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A B S T R A C T   

We study the correlation between the codon usage bias of genetic sequences and the network features of protein- 
protein interaction (PPI) in bacterial species. We use PCA techniques in the space of codon bias indices to show 
that genes with similar patterns of codon usage have a significantly higher probability that their encoded pro
teins are functionally connected and interacting. Importantly, this signal emerges when multiple aspects of codon 
bias are taken into account at the same time. The present study extends our previous observations on E. coli over 
a wide set of 34 bacteria. These findings could allow for future investigations on the possible effects of codon bias 
on the topology of the PPI network, with the aim of improving existing bioinformatics methods for predicting 
protein interactions.   

1. Introduction 

The systematic analysis of protein–protein interaction (PPI) is key to 
understand the patterns of chemical reactions within the cell, as well as 
the role played by proteins in regulative processes (Gavin et al., 2012). 
On the applicative side, comparing the interactomes of different species 
may allow understanding disease-related processes that engage more 
than one species, such as host-pathogen relationships, to identify clini
cally relevant host-pathogen PPI, and consequently developing future 
therapeutic applications (Shah et al., 2015; Arnold et al., 2012). 

An important aspect to take into account when studying PPI is the 
degeneracy of the genetic code, due to the presence of synonymous 
codons at the genetic level that encode the same amino acid in the 
translated protein. Although synonymous codons are indistinguishable 
in the primary structure of a protein, they are not used randomly, but 
with different frequencies that may vary across species, across regions of 
the same genome, and even across regions of the same gene. This phe
nomenon, known as Codon Usage Bias (CUB) (Wright, 1990; Behura and 
Severson, 2013; Hanson and Coller, 2018), is well-established in the 
literature, despite a general understanding of its biology still lacks 
(Tuller, 2014). It is known however that CUB is involved in many 

important cellular processes, including differential gene expression 
(Gouy and Gautier, 1982; Quax et al., 2015; Fraser et al., 2004), trans
lation efficiency and accuracy (Sabi and Tuller, 2014), gene function and 
dynamics of the ribosome (Najafabadi et al., 2009; Dilucca et al., 2018), 
co-translational folding of the proteins (Zhao et al., 2017), and deami
nation of tRNA anticodons (Rafels-Ybern et al., 2018). CUB is believed to 
be maintained by a balance between mutation-selection (random vari
ability in genetic sequences followed by fixation of the optimal codons) 
and genetic drift (allowing for the occurrence of non-optimal codons) 
(Kober and Pogson, 2013). Indeed, highly expressed genes feature a 
strong CUB by using a small subset of codons, optimized by translational 
selection, while the presence of non-optimal codons in less-expressed 
genes causes long breaks during protein synthesis that affect the 
folding process (Pop et al., 2014). Furthermore, CUB is well structured 
along the genome, with neighbor genes having similar usage frequencies 
of synonymous codons (Plotkin and Kudla, 2011). 

Considering that gene co-expression level and proximity between the 
positions of the genes in the genome are powerful predictors of protein- 
protein interaction (Jansen et al., 2002; Fraser et al., 2004), it would be 
interesting to analyze how the similarity in CUB of the genes is reflected 
into the likelihood that the corresponding proteins make physical 
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contact in the cell. Given the above considerations, we would expect a 
more similar codon usage bias between interacting proteins than non- 
interacting ones. Recent evidence in this direction has been provided 
in some case studies for E. coli and yeast (Najafabadi and Salavati, 2008; 
Zhou et al., 2012). In Dilucca et al. (2015) we showed that in E. coli 
translational selection systematically favors optimal codons in proteins 
that have a large number of interactors and belong to the most repre
sentative communities in the PPI. In the present work our aim is pre
cisely to understand whether the similarity of codon usage patterns 
between a pair of genes is related in general to the possible interaction of 
the corresponding proteins. 

By extending the analysis in Dilucca et al. (2015) to a large set of 
unrelated bacterial species, here we provide basic observations of suf
ficient generality on the co-evolution of CUB and the connectivity fea
tures of bacterial interactomes. Specifically, our main result indicates 
that the functional structuring of the PPI network has interfered with the 
peculiar codon choice of the genes over evolution. Our findings point out 
that CUB should be a relevant parameter in the prediction of unknown 
protein-protein interactions from genomic information. 

2. Materials and methods 

2.1. Genomic sequences 

In this work, we select a set of 34 bacterial genomes with different 
behavior, environment and taxonomy (see Table 1 for details). Each 
bacterium represents a specific clade in the phylogenetic tree by Plata 
et al. (2015). Nucleotide sequences were downloaded from the FTP 
server of the National Center for Biotechnology Information (ftp://ftp. 
ncbi.nlm.nih.gov/genomes/archive/old_genbank/Bacteria/) (Benson 
et al., 2012). 

2.2. Codon usage bias measures 

In the last years, different metrics to measure CUB have been pro
posed. In this work we use the following four indices to characterize a 
genetic sequence (we remand to Hanson and Coller (2018) and Dilucca 
et al. (2015) for the detailed definitions). 1) The Relative Synonymous 
Codon usage (RSCU) of a codon is the number of occurrences of that 
codon in the genome, with respect to the family of synonymous codon it 
belongs to. RSCU values can be combined into the Effective Number of 
Codons (NC) (Fuglsang, 2004), which is a popular statistical measure of 
the number of codons used in a sequence. 2) The tRNA Adaptation index 
(tAI) (dos Reis et al., 2014) is instead a widely used metric based on gene 
expression levels, which builds on the assumptions that tRNA avail
ability is the driving force for translational selection. 3) CompAI and 
CompAI_w (Dilucca et al., 2015) are two recently proposed metrics that 
refine tAI by using the competition between cognate and near-cognate 
tRNA to proxy the efficiency of codon-anticodon coupling. 4) The GC 
content of a gene, namely the percentage of guanine and cytosine in the 
RNA molecules, is a parameter used to explain CUB differences between 
species (Hershberg and Petrov, 2008). 

2.3. Protein-protein interaction network 

The PPI networks of the 34 bacterial genomes were retrieved from 
the STRING database (Known and Predicted Protein-Protein In
teractions) (Szklarczyk et al., 2015). Given that a predicted interaction 
in STRING is assigned with a confidence level w, as typically done in PPI 
studies we select as actual links of the networks only those interactions 
with w > 0.9. The resulting degree (namely the number of incident link) 
of a protein is denoted as k. 

To detect the communities of a PPI we use the Molecular Complex 
Detection (MCODE) method (Bader and Hogue, 2003). MCODE works 
by iteratively grouping together neighboring nodes with similar values 
of the core-clustering coefficient, which is defined as the density of the 

Table 1 
Summary of the 34 bacterial datasets considered in this work. For each specie we 
report the organism name, abbreviation, RefSeq, STRING code, size of genome 
(number of genes n), and density of the PPI network – defined as ratio between 
the number of links in the real interactome and the maximum number of possible 
links, namely n(n − 1)/2, where n is the number of proteins.  

Organisms Abbr. RefSeq STRING Size Density 

Agrobacterium fabrum 
str. C58 

agtu NC_003062 176,299 2765 0.008 

Anabaena variabilis 
ATCC 29413 

anva NC_007413 240,292 5043 0.005 

Aquifex aeolicus VF5 aqae NC_000918 224,324 1497 0.009 
Bifidobacterium longum 

NCC2705 
bilo NC_004307 216,816 1726 0.004 

Bordetella 
bronchiseptica RB50 

bobr NC_002927 257,310 4994 0.005 

Bordetella parapertussis 
12822 

bopa NC_002928 360,910 4185 0.008 

Brucella melitensis bv. 1 
str. 16M 

brme NC_003317 224,914 2059 0.006 

Buchnera aphidicola str. 
Bp 

buap NC_004545 224,915 504 0.008 

Burkholderia 
pseudomallei K96243 

bups NC_006350 272,560 3398 0.002 

Buchnera aphidicola Sg 
uid57913 

busg NC_004061 198,804 546 0.002 

Burkholderia 
thailandensis E264 

buth NC_007651 271,848 3276 0.001 

Caulobacter crescentus cacr NC_011916 565,050 3885 0.002 
Campylobacter jejuni caje NC_002163 192,222 1572 0.004 
Corynebacterium 

efficiens YS-314 
coef NC_004369 196,164 2938 0.006 

Corynebacterium 
glutamicum ATCC 
13,032 

cogl NC_003450  2959 0.005 

Chlamydia trachomatis 
D/UW-3/CX 

chtr NC_000117.1 272,561 894 0.008 

Clostridium 
acetobutylicum ATCC 
824 

clac NC_003030.1 272,562 3602 0.005 

Francisella novicida 
U112 

frno NC_008601 401,614 1719 0.007 

Fusobacterium 
nucleatum ATCC 
25586 

funu NC_003454.1 190,304 1983 0.002 

Haemophilus ducreyi 
35000HP 

hadu NC_002940 233,412 1717 0.004 

Klebsiella pneumonia klpn NC_009648 272,620 4775 0.005 
Listeria monocytogenes 

EGD 
limo NC_003210 169,963 2867 0.003 

Mesorhizobium loti 
MAFF303099 

melo NC_002678.2 266,835 6743 0.0001 

Mycoplasma genitalium 
G37 

myge NC_000908 243,273 475 0.005 

Mycoplasma 
pneumoniae M129 

mypn NC_000912.1 272,634 648 0.006 

Mycobacterium 
tuberculosis H37Rv 

mytu NC_000962.3 83,332 3936 0.006 

Porphyromonas 
gingivalis ATCC 33277 

pogi NC_010729 431,947 2089 0.001 

Ralstonia solanacearum 
GMI1000 

raso NC_003295.1 267,608 3436 0.002 

Sphingomonas wittichii 
RW1 

spwi NC_009511 392,499 4850 0.007 

Staphylococcus aureus 
NCTC 8325 

stau NC_007795 93,061 2767 0.004 

Synechocystis sp. PCC 
6803 

sysp NC_000911.1 1148 3179 0.004 

Thermotoga maritima 
MSB8 

thma NC_000853.1 243,274 1858 0.001 

Vibrio cholerae N16961 vich NC_002505 243,277 2534 0.001 
Xylella fastidiosa 9a5c xyfa NC_002488 160,492 2766 0.002  
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highest k-core of its immediate neighborhood times k (here a k-core is a 
sub-network of minimal degree k). Thus, MCODE detects the densest 
regions of the network and assigns a score to each community equal to 
its size times its internal link density. In line with our previous study 
(Dilucca et al., 2015), here we consider only the first eight MOCDE 
communities. 

2.4. Principal component analysis 

Principal Component Analysis (PCA) (Jolliffe, 2002) is a multivariate 
statistical method that transforms a set of possibly correlated variables 
into a set of linearly uncorrelated ones (called principal components, 
spanning a space of lower dimensionality). The transformation is 
defined so that the first principal component accounts for the largest 
possible variance of the data, and each succeeding component in turn 
has the highest variance possible under the constraint that it is orthog
onal to (i.e., uncorrelated with) the preceding components. 

We use PCA over the space of the five codon bias indices described 
above. Thus, for a given species, each gene is represented as a 5-dimen
sional vector with coordinates (compAI, compAI_w, tAI, NC, GC). These 
coordinates are separately normalized to zero mean and unit variance 
over the genome of the species. The principal components are then the 
eigenvectors of the covariance matrix, ordered according to the 
magnitude of the corresponding eigenvalues. 

2.5. Null network model and statistical tests 

For a given species, in order to characterize the CUB patterns over 
the interactome we have to compare the PPI network with a suitable null 
network model, which should embody a null hypothesis of no relation 
between the codon usage of two genes and the possible interactions 
between their encoded proteins. 

Here we use the configuration model (CM), namely a degree- 
preserving randomization of the network links which thus destroys the 
original structure of the network (see Cimini et al. (2019)) for an 
introduction to the method). Note that by constraining the degrees, the 
model automatically takes care of the linking bias for highly connected 
proteins, which typically corresponds to essential genes (Jeong et al., 
2001) (but also to genes that are conserved across species or related to 
ribosomal functions (Dilucca et al., 2019). 

Once the CM is built, we can assess the significance of a given set of 
link-related quantities by comparing their distribution on the original 
PPI network with their distribution on the null model. The Mann- 
Whitney U test is used to determine if the two distributions are 
different (we use a p-value threshold of 10− 3). Alternatively, to assess 
the significance of a single network quantity X , we use the Z-score Z[X] 
= (X − 〈X〉)/σX where 〈X〉 and σX are its mean and standard deviation 
computed in the null model. Thus, the Z-score quantifies the number of 
standard deviations by which the actual and null model values of X 
differ. 

3. Results and discussion 

3.1. Interacting proteins do not share a common codon usage statistic nor 
tRNA adaptation level 

As mentioned in the introduction, our aim is to analyze how the 
closeness in codon usage of two genes is reflected in the capacity of their 
proteins to make physical contact in the cell, and we expect a more 
similar CUB between interacting proteins than non-interacting ones. 

We analyze one species at a time. For a given species, we start by 
characterizing each gene by its 61-component vector of RSCU values, 
which provides the detailed statistics of codon usage in the sequence. We 
can then quantify how similar are two genes in the use of synonymous 
codons through the normalized scalar product of their RSCU vectors. We 
thus compute the distribution of the scalar products between the RSCU 

vectors of the genes whose encoded proteins are linked in the PPI. We 
compare this distribution with the analogous distribution computed on 
the null model network. Table 2 reports the p-values of the Mann- 
Whitney U test between these distribution for all species in the data
set. We notice that many species do not pass the test (having a p-values 
larger than the threshold 10− 3), in which cases we can conclude that the 
two distributions are statistically equal. Therefore, CUB is not very 
predictive of protein interactions when measured only through codon 
usage statistics, without taking into account the information about tRNA 
levels. 

We can perform the same exercise using the (normalized) difference 
in tAI levels (rather than the scalar product of RSCU) in order to qual
itatively assess whether similarity of tRNA abundance and adaptation, 
without sequences statistic, can explain protein connectivity. Results of 
the Mann-Whitney U test reported in Table 2 show that tAI (used as a 
proxy of gene expressivity) is rarely informative about PPI connections, 
and in general less informative than codon usage statistics. 

Before moving to the next section, two remarks are in order. Firstly, 
we do not test the difference in CompAI index because its distribution on 
the various interactomes turn out to be too narrow for the Mann- 
Whitney U test to work properly, and we also do not test GC since it is 
not a direct measure of CUB but rather a contributing factor reflecting 
mutational bias (Li et al., 2015) Secondly, rather than gene expressivity 
it would be much more interesting to test gene co-expressivity, which is 
known to have significant correlation to PPIs. However, gene co- 
expression data are available only for a handful of species, and thus 
can be employed in specific case studies but not for a species-wide 
assessment. 

Table 2 
P-values of to the Mann-Whitney U test, for the pairwise comparisons between 
the normalized distribution of RSCU scalar products and tAI differences for 
genes corresponding to interacting proteins in the PPI, and their distribution 
obtained in the randomized CM of the PPI. For each species, we report the or
ganism name, abbreviation, and p-value of RSCU and tAI statistics. In bold we 
report statistically significant values.  

Organisms Abbr. p-val RSCU p-val tAI 

Agrobacterium tumefaciens agtu 1.3 * 10¡6 1.1 * 10¡3 

Anabaena variabilis ATCC 29413 anva 1.0 * 10¡4 1.2 * 10¡4 

Aquifex aeolicus VF5 aqae 2.0 * 10− 2 1.2 * 10¡5 

Bifidobacterium longum NCC2705 bilo 1.5 * 10¡3 8.9 * 10− 1 

Bordetella bronchiseptica RB50 bobr 2.7 * 10¡3 8.7 * 10− 1 

Bordetella parapertussis 12822 bopa 1.1 * 10¡3 1.2 * 10− 2 

Brucella melitensis bv. 1 str. 16M brme 1.6 * 10¡7 1.3 * 10− 2 

Buchnera aphidicola str. Bp buap 1.3 * 10¡3 8.7 * 10− 1 

Burkholderia pseudomallei K96243 bups 1.2 * 10¡6 1.2 * 10¡5 

Buchnera aphidicola Sg uid57913 busg 3.5 * 10− 2 5.0 * 10− 2 

Burkholderia thailandensis E264 buth 9.1 * 10¡15 4.0 * 10− 2 

Caulobacter crescentus cacr 1.5 * 10− 1 3.0 * 10− 2 

Campylobacter jejuni caje 1.0 * 10− 1 1.2 * 10− 1 

Corynebacterium efficiens YS-314 coef 2.7 * 10¡3 8.9 * 10− 1 

Corynebacterium glutamicum ATCC 13032 cogl 6.0 * 10¡3 1.4 * 10− 1 

Chlamydia trachomatis D/UW-3/CX chtr 1.8 * 10− 1 2.0 * 10− 2 

Clostridium acetobutylicum ATCC 824 clac 7.0 * 10¡11 5.0 * 10− 2 

Francisella novicida U112 frno 6.6 * 10− 1 7.0 * 10− 2 

Fusobacterium nucleatum ATCC 25586 funu 1.1 * 10¡11 1.9 * 10¡6 

Haemophilus ducreyi 35000HP hadu 5.7 * 10¡3 1.1 * 10¡5 

Klebsiella pneumoniae klpn 8.9 * 10¡3 3.0 * 10¡4 

Listeria monocytogenes EGD limo 1.3 * 10¡5 2.0 * 10¡3 

Mesorhizobium loti MAFF303099 melo 1.0 * 10− 2 2.4 * 10− 1 

Mycoplasma genitalium G37 myge 5.8 * 10¡5 5.4 * 10− 1 

Mycoplasma pneumoniae M129 mypn 5.2 * 10¡5 7.8 * 10− 2 

Mycobacterium tuberculosis H37Rv mytu 1.6 * 10− 2 4.5 * 10− 2 

Porphyromonas gingivalis ATCC 33277 pogi 4.5 * 10¡6 5.0 * 10− 3 

Ralstonia solanacearum GMI1000 raso 2.2 * 10− 2 5.0 * 10¡3 

Sphingomonas wittichii RW1 spwi 8.9 * 10¡9 4.0 * 10¡4 

Staphylococcus aureus NCTC 8325 stau 2.0 * 10− 2 2.3 * 10− 1 

Synechocystis sp. PCC 6803 sysp 3.0 * 10¡4 2.0 * 10− 2 

Thermotoga maritima MSB8 thma 1.6 * 10¡3 1.5 * 10¡4 

Vibrio cholerae N16961 vich 2.1 * 10¡8 3.4 * 10− 1 

Xylella fastidiosa 9a5c xyfa 5.1 * 10¡4 2.2 * 10− 1  
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3.2. Principal component analysis over the space of CUB indices 

A possible way to obtain a more evident correlation between CUB 
similarity and PPI connectivity is to combine the information coming 
from the various facets of codon bias, namely codon usage statistics, 
mutational selection, tRNA expression levels and coupling efficiency, 
respectively measured by NC, GC, tAI and CompAI. Thus, for a given 
species, we then perform PCA over the space of the five codon bias 
indices (CompAI, CompAI_w, tAI, NC and GC content) measured sepa
rately for each gene in the genome (see Fig. 1 for an example; plots for all 
species are shown in the Supplementary Materials). Typically, the first 
and second principal components (PC1 and PC2) turn out to represent for 
as much as 65% of the total variance of codon bias over the genome. 
Additionally, projection of these two principal components on the in
dividual CUB indices (loadings) shows that none of the five indices 
predominantly contributes to the data variability. We can thus focus on 
the plane defined by the PC1 and PC2vectors (see Fig. 2 for an example; 
plots for all species are shown in the Supplementary Materials), where 
the placement of a gene depends on a weighted contribution of all the 
CUB indices. 

We can also place on this plane the centroids of the top eight MCODE 
communities of the PPI network, where coordinates and error bars of 
each centroid are obtained as the coordinate mean and standard de
viations of the genes belonging to the respective module. The first 
community (composed overall by 97% of genes belonging to COG class 
J, related to translation, ribosomal structure and biogenesis) is typically 
well separated from the others. Concerning the other communities, the 
situation depends on the species (see Fig. 2 of Supplementary Materials): 
some bacteria such as caje, chtr and pogi do not have separated centroids, 
whereas many other bacteria such as bups, buth and myge have all eight 
communities well separated and localized. In these latter cases we can 
conclude that when a set of proteins are physically and functionally 
connected in a module, then their corresponding genes tend to share 
common codon bias features. This observation could be explained by 
considering that interacting proteins (especially those belonging to the 
same community) need to be present in the cell according to precise 
quantities at a given time to form the protein complexes required for the 
ongoing cellular programs. 

3.3. Z-score profiles: The closer the codon usage of genes, the higher the 
probability of protein interaction 

A last, we use the Euclidean distance d between two genes on the 
PC1 − PC2 plane as a proxy of their overall codon usage similarity. We 

can then compute, for each species, the conditional probability Pr(link|d)
of a physical or functional pair interaction between proteins, given that 
their coding genes fall within a distance d in the plane of the two prin
cipal PCA components. In other words, Pr(link|d) is the fraction of gene 
pairs, among those localized within a distance d, whose encoded pro
teins are connected in the PPI network. In order to obtain a statistically 
significant profile, we compare Pr(link|d) estimated on the real inter
actome with Pr(〈link|d), namely the same probability estimated on the 
configuration model (CM) of the network. We recall that CM is used as 
the null hypothesis that no relation exists between the codon usage of 
two genes and the interaction between the encoded proteins. The sig
nificance of Pr(link|d) with respect to the null hypothesis is thus quan
tified through the Z-score 

Zd =
Pr(link|d) − Pr(〈link|d)

σ[〈link|d]

Fig. 3 shows the Z-score as a function of the gene distance d for some 
example bacterial species (plots for all species are shown in the Sup
plementary Materials). Interestingly, a typical pattern emerges. For 
small distances (d ≤ 3), the probability of finding a connection between 
two proteins in the empirical interactome is significantly much higher 
than in the null model. Conversely, for larger distances (d > 3) the real 
PPI and the CM become statistically compatible (and sometimes, for 3 <
d < 5, links are even less likely than in the null model). This pattern is 
evident for all the 24 bacteria that pass the test for the RSCU distribu
tions (see Table 2), although not significantly in four cases (anva, bopa, 
coef, vich). Notably, the same pattern is observed also for eight bacteria 
(busg, cacr, caje, chtr, frno, klpn, raso, stau, mytu) that instead do not pass 
the RSCU test. In contrast, only two bacteria (aqae and melo) are char
acterized by a different Z-score profile (for melo this is probably due to 
its low PPI density). We can thus conclude that, as a general rule, the 
distance between a pair of genes in the plane of the first two PCA 
components is a statistically robust predictor of the likelihood that their 
corresponding proteins interact (physically or functionally). In agree
ment with our previous results (Dilucca et al., 2015), the signal is more 
evident when codon usage frequencies of interacting proteins are far 
from being random. 

4. Conclusion 

In this work we studied how the coherence in codon usage among 
genes is reflected in the capacity of their encoded proteins to interact in 

Fig. 1. PCA results for the example agtu species. (Left panel) Eigenvalues of the 
PCA analysis, showing the first and second principal components (PC1 − PC2)

turn out to represent as much as 65% of the total CUB variance. (Right panels) 
Projection of these two components over the space of CUB indices. The other 
bacteria species are shown in the Supplementary Materials. 

Fig. 2. Representation of each gene in the PC1 − PC2 plane, for the example agtu 
species. The inset shows the centroids of the top-eight MCODE communities, 
with error bars denoting the standard deviation of the distribution of points 
around the centroid. The other bacteria are shown in the Supplemen
tary Materials. 

M. Dilucca et al.                                                                                                                                                                                                                                



Gene 778 (2021) 145475

5

the protein network. For this purpose, we have extended our previous 
work on the case study of E. coli (Dilucca et al., 2015) to a set of other 34 
bacterial genomes characterized by different taxonomy (Plata et al., 
2015). As a general rule, we find that CUB as measured solely by either 
the occurrence frequencies of synonymous codons or tRNA abundance 
levels is not much able to distinguish between proteins that make con
tacts or not in the PPI network. Conversely, by combining the different 
facets of CUB (as expressed by NC, tAI, CompAI, GC), we observe that 
highly connected proteins belonging to the same communities in the 
protein interaction network are encoded by genes that are coherent in 
their codon choices. Specifically, our results provide evidence that if two 
genes have similar codon usage patterns, then the corresponding pro
teins have a significant probability of being functionally connected or 
physically interacting. Consequently, this study provides new informa
tion based on the similarity in codon usage of genes that can be poten
tially integrated into existing computational prediction methods of 
protein-protein interaction. Additionally, as recent studies point out 
(see for instance (Rajkumari et al., 2020), using CUB as an additional 
level of information in the study of protein interaction networks could 
be useful to identify genes linked to infections, drug-resistance or altered 
metabolism, and thus hint at alternative treatments in the light of 
growing resistance to antibiotics and the propagation of infectious 
agents (Zoragh and Reiner, 2013). 
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