|
K 2 f (τi− jη), (8.43)

then f ∗
i−1,k−1 = η̂i−K+1,K and the same argument gives that

∫ N∑

i=2K−1

(
η̂i−K+1,K − η̄i,2K−1

)2
dμN ,t ≤ C ′

[
K 2Dexc,N (t) + N

K

]
. (8.44)

As |η̄i,2K − η̄i,2K−1| ≤ K−1 and J ′ is bounded, the corollary follows from (8.42),
(8.44) and Proposition 6.1. ��
Proof of Corollary 8.8 Observe that for i = K , K + 1, . . . , N − K ,

∇η̂i,K = η̄i+K ,K − η̄i,K

K
= 2

K

(ηi+1

K
+ . . . + ηi+K

K
− η̄i+K ,2K

)
. (8.45)
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Proposition 7.1 and Remark 6 then yield that

EN

[∫ T

0

N−K∑

i=K

(∇η̂i,K )2dt

]

= EN

[
4

K 2

∫ T

0

N∑

i=2K

∣∣∣
ηi−K+1

K
+ . . . + ηi

K
− η̄i,2K

∣∣∣
2
dt

]

≤ C

K 2

[
K 2
∫ T

0
Dexc,N (t)dt + NT

K

]
≤ C ′

(
1

Na
+ N

K 3

)
,

(8.46)

where the last line follows from Proposition 6.1. ��

The following result helps us treat the blocks located at the boundaries.

Proposition 8.9 For balanced dynamics with ρ−(t) = ρ+(t) = ρ(t),

EN

[∫ T

0

∣∣η̂K ,K − ρ(t)
∣∣2dt

]
≤ C

(
K

Na
+ 1

K

)
,

EN

[∫ T

0

∣∣∇η̂K ,K
∣∣2dt

]
≤ C

(
1

NaK
+ 1

K 3

)
,

(8.47)

with some constant C independent of K or N. The same upper bounds hold with
η̂N−K+1,N and ∇η̂N−K .

Proof of Proposition 8.9 The proof goes similarly to Proposition 7.1. Denote by μK
N ,t

the distribution of {η1, . . . , ηK } at time t and let f KN ,t = μK
N ,t/νρ(t) be the density with

respect to the Bernoulli measure. By the relative entropy inequality,

∫ ∣∣η̂K+1,K − ρ(t)
∣∣2dμN ,t ≤ 1

K

[
H
(
μK
N ,t ; νρ(t)

)+ log
∫

eK |η̂K ,K−ρ(t)|2dνρ(t)

]
.

Applying Proposition A.1 proved in Appendix A,

H
(
μK
N ,t ; νρ(t)

) ≤ CK 2

2

∑

η∈�K

K−1∑

j=1

(√
f KN ,t (η

j, j+1) −
√

f KN ,t (η)

)2
νρ(t)(η)

+ CK

2

∑

η∈�K

ρ(t)1−η1(1 − ρ(t))η1
(√

f KN ,t (η
1) −

√
f KN ,t (η)

)2
νρ(t)(η),

with some universal constant C . Therefore,

H
(
μK
N ,t ; νρ(t)

) ≤ CK 2Dexc,N (t) + CKD−,N (t). (8.48)
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As the exponential moment with respect to νρ(t) is uniformly bounded,

∫ ∣∣η̂K+1,K − ρ(t)
∣∣2dμN ,t ≤ C

[
KDexc,N (t) + D−,N (t) + 1

K

]
. (8.49)

We only need to integrate in time and apply (6.5). The other estimates can be proved
in the same way. ��
Remark 7 From Proposition 6.1 and the proofs below, the factor N−a in the previous
estimates is available only for balanced dynamics. For unbalanced dynamics, these
estimates hold with N−a replaced by 1.

Now we bound each term in (8.29) for balanced dynamics.

Lemma 8.10 Assume a > 1/2 and (8.6), then

lim
N→∞EN

[∣∣A(1)
N (ψ, ρ)

∣∣2
]

= 0. (8.50)

Proof By summation by parts and the intermediate value theorem,

A(1)
N (ψ, ρ) = A(1,1)

N + A(1,2)
N + A(1,−)

N − A(1,+)
N ,

A(1,1)
N =

∫ T

0

N−K∑

i=K+1

∇ψ̄i∂u F
(
η̂i+1,K , ρ(t)

) [
Ĵi,K − J (η̂i,K )

]
dt,

A(1,2)
N =

∫ T

0

N−K∑

i=K+1

ψ̄i∂
2
u F
(
ξi,K , ρ(t)

)∇η̂i,K

[
Ĵi,K − J (η̂i,K )

]
dt,

A(1,−)
N =

∫ T

0
ψ̄K+1∂u F

(
η̂K+1,K , ρ(t)

) [
ĴK ,K − J (η̂K ,K )

]
dt,

A(1,+)
N =

∫ T

0
ψ̄N−K+1∂u F

(
η̂N−K+1,K , ρ(t)

) [
ĴN−K ,K − J (η̂N−K ,K )

]
dt,

where ξi,K is some intermediate value between η̂i,K and η̂x+1,K . By Corollary 8.7,

EN

[∣∣A(1,1)
N

∣∣2
]

≤ C |∂xψ |2∞|∂u F |2∞
(

K 2

N 1+a
+ 1

K

)
. (8.51)

For A(1,2)
N , using Schwarz inequality, Corollary 8.7 and 8.8,

EN

[∣∣A(1,2)
N

∣∣2
]

≤ C |ψ |2∞|∂2u F |2∞
(

K 2

N 2a + N 2

K 4

)
. (8.52)

For the boundary terms, recall that ∂u F(u, w)|u=w ≡ 0, then

∂u F(η̂K+1,K , ρ(t)) = ∂2u F(η−, ρ(t))
(
η̂K+1,K − ρ(t)

)
, (8.53)
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for some intermediate value η− between η̂K+1,K and ρ(t). Hence,

EN

[∣∣A(1,−)
N

∣∣2
]

≤ C |ψ |2∞|∂2u F |2∞
(

K

Na
+ 1

K

)
, (8.54)

thanks to Proposition 8.9 and the boundedness of J . The right boundary term A(1,+)
N

can be estimated similarly. When N → ∞, all the upper bounds vanish since K is
chosen to satisfy (8.6). ��
Lemma 8.11 Assume a > 0 and K � N 1/3, then

lim
N→∞EN

[∣∣A(2)
N (ψ, ρ)

∣∣
]

= 0. (8.55)

Proof Similarly to A(1)
N , with some ξi,K between η̂i,K and η̂i+1,K ,

A(2)
N (ψ, ρ) = A(2,1)

N + A(2,2)
N + A(2,−)

N + A(2,+)
N ,

A(2,1)
N = −1 − p̄

2

∫ T

0

N−K∑

i=K

∇ψ̄i∂u F
(
η̂i+1,K , ρ(t)

)∇η̂i,K dt,

A(2,2)
N = −1 − p̄

2

∫ T

0

N−K∑

i=K

ψ̄i∂
2
u F
(
ξi,K , ρ(t)

)(∇η̂i,K
)2
dt,

A(2,−)
N = −1 − p̄

2

∫ T

0
ψ̄K ∂u F

(
η̂K ,K , ρ(t)

)∇η̂K+1,K dt,

A(2,+)
N = 1 − p̄

2

∫ T

0
ψ̄N−K+1∂u F

(
η̂N−K+1,K , ρ(t)

)∇η̂N−K ,K dt .

Due to the H1 estimate in Corollary 8.8,

EN

[∣∣A(2,1)
N

∣∣2 + ∣∣A(2,2)
N

∣∣
]

≤ C(ψ, F)

(
1

N
+ 1

)(
1

Na
+ N

K 3

)
. (8.56)

For the boundary terms, similarly to (8.53),

EN

[∣∣A(2,−)
N

∣∣2
]

≤ C |ψ |2∞|∂2u F |2∞ × EN

[∫ T

0

(∇η̂K+1,K
)2
dt

]

× EN

[∫ T

0

(
η̂K ,K − ρ(t)

)2
dt

]

≤ C ′|ψ |2∞|∂2u F |2∞
(

1

N 2a + 1

K 4

)
,

(8.57)

where the last line follows from Proposition 8.9. The last term is bounded similarly.
Observe that all bounds vanish under our conditions. ��
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Lemma 8.12 Assume a > 1/2 and (8.6), then A(3)
N (ψ, ρ) → 0 uniformly.

Proof Observe from (8.30) and (8.36) that for any i ,

lim
N→∞

∣∣∣ε(1)
i,K

∣∣∣ ≤ lim
N→∞

CN |∂2u F |∞
K 3 = 0. (8.58)

Meanwhile, noting that J = p̄ρ(1 − ρ) and J ′′ = −2 p̄, we obtain that

∣∣∣ε(2)
i,K

∣∣∣ = N
∣∣J ′(cη̂i−1,K + (1 − c)η̂i,K ) − J ′(η̂i,K )

∣∣∣∣∇∗η̂i,K
∣∣

= 2N p̄(1 − c)
∣∣∇∗η̂i,K

∣∣2 ≤ CN

K 2 ,

(8.59)

with some ξ ∈ [0, 1]. Therefore, they vanish uniformly as N → ∞.
We are left with the integral with respect to BN . Recall the definition of BN in

(8.25) and note that it has Lebesgue measure 2K/N , so that

∣∣∣∣

∫ T

0

∫

BN

Q(0, ρ)∂xψ dx dt

∣∣∣∣ ≤
C |∂xψ |∞|Q|∞K

N
. (8.60)

Thus, this term also vanishes uniformly as N → ∞. ��
Lemma 8.13 Assume a > 1/2 and (8.6), then

lim
N→∞EN

[∣∣A(4)
N (ψ, ρ)

∣∣
]

= 0. (8.61)

Proof Similarly to A(2)
N , with some ξi,K between η̂i,K and η̂i+1,K ,

A(4)
N (ψ, ρ) = A(4,1)

N + A(4,2)
N + A(4,bd)

N ,

A(4,1)
N =

∫ T

0

N−K∑

i=K+1

(
ψ̄i − ψ̃i

)
∂uQ

(
η̂i,K , ρ(t)

)∇∗η̂i,K dt,

A(4,2)
N = −

∫ T

0

N−K∑

i=K+1

ψ̃i
[
∂uQ(η̂i,K , ρ)∇∗η̂i,K − ∇∗Q(η̂i,K , ρ)

]
dt,

A(4,bd)
N =

∫ T

0
ψ̃K+1Q

(
η̂K ,K , ρ(t)

)
dt −

∫ T

0
ψ̃N−K+1Q

(
η̂N−K ,K , ρ(t)

)
dt .

For A(4,1)
N , direct calculation shows that |ψ̄i − ψ̃i | ≤ C |∂xψ |∞N−1, so that |A(4,1)

N | ≤
C(ψ, Q)K−1. Meanwhile, |A(4,2)

N | ≤ C(ψ, Q)NK−2 because

∣∣∂uQ(η̂i,K , ρ)∇∗η̂i,K − ∇∗Q(η̂i,K , ρ)
∣∣ ≤ |∂2u Q|∞

∣∣∇∗η̂i,K
∣∣2. (8.62)

Therefore, these two terms vanish uniformly if K 2 � N .
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We are left with the boundary term. Recalling that Q(w,w) ≡ 0 for all w ∈ R,
we have |Q(η̂K ,K , ρ(t))| ≤ |∂uQ|∞|η̂K ,K − ρ(t)|. Since similar estimate holds for
Q(η̂N−K ,K , ρ(t)), in view of Proposition 8.9,

EN

[∣∣A(4,bd)
N

∣∣2
]

≤ C |ψ |2∞|∂uQ|2∞
(

K

Na
+ 1

K

)
. (8.63)

The desired estimate then follows from (8.6). ��

8.4 Proof of Proposition 8.4

As the proof for reversible case goes parallel to that of Liggett case, we only emphasize
the difference here.

By the same computation as in Lemma 8.5, XN satisfies the decomposition formula
(8.28), where A(i)

N , i = 1, 3, 4 and ε
(2)
i,K are given in (8.29), (8.30),

A(2)
N := σN − p̄

2

∫ T

0

N−K∑

i=K+1

ψ̄i∂u F(η̂i,K , w)�η̂i,K dt,

ε
(1)
i,K := N

2

i+K−1∑

j=i−K

(
p̄ηi + σN − p̄

2

)
∂2u F(η̃i, j,K , w)

(
η̂
j, j+1
i,K − η̂i,K

)2
,

with proper intermediate value η̃i, j,K between η̂i,K and η̂
j, j+1
i,K .

To continue, we make use of the following block estimates. Observe that they differ
from those obtained for Liggett boundaries, since the Dirichlet forms possess different
upper bounds here (Proposition 6.2):

∫ T

0
Dexc,N (t)dt ≤ C

σN

(
1

Na
+ 1

σ̃N

)
,

∫ T

0
D±,N (t)dt ≤ C

σ̃N

(
1

Na
+ 1

σ̃N

)
.

Their proofs are same as the Liggett case, so we omit them.

Corollary 8.14 (One-block estimate for current) For balanced dynamics,

EN

[∫ T

0

N−K∑

i=K

[
Ĵi,K − J (η̂i,K )

]2
dt

]

≤ C

[
K 2

σN

(
1

Na
+ 1

σ̃N

)
+ N

K

]
, (8.64)

with some constant C independent of K or N.

Corollary 8.15 (H1 estimate) For balanced dynamics,

EN

[∫ T

0

N−K∑

i=K

(∇η̂i,K )2dt

]

≤ C

[
1

σN

(
1

Na
+ 1

σ̃N

)
+ N

K 3

]
, (8.65)
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with some constant C independent of K or N.

Proposition 8.16 For balanced dynamics with ρ−(t) = ρ+(t) = ρ(t),

EN

[∫ T

0

∣∣η̂K ,K − ρ(t)
∣∣2dt

]
≤ C

(
K

σN
+ 1

σ̃N

)(
1

Na
+ 1

σ̃N

)
+ C

K
,

EN

[∫ T

0

∣∣∇η̂K ,K
∣∣2dt

]
≤ C

KσN

(
1

Na
+ 1

σ̃N

)
+ C

K 3 ,

(8.66)

with some constant C independent of K or N. The same upper bounds hold with
η̂N−K+1,N and ∇η̂N−K .

To show Proposition 8.4, it suffices to evaluate each term in the decomposition
(8.28). We sketch the proof in two lemmas.

Lemma 8.17 Assume (2.10), (3.13) and (8.7), then

lim
N→∞EN

[
|MN | + ∣∣A(1)

N

∣∣2 + ∣∣A(3)
N

∣∣2 + ∣∣A(4)
N

∣∣2
]

= 0. (8.67)

Proof For the martingale MN , its quadratic variance 〈MN 〉 reads

1

N 1+a

∫ T

0

N−1∑

j=1

(
p̄ηi + σN − p̄

2

)[ N−K∑

i=K+1

ψ̄i
(
F(η̂

j, j+1
i,K ) − F(η̂i,K )

)
]2

dt . (8.68)

Using (8.36) and the same argument as in proving Lemma 8.6,

〈MN 〉 ≤ C(σN + p̄)

N 1+aK

∫ T

0

N−1∑

j=1

ψ̄2
i dt = C(σN + p̄)

NaK 2 ‖ψ‖2L2(�T )
. (8.69)

For A(1)
N , applying Corollary 8.14, 8.15 and the argument used in proving Lemma

8.10,

EN

[∣∣A(1)
N

∣∣2
]

≤ C1(ψ, F)

[
K 2

NσN

(
1

Na
+ 1

σ̃N

)
+ 1

K

]

+ C2(ψ, F)

(
K 2

N 2aσ 2
N

+ K 2

σ 2
N σ̃ 2

N

+ N 2

K 4

)

+ C3(ψ, F)

[(
K

σN
+ 1

σ̃N

)(
1

Na
+ 1

σ̃N

)
+ 1

K

]
.

For A(3)
N , it vanishes uniformly as

∣∣∣ε(1)
i,K

∣∣∣ ≤ CNσN

K 3 ,

∣∣∣ε(2)
i,K

∣∣∣ ≤ CN

K 2 ,

∣∣∣∣

∫

BN

dx

∣∣∣∣ ≤
CK

N
. (8.70)
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For A(4)
N , we can argue similarly to Lemma 8.13 to obtain that

EN

[∣∣A(4)
N

∣∣2
]

≤ C(ψ, Q)

(
1

K
+ N

K 2

)

+ C ′(ψ, Q)

[(
K

σN
+ 1

σ̃N

)(
1

Na
+ 1

σ̃N

)
+ 1

K

]
.

Thanks to (2.10) and (8.7), we have as N → ∞,

K

N
= o(1),

K

σN

(
1

Na
+ 1

σ̃N

)
= o(1),

N

K 2 = o(1),
NσN

K 3 = o(1), (8.71)

which assures the vanishing of all the bounds above. ��

Lemma 8.18 Assume (2.10), (3.13) and (8.7), then

lim
N→∞EN

[∣∣A(2)
N (ψ, ρ)

∣∣
]

= 0. (8.72)

Proof With some ξi,K between η̂i,K and η̂i+1,K we have

A(2)
N (ψ, ρ) = A(2,1)

N + A(2,2)
N + A(2,−)

N + A(2,+)
N ,

A(2,1)
N = −σN − p̄

2

∫ T

0

N−K∑

i=K

∇ψ̄i∂u F
(
η̂i+1,K , ρ(t)

)∇η̂i,K dt,

A(2,2)
N = −σN − p̄

2

∫ T

0

N−K∑

i=K

ψ̄i∂
2
u F
(
ξi,K , ρ(t)

)(∇η̂i,K
)2
dt,

A(2,−)
N = −σN − p̄

2

∫ T

0
ψ̄K ∂u F

(
η̂K ,K , ρ(t)

)∇η̂K+1,K dt,

A(2,+)
N = σN − p̄

2

∫ T

0
ψ̄N−K+1∂u F

(
η̂N−K+1,K , ρ(t)

)∇η̂N−K ,K dt .

By the H1 estimate in Corollary 8.15, as σN � N ,

EN

[∣∣A(2,1)
N

∣∣2 + ∣∣A(2,2)
N

∣∣
]

≤ C(ψ, F)

(
σ 2
N

N
+ σN

)(
1

NaσN
+ 1

σ̃NσN
+ N

K 3

)

≤ C ′(ψ, F)

(
1

Na
+ 1

σ̃N
+ NσN

K 3

)
.
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We are left with the boundary terms. Similarly to (8.53),

EN

[∣∣A(2,−)
N

∣∣2
]

≤ C(ψ, F) × σ 2
N × EN

[∫ T

0

(∇η̂K ,K
)2
dt

]

× EN

[∫ T

0

(
η̂K ,K − ρ−(t)

)2
dt

]

≤ C ′
(
1 + σN

K σ̃N

)(
1

N 2a + 1

σ̃ 2
N

)

+ σ 2
N

K 4 ,

(8.73)

where the last line follows fromProposition 8.16. The right boundary term is estimated
similarly. Finally, the proof is completed by noting that all the bounds above vanish
as N → ∞ under our conditions. ��
Remark 8 From the proof above we see that the expectation of A(2)

N does not vanish if
ρ− �= ρ+. Hence, it is responsible for the non-zero entropy production associated to
the solution of (3.4) in this case.

9 Unbalanced dynamics: coupling

In this section we prove Lemma 4.3 and 4.4 by a coupling argument. Recall that in
Liggett case, the time-dependent boundary rates are given by

(α, β, γ, δ) =
(
1 + p̄

2
ρ−,

1 + p̄

2
(1 − ρ+),

1 − p̄

2
(1 − ρ−),

1 − p̄

2
ρ+
)

, (9.1)

while in reversible case, they are

(α, β, γ, δ) = σ̃N
(
λ−ρ−, λ+(1 − ρ+), λ−(1 − ρ−), λ+ρ+

)
. (9.2)

Recall the limit distribution Q on Y satisfying (4.5) and the current J (T ) satisfying
(5.9), both associated with the boundary rates (α, β, γ, δ).

Lemma 9.1 If α ≤ α∗, γ ≥ γ∗ on [0, T ], then for each y ∈ [0, 1],

EQ
[
νx,t ([y, 1])

] ≤ EQ∗[νx,t ([y, 1])
]
, (x, t) − a.e. in �T , (9.3)

whereQ∗ is the Young measure corresponding to (α∗, β, γ∗, δ). The same result holds
for (α, β∗, γ, δ∗) such that β ≥ β∗ and δ ≤ δ∗ on [0, T ].
Lemma 9.2 Suppose that α ≤ α∗, γ ≥ γ∗ on [0, T ]. By J∗(T ) we denote the current
associated with the boundary rates (α∗, β, γ∗, δ), then J (T ) ≤ J∗(T ). The inverse
inequality holds for the current associated with (α, β∗, γ, δ∗) if β ≥ β∗, δ ≤ δ∗ on
[0, T ].

The proofs of Lemma 9.1 and 9.2 are postponed to the end of this section. We here
first show Lemma 4.3 and 4.4 based on them.
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Proof of Lemma 4.3 In Liggett case, let ρ′(t) = max{ρ−(t), ρ+(t)} for t ∈ [0, T ].
Define (α∗, β∗, γ∗, δ∗) through (9.1) with ρ− = ρ+ = ρ′, then α ≤ α∗, γ ≥ γ∗,
β ≥ β∗, δ ≤ δ∗. Denote by Q∗ the limit point associated to (α∗, β∗, γ∗, δ∗). Lemma
4.2 yields thatQ∗ concentrates on the Young measure νx,t = δρ∗(t). Applying Lemma
9.1,

EQ
[
νx,t ([y, 1])

] ≤ EQ∗[νx,t ([y, 1])
] = 1{y ≤ ρ′(t)}. (9.4)

Similarly, EQ[νx,t ([y, 1])] ≥ 1{y ≤ min(ρ−, ρ+)}. The proof is then completed for
Liggett boundaries. The reversible case can be proved in exactly the same way. ��
Proof of Lemma 4.4 As before we prove only the Liggett case. Suppose that ρ−(t) ≤
ρ+(t) for t ∈ [0, T ] and let ρ∗(t) ∈ [ρ−(t), ρ+(t)] such that

J (ρ∗(t)) = inf
{
J (ρ); ρ ∈ [ρ−(t), ρ+(t)]}. (9.5)

Observe that ρ∗ may not be unique when ρ−+ρ+ = 1. Define (α∗, β∗, γ∗, δ∗) through
(9.1) with ρ− = ρ+ = ρ∗. Since α ≤ α∗, γ ≥ γ∗, β ≤ β∗, δ ≥ δ∗, thanks to Lemma
9.2 and Proposition 4.2,

J (T ) ≤ J∗(T ) =
∫ T

0
J (ρ∗(t))dt . (9.6)

The criteria (4.15) then follows. The other one is proved similarly. ��
Both Lemma 9.1 and Lemma 9.2 are consequences of the so-called standard cou-

pling for simple exclusion process. To construct the coupling, define �̄N := {ξ =
η ⊕ η′; ηi ≤ η′

i ,∀ i = 1, . . . , N }. For ξ ∈ �̄N , let

ξ1,+ := η1,+ ⊕ (η′)1,+, ξ1,− := η1,− ⊕ (η′)1,−,

ξ N ,+ := ηN ,+ ⊕ (η′)N ,+, ξ N ,− := ηN ,− ⊕ (η′)N ,−,

ξ N ,∗ := ηN ,− ⊕ (η′)N ,+, ξ x,x+1 := ηi,i+1 ⊕ (η′)i,i+1,

(9.7)

where for η ∈ �N , η1,± are ηN ,± are obtained through

η1,+ := (1, η2, . . . , ηN ), η1,− := (0, η2, . . . , ηN ),

ηN ,+ := (η1, . . . , ηN−1, 1), ηN ,− := (η1, . . . , ηN−1, 0).
(9.8)

Note ξ1,±, ξ N ,±, ξ N ,∗ and ξ i,i+1 all belong to �̄N .
Fix some N ≥ 2 and without loss of generality take λ0 = 1. Let (α, β, γ, δ) and

(α, β, γ, δ∗) be two groups of boundary rates, such that δ(s) ≤ δ∗(s) for 0 ≤ s ≤ t .
Define the Markov generator L̄ N ,s on �̄N as

L̄ N ,s := L̄(1)
N ,s + L̄(2)

N ,s + L̄(3)
N ,s + L̄(4)

N ,s, (9.9)
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where for any f defined on �̄N ,

L̄(1)
N ,s f =

N−1∑

i=1

(
pη′

i (1 − ηi+1) + (1 − p)η′
i+1(1 − ηi )

)(
f (ξ i,i+1) − f (ξ)

)

L̄(2)
N ,s f = α(s)(1 − η1)

(
f (ξ1,+) − f (ξ)

)+ γ (s)η′
1

(
f (ξ1,−) − f (ξ)

)

L̄(3)
N ,s f = δ(s)(1 − ηN )

(
f (ξ N ,+) − f (ξ)

)+ β(s)η′
N

(
f (ξ N ,−) − f (ξ)

)

L̄(4)
N ,s f = (δ∗(s) − δ(s)

)
(1 + ηN − η′

N )
(
f (ξ N ,∗) − f (ξ)

)
.

Denote by ξ = ξ(s) the Markov process generated by L̄ N ,s . Observe that ξ couples
the processes associated respectively to (α, β, γ, δ) and (α, β, γ, δ∗). Indeed, if f is a
function on �̄N such that f (η⊕η′) = g(η), it is not hard to verify that L̄ N ,t f (η⊕η′) =
LN ,t g(η). Similarly, L̄ N ,t f (η ⊕ η′) = L ′

N ,t g(η
′) if f (η ⊕ η′) = g(η′).

Proof of Lemma 9.1 We prove here for (α, β, γ ) = (α∗, β∗, γ∗), δ ≤ δ∗. The other
cases are similar. In the coupled process ξ = η⊕η′, ηi (t) ≤ η′

i (t), so that pointwisely,

∫∫

�T

f (x, t)g(ρN (x, t))dx dt ≤
∫∫

�T

f (x, t)g(ρ′
N (x, t))dx dt (9.10)

for positive function f ∈ C(�T ) and increasing function g ∈ C([0, 1]). From (4.5),

EQ

[∫∫

�T

f (x, t)dx dt
∫ 1

0
gdνx,t

]
≤ EQ∗

[∫∫

�T

f (x, t)dx dt
∫ 1

0
gdνx,t

]
.

As f is an arbitrary continuous positive function,

EQ

[∫ 1

0
gdνx,t

]
≤ EQ∗

[∫ 1

0
gdνx,t

]
, (x, t) − a.e. in �T . (9.11)

The conclusion follows since we can approximate the indicator function 1[y,1] by a
sequence of continuous increasing functions. ��
Proof of Lemma 9.2 We prove here (4.15) with (α, β, γ ) = (α∗, β∗, γ∗), δ ≤ δ∗. For
the coupled process ξ = η⊕η′, let η�

i = η′
i −ηi be the second class particle process.

Recall the counting process h = h+−h− defined for η(·) in (5.3), (5.4). Define similar
counting processes h′, h′± and h�, h�± for η′(·) and η�(·), respectively. The definition
of ξ assures that

h′(i, T ) − h(i, T ) = h�(i, T ), ∀ 0 ≤ i ≤ N . (9.12)

Observe that in this case, the particle in η� can enter only from N , so that

N∑

i=0

h�(i, T ) = F
(
η�(0)

)− F
(
η�(t)

)
, F(η) :=

∑

j : η j=1

(N + 1 − j). (9.13)
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For any η ∈ �N , let ξ(0) = η ⊕ η, then F(η�(0)) = 0, hence,

N∑

i=0

h′(i, T ) −
N∑

i=0

h(i, T ) =
N∑

i=0

h�(i, T ) ≤ 0. (9.14)

From (5.8) and (5.6),

J (T ) = lim
N→∞

1

N 2+a

N∑

i=0

EN [h(i, T )]

≥ lim
N→∞

1

N 2+a

N∑

i=0

EN [h′(i, t)] = J∗(T ).

(9.15)

The other cases follow from similar arguments. ��

Appendix A. Logarithmic Sobolev inequalities

In this appendix we fix a box of length k. For ρ ∈ (0, 1), let νρ be the product Bernoulli
measure on �k = {0, 1}K with density ρ. For h = 0, 1, . . . , k, let νρ(η|h) = ν̃(η|h)

be the uniform distribution on

�k,h :=
{

η ∈ �k

∣∣∣∣

k∑

i=1

η j = h

}

, (A.1)

and ν̄ρ(h) be the Binomial distribution B(k, ρ).
The log-Sobolev inequality for the simple exclusion ([16]) yields that there exists

a universal constant CLS such that

∑

η∈�k,h

f (η) log f (η)ν̃(η|h) ≤ CLSk2

2

∑

η∈�k,h

k−1∑

i=1

(√
f (ηi,i+1) −√ f (η)

)2
ν̃(η|h).

(A.2)
for any f ≥ 0 on �k,h such that

∑
η∈�k,h

f ν̃(η|h) = 1.
In the following we extend (A.2) to a log-Sobolev inequality associated to the

product measure νρ with boundaries. The result is necessary for the boundary block
estimates in Sects. 8.3 and 8.4.

Proposition A.1 There exists a constant Cρ such that

∑

η∈�k

f (η) log f (η)νρ(η) ≤Cρk
2
∑

η∈�k

k−1∑

i=1

(√
f (ηi,i+1) −√ f (η)

)2
νρ(η)

+ Cρk
∑

η∈�k

ρ1−η1(1−ρ)η1
(√

f (η1) −√ f (η)
)2

νρ(η).

(A.3)
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for any f ≥ 0 on �k such that
∑

η∈�k
f νρ = 1.

Proof As the reference measures νρ are equivalent for 0 < ρ < 1, without loss of
generality we can fix ρ = 1/2 and thus νρ ≡ 2−k . Consider the log-Sobolev inequality
for the dynamics where particles are created and destroyed at each site with intensity
1/2. Since this is a product dynamics, the log-Sobolev constant is uniform in k:

1

2k
∑

η∈�k

f (η) log f (η) ≤ C

2k+1

k∑

i=1

∑

η∈�k

[√
f (ηi ) −√ f (η)

]2
. (A.4)

We apply a telescopic argument on (A.4). For η ∈ �k and 1 ≤ i ≤ k, let

τ0 := η, τ j :=

⎧
⎪⎨

⎪⎩

(τ j−1)
i− j,i− j+1, 1 ≤ j ≤ i − 1

(τ j−1)
1, j = i

(τ j−1)
j−i, j−i+1, i + 1 ≤ j ≤ 2i − 1.

(A.5)

Observing that τ2i−1 = ηi , therefore

√
f (ηi ) −√ f (η) =

2i−2∑

j=0

[√
f (τ j+1) −√ f (τ j )

]
, (A.6)

and elementary computation then gives

[√
f (ηi ) −√ f (η)

]2 ≤ 4(i − 1)
∑

0≤ j≤2(i−1), j �=i−1

[√
f (τ j+1) −√ f (τ j )

]2

+ 2
[√

f (τi ) −√ f (τi−1)
]2

.

Noting that as ρ = 1/2, νρ is invariant with respect to the exchange, creation as well
as elimination of particles, we obtain by summing up in η that

∑

η∈�k

[√
f (ηi )−√ f (η)

]2
νρ(η) ≤ 8(i − 1)

∑

η∈�k

i−1∑

j=1

[√
f (η j, j+1)−√ f (η)

]2
νρ(η)

+ 2
∑

η∈�k

[√
f (η1) −√ f (η)

]2
νρ(η).

Summing up in i we get the required inequality. ��
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