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Abstract

Since the first landmark observation of gravitational waves (GWs) in 2015, GW
astronomy has tremendously impacted fundamental physics and astrophysics.
A network of four ground-based detectors (the two LIGOs, Virgo and KAGRA)
is now in operation, routinely detecting new events. Future space-based obser-
vatories, like the Laser Interferometer Space Antenna (LISA), hold the promise
to revolutionize GW astronomy by detecting sources non-observable by current
detectors, opening avenues for groundbreaking discoveries.
Among the prime targets of LISA are extreme mass ratio inspirals (EMRIs),
which are binaries consisting of a stellar-mass compact object slowly inspiraling
into a supermassive black hole. These systems are unique probes of astrophysics
and fundamental physics. Motivated by their potential, here we study in detail
the EMRI dynamics in the presence of a spinning small compact object.

The tiny mass-ratio in EMRI binaries allows us to treat the smaller companion
as a point particle endowed with mass and spin. The latter are free parame-
ters independent of the internal structure of the infalling compact object. The
radiation-reaction forces (known as self-force) and equations of motion are typi-
cally modeled with perturbative approaches in the mass ratio. At leading order,
the dynamics of the particle is governed by the adiabatic emission of energy and
angular momentum in gravitational radiation, causing the secular decay of the
orbits. All subleading corrections to this general picture are called post-adiabatic
terms. The spin of the small compact object starts affecting the GW phase at the
first post-adiabatic order (as does the first-order conservative and second-order
dissipative self-force).

In this thesis, we focus on the measurability of the smaller companion spin by
an EMRI detection with LISA. Using the Teukolsky formalism, we derive the GW
fluxes and the adiabatic orbital evolution for a spinning particle in the case of
circular, equatorial orbits with (anti-)aligned spins. We provide the spin-induced
corrections to GW fluxes (numerically and semi-analytically), along with the
corresponding post-adiabatic effects on the GW phase, which are novel results
for a Kerr background.
Based on the phase difference between the gravitational signal from a spinning
and a non-spinning particle, we develop a criterion to determine the minimum
value of the spin resolvable by LISA. Our analysis points out that precise, model-
independent tests on the nature of the small compact object could be achieved
by measuring its intrinsic angular momentum. We also suggest that LISA could
test the so-called Kerr bound that limits the maximum spin of a rotating black
hole, allowing for theory-agnostic constraints.
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We then perform an accurate Fisher-matrix study of the EMRI parameters
using Teukolsky waveforms to leading order in an adiabatic expansion on a Kerr
background. Our parameter estimation takes into account the motion of the
LISA constellation, higher harmonics, and includes the leading correction from
the smaller companion spin in the post-adiabatic approximation. We particularly
focus on the measurability of the small body spin, showing that, for spin-aligned
EMRIs on quasi-circular orbits, it cannot be measured with sufficient accuracy.
However, due to correlations, its inclusion in the waveform model can deteriorate
the accuracy on the measurements of other parameters by orders of magnitude,
unless a physically-motivated prior on the small compact object spin is imposed.

Declaration: this document is distributed under the Creative Commons license
CC BY-NC, attribution, non-commercial use.
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Chapter 1

Introduction

1.1 Gravitational wave astronomy

The second “golden age” of general relativity (GR) and gravitational physics
has begun, heralded by the detection of gravitational waves (GW) in 2015 by
the LIGO observatories [2]. It was undoubtedly a landmark achievement in
Science, which has opened up new ways to uncover the mysteries of Nature.
Indeed, electromagnetic (EM) waves easily interact with the surrounding matter,
resulting in scattering or absorption. By contrast, gravitational radiation reach
the detector practically unhampered, carrying pristine information of the sources,
which is complementary to that provided by other means. Now we can directly
investigate gravity itself and its interaction with matter in conditions of high
curvature and relativistic speed, the so-called strong-gravity regime.
All the GW events observed so far by the LIGO/Virgo/Kagra (LVK) Collab-
oration [3–5] originated from the coalescence of stellar-mass compact objects
(SCO) in binaries composed of neutron stars (NS) and black holes (BH). Cur-
rent ground-based observatories are sensitive to GWs in the frequency band
∼ 10 Hz to ∼ 103 Hz, which is dominated by BH binaries with a total mass
between O(1M⊙) and O(100M⊙). Current detectors have shown that SCO
binaries can coalesce within the Hubble time by losing energy and angular
momentum carried away by GWs. The gravitationally-driven evolution of the
binary can be divided into three stages. In the inspiral phase, the two objects are
relatively far from each other and slow. As the orbits of the binary shrink, the
bodies approaches relativistic speeds, ultimately merging in a highly dynamical
and non-linear regime. Subsequently, the remnant of the coalescence, typically
described as a perturbed Kerr metric, undergoes a relaxation phase known as
ringdown, where it relaxes to a stationary configuration by emitting gravitational
radiation.
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The gravitational signal emitted during the entire inspiral-merger-ringdown
process carries the details of extreme compact objects, providing invaluable data
for astrophysics and fundamental physics alike.

From an astrophysical perspective, GW astronomy provides a unique way
to observe BH binaries, which are invisible to electromagnetic observations.
The signals emitted by these systems allow us to measure the source masses,
spins, distance and sky localization, and to constrain the overall parameter
distribution of stellar-mass BHs [6]. These observations have major implications
for our knowledge of the formation history of binaries, and put constraints on
the merger rate of BH binaries in the universe.
Furthermore, we can obtain crucial insights on the NS inner cores, whose physics
is still poorly understood. From the observation of gravitational signals emitted
by NS-NS and BH-NS binaries, we can infer masses and tidal deformabilities
of NS, and constrain their equation of state, which determines their internal
composition. The detection of the first NS-NS binary merger, tagged GW170817,
already ruled out some of the proposed equations of state [7,8]. When an electro-
magnetic counterpart to a GW signal can be detected, it is possible to obtain a
wealth of information from the combined observations, as shown by GW170817.
By observing the electromagentic emission after the merger, we inferred new
information on the production mechanism of heavy elements [9], and on the
connection between short gamma ray burst and binary NS coalescences [10].
Moreover, coincident observations, as GW170817, provide an independent mea-
surement of the Hubble constant [11]. Additionally, GW170817 also constrained
the fractional difference between the speed of light and that of gravity to ∼ 10−15,
excluding some alternative theories of GR [7].

Our current understanding of the gravitational interaction is based on GR,
which is capable of explaining all current astronomical and cosmological obser-
vations [12, 13]. Despite its success, GR is widely considered, at best, incomplete,
because of its several theoretical issues. An unavoidable feature is the pres-
ence of singularities in physical spacetimes [14–17] such as the BH solutions
(Schwarzschild and Kerr) and the Friedman-Lemaître-Robertson-Walker (FLRW)
metric. These solutions present pathological regions where the density and
curvature of spacetime become infinitely large. Two other fundamental issues of
GR include the loss of information in a BH, (which is in contrast with unitary
in quantum mechanics), and the presence of a cosmological constant, whose
value is in sharp contradiction with the vacuum energy predicted in quantum
field theory. Hence, there are very strong motivations to search for discrepancies
in observations respect to GR predictions, in the hope to find clues on a, so far
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elusive, viable theory of quantum gravity.
There is no shortage of proposed modifications of GR or alternative theories, and
we refer the reader to Ref. [18] for a through review. Alternatives to GR typically
include additional fields (scalar, vector or tensor fields) or modification to the
metric, but all of them must circumvent the Lovelock theorem [19]. Each alter-
native theory has a different motivation or depart from GR in several possible
ways, and most of them are already constrained by tests in the weak field [13,20].
Some of the observational predictions of modified theories of gravity include
more than two polarizations in GWs, different dispersion relation than predicted
by GR or dipolar radiation, just to mention a few [21].
Possible deviations from GR might also be detectable from tests of the Kerr-
paradigm. A striking prediction of GR is the no-hair theorem: all isolated,
stationary and asymptotically flat BHs belong to the Kerr family of solutions [22,
23], fully described by just two parameters, mass and angular momentum [24,25].
Some modified theories of gravity predict the existence of “hairy-BHs”, i.e. BH
metrics that are characterized by other parameters (for instance, a scalar charge).
Test of the Kerr paradigm can be performed in the ringdown stage of the signal,
described as a superposition of exponentially damped sinusoids or “quasinormal
modes” (QNMs) with characteristic frequencies and damping times. Comparing
the QNM spectrum predicted by GR with the observed opens to the so called
“BH spectroscopy” [26]. Hence, with an accurate spectroscopic analysis of the
ringdown we can test the nature of the remnant, verifying if it is compatible with
a Kerr BH [27].

To date, all GW observations are entirely consistent with GR to within mea-
surement limits [28]. But the next generation of interferometers planned for the
next decade hold the promise to revolutionize GW astronomy. Future third-
generation ground-based detectors [29] such as the Einstein Telescope [30] and
Cosmic Explorer [31] will provide an order of magnitude upgrade in the sensi-
tivity of second-generation detectors, also widening their frequency range, and
allowing to probe the evolution of compact object further in redshift. However,
all ground-based detectors can not reach GW frequencies below ∼ 10 Hz because
of Earth’s seismic noise. This intrinsic limit will be overcome by space-borne
detectors, which can easily reach lower frequencies band.
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Figure 1.1: Credit: NASA Goddard Space Flight Center

1.1.1 Low-frequency GW astronomy

The Laser Interferometer Space Antenna (LISA) mission [32] is part of the new
generation of space observatories, expected to start operating in 2037. With
maximum sensitivity in the mHz band (see Fig. 1.1), LISA will detect stellar-
mass BH binaries months before entering the ground-based detectors band.
Remarkably, LISA will also observe new type of sources, such as the Galactic
population of white dwarfs in wide orbits and the coalescence of supermassive
BH (SMBH) binaries in the range 104 − 107M⊙. The latter are expected to be
the loudest source of GWs in the mHz band, detectable at redshift z ≲ 20.
Observations indicates that many galaxies host in their centers a SMBH, hence
the mergers of two galaxies (which is a common event in their evolution) may
form SMBH binaries.
Another prime target for LISA is the capture of a SCO with mass µ ∼ 1 −
100M⊙ (henceforth secondary) from a SMBH (henceforth primary) with mass
M ∼ 105 – 107M⊙ forming an extreme-mass-ratio system [33]. In fact, SMBHs are
surrounded by a dense distribution of stars and SCOs, and the “capture” a SCO
could result from several dynamical processes. Detection rates are uncertain due

https://science.gsfc.nasa.gov/663/research/index.html
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to the poorly known physics, ranging from just a few events to several thousand
over the mission duration out to redshift z ≲ 2. On the bright side, the frequency
range of EMRI signals falls around 3 ∼ mHz, the most sensitive part of the LISA
band.
Modelling the EMRI dynamics is the main topic of this manuscript, and from
now we will focus on these sources.

1.1.2 Extreme-mass-ratio inspirals

Due to the small mass ratio q ≪ 1, the signal emitted by these systems can
last months in the LISA band1, performing up to O(1/q) orbital cycles before
the SCO plunges. Combined with the richness of their gravitational waveform,
EMRI signals will allow us to measure the physical parameters and to pinpoint
the sky position of these sources with extreme precision [33, 34], illuminating
how SMBHs and their surrounding galaxies evolved. Furthermore, these precise
measurements will allow us to perform stringent tests of gravity [35–40] and of
the nature of compact objects [41–46].
However, this huge potential comes with its own burden: data analysis and
parameter estimation of EMRIs are challenging and, in many respects, still an
open issue [33, 47]. Theoretical waveforms suited for parameter estimation must
have an accuracy of 1 rad or better out of 1/q ∼ 105, with a computational speed
of 1 ms [48, 49]. Indeed, a typical Bayesian Markov Chain Monte Carlo requires
more than 106 − 109 waveform evaluations to obtain a convergent posterior
distribution. Furthermore, it is expected that many events will be detected by
LISA at the same time, and a typical EMRI signal will be buried in noise, with a
signal-to-noise ratio that builds up only over many months in band. Parameter
estimation for LISA will require ad-hoc statistical tools, especially for the case of
EMRIs.

The large disparity in scales allows us to consider EMRIs as a point particle (the
secondary) orbiting the Kerr background originated by the SMBH. Important
corrections to the orbital motion arise from the self-interaction of the secondary
with its own gravitational field, known as self-force (SF), which induce perturba-
tions to the primary spacetime [50,51]. EMRI detection and parameter estimation
with LISA requires accurate waveform models that include the relevant SF terms,
but not all of the necessary SF contributions have been calculated yet. Numerical
computations of the SF are computationally expensive, especially in cases where
high accuracy is sought, while analytic calculation are rather complicated.

1By comparison, the longest signal from compact binaries observable by the LVK network
last few minutes.
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One of the crucial missing pieces is a complete model of the spin of the sec-
ondary [51–57], which motivates the work behind this thesis. In this manuscript
we provide a detailed study of the EMRI dynamics in the presence of a spinning
secondary.

In the remainder of this chapter, we will provide a introduction about the
theoretical framework typically employed to study the extreme-mass-ratio bi-
naries. As a first step, we present the main approximation schemes used to
model compact binaries under gravitational emission. Next, we briefly cover
the main features of geodesic motion in Kerr spacetime, which represent the
zeroth order approximation of the secondary’s motion. The post-adiabatic (PA)
expansion is then introduced. Together with the two-time scale expansion [58]
and perturbation theory, the PA expansion is the typical framework employed to
model the evolution of EMRIs and the ensuing gravitational signal. After briefly
discussing past work on spinning secondaries, we outline the content of this
thesis.

1.2 Modeling extreme-mass-ratio inspirals

1.2.1 Approximated methods for compact binaries

A closed form solution of the two-body problem is well known in Newtonian
mechanics for two non-spinning bodies approximated as point-particles. The
same problem in GR is way more complicated: the Einstein field equations (EFE)

Gµν[gµν] := Rµν[gµν]−
1
2

gµνR[gµν] = 8πTµν , (1.2.1)

form a set of 10 coupled, highly non-linear, hyperbolic-elliptic partial differential
equations (PDE), which are extremely difficult to solve. Few exact solutions
are known, and most of them assume a certain degree of symmetry to simplify
the equations. Over the decades, different approximation methods have been
employed to model the dynamics of astrophysical binaries in different regimes:
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Figure 1.2: Credit: Leor Barack “Lectures on black-hole perturbation theory”, Kavli-
RISE Summer School on Gravitational Waves, 2019. Note: “Mass ratio” in plot = 1/q in
our notation.

Numerical Relativity Tackling the EFE (1.2.1) numerically is a challenging task:
the field equations have to be recast in a form more suitable for numerical
computations and well-posedness must be carefully assessed. Moreover,
highly efficient, specialized algorithms have to be employed to obtain
accurate solutions. Nonetheless, numerical relativity (NR) simulations are
the only available method to fully address the non-linearities of the field
equations during the merger regime [59, 60]. Gravitational waveforms
obtained with NR have proved to be invaluable for GW astronomy [61, 62].
To date, thousands of NR simulations of BH and NS binaries have been
carried out, but the parameter space is sparsely covered because of the high
computational burden. Binaries with mass ratio smaller than q ∼ 1/20 or
when the two objects are far apart are still too costly to simulate. In these
two regimes, one can find approximate solutions of the (1.2.1) in terms of a
perturbative expansion in a small parameter.

Post-Newtonian theory In the case of small velocities and weak gravitational
field, a suitable approximation of the field equations is given by the post-
Newtonian (PN) theory [63]. The PN approximation consists in expanding
the field equations (1.2.1) in the dimensionless parameter ϵ ≈ (v/c)2,
where the v is the velocity scale of the system and c the speed of light in
vacuum. At zeroth order, i.e ϵ0, the binary is simply described by Newto-
nian mechanics, whereas higher-order terms (v/c)2n introduces relativistic
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and curvature corrections. PN theory is particularly useful to model the
early stage of the inspiral, when the two objects are relatively far-away
from each other and the velocities only mildly relativistic. As the binary
orbits shrink, the PN approximation become less accurate, and it eventually
breaks down at the merger, where numerical relativity is required to solve
the full might of the EFE. Including higher order PN terms improves the
accuracy of the PN approximation against numerical simulations, which
allows to apply PN series even in strong fields and relatively fast motion.
Nevertheless, PN approximations are still not sufficiently accurate in the
extreme-mass-ratio regime for orbits close to the last stable orbit before
plunge.

Black hole perturbation theory As the name suggest, in BH perturbation the-
ory (BHPT) one seeks for approximate solutions of the field equations by
perturbing well known BH metrics [50, 51, 64]. This approach finds natural
applications in the study of the ringdown phase, where the remnant is
a slight deformed black hole [26], and for modeling EMRI binaries. In
the latter case, the dynamics is solved perturbatively in the mass ratio
q = µ/M ≪ 1 and the binary spacetime can be treated as being given
by the SMBH metric plus small perturbations due to the presence of the
smaller companion. The results of this thesis relied on BHPT techniques,
which will be thoroughly discussed later on.

Effective one-body formalism In Newtonian gravity the two-body problem
can always be reduced to a simpler one-body problem in the center of mass
of the system. The Effective one-body (EOB) formalism achieves a similar
result in GR by mapping the dynamics of the binary to that a point particle
in an effective metric [65,66]. By combining information from the BHPT, PN
and numerical relativity results, the EOB provides a complete description of
the two-body dynamics as well as the inspiral-merger-ringdown GW signal.
This result is achievable at the cost of introducing unknown coefficients
to calibrate using other approximation methods. For instance, the EOB
Hamiltonian must reduce to the PN Hamiltonian in the weak-field, slow-
motion limit, whereas in the test particle limit reduces to the motion of
a point-particle in a Kerr spacetime. One additionally requires a smooth
transition from the inspiral to the ringdown, which is obtained through
calibration to NR simulations [67, 68]

The aforementioned approximation methods are not mutually exclusive, and
there are regions of the parameter space where two or more methods are equally
valid. BHPT computations have allowed to determine unknown coefficients
in PN and EOB expansions [69–72], while PN and EOB calculations have been
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employed to validate BHPT results [73, 74]. Comparison between BHPT and NR
have been equally fruitful, showing that the region of validity of BHPT could be
remarkably extended to mass ratio as high as q ∼ 1/2 or even higher [75–77].
Likewise, BHPT results in the conservative sector agree with NR and EOB
computations better than previously expected [78].

1.2.2 Geodesic motion in Kerr spacetime

Throughout this thesis, we denote the speed of light in vacuum by c and the
gravitational constant by G and adopt the geometric unit system G = c = 1.
The background spacetime is described by the Kerr metric in Boyer-Lindquist
coordinates

ds2 = −dt2 + Σ
(

dr2

∆
+ dθ2

)
+ (r2 + a2) sin θ2dϕ2 +

2Mr
Σ

(a sin θ2dθ − dt)2 ,

(1.2.2)
where ∆ = r2 − 2Mr + a2, Σ = r2 + a2 cos2 θ, and a is the spin parameter such
that |a| ≤ M. Without loss of generality, we assume that the specific spin a of
the primary is aligned to the z-axis, namely a ≥ 0. From the symmetries of the
Kerr space-time, it is possible to identify four integrals of the geodesic equations
of motion: the energy, E, the axial angular momentum, Lz, Carter’s constant,
Q and the mass of the secondary, µ. The latter is the normalization of the the
four-momentum pν pν = −µ2, while the first two are direct consequences of
the stationarity and axial symmetry of Kerr space-time. Carter’s constant is a
conserved quantity associated with a tensorial Killing vector field [79]. As a
direct consequence of the four constants of motion (E, Lz, Q, µ), the motion of
a non-spinning particle is completely integrable [80]. In other words, we can
reduce the geodesic equations

d2zµ

dτ2 + Γµ
αβ

dzα

dτ

dzβ

dτ
= 0 , (1.2.3)
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from a system of four second-order differential equations to four first-order
equations:

Σ2
( dr

dτ

)2
=
[

Ẽ(r2 + a2)− aL̃z

]2
− ∆

[
r2 +

(
L̃z − aẼ

)2
+ Q̃

]
:= R(r) , (1.2.4)

Σ2
(dθ

dτ

)2
= Q̃ − cos2 θ

[
L̃2

z

sin2 θ
+ a2(1 − Ẽ2)

]
:= Θ(θ) , (1.2.5)

Σ
dϕ

dτ
=

L̃2
z

sin θ2 + aẼ
(

r2 + a2

∆
− 1
)
− a2 L̃z

∆
:= Φ(r, θ) , (1.2.6)

Σ
dt
dτ

= Ẽ
[
(r2 + a2)2

∆
− a2 sin2 θ

]
+ aL̃z

(
1 − r2 + a2

∆

)
:= T(r, θ) (1.2.7)

where τ is the proper time, Ẽ = E/µ, J̃z = Jz/µ and Q̃ = Q/µ2 2. By using the
Mino time parameter λ defined via dτ/dλ = Σ (see Refs. [79, 81]), the equations
in r and θ decouple. For equatorial motion, i.e. θ = π/2, the system reduces to

r4
( dr

dτ

)2
=
[

Ẽ(r2 + a2)− aL̃z

]2
− ∆

[
r2 +

(
L̃z − aẼ

)2
]

, (1.2.8)

r2 dϕ

dτ
= L̃2

z + aẼ
(

r2 + a2

∆
− 1
)
− a2 L̃z

∆
, (1.2.9)

r2 dt
dτ

= Ẽ
[
(r2 + a2)2

∆
− a2

]
+ aL̃z

(
1 − r2 + a2

∆

)
, (1.2.10)

with Q̃ ≡ 0 for θ = π/2. The above set of equations has the the same structure
of the equations of motion for a spinning particle constrained to the equatorial
plane Eqs. [(3.3.25)-(3.3.27)] which we shall introduce in chapter 3.
In general, the geodesic motion of a test-particle in Kerr spacetime is multiple
periodic, with fundamental frequencies Ωr, Ωθ, Ωϕ in coordinate time t, and
ergodic, i.e. it fills the phase-space densely in a topological sense. The latter is
not true when the condition

kΩr + nΩθ + mΩϕ = 0 , (1.2.11)

holds for any k, n, m ∈ Z. In such situation, the motion is in a resonant orbit.
For more details on resonances, see Refs. [56, 82–88]. We define the following
variables, which we shall prove useful later on: the angles

ϕα = Ωαt , α = t, r, θ, ϕ (1.2.12)

with Ωt = 1, and pi = (Ẽ, J̃z, Q̃).

2Later on in chapter 3 we will use the rescaling J̃z = Jz/µM
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1.2.3 Post-adiabatic expansion

Accelerated motion and self-force

In BHPT, an exact solution of the EFE gexact
µν can be expanded in powers of a

small dimensionless parameter ϵ, which for us coincides with the mass ratio
µ/M, around a known background metric gµν

gexact
µν = gµν + ϵh(1)µν + ϵ2h(2)µν + O(ϵ3) , (1.2.13)

with h(n)µν are the n-order metric perturbation due to the presence of the SCO. We
assume that gµν is a vacuum metric. The biggest conceptual issue in BHPT is the

divergence of the field h(n)µν at the wordline of the point-particle. Mino, Sasaki
and Tanaka [89], and later Quinn and Wald [90] found the correct regularisation
procedure to remove the singular terms, which leads to the MiSaTaQuWa field
equations. Building upon these works, Ref. [91] introduced a convenient way to
overcome the problem of the singularities. The approach consists in splitting the
metric into two parts - a regular part hS(n)

µν and a singular part hR(n)
µν :

h(n)µν = hS(n)
µν + hR(n)

µν . (1.2.14)

The split is made in such way that gµν + ∑n ϵnhR(n)
µν solved the vacuum EFE:

Gµν[gµν + ∑
n

ϵnhR(n)
µν ] = 0 . (1.2.15)

In particular, hR(1)
µν satisfies the first-order homogeneous field equations, while

hS(1)
µν solved the inhomogeneous first-order field equations, as h(1)µν . By design, the

singular field does not affect the motion of the particle but completely contains
the singular structure of h(n)µν , whereas the regular field is a smooth on wordline
of the particle [89,91–93]. To study radiation-reaction effects on the SCO in EMRI,
it is convenient to treat the dynamics as that of a point-particle pushed away by
forces from a geodesic path. In other words, given f µ a small force per unit mass
µ, we can write

D2zµ

dτ2 = f µ = ϵ f µ

(1)(z
µ, żµ) + ϵ2 f µ

(2)(z
µ, żµ) +O(ϵ3) , (1.2.16)

with żµ ≡ dzµ/dτ and D2zµ = żρ∇ρżµ with the covariant derivative compatible
with the metric background gµν. In this context, f µis the self-force, which result
from the metric pertubations on the background. The terms f µ

(1) and f µ

(2) are
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caused by different part of the regular metric perturbations hR(1)
µν and hR(2)

µν . At

each order in the pertubative expansion, the metric perturbations hR(n)
µν can be

further splitted as
hR(n)

µν = hrad(n)
µν + hcon(n)

µν , (1.2.17)

where hrad(n)
µν is the time-asymmetric part and hcons(n)

µν is the time-symmetric part.
The self-force can be divided in two parts as well

f µ

(n) = f µ

(n)dis + f µ

(n)con , (1.2.18)

where f µ

(n)dis is the dissipative component of the self-force, which is generated by

hrad(n)
µν , whereas f µ

(n)con consists in the conservative component of the self-force,

which is sourced by hcon(n)
µν . As we shall see in a moment, the two terms have a

drastically different impact on the dynamics.

Adiabatic and post-adiabatic approximation

Due to the self-force, the first integrals pi and frequencies Ωα are no longer
constant, but they evolve slowly with time over the radiation-reaction timescale
Trad ∼ M/ϵ. For small mass-ratios, the latter is much longer than the orbital
timescale Tα = 2π/Ωα ∼ M over which the angle variables ϕα changes. This
separation of scales allow us to expand the equations of motion in the two-time
scale expansion, a systematic method for studying the cumulative effect of a small
disturbance on a dynamical system that is active over a long time. Schematically,
at first order in q we can write [50, 58]

dϕα

dτ
= Ωα(pi) + qg(1)α (ϕr, ϕθ, pi) +O(q2) , (1.2.19)

dpi

dτ
= qG(1)

i (ϕr, ϕθ, pk) +O(q2) , (1.2.20)

which is valid for a non-spinning particle and we neglected the evolution equa-
tions for the central black hole parameters (M, a), which also evolve due to
absorption of energy and angular momentum from incoming radiation. The
corrections due to the SF are encoded in Gi and gα. At “zeroth” order in q the mo-
tion is geodesic i.e. the free-falling of a test-particle. Given a function F(ϕr, ϕθ),
it is possible to expand in Fourier series

F(ϕr, ϕθ) = ∑
nk

Fknei(nϕr+kϕθ) , (1.2.21)

Fkn =
1

(2π)2

∫ 2π

0
dϕr

∫ 2π

0
dϕθ F(ϕr, ϕθ)e−i(nϕr+kϕθ) . (1.2.22)
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For non-resonant orbits, we can split a function F(ϕr, ϕθ) in a term that accu-
mulate secularly over many orbits and a term that oscillate on short timescales:

F(ϕr, ϕθ) = ⟨F⟩+ δF(ϕr, ϕθ) , (1.2.23)

where ⟨F⟩ is the torus average and δF(ϕr, ϕθ) the oscillatory component define as

δF(ϕr, ϕθ) := ∑
nk ̸=0

Fknei(nϕr+kϕθ) , (1.2.24)

⟨F⟩ :=
1

(2π)2

∫ 2π

0
dϕr

∫ 2π

0
dϕθ F(ϕr, ϕθ) ≡ F00 . (1.2.25)

By construction, ⟨δF⟩ = 0 for ergodic trajectories, i.e., phase-space filling trajec-
tories, but not for resonant orbits. The equations of motion then become [50, 58]

dϕα

dτ
= Ωα(pi) + q

〈
g(1)α (pk)

〉
+ qδg(1)α (ϕr, ϕθ, pi) +O(q2) , (1.2.26)

dpi

dτ
= q

〈
G(1)

i (pk)
〉
+ δG(1)

i (ϕr, ϕθ, pi) +O(q2) . (1.2.27)

The average of G(1)
i (ϕr, ϕθ, pk) describes the leading evolution of the would-be

integrals of motion:〈
G(1)

i (pk)
〉
=

(〈
dẼ
dλ

〉
,
〈

d J̃z

dλ

〉
,
〈

dQ̃
dλ

〉)
. (1.2.28)

The adiabatic approximation consists of neglecting all forcing terms except the
average

〈
G(1)

i (pk)
〉

3

dϕα

dτ
= Ωα(pi) , (1.2.29)

dpi

dτ
= q⟨G(1)

i (pk)⟩+O(q2) . (1.2.30)

Since the waveform phase in a binary is directly related to the orbital phase,
the two-time scale expansion provides a simple means of assessing the level
of accuracy of a given approximation. Ref. [58] determined what inputs are
required in a 1PA approximation, which is necessary for waveform models

3It can be shown that ⟨Gi(pk)⟩ do not depend on the shift δM and δa induce by the slow
evolution of the mass and spin of the SMBH.
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accurate enough for data analysis with LISA. At 1PA order, the GW phase has
the following contributions

ΦGW = q−1C(0)

adiabatic

+ q−1/2C(1/2)

resonances

+ q0C(1)

post-1-adiabatic

+ O(q) ,

where

• C0 is only due to f µ

(1)dis effects, which sourced the average forcing terms〈
G(1)

i (pk)
〉

• C(1/2) includes the secular terms due to resonances (see also [50, 56] and
references therein)

• C1 contains contributions from f µ

(2)dis, f µ

(1)con and the secondary spin force

f µ
small-spin (see [52, 53, 55, 94, 95])

The force induces by the secondary spin f µ
small-spin comprise the spin-curvature

coupling term (i.e the right hand side of Eq. (3.2.2)) and the linear in spin, linear
in mass ratio dissipative self-force and self-torque (the latter is the torque impress
on the spin by the self-force) [53, 54]. We will see in the next chapter how to
obtained the averaged rate-of changes

〈
G(1)

i (pk)
〉

without computing hrad(n)
µν

and f µ

(1)dis. Moreover, we will estimate the dissipative effects of f µ
small-spin and

their contribution at 1PA order by modeling the inspiral at adiabatic order.

1.2.4 Secondary spin effects on EMRIs

A considerable body of work is present in literature concerning the dynamics
of a spinning point-particle in curved spacetime. However, the vast majority
of studies on the subject do not treat the radiation-driven inspiral of a spinning
SCO in the extreme-mass-ratio binaries. In the following, we summarize some
of the relevant work on gravitation emission by a secondary endowed with spin
in EMRIs, referring the reader to later chapters for more references.

Earlier work in perturbation theory mostly focused on the effect of the spin
on unbound orbits [96–98], and the spin of the secondary was taken to be
unrealistically large in order to maximize its effect and compensate for the
mass-ratio suppression. One of the first work to consider dissipative spin effects
on bound orbits is Ref. [99], which estimated post-Newtonian terms for the
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fluxes by expanding the GW fluxes computed with BHPT (see also Ref. [100] for
a more recent analysis). A more recent work [94] considered the precession of a
gyroscope in Schwarzschild spacetime induced by the conservative self-torque
of the particle. Subsequent works [101–103] extended this computation to a Kerr
background.
The effects of conservative spin-curvature coupling and self-force were studied
in Ref. [95, 104] for circular orbits in Schwarzschild, and later on in Ref. [55]
for generic orbits (the latter neglected the spin contribution to the GW fluxes)
while Ref. [105] calculated the gravitational fluxes including the spin-induced
quadrupole in the case of a near extremal Kerr BH. GW fluxes and waveforms
for a spinning secondary have also been computed using EOB models in the test-
mass limit [106–108]. For instance, an estimate of the conservative contributions
on the dynamics induced by the secondary spin was computed in Ref. [109].
The GW fluxes for circular orbits in Schwarzschild and Kerr spacetimes were
computed accurately using a time-domain code [101, 110, 111], comparing also
some of the most used choices for the supplementary spin conditions discussed
in chapter 3. Ref. [53] considered spin dissipative effects with a spinning test
particle and derived new flux-balance laws relating the asymptotic fluxes of en-
ergy and angular momentum to the adiabatic changes of the orbital parameters,
focusing on the case of circular orbits around a Schwarzschild and secondary
spin perpendicular to the orbital plane.

None of the previous work went on to compute explicitly the adiabatic evo-
lution to the leading order and the corresponding spin-corrections to the GW
phase in a Kerr spacetime, which is crucial to estimate the detectability of the
secondary spin. Furthermore, only a handful of works performed a parameter
estimation in EMRIs for the spin of a SCO [112, 113], but all of them resorted to
approximated and semi-relativistic - but computationally efficient - waveforms
commonly known as “kludge” waveforms. It is known that using these models
may lead to large systematic errors when performing parameter estimation (see,
for instance [48]). Nevertheless, due to the complexity and the slow generation
of EMRI waveforms computed using BHPT, almost all parameter-estimation
studies done so far made use of kludge models [33, 114–117].

1.3 Thesis outline

In this thesis I studied the evolution of a spinning compact object moving in a
Kerr background under gravitational radiation-reaction forces. My investigation
proceeded in two closely related directions: modeling the inspiral of a spinning
SCO and the corresponding gravitational signal; performing a forecast of the
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constraints on the binary parameters expected by LISA, with emphasis on the
secondary spin. In my work I made use of BHPT methods, which provide
fully-relativistic waveform models.

On the source-modeling front, I first obtained new relations for the orbital
dynamics of a spinning SCO in Kerr background. Furthermore, I computed the
GW fluxes for a spinning secondary in EMRI in spin (anti-)aligned equatorial
motion. As a by product of this calculation, I obtained several technical results
useful for solving the ordinary differential equations for the radiative part of
the metric pertubations. Since the spin of a SCO is of the same order of the
mass ratio, the orbital dynamics and the GW fluxes can be fully linearized in
the spin. I calculated the first order spin-induced corrections to the GW fluxes,
both numerically and with semianalytic approaches, which are novel. These
corrections allow to significantly improve the efficiency of numerical calculations,
improving accuracy and computational time. The methods developed in this
thesis lie the foundation for studying radiation emission of a spinning body for
more generic orbits.

Regarding the detectability of the smaller companion spin in EMRIs, I first
performed a back-on-the-enveloped calculation based only on the phase of the
gravitational signal. Using the fluxes computed in my previous work, I model
the adiabatic inspiral of a spinning SCO, extracting the post-adiabatic corrections
due the secondary spin. These corrections allowed me to estimate the minimum
detectable spin by LISA, providing a criterion that depend solely on the primary
spin and the expected dephasing by neglecting the small spin. My simplistic
analysis showed that the SCO spin might be detectable by LISA with 10% relative
accuracy for sufficiently fast spinning SMBH. Furthermore, I pointed out that
model-independent tests of the Kerr bound4 could be performed by measuring
the spin of the small companion. In the extreme mass ratio limit, the dynamics
of the SCO depends only on its mass and spin, which are free parameters, and
its completely oblivious of the secondary’s internal structure.
Lastly, I performed a parameter estimation on the secondary spin with a Fisher
matrix approach. My statistical analysis is the first to include full-relativistic
waveform models along with the antenna pattern functions of LISA and higher
order modes, providing benchmarks for studies with “kludge” waveforms. I
showed that the secondary spin is not measurable because of statistical corre-
lations, which spoil the accuracy on the other parameters unless a physically
motivated prior is introduced. My work represents a first step in the analysis of

4The angular momentum S of an isolated BH with mass µ is limited by the Kerr bound,
S ≤ Gµ2/c.
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the impact of the secondary spin on EMRI’s evolution, in parallel with recent
work along related directions.

The content of this thesis is based on the following research papers published
in refereed journals:

• G. A. Piovano, A. Maselli, and P. Pani, “Model independent tests of the
Kerr bound with extreme mass ratio inspirals,”
Phys. Lett. B811 (2020) 135860,arXiv:2003.08448 [gr-qc].

• G. A. Piovano, A. Maselli, and P. Pani, “Extreme mass ratio inspirals with
spinning secondary: a detailed study of equatorial circular motion,”
Phys. Rev. D102 no. 2, (2020) 024041,arXiv:2004.02654 [gr-qc].

• G. A. Piovano, R. Brito, A. Maselli, and P. Pani, “Assessing the detectability
of the secondary spin in extreme mass-ratio inspirals with fully relativistic
numerical waveforms,”
Phys. Rev. D104 no. 12, (2021) 124019, arXiv:2105.07083 [gr-qc]

The results of [118] contributed to the BH Perturbation Toolkit project [119], a
collection of state-of-the-art numerical algorithms for BHPT and numerical data.

The structure of the manuscript is the following. In chapter 2, I present the
main aspects of BHPT, followed by an introduction on metric perturbation
with the Newman–Penrose formalism and the Teukolsky equation. Chapter 3
describes the dynamics of spinning test-particles in curved spacetime, focusing
on the case of motion in Kerr background. In chapter 4, I present the computation
of GW fluxes for EMRI with spinning SCO using BHPT. Chapter 5 illustrate my
analysis on the detectability of the secondary spin in EMRIs by LISA. Finally,
in “Conclusions and outlook”, I draw my conclusions and present possible
extensions of my work. Furthermore, there are 6 appendices with the more
technical results of my work. In each chapter will refer the reader to the proper
appendix for more details on specific calculations.

1.3.1 Notation and abbreviations

In this section we summarize the main conventions adopted in this thesis.

We denote the speed of light in vacuum by c and the gravitational constant
by G. We use the spacetime metric with signature (−,+,+,+). Throughout
this work we use geometric units, G = c = 1 unless otherwise stated. Hatted

http://dx.doi.org/10.1016/j.physletb.2020.135860
http://arxiv.org/abs/2003.08448
http://dx.doi.org/10.1103/PhysRevD.102.024041
http://arxiv.org/abs/2004.02654
http://dx.doi.org/10.1103/PhysRevD.104.124019
http://arxiv.org/abs/2105.07083
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variables denote dimensionless quantities rescaled by the primary mass, i.e.
r̂ ≡ r/M and so on. We adopt the Einstein convention, i.e., repeated indices are
implicitly summed over.
Round ( ) and square [ ] brackets in the indices indicate symmetrization and
antisymmetrization, respectively. For instance,

T(ab) =
1
2

(
Tab + Tba

)
T[ab] =

1
2

(
Tab − Tba

)
.

Given ωδ an arbitrary 1-form, we define the Riemann tensor as

Rµνσ
δωδ = 2∇[µ∇ν]ωσ , (1.3.1)

and the Ricci tensor by Rµν = Rα
µαν. The scalar is curvature is denoted by

R = Rα
α.



Chapter 2

Black hole perturbation theory

In this chapter we give a brief overview of perturbation theory applied to BH
metrics, with an emphasis on first-order corrections. First, we present the expan-
sion of the EFE (1.2.1) in the mass-ratio, covering the main techniques typically
employed to simplify the linearized field equations. The second half of the
chapter illustrates the Newman-Penrose (NP) formalism, a tetrad basis approach
particularly suited to study GWs. In fact, the gravitational waveforms and fluxes
can be computed efficiently from the linear perturbations of Weyl scalars, defined
in NP formalism, avoiding the direct computation of hrad(1)

µν .

2.1 Metric expansion of the field equations

2.1.1 Expansion Einstein field equations in the small mass ratio

We start with the metric expansion (1.2.13) of an exact metric gexact
µν around a

vacuum metric gµν, with the assumption that also Tµν depends smoothly on the
small dimensionless parameter ϵ as

Tµν = ϵT(1)
µν + ϵ2T(2)

µν + O(ϵ3) . (2.1.1)

For later convenience, we define the total metric perturbation

hµν = ∑
n>0

ϵnh(n)µν , (2.1.2)

By convention, all indices are raised and lowered using the background metric
gµν. Given that gexact

µρ gρν
exact = δµ

ν, it is easy to show that

gµν
exact = gµν − ϵhµν

(1) − ϵ2
(

h(2)µν − gρλhµρ

(1)h
λν
(1)

)
+ O(ϵ3) , (2.1.3)
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Before expanding Eqs. (1.2.1) in powers of ϵ, we first expand the EFE in powers
of the exact perturbation hµν

Gµν[gρσ + hρσ] = Gµν[gρσ] + G(1)
µν [hρσ] + G(2)

µν [hρσ, hρσ] + O(|hρσ|3) . (2.1.4)

For a vacuum background, the first two terms are

G(1)
µν [h] =

(
δµ

αδν
β − 1

2 gµνgαβ
)

R(1)
αβ , (2.1.5)

G(2)
µν [h, h] =

(
δµ

αδν
β − 1

2 gµνgαβ
)

R(2)
αβ − 1

2

(
hµνgαβ − gµνhαβ

)
R(1)

αβ , (2.1.6)

where the linear and quadratic terms in the Ricci tensor are

R(1)
αβ [h] = −1

2

(
□hαβ + 2Rα

µ
β

νhµν − 2h̄µ(α
;µ

β)

)
, (2.1.7)

R(2)
αβ [h, h] =

1
4

hµν
;αhµν;β +

1
2

hµ
β

;ν (hµα;ν − hνα;µ
)
− 1

2
h̄µν

;ν

(
2hµ(α;β) − hαβ;µ

)
− 1

2
hµν

(
2hµ(α;β)ν − hαβ;µν − hµν;αβ

)
. (2.1.8)

Rαµβν is the Riemann tensor for the background gµν, while h̄µν the trace-reversed
perturbation defined as

h̄µν := hµν −
1
2

gµνh (2.1.9)

where h := gαβhαβ is the trace. We also defined the d’Alembertian □ := gµν∇µ∇ν.
A semicolon and ∇ both denote the covariant derivative compatible with gµν.
After substituting the expansions (1.2.13) and (2.1.1) into the Einstein equations
and equating powers of ϵ, we obtain

G(1)
µν [h

(1)
ρσ ] = 8πT(1)

µν , (2.1.10)

G(1)
µν [h

(2)
ρσ ] = 8πT(2)

µν − G(2)
µν [h

(1)
ρσ , h(1)ρσ ] . (2.1.11)

Explicitly, Eq.(2.1.10) is given as

−1
2
□h̄(1)αβ − Rα

µ
β

νh̄(1)µν + h̄(1)
µ(α

;µ
β) −

1
2

gαβh̄(1)
µ(α

;µ
β) = 8πT(1)

µν . (2.1.12)

2.1.2 Gauge freedom

The fields h(n)αβ can be changed arbitrarily by a small coordinate transformation:

xα → xα + ϵξα
(1) +

1
2

ϵ2ξα
(2) +O(ϵ3) (2.1.13)
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with ξα
(n) arbitrary vector fields. Under the coordinate transformation (2.1.13),

the first and and second-order metric perturbations transform as

h(1)µν → h(1)µν + £ξ(1)
gµν , (2.1.14)

h(2)µν → h(2)µν + £ξ(2)
gµν +

1
2

£2
ξ(1)

gµν + £ξ(1)
h(1)µν , (2.1.15)

where £ξ is a Lie derivative. The above local diffeomorphisms are also called
gauge transformations. Their main effect consists in changing the split between
“background” and “perturbations” or, in other words, different h(1)αβ may cor-
respond to the same physical effects. A similar situation occurs in classical
electrodynamics, where the vector potentials Aµ and its gauge-transformed
counterpart A′µ

Aµ → A′µ = Aµ + χ,µ (2.1.16)

correspond to the same magnetic vector Bµ for some gauge potential χ. It can be
shown that G(1)

µν [h
(1)
ρσ ] is invariant under the transformation (2.1.14). The freedom

to perform gauge transformations is used in BHPT to simplify Eqs. (2.1.12). One
of the most employed condition is the Lorenz gauge

∇µh̄µν = 0, (2.1.17)

in which case the linearized field equations (2.1.12) reduce to

□h̄(1)µν + 2Rα
µ

β
νh̄(1)µν = −16πT(1)

µν . (2.1.18)

Both h(1)µν and h(2)µν are needed to model the dynamics of an EMRI binary with suf-
ficient accuracy. Solving the second order field equations (2.1.11) is a formidable
task, but much progress has been recently made [76, 77]. Hereafter we only
consider first-order metric perturbations.

2.1.3 Solving the first-order perturbative field equations

The field equations (2.1.18) are a system of 10 linear, hyperbolic, partial dif-
ferential equations (PDE). Being coupled, these equations are computationally
expensive to solve, especially when high precision is sought. Furthermore, one
needs to solve Eqs. (2.1.18) and (1.2.16) together: the metric perturbations de-
pend on the position and velocity of the particle, whose motion evolves under
the action of the SF computed from h(1)µν [89, 90]. On top of that, a fundamental

issue arise from the divergences of the field h(1)µν at the worldline of the particle,
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which requires a careful treatment of the singularities [120]. We refer the reader
to Refs. [50, 51] for an introduction to the topic and Refs. [52, 64] for a more in
depth review. Here we just briefly present the main methods that have been
employed in the literature to recast Eqs. (2.1.18) in a more tractable form. The
following short presentation is adapted from the notes of the lectures given by
Leor Barack at the Kavli Rise Summer school in Cambridge [121]. For more
details, see also Refs. [122–125].

Schwarzschild background - Lorenz gauge

In Schwarzschild spacetime, the 3 + 1D PDE can be reduced to 1 + 1D or even
ODEs using a multipole decomposition in tensor harmonic. Such result is achiev-
able with the following ansatz [126–128]

hµν = ∑
ℓm

10

∑
i=0

h(i)ℓm(t, r)Y(i)ℓm
µν (θ, ϕ) , (2.1.19)

Y(i)ℓm
µν (θ, ϕ) are 10 orthornormal tensor-harmonic basic functions given as lin-

ear combination of spherical harmonics Yℓm, vector and tensor harmonics.
Y(i)ℓm

µν (θ, ϕ) are divided in two groups: there are 7 tensor harmonics correspond-
ing to even-parity modes and 3 for odd-parity modes. As a result, for each given
ℓ, m mode the above ansatz separate the field equations in two sets of coupled
hyperbolic equations, with the following structure:

□(2)h(i)ℓm(t, r) + D(i)
(j)h

(j)ℓm(t, r) = T(i)ℓm , (2.1.20)

where □(2) is the 2D wave operatorm and D(i)
(j) a first-order differential operator

that couple different i− modes of the same parity. There are 7 coupled equations
for the 7 even-parity modes and 3 odd-parity equations for the odd-parity modes.
Also the Lorenz gauge condition separates, taking the form

D(i)
(j)h

(i)ℓm(t, r) = 0 , (2.1.21)

with D̃(i)
(j) another first-order operator. The above equation separates in 3

coupled equations for the even-parity sector and only one for the odd-parity
sector.
The field equations can be further reduced from 1 + 1D PDEs to ordinary ODEs
in the frequency domains:

hµν = ∑
ℓm

10

∑
i=0

∫ ∞

−∞
dωh(i)ℓmω(r)Y(i)ℓm

µν (θ, ϕ)e−iωt (2.1.22)

with h(i)ℓmω(r) obeying ODEs in the radial variable.
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Schwarzschild background - Regge-Wheeler gauge

An alternative of the Lorenz gauge is the Regge-Wheeler (RW) gauge, which
drastically simplifies the expansion of metric perturbation in tensor harmonics.
This simplification allow to define two scalar-like variables Ψℓm

even and Ψℓm
odd in

terms of even and odd modes, respectively. These quantities obeys two master
equations, the celebrated RW equation [129] (for the odd sector) and Zerilli
equation [130] (for the even sector)

(∂tt − ∂r∗r∗ + Veven/odd)Ψ
ℓm
even/odd = Seven/odd[Tµν] , (2.1.23)

where Veven/odd effective potentials depending on ℓ, while Seven/odd[Tµν] are
the source terms written in terms of the stress-energy tensor Tµν. Finally, r∗ is
defined as r∗ = r + 2M ln(r/2M − 1). From Ψℓm

even and Ψℓm
odd we can directly

write the gravitational waveforms as sum over the ℓ, m modes, and compute
the GW fluxes without needing hrad(1)

µν . Moreover, we can recover the metric

perturbations h̄(1)µν from Ψℓm
even/odd using “reconstruction techniques”. For more

details, see Ref. [50].

Kerr background

Unlike the Schwarzschild metric, no methods have been found to date to fully
separate Eqs. (2.1.18) in the presence of source, although significant progress
has been recently made in the Tµν = 0 case [131]. It is still possible to use the
ansatz Eq. (2.1.19), but modes of different parity and different ℓ, m are coupled
in the Kerr background. By exploiting the axial symmetry of the metric, it is still
possible to reduce the dimensions of the PDEs with the ansatz:

hµν =
∞

∑
i=0

hm
µν(t, r, θ)eimϕ . (2.1.24)

The resulting equations for hm
µν(t, r, θ) are 2 + 1D hyperbolic equations. One can

further reduces the field equations by passing to the frequency domain

hµν =
∞

∑
i=0

∫ ∞

−∞
dωhmω

µν (t, r, θ)ei(mϕ−ωt) , (2.1.25)

with hmω
µν (r, θ) obeying elliptic equations in 2D.
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2.2 NP formalism and Teukolsky master equation

2.2.1 Weyl tensor and Petrov classification

The Weyl tensor is particularly useful for studying the perturbations of vacuum
solutions of the EFE. It is defined in four dimensions as:

Cµνρσ := Rµνρσ +
1
2
(Rµσgνρ − Rµρgνσ + Rνρgµσ − Rνσgµρ)+

+
1
6

R(gµρgνσ − gµσgνρ) , (2.2.1)

which implies that Cµνρσ is traceless (contracting any pair of indices gives zero)
and has the same symmetries of the Riemann tensor Rµνρσ. For Ricci-flat mani-
folds, i.e spacetimes where Rµν = 0, the Weyl tensor coincides with the Riemann
tensor. This is the case of any vacuum solutions of the EFE. A special property of
Cµνρσ is its invariance under conformal transformations of the metric, i.e. if

gµν → g′µν = f gµν , (2.2.2)

for a positive scalar function f , then C′
µνρσ = Cµνρσ. In four dimensions, a metric

is conformally flat if and only if the Weyl tensor vanishes. We can obtain crucial
insights on the properties of spacetimes by studying the algebraic symmetries
of the Weyl tensor, which depend on the multiplicities of the roots of a quartic
characteristic equation [132, 133]:

Ψ0 + 4λΨ1 + 6Ψ2λ2 + 4Ψ3λ3 + λ4Ψ4 = 0 , (2.2.3)

where Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 are complex scalar function, which we will defined
later on. The number of simple roots of Eq.(2.2.3) determine how many distinct
principal null-directions (PND), a special class of null-geodesics, the spacetime
admits at a given position. According to the Petrov classification [134, 135], the
Weyl tensor admit six possible classes of algebraic symmetries known as Petrov
types

• Type I: four simple roots (four distinct PND)

• Type II: one double root and two simple roots (three distinct PND)

• Type D: two double roots (two distinct PND)

• Type III: one triple and one simple root (two distinct PND)

• Type N: one quadruple root (one distinct PND)
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• Type O: the Weyl tensor vanishes

A type I Weyl tensor is called algebraically general; otherwise it is known as
algebraically special. The Petrov classification provides a frame independent
way to classify spacetimes, and in some cases there is a close correspondence
between the Petrov type and symmetries of a metric. For instance, the Kerr and
Schwarzschild metrics are everywhere type D, while FLRW models are type O
for every event. BH solutions in GR admits two distinct PRD, which describe
ingoing and outgoing null geodesics. These null-vectors are particularly useful
to described metric perturbations of BHs in combination with the NP formalism.

2.2.2 Newman-Penrose formalism

The NP formalism [136] is a special case of the tetrad formalism, where the
relevant tensors are projected onto a complete vector fields basis called tetrad. In
this case, the tetrad is given by four null vectors:

{eµ

(a)} = {lµ, nν, mµm̄µ} (2.2.4)

where lµ and nµ are real and mµ, m̄µ are a complex-conjugate pair, which satisfy
the condition

gµνeµ

(a)e
µ

(a) ≡ η(a)(b)


0 −1 0 0
−1 0 0 0
0 0 0 1
0 1 0 0

 (2.2.5)

and the Latin indices a = 0, 1, 2, 3. In terms of the null-tetrad, the metric can be
written as

gµν = −lµnν − lνnµ + mµm̄ν + mνm̄µ (2.2.6)

In the NP formalism, the components of tensors and other quantities are typ-
ically expressed with separate symbols. For instance, there are four covariant
derivatives (D,♢, δ, δ̄) 1

D := lµ∇µ ♢ := nµ∇µ δ := mµ∇µ δ̄ := m̄µ∇µ (2.2.7)

In the same fashion, all the components of the Ricci rotation coefficients are
denoted with lower-case Greek letters, which constitute 12 complex spin coeffi-
cients [132].

1It is standard to use ∆ to denote nµ∇µ, but we choose ♢ to avoid confusion with our previous
notation.
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Of the 20 non-trivial degrees of freedom (DoF) of the Riemann tensor, 10 are
encoded in the Ricci tensor and 10 in the Weyl tensor. The 10 independent com-
ponents of the latter are described by 5 complex Weyl scalars Ψ0, Ψ1, Ψ2, Ψ3, Ψ4

Ψ0 = Cµνρσlµmνlρmσ Ψ1 = Cµνρσlµnνlρmσ ,
Ψ2 = Cµνρσlµmνm̄ρnσ Ψ3 = Cµνρσlµnνm̄ρnσ ,
Ψ4 = Cµνρσnµm̄νnρm̄σ . (2.2.8)

The above quantities are the coefficients of the characteristic equation (2.2.3).
The 10 independent components of the Ricci tensor are encoded into 4 real
(Φ00, Φ11, Φ12, Λ) and 3 complex scalars (Φ20, Φ21, Φ22)

Λ :=
R
24

Φ00 :=
1
2

Rµνlµlν Φ11 :=
1
4

Rµν(lµnν + mµm̄ν) Φ22 :=
1
2

Rµνnµnν ,

Φ01 :=
1
2

Rµνlµmν Φ02 :=
1
2

Rµνmµmν Φ12 :=
1
2

Rµνmµnν . (2.2.9)

For vacuum metrics, the Ricci tensor vanishes hence only the Weyl scalars are in
general different from zero.
We can recast the EFE in terms of the NP scalars, the covariant derivatives
(D,♢, δ, δ̄) and the spin-coefficients, giving the NP equations. For the explicit
form of the NP equations, see Ref. [132]. The NP formalism is particularly suited
to algebraically special spacetimes, which are endowed with symmetries. We
shall consider from now Petrov type D spacetimes, (like the Schwarzschild and
Kerr metrics), for which the Riemann tensor has only 2 out of 20 non-trivial DoF
encoded in Ψ2. For these metrics, it is convenient to choose the vectors lµ and nν

as the ingoing and the outgoing PND, respectively.

2.2.3 Teukolsky master equation

Let us now consider small perturbations of the Weyl scalars:

Ψk̂ = Ψa
k̂ + ϵΨb

k̂ , k̂ = 0, 1, · · · , 4 (2.2.10)

where Ψa
k̂

denote the Weyl scalar for the metric background and Ψb
k̂

its linear
perturbations. All Ψa

k̂
are zero expect for Ψa

2. The quantities Ψb
1 and Ψb

3 can be set
to zero through infinitesimal rotation of the tetrad basis, whereas Ψb

0 and Ψb
4 are

invariant under such rotations [137]. Furthermore, Ψb
0 and Ψb

4 are gauge invariant.
Being scalars, Ψk̂ transforms under gauge transformation xµ → xµ + ξµ with ξµ

infinitesimal as
Ψk̂ → Ψk̂ − ξµ∂µΨk̂ , (2.2.11)
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Therefore, at linear order in ξµ, Ψb
k̂

transforms as

Ψb
k̂ → Ψb

k̂ − ξµ∂µΨa
k̂ , (2.2.12)

and ξµ∂µΨa
k̂
= 0 for all k̂ except for k̂ = 2.

Ψb
0 and Ψb

4 encode all the information on ingoing and outgoing gravitational
radiation, respectively. As we shall see in the next chapters, the GW waveforms
and fluxes can written in terms of Ψb

4.
In the seminal paper [137], it was shown that the first-order perturbative NP
equations for Ψb

0 and Ψb
4 are separable. Moreover, for a Kerr background, all

scalar, electromagnetic and gravitational perturbations given by NP scalars are
solutions of the master equation[(

(r2 + a2)2

∆
− a2 sin2 θ

)
∂2

∂t2 +
4Mar

∆
∂2

∂t∂ϕ
+

(
a2

∆
− 1

sin2 θ

)
∂2

∂ϕ2+

− ∆−s ∂

∂r

(
∆s+1 ∂

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 2s

(
M(r2 − a2)

∆
− r − ia cos θ

)
∂

∂t
+

− 2s
(

a(r − M)

∆
+

i cos θ

sin2 θ

)
∂

∂ϕ
+ (s2 cot2 θ − s)

]
ψs = −4πΣTs , (2.2.13)

which is the celebrated Teukolsky’s master equation, with ψ2 = Ψb
0 and ψ−2 =

ρ−4Ψb
4 with ρ = (r − ia cos θ)−1. Ts is a differential operator acting on the

stress-energy tensor Tµν. The index s denotes the helicity of the perturbed field:
s = 0, s = ±1, s ± 2 for scalar, vector and rank 2 tensor, respectively. For s = −2,
the source term is given in appendix C.
To conclude this chapter, we just mention that the metric perturbations h(1)µν can
be recovered with reconstruction methods from Ψb

0 and Ψb
4 (see for instance,

Refs. [138–140]).



Chapter 3

Spinning bodies in curved spacetime

In this chapter we present a detailed description of the dynamics of a spinning,
relativistic test-particle, moving on a curved background. We discuss how the
stress energy tensor of an extended object in GR can be analysed in terms of
a multipolar expansion, in which the first two moments, corresponding to the
mass and spin of the body, provide the leading contribution. We then introduce
the so called Mathisson Papapetrou-Dixon equations for the motion of a spinning
test-particle, and discuss their main properties. We show in particular how the
spin of an extended body interacts with the background spacetime, leading to a
net spin-curvature force that pushes the center of mass of the object away from a
geodetic path.
Finally, in the last section we consider the case of a spinning point-particle in the
Kerr spacetime. We focus in particular on binaries on circular orbits, assuming
aligned and anti-aligned spin configurations. In various sections of this chapter
we discuss novel results, originally derived in Ref. [118], which provide new
constraints on the orbital motion derived from the 4-velocity norm, as well
as new analytical formulas for the energy and angular momentum of circular,
equatorial motion in terms of the orbital parameters.

3.1 Multipolar expansion in general relativity

Various physical problems, both related to electromagnetic and gravitational
phenomena, can be studied by considering sources localized in a small region of
space, located far away from the observer. In this case, a suitable representation of
the electromagnetic or of the gravitational fields at distant points from the source
is provided by an expansion in terms of angular moments called multipoles.
Most of the information on the charges, current or matter distributions are
typically contained in the first few terms of such series. For more details on the
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multipolar expansion we refer the reader to Refs. [141, 142].

Hereafter we briefly outline the expansion in multipoles of the stress-energy
tensor of an extended body in curved space-time. In general relativity this
approximation is accurate as long as the size of the object is considerably smaller
than the spacetime curvature. This condition is always satisfied by the EMRI
secondary, since its size is much smaller than the typical scale of the binary,
which is set by the curvature radius of the primary. In this framework the stress-
energy tensor of the secondary Tµν, admits a multipolar expansion within the
so-called gravitational skeletonization [143–146].
Given a worldline zα(τ), specified by the extended object proper time τ, the
multipole moments in general relativity have the following structure [147]∫

x0=const

√
−gd3x Tµνδxα1 · · · δxαn , (3.1.1)

where δxα = xα − zα is the deviation from zα(τ), defined inside the world-tube
of the body, and g = det(gµν) is the determinant of the metric gµν. Neglecting all
moments but the first two yields the so called pole-dipole approximation, which
is equivalent to consider an extended body as a spinning test particle. All details
on the internal structure are neglected, being encoded within the quadrupole
and higher multipoles.
The first two moments are the linear momentum pµ, and the spin-dipole de-
scribed by the skew-symmetric tensor Sµν:

pα(zα) =
∫

x0=const

√
−gd3xTα0 , (3.1.2)

Sαβ(zα) =
∫

x0=const

√
−gd3x(δxαTβ0 − δxβTα0) . (3.1.3)

The integrals (3.1.2)-(3.1.3) are computed choosing a coordinate frame such that
δx0 = 0 while δxi lie inside the integration region. An equivalent covariant
representation is provided by

pα(zα) =
∫

Σ
dΣβTαβ , (3.1.4)

Sαβ(zα, Σ) = 2
∫

Σ
dΣγδx[αTβ]γ . (3.1.5)

where Σ is an arbitrary space-like hypersurface. In terms of the first two mo-
ments, the multipolar expansion of the stress-energy tensor Tµν reads

Tµν(x) =

∫
dτ

[
δ(4)(x, z(τ))√−g

p(µ(τ)vν)(τ)−∇σ

(
Sσ(µ(τ)vν)(τ)

δ(4)(x, z(τ))√−g

)]
,

(3.1.6)
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where

δ(4)(x, z(τ)) ≡ δ(4)(x − z(τ)) :=
4

∏
ν=1

δ(xν − zν(τ))

We refer the reader to Refs. [99, 144, 148] for a covariant representation of the
multipole moments and for a detailed discussion on their properties. A more rig-
orous representation of the stress-energy tensor in terms of multipole moments
would require the use of “bitensors”, introduced by Synge in Ref. [149], but for
our purposes Eq. (3.1.6) is sufficient.

3.2 Mathisson- Papapetrou-Dixon equations

The covariant conservation of the energy-momentum tensor, ∇µTµν = 0, leads
to the Mathisson- Papapetrou-Dixon (MPD) equations of motion for the spinning
test body. These equations were first obtained by Mathisson in linearized theory
of gravity [150], and then by Papapetrou in full general relativity [151, 152]. A
covariant formulation was obtained by Tulczyjew [143] and Dixon [144–146],
who also included the higher-order multipole moments of a test-body. A modern
derivation is given in Ref. [153]. The MPD equations of motion read:

dXµ

dζ
= vµ , (3.2.1)

∇v⃗ pµ = −1
2

Rµ
ναβvνSαβ , (3.2.2)

∇v⃗Sµν = 2p[µvν] , (3.2.3)
m ≡ −pµvµ , (3.2.4)

where ∇v⃗ ≡ vµ∇µ, vµ is the tangent vector to the representative worldline, and
ζ is an affine parameter that can be different from the proper time τ. Thus,
the tangent vector vµ does not need to be the 4-velocity of a physical observer.
The timelike condition v2 ≡ vµvµ < 0 is not a priori guaranteed by the MPD
equations, i.e., v2 is not necessarily conserved. The mass m is the so-called
monopole rest-mass, which is related to the energy of the particle as measured in
the center of mass frame. The total or dynamical rest mass of the object is given
by

µ2 = −pσ pσ , (3.2.5)

and represents the mass measured in a reference frame where the spatial com-
ponents of pµ vanish. Neither m nor µ are necessarily constants of motion [154]
and it can be shown as follows. By multiplying the third MPD equations for pν



3. SPINNING BODIES IN CURVED SPACETIME 31

we get the identity

pµ =
1
m
(µ2vµ − pσ∇v⃗Sµσ) . (3.2.6)

It then follows that

dm
dτ

= ∇v⃗m = −(∇v⃗vρ)pρ , (3.2.7)

dµ

dτ
= ∇v⃗µ = − pσ

µ
∇v⃗ pσ = −

(∇v⃗ pρ)

mµ
(µ2vµ − pσ∇v⃗Sρσ) =

(∇v⃗ pρ)

mµ
pσ∇v⃗Sρσ ,

(3.2.8)

and in general dm/dτ and dµ/dτ are different from zero.
Moreover, the 4-velocity and the linear momentum are not aligned since

pµ = − 1
v2 (mvµ − vσ∇v⃗Sµσ) , (3.2.9)

which can be obtained by multiplying the third MPD equations for vν.
The spin parameter S is defined as

S2 ≡ 1
2

SµνSµν , (3.2.10)

which is also not a priori conserved. In fact,

d
dτ

(S2) = Sµν∇v⃗Sµν = 2Sµν pµvν , (3.2.11)

If the background features spacetime symmetries associated with a Killing vector
κµ, there exist first integrals of motion

Cκ = pµκµ − 1
2
∇νκµSµν , (3.2.12)

which are conserved also when higher multipoles are included [155].

The system of MPD equations is undetermined, since there are 18 dynam-
ical variables {Xµ, vµ, pµ, Sµν} (note that Sµν is skew-symmetric) and only 15
equations of motion. One therefore needs to specify 3 additional constraints
to close the system of equations. These constraints are given by choosing a
spin-supplementary condition, which fixes the reference worldline with respect
to which the moments are computed. We choose as a reference worldline the
body’s center of mass. However, in general relativity the center of mass of a
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spinning body is observer-dependent, thus it is necessary to specify a reference
frame by fixing, for example, the spin-supplementary condition covariantly as1

SµνVν = 0 , (3.2.13)

and by choosing Vν as the 4-velocity of a physical observer. The representative
worldline Xµ(ζ) identifies then the center of mass measured by an observer with
timelike 4-velocity Vν (for more details see [156, 157]). Hereafter we choose the
Tulczyjew-Dixon condition:

Sµν pν = 0 , (3.2.14)

which corresponds to Vµ ≡ pµ, i.e. we require that the center of mass is mea-
sured in the frame where pi = 0. This spin condition fixes a unique worldline
(see Ref. [147]), and gives a relation between the 4-velocity vµ and the linear
momentum pµ:

vµ =
m

µ2

(
pµ +

2SµνRνρσλ pρSσλ

4µ2 + RαβγδSαβSγδ

)
. (3.2.15)

Moreover, as a consequence of the Tulczyjew-Dixon spin-supplementary con-
dition, the mass µ and the spin S become constants of motion, unlike the mass
term m. In fact

pµSµν = 0 =⇒


dµ

dτ
=

1
mµ

(∇v⃗ pρ)pσ∇v⃗Sρσ = − 1
mµ

(∇v⃗ pρ)(∇v⃗ pσ)Sρσ = 0

d
dτ

(S2) = 2Sµν pµvν = 0

To fix m, we first need to choose an affine parameter ζ for the MPD equations.
One possible choice is setting ζ equal to the proper time τ, which guarantees
that vµvµ = −1 throughout the dynamics. Imposing vµvµ = −1 automatically
fixes m. Another possibility, first proposed in [155], (see also [158, 159]) consists
in rescaling ζ such that

pµvµ = −µ =⇒ µ = m = const , (3.2.16)

which makes m constant. In this case however we need to check that vµvµ < 0
during the orbital evolution. This choice of the affine parameter will be labeled
with ζ ≡ λ, to differentiate it from the generic affine parameter ζ. It has been
numerically shown that, by imposing the same initial conditions, λ and τ are
equivalent and lead to the same worldline [158]. In the next section we will

1There are several possible physical spin-supplementary conditions, at least in the pole-dipole
approximation. See for example Ref. [147] for a summary of the most common choices used in
the literature.
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also check that the condition vµvµ < 0 is always satisfied for all configurations,
and that it is equivalent to impose vµvµ = −1 and to require that m ∈ R.
Finally, the conservation of the mass parameter µ in the Tulczyjew-Dixon spin-
supplementary condition guarantees that the normalization µ2 = −pµ pµ holds
during the dynamical evolution.

The freedom in the choice of the spin-supplementary condition reflects the
physical requirement that in classical theories particles with intrinsic angular
momentum must have a finite size, and that any point of the body can be used
to fix the representative worldline. Given R the size of the rotating object, it
has been shown that R ≥ S/µ where S/µ is the Møller radius [160]. Hence,
assuming R = S/µ and denoting with

∣∣Rµνρσ

∣∣ the magnitude of the Riemann
tensor, the MPD equations are valid as long as the condition

∣∣Rµνρσ

∣∣−1 ≫ (S/µ)2

is satisfied, i.e if the size of the spinning secondary is much smaller than the
curvature radius of the primary. For a Kerr spacetime, the Kretschmann scalar
is 48M2/r6 on the equatorial plane, so

∣∣Rµνρσ

∣∣ ≈ M/r3. Thus, the validity
condition of the MPD equations for a Kerr background becomes( r

M

)3
≫
(

S
µM

)2

. (3.2.17)

In the following it will be useful to define the dimensionless spin parameter σ as

σ :=
S

µM
= χq , (3.2.18)

where χ = S/µ2 is the reduced spin of the secondary. Regardless of the nature
of the secondary, in EMRIs it is expected |χ| ≪ 1/q, which implies |σ| ≪ 1.
This also shows that Eq. (3.2.17) is always satisfied in the EMRI limit. Finally,
plugging Eq. (3.2.15) into Eq. (3.2.3), it is easy to see that

∇v⃗Sµν = O(q) . (3.2.19)

Thus, the spin tensor is parallel-transported along the worldline to leading order
in the mass ratio.

3.3 Orbital motion in Kerr spacetime

In this section we review the dynamics of a spinning test particle in the Kerr
spacetime, with a particular emphasis on equatorial orbits with (anti-)aligned
spins, discussing new relations between orbital elements obtained in Ref. [118].
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The computations in this section are valid for a generic spin parameter σ, al-
though in the next chapters we will mostly be interested in the case σ ≪ 1 which
is relevant for EMRIs.

3.3.1 Field equations in the tetrad formalism and constants of
motion

To describe the orbital motion in Kerr spacetime, it is convenient to introduce
the following orthonormal tetrad frame (in Boyer-Lindquist coordinates)

e(0)µ =

(√
∆
Σ

, 0, 0,−a sin2 θ

√
∆
Σ

)
, (3.3.1)

e(1)µ =

(
0,

√
Σ
∆

, 0, 0

)
, (3.3.2)

e(2)µ =
(

0, 0,
√

Σ, 0
)

, (3.3.3)

e(3)µ =

(
− a√

Σ
sin θ, 0, 0,

r2 + a2
√

Σ
sin θ

)
. (3.3.4)

We use the notation e(a)
µ =

(
e(a)

t , e(a)
r , e(a)

θ , e(a)
ϕ

)
, with the Latin indices for the

tetrad components, which are raised/lowered using the flat metric

ηab = diag(−1, 1, 1, 1) . (3.3.5)

The MPD equations in the tetrad frame read

d
dλ

p(a) = ω(b)(c)
(a)v(b)p(c) − 1

2
R(a)

(b)(c)(d)v
(b)S(c)(d) , (3.3.6)

d
dλ

S(a)(b) = −2v(e)ω(e)(c)
[(a)S(b)](c) + 2p[(a)v(b)] , (3.3.7)

where p(a) = pµe(a)
µ and so on, whereas ω(a)(b)

(c) ≡ eµ

(a)e
ν
(b)∇µe(c)ν are the Ricci

rotation coefficients [96].
The timelike and spacelike Killing vector fields of the Kerr spacetime (ξµ =
(1, 0, 0, 0) and Ξµ = (0, 0, 0, 1), respectively), can be written as

ξµ =

√
∆
Σ

eµ

(0) −
a sin θ√

Σ
eµ

(3) , (3.3.8)

Ξµ = −a sin2 θ

√
∆
Σ

eµ

(0) +
(r2 + a2) sin θ√

Σ
eµ

(3) . (3.3.9)
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The conserved quantities Cξ ≡ E and CΞ ≡ Jz, given by Eq. (3.2.12), are as-
sociated with ξµ and Ξµ, respectively [97]. It is important to notice that the
Carter constant is no longer a first integral of motion, although an approximated,
conserved quantity at O(σ) can still be found [161, 162].
It is convenient to introduce the spin vector

s(a) ≡ −1
2

ϵ(a)(b)(c)(d)u(b)S(c)(d) , (3.3.10)

where u(a) = p(a)/µ and ϵ(a)(b)(c)(d) the antisymmetric Levi-Civita tensor
(ϵ(0)(1)(2)(3) = 1) . The spin tensor can be recast in the following form

S(a)(b) ≡ ϵ(a)(b)(c)(d)u(c)s(d) . (3.3.11)

Finally, we mention that the motion of a spinning particle in Kerr is generally
non-integrable in the Liouville sense, unlike the non-spinning case [56, 57]. As
shown in Ref. [163], chaotic motion appears even in the EMRI regime for values
of the secondary spin relevant in astrophysical scenarios.

3.3.2 Equations of motion on the equatorial plane

For equatorial orbits, it can be shown that if the spin vector is parallel to the
z-axis, i.e. sµ = sθδ

µ
θ , the spinning particle is constrained on the equatorial plane.

In fact, suppose we set sµ = sθδ
µ
θ as initial condition. By construction, sµ pµ = 0,

which implies pθ = 0 and Sµθ = 0. Thus, using the equations of motion (3.2.3):

∇v⃗Sµθ = 0 =⇒ pµvθ − pθvµ = 0 =⇒ pµvθ = 0 , (3.3.12)

which implies the only nontrivial solution vθ = 0. From Eq. (3.2.2), we have

∇v⃗ pθ = 0 =⇒ 0 = −1
2

Rθ
ναβvνSαβ ∝ cos θ , (3.3.13)

which shows that θ = π/2 is a solution of the equations of motion. Finally, if
θ = π/2 at λ = 0, then the initial condition sµ = sθδ

µ
θ guarantees that θ = π/2

for any value of the evolution parameter λ. Note that this property does not
depend on the spin-supplementary condition.

Without loss of generality, we assume that the specific spin a of the primary is
aligned to the z-axis, namely a ≥ 0. We focus on equatorial orbits with the spin
of the secondary aligned (anti-aligned) to a, i.e. S > 0 (S < 0). Hereafter, in order
to simplify the notation, we introduce the hatted dimensionless quantities as
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â = a/M and r̂ = r/M. We also set s(2) ≡ −S, such that for S > 0 (resp. S < 0)
the spin is parallel (resp. antiparallel) to the z-axis2.
Using Eqs. (3.2.15),(3.2.16) and the normalization u(a)u(a) = −1, it is possible to
write the velocities v(a) in terms of the normalized momenta u(a)

v(0) =
1
N

(
1 − σ2

r̂3

)
u(0) , (3.3.14)

v(1) =
1
N

(
1 − σ2

r̂3

)
u(1) , (3.3.15)

v(3) =
1
N

(
1 +

2σ2

r̂3

)
u(3) , (3.3.16)

with N = 1 − σ2

r̂3

[
1 + 3

(
u(3))2

]
. Likewise, the conserved quantities can be

written as [97]

Ẽ =

√
∆

r̂
u(0) +

âr̂ + σ

r̂2 u(3) , (3.3.17)

J̃z =

√
∆

r̂
(â + σ)u(0) +

[
r̂2 + â2

r̂
+

âσ

r̂2 (1 + r̂)
]

u(3) , (3.3.18)

where Ẽ = E/µ and J̃z = Jz/(µM). Since we assumed a ≥ 0, the orbit is
prograde and retrograde for J̃z > 0 and J̃z < 0, respectively. At infinity3 the
constant of motion Jz can be interpreted as the total angular momentum on the
z-axis, i.e. the sum Jz ≈ Lz + S of the orbital angular momentum Lz and of the
spin S of the secondary.
The above relations can be inverted to obtain u(0) and u(3) in terms of Ẽ and J̃z:

u(0) = − Ẽr̂3 + (Ẽâ − J̃z)σ + r̂â[ J̃z − Ẽ(â + σ)]

Σσ

√
∆

, (3.3.19)

u(3) =
r̂[ J̃z − Ẽ(â + σ)]

Σσ
, (3.3.20)

where

Σσ = r̂2
(

1 − σ2

r̂3

)
> 0 , (3.3.21)

2In spherical coordinates on the equatorial plane, ∂θ and ∂z are anti-aligned, therefore s(2) =
rsθ < 0 means that the spin is aligned to ∂z, and so to the spin of the primary.

3Or, equivalently, in the weak-field and slow-motion regime (see Appendix B of Ref. [164] for
details).
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which is positive due to the constraint (3.2.17). Using Eqs. (3.3.19)-(3.3.20)
and the relations between the velocities v(a) and the normalized momenta u(a)

[Eqs. (3.3.14)-(3.3.16)], we can write the equations of motion in Boyer-Lindquist
coordinates as (see also Ref. [97])

ΣσΛσ
dt̂
dλ̂

= â
(

1 +
3σ2

r̂Σσ

)
[ J̃z − Ẽ(â + σ)] +

r̂2 + â2

∆
Pσ , (3.3.22)

(ΣσΛσ)
2
(

dr̂
dλ̂

)2

= R2
σ , (3.3.23)

ΣσΛσ
dϕ

dλ̂
=

(
1 +

3σ2

r̂Σσ

)
[ J̃z − Ẽ(â + σ)] +

â
∆

Pσ , (3.3.24)

where

Λσ = 1 − 3σ2r̂[−(â + σ)Ẽ + J̃z]2

Σ3
σ

, (3.3.25)

Rσ = P2
σ − ∆

(
Σ2

σ

r̂2 + [−(â + σ)Ẽ + J̃z]
2
)

, (3.3.26)

Pσ =

[
(r̂2 + â2) +

âσ

r̂
(r̂ + 1)

]
Ẽ −

[
â +

σ

r̂

]
J̃z , (3.3.27)

and 1
r̂2 ΣσΛσ = N. A study of eccentric solutions of the above equations of

motion can be found in Ref. [165]. Note that Eqs. (3.3.25)-(3.3.27) have the same
structure of the equations of motion for a non-spinning particle in equatorial
motion [(1.2.8)-(1.2.10)]. In the case of spin (anti)-aligned, equatorial motion, the
system is sufficiently constrained to be integrable in the Liouville sense, at least
with the Tulczyjew-Dixon supplementary spin-condition [165].
As previously discussed, condition (3.2.16) does not necessarily imply v(a)v(a) <
0 and the latter condition must be checked during the dynamics. We now show
that the norm of the four velocity v(a) is always negative in EMRIs for realistic
values of the secondary spin [118]. The norm of v(a) reads

v(a)v(a) =
−r̂6 + 3σ2(u(3))2(2r̂3 + σ2)+ 2σ2r̂3 − σ4

(r̂3N)2 ,

and the constraint v(a)v(a) < 0 leads to

Λσ >
r̂3 + 2σ2

2r̂3 + σ2 . (3.3.28)
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Equation (3.3.28) shows that Λσ must be positive definite, which implies N > 0.
Moreover, for realistic values of σ (recall that |σ| ≪ 1 when |χ| ≪ 1/q, see
Eq. (3.2.18)) the constraint (3.3.28) reduces to

Λσ ≳
1
2

for σ ≪ 1 (3.3.29)

and, since Ê and Ĵz are usually O(1) during the dynamics, Λσ ≈ 1 for σ ≪ 1.
Thus Eq. (3.3.28) is always satisfied for bound equatorial EMRIs. Finally, we note
that choosing the proper time of the object as evolution parameter, the condition
v(a)v(a) = −1 fixes the kinematical mass m as

m(r̂) =
r̂3N√

r̂6 − 3σ2(u(3))2
(
2r̂3 + σ2

)
− 2σ2r̂3 + σ4

. (3.3.30)

Imposing that m(r̂) is a real number gives again the constraint (3.3.28).

3.3.3 Effective potential, ISCO, and orbital frequency

We now consider the case of circular, equatorial motion. For circular orbits,
there are two additional constraints on the motion: one enforces zero radial
velocity, the other requires zero radial acceleration. The condition vr = 0 implies
v(1) = 0 and, together with Eq. (3.3.15) yields p(1) = 0, whereas zero radial
acceleration requires d

dλ p(1) = 0. Imposing these constraints is equivalent to
ask the orbital radius to be the local minimum of an effective potential. For a
spinning particle moving on the equatorial plane of a Kerr BH, the effective
potential depends on the spin-supplementary condition (see Refs. [101, 111]
for the form of the effective potentials for some common choices of the spin-
supplementary conditions). Following Ref. [166] we use

Vσ(r̂) =
1
r̂4 (ασẼ2 − 2βσẼ + γσ) , (3.3.31)

where

ασ =

[
r̂2 + â2 +

âσ(r̂ + 1)
r̂

]2

− ∆(â + σ)2 , (3.3.32)

βσ =

[(
â +

σ

r̂

)(
r̂2 + â2 +

âσ(r̂ + 1)
r̂

)
− ∆(â + σ)

]
J̃z , (3.3.33)

γσ =

(
â +

σ

r̂

)2

J̃2
z − ∆

[
r̂2
(

1 − σ2

r̂3

)2

+ J̃2
z

]
. (3.3.34)
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The effective potential reduces to the standard one for a nonspinning particle in
Kerr when σ = 0. The condition for a circular orbit with radius r̂0 translates to

Vσ(r̂0) = 0 ,
dVσ

dr̂

∣∣∣∣
r̂=r̂0

= 0 ,

and stability of such orbits against radial perturbations requires d2Vσ

dr̂2

∣∣∣
r̂=r̂0

< 0,

although the orbit might still be unstable under perturbation in the θ direc-
tion [167]. The innermost stable circular orbit (ISCO) is obtained by imposing
d2Vσ

dr̂2

∣∣∣
r̂=r̂0

= 0.

The orbital frequency of a circular equatorial orbit as measured by an observer
located at infinity,

Ω̂ = MΩ =
dϕ

dt̂
=

âv(0) +
√

∆v(3)

(r̂2 + â2)v(0) + â
√

∆v(3)
.

In terms of the momenta, Ω̂ is given by

Ω̂ =
â(r̂3 − σ2)u(0) +

√
∆(r̂3 + 2σ2)u(3)

(r̂2 + â2)(r̂3 − σ2)u(0) + â
√

∆(r̂3 + 2σ2)u(3)
, (3.3.35)

where u(0) and u(3) are given in terms of r̂ by solving d
dλ p(1) = 0:

u(0) =
1√

1 − U2
∓

, u(3) =
U∓√

1 − U2
∓

, (3.3.36)

where [99]

U∓ =
u(3)

u(0)
= −2âr̂3 + 3σr̂2 + âσ2 ∓D

2
√

∆(r̂3 + 2σ2)
, (3.3.37)

with

D =
√

4r̂7 + 12âσr̂5 + 13σ2r̂4 + 6âσ3r̂2 − 8σ4r̂ + 9â2σ4 , (3.3.38)

and the ∓ sign corresponding to co-rotating and counter-rotating orbits, respec-
tively. Note that the argument of the square root is not positive definitive for
generic values of σ. Nevertheless, for σ ≪ 1, it is easy to see that Eq. (3.3.37) is
always real. Using Eq. (3.3.36), the orbital frequency Ω̂ can be recast as

Ω̂ =
(2â + 3σ)r̂3 + 3(2â2σ + âσ2)r̂ + 4âσ2 ∓ r̂D

2(â2 + 3âσ + σ2)r̂3 + 6σ(â + σ)â2r̂ + 4â2σ2 − 2r̂6 . (3.3.39)
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This formula agrees with the one shown in Ref. [110].
Plugging Eq. (3.3.36) into Eqs. (3.3.17)-(3.3.18) finally yields the first integrals Ẽ
and J̃z for a spinning object in circular equatorial orbit in the Kerr spacetime:

Ẽ =
r̂
√

∆ + (âr̂ + σ)U∓

r̂2
√

1 − U2
∓

, (3.3.40)

J̃z =
r̂
√

∆(â + σ) + [r̂3 + r̂â(â + σ) + âσ]U∓

r̂2
√

1 − U2
∓

. (3.3.41)

The minus and plus sign in Eq. (3.3.39)-(3.3.41) correspond to prograde and ret-
rograde orbits, respectively. To be the best of our knowledge, expressions (3.3.40)
and (3.3.41) were shown for the first time in [118].
Since for EMRIs |σ| ≪ 1, it is convenient to expand Ẽ, J̃z and Ω̂ in terms of the
spin parameters, considering linear corrections only, such that at first order in σ:

Ẽ = Ẽ0 + σẼ1 , J̃z = J̃0
z + σ J̃1

z , (3.3.42)

with

Ẽ0 =
±â + (r̂ − 2)r̂1/2

r̂3/4∆±
, (3.3.43)

Ẽ1 =
(â ∓

√
r̂)(3â2 ∓ 4

√
r̂ + r̂2)

2r̂11/4∆3
±

, (3.3.44)

J̃0
z = ± r̂2 + â2 ∓ 2â

√
r̂

r̂3/4∆±
, (3.3.45)

J̃1
z =

1
2r̂11/4∆3

±

(
3â4 ±

√
r̂(3r̂ − 7)(â3 + 3âr̂2)+

+ 2â2r̂(r̂ + 2) + r̂3(r̂ − 2)(2r̂ − 9)
)

, (3.3.46)

where ∆± =
√
±2â + (r̂ − 3)

√
r̂, and the upper (lower) sign corresponds to

prograde (retrograde) orbits [166]. The orbital frequency can be written as

Ω̂(r̂) = Ω̂0(r̂) + σΩ̂1(r̂) +O(σ2) , (3.3.47)

where Ω̂0(r̂) = 1/(â ± r̂3/2) is the orbital frequency of a nonspinning particle
around Kerr, and

Ω̂1(r̂) = −3
2

√
r̂ ∓ â√

r̂(r̂3/2 ± a)2
. (3.3.48)
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Figure 3.1: Spin correction to the orbital frequency at the ISCO as a function of â for
prograde orbits (upper sign Eq. (3.3.50))

In the next chapter we will exploit the linear expansions for Ẽ, J̃ and Ω̂ to
compute the GW fluxes and the waveforms at O(σ) order.
The ISCO location can be expanded in the same way and its leading-order spin
correction reads

δr̂ISCO =
4â

r̂0
ISCO

∓ 4√
r̂0

ISCO

, (3.3.49)

where r̂0
ISCO is the (normalized) ISCO location of the Kerr metric for a nonspin-

ning secondary, which is solution to r̂2 − 6r̂ + 8âr̂1/2 − 3â2 = 0 (its analytical
expression as a function of â can be found in Ref. [168]). Using the above results,
the leading-order spin correction to the ISCO orbital frequency is

δΩ̂ISCO =
9
2


√

r̂0
ISCO ∓ â√

r̂0
ISCO

(
(r̂0

ISCO)
3/2 ± â

)2

 . (3.3.50)

This quantity is shown in Fig. 3.1 as a function of â for prograde orbits (upper
sign Eq. (3.3.50)). Note that δΩ̂ISCO > 0 for any â (being zero in the extremal
case), i.e., if the spin of the secondary is aligned to that of the primary the orbital
frequency at the ISCO is higher.



Chapter 4

GW fluxes in EMRIs with spinning
secondaries

The last ingredient needed to study the orbital evolution of EMRI with spinning
particles is given by the emission of gravitational radiation, which drives the
binary coalescence. Key to this chapter is the so-called Teukolsky formalism, which
allows to derive the scalar, vector and metric wave perturbations of the Kerr
spacetime from the solutions ψs of the Teukolsky master equation (2.2.3). As seen
in chapter 2, ψs are the linear order perturbations of geometrical scalars defined in
the Newman-Penrose formalism. All nontrivial degrees of freedom of outgoing
gravitational radiation are encoded in Ψb

4. From the latter, one can determine the
waveform observed far away from the source as well as the fluxes of energy and
angular momentum carried away by GW. Instead of solving directly the partial
differential equation (2.2.3), we consider an equivalent system of two decoupled
ordinary differential equations, known as the Teukolsky equations, obtained from
a suitable ansatz for Ψb

4. The gravitational signal is then given as a mode of sum
in the frequency domain of functions that obey the Teukolsky equations.

Since for EMRIs σ ∼ q ≪ 1 (see chapter 3), the GW flux receives a subleading
contribution from the smaller companion spin, which is O(σ) compared to lead-
ing order. Nonetheless, the spin-induced dissipative term give rise to relevant
effects on the GW phase (see chapters 1 and 5) which accumulates during the
long EMRI inspiral. To obtain waveforms accurate at 1st post-adiabatic level, it
is sufficient to compute the corrections to the fluxes at linear order in σ [54].

We present in this chapter our work on the asymptotic GW fluxes from spin-
ning secondaries in the case of circular equatorial motion with aligned spins,
published in Piovano et al [118] and Piovano et al [169]. In the former we solved
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the Teukolsky equations in the frequency domain to compute the exact fluxes
at all orders in the secondary spin. Then, we extracted the corrections at O(σ)
order to the fluxes δFσ(r̂). In the follow-up work [169] we expanded the Teukol-
sky equations in terms of σ, obtaining semi-analytic expressions F 1(r̂) for the
leading order corrections to the gravitational fluxes. This formulation represents
a novel result, and provides a major improvement upon our previous works and
approaches known in literature so far. Indeed, the corrections F 1(r̂) are crucial
to develop fast and accurate EMRI waveforms to be used to perform parameter
estimations of the secondary spin with a Fisher matrix approach. We refer the
reader to the next chapter for more information.
The Teukolsky formalism for metric perturbations is illustrated in Section 4.1,
with the original work on the spin-dependent fluxes presented in Sec. 4.2. All
technical details are available in appendices A, C and E. In Section 4.3 we outline
the computation of F 1(r̂), whereas a thorough derivation of the corrections and
of the linear expansion in σ of Teukolsky equations are shown in the appendices B
and D.
For sake of clarity, we summarize here the content of all the appendices men-
tioned above:

• Appendices A and B introduce two of three approaches employed to solve
the homogeneous radial Teukolsky equation, the Sasaki-Nakamura and the
hyperboloidal slicing coordinates methods. For both methods, we derived
novel, accurate boundary conditions in terms of recursion relations.

• Appendix. C provides a detailed computation of the generic source term of
the Teukolsky equation for spinning test-particles in bound motion.

• The thorough derivation of the linear expansion in σ of the Teukolsky
equations and GW fluxes is showed in appendix D.

• Finally, appendix E provides a comparison of the GW fluxes with results
previously obtained in literature.

4.1 GW fluxes in the Teukolsky formalism

From the partial differential equation (2.2.3), we can be obtained a set of two
decoupled ordinary differential equations by means of separation of variables in
Fourier space

ψs =
∞

∑
ℓ=2

ℓ

∑
m=−ℓ

∫ ∞

−∞
dω̂ sRℓmω̂(r̂) sS

âω̂
ℓm(θ)e

i(mϕ−ω̂t̂) . (4.1.1)
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The functions sS
âω̂
ℓm(θ) and sRℓmω̂(r̂) are the angular and radial components of ψs

respectively, in the frequency domain. We keep the helicity of the pertubation s
general, and we will specialize later on to outgoing gravitational radiation, i.e
with s = −2.

sS
âω̂
ℓm are the spin-weighted spheroidal harmonics1, which obey the angular

Teukolsky equation[
1

sin θ

d
dθ

(
sin θ

d
dθ

)
− c2 sin2 θ −

(
m + s cos θ

sin θ

)2

+

− 2cs cos θ + s + 2mc

]
sS

c
ℓm = − sλℓmω̂sS

c
ℓm , (4.1.2)

with c ≡ âω̂ and sλℓmω̂ = sEℓmω̂ − 2mc + c2 − s(s + 1) with sEℓmω̂ the separation
constant. The eigenvalues and the eigenfunctions satisfy the following identities:

sλℓm−ω̂ = sλℓ−mω̂ ,

sλℓmω̂ = −sλℓmω̂ − 2s ,

and

−2S−c
ℓ−m(θ) = (−1)ℓ+s

sS
c
ℓm(π − θ) ,

sS
c
ℓm(θ) = (−1)ℓ+m

−sS
c
ℓm(π − θ) ,

For specific values of â, ω̂ and s, the spin-weighted spheroidal harmonics and
their eigenvalues reduce to known functions:

• for either â = 0 or ω̂ = 0, sS
âω̂
ℓm(θ)e

imϕ reduces to the spin-weighted spheri-
cal harmonics with sλℓmω̂ ≡ ℓ(ℓ+ 1)− s(s + 1)

• for s = 0, sS
âω̂
ℓm(θ)e

imϕ reduces to the spheroidal harmonics [170]

• finally, for either â = 0 or ω̂ = 0 and s = 0, sS
âω̂
ℓm(θ)e

imϕ reduces to the well
known spherical harmonics with 0λℓmω̂ ≡ ℓ(ℓ+ 1)

The functions sS
c
ℓm(θ)e

imϕ are orthonormal and form complete set [171]∫
sin θdθdϕsS

c
ℓm(θ) sS

c
ℓ′m′(θ)eiϕ(m−m′) = δℓℓ′δmm′ , (4.1.3)

1Here the term “spin” refer to the helicity of the perturbation.
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The radial function sRℓmω̂(r̂) obeys the radial Teukolsky equation[
∆−s d

dr̂

(
∆s+1 d

dr̂

)
− V(r̂)

]
sRℓmω̂(r̂) = sTℓmω̂ , (4.1.4)

where the source term sTℓmω̂ is discussed below and the potential V(r̂) reads

V(r̂) = −K2 − 2is(r̂ − 1)K
∆

− 4isω̂r̂ + sλℓmω̂ , (4.1.5)

K = (r̂2 + â2)ω̂ − âm . (4.1.6)

The homogeneous radial Teukolsky equation admits two linearly independent
solutions, sRin

ℓmω̂ and sRup
ℓmω̂, with the following asymptotic values at horizon r̂+

and at infinity:

sRin
ℓmω̂ ∼

{
Btran
ℓmω̂∆−se−iκ̂r̂∗ r̂ → r̂+ ,

Bout
ℓmω̂ r̂−1−2seiω̂r̂∗ + Bin

ℓmω̂ r̂−1e−iω̂r̂∗ r̂ → ∞ ,
(4.1.7)

sRup
ℓmω̂ ∼

{
Dout

ℓmω̂eiκ̂r̂∗ + Din
ℓmω̂∆−se−iκ̂r̂∗ r̂ → r̂+ ,

Dtran
ℓmω̂ r̂−1−2seiωr̂∗ r̂ → ∞ ,

(4.1.8)

where κ̂ = ω̂ − mω̂+, r̂± = 1±
√

1 − â2, ω̂+ = â/(2r̂+), and being r̂∗ the tortoise
coordinate of the Kerr metric,

r̂∗ = r̂ +
2r̂+

r̂+ − r̂−
ln
( r̂ − r̂+

2

)
− 2r−

r+ − r̂−
ln
( r̂ − r̂−

2

)
. (4.1.9)

Through the Green function method [172], we can write the inhomogeneous
solution of radial Teukolsky equation with the correct asymptotics

sRℓmω̂(r̂) = sRup
ℓmω̂(r̂)

∫ r̂

r̂+
dr̂′ sRin

ℓmω̂(r̂
′) sTℓmω̂(r̂′)

∆2Wr̂

+ sRin
ℓmω̂(r̂)

∫ ∞

r̂
dr̂′ sRup

ℓmω̂(r̂
′) sTℓmω̂(r̂′)

∆2Wr̂
, (4.1.10)

with the constant Wronskian given by

Wr̂ ≡ ∆s+1

(
sRin

ℓmω̂

dsRup
ℓmω̂

dr̂∗
−sRup

ℓmω̂

d sRin
ℓmω̂

dr̂∗

)
= 2iω̂Bin

ℓmω̂Dtran
ℓmω̂ . (4.1.11)
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The solution is purely outgoing at infinity and purely ingoing at the horizon:

sRℓmω̂(r̂ → r̂+) = sZ∞
ℓmω̂∆−se−iκ̂r̂∗ , (4.1.12)

sRℓmω̂(r̂ → ∞) = sZH
ℓmω̂ r̂−1−2seiω̂r̂∗ , (4.1.13)

with

sZ∞
ℓmω̂ = C∞

ℓmω̂

∫ ∞

r̂+
dr̂′ sRup

ℓmω̂(r̂
′)

∆2 sTℓmω̂(r̂′) , (4.1.14)

sZH
ℓmω̂ = CH

ℓmω̂

∫ ∞

r̂+
dr̂′ sRin

ℓmω̂(r̂
′)

∆2 sTℓmω̂(r̂′) , (4.1.15)

and

CH
ℓmω̂ ≡

Dtran
ℓmω̂

Wr̂
=

1
2iω̂Bin

ℓmω

, C∞
ℓmω̂ ≡

Btran
ℓmω̂

Wr̂
=

Btran
ℓmω̂

2iω̂Bin
ℓmω̂Dtran

ℓmω̂

. (4.1.16)

The amplitudes sZH
ℓmω̂ and sZ∞

ℓmω̂ fully determine the asymptotic GW fluxes at
infinity and at the horizon. The factors Btran

ℓmω̂ and Dtran
ℓmω̂ are arbitrary, but there

are two convenient ways to fix their values, shown in sections 4.2 and 4.3. The
source term sTℓmω̂ of the radial Teukolsky equation is rather cumbersome, even
for nonspinning bodies. For generic bound orbits, the source term is given by

sZH,∞
ℓmω̂ = CH,∞

ℓmω̂

∞∫
−∞

dt̂ ei(ω̂t̂−mϕ(t̂))
sIH,∞[r̂(t̂), θ(t̂)

]
, (4.1.17)

where sIH,∞[r̂(t̂), θ(t̂)
]

is

sIH,∞[r̂(t̂), θ(t̂)
]
=

[
A0 − (A1 + B1)

d
dr̂

+ (A2 + B2)
d2

dr̂2 − B3
d3

dr̂3

+ (A2 + B2)
d2

dr̂2 − B3
d3

dr̂3

]
sRin,up

ℓmω̂

∣∣∣∣
θ=θ(t̂),r̂=r̂(t̂)

. (4.1.18)

The terms B1, B2 and B3 are due to the secondary spin components of the stress-
energy tensor. Such terms are zero for a spinless particle and highly non-linear in
σ. For the case of gravitational perturbations, the explicit form of (4.1.18) together
with related technical details are given in Appendix (C) [e.g., Eq. (C.1.51)].
We now focus on gravitational radiation, fixing s = −2 and show how to
compute the GW fluxes at infinity and the horizon of the primary. At infinity, the
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two GW polarizations are both encoded in the linear perturbation of the Weyl
scalar Ψb

4:

Ψb
4 = (r̂ − iâ cos θ)−4ψ−2 ∼ 1

2
∂2

∂t̂2

(
h+ − ih×

)
for r̂ → ∞ . (4.1.19)

Equations. (4.1.1) and (4.1.15) with s = −2 lead to the gravitational-wave signal
at r̂ → ∞

h+ − ih× ∼ −2
r̂ ∑

ℓm

∞∫
−∞

dω̂

ω̂2 −2ZH
ℓmω̂eiω̂(r̂∗−t̂)

−2Sâω̂
ℓm(ϑ)e

imφ , (4.1.20)

where ϑ is the angle between the observer’s line of sight and the spin axis of the
primary (here aligned with the z-axis), while φ ≡ ϕ(t̂ = 0).
For a circular equatorial orbit, the form of the source term greatly simplifies and,
since ϕ(t̂) = Ω̂t̂, Eq. (4.1.17) reduces to

−2ZH,∞
ℓmω̂ = 2πδ(ω̂ − mΩ̂)CH,∞

ℓmω̂ −2IH,∞(r̂0, π/2) , (4.1.21)

computed for a specific orbital radius r̂0. In this case the waveform (4.1.20)
reduces to

h+ − ih× ∼ −2
r̂ ∑

ℓm

−2ZH
ℓmω̂

(mΩ̂)2
eimΩ̂(r̂∗−t̂)

−2Sc
ℓm(ϑ)e

imφ , (4.1.22)

where for simplicity, we have redefined

−2ZH,∞
ℓmω̂ ≡ 2πCH,∞

ℓmω̂ −2IH,∞(r̂0, π/2) , (4.1.23)

The GW energy fluxes are given by(
dẼ

dÂdt̂

)∞

GW
=

1
16π

〈
(ḣ+)2 + (ḣ×)2

〉
GW

(4.1.24)

=
1

4πr̂2 ∑
ℓm

∣∣∣−2ZH,∞
ℓmω̂

∣∣∣2
(mΩ̂)2

∣∣∣−2Sâω̂
ℓm(ϑ)

∣∣∣2 , (4.1.25)

where the angle brackets here denote averaging over several wavelengths. Using
the normalization condition of the spin-weighted spheroidal harmonics (4.1.3),
the gravitational fluxes 2 are obtained by integrating the fluxes over the solid

2It is a slightly abuse of terminology common in the literature, since the correct term is
luminosities.
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angle, which yields:(
dẼ
dt̂

)∞

GW
=

∞

∑
ℓ=2

ℓ

∑
m=1

∣∣−2ZH
ℓmω̂

∣∣2
2πω̂2 =

∞

∑
ℓ=2

ℓ

∑
m=1

Iℓm , (4.1.26)

(
d J̃z

dt̂

)∞

GW
=

∞

∑
ℓ=2

ℓ

∑
m=1

m
∣∣−2ZH

ℓmω̂

∣∣2
2πω̂3 =

∞

∑
ℓ=2

ℓ

∑
m=1

m
ω̂

Iℓm , (4.1.27)

while at the horizon:(
dẼ
dt̂

)H

GW
=

∞

∑
ℓ=2

ℓ

∑
m=1

αℓm

∣∣−2Z∞
ℓmω̂

∣∣2
2πω̂2 =

∞

∑
ℓ=2

ℓ

∑
m=1

Hℓm , (4.1.28)

(
d J̃z

dt̂

)H

GW
=

∞

∑
ℓ=2

ℓ

∑
m=1

αℓm
m
∣∣−2Z∞

ℓmω̂

∣∣2
2πω̂3 =

∞

∑
ℓ=2

ℓ

∑
m=1

m
ω̂

Hℓm , (4.1.29)

where the sum over m goes for m = 1, . . . , ℓ since −2ZH,∞
ℓ−m−ω̂ = (−1)ℓ −2Z̄H,∞

ℓmω̂
and the bar denotes complex conjugation. Note that, for circular orbits, the
gravitational frequency ω is related to the orbital frequency Ω̂ as ω̂ = mΩ̂. The
coefficient αℓm are explicitly given in [173]

αℓm =
256(2r̂+)5κ̂(κ̂2 + 4ϵ2)(κ̂2 + 16ϵ2)ω̂3

|Cℓm|2

with ϵ =
√

1 − â2/(4r̂+), and

|Cℓm|2 = [(−2λℓmω̂ + 2)2 + 4âω̂ − 4â2ω̂2][−2λ2
ℓmω̂ + 36mâω̂ − 36â2ω̂2]+

+ (2 −2λℓmω̂ + 3)[96â2ω̂2 − 48mâω̂] + 144ω̂2(1 − â2) . (4.1.30)

4.2 Exact GW fluxes at all orders in the secondary
spin

We now present the results of the code developed in Ref. [118] to compute the
fluxes for a spinning body at all orders in σ. The code provide the normalized
fluxes F , defined as:

F =
1
q

[(
dẼ
dt̂

)H

GW
+

(
dẼ
dt̂

)∞

GW

]
. (4.2.1)

All fluxes were calculated in normalized units, and they were rescaled by the
mass ratio q. Fℓm denotes the flux for the harmonic indexes l and m. We remind
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that Ẽ = E/µ. Since Ė ∝ q2 to the leading order, the normalized flux F does not
depend on q. In our numerical calculations we only considered prograde orbits,
i.e. orbits for which the initial z-component of the angular momentum Lz is
positive. Once the orbital radius r̂ and the parameters â and σ are specified, the
orbital dynamics is completely determined by the energy Ẽ, angular momentum
J̃z, and frequency Ω̂ given by Eqs. (3.3.40), (3.3.41) and (3.3.39) respectively.

4.2.1 Numerical methods

We employed the numerical routines provided by the Black Hole Perturbation
Toolkit [119] to compute −2λℓmω̂, the spin-weighted spheroidal harmonics, and
their derivatives. The solutions −2Rin

ℓmω̂ and −2Rup
ℓmω̂ to the homogeneous Teukol-

sky equation were calculated in two different ways:

• through the MST method [174–176], as implemented in the MATHEMATICA
packages of the Black Hole Perturbation Toolkit [119] (see their documenta-
tion for the values of the constants Btran

ℓmω̂ and Dtran
ℓmω̂)).

• by first solving the Sasaki-Nakamura (SN) equation and then transforming
the obtained solution to −2Rin

ℓmω̂ and −2Rup
ℓmω̂ (see appendix A, which also

shows how to fix the constants Btran
ℓmω̂ and Dtran

ℓmω̂).

Both methods require arbitrary precision arithmetic, and the MST method is
usually faster and more accurate than solving directly the SN equation. Unfor-
tunately, the implementation of the MST method of [119] has one limitation:
the precision of −2Rin

ℓmω̂ and −2Rup
ℓmω̂ crucially depends on the gravitational fre-

quency mΩ̂. As mΩ̂ increases, the precision of the input parameters should
drastically increase as well, in order for the computed −2Rin

ℓmω̂ and −2Rup
ℓmω̂ to

have enough significant figures. Thus, the MST method tends to become slower
for large values of ℓ and when r̂ approaches the ISCO3 4. We, therefore, took the
best of the two methods and implemented both of them in a MATHEMATICA
code. We have checked that the methods agree with each other within numerical
accuracy in the entire parameter space considered in our analysis.
The algorithm we devised works according to the following procedure:

3For instance, let us consider a nonspinning particle at the ISCO for a Kerr BH with â = 0.9:
for ℓ = m = 2, with 35 figures in input, F is returned with 18 figures, while for ℓ = m = 20,
using 90 figures in input returns fluxes with only 9 figures of precision. The SN method, albeit
generally slower, does not have the same issue; the precision of the fluxes in output is not affected
by the gravitational frequency.

4At the time we used version 0.2.0 of the Teukolsky package, which implement the MST
method.
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• Choose the parameters â and χ;

• Loop on the harmonic index ℓ, starting with ℓ = 2 until ℓmax. We typically
used ℓmax = 20, see discussion below;

• If ℓ ≤ 8, loop on the index m = 1, . . . , ℓ starting with m = 1. For larger
values of ℓ, we only considered the m = ℓ and m = ℓ− 1, since the others
are negligibly small5;

• Loop on the values of an array of orbital radii r̂, starting from r̂start. The
starting point r̂start is calculated in such a way that all the spinning test
objects start the inspiral with the same frequency of a nonspinning object
(i.e χ = 0) at the reference value r̂ = 10.1;

• Compute the energy fluxes F , using the MST method as implemented
in [119] to obtain −2Rin

ℓmω̂ and −2Rup
ℓmω̂.

• The above point is performed within a certain precision threshold. If
the MST method fails to give the fluxes with prescribed precision (for
increasing number of figures in the input parameters; the number depends
on ℓ), switch to the SN method. To solve the SN equation, we employed
the boundary conditions described in Appendix A.1, keeping 10 and 13
terms for the series at the horizon and infinity, respectively.

• Stop the r̂ loop at the ISCO. Interpolate the fluxes in the range r̂ ∈ (r̂ISCO, r̂start);

The parameters chosen for the numerical simulations are the following:

• â = (0, 0.1, 0.2, . . . 0.9, 0.95, 0.97, 0.990, 0.995);

• χ ∈ (−2, 2) with steps δχ = 0.2;

• µ = 30M⊙ and M = 106M⊙, hence q = 3 × 10−5.

To estimate the maximum truncation errors of our code, we computed the fluxes
at the ISCO for a spinning particle with χ = 2 for ℓ = 21 and ℓ = 22 and
compared with the corresponding fluxes summed up to ℓmax = 20. Choosing
χ = 2 as a reference is just for convenience: the truncation error is practically
independent of the spin of the secondary, but it is greatly affected by â and

5When ℓ > 8, we compare the flux for m = ℓ with the flux for m = ℓ− i at the ISCO. When

Fℓℓ−i
|Fℓℓ −Fℓℓ−i|

< 10−6

for a certain i = 1, . . . , ℓ− 1, we truncate the m series.



4. GW FLUXES IN EMRIS WITH SPINNING SECONDARIES 51

by the orbital radius. In Table 4.1 we report the fractional truncation error
∆tr(F ) obtained by comparing, for χ = 2 and q = 3 × 10−5, the fluxes at the
ISCO truncated at ℓ = 20 with the fluxes including the ℓ = 21 and ℓ = 22
contributions.

â ∆tr(F )
0 3.5 × 10−11

0.3 4.5 × 10−10

0.5 3.7 × 10−9

0.8 3.4 × 10−7

0.9 3.8 × 10−6

0.97 6.1 × 10−5

0.995 5.0 × 10−4

Table 4.1: Fractional truncation error ∆tr(F ), obtained by taking χ = 2 and q = 3× 10−5

as reference. The error were estimated at the ISCO by comparing the fluxes truncated at
ℓmax = 20 with the ones truncated at ℓmax = 22.

In appendix E, we compare our results for the fluxes with previous work, overall
finding excellent agreement. Data for δFσ are available online [177] and on the
Black Hole Perturbation Toolkit webpage [119].

4.2.2 Spin corrections to the fluxes - polynomial interpolation

The GW fluxes F can be expanded at fixed orbital radius r̂ as

F (r̂, σ) = F 0(r̂) + σδFσ(r̂) +O(σ2) , (4.2.2)

where F 0 are the fluxes for a nonspinning secondary around a Kerr primary
and δFσ are the linear spin corrections. The coefficients δFσ were obtained by
fitting the fluxes F with a cubic polynomial in σ and then retaining only the
linear terms. Such fitting procedure was repeated for each value of r̂ at which
we computed the fluxes.
The top panels of Fig. 4.1 show the linear spin corrections

δFσ
ℓ =

ℓ

∑
m=−ℓ

δFσ
ℓm , (4.2.3)

for ℓ = 2, 3, 4 and summing up to all values of m such that |m| ≤ ℓ. An analogous
plot for the total flux, δFσ = ∑ℓ=2 δFσ

ℓ (summing up to ℓ = 20) is presented in
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Fig. 4.2. In the bottom panels of Fig. 4.1 we also show δFσ for fixed values of
the orbital frequency instead of r̂, since the latter is a gauge dependent quantity.
To this aim, for a given primary spin â, we considered an evenly spaced grid of
frequencies, with the same number of points for all the values of σ, such that

Ω̂(i) = Ω̂start + (i − 1)δΩ̂ , i = 1, ...100 , (4.2.4)

where δΩ̂ = (Ω̂ISCO − Ω̂start)/100. Ω̂ISCO and Ω̂start are the orbital frequencies at
the ISCO and at r̂start = 10.1 for a nonspinning particle, respectively. To compare
the fluxes at equal frequencies, Ω̂ISCO was not included in the grid. At fixed
spins, it is then possible to find a map between Ω̂ and the orbital radius r̂, which
allows to recast Eq. (4.2.2) as

F (Ω̂, σ) = F 0(Ω̂) + σδFσ(Ω̂) +O(σ2) . (4.2.5)

Note that the fluxes corrections shown in Figs. 4.1 and 4.2 are always negative
both at fixes orbital radius and frequency. Thus, a point-particle with spin aligned
to the primary spin emits less radiation compare to a spin-less point-particle
or the anti-aligned case. Moreover, the total fluxes δFσ are always monotonic,
whereas the partial fluxes δFσ

ℓ , shown in Fig. 4.1, have a nonmonothonic be-
haviour for nearly-extremal primary (â ≳ 0.99) in the proximity of the ISCO.
Indeed, near extremality, ℓ = 2 is not the dominant spin correction to the
flux [178].

Comparison with Akcay et al.

A new flux balance law relating the local changes of energy and angular mo-
mentum of a spinning particle in Kerr spacetime with the asymptotic fluxes was
recently obtained in Ref. [53]. This procedure has been applied to particles with
spin perpendicular to the orbital plane on circular orbits in the Schwarzschild
spacetime, computing the linear spin corrections to the fluxes. Table 4.2 provides
our spin corrections to the flux and the fractional difference with respect to the
sum of the spin’s contributions at horizon and infinity given in Table I of Ref. [53].
The errors show a very good agreement between the two results.
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Figure 4.1: Top panels: The spin-correction coefficient δF σ
ℓ (see Eqs. (4.2.2) and (4.2.3))

as a function of the orbital radius (up to the ISCO) for different values of the spin â of the
primary and for ℓ = 2, 3, 4 (from left to right), summing up to all values of m such that
|m| ≤ ℓ. Bottom panels: same as top row but for the fluxes as a function of the orbital
frequency. Note that, for nearly-extremal primary (â ≳ 0.99), δF σ

2 is nonmonotonic near
the ISCO, although near extremality ℓ = 2 is not the dominant spin correction to the
flux [178] and the total correction δF σ is monotonic 4.2.

r̂ δFσ ∆rel(δFσ)
10 −1.35324081460517 × 10−5 3.0 × 10−14

8 −6.28540371972 × 10−5 1.9 × 10−13

6 −5.074933017 × 10−4 2.5 × 10−11

Table 4.2: Linear spin correction to the GW flux δF σ and fractional differences ∆rel(δF σ)
with respect to the fluxes shown in Table I of Ref. [53] for â = 0.
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Figure 4.2: Left panel: The total spin-correction coefficient δF σ [see Eqs. (4.2.2)
and (4.2.3)] as a function of the orbital radius (up to the ISCO) for different values
of the spin â of the primary, summing up ℓmax = 20. Right panel: the same but for the
fluxes as a function of the orbital frequency.

4.3 Linear expansion in the secondary spin

Extracting the linear corrections to the fluxes as shown in section 4.2 is time-
consuming, because of the additional computational cost of repeating the cal-
culation of the exact fluxes for different values of σ. This numerical procedure
is likely to be too expensive for eccentric or off-equatorial orbits. Moreover, it
was shown in [53] that the GW fluxes for spinning secondaries in EMRI are valid
only at O(σ) order. Motivated by these reasons, we fully expanded the fluxes
in σ, deriving the semi-analytic expressions for first order corrections F 1(r̂) for
spins-aligned, circular equatorial motion. We outline here the expansion carried
out in [169] , whereas the appendices present more information on technical
aspects and the in-depth derivation of certain relations.
We fully expanded the fluxes by keeping the orbital radius r̂ fixed. An alternative
method, developed in Refs. [54, 179], consists in expanding the fluxes at fixed
orbital frequencies. The two methods are equivalent, and there is a unique map
between the corrections computed at fixed frequency and those computed at
fixed orbital radius.
To compute the amplitudes Iℓm (4.1.26) and Hℓm (4.1.28) to linear order in σ we
need to expand the complex amplitudes

sZH,∞
ℓmω̂ = sZH,∞

ℓmω̂(sλℓmω̂,sS
c
ℓm, sRin

ℓmω̂,sRup
ℓmω̂) , (4.3.1)

which depend on the solutions of the Teukolsky equations. To this aim, we first
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expand the solutions of the Teukolsky angular and radial equations, i.e.

sλℓmω̂ = sλ
0
ℓm(c

0) + σ sλ
1
ℓm(c

0, c1) , (4.3.2)

sS
c
ℓm(θ) = sS

0
ℓm(θ, c0) + σ sS

1
ℓm(θ, c0, c1) , (4.3.3)

sRin
ℓmω̂(r̂) = sRin,0

ℓm (r̂, ω0) + σ sRin,1
ℓm (r̂, ω̂0, ω̂1) , (4.3.4)

sRup
ℓmω̂(r̂) = sRup,0

ℓm (r̂, ω0) + σ sRup,1
ℓm (r̂, ω̂0, ω̂1) , (4.3.5)

where ω̂i = mΩ̂i, and we expanded c = c0 + σc1 +O(σ2), where ci = âω̂i with
i = 0, 1. We shall now describe the procedure we adopted to compute all the
components of Eqs. (4.3.2)-(4.3.5) as well as of Eqs. (4.1.26)-(4.1.28). All terms
in (4.3.2)-(4.3.5) were derived for generic helicity perturbation s, whereas the
linear corrections to the amplitudes sZH,∞

ℓmω̂ were computed only for gravitational
radiation, i.e s = −2.
We expanded Ẽ, J̃z and the orbital frequency Ω̂ in terms of the spin parameter,
considering linear corrections only, such that that at first order in σ:

Ẽ = Ẽ0 + σẼ1 , J̃z = J̃0
z + σ J̃1

z , Ω̂ = Ω̂0 + σΩ̂1 .

See Eqs. (3.3.43), (3.3.44) for the zeroth and first order corrections of Ẽ, respec-
tively. The terms J̃0

z and J̃1
z are given by Eqs. (3.3.45), (3.3.46) respectively, while

Ω̂0 = 1/(â ± r̂3/2) and see Eq. 3.3.48 for Ω̂1 .

4.3.1 Linearization in the secondary spin: Angular solutions

If we impose regularity of the solutions at the boundaries θ = 0 and θ = π,
which are regular singular points, Eq. (4.1.2) defines a Sturm-Liouville eigenvalue
problem. Despite being a singular Sturm-Liouville problem (see Appendix D.1),
for real frequencies, Eq. (4.1.2) retains much of the properties of a regular one. In
particular, it can be seen as an eigenvalue problem for a Hermitian operator H:

H|S⟩ = − sλℓmω̂|S⟩ , (4.3.6)

where |S⟩ ≡ sS
c
ℓm(θ) and H is the left-hand side of Eq. (4.1.2). If we expand

H, sλℓmω̂, and |S⟩ to linear order in σ, we obtain:

H0|S0⟩ = − sλ
0
ℓm(c

0)|S0⟩ , (4.3.7)

H0|S1⟩+ V1|S0⟩ = − sλ
0
ℓm(c

0)|S1⟩ − sλ
1
ℓm(c

0, c1)|S0⟩ , (4.3.8)

where sS
0
ℓm(θ, c0) ≡ |S0⟩ and sS

1
ℓm(θ, c0, c1) ≡ |S1⟩. The functional form of V1

is given in the Appendix D, while H0 is simply given by H with c ↔ c0. In
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this fashion, we can consider V1 as a perturbation of an Hermitian operator H0,
and the corrections sλ

1
ℓm(c

0, c1) induced by the spin σ can be obtained using the
same techniques of time-independent perturbation theory for a (nondegenerate)
quantum mechanical system, i.e

sλ
1
ℓm(c

0, c1) = ⟨S0|V1|S0⟩ ≡
∫ π

0 sS
0
ℓmV

1
sS

0
ℓm sin θdθ . (4.3.9)

Once the corrections to the eigenvalues sλ
1
ℓm(c

0, c1) are known, we can compute
the corrections to the eigenfunctions sS1

ℓm(θ, c0, c1) by expanding in σ the series
coefficients of the solution obtained with Leaver’s method (see Appendix D.1 for
more details). To compute the 0-th order eigenvalues sλ

0
ℓm(c

0) and eigenfunctions

sS
0
ℓm(θ, c0) of Eq. (4.1.2) we used Leaver’s method implemented in the Black Hole

Perturbation Toolkit [119].
It is worth to remark that we can always find the exact solutions of Eq. (4.1.2) for
any value of σ, and then interpolate to extract the first order correction in the spin.
However, the semi-analytic linearization approach described above provides a
powerful and fast method to avoid such numerical procedure. It may happen,
though, that in some regions of the parameter space, the input parameters
require higher precision than expected due to large numerical cancellations in
the algorithm. When the precision of the corrections obtained with the semi-
analytic method dropped below a certain threshold, we used as a “backup”
approach a simple interpolation from the exact solutions, i.e.

sλ
1
ℓm = sλℓmω̂(c0 + ϵc1)− sλℓmω̂(c0 − ϵc1)

ϵ
, (4.3.10)

sS
1
ℓm = sS

(c0+ϵc1)
ℓm − sS

(c0−ϵc1)
ℓm

ϵ
, (4.3.11)

where the exact eigenvalues sλℓmω̂(c0 + ϵc1), sλℓmω̂(c0 − ϵc1) and eigenfunctions

sS
(c0+ϵc1)
ℓm , sS

(c0−ϵc1)
ℓm of Eq. (4.1.2) were computed using the Leaver method of

the Black Hole Perturbation Toolkit with ϵ = 10−6. We have checked that the
corrections obtained with the semi-analytic method and with the numerical
interpolation agree in all the parameter space under investigation.

4.3.2 Linearization in the secondary spin: Radial solutions

Equation (4.1.4) is a stiff differential equation, i.e. the solutions of physical inter-
est are fast oscillating functions with amplitudes increasing as r̂3 at infinity. The
stiffness is caused by the long range of the potential, which makes it challenging
to obtain accurate solution in the domain of integration. Two workarounds of
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this issue are the semi-analytic Mano-Suzuki-Takasugi method [175, 176] and the
numerical Sasaki-Nakamura method [180]. Here we employed a third method,
which consists in considering a particular ansatz of the solutions of Eq. (4.1.4)
based on hyperboloidal-slicing coordinates [181] (see also Ref. [182,183] for more
details). Such ansatz is6

sRℓmω̂(r̂) = r̂−1∆−se∓iω̂r̂∗eimϕ̃
sψℓm(r̂) , (4.3.12)

when the minus (plus) sign refers to sRin
ℓmω̂ (sRup

ℓmω̂),

ϕ̃ =
â

r̂+ − r̂−
ln
( r̂ − r̂+

r̂ − r̂−

)
. (4.3.13)

By plugging the ansatz (4.3.12) in Eq. (4.1.4), we obtain an ordinary differential
equation for sψℓm:

∆2 d2
sψℓmω

dr̂2 + ∆F̃(r̂; H)
dsψℓmω

dr̂
+ Ũ(r̂; H)sψℓmω = 0 , (4.3.14)

where the functions F̃(r̂; H) and Ũ(r̂; H) are given in Appendix B. Solving
Eq. (4.3.14) numerically is much easier than solving Eq. (4.1.4) because the po-
tential Ũ(r̂; H)/∆2 is short ranged and the oscillating behavior at the horizon
and infinity is already factored out in the ansatz (4.3.12). It is worth noticing
that the oscillating term e∓iω̂r̂∗ does not enter in the Wronskian Wr̂. We found
exact boundary conditions for Eq. (4.3.14), which allowed us to find the radial
solutions sRin

ℓmω̂ and sRup
ℓmω̂ quickly and accurately. Such boundary conditions

are provided in Appendix B.1.
After expanding the ansatz (4.3.12) as shown in Appendix D.1.1,we obtained
some algebraic formulas for sRin,1

ℓm and sRup,1
ℓm that depend on the linear correc-

tions sψ
in,0
ℓm , sψ

in,1
ℓm and sψ

up,0
ℓm , sψ

up,1
ℓm . We computed such solutions by solving a

system of ordinary differential equations derived by expanding Eq. (4.3.14) and
the related boundary conditions to O(σ). See Appendix D.1.1 for more details.

4.3.3 Linearization in the secondary spin: GW fluxes

Once the zeroth- and first-order corrections to the Teukolski variables are known,
it is then possible to expand the complex amplitudes −2ZH,∞

ℓmω̂ as

−2ZH
ℓmω̂(r̂) = −2ZH,0

ℓm (r̂, ω0) + σ −2ZH,1
ℓm (r̂, ω̂0, ω̂1) , (4.3.15)

−2Z∞
ℓmω̂(r̂) = −2Z∞,0

ℓm (r̂, ω0) + σ −2Z∞,1
ℓm (r̂, ω̂0, ω̂1) , (4.3.16)

6The original ansatz used in [181] [their Eq. (13)] has wrong signs in some factors.
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and finally obtain the correction to the fluxes at the horizon and infinity for each
ℓ, m as follows:

Iℓm(r̂) = I0
ℓm(r̂, ω0) + σI1

ℓm(r̂, ω̂0, ω̂1) , (4.3.17)

Hℓm(r̂) = H0
ℓm(r̂, ω0) + σH1

ℓm(r̂, ω̂0, ω̂1) , (4.3.18)

where Iℓm and Hℓm have been defined in Eqs. (4.1.26) and (4.1.28), respectively.
The coefficients I0

ℓm, I1
ℓm and H0

ℓm, H1
ℓm are given in Appendix D.1.2.

4.3.4 Numerical methods

To compute the fluxes, we constructed a nonuniform grid in the orbital radius r̂
defined as follows: given v(r̂) ≡ (Ω̂0)1/3 = (r̂3/2 + â)−1/3, we considered 180
points for a < 0.99 and 200 points for a = 0.99 evenly spaced in v, starting from
vstart = v(14) and ending at vend = v(r̂ISCO), with r̂ISCO being the ISCO for a
nonspinning test particle. The radiation reaction grid in r̂ was then obtained as
the solution of r̂i = (1/v3

i − â)−2/3 for i = 1, . . . 180 (200) for â < 0.99 (â = 0.99).
In the computation of the fluxes, we summed over all multipoles ℓ up to ℓmax =
20 (ℓmax = 24) for a < 0.99 (a = 0.99), summing over the index m = 1, . . . , ℓ for
each harmonic index ℓ. As shown in Table 4.1, the fractional error in truncating
the multipole sum at ℓmax is no larger than ∼ 10−5. All the fluxes were calculated
for prograde stable orbits.

4.3.5 Results

As seen in section 4.2, the linear corrections δFσ to the fluxes in a Kerr spacetime
were computed through a cubic interpolation of the exact fluxes in σ. In order
to compare with the semianalytic linear corrections F 1, we recomputed δFσ as
done in Ref. [118] with the following differences:

• we solved the radial Teukolsky equation in hyperboloidal slicing coordi-
nates, using the same radiation-reaction grid adopted here;

• for each ℓ, we summed over all azimuthal indexes m = 1, . . . , ℓ.

The fractional difference between δFσ and F 1 is, at most, 10−10% (10−4%) for
â = 0.9 (â = 0.99) (the largest differences occurring at the ISCO), as also shown in
Fig. 4.3 for â = 0.99. Finally, we compared the linearized fluxes with the results
available in the literature. In the case of a Schwarzschild spacetime, our results
are in perfect agreement with those of Ref. [53] (they agree within all the digits
shown in Table I of [53]).
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Figure 4.3: Percentage fractional difference between δF σ and F 1 for a primary with
spin â = 0.99.



Chapter 5

Parameter estimation of the
secondary spin with fully-relativistic
waveforms

Our goal in this chapter is to quantify the impact of the secondary spin on the
gravitational wave signal and assess its detectability though LISA observations.
As done in the previous chapters, we consider spin (anti-)aligned and quasi
circular equatorial motion. We use the term “quasi” since the motion of the
spinning particle evolve through a sequence of circular orbits. In the adiabatic
approximation, the evolution of the orbital elements caused by radiation emis-
sion depends solely on the asymptotic fluxes, which are related to the local rate
of change of the would-be constants of motion by flux-balance laws. We can
compute the asymptotic fluxes with the Teukolsky formalism (which from now
on we refer to as Teukolsky fluxes), while the gravitational waveform emitted by
a test-particle is given by Eq. (4.1.22). This dissipative approach to the inspiral
based on the Teukolsky formalism is computationally efficient compared to the
calculation of the local self-force and it avoids altogether all related issues with
the divergences at the worldline of the particle [50, 120].

Modeling the inspiral adiabatically is sufficient for our purposes, due to the
dissipative nature of the leading order contribution of the secondary spin to
the GW phase. However, it is worth to remark that the adiabatic approxima-
tion completely ignores conservative effects, which may accumulate during the
EMRI inspiral providing significant changes to the signal. Moreover, we neglect
dissipative terms due to second order metric perturbations, which may also play
an important role to avoid systematic effects for realistic parameter estimations,
especially for EMRIs detected with large signal to noise ratios.
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A precise assessment of the detectability of the secondary spin by future in-
terferometers would require a statistical analysis based on Bayesian inference.
However, parameter estimation for EMRIs is a challenging and still open prob-
lem [33, 47], due to the complexity and the slow generation of EMRI waveforms
computed using BH perturbation theory. Moreover, the parameter space for
EMRIs is rather large [114]: even assuming the system can be modeled within
GR already yields seventeen parameters to be constrained. Markov Chain Monte
Carlo (MCMC) algorithms are the standard approach to reconstruct the posterior
probability of such parameters, but they require waveforms to be generated in
few milliseconds to cover the entire parameter space in a reasonable time. A
single Teukolsky waveform for the Kerr spacetime take from several minutes to
many hours to be computed, depending on the orbital configuration considered.
In practice, almost all parameter-estimation studies done so far made use of
approximated – but fast to generate – kludge waveforms [33, 112–117]. In fact,
techniques to generate fast and fully relativistic EMRI waveforms have started to
be developed only recently [48,49,184,185], but so far fully Bayesian studies with
these waveforms have only been done for a nonspinning secondary in eccentric
orbits around a Schwarzschild SMBH [48].

We can get a crude estimate on the impact of systematic errors on gravitational
signals by looking at the phase difference between two waveforms, which we
refer to as “dephasing”. This method provides a “quick and dirty” way to
evaluate the detectability of certain parametesr before performing an accurate but
time-consuming analysis. In Refs. [118,186], we estimated the measurability of χ
by using as a requirement that the total dephasing is ≳ 1 rad. Such threshold in
considered large enough to substantially impact a matched-filter search, leading
to a significant loss of detected events [187].
An analysis based on the dephasing is simplistic, and must be validated by a
more careful study, which includes accurate waveform models and a statistical
analysis that can account for correlations among the parameters. In this regard,
an alternative strategy to full MCMC methods to compute the posterior of the
EMRI parameters consists in using a Fisher matrix approach, which is valid for
sufficiently high signal-to-noise ratios [188]. In this framework, the probability
distribution of the binary parameters is approximated by a multivariate Gaussian
distribution, whose covariance is given as the inverse of the Fisher matrix. The
latter in turn depends on the derivatives of the GW template with respect to the
source parameters, e.g. masses, spins, distance.

Previous work [112, 113] computed Fisher-matrix errors using numerical
kludge waveforms including corrections due to the spin of the SCO. Their results
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suggest that LISA will be unable to constrain the magnitude of the secondary
spin for systems with mass ratios q ≲ 10−4. Since the SCO spin introduces a
nonnegligible dephasing [118, 186], its unmeasurability can be probably related
to correlations with the rest of the waveform parameters.
The main purpose of our work [169] was to study whether these conclusions
hold when considering more accurate (albeit much slower to generate) Teukolsky
waveforms. Indeed, it is known that using kludge waveforms may lead to large
systematic errors when performing parameter estimation [48].

This chapter is structured as follows: section 5.1 illustrates the flux balance
laws and evolution equations for a quasi-circular, equatorial inspiral. Some
technical issues related to the secondary spin are discussed, together with the
linearized in σ set of equations for the evolution of the orbital radius r̂ and
azimuthal phase ϕ. In section 5.2, we present our analysis on the measurability
of the secondary spin based on dephasing, carried out in our work Piovano et
al. [118] and Piovano et al. [186]. We first computed the GW phase at all order
in σ, extracting the linear-in-spin contribution to the GW phase δΦσ

GW, which
represent a novel result. Using these corrections, we provided a criterion, based
on the dephasing, for the minimal value for the secondary spin, resolvable by
LISA. We then discussed in detail how this approach can foster theory-agnostic
tests on the Kerr bound and constraints on superspinar based on EMRI detections.
Finally, in section 5.3, we present our parameter estimation based on the Fisher
matrix approach, supplied by fully-relativistic Teukolsky waveforms, originally
shown in Piovano et al. [169]. Appendix F provides a technical discussion on the
numerical stability and convergence of the Fisher and covariance matrices.

5.1 Quasi-circular, equatorial inspiral

5.1.1 Radiation-reaction effects and balance laws

We study radiation-reaction effects within the adiabatic approximation, already
described in chapter 1. For circular, equatorial orbits, this approximation holds
as long as

2π

Ω̂
≪ r̂

∣∣∣∣dr̂
dt̂

∣∣∣∣−1

. (5.1.1)

At the adiabatic order, changes to the mass terms µ and M and to the spin â
are smaller than the leading-order dissipative terms [58]. The change to the
primary mass and spin due to GW absorption at the horizon formally enter at
the next-to-leading order, although with a small coefficient [189].
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Thus, for a nonspinning object on an equatorial orbit around a Kerr BH

dE
dt

= Ω
dLz

dt
. (5.1.2)

In the adiabatic approximation, the following balance equations hold:(
dE
dt

)
GW

= −
〈

dE
dt

〉
,

(
dLz

dt

)
GW

= −
〈

dLz

dt

〉
, (5.1.3)

where the brackets denote time-averaging over a time length much longer than
the time evolution of the orbital parameters but shorter than the radiation time
scales. The gravitational energy and angular momentum fluxes include both
the contribution at infinity and at the event horizon, and are calculated by
averaging over several wavelengths. Equation (5.1.1) breaks down at the onset
of the inspiral/plunge transition region, where the adiabatic approximation is
no longer valid (see Ref. [190] and Refs. [191, 192] for a discussion on this topic).
Nonetheless, the difference between the ISCO frequency and the transition
frequency scales as q2/5 ≪ 1. Thus, for a typical EMRI, Eq. (5.1.1) is valid for
almost all the inspiral prior to plunge.
For a spinning particle in Kerr, there is an extra degree of freedom related to
the spin of the small object. In general, the evolution of the constants of motion
can also depend on the secondary spin evolution. However, it was recently
shown that the evolution of the E and Jz are formally the same as those above
to first order in σ [53]. On the other hand, the evolution of the spin tensor Sµν

depends on local metric perturbations and not only on asymptotic fluxes [53].
This evolution determines that of the particle 4-velocity through Eq. (3.2.12).
However, as shown in Eq. (3.2.19), the spin tensor evolves at O(q) and it affects
the particle acceleration to higher order in the mass ratio. Likewise, the effect of
the secondary spin on the adiabatic changes to M and â is subleading. Thus – for
what concerns the leading-order spin corrections to the dynamics – the evolution
of the binary masses and spins can be neglected.
It remains to prove that the equation

dẼ
dt̂

= Ω̂
d J̃z

dt̂
, (5.1.4)

holds for a spinning object with the above assumptions. Using the chain rule,
Eq. (5.1.4) is equivalent to

Ω̂ =
∂Ẽ
∂r̂

(
∂ J̃z

∂r̂

)−1

. (5.1.5)



5. PARAMETER ESTIMATION OF THE SECONDARY SPIN WITH
FULLY-RELATIVISTIC WAVEFORMS 64

and by plugging into this Eqs. (3.3.39)–(3.3.41), it is straightforward to see that the
previous relation is satisfied in our case at all order in σ. This is the generalization
of Eq. (20) in Ref. [193], which derived an equivalent formula in the case of a non-
spinning SCO. In Ref. [99], the authors considered circular orbits for a spinning
particle moving slightly off the equatorial plane by a quantity O(σ), and they
showed in a similar manner that Eq. (5.1.4) is valid to O(σ).
Noteworthy, the above argument assumes that circular orbits for a spinning
particle remains circular under radiation reaction, i.e. that Eq. (5.1.4) remains
valid throughout the adiabatic inspiral. In other words, one needs to prove
that an initial circular orbit for a spinning particle does not become slightly
eccentric during inspiral due to backreaction effects, following the same pro-
cedure of Refs. [193, 194] in the case of a nonspinning secondary. In princi-
ple, given a circular geodesic, small perturbations induced by the spin can
induce eccentricity [195] or push the orbit off the equatorial plane for not aligned
spins [196, 197]. Nevertheless, we shall assume that a circular orbit remains
circular under radiation-reaction effects even when the SCO is spinning. Here
we just note that, under the assumption that the secondary spin remains constant,
it is self-consistent to use Eq. (5.1.4), as also shown in Ref. [99].
Let us now consider the normalized fluxes (4.2.1). It is possible to calculate the
adiabatic evolution of the orbital radius r̂(t̂) and phase Φ(t̂) due to radiation
losses as follows (see also Eq. (1.2.30)):

dr̂
dt̂

= −qF (r̂)
(

dẼ
dr̂

)−1 dΦ
dt̂

= Ω̂(r̂(t̂)) , (5.1.6)

with Ẽ given by Eq. (3.3.40). In Ref. [118, 186], we employed Eq. (5.1.6) to model
the adiabatic inspiral using the exact fluxes F at linear order in the spin. For
our Fisher matrix analysis, we adopted a different approach. In the framework
of [169] (shown in the previous chapter), the energy fluxes are expanded in σ at
fixed spins â and orbital radius r̂, with

F (r̂, Ω̂) = F 0(r̂, Ω̂0) + σF 1(r̂, Ω̂0, Ω̂1) , (5.1.7)

Let us define

G(r̂, Ω̂) :=
(

dẼ
dr̂

)−1

F (r̂, Ω̂) , (5.1.8)
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then, at first order in σ

G(r̂, Ω̂) = G0(r̂, Ω̂0) + σG1(r̂, Ω̂0, Ω̂1) , (5.1.9)

G0 =

(
dẼ0

dr̂

)−1

F 0 , (5.1.10)

G1 =

(
dẼ0

dr̂

)−1

F 1 −
(

dẼ0

dr̂

)−2(dẼ1

dr̂

)
F 0 , (5.1.11)

which yield for the time evolution of the orbital radius

dr̂
dt̂

= −G0(r̂, Ω̂0)− σG1(r̂, Ω̂0, Ω̂1) . (5.1.12)

Finally, at first order in σ the orbital phase is given by

dϕ

dt̂
= Ω̂0(r̂) + σΩ̂1(r̂) . (5.1.13)

Solving Eqs. (5.1.12) and (5.1.13) and linearizing them in σ one can obtain r̂(t̂)
and ϕ(t̂) to O(σ).

5.2 Detectability of the secondary spin based on de-
phasing

We saw in chapter 3 that in the extreme-mass-ratio limit, an extended body can
be approximated as a point-particle endowed with multipoles. Only the first two
multipoles are needed to model EMRIs within first-post adiabatic accuracy. In
the pole-dipole approximation, all extended bodies are treated as spinning point-
particle regardless of their internal structure, shape and size. Hence, all objects
with the same mass and spin evolve in the same way. An EMRI detection would
allow to place constraint on the spin of the secondary in a model-independent
fashion, without assuming any property of the secondary other than its mass and
spin. This feature offers the unique opportunity to perform theory-agnostic tests
of the Kerr bound (5.2.6) |χ| ≤ 1 and, in particular, to probe the existence of more
exotic families of compact objects like superspinars [198], which exceed the Kerr
bound, and were suggested to arise generically in high-energy modifications to
GR such as string theories [198].

As we mention earlier, measuring the binary parameters from an EMRI signal
is challenging and rather computationally expensive, especially when employing
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Teukolsky waveforms. We will illustrate in the next section our parameter
estimation of the secondary spin with a Fisher matrix approach, carried out
in Ref. [169]. As we shall see later on, a Fisher matrix analysis for EMRIs is
plagued by several numerical and computational issues, despite being much
easier compared to a full-fledged Bayesian analysis with MCMC. It is then useful
to have a crude estimate of the detectability of a certain physical effect before
performing an in-depth but time-consuming analysis.
In this section we present a back-on-the-envelop calculation of the minimum
resolvable χ, shown in Refs. [118, 186]. We first cover our original results for
the computation of linear-spin contribution to the GW phase δΦσ. Using these
corrections, we obtained a crude estimate of the resolution on χ achievable
by LISA by computing the uncertainty on χ which would lead to a total GW
dephasing ≈ 1 rad. A larger dephasing would substantially impact a matched-
filter search, leading to a significant loss of detected events and potentially
to systematics in the parameter estimation [187]. Finally, we illustrate how
a measurement of the secondary spin by LISA could potentially put model-
independent constraints on superspinars.

Before presenting our results, we remind here that the specific spin of the
secondary, defined as χ = S/µ2, with S the secondary spin and µ its mass,
is analog to the specific spin of the primary â = Sprim/M2, with Sprim the
primary spin. If the secondary is a Kerr BH, then |χ| ≤ 1. For the fastest
millisecond pulsars, χ ≈ 0.3. However, χ can be much larger than unity for
other objects. For example, a ball of radius 1 cm and mass 1 kg making one
rotation per second has χ ≈ 1 × 1017. Astrophysical objects do not reach such
extreme values, but can have χ ≫ 1 [199]. For example, χ ≈ 140 for Earth,
and χ ≈ 10 for the fastest white dwarfs in accreting binary systems. The above
reference values are shown in Fig. 5.3 by horizontal lines. Owing to the mass
ratio dependence, for an EMRI |σ| ≪ 1 even when χ is very large, since it is
sufficient that |χ| ≪ 1/q ∼ (104 − 107). Therefore, it is possible to linearize the
dynamics to O(σ) even when χ is large.

5.2.1 Spin corrections to GW phase

Having computed the fluxes, we can now proceed to determine the adiabatic
orbital evolution and the orbital phase by solving Eqs. (5.1.6). We considered
an inspiral starting at r̂ = r̂start. We remind that the starting point rstart was
chosen such that the initial orbital frequency is the same as in the case of a
nonspinning particle at the reference value r = 10.1M. Ideally, one would like
to evolve the inspiral up to the ISCO. However, since the latter depends on
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σ, so it does the duration of the inspiral, also for a fixed value of â. It would
therefore be complicated to compare the phase evolution for different spins of
the secondary. Thus, we chose1 to evolve the inspiral up to a reference end time
tref = tend − 1/2 day, where tend is the time to reach the ISCO for a nonspinning
secondary for a given value of â. The offset of 1/2 day is chosen so that the
evolution stops before the ISCO for any value of â and χ. By integrating the
system (5.1.6), we can obtain the instantaneous orbital phase Φ(t), which can be
expanded as

Φ(t) = Φ0(t) +
σ

q
δΦσ(t) +O(σ2/q) , (5.2.1)

where Φ0(t) is the phase for a nonspinning secondary and δΦσ(t) is the change
due to the O(σ) contribution. Note that, since σ = qχ, the linear spin correction
is independent of q to the leading order, and it is therefore suppressed by a
factor q relative to Φ0(t) = O(1/q). The coefficients δΦσ(t) were obtained by
interpolating Φ(t)− Φ0(t) with a cubic polynomial in χ as follows

Φ(t)− Φ0(t) = a0 + χa1 + qχ2a2 + q2χ3a3 , (5.2.2)

where ai are the fit coefficients, with a0 ≈ 0. The reported values of a1 ≡ δΦσ(t)
are robust against the truncation order of the fit. The orbital phase Φ(t) is then
related to the GW phase of the dominant mode by ΦGW(t) = 2Φ(t). The GW
phase as a function of time is shown in Fig. 5.1 for various values of â. Figure 5.2
also shows the phase difference ΦGW(tref) − Φ0

GW(tref) computed at tref as a
function of the spin χ, showing that it is linear to excellent accuracy. Although
we only present the range |χ| ≤ 2, the phase difference is linear provided |σ| ≪ 1,
i.e. |χ| ≪ 1/q, as expected.
The values of δΦσ

GW(tref) (i.e., the slope of the lines shown in Fig. 5.2) for different
values of â are given in Table 5.1. We fitted these data with two different fits. The
first one is

δΦσ
GW(tref) =

3

∑
i=0

bi(1 − â2)i/2 + b4 â , (5.2.3)

where b0 = 38.44, b1 = −90.36, b2 = 99.43, b3 = −44.95, b4 = 1.91. This fit is
accurate within 5% in the whole range â ∈ [0, 0.995], with better accuracy at large
â. The second fit is

δΦσ
GW(tref) =

{
∑3

i=0 di âi â ≤ 0.7
∑3

i=0 ei(1 − â2)i/2 0.7 ≤ â < 0.995
, (5.2.4)

1A more rigorous choice is to determine the end of the evolution for each binary as the onset
of the transition region where the adiabatic approximation breaks down [190–192]. However,
since the latter depends on the secondary spin, a choice of a reference time tref equal for all values
of σ would still be required. In our parameter estimation shown in the next section, we stopped
the inspiral at the onset of the transition region for non-spinning test-particles.
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Figure 5.1: Spin correction, δΦσ
GW(t), to the instantaneous GW phase [cf. Eq. (5.2.1)] as

a function of time up to the ISCO for different values of the spin â of the primary. The
inset shows the spin correction, δΦσ

GW(tref), to the total accumulated phase. The dashed
colored curve shows the fit (5.2.3). We assumed µ = 30M⊙ and M = 106M⊙ as reference
values. Note that in general δΦσ

GW(tref) < 0, i.e. when χ > 0 the inspiral lasts longer.

â δΦσ
GW(tref)[rad] ∆χ

0 -2.416 -0.414
0.1 -2.962 -0.338
0.2 -3.606 -0.277
0.3 -4.367 -0.229
0.4 -5.277 -0.189
0.5 -6.379 -0.157
0.6 -7.748 -0.129
0.7 -9.522 -0.105
0.8 -12.013 -0.0832
0.9 -16.215 -0.0617

0.95 -20.328 -0.0492
0.97 -23.271 -0.0430
0.990 -29.201 -0.0342
0.995 -32.570 -0.0307

Table 5.1: Spin corrections to the phase δΦσ
GW(tref) and its inverse (which gives the

resolution on a measurement of χ according to criterion (5.2.5) with α = 1) for different
values of â.
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where d0 = −2.40, d1 = −5.70, d2 = 0.13, d3 = −9.25, and e0 = −41.42,
e1/e0 = −2.49, e2/e0 = 3.30, e3/e0 = −2.47. This piecewise fit is accurate within
1% in the whole range â ∈ [0, 0.995].
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Figure 5.2: Phase difference ΦGW(tref)−Φ0
GW(tref) between a spinning and nonspinning

secondary as a function of χ, calculated at tref = tend − 1/2 day, where tend is the time
to reach the ISCO for a nonspinning secondary. Note that the curves are linear to an
excellent accuracy, showing that ΦGW(tref)− Φ0

GW(tref) ∝ χ.

Finally, we note that the order of magnitude of our dephasing is consistent
with previous results that used approximated waveforms. In particular, our
dephasing is compatible with the results of Refs. [41, 112] that used “kludge”
waveforms, and it agrees within a factor ≈ 2, with the results of Ref. [109], which
used effective-one-body waveforms to model the EMRI signal.

5.2.2 Minimum resolvable spin of the secondary

Let us now suppose that the EMRI masses, the spin of the primary BH â, and
the other waveform parameters except χ are known2, i.e we consider two wave-
forms which differ only by the value of the spin of the secondary, χA and χB,
respectively. The minimum difference ∆χ = χB − χA which would lead to a

2As we shall see later on, the primary mass and spin and the secondary mass are the pa-
rameters that can be constrained with the tightest accuracy by EMRI observations. See also
Refs. [33, 41, 112]
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difference in phase larger than α radiant is

|∆χ| > α

|δΦσ
GW| . (5.2.5)

The critical value is shown in the last column of Table 5.1 as a function of the
primary spin â and assuming the 1-radiant condition, i.e. α = 1. For a reference
value â = 0.7 (â = 0.9) with α = 1 [187], we obtain |∆χ| > 0.1 (|∆χ| > 0.05).
Thus, our simplified analysis shows that EMRIs can provide a measurement of
the spin of the secondary at the level of 5 − 10% for fast spinning primaries.
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Figure 5.3: Resolution |∆χ| on a GW measurement of the spin of the EMRI secondary
obtained saturating the criterion (5.2.5). A measured GW dephasing at the level of α rad
would probe the region above each curve. As a reference, we mark with horizontal lines
some typical values of χ for astrophysical objects. Our analysis is valid for χ ≪ 1/q ≈
3 × 104 (continuous horizontal red line).

Figure 5.3 shows the minimum resolution |∆χ| [obtained saturating Eq. (5.2.5)]
as a function of the primary spin. For each chosen value of α, the area above the
corresponding curve identifies binary configurations producing a measurable
dephasing according to our simplified analysis. In other words, the spin χ of a
secondary can be measured with a relative error |∆χ|/χ.
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5.2.3 Model-independent constraints on“superspinars”

Some basic relativistic effects associated with BHs remain elusive and have not
been yet tested directly. Arguably the most striking one is the fact that, within GR,
a BH with mass µ can spin only below a critical value of the angular momentum
S,

|S| ≤ Smax ≡ Gµ2

c
≈ 2 × 1044

(
µ

15M⊙

)2

kg m2/s , (5.2.6)

above which a naked singularity would appear. Indeed, the unique stationary
solution to GR in vacuum is the Kerr metric, which is regular outside an event
horizon only if the above “Kerr bound” is fulfilled. Therefore, any evidence
of |S| > Smax in a compact object would imply either the presence of matter
fields (e.g., compact stars can theoretical exceed the Kerr bound) or a departure
from GR. High-energy modifications to GR such as string theories can resolve
curvature singularities, making the Kerr bound superfluous. Indeed, in these
theories compact objects violating the bound (5.2.6) – so-called superspinars –
arise generically [198]. A representative example is the large class of regular
microstate geometries in supergravity theories (e.g. [200–204]). These solutions
have the same asymptotic metric of a Kerr BH, and their deviations in the
near-horizon region are suppressed by powers of MP/µ ≪ 1, where MP is the
Planck mass. Therefore, besides the possible violation of the Kerr bound and its
consequences (e.g. for the accretion efficiency of compact objects [198]), these
solutions are practically indistinguishable from a BH (see Ref. [205] for a review).
In this context, testing the bound (5.2.6) provides a model-independent way to test
GR and high-energy extensions thereof.

However, testing the Kerr bound is very challenging [21, 205–208]. The stan-
dard route is to interpret observations in various contexts assuming the Kerr
metric and look for inconsistencies in explaining the data. This strategy is not
optimal as one would wish to compare the Kerr case with some alternative and
perform Bayesian model selection. The latter option is however hampered by the
fact that the geometry of spinning BHs beyond GR [207] – or of spinning extreme
compact objects without a horizon [205] (such as boson stars) – is known only
perturbatively or numerically [209–218]. Furthermore, regardless of the technical
difficulties, any analysis based on a specific model or theory would be limited
to that specific case, whereas performing a model-independent test of the Kerr
bound (5.2.6) would be much more profitable.

In this section, we show that many of the above issues can be resolved with
tests based on EMRIs, which are also model independent to a large extend.
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Remarkably, EMRIs allow to devise tests which do not require any assumption
on the specific properties of the secondary other than specifying its multipole
moments. This is a great advantage to study generic (and arguably vague)
proposals such as the superspinar one. In order to test the Kerr bound (5.2.6) we
studied the EMRI evolution in which the secondary is assumed to be either a
Kerr BH, which fulfills the constraint |χ| ≤ 1, or an extreme compact object [205]
that can violate such a bounde.
Our results of Fig. 5.3 and Table 5.1 show that the typical resolution on χ achiev-
able with an EMRI detection can be used to rule out (or detect) superspinars in a
large region of the parameter space [186]. For reference values χ ≈ â ≈ 0.7, the
accuracy is approximately 15%, which would exclude χ > 1 at 3σ confidence
level. Indeed, since |χA| ≤ 1 for a Kerr BH, an accuracy at the level of (say)
|∆χ| > 0.1 allows us to distinguish a Kerr BH from another fast spinning object
provided the spin of the latter is |χB| ≳ 1 + |∆χ| ≈ 1.1. In Fig. 5.3 we show the
exclusion plot for the spin of a superspinar obtained using the criterion (5.2.5)
and under the most conservative assumption, χA = 1, as a function of the
spin â of the primary. We consider different values for the dephasing threshold
α. For the standard choice of α = 1 rad, our results suggest that it should be
possible to exclude/probe the range |χB| > 1.4 (|χB| > 1.05) for nonspinning
(highly-spinning) primaries. Since no theoretical upper bound is expected for
superspinars (other, possibly, than those coming from the ergoregion instabil-
ity [219–222]) a spin measurement at this level can potentially probe a vast region
of the parameter space for these objects.

One might argue that, while clearly incompatible with the secondary being a
Kerr BH, a putative EMRI measurement of |χ| > 1 could still be compatible with
the secondary being a neutron star or a white dwarf. Given that neutron stars
and white dwarfs have masses in the narrow range µ ∼ (1 − 2)M⊙, an EMRI
measurement of µ larger than 3M⊙ (resp. ∼ 1.4M⊙) would exclude a standard
origin for the superspinar, as a neutron star (resp. a white dwarf). Similarly,
no compact object spinning above the Kerr bound is know with µ ≪ M⊙.
Furthermore, even in the case in which µ ∈ (1, 2)M⊙, the spin of an isolated
compact star is expected to be significantly smaller than the Kerr bound. As
a reference, the spin of the fastest pulsar known to date is χ ≈ 0.3 [223]. Out
of 340 observations of millisecond pulsars in the ATNF Pulsar Database [224],
⟨χ⟩ = 0.11± 0.04, suggesting that |χ| > 1 would be very unlikely. Isolated white
dwarfs have comparable values of χ. The fastest spinning white dwarf to date
has χ ≈ 10, but it is strongly accreting from a binary companion [225]. Less
compact objects, such as brown dwarfs, might also have spin larger then the
Kerr bound, but can be easily distinguishable from exotic superspinars, as they
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are tidally disrupted much before reaching the ISCO3.

Finally, in the context of our analysis one could wonder whether it is theo-
retically consistent to study a secondary superspinar around a primary Kerr
BH. This is indeed the case in two scenarios (see Ref. [205] for a review): a) if
superspinars arise within GR in the presence of exotic matter fields, in such case
both Kerr BHs and superspinars can co-exist in the spectrum of solutions of the
theory; b) if superspinars arise in high-energy modified theories of gravity such
as string theories, as originally proposed [198]. In the latter case it is natural to
expect that high-energy corrections which are relevant for the secondary might
be negligible for the primary. Indeed, in an effective-field-theory approach high-
energy corrections to GR modify the Einstein-Hilbert action with the inclusion
of higher-order curvature terms of the form [21, 207]

R + ... + β(Rabcd)
n + ... , n > 1 (5.2.7)

where R is the Ricci scalar, Rabcd schematically denotes terms that depend on the
Riemann tensor, and β is a coupling constant with dimensions of a (length)2(n−1).
In these theories relative corrections to the metric of a compact object of size ∼ L
are of the order of [226]

β

L2(n−1)
, (5.2.8)

or some power thereof. Thus, the difference between the high-curvature correc-
tions of the secondary relative to those of the primary scales as

∼ M2(n−1)

µ2(n−1)
= q2(1−n) ≫ 1 . (5.2.9)

This heuristically shows the obvious fact that in an EMRI the SCO is much
more affected by the high-curvature corrections than the primary, especially for
high-order terms (i.e., higher values of n).
In certain high-curvature modifications to GR, the secondary might also be
charged under new fundamental fields, in which case there is also extra emission
(in particular there could be dipolar, ℓ = 1, fluxes) [37,40,227]. We neglected extra
radiation channels and considered only the standard GW emission in GR. The
motivation for this choice is twofold: (i) superspinars can also arise within GR in
the presence of exotic matter fields, in which case our analysis is exact; (ii) in the

3As a reference, the critical tidal-disruption radius is of the order Rt ∼ Mq2/3/C, where
C = µ/R is the compactness of the secondary with radius R. For a typical brown dwarf
C ∼ 10−6, and Rt ∼ 100M for q ∼ 10−6. In general, objects less compact than white dwarfs are
tidally disrupted at low frequency and can be distinguished on this ground.
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context of supergravity and string theories, putative extra degrees of freedom are
expected to be extremely heavy and therefore do not propagate at the frequency
of an EMRI. Thus, corrections to the dissipative sector are also negligible. At
any rate, extra putative dissipative channels (e.g. due to massless degrees of
freedom) can be straightforwardly accommodated within our framework.

5.3 Parameter estimation analysis

In section 5.2, we showed that the effect of the secondary spin can contribute to
more than 1 rad dephasing, therefore suggesting that it could provide detectable
effects. However, such a simplified analysis neglects possible correlations be-
tween the waveform parameters that might hamper their measurability, espe-
cially for subleading terms. In order to gain a deeper insight on the detectability
of the SCO spin we performed a Fisher matrix analysis. As a first step, we
illustrate the gravitational waveform emitted by an EMRI and the corresponding
response of the LISA detector to such signal. Then, we briefly introduce the
Fisher information matrix, along with the numerical setup adopted. Finally, we
present the results of our parameter estimation analysis.
Throughout the remaining of the chapter, repeated indices does not intend
summation.

5.3.1 Waveform computation

The emitted waveform in the Teukolsky formalism is given by ( see Eq. (4.1.22))

h+ − ih× = 2
µ

D ∑
ℓ,m

Aℓmω̂(t)sS
c
ℓm(ϑ, t)e−iΦ(t) , (5.3.1)

Φ(t) = mϕ(t) + m(φ + ϕ0) , (5.3.2)

where ϕ0 is the initial orbital phase, Aℓmω̂ ≡ ẐH
ℓmω̂/ω̂2, and ẐH

ℓmω̂ = M2ZH
ℓmω̂.

D is the source’s luminosity distance from the detector4, and (ϑ, φ) identify
the direction, in Boyer-Lindquist coordinates, of the latter in a reference frame
centered at the source. Since ϕ0 in Eq. (5.3.1) is degenerate with the azimuth
direction φ, from now on we will identify the initial phase as ϕ0 → φ + ϕ0. From

4In this detector frame configuration, the component masses in Eq. (5.3.1) are rescaled with
respect to the source-frame quantities by the redshift factor (1 + z).
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Eq. (5.3.1) it is straightforward to get the two waveform polarizations

h+ℓm = 2
µ

D sS
c
ℓm(ReAℓmω̂ cos Φ + ImAℓmω̂ sin Φ) , (5.3.3)

h×ℓm = 2
µ

D sS
c
ℓm(ReAℓmω̂ sin Φ − ImAℓmω̂ cos Φ) , (5.3.4)

being ReAℓmω̂ and ImAℓmω̂ the real and imaginary parts of Aℓmω̂. In the pres-
ence of the secondary spin, we expand the amplitudes Aℓmω̂ = A0

ℓm(ω̂
0) +

σA1
ℓm(ω̂

0, ω̂1) +O(σ2), where

A0
ℓm =

ẐH,0
ℓmω̂

(ω̂0)2 , (5.3.5)

A1
ℓm = −2

ω̂1

ω̂0A
0
ℓm +

ẐH,1
ℓmω̂

(ω̂0)2 . (5.3.6)

Therefore, we recast the two polarizations as:

h+ℓm = 2
µ

D
(
−2S0

ℓm + σ−2S1
ℓm
)

A+
ℓm , (5.3.7)

h×ℓm = 2
µ

D
(
−2S0

ℓm + σ−2S1
ℓm
)

A×
ℓm , (5.3.8)

with

A+
ℓm = Re

(
A0

ℓm + σA1
ℓm
)
cos Φ + Im

(
A0

ℓm + σA1
ℓm
)
sin Φ , (5.3.9)

A×
ℓm = Re

(
A0

ℓm + σA1
ℓm
)
sin Φ − Im

(
A0

ℓm + σA1
ℓm
)
cos Φ . (5.3.10)

The LISA response to the GW signal emitted by an EMRI can be written in terms
of the +,× polarizations as

hα(t) = F+
α (ϑD,φD, Ψ)h+(t, D, ϑ, φ) + F×

α (ϑD, φD, Ψ)h×(t, D, ϑ, φ) , (5.3.11)

where α = I, I I refers to the two independent Michelson-like detectors that
constitute the LISA response [228]. The antenna pattern functions5 F+

α and F×
α

depend on the direction (ϑD, φD) of the source with respect to the detector’s
frame and on the polarization angle Ψ [112]:

F+
I =

1
2
(1 + cos2 ϑD) cos(2φD) cos(2Ψ)− cos ϑD sin(2φD) sin(2Ψ) , (5.3.12)

F×
I =

1
2
(1 + cos2 ϑD) cos(2φD) sin(2Ψ) + cos ϑD sin(2φD) cos(2Ψ) , (5.3.13)

5For simplicity, we assume that F+,× are constant within the frequency range sampled by the
binary configurations considered. However, for values of f larger than f∗ = 19.1 mHz, LISA’s
antenna pattern functions also depend on the GW frequency [229].
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where F+,×
I I can be obtained by rotating φD in the previous expressions by −π/4,

i.e. F+,×
I I (ϑD, φD, ψ) = F+,×

I (ϑD, φD − π/4, ψ).
Given the LISA satellite motion, such angles are not constant but vary with time.
However it is possible to recast (ϑD, φD, Ψ) in terms of fixed angles (ϑS, φS) and
(ϑK, φK) which provide the direction of the source and of the orbital angular
momentum (which for equatorial orbits coincides with the direction of the
primary spin) in a heliocentric reference frame attached with the ecliptic [41].
The same applies to the polar angle ϑ in the signal (5.3.1):

cos ϑ = cos ϑS cos ϑK + sin ϑS sin ϑK cos(φS − φK) . (5.3.14)

Finally, we also include the effect of the Doppler modulation by introducing an
offset in the phase

Φ(t) → Φ(t) +
ω̂R
M

sin ϑS cos[2π(t/TLISA)− φS] , (5.3.15)

where R = 1AU and TLISA = 1 yr is LISA’s orbital period [112].
We have considered T = 1 yr observation time, ending the orbital evolution
at the onset of the transition region as defined in [190], i.e. at r̂ISCO + δr̂ with
δr̂ = 4q2/5. We have chosen δr̂ by setting X = 1 and R0 = 4 in Eq. (3.20) of [190]
for all the configurations analysed. In general, δr̂ ∼ γq2/5 with γ ∼ O(1), and
we checked that the Fisher matrices computed below are unaffected by the
specific value of γ, since the signal-to-noise ratio (SNR) accumulated around the
transition region is negligible.

5.3.2 Fisher matrix analysis for EMRI waveforms

The GW signal emitted by an EMRI with a spinning secondary, moving on the
equatorial plane with spin (anti-)aligned to the z-axis, is completely specified by
eleven parameters x⃗ = {x⃗I, x⃗E}: (i) five intrinsic parameters x⃗I = (ln µ, ln M, â, χ,
and r̂0) and (ii) six extrinsic parametersx⃗E = (ϕ0, ϑS, φS, ϑK, φK, ln D), where
we remind that: (M, µ) are the mass components, (â, χ) are the primary and
secondary spin parameters, (ϕ0, r̂0) define the binary initial phase and orbital
radius, and D is the source luminosity distance. The four angles (ϑS, φS) and
(ϑK, φK) correspond to the colatitude and the azimuth of the source sky position
and of the orbital angular momentum, respectively [41]. Since the orbit is circular
and equatorial, the orbital angular momentum has no precession around the
primary spin, and the orbital and primary angular momenta are parallel to each
other.
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In the limit of large SNR, the errors on the source parameters inferred by a given
EMRI observation can be determined using the Fisher information matrix:

Γij = ∑
α=I,I I

(
dh̃α

dxi

∣∣∣∣dh̃α

dxj

)
x⃗=x⃗0

, (5.3.16)

where x⃗0 corresponds to the true set of binary parameters, and we have intro-
duced the noise-weighted scalar product between two waveforms pα and qα in
the frequency domain:

(pα|qα) = 2
∫ fmax

fmin

d f
Sn( f )

[ p̃∗α( f )q̃α( f ) + p̃α( f )q̃∗α( f )] . (5.3.17)

Here the tilded quantities correspond to the Fourier transform of the time-
domain waveforms, and a star identifies complex conjugation. We used Simp-
son’s integration rule to compute the scalar product. As discussed in the previous
section, the index α runs over the two independent channels of the LISA inter-
ferometer. In our computations we set fmin = 10−4 Hz, while we choose fmax as

fmax =
ℓmax

2π

1
M

[
Ω̂0(r̂ISCO) + σΩ̂1(r̂ISCO)

]
, (5.3.18)

where r̂ISCO is the ISCO for a nonspinning test particle and ℓmax the maximum
harmonic index ℓ considered for a given system. Following the Shannon theorem,
for the sampling time we used ∆ts = ⌊1/(2 fmax) − 1⌋ while the number of
samples ns = T/∆ts is adjusted to be an even number for a more efficient
computation of the fast Fourier transform. As discussed before, for all systems
the binary evolves for T = 1 yr before the plunge, so the frequency content of
the signal is smaller than the range [ fmin, fmax].
The waveform scalar product also allows us to define the optimal SNR for a
given signal h as

SNR = (h|h)1/2 , (5.3.19)

which scales linearly with the inverse of the luminosity distance. Furthermore,
in the large-SNR limit the covariance matrix scales inversely with the SNR so, for
a given set of parameters, it is straightforward to rescale the errors by changing
the distance D (and hence the SNR).
The inverse of Γij yields the covariance matrix, Σij, whose diagonal elements
correspond to the statistical uncertainties of the waveform parameters,

σ2
xi
= Σii ≥ (Γ−1)ii , (5.3.20)

whereas the off-diagonal elements correspond to the correlation coefficients,

cxixj = Σij/
√

ΣiiΣjj . (5.3.21)
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Hereafter we consider two data-analysis scenarios, depending on whether we
also include a prior probability functions on the spin of the SCO or not. We follow
the approach described in [230], assuming for the prior a Gaussian distribution
p0(χ) with standard deviation σχ = 1. Given Γ0 the Fisher matrix of the prior
(which in our case has all vanishing elements except for the diagonal term
corresponding to the secondary spin, with (Γ0)χχ = 1/σχ), the new errors on the
source parameters are obtained by modifying Eq. (5.3.20) as

σ2
xi
= [(Γ + Γ0)

−1]ii . (5.3.22)

We notice that the matrix Γ0 is independent of the distance D, therefore when
including a prior, the error on χ does not, in general, scale inversely with the
SNR.
In addition to the standard deviations on the eleven parameters defined above,
we also analyze the error box on the solid angle spanned by the unit vector
associated to (ϑS, φS) and (ϑK, φK):

∆Ωi = 2π| sin ϑi|
√

σ2
ϑi

σ2
φi
− Σ2

ϑi φi
. (5.3.23)

where i = (S, K).
From a technical point of view, the fact that the EMRI waveform is known
numerically implies that, to compute the Fisher matrix, one needs to evaluate
numerical derivatives. Apart from the derivative with respect to the luminosity
distance D (which can be obtained analytically since the waveform scales as
h ∼ 1/D), we have computed the derivatives of the other ten parameters using
the five-points stencil formula, namely:

dh
dx

=
1

12ϵ
[h(x − 2ϵ)− h(x + 2ϵ) + 8h(x + ϵ)− 8h(x − ϵ)] +O(ϵ4) . (5.3.24)

The numerical derivative is sensitive to the value of the shift ϵ chosen to compute
the finite differences. We have explored various combinations of ϵ for each
parameter, finding in general a range of at least two orders of magnitude in
which the Fisher (and the covariance) matrices show convergence in the small-ϵ
limit (see Appendix F for a detailed analysis).
It is well known that the Fisher matrices used for the data-analysis of EMRIs are
badly ill-conditioned [188], which means that a small perturbation in the matrix
(due to numerical or systematic errors) is greatly amplified after computing the
inverse. As a rule of thumb, for a condition number6 κ = 10k, one may lose up
to k digits of accuracy, which should be added to the numerical errors.

6For a symmetric, positive-definite matrix, the condition number κ is given by the ratio
between the largest and the smallest of the matrix eigenvalues.
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In our setup, an accurate inversion of the Fisher matrix requires at least 60-digit
precision in the waveform in most of the configurations, and in the worst case
(namely â = 0.9, χ = 1, µ = 10, 100M⊙), up to 90-digit precision.
To achieve such precision in the waveform, we have computed the GW fluxes
with 70-digit precision (100-digit precision in the most demanding case), which
allowed us to derive the Fisher matrices with no less than 38-digit precision. In
Appendix F we provide a detailed analysis of the stability of the Fisher matrices
for the problem at hand.

5.3.3 Settings

We have computed the numerical integral in Eq. (5.3.17) using the LISA noise
spectral density curve (PSD) of Ref. [229], including the contribution of the
confusion noise from the unresolved Galactic binaries assuming T = 1 yr of
observation time. The PSD analytic fit for the detector noise consists of two
parts: the instrumental and the confusion noise produced by unresolved galactic
binaries, i.e.

Sn( f ) = SIns
n ( f ) + SWDN

n ( f ) . (5.3.25)

where

SIns
n ( f ) = A1

[
POMS + 2(1 + cos2( f / f⋆))

Pacc

(2π f )4

](
1 +

6
10

f 2

f 2
⋆

)
,

A1 = 10
3L2 , L = 2.5Gm, f⋆ = 19.09mHz, while

POMS = (1.5 × 10−11m2

[
1 +

(
2mHz

f

)4
]

Hz−1 ,

PACC = (3 × 10−15ms−2)2

[
1 +

(
0.4mHz

f

)2
] [

1 +
(

f
8mHz

)4
]

Hz−1 .

For the white dwarf contribution

SWDN
n = A2 f−7/3e− f α+β f sin(κ f )[1 + tanh(γ( fk − f ))] Hz−1 ,

with the amplitude A2 = 9 × 10−45, and the coefficients

(α, β, κ, γ, fk) = (0.171, 292, 1020, 1680, 0.00215) .

The PSD, taken from Ref. [231], is shown in Fig. 5.4.
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Figure 5.4: Noise spectral density for LISA as a function of the frequency, with and
without the confusion noise produced by unresolved galactic white dwarf binaries
(WDN). Picture taken from Ref. [231]

In order to reduce the spectral leakage in the frequency domain due to the
Fourier transform, we have tapered the time-domain waveforms h(t = i∆t) for
i = 0, . . . ns − 1 with a Tukey window w[n] with window size β = 0.05.

w[n] =


sin
[

nπ
β(1−N)

]2
0 ≤ n ≤ β(N−1)

2 ,

1 β(N−1)
2 ≤ n ≤ (N − 1)(1 − β

2 ) ,

sin
[
(1+n−N)π

β(1−N)

]2
(N − 1)(1 − β

2 ) ≤ n ≤ N − 1 .

We checked that our results do not change noticeably when varying β around
this fiducial value.
For simplicity, in our analysis we fix the injected angles to the fiducial values
ϑS = π/4, ϕS = 0, ϑK = π/8, ϕK = 0. Moreover, we consider a primary mass
M = 106M⊙, and two choices of the secondary mass: µ = (10, 100)M⊙. We
compute the Fisher matrices for sources at fixed luminosity distance D = 1 Gpc,
but renormalize the results to a fixed fiducial SNR such that SNR = 30 and
SNR = 150, for the two choices of µ, respectively.
In order to analyze how the inclusion of higher-order (ℓ ≥ 2) multipoles in
the signal (5.3.11) may affect the measurement of the source parameters, in the
following we consider the purely quadrupolar case (ℓ = 2), and the cases in
which the octupole (ℓ = 3) and the hexadecapole (ℓ = 4) are included.
Finally, we shall discuss two cases separately: (i) in Sec. 5.3.4 we neglect the
spin of the secondary (i.e., removing χ from the waveform parameters); (ii) in
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Sec. 5.3.5 we perform a more comprehensive analysis by including also the SCO
spin.
Before presenting our results for the parameter estimation with the Fisher matrix,
we report as reference in Tab. 5.2 the GW dephasing δϕGW between a spinning
particle with χ = 1 and a non-spinning particle for the cases considered in
section 5.3.5, Tables 5.5 and 5.7.

µ/M⊙ â δϕGW[rad]

10
0 1.06

0.9 2.38
0.99 3.48

100 0.9 5.48
0.99 6.47

Table 5.2: GW dephasing δϕGW between a spinning particle with χ = 1 and a non-
spinning particle for the cases considered in Tables 5.5 and 5.7. The GW phase difference
is computed for the dominant ℓ = 2 mode, i.e ϕGW(t) = 2ϕ(t) at r̂ISCO + δr̂.

5.3.4 Results: Neglecting the spin of the secondary

We start by neglecting the secondary spin χ from the waveform parameters. Our
results are summarized in Table 5.3 and Table 5.4. The former shows results
when the spin â is removed from the waveform parameters, and assume that
both the primary and the secondary are nonspinning. In Table 5.4 instead, we
include the spin of the primary as a parameter, injecting â = 0.9 but keeping all
other parameters unchanged with respect to the injection of Table 5.3 (except
for r̂0, since the latter changes in order for the binary to take exactly T = 1 yr to
reach the ISCO).
For ℓ = 2, our results are in very good agreement with the analysis of [112, 113]
which used approximated kludge waveforms. Being the latter analytical, the
Fisher-matrix analysis is significantly faster than in our case. It is therefore reas-
suring that a fully-relativistic, numerical waveform provides the same results.
Furthermore, we find that including the octupole (ℓ = 3) contribution to the
signal does not affect the measurement errors on the intrinsic parameters, but
it improves the errors on the luminosity distance and on the solid angle which
defines the orbital angular momentum (∆ΩK) by one order and two orders of
magnitude, respectively. Adding the ℓ = 4 multipole does not improve such
errors significantly, suggesting that ℓ > 4 multipoles are negligible for this
purpose.
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As expected, increasing the dimensionality of the waveform parameter space by
including the primary spin, reduces the accuracy on the intrinsic parameters,
especially the masses. This happens despite the fact that the ISCO frequency
is higher for a rapidly-spinning BH, since we chose to normalize the results to
the same SNR. For sources at a fixed distance, the SNR in the â = 0.9 case is
four times larger than in the nonspinning case, almost compensating the higher
dimensionality of the parameter space.
Overall, all parameters are measured with exquisite accuracy, confirming previ-
ous analyses that used approximated semi-relativistic waveforms [33,41,112,113].

ℓ ln M ln µ r̂0 ϕ0 ln D ∆ΩS ∆ΩK
2 -4.62 -4.19 -4.96 0.54 -0.27 3.1 × 10−3 1.5

2+3 -4.64 -4.22 -4.97 -0.66 -1.46 2.4 × 10−3 7.9 × 10−3

2+3+4 -4.64 -4.22 -4.97 -0.67 -1.46 2.4 × 10−3 7.3 × 10−3

Table 5.3: Errors on the intrinsic source parameters, on the luminosity distance, and
on the solid angles which define the orientation and the orbital angular momentum of
the binary, for various choices of the multipoles included in the waveform. Both EMRI
components are nonspinning (â = χ = 0), with M = 106M⊙ and µ = 10M⊙. We neglect
the spin parameters of both binary components (â and χ) in the waveform. The SNR
for the three configurations (D = 1 Gpc) is SNR = (22.2, 24.8, 25.2), but the errors are all
normalized to the fiducial value SNR = 30. For clarity, we present the log10 of the errors
on ln M, ln µ, r̂0, ϕ0, and ln D. For example, an entry “−4" for ln M (r̂0) means that the
relative (absolute) error on M (r̂0) is 10−4.

ℓ ln M ln µ â r̂0 ϕ0 ln D ∆ΩS ∆ΩK
2 -3.24 -3.53 -4.15 -4.45 0.48 -0.33 7.9 × 10−4 2.5

2+3 -3.25 -3.54 -4.16 -4.46 -0.52 -1.34 7.3 × 10−4 1.3 × 10−2

2+3+4 -3.25 -3.55 -4.16 -4.46 -0.53 -1.35 7.2 × 10−4 1.1 × 10−2

Table 5.4: Same as Table 5.3 but assuming a spinning primary with â = 0.9 and
including â in the waveform parameters. In this case the SNR of the three configurations
is SNR = 92.2, 94.7, 95, but we again normalize the errors to the fiducial value SNR = 30.

5.3.5 Results: Including the spin of the secondary

We now move to a more comprehensive analysis, by including the secondary
spin in the waveform parameters. We shall present two cases: with and without
imposing a Gaussian prior on χ. We start by neglecting the spin of the primary
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in the waveform parameters and injecting â = 0. The results of the Fisher-matrix
error analysis are presented in Tables 5.5 and 5.6, which are the extension of
Table 5.3 to the case of a spinning secondary.

ℓ prior ln M ln µ χ r̂0 ϕ0
2 no -2.95 -3.66 2.51 -4.18 0.55

yes -4.62 -4.19 -0.13 -4.96 0.55
2+3 no -2.97 -3.67 2.50 -4.19 -0.64

yes -4.63 -4.22 -0.082 -4.97 -0.66
2+3+4 no -2.97 -3.67 2.50 -4.19 -0.65

yes -4.63 -4.22 -0.076 -4.97 -0.67

Table 5.5: Same as Table 5.3 but including a spinning secondary with χ = 1 and also
considering the case in which a Gaussian prior on χ (with σχ = 1) is enforced.

ℓ prior ln D ∆ΩS ∆ΩK
2 no -0.27 4.4 × 10−3 1.6

yes -0.27 3.1 × 10−3 1.5
2+3 no -1.46 3.8 × 10−3 8.6 × 10−3

yes -1.46 2.4 × 10−3 7.9 × 10−3

2+3+4 no -1.46 3.7 × 10−3 7.9 × 10−3

yes -1.46 2.4 × 10−3 7.3 × 10−3

Table 5.6: Same as Table 5.3 but including a spinning secondary with χ = 1 and also
considering the case in which a Gaussian prior on χ (with σχ = 1) is enforced. Here we
show the error on the distance and sky localization ∆ΩS and ∆ΩK on the primary spin
and source, respectively

By comparing Tables 5.5, 5.6 with Table 5.3 we observe some interesting features.
First of all, in the case in which a prior on the secondary spin is not imposed
the relative error on χ is around 30000%, confirming that this parameter is not
measurable [112, 113]. Nonetheless, in this case the errors on both masses deteri-
orate significantly (albeit they remain excellent in absolute terms). This issue is
due to nonnegligible correlations between χ and the masses. Indeed, we find
that all the intrinsic parameters are strongly correlated with χ. The correlation
(in absolute value) is typically ≈ 0.99 and never less than 0.95. Therefore, large
variations in χ as those shown in Table 5.5 can correlate with a small change in
the total mass or in the mass ratio.
This issue can be fixed by imposing a prior on the secondary spin, in such
a way that also its errors cannot become too large. As shown in Table 5.5,
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imposing a Gaussian prior on χ with standard deviation σχ = 1 reduces the
errors on this parameter, but the confidence interval is as large as the prior range,
again confirming that this parameter is not measurable. (In other words, the
measurement errors are dominated by the priors.) Nonetheless, adding a prior
on χ restores the accuracy in the measurements of the other intrinsic parameters,
which become very similar to the case in which χ is neglected in the waveform
(compare Table 5.5 with prior to Table 5.3). We also find that, including a prior
on χ, the correlations between χ and the other parameters are much smaller.
From Table 5.6 we also observe that the role of ℓ > 2 multipoles is not affected
by the secondary spin: also in this case the inclusion of the ℓ = 3 multipole
improves the errors on the distance and on the orbital angular momentum solid
angle by one and two orders of magnitude, respectively.
Finally, we are now in a position to present the complete analysis by including
both the spin of the primary and of the secondary. A summary of our results are
presented in Table 5.7 for the cases with â = 0.9 and â = 0.99, and considering
both µ = 10M⊙ and µ = 100M⊙. In this analysis we only include the quadrupole
(ℓ = 2) since anyway the higher multipoles do not affect the errors on the intrinsic
parameters.

ãinjected µ/M⊙ prior ln M ln µ â χ r̂0 ϕ0

0.9
10 no -2.26 -2.41 -2.66 2.85 -3.88 0.48

yes -3.24 -3.53 -4.14 0.48 -4.45 0.48

100 no -2.20 -2.39 -2.78 1.66 -4.14 -0.015
yes -3.30 -3.52 -4.32 0.064 -4.93 -0.024

0.99
10 no -2.81 -2.96 -4.55 1.98 -3.89 0.47

yes -3.51 -3.76 -4.67 0.52 -4.32 0.47

100 no -2.14 -2.33 -3.39 1.21 -3.75 -0.12
yes -3.01 -3.22 -4.03 0.11 -4.50 -0.12

Table 5.7: Fisher-matrix errors on the EMRI parameters including both binary compo-
nents spin in the waveform and including a spinning SCO with χ = 1. We include only
the quadrupole (ℓ = 2) in the signal and consider two choices of the mass ratios and
two values of the SMBH spin, with and without imposing a Gaussian prior on χ. In
these configurations, the SNR for µ = 10M⊙(100M⊙) is SNR = 92.2 (SNR = 174) when
â = 0.9 and SNR = 100 (SNR = 195) when â = 0.99. However, also in this table the
results have been rescaled to have SNR = 30 (SNR = 150) when µ = 10M⊙(100M⊙),
regardless of the primary spin.

In this general case we observe the same features of the previous analyses. In
particular, the secondary spin is not measurable but its inclusion can significantly
deteriorate the accuracy in the measurements of the masses, unless a prior on
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χ is enforced. Even in an extreme case (â = 0.99, µ = 100M⊙) the relative error
on χ is larger than 100% for SNR < 2433. We find again that including the SCO
spin with a prior yields the same errors as in the case in which χ is neglected in
the waveform parameters.
Strictly speaking, it is not possible to rescale the covariance matrix of the posterior
by a fiducial SNR when a prior is introduced because Γ0 does not depend on
the distance D. However, since the error on χ is largely dominated by the prior,
our numerical results are practically unaffected for the fiducial SNRs we used.
Finally, it is worth noticing that, by rescaling only the likelihood covariance
matrix, the posterior variance of χ would remain close to the prior variance even
if the fiducial SNR were to be increased.



Chapter 6

Conclusions and outlook

My research focused on the extreme-mass-ratio inspiral of a spinning test-particle
in Kerr spacetime, providing original contributions to source modeling and
parameter estimation for the forthcoming LISA observatory. I summarize the
main results of my work in the following.

• Using the Teukolsky formalism, I computed the GW fluxes of a spin-
ning point particle on circular, equatorial motion with spins (anti-)aligned
around the Kerr background. My computations included all linear and
higher order terms in σ due to the secondary spin. I then expanded the
GW fluxes in σ, recovering the linear order corrections with two methods:
(i) numerically, with polynomial fitting and (ii) with a semi-analytically
approach based on fully-linearized Teukolsky equations. Both methods
are novel for the Kerr spacetime and agreed with previous results in the
literature for Schwarzschild BH primaries. My work also provided original,
technical results for the orbital dynamics of spinning particles on equato-
rial orbits, and for the solutions of the Teukolsky equations, specifically a
new exact formulation of the source term for spinning particles, and new
accurate boundary conditions for the numerical integration.

• My second contribution concerns the detectability of the EMRIs secondary
spin by future space-borne detectors. I focused on circular equatorial
motion around a Kerr BH and evolved the adiabatic inspiral through
the asymptotic GW fluxes that include spin-induced corrections at all
order in σ. I then numerically extracted the post-adiabatic contributions to
the dominant GW phase at O(σ) . Such terms represent novel results in
literature. I derived a criterion for the minimum spin of the SCO resolvable
by LISA based on the phase difference between waveforms that describe
spinning and spinless particles. This method suggests that the secondary
spin is potentially measurable at 5 − 25% level of accuracy, depending on
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its magnitude, as well as on the value of the intrinsic angular momentum
of the primary.

I showed that measuring the spin of SCO could test the nature of the
secondary in a theory-agnostic fashion. Indeed, the EMRI dynamics de-
pends only on the first two multipoles of the secondary, its mass and
spins, whereas the contribution of higher order multipoles is expected to
be negligible. In particular, I demonstrated that an EMRI detection could
potentially distinguish whether the SCO is a fast spinning BH or a slowly-
spinning neutron star, or whether the SCO satisfies the Kerr bound or is a
superspinar.

In a follow-up study, I improved upon my previous analysis by perform-
ing an accurate parameter estimation of the secondary spin with a Fisher
matrix approach. I computed the waveform with the Teukolsky formalism
to leading order in an adiabatic expansion, taking into account the mo-
tion of the LISA constellation, higher harmonics, and also including the
leading correction from the spin of the SCO in the post-adiabatic approxi-
mation. I employed accurate asymptotic fluxes with semi-analytic linear
order corrections to the secondary. This parameter estimation is the first
to employ full-relativistic Teukolsky-based waveforms including LISA’s
antenna pattern functions on a Kerr background.

My analysis confirmed the results of Refs. [112, 113] which, using approx-
imated waveforms, found that the spin of a SCO for EMRIs with (anti-
)aligned spins on quasi-circular orbits is not measurable, although it pro-
duces a non-negligible dephasing. This is due to correlations that exist
between the secondary spin and the other intrinsic parameters.

Because of these correlations, even if the secondary spin is not measur-
able, its inclusion in the waveform model can deteriorate the accuracy on
the measurements of other parameters by orders of magnitude, unless
a physically-motivated prior on the SCO spin is imposed. In the latter
case, I found that the Fisher-matrix errors are identical to those obtained
neglecting the secondary spin in the waveform parameters. This further
suggests that, for the orbital configurations I have considered, the spin of a
SCO in EMRIs can be neglected for parameter estimation.

Finally, I found that including higher harmonics in the GW signal improves
the errors on the luminosity distance by an order of magnitude and those on
the binary orbital angular-momentum angles by two orders of magnitude,
relative to the quadrupole-only case. This is particularly relevant to identify
the environment where EMRIs form [232, 233], for possible applications
of multi-messenger astronomy with EMRIs [234] and for prospects to use
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EMRIs as standard sirens [235].

The work done in this thesis can be extended/improved in several ways.

• An obvious extension of my work is to consider eccentricity and nonequa-
torial orbits, as well as spin misalignment (which introduce precession [94,
99, 236]). When the test-particle move away from the equatorial plane,
the spins of the binary can not stay aligned, hence spin-precession oc-
curs, which may break the degeneracies of the secondary spin with other
parameters.

However, the MPD equations are challenging to solve for generic motion
since a spinning particle in Kerr background is a non-integrable dynamical
system, and chaotic motion may ensue [57, 163, 199]. Nonetheless, given
the fact that σ ≪ 1 in EMRI, it is sufficient to consider the linear-in-spin
approximation of the MPD equations, which are simpler. At least for
the Tulczyjew-Dixon supplementary spin condition, integrability approx-
imately holds at O(σ) thanks to approximate conserved quantities [56].
Being non separable, the spin-perturbed equations of motion for the trajec-
tories remain still difficult to solve [237].

Furthermore, the lack of a Carter constant for spinning particles poses
conceptual problems for the adiabatic evolution of off-equatorial orbits.
A Carter-like constant conserved at O(σ) order still exists [161, 162], but
there are no rigorous flux-balance law for this approximately conserved
quantity [53].

• Finally, my analysis did not include all the next-to-leading order terms in
an adiabatic expansion, in particular it lacks the leading-order conservative
self-force corrections [54,55,95,104] and the dissipative corrections sourced
by second order metric perturbations [76, 77]. A complete account of dissi-
pative effects in the case of a spinning SCO would also require to consider
the spin evolution due to self-force effects, which is a more challenging
problem [53]. It would be interesting to include all the aforementioned
post-adiabatic terms and study how these affect the detectability of the
smaller companion spin. Indeed, given the fact that the secondary spin
is a small effect, a faithful measurement requires having all first-order
post-adiabatic effects under control.

A complete model of a spinning particle in EMRI is one of the key deliverables
of the LISA Science Working Groups. My work constitutes an important part of
this on-going program aimed to study gravitational waveforms with spinning
SCO in Kerr for generic orbits, spin orientation [238] and including self-force
effects [54].



Appendix A

Sasaki-Nakamura equation

In this and in the following appendix we provide further technical details on
the formalisms that we use in chapter 4, section 4.2 to compute the GW fluxes.
The homogeneous Teukolsky equation is an example of stiff differential problem,
with the solutions (4.1.7)-(4.1.8) rapidly diverging at infinity due to the long-
range character of the potential. High accuracy solutions require therefore time-
consuming numerical integrations. A substantial improvement in this direction
has been achieved by Sasaki and Nakamura, finding a suitable transformation
which maps the homogeneous Teukolsky equation to an equivalent form with
a short-range potential that is easier to solve numerically [180]. The original
form of the Sasaki-Nakamura (SN) equation, which we use here, is valid only
for gravitational perturbation with helicity s = −2. Later on it was generalize to
scalar and vector radiation in Ref. [239]. The SN equation is given by (we remind
that hatted quantities are dimensionless)[

f (r̂)2 d2

dr̂2 + f (r̂)
(

d f (r̂)
dr̂

− F(r̂)
)

d
dr̂

− U(r̂)
]

Xℓmω̂ = 0 , (A.0.1)

with f (r̂) = dr̂
dr̂∗ = ∆

r̂2+â2 . The coefficient F(r̂) is defined as

F(r̂) =
η(r̂),r̂

η(r̂)
∆

r̂2 + â2 , (A.0.2)

where ,r̂ denotes the derivative with respect to r̂ and

η(r̂) = c0 +
c1

r̂
+

c2

r̂2 +
c3

r̂3 +
c4

r̂4 , (A.0.3)
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with

c0 = −12iω̂ + −2λℓmω̂(−2λℓmω̂ + 2)− 12âω̂(âω̂ − m) , (A.0.4)
c1 = 8iâ[3âω̂ − −2λℓmω̂(âω̂ − m)] , (A.0.5)

c2 = −24iâ(âω̂ − m) + 12â2[1 − 2(âω̂ − m)2] , (A.0.6)

c3 = 24iâ3(âω̂ − m)− 24â2 , (A.0.7)

c4 = 12â4 . (A.0.8)

The function U(r̂) in Eq. (A.0.1) reads

U(r̂) =
∆U1(r̂)

(r̂2 + â2)2 + G(r̂)2 +
∆G(r̂),r̂

r̂2 + â2 − F(r̂)G(r̂) , (A.0.9)

where

G(r̂) = −2(r̂ − 1)
r̂2 + â2 +

r̂∆
(r̂2 + â2)2 , (A.0.10)

U1(r̂) = V(r̂) +
∆2

β

[(
2α +

β,r̂

∆

)
,r̂
− η(r̂),r̂

η(r̂)

(
α +

β,r̂

∆

)]
, (A.0.11)

α = −iK(r̂)
β

∆2 + 3iK(r̂),r̂ + −2λℓmω̂ +
6∆
r̂2 , (A.0.12)

β = 2∆
[
− iK(r̂) + r̂ − 1 − 2∆

r̂

]
. (A.0.13)

The two functions K(r̂) and V(r̂) are the same introduced for the Teukolsky
radial equation (4.1.4).
The SN equation admits two linearly independent solutions, Xin

ℓmω̂ and Xup
ℓmω̂,

which behave asymptotically as

Xin
ℓmω̂ ∼

{
e−iκ̂r̂∗ r̂ → r̂+
Aout
ℓmω̂eiω̂r̂∗ + Ain

ℓmω̂e−iω̂r̂∗ r̂ → ∞
, (A.0.14)

Xup
ℓmω̂ ∼

{
Cout
ℓmω̂eiκ̂r̂∗ + Cin

ℓmω̂e−iκ̂r̂∗ r → r+
eiω̂r̂∗ r̂ → ∞

. (A.0.15)

The solutions of the Teukolsky and SN equations are related by:

Rin,up
ℓmω̂ (r̂) =

1
η

[(
α +

β,r̂

∆

)
Yin,up
ℓmω̂ − β

∆
Yin,up
ℓmω̂ ,r̂

]
, (A.0.16)

Yin,up
ℓmω̂ =

∆√
r̂2 + â2

Xin,up
ℓmω̂ . (A.0.17)
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With the above normalization of the solutions Xin
ℓmω̂ Xup

ℓmω̂, these transformations
allow to fix the arbitrary constants Dtran

ℓmω̂ and Btran
ℓmω [cf. Eq. (4.1.16)] as [172]:

Dtran
ℓmω̂ = −4ω̂2

c0
, Btran

ℓmω̂ =
1

dℓmω̂
, (A.0.18)

where

dℓmω̂ = 4
√

2r̂+[(2 − 6iω̂ − 4ω̂2)r̂2
+ + (3iâm − 4 + 4âmω̂ + 6iω̂)r̂+

− â2m2 − 3iâm + 2] , (A.0.19)

and the coefficient c0 is given in Eq. (A.0.4).
The numerical values of Xin

ℓmω̂ (resp. Xup
ℓmω̂) are obtained by integrating Eq. (A.0.1)

from r̂+ (resp. infinity) up to infinity (resp. r̂+) using the boundary condi-
tions (A.0.14) (resp. (A.0.15)). In this work we have derived the boundary condi-
tions for the homogeneous SN equation in terms of explicit recursion relations
which can be truncated at arbitrary order (see Sec. A.1). We finally transform
back Xin

ℓmω̂, Xup
ℓmω̂ to the Teukolsky solutions using Eq. (A.0.16). The amplitude

Bin
ℓmω̂ can be obtained from the Wronskian Wr̂ at a given orbital separation.

A.1 Boundary conditions for the SN equation

We have derived accurate boundary conditions by looking for series expansions
of the master equation at the outer horizon r̂+ and at infinity. To this aim we
have studied the singularities on the real axis of Eq. (A.0.1), which can be recast
in the form

∆2 d2Xℓmω̂

dr̂2 + ∆F(r̂)
dXℓmω̂

dr̂
+ U(r̂)Xℓmω̂ = 0 , (A.1.1)

where

F(r̂) = (r̂2 + â2)

(
d f (r̂)

dr̂
− F(r̂)

)
, (A.1.2)

U(r̂) = −(r̂2 + â2)2U(r̂) . (A.1.3)

Moreover

F(r̂±) = 0 , F(r̂) −−−→
r̂→∞

0 , (A.1.4)

U(r̂+) = −κ̂2 , U(r̂) −−−→
r̂→∞

−ω̂2 . (A.1.5)

Since the functions F(r̂) and U(r̂) are analytic on the positive real axis, it turns out
that the Eq. (A.0.1) has three singularities: two at the horizons r̂ = r̂− and r̂ = r̂+,
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both of which are regular singularities, and one at r̂ = ∞ which is an irregular
singularity of rank 1. By Fuchs theorem, the solutions of the SN equation around
r̂+ can be written as Frobenius series, with radius of convergence

r̂+ − r̂− = 2
√

1 − â2 . (A.1.6)

For r̂ = ∞ or â = 1 (for which r̂+ = r̂−) the boundary conditions can be written
in terms of asymptotic expansions.

A.1.1 Boundary condition at the horizon

To compute the boundary conditions at the outer horizon r̂+, it is convenient to
recast the SN equation as

(r̂ − r̂+)2 d2Xℓmω̂

dr̂2 + (r̂ − r̂+)pH(r̂)
dXℓmω

dr̂
+ qH(r̂)Xℓmω̂ = 0 (A.1.7)

where

pH(r̂) =
(

r̂2 + â2

r̂ − r̂−

)[
d f (r̂)

dr̂
− F(r̂)

]
, (A.1.8)

qH(r̂) = −
(

r̂2 + â2

r̂ − r̂−

)2

U(r̂) . (A.1.9)

Following the Frobenius method we look for a power series solution of the form

Xℓmω̂ = (r̂ − r̂+)d
∞

∑
n=0

an(r̂ − r̂+)n , (A.1.10)

where d is one of the solutions of the indicial equation

I(d) = d(d − 1) + pH(r̂+)d + qH(r̂+) = 0 . (A.1.11)

For Eq. (A.0.1), the latter corresponds to

I(d) = d2 + κ2
(

2r̂+
r̂+ − r̂−

)2

= 0 , κ̂ = ω̂ − mâ
2r̂+

. (A.1.12)

Given (d1, d2) two solutions of the above equation, their difference d1 − d2 is
neither zero nor an integer. We have therefore two linearly independent solutions
such that

Xℓmω̂ = exp
{
± iκ̂

2r̂+
r̂+ − r̂−

log(r̂ − r̂+)
} ∞

∑
n=0

an(r − r+)n . (A.1.13)
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The recursion relation for the coefficients an is (setting a0 = 1)

an = − 1
I(d + n)

n−1

∑
k=0

(k + d)p(n−k)
H (r̂+) + q(n−k)

H (r+)
(n − k)!

ak , (A.1.14)

where p(k)H (r̂+) and q(k)H (r̂+) are the k-th derivatives of the coefficients pH(r̂)
and qH(r̂) with respect to r̂, and calculated at r̂+. For â ≤ 0.9, the boundary
conditions at the horizon have been calculated at r̂in = r̂+ + ϵ with ϵ = 10−3,
while for higher spins we have fixed ϵ = 10−5. To increase precision, we compute
the series coefficients up to n = 10.

A.1.2 Boundary condition at infinity

Ordinary differential equations with irregular singularities of rank 1, like the
SN equation, admit general expressions for asymptotic expansions around such
singularities (see Refs. [240, 241] and especially Ref. [242] for more details). To
calculate the boundary conditions at infinity we rewrite the SN equation as

d2Xℓmω̂

dr̂2 + p∞(r̂)
dXℓmω̂

dr̂
+ q∞(r̂)Xℓmω̂ = 0 , (A.1.15)

where

p∞(r̂) =
(r̂2 + â2)

∆

[
d f (r̂)

dr̂
− F(r̂)

]
, (A.1.16)

q∞(r̂) = −
(

r̂2 + â2

∆

)2

U(r̂) . (A.1.17)

The functions p∞(r̂) and q∞(r̂) are analytic on the positive real axis, so the series

p∞(r̂) =
∞

∑
n=0

1
n!

p(n)∞

r̂n , q∞(r̂)=
∞

∑
n=0

1
n!

q(n)∞

r̂n ,

converge, with p(n)∞ and q(n)∞ being the n-th derivatives of the coefficients p∞ and
q∞ with respect to r̂. If at least one of p(0)∞ , q(0)∞ or q(1)∞ is nonzero, the formal
solution is given by

Xℓmω̂ = eγr̂ r̂ξ
∞

∑
n=0

bn

r̂n , (A.1.18)

where γ is one of the solutions of the characteristic equation

γ2 + p(0)∞ γ + q(0)∞ = 0 , (A.1.19)
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while

ξ = − p(1)∞ γ + q(1)∞

p(0)∞ + 2γ
. (A.1.20)

For the SN equation

p(0)∞ = 0 = p(1)∞ , q(0)∞ = ω2 , q(1)∞ = 4ω̂2 , (A.1.21)

γ2 + ω̂2 = 0 , ξ = −q(1)∞

2γ
= ±2iω̂ . (A.1.22)

Therefore, we have two series solutions

Xℓmω̂ = exp{±iω̂[r̂ + 2 log(r̂)]}
∞

∑
n=0

bn

r̂n . (A.1.23)

The general recursion relation for the coefficients bn is (we set again b0 = 1)

(p(0)∞ + 2γ)nbn = (n − ξ)(n − 1 − ξ)bn−1+

+
n

∑
k=1

[
γp(k+1)

∞ + q(k+1)
∞ − (n − k − ξ)p(k)∞

]
bn−k . (A.1.24)

It can be proved that the series solutions constructed in this way diverge, and
they have to be considered as asymptotic expansions. However, these solutions
are unique and linearly independent. We computed the series coefficients up to
n = 13.

A.1.3 Cross check of the boundary conditions with Ref. [1]

We compared our boundary conditions with the ones used in Ref. [1], which are
in form

e±iκ̂r̂∗
∞

∑
n=0

aH
n (r̂ − r̂+)n , (A.1.25)

e±iω̂r̂∗
∞

∑
n=0

a∞
n

1
(ω̂r̂)n . (A.1.26)

First, we notice that the tortoise coordinate r̂∗(r̂) at the boundaries can be written
as

r̂∗(r̂) ∼ r̂ + 2 ln(r̂)− 2 ln(2) , (A.1.27)

r̂∗(r̂) ∼ 2r̂+
r̂+ − r̂−

ln(r̂ − r̂+) + δr∗(r+) , (A.1.28)
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at r̂ → ∞ and r̂ → r̂+, respectively, and where we defined

δr̂∗(r̂+) ≡ −2 ln(2)− 2r̂−
r̂+ − r̂−

ln(r̂+ − r̂−) + r̂+ . (A.1.29)

If we multiply Eq. (A.1.13) by the phase factor exp{±iκ̂δr̂∗(r̂+)} and Eq. (A.1.23)
by exp{±iω̂[−2 ln(2)]}, our boundary conditions have the same modulus and
phase as those in Ref. [1] for all the values of the parameters space we have
considered, up to numerical error. In the worst case, for â = 0.995 and ℓ = 20 at
the ISCO, the fractional difference in both modulus and phase is at most of one
part in 1010, and typically much smaller.
Since the solutions by means of series expansion of an ordinary differential
equation are uniquely determined a part for a constant complex factor, the
boundary conditions (A.1.13) and (A.1.23) are consistent with the ones of Ref. [1].



Appendix B

Teukolsky equation in
hyperboloidal-slicing coordinates

The coefficients F̃(r̂) and Ũ(r̂) of Eq. (4.3.14) are given by

F̃(r̂; H) =
2

r̂2 + â2

(
r̂2 − â2 − G̃(r̂; H)

)
, (B.0.1)

G̃(r̂; H) = (r̂2 + â2)[s(r̂ − 1)− i((r̂2 + â2)ω̂H + mâ)] +
â2∆

r̂
, (B.0.2)

Ũ(r̂; H) = 2isω̂[r̂∆(1 − H)− (r̂2 − â2)(1 + H)]+

+
∆
r̂2 [2â2 − r̂2

sλℓmω̂ − 2r̂(s + 1)]+

− 2mâω̂(r̂2 + â2)(1 + H)− 2iâ
∆
r̂
(m + âω̂H) , (B.0.3)

where H = −1 (+1) for the linearly independent solution sψ
in
ℓmω(sψ

up
ℓmω). This

is the same convention adopted in the Teukolsky package of the Black Hole
Perturbation Toolkit [119]. Notice that

Ũ(r̂+;−1) = 0 , (B.0.4)

Ũ(r̂ → ∞; 1)
∆2 → − sλℓmω̂ + 4amω̂ + 4isω̂

r̂2 , (B.0.5)

F̃(r̂ → ∞; 1)
∆

→ 2iω̂ . (B.0.6)

It is easy to show that the ordinary differential equation (4.3.14) has three singu-
larities on the real positive axis: two at the horizons r̂ = r̂− and r̂ = r̂+, both of
which are regular singularities, and one at r̂ = ∞ which is an irregular singularity
of rank 1. Despite having different coefficients, the radial Teukolsky equation,
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the Sasaki-Nakamura equation, and Eq. (4.3.14) have the same singularities.
Therefore, both the Sasaki-Nakamura transformation and transformation (4.3.12)
preserve the singularity structure of the radial Teukolsky equation. We compute
accurate boundary conditions at the outer horizon r̂+ and at infinity through
suitable series expansions, as done in Ref. [118]. The Fuchs theorem guarantees
that the solutions of (4.3.14) around r̂+ can be written as Frobenius series, with
radius of convergence

r̂+ − r̂− = 2
√

1 − â2 . (B.0.7)

At infinity or when â = 1 (for which r̂+ = r̂−), the boundary conditions can be
computed accurately as asymptotic expansions.

B.1 Boundary conditions for the Teukolsky equation
in hyperboloidal-slicing coordinates

B.1.1 Boundary condition at the horizon

To compute the boundary conditions at the outer horizon r̂+, it is convenient to
rewrite Eq. (4.3.14) as

(r̂ − r̂+)2 d2
sψ

in
ℓmω

dr̂2 + (r̂ − r̂+)pH(r̂)
dsψ

in
ℓmω

dr̂
+ qH(r̂)sψ

in
ℓmω = 0 , (B.1.1)

where

pH(r̂) =
F̃(r̂;−1)
r̂ − r̂−

, qH(r̂) =
Ũ(r̂;−1)
(r̂ − r̂−)2 . (B.1.2)

We seek for a Frobenius power series solution of the form

sψ
in
ℓmω = (r̂ − r̂+)d

∞

∑
n=0

an(r̂ − r̂+)n , (B.1.3)

where the index d is a solution of the indicial equation

I(d) = d(d − 1) + pH(r̂+)d + qH(r̂+) = 0 . (B.1.4)

For Eq. (4.3.14), the latter is given by

I(d) = d(d − cH) = 0 , cH =
4ir̂+

r̂+ − r̂−
κ + s , (B.1.5)
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and κ = ω̂ − mâ/(2r̂+). Near the outer horizon r̂+, the radial solution sRin
ℓmω̂ has

the following asymptotic behavior

sRin
ℓmω̂ ∼ ∆−se−iκ̂r̂∗ r̂ → r̂+ , (B.1.6)

Thus, only d = 0 is a physical solution of the indicial equation. Moreover, we
notice that the ansatz (4.3.12) for the sRin

ℓmω̂ solution can be rewritten as

sRin
ℓmω̂(r̂) = r̂−1∆−se−iκr̂∗e−iδH(r̂)

sψ
in
ℓmω , (B.1.7)

δH(r̂) ≡
am
r̂+

[ r̂
2
+ ln

( r̂ − r̂−
2

)]
. (B.1.8)

Therefore, to ensure the correct physical behavior of Rin
ℓmω̂(r̂) at the outer horizon,

we fix d = 0 and write the Frobenius series (B.1.3) as

sψ
in
ℓmω = r̂+eiδH(r̂+)

∞

∑
n=0

an(r̂ − r̂+)n . (B.1.9)

The recursion relation for the coefficients an is (setting a0 = 1)

an = − 1
I(n)

n−1

∑
k=0

(
k p(n−k)

H (r̂+) + q(n−k)
H (r̂+)

)
ak , (B.1.10)

where p(k)H (r̂+) and q(k)H (r̂+) are the k-th derivatives of the coefficients pH(r̂) and
qH(r̂) with respect to r̂, and calculated at r̂+. Their general expression are given
by

p(n)H (r̂+) =


1 − cH n = 0 ,
(ρ2

H r̂+)−1[−2r̂2
− + â2(3 + 2s + 4ir̂+ω̂) + r̂+(pH − r̂+)] n = 1 ,

2(−r̂+)−n − ρ−n
H + ρ−n−1

H [2sr̂− + 2i(r̂2
+ + r̂2

−)ω̂ + pH] n > 1 ,
(B.1.11)

q(n)H (r̂+) =


0 n = 0 ,
ρ−1

H qH(1) n = 1 ,

2(n − 1)(−r̂+)−n + ρ−n
H qH(n) 2F1

(
1, 1 − n; 2; r̂−

r̂+

)
n > 1 ,

(B.1.12)

where 2F1(1, 1 − n; 2; r̂−/r̂+) is the hypergeometric function2F1(a, b; c; z) and

ρH ≡ (r̂− − r̂+) ,

pH ≡ 2i(is − âm + â2ω̂ − r̂2
+ω) ,

qH(n) ≡
n

r̂+
[2iâm + 2(s − 1)− 2iâ2ω̂] + (2 + sλℓmω̂ − 4ir̂−sω̂) .

.



B. TEUKOLSKY EQUATION IN HYPERBOLOIDAL-SLICING COORDINATES 99

B.1.2 Boundary condition at infinity

General expressions for series solutions around irregular singularities are also
available in the literature [240–242]. However, unlike the regular case, these so-
lutions are not convergent, and have to be considered as asymptotic expansions.
To calculate the boundary conditions at infinity, we rewrite Eq. (4.3.14) as

d2
sψ

up
ℓmω

dr̂2 + p∞(r̂)
dsψ

up
ℓmω

dr̂
+ q∞(r̂)sψ

up
ℓmω = 0 , (B.1.13)

where

p∞(r̂) =
F̃(r̂; 1)

∆
, q∞(r̂) =

Ũ(r̂; 1)
∆2 . (B.1.14)

The functions p∞(r̂) and q∞(r̂) are analytic on the positive real axis, so the series

p∞(r̂) =
∞

∑
n=0

1
n!

p(n)∞

r̂n , q∞(r̂)=
∞

∑
n=0

1
n!

q(n)∞

r̂n ,

converge, with p(n)∞ and q(n)∞ being the n-th derivatives of the coefficients p∞ and
q∞ with respect to r̂. In the case of irregular singularities of rank 1, the formal
solution is given by

sψ
up
ℓmω = eγr̂ r̂ξ

∞

∑
n=0

bn

r̂n , (B.1.15)

provided that at least one of p(0)∞ , q(0)∞ or q(1)∞ is nonzero. The exponent γ is one
of the solutions of the characteristic equation

γ2 + p(0)∞ γ + q(0)∞ = 0 , (B.1.16)

while

ξ = − p(1)∞ γ + q(1)∞

p(0)∞ + 2γ
. (B.1.17)

For Eq. (4.3.14) we have:

q(0)∞ = 0 = q(1)∞ , p(0)∞ = 2iω̂ , p(1)∞ = 4iω̂ − 2s , (B.1.18)

γ(γ + 2iω̂) = 0 , ξ = −γ(2iω̂ − s)
γ + iω̂

. (B.1.19)

When r̂ → ∞, the radial solution sRup
ℓmω̂ has the following asymptotic behavior

sRup
ℓmω̂ ∼ r−(2s+1)eiω̂r̂∗ r̂ → ∞ . (B.1.20)
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Thus, only γ = 0 is a physical solution of the characteristic equation, and we can
write

sψ
up
ℓmω =

∞

∑
n=0

bn

r̂n . (B.1.21)

The general recursion relation for the coefficients bn is (we set again b0 = 1):

(p(0)∞ + 2γ)nbn = (n − ξ)(n − 1 − ξ)bn−1+

+
n

∑
k=1

[
γp(k+1)

∞ + q(k+1)
∞ − (n − k − ξ)p(k)∞

]
bn−k . (B.1.22)

In our case, we can write

bn =
n − 1
2iω̂

bn−1 +
1

2iω̂n

n

∑
k=1

[
q(k+1)

∞ − (n − k)p(k)∞

]
bn−k , (B.1.23)

where

p(n)∞ =


2iω̂ n = 0 ,
4iω̂ − 2s n = 1 ,
r̂n−1
− + r̂n−1

+ + P− − P+ n > 1 ,
(B.1.24)

P± =
2r̂n−1

±
ρH

[(1 − r̂±)s + i(âm + (r̂2
± + â2)ω̂)] , (B.1.25)

and

q(n)∞ =


0 n = 0, 1 ,
−(4âmω̂ + 4isω̂ + sλℓmω̂) n = 2 ,
2

ρH
Q1 +

4ω̂
ρ3

H
Q2 n > 2 ,

(B.1.26)

with

Q1 = r̂n−2
− r̂+ − r̂−r̂n−2

+ − 1
2
(r̂n−1

− − r̂n−1
+ ) sλℓmω̂+

− (iâm + s + 1 + iâ2ω̂)(r̂n−2
− − r̂n−2

+ ) , (B.1.27)

Q2 = isâ2[ρH(n − 1)(r̂n−2
− + r̂n−2

+ )− 2(r̂n−1
− − r̂n−1

+ )]+

+ (is + âm)[r̂n
−(2 − nρH)− r̂n

+(2 + nρH)]+

+ â3m[ρH(1 − n)(r̂n−2
− + r̂n−2

+ ) + 2(r̂n−1
− − r̂n−1

+ )]− i
2

ρ2
H â2(r̂n−2

− − r̂n−2
+ ) .

(B.1.28)



Appendix C

Teukolsky source term

C.1 Spinning particle on a general bound orbit

The source term of the Teukolsky equation for graviational perturbation reads

−2Tℓmω̂ = 4
∫

dt̂dθ sin θdϕ

(
B′

2 + B′
2
∗)

ρ̄ρ5 −2Sâω̂
ℓme−i(mϕ+ω̂t̂) , (C.1.1)

where the functions B′
2 and B′

2
∗ are defined as

B′
2 = −1

2
ρ8ρ̄L−1

[
1
ρ4L0

[
Tnn

ρ2ρ̄

]]
− 1

2
√

2
∆2ρ8ρ̄L−1

[
ρ̄2

ρ4 J+

[
Tmn

∆ρ2ρ̄2

]]
, (C.1.2)

B′
2
∗
= −1

4
∆2ρ8ρ̄J+

[
1
ρ4 J+

[
ρ̄

ρ2 Tmm

]]
− 1

2
√

2
∆2ρ8ρ̄J+

[
ρ̄2

∆ρ4L−1

[
Tmn

ρ2ρ̄2

]]
, (C.1.3)

with J+ = ∂
∂r̂ +

iK
∆ and

ρ =
1

r̂ − iâ cos(θ)
, ρ̄ =

1
r̂ + iâ cos(θ)

, (C.1.4)

Lp =
∂

∂θ
+

m
sin(θ)

− âω̂ sin(θ) + p cot(θ) , (C.1.5)

L†
p =

∂

∂θ
− m

sin(θ)
+ âω̂ sin θ + p cot(θ) . (C.1.6)

The components Tnn, Tmn, and Tmm are the projections of the stress-energy tensor
with respect to the Newman-Penrose (NP) tetrad:

lµ =

√
Σ
∆

(
eµ

(0) + eµ

(1)

)
, nµ =

1
2

√
∆
Σ

(
eµ

(0) − eµ

(1)

)
, (C.1.7)

mµ = ρ̄

√
Σ
2

(
eµ

(2) + ieµ

(3)

)
, mµ = ρ

√
Σ
2

(
eµ

(2) − ieµ

(3)

)
, (C.1.8)
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where, for example, Tnn = nµnνTµν [96]. Henceforth we use the notation Sc
ℓm

instead of −2Sâω̂
ℓm for the spin-weighted spheroidal harmonics to reduce clutter in

the notation.
All θ-derivatives in Tnn, Tmn and Tmm can be removed by repeated integrations
by parts and by making use of the following identity∫ π

0
h(θ)Lp[g(θ)] sin(θ)dθ = −

∫ π

0
g(θ)L†

p[h(θ)] sin(θ)dθ , (C.1.9)

with h(θ) and g(θ) regular functions. It is thus possible to write

−2Tℓmω̂ =
∫

dtdθdϕ∆2ei(ω̂t̂−mϕ)
(
Tnn + Tmn + Tmm

)
, (C.1.10)

with

Tnn = − 2
∆2ρ2ρ̄

L†
1

[
1
ρ4L

†
2
[
ρ3Sc

ℓm
]]

sin(θ)Tnn , (C.1.11)

Tmn =
4√
2

ρ

ρ2L
†
2
[
Sc
ℓmρρ

]
J+

[
Tmn

∆ρ2ρ2

]
sin(θ)+

+
2√
2

1
ρ2ρ̄2∆

L†
2

[
ρ3Sc

ℓm
d
dr̂

(
ρ̄2

ρ4

)]
sin(θ)Tmn , (C.1.12)

Tmm = −ρ3Sc
ℓm J+

[
1
ρ4 J+

[
ρ̄

ρ2 Tmm

]]
sin(θ) . (C.1.13)

It is convenient to expand the previous terms in order to isolate the derivatives
of the projected stress-energy tensor with respect to r̂ and the derivative of Sc

ℓm
with respect to θ. After some algebra, we get

Tnn = −2 sin(θ)
∆2ρ3ρ̄

[(
L†

1 − 2iâρ sin(θ)
)
L†

2Sc
ℓm

]
Tnn , (C.1.14)

Tmn =
4 sin(θ)√

2

{
∂r̂

[(
L†

2Sc
ℓm + iâ sin(θ)(ρ̄ − ρ)Sc

ℓm

)Tmn

ρ3∆

]
+

[(
iK
∆

+ ρ + ρ̄

)
L†

2Sc
ℓm − â sin(θ)

K
∆
(ρ̄ − ρ)Sc

ℓm

]
Tmn

ρ3∆

}
, (C.1.15)

Tmm =

{
−∂2

r̂

(
ρ̄

ρ3 Tmm

)
− 2∂r̂

((
ρ̄

ρ2 +
ρ̄

ρ3
iK
∆

)
Tmm

)
+

ρ̄

ρ3

(
d
dr̂

(
iK
∆

)
− 2ρ

iK
∆

+
K2

∆2

)
Tmm

}
sin(θ)Sc

ℓm . (C.1.16)
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The stress-energy tensor for a spinning object is given by [99]

Tµν = q

∫
dλ̂

[
δ
(4)
x,z(λ)√−g

u(µvν) −∇σ

(
Sσ(µvν)

δ
(4)
x,z(λ)√−g

)]
, (C.1.17)

where δ
(4)
x,z(λ) ≡ ∏4

ν=0 δ
(
xν − zν(λ̂)

)
and indices within parenthesis denote sym-

metrization. The tetrad components are [99]

T(a)(b) = q
∫

dλ̂√−g

[
u((a)v(b))δ(4)x,z(λ) − e((a)

ν e(b))ρ∇σ

(
Sσνvρδ

(4)
x,z(λ)

)]
. (C.1.18)

The above equation can be written as

T(a)(b) = q
∫

dλ̂√−g

[
δ
(4)
x,z(λ)

(
u((a)v(b)) + ω(d)(c)

((a)v(b))S(d)(c)

−ω(d)(c)
((a)S(b))(d)v(c)

)
− ∂σ

(
S((a)v(b))δ

(4)
x,z(λ)

)]
. (C.1.19)

For bound orbits, it is useful to rewrite the energy-momentum tensor as

T(a)(b) =
1√−g

δ
(3)
x,x(t̂)

(
P (a)(b) − S t(a)(b)∂t̂

)
+

1√−g
∂i

(
S i(a)(b)δ

(3)
x,x(t)

)
, (C.1.20)

where i = {r, θ, ϕ}, δ
(3)
x,x(t) = δ

(
r̂ − r̂(t̂)

)
δ
(
θ − θ(t)

)
δ
(
ϕ − ϕ(t̂)

)
, and we defined

P (a)(b) := q
∣∣∣∣ dt̂
dλ̂

∣∣∣∣−1(
u((a)v(b)) + ω(d)(c)

((a)v(b))S(d)(c) − ω(d)(c)
((a)S(b))(d)v(c)

)
,

(C.1.21)

Sσ(a)(b) := −q
∣∣∣∣ dt̂
dλ̂

∣∣∣∣−1

Sσ((a)v(b)) . (C.1.22)

To rewrite the stress-energy tensor we used the well-known property of the
derivative of a Dirac delta:∫ ∞

−∞
dxh(x)

d
dx

δ(x − x0) = − dh
dx

∣∣∣∣
x=x0

. (C.1.23)

In this way, the stress-energy tensor can be interpreted as a linear differential
operator that acts on the smooth functions inside of the Teukolsky source term.
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We now need to project Tab with respect to the NP null tetrad. In the following,
we will employ a reduced version of the NP tetrad:

l̃µ =
(

eµ

(0) + eµ

(1)

)
, ñµ =

1
2

(
eµ

(0) − eµ

(1)

)
, (C.1.24)

m̃µ =
1√
2

(
eµ

(2) + ieµ

(3)

)
, k̃µ =

1√
2

(
eµ

(2) − ieµ

(3)

)
, (C.1.25)

where k̃µ is the complex conjugate of m̃µ. Taking into account that the t̂ and ϕ
coordinates in the Teukolsky source term are only present in the exponential,
and using the definitions Tnn = nµnνeµ(a)eν(b)T(a)(b) and so on, the projected
components read

Tnn = δ
(3)
x,x(t)Dññ[Nnn ·] + ∂r̂

(
S r

ññδ
(3)
x,x(t)

)
Nnn , (C.1.26)

Tmn = δ
(3)
x,x(t)Dk̃ñ[Nmn ·] + ∂r̂

(
S r

k̃ñδ
(3)
x,x(t)

)
Nmn , (C.1.27)

Tmm = δ
(3)
x,x(t)Dk̃k̃[Nmm ·] + ∂r̂

(
S r

k̃k̃δ
(3)
x,x(t)

)
Nmm , (C.1.28)

with

Nnn =
∆√−gΣ

, Nmn =

√
∆ρ√−g

, Nmm =
Σρ2
√−g

, (C.1.29)

and where we define the following linear operators acting on a generic smooth
function h(r̂, θ):

Dññ[Nnnh(r̂, θ)] ≡
(
Pññ − iω̂S t

ññ + imSϕ
ññ − Sθ

ññ∂θ

)( ∆√−gΣ
h(r̂, θ)

)
,

(C.1.30)

Dk̃ñ
[
Nk̃ñh(r̂, θ)

]
≡
(
Pk̃ñ − iω̂S t

k̃ñ + imSϕ

k̃ñ
− Sθ

k̃ñ∂θ

)(√
∆ρ√−g

h(r̂, θ)

)
, (C.1.31)

Dk̃k̃[Nmmh(r̂, θ)] ≡
(
Pk̃k̃ − iωS t

k̃k̃ + imSϕ

k̃k̃
− Sθ

k̃k̃∂θ

)( Σρ2
√−g

h(r̂, θ)

)
. (C.1.32)

Using the relations (C.1.26), (C.1.27) and (C.1.28), we can now rewrite the terms
Tnn, Tmn and Tmm, obtaining

Tnn =
[
δ
(3)
x,x(t)Dññ + ∂r̂

(
S r

ññδ
(3)
x,x(t)

)]
f (0)nn , (C.1.33)

f (0)nn := − 2
∆

ρ̄

ρ

(
L†

1 − 2iâρ sin(θ)
)
L†

2Sc
ℓm , (C.1.34)
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Tmn =
[
δ
(3)
x,x(t)Dk̃ñ + ∂r̂

(
S r

k̃ñδ
(3)
x,x(t)

)]
f (0)mn + ∂r̂

[(
δ
(3)
x,x(t)Dk̃ñ + ∂r

(
S r

k̃ñδ
(3)
x,x(t)

))
f (1)mn

]
,

(C.1.35)

f (0)mn :=
4√
2

ρ̄

ρ
√

∆

((
iK
∆

+ ρ + ρ̄

)
L†

2Sc
ℓm − â sin(θ)

K
∆
(ρ̄ − ρ)Sc

ℓm

)
, (C.1.36)

f (1)mn :=
4√
2

ρ̄

ρ
√

∆

(
L†

2Sc
ℓm + iâ sin(θ)(ρ̄ − ρ)

)
, (C.1.37)

Tmm =
[
δ
(3)
x,x(t)Dk̃k̃ + ∂r̂

(
S r

k̃k̃δ
(3)
x,x(t)

)]
f (0)mm + ∂r̂

[(
δr,r(t)Dk̃k̃ + ∂r̂

(
S r

k̃k̃

))
f (1)mm

]
+

+ ∂2
r̂

[(
δr,r(t)Dk̃k̃ + ∂r̂

(
S r

k̃k̃δr,r(t)
))

f (2)mm

]
, (C.1.38)

f (0)mm :=
ρ̄

ρ

(
d
dr̂

(
iK
∆

)
− 2ρ

iK
∆

+
K2

∆2

)
Sc
ℓm , (C.1.39)

f (1)mm := −2
ρ̄

ρ

(
ρ +

iK
∆

)
Sc
ℓm , (C.1.40)

f (2)mm := − ρ̄

ρ
Sc
ℓm . (C.1.41)

We now have all the necessary ingredients to rewrite the inhomogeneous solu-
tions of the Teukolsky equation in a form suitable to exploit the possible quasi-
periodicities in the bound orbits. First of all, by plugging the terms (C.1.33), (C.1.35)
and (C.1.38) into Eq. (C.1.10), integrating over the angles and using the δ(θ −
θ(t̂))δ(ϕ − ϕ(t̂)) function, the Teukolsky source term becomes

Tℓmω̂ =

∞∫
−∞

dt̂ ei(ω̂t̂−mϕ(t̂))∆2
{
T (0)
D δr,r(t) + ∂r̂

(
T (0)
D δr,r(t)

)
+ ∂2

r̂

(
T (0)
D δr,r(t)

)
+

+T (0)
Sr + ∂r̂T (1)

Sr + ∂2
r̂T

(2)
Sr

}∣∣∣
θ=θ(t̂)

, (C.1.42)

when δr,r(t) := δ(r̂ − r̂(t̂)), and we have rearranged the previous terms, defining

T (0)
D = Dññ f (0)nn +Dk̃ñ f (0)mn +Dk̃k̃ f (0)mm , (C.1.43)

T (1)
D = Dk̃ñ f (1)mn +Dk̃k̃ f (1)mm , (C.1.44)

T (2)
D = Dk̃k̃ f (2)mm , (C.1.45)
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and

T (0)
Sr = ∂r̂

[
S r

ññδr,r(t)
]

f (0)nn + ∂r̂
[
S r

k̃ñδr,r(t)
]

f (0)mn + ∂r̂
[
S r

k̃k̃δr,r(t)
]

f (0)mm , (C.1.46)

T (1)
Sr = ∂r̂

[
S r

k̃ñδr,r(t)
]

f (1)mn + ∂r̂
[
S r

k̃k̃δr,r(t)
]

f (1)mm , (C.1.47)

T (2)
Sr = ∂r̂

[
S r

k̃k̃δr,r(t)
]

f (2)mm . (C.1.48)

To obtain the asymptotic fluxes, we need to calculate the amplitudes (4.1.14)
and (4.1.15), namely

−2ZH,∞
ℓmω̂ = CH,∞

ℓmω̂

∫ ∞

r̂+
dr̂′ −2Rin,up

ℓmω̂ (r̂′)
∆2 −2Tℓmω̂(r̂′) . (C.1.49)

By changing the order of integration between r̂′ and t̂, we get

−2ZH,∞
ℓmω̂ = CH,∞

ℓmω̂

∞∫
−∞

[(
T (0)
D − T (1)

D
d
dr̂

+ T (2)
D

d2

dr̂2

)
−2Rin,up

ℓmω̂

+

∞∫
r̂+

dr̂
(
T (0)
Sr + ∂r̂T (1)

Sr + ∂2
r̂T

(2)
Sr

)
−2Rin,up

ℓmω̂

]
ei(ω̂t̂−mϕ(t̂))dt̂ , (C.1.50)

which is calculated at θ = θ(t̂). In the integral on the first line we have used the
δ(r̂ − r̂(t̂)) function. The double integral on the second line can be simplified
with multiple integrations by parts, obtaining the general expression

−2ZH,∞
ℓmω̂ = CH,∞

ℓmω̂

∞∫
−∞

dt̂ei(ω̂t̂−mϕ(t̂))
(

A0 − (A1 + B1)
d
dr̂

+(A2 + B2)
d2

dr̂2 − B3
d3

dr̂3

)
−2Rin,up

ℓmω̂

∣∣∣∣
θ=θ(t̂),r̂=r̂(t̂)

(C.1.51)

where

A0 := Oññ f (0)nn + Ok̃ñ f (0)mn + Ok̃k̃ f (0)mm , (C.1.52)

A1 := Ok̃ñ f (1)mn + Ok̃k̃ f (1)mm , (C.1.53)

A2 := Ok̃k̃ f (2)mm , (C.1.54)

and

B1 := S r
ññ f (0)nn + S r

k̃ñ f (0)mn + S r
k̃k̃ f (0)mm , (C.1.55)

B2 := S r
k̃ñ f (1)mn + S r

k̃k̃ f (1)mm , (C.1.56)

B3 := S r
k̃k̃ f (2)mm , (C.1.57)
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with the operators Oññ, Ok̃ñ, Ok̃k̃ being defined as

Oññ := Pññ − iω̂S t
ññ + imSϕ

ññ − Sθ
ññ∂θ − S r

ññ∂r̂ , (C.1.58)

Ok̃ñ := Pk̃ñ − iω̂S t
k̃ñ + imSϕ

k̃ñ
− Sθ

k̃ñ∂θ − S r
k̃ñ∂r̂ , (C.1.59)

Ok̃k̃ := Pk̃k̃ − iω̂S t
k̃k̃ + imSϕ

k̃k̃
− Sθ

k̃k̃∂θ − S r
k̃k̃∂r̂ , (C.1.60)

and Pññ = ñµñνeµ(a)eν(b)P (a)(b), while Sσ
ññ = ñµñνeµ(a)eν(b)Sσ(a)(b) and so on.

The terms f (i)nn , f (i)mn, f (i)mm (with i = 0, 1, 2) are defined in Eqs. (C.1.34)–(C.1.41).
We remark that Eq. (C.1.51) is general: it is valid for any bound orbit for a
spinning test particle in Kerr spacetime.

C.1.1 Circular equatorial orbits

On the equatorial plane, θ = π/2, the Teukolsky source term drastically simpli-
fies. First of all, some terms of the previous equations vanish, namely

Sθ
ññ = Sθ

k̃ñ = Sθ
k̃k̃ = 0 , (C.1.61)

for θ = π/2. Furthermore, we can write

f (0)nn = −4
Ŝ(r)

∆
, (C.1.62)

f (0)mn =
4√
2

S̃√
∆

(
iK
∆

+
2
r̂

)
, (C.1.63)

f (1)mn =
4√
2

S̃√
∆

, (C.1.64)

where we applied the angular Teukolsky equation, with

S̃ :=
dSc

ℓm
dθ

∣∣∣∣
θ=π/2

+ (âω̂ − m)Sc
ℓm(π/2) , (C.1.65)

Ŝ(r̂) :=
(

âω̂ − m − i
â
r̂

)
S̃ − −2λℓmω̂

2
Sc
ℓm(π/2) . (C.1.66)

Moreover

f (0)mm =

(
d
dr̂

(
iK
∆

)
− 2

r̂
iK
∆

+
K2

∆2

)
Sc
ℓm(π/2) , (C.1.67)

f (1)mm = −2
(

1
r̂
+

iK
∆

)
Sc
ℓm(π/2) , (C.1.68)

f (2)mm = −Sc
ℓm(π/2) . (C.1.69)
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Finally, for a circular equatorial orbit the projected components of P (a)(b) and
Sσ(a)(b) onto the reduced NP basis are

Pññ = −q
4

Pσ

ΣσΓ+

(
rσ∆x̂σ − r̂Σσ

[
2x̂σ(r̂ − â2) + Pσ(r̂2 − σâ)

])
, (C.1.70)

Pk̃ñ =
iq

4
√

2

√
∆

ΣσΓ+

(
x̂rσ

[
x̂σ(r̂ − â2) + Pσ(r̂2 + âσ)

]
+

+r̂PσΣσ

[
r̂2x̂ + σ(3x̂â + Pσ)

])
, (C.1.71)

Pk̃k̃ =
q
2

1
ΣσΓ−

{
x̂∆
[
σ(Pσ + 2x̂â) + x̂r̂2

]
rσ + âσr̂ΣσP2

σ

}
, (C.1.72)

with

x̂ := J̃z − (â + σ)Ẽ ,

Γ± := 3x̂âσ2∆ ± r̂Σσ

[
Pσ(r̂2 + â2) + x̂â∆

]
,

rσ := r̂3 + 2σ2 ,

and

Sν
ññ =

1
4

qσr̂2Pσ

(
âPσ + x̂(r̂2 + â2)

Γ+
, −∆x̂

Γ−
, 0, − âx̂ + Pσ

Γ−

)
, (C.1.73)

Sν
k̃ñ =

iqσ

4
√

2
r̂x̂
√

∆
ΣσΓ+

(
rσ

[
âPσ + x̂(r̂2 + â2)

]
, x̂∆rσ +

r̂
x̂

ΣσP2
σ , 0, (âx̂ + Pσ)rσ

)
,

(C.1.74)

Sν
k̃k̃ =

1
2

qσ
r̂Pσ

ΣσΓ+
(0, ∆x̂rσ, 0, 0) . (C.1.75)

In Ref. [99] the Teukolsky source was calculated at first order in the spin. Our
results for the source term are general and, when truncated at O(σ), agree with
those in Ref. [99], except for a factor 1/

√
2 in their Z̃m̄m̄

lmω term. This is probably a
typo in their source term, since with our source term we can reproduce previous
results for the fluxes of a nonspinning particle (see also Appendix E).



Appendix D

Linearization in the secondary spin
of the Teukolsky equations

D.1 Linearization of the angular Teukolsky equation

For the study of the eigenvalues and eigenfunctions of Eq. (4.1.2), it is convenient
to perform a change of variable defining x = cos θ, obtaining

H|S⟩ = − sλℓmω̂|S⟩ , |S⟩ ≡ sS
c
ℓm , H = K+ V , (D.1.1)

with

K ≡ d
dx

(
(1 − x2)

d
dx

)
, (D.1.2)

V ≡ cx(cx − 2s)− c2 + s + 2mc − (m + sx)2

1 − x2 , (D.1.3)

We consider here only the case in which c ∈ R. Physical solutions of (D.1.3) must
be regular in the interval [−1, 1], which entails that ℓ and m must be integers
with |m| ≤ ℓ. The solutions to Eq. (D.1.3) can be written as a series expansion
around the singular points x = ±1 [243, 244]:

sS
c
ℓm =

ecx
√
N

(1 + x)k−(1 − x)k+
∞

∑
n=0

dn(1 + x)n , (D.1.4)

where k± = |m ± 2|/2 and the coefficients dn are given by the three-term recur-
sion relations

α0d1 + β0d0 = 0 , (D.1.5)
αndn+1 + βndn + γndn−1 = 0 n = 1, 2 . . . (D.1.6)
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with

αn = −2(n + 1)(n + 2k− + 1) , (D.1.7)
βn = n(n + 1) + 2n(ks + 1 − 2c)− 2c(2k− + s + 1)+

+ ks(ks + 1)− s(s + 1)− sλℓmω̂ − 2mc , (D.1.8)
γn = 2c(n + ks + s) , (D.1.9)

and ks = k+ + k−. The normalization constant N can be written analytically as

N ≡
∫ 1

−1
(sS

c
ℓm(x))2dx = (2π)21+2ks e−2cΓ(1 + 2k+)N , (D.1.10)

where

N ≡
∞

∑
n=0

Γ(1 + 2k− + n)
Γ(2 + 2ks + n)

2nF(n, n; c)
n

∑
i=0

didn−i , (D.1.11)

F(n, n; c) := 1F1(1 + 2k− + n, 2 + 2ks + n; 4c) , (D.1.12)

while Γ(z) is the Euler gamma function and 1F1(a, b; z) is the Kummer confluent
hypergeometric function. To ensure the convergence of the series (D.1.4) at
x = ±1, the eigenvalue sλℓmω̂ must satisfy the implicit continued fraction

0 = β0 −
α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
. . . (D.1.13)

With the requirement of regularity at the boundaries [−1, 1], Eq. (D.1.3) defines
a Sturm-Liouville eigenvalue problem. In particular, the eigenvalue problem is
singular because the coefficient (1− x2) vanishes at the boundaries. Nevertheless,
it can be shown that Eq. (D.1.3) still satisfies many of the properties of a regular
Sturm-Liouville problem, namely (see [245] and references therein):

• the operator H is Hermitian, i.e. ⟨v|H|w⟩ = ⟨w|H|v⟩ for any vector v, w;

• given a set s, m, c, the functions sS
c
ℓm(θ) form a (strong) complete, orthogo-

nal set on [−1, 1], labeled by the additional integer ℓ (see [246]);

• each eigenvalue sλℓmω̂ has (up to a constant) a unique eigenfunction for
any set s, m, c.

Thus, we can conveniently treat the secondary spin σ as a small perturbation of
an Hermitian operator and compute the linear corrections in σ to sλℓmω̂ using
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the same techniques of nondegenerate perturbations of a quantum mechanical
system [247]. To linear order in σ, we obtain

H0|S0⟩ = − sλ
0
ℓm|S

0⟩ , (D.1.14)

H0|S1⟩+ V1|S0⟩ = − sλ
0
ℓm|S

1⟩ − sλ
1
ℓm|S0⟩ , (D.1.15)

H0 = K+ V0 , (D.1.16)

V1 = 2c1(c0x2 − sx + m − c0) , (D.1.17)

where V0 is simply given by H with c ↔ c0, sS0
ℓm ≡ |S0⟩, sS1

ℓm ≡ |S1⟩ and

sλ
1
ℓm = ⟨S0|V1|S0⟩ ≡

∫ 1

−1
sS

0
ℓmV

1
sS

0
ℓmdx

= − c1

N0

∞

∑
n=0

Ξ(n)
[
Υ(n)F(n, n + 1; c0)− Π(n)F(n, n; c0)

] n

∑
i=0

d0
i d0

n−i ,

(D.1.18)

with

Ξ(n) ≡ 2n+1 Γ(1 + 2k− + n)
Γ(3 + ks + n)

, (D.1.19)

Υ(n) ≡ (1 + 2k+)(2 + 2ks + n + 2s) , (D.1.20)
Π(n) ≡ (2 + 2ks + n)(1 + 2k+ − m + s) . (D.1.21)

The term N0 is given by N with c ↔ c0. We computed the 0th order eigenvalue
sλ

0
ℓm, the corresponding eigenfunctions sS0

ℓm and the coefficients d0
n using the

routines of the SpinWeightedSpheroidalHarmonics MATHEMATICA package of [119].
Once the correction to the eigenvalue sλ

1
ℓm is known, we can evaluate the cor-

rection to the eigenfunction sS1
ℓm by expanding in σ the Leaver series (D.1.4),

obtaining

sS
1
ℓm =

ec0x
√
N 0

(1 + x)k−(1 − x)k+
∞

∑
n=0

(1 + x)n
[
d1

n + d0
n

(
(1 + x)− N1

2N0

)]
,

(D.1.22)

where the three-term recursion relation for the correction d1
n is given by, for

n = 1, 2 . . .

d1
0 = 0 α0d1

1 + β1
0d0

0 = 0 , (D.1.23)

αnd1
n+1 + β0

nd1
n + β1

nd0
n + γ0

nd1
n−1 + γ1

nd1
n−1 = 0 , (D.1.24)
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with

β1
n = −2c1(1 + 2k− + m + 2n + s)− sλ

1
ℓm , (D.1.25)

γ1
n = 2c1(ks + s + n) , (D.1.26)

and

N1 ≡
∞

∑
n=0

2n+1Γ(1 + 2k+ + n)
Γ(2 + 2ks + n)

[
F(n, n; c0)

n

∑
i=0

d0
i d1

n−i+

+ 2
1 + 2k− + n
2 + 2ks + n

F(n + 1, n + 1; c0)
n

∑
i=0

d0
i d0

n−i

]
. (D.1.27)

D.1.1 Linearization of the radial Teukolsky equation

The linear corrections in σ, sRin,1
ℓm and sRup,1

ℓm , were obtained by expanding the
ansatz (4.3.12) as follows. Let us first define

N0
∓ = r̂−1∆−se∓iω̂0r̂∗eimϕ̃ , (D.1.28)

D0
∓ = −

N0
∓

∆

(∆
r̂
+ 2s(r̂ − 1)± i(r̂2 + â2)ω̂0 + iâm

)
, (D.1.29)

D1
∓ = ∓iω1

( r̂2 + â2

∆
N0
∓ + r̂∗D0

∓

)
, (D.1.30)

It is possible then to write

sRα,0
ℓm = N0

∓ sψ
α,0
ℓm , (D.1.31)

sRα,1
ℓm = N0

∓(sψ
α,1
ℓm ∓ iω̂1r̂∗ sψ

α,0
ℓm) , (D.1.32)

d sRα,0
ℓm

dr̂
= sψ

α,0
ℓm D0

∓ + N0
∓

d sψ
α,0
ℓm

dr̂
, (D.1.33)

d sRα,1
ℓm

dr̂
= sψ

α,1
ℓm D0

∓ + sψ
α,0
ℓm D1

∓ + N0
∓

(d sψ
α,1
ℓm

dr̂
∓ iω̂1r̂∗

d sψ
α,0
ℓm

dr̂

)
, (D.1.34)

where α = in (up) for the minus (plus) sign. Finally, we computed the linear
corrections sψ

in,0
ℓm , sψ

in,1
ℓm and sψ

up,0
ℓm , sψ

up,1
ℓm as solutions of a system of ordinary dif-

ferential equations obtained by expanding Eq. (4.3.14) and the related boundary
conditions in σ.
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For the solutions sψ
in,0
ℓm , sψ

in,1
ℓm , the system of differential equations is

d2
sψ

in,0
ℓm

dr̂2 +
p0

H(r̂)
r̂ − r̂+

d sψ
in,0
ℓm

dr̂
+

q0
H(r̂)

(r̂ − r̂+)2 sψ
in,0
ℓm = 0 , (D.1.35)

d2
sψ

in,1
ℓm

dr̂2 +
p0

H(r̂)
r̂ − r̂+

d sψ
in,1
ℓm

dr̂
+

p1
H(r̂)

r̂ − r̂+

d sψ
in,0
ℓm

dr̂
+

+
q0

H(r̂)
(r̂ − r̂+)2 sψ

in,1
ℓm +

q1
H(r̂)

(r̂ − r̂+)2 sψ
in,0
ℓm = 0 , (D.1.36)

where

p1
H(r̂) = − 2G̃1(r̂;−1)

(r̂ − r̂−)(r̂2 + â2)
q1

H(r̂) =
Ũ1(r̂;−1)
(r̂ − r̂−)2 , (D.1.37)

G̃1(r̂;−1) = i(r̂2 + â2)2ω̂1 , (D.1.38)

Ũ1(r̂;−1) = ∆
[
− sλ

1
ℓm + 2iω̂1

( â2

r̂
+ 2r̂s

)]
, (D.1.39)

and the boundary conditions for sψ
in,1
ℓm are

sψ
in,1
ℓm (r̂) = r̂+eiδH(r̂+)

∞

∑
n=0

a1
n(r̂ − r̂+)n . (D.1.40)

The recursion relation for the coefficients a1
n is (setting a1

0 = 0)

a1
n = −

n−1

∑
k=0

(
kp(n−k),1

H (r̂+) + q(n−k),1
H (r̂+)

) a0
k

I(n)
+

−
n−1

∑
k=0

(
kp(n−k),0

H (r̂+) + q(n−k),0
H (r̂+)

) a1
k

I(n)
−

c1
Ha0

n

n − c0
H

, (D.1.41)

where c1
H = 4ir̂+

r̂+−r̂− ω̂1 and

p(n),1H (r̂+) =


−c1

H n = 0 ,

−2i(r̂2
+ − 3â2)ω̂1ρ−2

H n = 1 ,

2i(â2 + r̂2
−)ρ

−1−n
H ω̂1 n > 1 ,

(D.1.42)

q(n),1H (r̂+) =


0 n = 0 ,
r̂+(sλ1

ℓm−4ir̂+sω̂1)−2iâ2ω̂1

r̂+ρH
n = 1 ,

ρ−n
H

r̂+

[
r̂+ sλ

1
ℓm − 4iâ2ω̂1s − n2iâ2ω̂1

2F1

(
1, 1 − n; 2; r̂−

r̂+

)]
n > 1 ,

(D.1.43)
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The coefficients q0
H(r̂), p0

H(r̂), a0
n and the boundary conditions for sψ

in,0
ℓm are given

in Appendix B.1 with ω ↔ ω0, sλℓmω̂ ↔ sλ
0
ℓm.

For the solutions sψ
up,0
ℓm , sψ

up,1
ℓm , the system of differential equations is

d2
sψ

up,0
ℓm

dr̂2 + p0
∞(r̂)

d sψ
up,0
ℓm

dr̂
+ q0

∞(r̂)ψup,0 = 0 , (D.1.44)

d2
sψ

up,1
ℓm

dr̂2 + p0
∞(r̂)

d sψ
up,1
ℓm

dr̂
+ p1

∞(r̂)
d sψ

in,0
ℓm

dr̂
+ q0

∞(r̂) sψ
up,1
ℓm + q1

∞(r̂) sψ
up,0
ℓm = 0 ,

(D.1.45)

where

p1
∞(r̂) = − 2G̃1(r̂; 1)

∆(r̂2 + â2)
q1

∞(r̂) =
Ũ1(r̂; 1)

∆2 , (D.1.46)

G̃1(r̂; 1) = −i(r̂2 + â2)2ω̂1 , (D.1.47)

Ũ1(r̂; 1) = −4ω̂1[mâ(r̂2 + â2) + i(r̂2 − â2)s]− ∆
(

sλ
1
ℓm + 2iω̂1 â2

r̂

)
. (D.1.48)

and the boundary conditions for sψ
up,1
ℓm are

sψ
up,1
ℓm (r̂) =

∞

∑
n=0

b1
n

r̂n . (D.1.49)

The recursion relation for the coefficients b1
n is (setting b1

0 = 0)

b1
n =

n − 1
2iω̂0 b1

n−1 +
n

∑
k=1

[
q(k+1),0

∞ − (n − k)p(k),0∞

] b1
k

2iω̂0n
+

+
n

∑
k=1

[
q(k+1),1

∞ − (n − k)p(k),1∞

] b1
k

2iω̂0n
− ω̂1

ω̂0 b0
n , (D.1.50)

where

p(n),1∞ =


2iω̂1 n = 0 ,

4iω̂1 n = 1 ,

(4i(r̂n
− − r̂n

+)ω̂
1ρ−1

H n > 1 ,

(D.1.51)

q(n),1∞ =


0 n = 0, 1 ,
− sλ

1
ℓm − 4(âm̂ + is)ω̂1 n = 2 ,

2
ρH

Q1
1 +

4ω̂1

ρ3
H

Q2 n > 2 ,
(D.1.52)
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with
Q1

1 = −1
2
(r̂n−1

− − r̂n−1
+ ) sλ

1
ℓm . (D.1.53)

The coefficients q0
∞(r̂), p0

∞(r̂), b0
n and the boundary conditions for sψ

up,0
ℓm are given

in Appendix B.1 with ω ↔ ω0, sλℓmω̂ ↔ sλ
0
ℓm.

D.1.2 Linearization of the source

From Eq. (4.1.23), the amplitudes −2ZH,∞
ℓmω̂ can be written as

−2ZH,∞
ℓmω̂ =

2π

Wr̂

(
A0 − (A1 + B1)

d
dr̂

+

+ (A2 + B2)
d2

dr̂2 − B3
d3

dr̂3

)
−2Rin,up

ℓmω̂

∣∣∣∣
θ=π/2,r̂=r̂0

, (D.1.54)

where we set Btran
ℓmω̂ = Dtran

ℓmω̂ = 1, which implies CH
ℓmω̂ ≡ C∞

ℓmω̂. In order to write
the linearized amplitudes −2ZH,∞

ℓmω̂ in the parameter σ, it is convenient first to
recast them as function of only −2Rin

ℓmω̂, −2Rup
ℓmω̂ and its first derivative. Taking

advantage of the analyticity of the radial solutions in the positive real axis (except
at the inner and outer horizons), second and higher order derivatives can be
written solely in terms of −2Rin,up

ℓmω̂ and its first derivative. Thus, we can write
Eq. (D.1.54) as

−2ZH,∞
ℓmω̂ =

2π

Wr̂

(
X(r̂)−2Rin,up

ℓmω̂ + Y(r̂)
d−2Rin,up

ℓmω̂

dr̂

)
, (D.1.55)

where V(r̂) is the Teukolsky potential of Eq. (4.1.4), while

X(r̂) ≡ A0 +
V(r̂)

∆
C2 −

B3

∆
dV(r̂)

dr̂
, (D.1.56)

Y(r̂) ≡ −C1 +
2(r̂ − 1)

∆
C2 −

B3

∆
(2 + V(r̂)) , (D.1.57)

C1 ≡ A1 + B1 , C2 ≡ A2 + B2 . (D.1.58)

After expanding Eq. (D.1.55) in the parameter σ, we can write the 0th order term
as

−2Zβ,0
ℓm =

2π

W0
r̂

(
X0(r̂)−2Rα,0

ℓm + Y0(r̂)
d−2Rα,0

ℓm
dr̂

)
, (D.1.59)
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where β = H(∞) when α = in(up), while

X0(r̂) ≡ A0
0 +

V(r̂)
∆

C0
2 , (D.1.60)

Y0(r̂) ≡ −C0
1 +

2(r̂ − 1)
∆

C0
2 , (D.1.61)

V(r̂) = − (K0)2 + 4i(r̂ − 1)K0

∆
+ 8iω̂0r̂ + −2λ0

ℓm , (D.1.62)

K0 = (r̂2 + â2)ω̂0 − âm , (D.1.63)

W0
r̂ ≡ 1

∆

(
−2Rin,0

ℓm
d −2Rup,0

ℓm
dr̂

− −2Rup,0
ℓm

d −2Rin,0
ℓm

dr̂

)
. (D.1.64)

Before writing the 0th order source terms A0
0, C0

1 , C0
2 , we need to define the

following auxiliary quantities:

S0 ≡ −2S0
ℓm(π/2, c0) , (D.1.65)

S̃0 =
dS0

dθ
− mS0 + c0S0 , (D.1.66)

S0 = −1
2

S0
−2λ0

ℓm + S̃0
(

c0 − m − iâ
r̂

)
, (D.1.67)

and

J 0
z = J̃0

z − Ẽ0 â , (D.1.68)

P0
σ = −J0

z â + Ẽ0(r̂2 + â2) , (D.1.69)

Γ0 ≡ P0
σ(r̂

2 + â2) + â∆J 0
z . (D.1.70)

The 0th order source terms can then be written as

A0
0 = − 1

2r̂Γ0∆
[1A0

0 + 2A0
0 + (J 0

z )
2S0(3A0

0 + 4A0
0)] , (D.1.71)

C0
1 =

J 0
z

r̂Γ0

[
ir̂P0

σ S̃0 + S0J 0
z (∆ + ir̂3ω0 + iâr̂(c0 − m))

]
, (D.1.72)

C0
2 =

S0(J 0
z )

2∆
2Γ0 , (D.1.73)

where

1A0
0 = 2r̂(P0

σ)
2S0 , (D.1.74)

2A0
0 = 2P0

σS0J 0
z [(4i − mâ)r̂ + (r̂2 + â2)(r̂ω̂0 − 2i)] , (D.1.75)

3A0
0 = 2i(3â2r̂ + r̂3)ω̂0 + (r̂2 + â2)2(r̂ω̂0 − 2i)ω̂0 , (D.1.76)

4A0
0 = mâ2r̂ − 2mâ[â2(r̂ω̂0 − i) + r̂(3i − 2ir̂ + ω̂0r̂2)] . (D.1.77)
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The 1th order correction Zβ,1
ℓm is given by

−2Zβ,1
ℓm =

2π

W0
r̂

(
X1(r̂)−2Rα,0

ℓm + Y1(r̂)
d−2Rα,0

ℓm
dr̂

+ X0(r̂)−2Rα,1
ℓm + Y0(r̂)

d−2Rα,1
ℓm

dr̂

)
+

−
W1

r̂
W0

r̂
−2Zβ,0

ℓm , (D.1.78)

where again β = H(∞) when α = in(up), while

X1(r̂) ≡ A1
0 +

1
∆

(
V1(r̂)C0

2 + V0(r̂)C1
2 −

dV0(r̂)
dr̂

B1
3

)
, (D.1.79)

Y1(r̂) ≡ −C1
1 +

2(r̂ − 1)
∆

C1
2 −

2 + V0(r̂)
∆

B1
3 , (D.1.80)

V1(r̂) = −2K0 + 4i(r̂ − 1)
∆

K1 + 8iω̂1r̂ + −2λ1
ℓm , (D.1.81)

K1 = (r̂2 + â2)ω̂1 , (D.1.82)

W1
r̂ ≡ 1

∆

(
−2Rin,0

ℓm
d −2Rup,1

ℓm
dr̂

+ −2Rin,1
ℓm

d −2Rup,0
ℓm

dr̂

)
+

− 1
∆

(
−2Rup,0

ℓm
d −2Rin,1

ℓm
dr̂

+ −2Rup,1
ℓm

d −2Rin,0
ℓm

dr̂

)
. (D.1.83)

The 1th order source terms A1
0, C1

1 , C1
2 , A1

3 are quite cumbersome, and they are
provided in a supplemental MATHEMATICA notebook [177].
Once the amplitudes −2Zβ,0

ℓm , −2Zβ,1
ℓm with β = (H, ∞) are known, it is possible to

compute the corrections to the fluxes of Eqs. (4.3.17) and (4.3.18) as follows

I0
ℓm(r̂, ω̂0) =

∣∣ −2ZH,0
ℓm

∣∣2
2π(ω̂0)2 , (D.1.84)

I1
ℓm(r̂, ω̂0, ω̂1) =

(
−2ZH,0

ℓm −2Z̄H,1
ℓm

2π(ω̂0)2 + c.c. − 2
ω̂1

ω̂0 I0
ℓm(r̂, ω̂0)

)
, (D.1.85)

H0
ℓm(r̂, ω̂0) =

α̃0
ℓm

2π

∣∣ −2Z∞,0
ℓm

∣∣2 , (D.1.86)

H1
ℓm(r̂, ω̂0, ω̂1) =

α̃0
ℓm

2π

(
−2Z∞,0

ℓm −2Z̄∞,1
ℓm + c.c.

)
+

α̃1
ℓm

2π

∣∣ −2Z∞,0
ℓm

∣∣2 , (D.1.87)
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where c.c. stands for complex conjugation, and

α̃0
ℓm =

1
D0

[
256(2r̂+)5κ̂0((κ̂0)2 + 4ϵ2)((κ̂0)

2 + 16ϵ2)ω̂0] , (D.1.88)

α̃1
ℓm = −D1

D0 α̃0
ℓm +

256(2r̂+)5

C0
ℓm

ω̂1[64ϵ4(κ0 + ω0)+

+ 20(ϵκ0)2(κ0 + 3ω0) + (κ0)4(κ0 + 5ω0)
]

, (D.1.89)

with ϵ =
√

1 − â2/(4r̂+), κ̂0 = ω̂0 − âm/(2r̂+) and

D0 = [(sλ
0
ℓm + 2)2 + 4c0(m − c0)][(sλ

0
ℓm)

2 + 36c0(m − c0)]

+ (2 sλ
0
ℓm + 3)[96(c0)2 − 48mc0] + 144(ω̂0)2(1 − â2) , (D.1.90)

D1 = 4{(sλ
0
ℓm)

3
sλ

1
ℓm + (sλ

0
ℓm)

2[3 sλ
1
ℓm + 10(m − 2c0)c1]+

+ 2 sλ
0
ℓm[sλ

1
ℓm + 10 sλ

1
ℓmc0(m − c0) + 6c1(m + 2c0)]+

+ 72ω̂0ω̂1[1 + â2(m − 2c0)(m − c0)] + 12c0
sλ

1
ℓm(m + c0)} . (D.1.91)



Appendix E

Comparisons of the GW fluxes with
previous work

We have tested our code by comparing the GW fluxes against results already
published in the literature. In this section we provide a detailed comparison in
order to assess the accuracy of our method.

E.1 Comparison with Harms et al.

The GW fluxes at infinity for a spinning particle have been calculated in Ref. [110]
by solving the Teukolsky equation in the time domain and assuming q = 1, so
that σ = qχ is not small when χ = O(1). To make the comparison, we also set
q = 1. We remark that we use the same spin supplementary conditions and the
same orbital dynamics as in Ref. [110].
Tables E.1–E.3 show the relative percentage difference between our results and
those listed in Table II, III, and IV of Ref. [110] for the ℓ = 2, 3 modes. The
fluxes are normalized with respect to the leading Post-Newtonian order. Here
the normalized fluxes are denoted as follows:

F̂∞
ℓm = F∞

ℓm/kℓm , (E.1.1)

where
k22 =

32
5
|Ω̂| 10

3 , k21 =
8
45

|Ω̂| 12
3 , k33 =

243
28

|Ω̂| 12
3 (E.1.2)

and F∞
ℓm includes only the fluxes at infinity, assuming q = 1, and therefore σ = χ.

Moreover, we define
∆ℓm = 100

∣∣1 − F̂∞
ℓm/F̂Sℓm

∣∣ , (E.1.3)

where F̂Sℓm given in [110]. Note that Ref. [110] assumed Ĵz > 0, distinguishing
prograde and retrograde orbits on the base of the sign of â. In our work we
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consider the opposite convention: we fix â ≥ 0, while Ĵz is positive (negative) for
corotating (counter-rotating) orbits. Therefore, for retrograde orbits we compare
our fluxes for σ > 0 with the results σ < 0 of Ref. [110] and vice versa.
Tables E.1-E.3 show that our results are in good agreement with those of Ref. [110],
with relative errors of the order of the percent or below for all the considered
configurations. For the ℓ = m = 2 and ℓ = m = 3 modes the fractional difference
is always less than 0.5%.
This picture does not change for ∆21 except for fast spinning bodies with â = 0.9:
in this case retrograde and prograde orbits lead to maximum discrepancies of
1.3% and 16%, respectively. We believe that the last value may be given by
numerical rounding, since the corresponding flux is given in Ref. [110] with only
one significant figure.
Finally, in Fig. E.1 we plot F̂22 for prograde orbits with â = 0.9 and r̂ = 3 as
a function of χ. Owing to the fact that q = 1 (and therefore σ is not small),
the fluxes depend on the spin of the secondary in a nonlinear fashion when
χ = O(1).
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Figure E.1: Fluxes F̂∞
22 for the ℓ = m = 2 modes as a function of σ for â = 0.9, prograde

orbits and r̂ = 3. Notice the nonlinear dependence of the fluxes on σ for the extreme
case q = 1.
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â = 0
r̂ σ F̂∞

22 ∆22[%] F̂∞
21 ∆21[%] F̂∞

33 ∆33[%]
4 −0.9 2.2135 0.2 2.1607 0.4 2.4238 0.3

−0.5 1.7954 0.2 2.3052 0.4 1.8302 0.3
0.5 1.0422 0.3 2.1033 0.5 0.8709 0.4
0.9 0.8538 0.3 2.0157 0.5 0.6549 0.4

5 −0.9 1.2143 0.2 0.9541 0.5 1.2187 0.3
−0.5 1.1143 0.2 1.2514 0.5 1.0605 0.3
0.5 0.8703 0.2 1.7777 0.5 0.7181 0.3
0.9 0.7849 0.2 1.9312 0.5 0.6110 0.4

6 −0.9 1.0137 0.2 0.7042 0.5 0.9780 0.3
−0.5 0.9610 0.2 0.9837 0.5 0.8881 0.3
0.5 0.8249 0.2 1.6424 0.5 0.6837 0.3
0.9 0.7727 0.2 1.8835 0.5 0.6132 0.3

8 −0.9 0.9042 0.2 0.5629 0.5 0.8430 0.3
−0.5 0.8778 0.2 0.8124 0.5 0.7955 0.3
0.5 0.8093 0.2 1.5136 0.5 0.6837 0.3
0.9 0.7818 0.2 1.8115 0.5 0.6424 0.3

10 −0.9 0.8779 0.2 0.5292 0.5 0.8110 0.3
−0.5 0.8608 0.2 0.7602 0.5 0.7792 0.3
0.5 0.8166 0.2 1.4464 0.5 0.7030 0.3
0.9 0.7987 0.2 1.7537 0.5 0.6741 0.3

20 −0.9 0.8875 0.2 0.5560 0.4 0.8290 0.3
−0.5 0.8820 0.2 0.7426 0.4 0.8179 0.3
0.5 0.8680 0.2 1.3100 0.4 0.7907 0.3
0.9 0.8623 0.2 1.5745 0.4 0.7799 0.3

Table E.1: Normalized fluxes and fractional differences [Eq. (E.1.1)] between our results
and those obtained in Table II of Ref. [110] for â = 0, and different values of r̂. Note that
we set q = 1 to agree with Ref. [110].
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â = 0.9 retrograde orbits
r̂ σ F̂∞

22 ∆22[%] F̂∞
21 ∆21[%] F̂∞

33 ∆33[%]
5 −0.9 1.2361 0.2 5.6616 0.4 1.0827 0.3

−0.5 1.6251 0.2 6.6959 0.4 1.5729 0.3
0.5 3.3150 0.2 10.789 0.3 3.9783 0.3
0.9 4.4462 0.2 13.255 0.3 5.7567 0.3

6 −0.9 1.0335 0.2 4.6842 0.4 0.8937 0.3
−0.5 1.2023 0.2 4.8148 0.4 1.1143 0.3
0.5 1.7181 0.2 4.8963 0.4 1.8635 0.3
0.9 1.9563 0.2 4.7277 0.3 2.2404 0.3

8 −0.9 0.9123 0.2 3.7900 0.4 0.7911 0.3
−0.5 0.9784 0.2 3.5167 0.4 0.8842 0.3
0.5 1.1510 0.2 2.6978 0.4 1.1499 0.3
0.9 1.2208 0.2 2.3159 0.3 1.2679 0.3

10 −0.9 0.8816 0.2 3.3399 0.4 0.7727 0.3
−0.5 0.9193 0.2 2.9873 0.4 0.8286 0.3
0.5 1.0142 0.2 2.0862 0.4 0.9799 0.3
0.9 1.0519 0.2 1.7269 0.3 1.0446 0.3

20 −0.9 0.8875 0.3 2.4826 0.7 0.8130 1.2
−0.5 0.8969 0.1 2.1581 0.6 0.8290 0.4
0.5 0.9202 0.2 1.4249 0.3 0.8699 0.0
0.9 0.9294 0.2 1.1662 1.3 0.8866 0.3

Table E.2: Normalized fluxes and fractional differences with the fluxes in Table III of
Ref. [110] in the case â = 0.9, retrogade orbits. The fluxes F̂∞

ℓm with σ < 0 have to be
compared with the fluxes F̂Sℓm with σ > 0 and vice versa.
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â = 0.9 prograde orbits
r̂ σ F̂∞

22 ∆22[%] F̂21 ∆21[%] F̂33 ∆33[%]
4 −0.9 0.6037 0.2 3.3 × 10−4 16 0.5052 0.3

−0.5 0.6077 0.2 0.0315 1.3 0.4888 0.3
0.5 0.6038 0.2 0.3081 0.7 0.4458 0.3
0.9 0.6015 0.2 0.4651 0.7 0.4314 0.3

6 −0.9 0.6900 0.2 0.0093 ∗ 0.5826 0.3
−0.5 0.6880 0.2 0.0737 ∗ 0.5671 0.3
0.5 0.6792 0.2 0.4314 ∗ 0.5294 0.3
0.9 0.6750 0.2 0.6330 0.7 0.5154 0.3

8 −0.9 0.7384 0.2 0.0324 1.2 0.6357 0.3
−0.5 0.7354 0.2 0.1164 ∗ 0.6223 0.3
0.5 0.7261 0.2 0.5092 ∗ 05899 0.3
0.9 0.7221 0.2 0.7264 0.7 0.5776 0.3

10 −0.9 0.7716 0.2 0.0596 1.1 0.6755 0.3
−0.5 0.7685 0.2 0.1558 ∗ 0.6640 0.3
0.5 0.7598 0.2 0.5633 ∗ 0.6361 0.3
0.9 0.7560 0.2 0.7842 0.6 0.6253 0.3

20 −0.9 0.8558 0.1 0.1848 1.0 0.7862 0.00
−0.5 0.8537 0.2 0.2998 1.7 0.7800 0.01
0.5 0.8481 0.2 0.6982 0.3 0.7646 0.2
0.9 0.8458 0.2 0.8998 1.9 0.7586 0.1

Table E.3: Normalized fluxes compared against the fluxes shown in Table IV of Ref. [110]
for â = 0.9 and prograde orbits. The ∗ indicates fluxes not calculated in Ref. [110].
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E.2 Comparison with Taracchini et al.

Reference [248] computed high-precision GW fluxes for nonspinning particles
orbiting around Schwarzschild and Kerr BHs solving the Teukolsky equation
in the frequency domain. We have checked our code against both their set-up.
The relative errors are shown in Tables E.4-E.7 for the values of the GW fluxes
computed at the ISCO and at a different orbital separations r̂, as a function of
the primary spin. Note that in Ref. [248] the sum over the harmonic index ℓ was
truncated at a certain value ℓmax such that the fractional error between the flux
at ℓmax and ℓmax − 1 was less than 10−14. To achieve this accuracy the required
ℓmax is in general very large: at the ISCO, for example, ℓmax = 30 for â = 0, and
ℓmax = 66 for â = 0.99. In our calculations we fixed ℓmax = 20. Nonetheless, the
agreement between our results and those computed in Ref. [248] is extremely
good. Even for the fastest spinning BH considered (with â = 0.9), we find a
relative difference smaller than 10−5.

â ISCO F 0 ∆rel(F 0)
0.1 5.669 1.203797640 × 10−3 8.5 × 10−11

0.3 4.979 2.10037308 × 10−3 1.4 × 10−9

0.5 4.233 4.11717449 × 10−3 6.9 × 10−10

0.8 2.907 1.71190 × 10−2 4.4 × 10−7

0.9 2.321 3.5223 × 10−2 5.4 × 10−6

Table E.4: Fluxes for a nonspinning objects around Kerr BHs F 0 at the ISCO and
fractional difference ∆rel(F 0) compared to the results of Ref. [248].

â = 0 â = 0.3
r̂ F 0 ∆rel(F 0) F 0 ∆rel(F 0)

10 6.15163167846 × 10−5 1.8 × 10−13 5.72185605812 × 10−5 1.1 × 10−12

8 1.9610454858336 × 10−4 1.6 × 10−14 1.757401400491 × 10−4 2.4 × 10−14

6 9.40339356 × 10−4 3.8 × 10−11 7.7105423521 × 10−4 1.2 × 10−11

Table E.5: Same as Table E.4 but for generic orbital separation different from the ISCO,
and focusing on â = (0, 0.3).
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â = 0.5
r̂ F 0 ∆rel(F 0)

10 5.4706016232 × 10−5 3.0 × 10−12

8 1.64390512713 × 10−4 7.2 × 10−13

6 6.8651481394 × 10−4 7.1 × 10−12

Table E.6: Same as Table E.4 but for generic orbital separation different from the ISCO,
and focusing on â = 0.5.

â = 0.8 â = 0.9
r̂ F ∆rel(F ) F ∆rel(F )

10 5.13763911701 × 10−5 4.3 × 10−13 5.0368602531 × 10−5 1.4 × 10−12

8 1.49973726131 × 10−4 2.6 × 10−13 1.4574909234 × 10−4 9.5 × 10−13

6 5.8851295900 × 10−4 2.7 × 10−12 5.6168859157 × 10−4 1.5 × 10−12

4 3.9084751 × 10−3 2.2 × 10−9 3.53976293 × 10−3 1.4 × 10−9

Table E.7: Fluxes for a non spinning object F 0 and fractional difference ∆rel(F 0) with
respect to the fluxes listed in Ref. [248] for fast rotating BHs with â = (0.8, 09).
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E.3 Comparison with Gralla et al.

Finally, we tested our code in the case of a nonspinning secondary and fast
spinning primary BHs with â > 0.9. In this case we use the data obtained in
Ref. [178] using the Teukolsky formalism in the frequency domain and assuming
ℓmax = 30 [178]. The comparison is shown in Table E.8 for â = 0.99 and â = 0.995
for orbital radii equal to and larger than the ISCO. The discrepancy between
our results and those of Ref. [178] increases for larger spins and smaller orbital
separation. However, in the worst case scenario, the fluxes differ at most by one
part over 103.

â = 0.990 â = 0.995
r̂ F ∆rel(F ) F ∆rel(F )

10 4.9500572776 × 10−5 2.7 × 10−12 4.9453383948 × 10−5 3.4 × 10−12

8 1.4216152170 × 10−4 1.5 × 10−11 1.419678387 × 10−4 1.4 × 10−11

6 5.395577551 × 10−4 6.6 × 10−11 5.38379633 × 10−4 6.6 × 10−11

4 3.26013974 × 10−3 1.3 × 10−9 3.24583765 × 10−3 1.3 × 10−9

2 4.301 × 10−2 1.1 × 10−5 4.221 × 10−2 1.0 × 10−5

ISCO 9.17 × 10−2 5.0 × 10−4 9.5 × 10−2 1.0 × 10−3

Table E.8: Fluxes for a nonspinning object F 0 and fractional difference ∆rel(F 0) with
respect to the fluxes listed in [119]. The ISCO is at r̂ = 1.454 and r̂ = 1.341 for â = 0.990
and â = 0.995 respectively.



Appendix F

Stability and convergence of the
Fisher and covariance matrices

In this appendix we provide some details on our procedure to assess the stability
and numerical convergence of the Fisher and covariant matrices.
This task is particularly delicate for EMRI waveforms, since the Fisher matrix
is known to be ill-conditioned [188]. In the best configuration, the condition
number was κ ∼ 1012, while in worst scenario (typically occurring in the pres-
ence of a spinning secondary), the condition number was as large as κ ∼ 1020.
Moreover, all waveform derivatives were computed numerically, which is an
ill-conditioned operation.
To ameliorate the ill-condition issues, we performed our computation with
arbitrary-precision arithmetic, obtaining Fisher matrices with precision no less
than 38-digit in all elements and for all configurations.
We validated our Fisher analysis by:

• testing the stability of the Fisher and covariance matrices under random
perturbations;

• testing the convergence of the Fisher and covariance matrices under a
change in the finite-difference parameter ϵ that regulates the accuracy of
the numerical derivatives.

We check the stability of the Fisher and covariance matrices by perturbing each
element with a deviation matrix Fij. All elements of Fij are drawn from a
uniform distribution U, which depends on the configuration under exam. Then,
we compute

δstability ≡ max
ij

[(
(Γ + F)−1 − Γ−1)ij

(Γ−1)ij

]
(F.0.1)
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By performing a case-by-case careful analysis and boosting the numerical preci-
sion of our codes, we find that for the worst cases in all configurations:

• the Fisher matrices converges within 2 orders of magnitudes in the ϵ pa-
rameters with relative deviations at the level of 0.03% (another worst case
is a convergence within 3 orders of magnitude in ϵ with deviations at 0.2%);

• the inverse matrix without priors converges in 2 order of magnitude in ϵ
with deviations at 14%, while the diagonal elements converge with devia-
tions at 0.1%;

• the inverse with priors converges in 2 order of magnitude in ϵ with devia-
tions at 3.8%;

• the inverse without priors is stable with δstability = 7.5% and perturbations
U[−10−7, 10−7];

• the inverse with priors is stable with δstability = 4.1% and perturbations
U[−10−6, 10−6].

Moreover, we noticed that, in order to achieve a convergent inverse with an
accuracy of order O(1%), it was necessary to compute a convergent Fisher matrix
accurate at a the level of O(0.01%).
Finally, it is worth noticing that, for some configurations in the presence of
the secondary spin, we were unable to obtain a fully convergent covariance
matrix: only the diagonal terms were convergent. Nonetheless, for all configu-
rations presented in the main text the covariance matrix was found to be fully
convergent.
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