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Abstract – We define a new measure of causation from a fluctuation-response theorem for
Kullback-Leibler divergences, based on the information-theoretic cost of perturbations. This infor-
mation response has both the invariance properties required for an information-theoretic measure
and the physical interpretation of a propagation of perturbations. In linear systems, the informa-
tion response reduces to the transfer entropy, providing a connection between Fisher and mutual
information.

Copyright c© 2021 EPLA

Introduction. – In the general framework of stochas-
tic dynamical systems, the term causation refers to the
influence that a variable x exerts over the dynamics of an-
other variable y. Measures of causation find application
in neuroscience [1], climate studies [2], cancer research [3],
and finance [4]. However, a widely accepted quantitative
definition of causation is still missing.

Causation manifests itself in two inseparable forms:
information flow [5–8], and propagation of perturba-
tions [9–12]. Ideally, a quantitative measure of causation
should connect both perspectives.

Information flow is commonly quantified by the trans-
fer entropy [13–17], that is the average conditional mutual
information corresponding to the uncertainty reduction
in forecasting the time evolution of y that is achieved
upon knowledge of x. The mutual information is a special
case of Kullback-Leibler (KL) divergence, a dimensionless
measure of distinguishability between probability distri-
butions [18]. As such, the transfer entropy abstracts from
the underlying physics to give an invariant description in
terms of the strength of probabilistic dependencies.

From the interventional point of view [9–12], causation
is identified with how a perturbation applied to x prop-
agates in the system to affect y. Although a direct per-
turbation of observables is unfeasible in most real-world
situations, the fluctuation-response theorem establishes a

(a)E-mail: andrea.auconi@gmail.com (corresponding author)

connection between the response to a small perturbation
and the correlation of fluctuations in the natural (unper-
turbed) dynamics [19–22].

The fluctuation-response theorem considers the first-
order expansion of the response with respect to the pertur-
bation. The corresponding linear response coefficient has
been suggested as a measure of causation [11,12]. How-
ever, it has the same physical units as y/x, and it can
assume negative values; thus, is not directly related to
any information-theoretic measure.

In stochastic dynamical systems with nonlinear inter-
actions, perturbing x may not only affect the evolution
of the expectation value of y, but it may also affect the
evolution of the variance of y, and in fact its entire prob-
ability distribution. The KL divergence from the nat-
ural to the perturbed probability densities has recently
been identified as the universal upper bound to the phys-
ical response of any observable relative to its natural
fluctuations [23].

In this letter, we define a new measure of causation in
the form of a linear response coefficient between KL diver-
gences, which we would like to call information response.
In particular, we consider the ratio of two KL divergences,
one for the response and one for the perturbation, where
the latter represents an information-theoretic cost of the
perturbation. For small perturbations, we formulate a
fluctuation-response theorem that expresses this ratio as
a ratio of Fisher information.
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In linear systems, this new information response re-
duces to the transfer entropy, which provides a connection
between Fisher and mutual information, and thus a
connection between fluctuation-response theory and infor-
mation flows.

Kullback-Leibler (KL) divergence. – Consider two
probability distributions p(w) and q(w) of a random vari-
able w. The KL divergence from q(w) to p(w) is defined as

D[p(w)||q(w)] ≡
∫

dw p(w) ln
(

p(w)
q(w)

)
; (1)

it is not symmetric in its arguments, and non-negative.
Importantly, it is invariant under invertible transforma-
tions w → w′ [18], namely D[p(w)||q(w)] = D[p(w′)||
q(w′)].

The problem of causation. – Consider a stochastic
system of n variables evolving with ergodic Markovian dy-
namics. Our goal is to define a quantitative measure of
causation, i.e., the influence that a variable x exerts over
the dynamics of another variable y. We want this defi-
nition to have both the invariance property of KL diver-
gences, and the physical interpretation of a propagation
of perturbations.

Since the dynamics is ergodic, and therefore station-
ary, it suffices to consider the stochastic variables x0 ≡
x(t = 0), y0 ≡ y(t = 0) at t = 0, and a time inter-
val τ later yτ ≡ y(t = τ). To avoid cluttered nota-
tion, we will implicitly assume that the current values of
the remaining n − 2 variables are absorbed into y0, e.g.,
p(yτ | y0) ≡ p(yτ | y0, z0). Conditioning on z0 avoids con-
founding variables in z to introduce spurious causal links
between x and y [24].

Local response divergence. – Let us consider the
system at t = 0 with steady-state distribution p(x0, y0).
We make an ideal measurement of its actual state (x0, y0).
Immediately after the measurement, we perturb the state
by introducing a small displacement ε > 0 of the variable
x, namely x0 ⇒ x0 + ε. If the effect of this perturbation
propagates to y, then it is reflected in the KL divergence
from the natural to the perturbed prediction

dx→y
τ (x0, y0, ε) ≡

D[p(yτ | x0, y0; x0 ⇒ x0 + ε)||p(yτ | x0, y0)], (2)

which is a function of the local condition (x0, y0) and the
perturbation strength ε. This quantity was itself suggested
as a causality quantifier in the intervention-effect frame-
work of [25,26]. We name it local response divergence,
and denote its ensemble average by 〈dx→y

τ (x0, y0, ε)〉 ≡∫
dx0dy0 p(x0, y0) dx→y

τ (x0, y0, ε).
The concept of causation, interpreted in the framework

of fluctuation-response theory, is only meaningful with re-
spect to an arrow of time [27]. That means to postulate

that the perturbation cannot have effects at past times

p(yτ | x0, y0; x0 ⇒ x0 + ε) ≡{
p(yτ | x0 + ε, y0), for τ ≥ 0,

p(yτ | x0, y0), for τ < 0.
(3)

In writing the conditional probability p(yτ | x0 + ε, y0), we
implicitly assumed p(x0 + ε, y0) > 0, meaning that the
condition provoked by the perturbation is possible un-
der the natural statistics. This implies that the response
statistics can be predicted without actually perturbing
the system, which is the main idea of fluctuation-response
theory [19–22].

Information-theoretic cost. – The mean local re-
sponse divergence 〈dx→y

τ (x0, y0, ε)〉, like any response func-
tion in fluctuation-response theory, is defined in relation
to a perturbation, irrespective of how difficult it may be to
perform this perturbation. Intuitively, we expect that it
takes more effort to perturb those variables that fluctuate
less. Therefore, we consider the KL divergence from the
natural to the perturbed ensemble of conditions

cx(ε) ≡ D[p(x0 − ε, y0)||p(x0, y0)], (4)

to quantify the information-theoretic cost of perturba-
tions, and call it perturbation divergence. Note that we
defined the perturbation through the unperturbed density
as p(x0 − ε, y0) ≡ p(x(t = 0) + ε = x0, y(t = 0) = y0).

For example, for an underdamped Brownian par-
ticle, the perturbation divergence is equivalent to
the average thermodynamic work required to per-
form an ε perturbation of its velocity, up to a fac-
tor being the temperature, see Supplementary Material
Supplementarymaterial.pdf (SM). For an equilibrium
ensemble in a potential U(x), with Boltzmann distribu-
tion p(x) ∼ exp(−βU(x)), the perturbation divergence is
the average reversible work cx(ε) = β〈U(x + ε) − U(x)〉.
Note that the definition of eq. (4) is general, and can be
applied to more abstract models where thermodynamic
quantities are not clearly identified.

Information response. – We introduce the informa-
tion response as the ratio between mean local response
divergence and perturbation divergence, in the limit of a
small perturbation

Γx→y
τ ≡ lim

ε→0

〈dx→y
τ (x0, y0, ε)〉

cx(ε)
. (5)

We can interpret Γx→y
τ as an information-theoretic lin-

ear response coefficient. This information response is our
measure of x → y causation with respect to the timescale
τ , see fig. 1. The time arrow requirement (eq. (3)) implies
Γx→y

τ = 0 for τ < 0.
Introducing the local information response

γx→y
τ (x0, y0) ≡ lim

ε→0
dx→y

τ (x0, y0, ε)/cx(ε), we can equiva-

lently write Γx→y
τ = 〈γx→y

τ (x0, y0)〉.
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Fig. 1: Here we show, on a concrete example, the origin of
the two KL divergences entering the information response of
eq. (5). Top: response to the perturbation x0 ⇒ x0 + ε at the
trajectory level. x∗

t (y∗
t ) is the perturbed trajectory of xt (yt),

for the same noise realization. Lower left panel: local response
divergence dx→y

τ (x0, y0, ε): change of predicted distribution of
yτ for the condition (x0, y0) for a timescale τ = 3. Lower right
panel: perturbation divergence cx(ε): instantaneous displace-
ment of the steady-state ensemble conditional to a particular
y0. The dynamics follows the nonlinear stochastic model of
eq. (17) with parameters tR = 10, q = 0.1, α = 0.5, β = 0.2,
for a perturbation ε = 0.25.

The information response in the form of eq. (5) inher-
ently relies on the concept of controlled perturbations.
We can reformulate it in purely observational form, in
the spirit of the fluctuation-response theorem [19–22], pro-
vided p(x0, y0, yτ ) is sufficiently smooth.

Fisher information. – The one-parameter family
{p(yτ | x0, y0)}x0 of probability densities parametrized by
x0 (for fixed y0) can be equipped with a Riemannian met-
ric having dx→y

τ (x0, y0, ε) as squared line element. In fact,
the leading-order term in the Taylor expansion of a KL di-
vergence between probabilities that differ only by a small
perturbation of a parameter is of second order, with co-
efficients known as Fisher information [18,28]. Explicitly,
expanding the mean response divergence for τ > 0, we
obtain

〈dx→y
τ (x0, y0, ε)〉 =

−1
2
ε2〈∂2

x0
ln p(yτ | x0, y0)〉 + O(ε3), (6)

where we used the interventional causality requirement
(eq. (3)), and probability normalization. Similarly, for the

perturbation divergence we have

cx(ε) = −1
2
ε2〈∂2

x0
ln p(x0 | y0)〉 + O(ε3). (7)

Applying the Fisher information representation to the
information response, for τ > 0, we get

Γx→y
τ =

〈∂2
x0

ln p(yτ | x0, y0)〉
〈∂2

x0
ln p(x0 | y0)〉 , (8)

that is the fluctuation-response theorem for KL diver-
gences. For generalizations and a discussion of the con-
nection with the classical fluctuation-response theorem
see footnote 1 and the SM. Equation (8) is the ratio of
two second derivatives over the same physical variable x0,
and it can be regarded as an application of L’Hôpital’s
rule to eq. (5).

In general, Fisher information is not easily connected to
Shannon entropy and mutual information [29]. Below, we
show that for linear stochastic systems, the information
response, which is a ratio of Fisher information (eq. (8)),
is equivalent to the transfer entropy, a conditional form of
mutual information.

Transfer entropy. – The most widely used measure
of information flow is the conditional mutual information

T x→y
τ ≡ 〈D[p(x0, yτ | y0)||p(x0 | y0)p(yτ | y0)]〉, (9)

which is generally called transfer entropy [13–17]. It is the
average KL divergence from conditional independence of
x0 and yτ given y0.

The transfer entropy is used in non-equilibrium thermo-
dynamics of measurement-feedback systems, where it is
related to work extraction and dissipation through fluctu-
ation theorems [16,30,31]; in data science, causal network
reconstruction from time series is based on statistical sig-
nificance tests for the presence of transfer entropy [24].

If uncertainty is measured by the Shannon entropy
S[p(x)] = − ∫

dx p(x) ln p(x), then the transfer entropy
quantifies how much, on average, the uncertainty in pre-
dicting yτ from y0 decreases if we additionally get to know
x0, T x→y

τ = 〈S[p(yτ | y0)] − S[p(yτ | x0, y0)]〉.
While the joint probability p(x0, y0, yτ ) contains all the

physics of the interacting dynamics of x and y, the descrip-
tion in terms of the scalar transfer entropy T x→y

τ repre-
sents a form of coarse graining.

We introduce the local transfer entropy tx→y
τ (x0, y0) =

D[p(yτ | x0, y0)||p(yτ | y0)]; thus for the (macroscopic)
transfer entropy T x→y

τ = 〈tx→y
τ (x0, y0)〉.

We next show that T x→y
τ and Γx→y

τ are intimately re-
lated for linear systems.

1Equation (8) holds for a larger class of divergences beyond the
KL divergence, because the Fisher information is the unique invari-
ant metric [18].
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Linear stochastic dynamics. – As example of appli-
cation, we study the information response in Ornstein-
Uhlenbeck (OU) processes [32], i.e., linear stochastic
systems of the type

dξ
(i)
t

dt
+

n∑
j=1

Aijξ
(j)
t = η

(i)
t , (10)

where 〈η(i)
t η

(j)
t′ 〉 = qijδ(t − t′) is the Gaussian white noise

with symmetric and constant covariance matrix. For the
system to be stationary, we require the eigenvalues of the
interaction matrix Aij to have positive real part. For our
setting, we identify x ≡ ξ(i) and y ≡ ξ(j) for some par-
ticular (i, j), and z ≡ {ξ(k)}k=1,...,n\{ξ(i), ξ(j)} as the re-
maining variables. Here, probability densities are normal
distributions, p(yτ | x0, y0) = Nyτ (〈yτ | x0, y0〉, σ2

yτ | x0,y0
),

with mean 〈yτ | x0, y0〉 and variance σ2
yτ | x0,y0

≡
〈y2

τ | x0, y0〉 − 〈yτ | x0, y0〉2, and similarly for p(yτ | y0) and
p(x0 | y0). Expectations depend linearly on the condi-
tions, ∂2

x0
〈yτ | x0, y0〉 = 0, and variances are independent

of them, ∂x0σ
2
yτ | x0,y0

= 0. Recall the implicit conditioning
on the confounding variables z0 through y0.

Applying these Gaussian properties to eq. (8), the in-
formation response becomes:

Γx→y
τ =

(∂x0〈yτ | x0, y0〉)2σ2
x0 | y0

σ2
yτ | x0,y0

, (11)

where ∂x0〈yτ | x0, y0〉 can be interpreted as the coefficient
of x0 in the linear regression for yτ based on the predictors
(x0, y0), and σ2

yτ | x0,y0
as its error variance. The variance

σ2
x0 | y0

quantifies the strength of the natural fluctuations
of x0 (variable to be perturbed) conditional on y0 (other
variables). In fact, the information-theoretic cost of the
perturbation, cx(ε) = ε2σ−2

x0 | y0
+O(ε3), is higher if x0 and

y0 are more correlated.
In linear systems, the transfer entropy is equivalent to

Granger causality [33]

T x→y
τ = ln

(
σyτ | y0

σyτ | x0,y0

)
, (12)

as can be seen by substituting the Gaussian expressions
for p(yτ | x0, y0) and p(yτ | y0) into eq. (9).

The decrease in uncertainty in adding the predictor x0

to the linear regression of yτ based on y0 reads

σ2
yτ | y0

− σ2
yτ | x0,y0

= σ2
x0 | y0

(∂x0〈yτ | x0, y0〉)2, (13)

see the SM. Comparing eq. (11) with eq. (12) and using
eq. (13), we obtain a non-trivial equivalence between in-
formation response and transfer entropy for OU processes,

Γx→y
τ = e2T x→y

τ − 1. (14)

Remarkably, despite the equivalence of the macroscopic
quantities Γx→y

τ and T x→y
τ , the corresponding local quan-

tities are markedly different, see fig. 2. Interestingly, the

Fig. 2: Local information response (left) and local transfer
entropy (right) are different, although their expectation values
agree in linear systems. The model is the OU process of eq. (15)
with parameters tR = 10, q = 0.1, α = 0.5, β = 0.2, observed
with timescale τ = 3.

same functional dependence on the transfer entropy given
by eq. (14) is attained for linear systems also by the sym-
metrized transfer entropy [25,26], which is defined as in
eq. (9) but using the symmetrized KL divergence [18].

In fig. 2, we show the local response divergence
γx→y

τ (x0, y0) and local transfer entropy tx→y
τ (x0, y0) for

the hierarchical OU process of two variables⎧⎪⎪⎨⎪⎪⎩
dx

dt
= − x

tR
+ ηt,

dy

dt
= αx − βy,

(15)

with 〈ηtηt′〉 = qδ(t − t′), and parameters α, β >
0, tR > 0, q > 0. This is possibly the simplest
model of non-equilibrium stationary interacting dynam-
ics with continuous variables [34]. However, the pat-
tern of fig. 2 is qualitatively the same for any linear OU
process. In fact, the perturbation x0 ⇒ x0 + ε shifts
the prediction p(yτ | x0, y0) by the same amount on the
y-axis, ε∂x0〈yτ | x0, y0〉, independently of the condition
(x0, y0), without affecting the variance σ2

yτ | x0,y0
. Hence,

dx→y
τ (x0, y0, ε) is constant in space, and the local contri-

bution only reflects the density p(x0, y0), here a bivariate
Gaussian. On the contrary, the KL divergence corre-
sponding to the change of the prediction p(yτ | y0) into
p(yτ | x0, y0) given by the knowledge of x0, is strongly de-
pendent on (x0, y0). In fact, the local transfer entropy
reads

tx→y
τ (x0, y0) = T x→y

τ

+
(∂x0〈yτ | x0, y0〉)2

2σ2
yτ | y0

[(x0 − 〈x0 | y0〉)2 − σ2
x0 | y0

], (16)

see the SM. In particular, for likely values x0 ≈ 〈x0 | y0〉,
the divergence tx→y

τ (x0, y0) is smaller compared to the un-
likely situations x0 
 〈x0 | y0〉 and x0 � 〈x0 | y0〉. Thus,
when multiplied by the steady-state density p(x0, y0),
tx→y
τ (x0, y0) attains a bimodal shape.
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Nonlinear example. – As a counter-example for the
general validity of eq. (14) for nonlinear systems, con-
sider the following nonlinear Langevin equation for two
variables: ⎧⎪⎪⎨⎪⎪⎩

dx

dt
= − x

tR
+ ηt,

dy

dt
= αx2 − βy.

(17)

Numerical simulations (same parameters as for eq. (15))
show that eq. (14) is violated, see the SM for details.
Hence, in general, the transfer entropy is not easily con-
nected to the information response.

Ensemble information response. – Similar to the
above, we can define an analogous information response
at the ensemble level. From the same perturbation x0 ⇒
x0 + ε, we consider the unconditional response divergence

d̃x→y
τ (ε) ≡ D[p(yτ | x0 ⇒ x0 + ε)||p(yτ )], (18)

i.e., we evaluate the response at the ensemble level, with-
out knowledge of the measurement (x0, y0),

p(yτ | x0 ⇒ x0 + ε) = 〈p(yτ | x0, y0; x0 ⇒ x0 + ε)〉. (19)

In general d̃x→y
τ (ε) �= 〈dx→y

τ (x0, y0, ε)〉.
We define the ensemble information response as

Γ̃x→y
τ ≡ lim

ε→0

d̃x→y
τ (ε)
cx(ε)

= −〈〈∂x0 ln p(yτ | x0, y0) | yτ 〉2〉
〈∂2

x0
ln p(x0 | y0)〉 , (20)

where the second line, valid only for τ > 0, is the
corresponding fluctuation-response theorem. A straight-
forward generalization to arbitrary perturbation pro-
files ε(x0, y0) is discussed in the SM. Note that we
could write d̃x→y

τ (ε) through the Fisher information
〈∂2

ε ln〈p(yτ | x0 + ε, y0)〉〉|ε=0, but the partial derivative
would be over the perturbation parameter ε, and we found
it more natural to consider the self-prediction quantity
〈〈∂x0 ln p(yτ | x0, y0)|yτ 〉2〉. See the SM for technical de-
tails on expectation brakets.

In linear systems, the ensemble information response
takes the form

Γ̃x→y
τ = Γx→y

τ e−2Ixy,y
τ = e−2Iy,y

τ (1 − e−2T x→y
τ ), (21)

where Iy,y
τ ≡ D[p(y0, yτ )||p(y0)p(yτ )] is the mutual infor-

mation between y0 and yτ , and Ixy,y
τ = Iy,y

τ + T x→y
τ is

the mutual information that the two predictors (x0, y0)
together have on the output yτ , see the SM.

From the non-negativity of information, we obtain the
bound 0 ≤ Γ̃x→y

τ ≤ 1. We see that Γ̃x→y
τ increases with

the transfer entropy T x→y
τ , and decreases with the auto-

correlation Iy,y
τ . Since Iy,y

τ diverges for τ → 0 in contin-
uous processes, the perturbation on the x ensemble takes

a finite time to fully propagate its effect to the y ensem-
ble. Since time-lagged information vanish for τ → ∞ in
ergodic processes, ensembles relax asymptotically towards
the steady state after a perturbation, and correspondingly
the ensemble information response vanishes. This provides
a trade-off shape for Γ̃x→y

τ as a function of the timescale
τ . Note the asymptotics Γ̃x→y

τ /Γx→y
τ → 1 for τ → ∞, also

resulting from ergodicity.

Discussion. – In this letter, we introduced a new mea-
sure of causation that has both the invariance proper-
ties required for an information-theoretic measure and
the physical interpretation of a propagation of perturba-
tions. It has the form of a linear response coefficient be-
tween Kullback-Leibler divergences, and it is based on the
information-theoretic cost of perturbations. We would like
to call it information response.

We study the behavior of the information response an-
alytically in linear stochastic systems, and show that it
reduces to the known transfer entropy in this case. This
establishes a first connection between fluctuation-response
theory and information flow, i.e., the two main perspec-
tives to the problem of causation at present. Additionally,
it provides a new relation between Fisher and mutual in-
formation.

We suggest our information response for the design of
new quantitative causal inference methods [24]. Its prac-
tical estimation on time series, as it is normally the case
for information-theoretic measures, depends on the learn-
ability of probability distributions from a finite amount of
data [35,36].
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