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Abstract

We study linear dynamics of an initially parabolic arch deformed by a uniform

‘dead’ load. The arch is seen as a fully deformable one-dimensional continuum

with rigid cross-sections, one of which suffers from a small local crack at its

boundary. The crack is simulated by springs, the stiffnesses of which are evalu-

ated via stress intensity factors. By two first-order perturbations we investigate

a non-trivial equilibrium adjacent to the reference configuration and small vi-

bration superposed on it. The modulation of the initial load on the natural

angular frequencies and its consequences on damage detection is described and

commented. It turns out that neglecting the initial load, recalling for actual

‘dead’ structural actions, can be misleading in damage identification, while its

inclusion leads to better results.
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1. Introduction

Structural damage may have several sources, from interaction with hostile

environment to cyclic loading. Damage identification at an early stage is essen-

tial to: a) design possible maintenance and/or restoring interventions; b) prevent
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possible catastrophic failures due to the progressive reduction in local/global5

stiffness and bearing capacity. Several methods were proposed, focussing ei-

ther on local inspection of the considered structure or on the assessment of its

global behaviour [1, 2], i.e., its natural frequencies and mode shapes, which pro-

vide indirect information about the geometry, boundary conditions and material

properties. For large civil structures and/or machinery under operation it was10

proved that the assessment of the structural global behaviour is more advanta-

geous over techniques that focus on local investigations in terms of both time

and cost [3]. Resorting to determining the structural dynamics, on the other

hand, requires a detailed enough mathematical model of the examined structure

and of its possible damages, to understand how they affect the response.15

Models of cracks and crack-like damages in one-dimensional structural mem-

bers date back to Kirshmer [4] and Thomson [5] in mid-20th century. They

described the effect of a crack on the transverse dynamics of Euler-Bernoulli

beams by considering any damaged element as composed by two chunks joined

by a rotational spring that simulates the loss in bending rigidity caused by the20

crack. The stiffness of the spring was related to a characteristic length that pro-

vides a measure of the severity of the crack. However, more accurate evaluations

for this fictitious stiffness had to wait until the publication of Irwin’s paper [6],

where we find the concept of Stress Intensity Factor (SIF) as a global, though

coarse, quantitative measure of the intensity of crack-like damages of different25

shapes. This concept was used in many fields of engineering and applied sci-

ences, especially after the handbook by Tada et al. [7], where we find SIFs for

many cases. Their use goes along with 2nd Castigliano’s theorem when we wish

to model beam-type structures with damages, widening Kirshmer and Thom-

son’s original idea. Following this approach, the sole rotation spring joining the30

beam regular chunks must be replaced by a set of springs, the effect of which is

represented by a compliance matrix. Indeed, since coupling between axial and

bending deformations is possible in presence of a crack [8], we need to represent

at the same time transverse and axial local compliances due to the crack. In a

linear setting, this is represented by a matrix, originally introduced by Dimarag-35
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onas and co-workers [8, 9, 10, 11, 3, 12, 13, 14, 14, 15, 16]. As for later studies,

without pretending to be exhaustive, we may quote [17, 18, 19, 20, 21, 22]. We

may refer the interested readers to the early review article by Doebling et al.

[1] and to the recent review by Hou and Xia [23].

The majority of studies on damaged one-dimensional structural elements40

is devoted to straight beams, while there are relatively few investigations on

curved beams and arches, which may also be seen as one-dimensional continua

[24, 25]. One of the earliest of works is due to Dimaragonas [9], where the sta-

bility of rings with a transverse crack is examined. Krawzcuk and Ostachowicz

[26] provided a finite element formulation for free vibration of cracked circular45

arches. Cerri and Ruta [27] presented analytical solutions to frequency shifts in

doubly-hinged circular arches due to a crack. Subsequently, they also consid-

ered the identification of a crack by frequency data, and verified the procedure

they proposed by comparisons with experimental data and using a richer one-

dimensional model [28]. Viola et al. [29] applied both analytical and numerical50

methods to model shear-deformable circular beams with cracks. Later, Viola et

al. [30] applied a similar approach to examine stepped circular arches. Karaagac

et al. [31] used finite elements to investigate stability and dynamics of circular

beams with an edge crack; to this aim, they used the specific SIFs for curved

beams in [32] to distinguish from other studies. Caliò et al. [33] found the55

eigenproperties of circular shear-deformable arches where the damage is seen as

a reduction of the cross-section stiffness properties; they presented a numerical

technique for empowering their model in [34]. Cannizzaro et al. [35] used the

properties of Dirac’s delta to find the static response of purely flexible circu-

lar arches affected by several local cracks. Pau et al. [36] studied the inverse60

problem in a parabolic arch with a crack, proposing an objective function based

on the variations of natural frequencies. Greco and Pau [37] examined statics

of parabolic arches, concluding that for crack identification it is more advanta-

geous to use approaches based on modal behaviour than those relying on the

static response. Zare [38] performed an experimental modal analysis on cracked65

circular specimens for comparison with the results of the differential quadrature
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method, in which the crack is modelled by a rotational spring. Evolutionary

algorithms are used by Greco et al. [39], and Eroğlu and Tüfekci [40] for damage

identification in curved beams. Most researchers performed such studies divid-

ing the beam in two regular chunks joined by a rotation spring, the stiffness of70

which is determined either directly by reduction of inertia of the cross-section

or by the concepts of fracture mechanics. In both cases, the coupling between

axial and bending strains due to a crack on the outer surface of the arch, which

locally shifts the position of the neutral axis, is left out. However, the initial

curvature of arches implies coupling also between axial force and shear force,75

and shear force and bending couple are coupled because of balance; hence, the

additional coupling due to crack plays an important role in the arch response.

Eroğlu and Tüfekci [40] highlighted that it may be possible to find crack lo-

cation on the cross-section by introducing a non-material parameter linked to

couplings. These were further investigated by the same approach in Eroğlu et80

al. [41] for parabolic arches; it is found that neglecting the coupling due to crack

may be misleading in identification problems, especially for shallow arches. The

position of the crack on the cross-section is further examined in [42] for static

problems, and in [43] for stability problems of parabolic arches.

Great research efforts over the years found only little application on real85

structures, mainly because small local cracks slightly alter the natural frequen-

cies, the detection of which is often soiled by noise and/or changes due to envi-

ronmental effects, as pointed out also in [23]. In order to enrich the description

of the actual behaviour of cracked structural elements, it might be required to

account for the presence of ‘dead’ loads [44] or thermal effects [45] among pos-90

sible sources of a non-trivial response. Motivated by this, in this work we take

into account the effect of a simple pre-load on the natural angular frequencies

of small vibration of parabolic arches affected by a small damage at the bound-

ary of a cross-section. We first find the response of the arch to a ‘dead’ line

load uniform along the span, assuming that the displacements of the axis and95

the cross-section rotations are small enough to linearise about the initial stress-

free configuration. We then perform another first-order perturbation about
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the deformed shape, again supposing small kinematics, and search for a time-

harmonic transverse response. The crack-induced couplings are represented by

off-diagonal terms in the compliance matrix of the cracked section; their change100

in sign describes the crack location on opposite borders of the cross-section. We

investigate the effects of the crack locations (along the axis and on opposite

sides of the cross-section) and depth on the natural frequencies, which are mod-

ulated by the pre-load. After a verification, numerical results are obtained via

the so-called principal matrix method, and are presented by several graphics,105

together with the relevant physical interpretations and thorough comments.

Sect. 2 presents the one-dimensional continuum model and the two first-

order perturbations leading to the field equations for non-trivial equilibria and

the superposed small vibration; Sect. 3 specializes the method to parabolic

arches and reduces the governing equations into a non-dimensional form suit-110

able for a resolution via the so-called transfer, or principal, matrix; Sect. 4

presents how a local small crack, represented by SIFs, affects the perturbed

field equations; Sect. 5 presents a validation of the obtained equations; section

6 presents the numerical technique; Sect. 7 presents some results with extensive

comments; a final section contains concluding remarks and open questions.115

2. A one-dimensional model for plane arches

We see arches as one-dimensional structured continua: their shapes consist

of copies of a plane figure (cross-sections) attached to the points of a portion of

a regular plane curve (axis), referred to a Cartesian frame x, y and a consistent

basis of unit vectors {ex, ey}. The cross product ez =ex×ey yields a unit normal120

to the plane, completing an ortho-normal basis associated to the ambient space.

The position vector of any point P of the axis in the reference shape, the

arc length ds, and the unit tangent l are given by

r0(x) = xex + y(x)ey, xa ≤ x ≤ xb, y(xa) ≤ y ≤ y(xb),

ds =

√
dr0(x)

dx
· dr0(x)

dx
dx, l(s) =

dr0(x(s))

dx(s)

dx(s)

ds
=
dr0(s)

ds

(1)
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Eq. (1)2 provides the curvilinear abscissa s in terms of x and vice-versa, hence

all the fields depending on P are functions of either x or s, leading to Eq. (1)3.125

The s-derivative of the unit tangents and its unit counterpart are

dl(s)

ds
=
dl(x(s))

dx(s)

dx(s)

ds
=:k(s)m(s), m(s)=

1

k(s)

dl(s)

ds
(2)

k being the axis curvature at P . Since the axis is plane, the Frénet-Serret local

basis is {l,m,n}, with n = l×m = ±ez (the sign depends on the location of the

osculating circle at P ). In the reference shape, the cross-sections are orthogonal

to the axis, so that any arch infinitesimal element from P is along l and the130

corresponding cross-section is spanned by the normal and bi-normal m,n.

For simplicity, henceforth we think all fields expressed in terms of the intrin-

sic abscissa s via Eq. (1)2, and omit such dependence if no confusion arises.

2.1. Finite kinematics, balance, linear elasticity

If we admit the cross-sections to undergo only rigid motions, their translation135

is given by the vector d (hence, the new position of the axis is r = r0 + d ∀P )

and their rotation is given by the proper orthogonal tensor R (hence, their new

setting is spanned by Rm,Rn ∀P ); these two fields depend on P (i.e., x or

s) and on an evolution parameter. If the axis remains in the plane, i) R is in

terms of a single rotation angle ϑ about n, and ii) d has two components:140

(R) =

cosϑ − sinϑ

sinϑ cosϑ

 , d = ul + vm (3)

Rigid changes of shape of the entire arch imply that all cross-sections undergo

the same motion: thus, R shall be uniform along the axis, and the tangent to

the new axis shall be the R-transformed of l ∀P . Thus, strain is naturally

defined as the local difference between a generic change of shape and a rigid

one. If primes denote s-derivatives, finite strain measures in the actual shape145

are the vector and skew-symmetric tensor fields v,V [46, 47, 48]

v=(r0 + d)
′−Rl= ε̃(Rl)+γ̃(Rm), V=R′R>= χ̃(Rl ∧Rm) (4)
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where ε̃ is the axial stretch, γ̃ is the shearing between axis and cross-sections,

χ̃ is the variation of curvature of the axis, and ∧ is the external product, tensor

dual of the cross product. Inserting Eq. (3) into Eq. (4) yields

ε̃=1− cosϑ+ kv + u′, γ̃=− sinϑ+ ku+ v′, χ̃=ϑ′ (5)

Eq. (5) also give the strain components ε, γ, χ in the reference shape with respect150

to its local basis {l,m,n}, since these are the R-pull-back of (4) [46, 47, 48].

The external actions, power duals of the evolutive increments of the kine-

matic descriptors, are a force vector and a couple skew-symmetric tensor, dis-

tributed along the axis (denoted b,B) and localised at its ends (denoted f ,F).

The interactions among parts of the arch, power duals of the evolutive incre-155

ments of strain, are a vector and a skew-symmetric tensor, denoted t,T respec-

tively. All these fields depend on P and the evolution parameter.

Variational arguments, i.e., the vanishing of virtual work on admissible kine-

matics [48], yield the bulk and boundary balance in the actual shape

t′+b=0, T′+(r0+d)
′×t+B=0 ∀x ∈ (xa, xb),

t=−ta, T=−Ta at x = xa, t=tb, T=Tb at x = xb

(6)

Here T,B are axial vectors of the relevant skew-symmetric tensors. The inner160

actions t,T can be referred to local bases in the reference or actual shape

t = N l +Qm = Ñ(Rl) + Q̃(Rm), T = Mn = M̃(Rn) (7)

with N, Ñ,Q, Q̃ the normal and transverse force, M, M̃ the bending couple.

If the external action in the actual shape (including inertia) has components

q̃l, q̃m, q̃n on {Rl,Rm,Rn}, Eq. (7) yield the scalar consequences of Eq. (6)

Ñ ′−kQ̃+q̃l =0, Q̃′+kÑ+q̃m =0, M̃ ′−Ñ(sinϑ+γ)+Q̃(cosϑ+ε)+q̃n =0, (8)

the reference curvature k coming from the s-derivatives of the reference triad.165

Since we will perform first-order expansions of the field equations, it is suf-

ficient to pose the arch to be linear elastic, the reference shape to represent its
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natural state, and the inner actions to be uncoupled; then, the first variation of

the elastic potential energy with respect to the strain components yields [47]

Ñ = EAε̃, Q̃ = GAsγ̃, M̃ = EIχ̃ (9)

with: E,G Young’s and transverse elastic moduli; A,As, I the cross-section170

area, shearing area, and second moment of area referred to a principal axis

of inertia parallel to n. Eq. (9) hold for compact cross-sections with main

dimension small compared to osculating radii [49] and can be given in terms of

the reference components N,Q,M (Eq.(7)) and ε, γ, χ (Eq. (5) and following

comment), considering that local bases are R-transformed175

ε = N

(
cos2 ϑ

EA
+

sin2 ϑ

GAs

)
+Q sinϑ cosϑ

(
1

EA
− 1

GAs

)
,

γ = Q

(
cos2 ϑ

GAs
+

sin2 ϑ

EA

)
+N sinϑ cosϑ

(
1

EA
− 1

GAs

)
, χ =

M

EI

(10)

2.2. Non-trivial equilibrium path, adjacent shape

The response to static loads is the solution of the field differential equations

(5), (8), (10), plus boundary conditions. If loads are scaled by a multiplier q

growing from zero, an equilibrium path is a family of such solutions that, if no

buckling occurs, is described by a single-valued function yielding a characteristic180

strain vs. q. Bar very special cases, a closed form for equilibrium paths is not

found and its numerical approximation is highly computing demanding.

In many applications the structural response features ‘small’ displacements

and rotations, thus linearised field equations suffice to look for a germ of the

equilibrium path. We then introduce an evolution parameter η (e.g., ∝ q), η=0185

identifies the reference shape and as a suffix denotes reference quantities

R0 = I⇔ ϑ0 = 0, d0 = 0, N0 = Q0 = M0 = 0 (11)

A neighbourhood of the stress-free reference shape is given by an η-linear expan-

sion of Eqs. (5), (8), (10) about η = 0 [50]; indeed, this equals to investigating

non-trivial equilibria consisting of shapes ‘near’ the reference one:

EA(u̇′e−kv̇e)=Ṅe, GAs(v̇
′
e−ϑ̇e+ku̇e)=Q̇e, EIϑ̇′e =Ṁe,

Ṅ ′e−kQ̇e+ ˙qle =0, Q̇′e+kṄe+ ˙qme =0, Ṁ ′e+Q̇e+ ˙qne =0
(12)
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Over-dots denote η-derivatives at η = 0; the suffix e denotes a field at η = 1,190

identifying the shape reached when the loads are fully applied in a quasi-static

monotonic growth. For the smallness of displacement and rotation, this ex-

tremum of the non-trivial equilibrium path is actually adjacent to the reference

shape. Tests on the reliability of Eq. (12) for pattern schemes are found in [43].

2.3. Small vibration superposed on the adjacent shape195

Let us now pose pose that any function g = ge + gd, where the subscript d

denotes dynamics superposed on the adjacent shape, corresponding to gd = 0.

Further, let gd regularly depend on another evolution parameter β such that

gd(β = 0) = 0 or g(β = 0) = ge; then, we may formally expand gd in terms of

β about β = 0 and, if over-dots now stand for β-derivatives at β = 0,200

g = ge + βġd + o(β2) (13)

Applying Eq. (13) to Eqs. (5), (8), (10) yields six first-order ordinary differential

equations that keep memory of the adjacent deformed and loaded shape. Let

the β-incremental actions be due to a small amplitude harmonic motion with

natural angular frequency ω; omitting over-dots for a simpler notation, we get

u′d−kvd+ϑeϑd =
Nd

EA
+Qeϑd

(
1

EA
− 1

GAs

)
,

v′d+kud−ϑd =
Qd

GAs
+Neϑd

(
1

EA
− 1

GAs

)
,

EIϑ′d =Md N ′d−kQd+ρAω2ud =0, Q′d+kNd + ρAω2vd =0,

M ′d−Ne(γd+ϑd)−Nd(γe+ϑe)+Qe(εd−ϑeϑd)+Qd(1+εe)+ρIω2ϑd =0

(14)

where ρ is volumic mass. All quantities in Eq. (14), bar the reference curvature205

k and the arch properties ρ,A, I, are first-order increments: the subscripts e, d

refer to the adjacent shape and to its linear dynamics, respectively. Eq. (14)

describe linear dynamics of the adjacent shape modulated by the loads on the

reference shape. Remark that Eq. (14) are perturbations of field equations

derived by variational procedures; assuming the bulk and boundary balance of210

force and torque as starting points would yield the same governing system, and

simplify to those well-documented in the literature in case of no pre-load [51].
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3. Small vibration about non-trivial equilibria of parabolic arches

If the axis is a symmetric segment of parabola with span 2l along the x-axis

and f the keystone height, Fig. 1, its geometry is215

r0(x)=xex+f

(
1− x2

l2

)
ey, −l ≤ x ≤ l, 0 ≤ y ≤ f

dr0

dx
= ex − f

2x

l2
ey, ds =

√
1 +

4f2x2

l4
dx, l =

l2ex − 2fxey√
l4 + 4f2x2

,

k =
2fl4

(l4 + 4f2x2)
3/2

, m = −2fxex + l2ey√
l4 + 4f2x2

, n= l×m = −ez

(15)

 

2l 

x 

f 

y 

O 

ex 

ey r0 

l 

m 

sP 

xP 

P 

Figure 1: Reference shape of a parabolic arch.

To abstract from particular values of the geometrical and physical parame-

ters, accounting for Eq. (1) we introduce the non-dimensional quantities

(x̄, s̄, ū, v̄, α)=
(x, s, u, v, f)

l
, λ= l

√
A

I
, Ā=

GAs

EA
, ω̄=ωλl

√
ρ

E
,

(N̄ , Q̄, M̄) =
(Nl2, Ql2,Ml)

EI
, (q̄l, q̄m, q̄n) =

(qll
3, qml

3, qnl
2)

EI
,

ds

dx
=
ds̄

dx̄
= L(x̄) =

√
1 + 4α2x̄2, k̄(x̄) = kl =

2α

L3(x̄)
.

(16)

The adjacent shape is a solution of the system (12), which, by the definitions
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(16), admits the matrix representation220

dye

dx̄
=Aeye+qe, yT

e =
{
ūe v̄e ϑe N̄e Q̄e M̄e

}
,

qT
e =−L{0 0 0 q̄le q̄me q̄ne}, Ae =L



0 k 0
1

λ2
0 0

−k 0 1 0
1

Āλ2
0

0 0 0 0 0 1

0 0 0 0 k 0

0 0 0 −k 0 0

0 0 0 0 −1 0



(17)

Let a parabolic arch in its reference shape undergo a ‘dead’ (invariable in

magnitude, direction and orientation) ‘vertical’ η-increment of force −qey uni-

formly distributed along the span (e.g., gravity). There is no η-increment of

external couple, i.e., qn = 0 ⇒ q̄ne = 0. Recall that, for simplicity, the over-

dots denoting η-increments are omitted. Due to the initial curvature, q is not225

uniform with respect to s and has non-zero components on l,m according to

−qeey dx = (qlel + qmem)ds (18)

Eqs. (16) yield their non-dimensional counterpart; since q keeps its direction, it

is always represented by the components in Eq. (18) when searching equilibria.

The solution of the system in Eq. (17) has the form [52, 53]

ye(x̄) = Ye(x̄)

[
ye(x̄0) +

∫ x̄

0

Y−1
e (ξ) qe (ξ) dξ

]
(19)

where Ye(x̄) is the principal matrix (matricant [54], transfer matrix [55]) of230

the homogeneous Eq. (17) about x̄ = 0. Its entries in integral form are in [56]

for generic arches, in [42] for uniform parabolic ones; variable cross-sections are

investigated in [45]. The state vector ye in Eq. (19) accounts for distributed

actions; concentrated ones were treated in [42] via local continuity and balance.

Since the load is ‘dead’, it will not appear in the field equations for small235

vibration directly, but via the non-trivial equilibrium path affecting Eq. (14).

By Eqs. (16) we write in matrix form also the system of Eqs. (14), describing
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the non-dimensional β-first-order harmonic motion:

dyd

dx̄
= Adyd , yd =

{
ūd v̄d ϑd N̄d Q̄d M̄d

}T
,

Ad

L
=



0 k̄ Ad13
1

λ2
0 0

−k̄ 0 Ad23 0
1

Āλ2
0

0 0 0 0 0 1

−ω̄2 0 0 0 k̄ 0

0 −ω̄2 0 −k̄ 0 0

0 0 Ad63 Ad64 Ad65 0


Ad13 =

Q̄e

λ2

(
1− 1

Ā

)
− ϑe, Ad23 =

N̄e

λ2

(
1− 1

Ā

)
+ 1,

Ad63 = N̄e

[
N̄e

λ2

(
1− 1

Ā

)
+ 1

]
− Q̄e

[
Q̄e

λ2

(
1− 1

Ā

)
− ϑe

]
− ω̄2

λ2
,

Ad64 = −Ad13, Ad65 = −Ad23

(20)

The entry Ad63 of the state evolution matrix Ad in Eq. (20) contains the squares

of the inner normal and shearing force in the non-trivial equilibrium path N̄e, Q̄e.240

One might ask if squares of first-order increments with respect to η ∝ q should

be neglected. However, Eq. (20) describe a perturbation in terms of β that is

independent of η (check Eq. (13)); thus, when dealing with the quantities with

subscript d, those with subscript e must be considered as evaluated constants,

and their squares do not imply any methodological or numerical error.245

In a homogeneous arch the physical and geometrical parameters are uniform,

yet the terms in Eq. (20) depend on x̄ and Ad cannot be reduced to upper-

triangular, which would lead to formal successive integrations. Thus, in general

Eq. (20) does not have closed-form solutions and we search approximate ones

via Peano series [57] and Volterra’s multiplicative integral [54, 58], as in [41]:250

yd (x̄)=Yd(x̄, x̄0)yd(x̄0), Yd(x̄, x̄0)=

n∏
ı=1

Y2(x̄0+ı∆x̄, x̄0+(ı−1)∆x̄),

Y2(x̄2, x̄1)≈I+Ad(x̄1)(x̄2 − x̄1)+

(
1

2

dAd

dx

∣∣∣∣
x̄1

+
1

4

d2Ad

dx2

∣∣∣∣
x̄1

+
1

2
A2

d(x̄1)

)
(x̄2 − x̄1)2

(21)
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The arch portion {x̄, x̄0} is split into n intervals of equal length ∆x̄ = (x̄− x̄0) /n:

as n increases, keeping it large enough for convergence, ∆x̄ → 0 and Eq. (21)

turns into Volterra’s integral [58]. To apply Eq. (21)1 we choose x̄0 and let the

state vector function yd (x̄) depend on yd (x̄0), considered as a list of unknown

parameters. Now, the linear dynamics problem (20) shall be completed by three255

homogeneous boundary conditions at each arch end:

clamped end : ū = 0, v̄ = 0, ϑ = 0,

pinned end : ū = 0, v̄ = 0, M̄ = 0,

free end : N̄ = 0, Q̄ = 0, M̄ = 0,

(22)

i.e., 6 linear homogeneous equations in the 6 unknowns of the list yd (x̄0):

T (ω̄) yd (x̄0) = 0

6× 6 6× 1 6× 1
(23)

with T(ω̄) a square matrix of coefficients that depend on the natural angular

frequency ω̄. Eq. (23) always admits the trivial solution yd (x̄0) = 0, which,

however, is not admissible: the state vector in this twice perturbed shape in260

general does not vanish at an arbitrary point of the axis. Thence, we ask for

non-trivial state vectors yd (x̄0) 6= 0, which equals to requiring the singularity

of T(ω̄) in terms of the unknown ω̄. We get a highly non-linear equation, the

solutions of which are the natural angular frequencies for the arch about the

deformed shape, modulated by the initial load and the relevant strain265

det [T (ω̄)] = 0⇒ ω̄ = ω̄ı, ı = 1, 2, . . . (24)

4. Effects of a local crack on equilibria and superposed small vibration

If a small plane crack affect the cross-section at the non-dimensional abscissa

x̄c, we imagine the arch composed by two regular chunks joined at xc by a set

of springs. Following [7] and similarly to what is done in [40], their compliances

depend on the depth of the crack via its complementary strain energy Uc270

Uc =

∫
Ac

1

E′

[(∑
KI

)2

+
(∑

KII

)2
]
dA, cı =

∂2Uc

∂ı∂
, ı, =N,Q,M (25)
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where: Ac is the damaged cross-section; E′ = E/(1−ν2), with ν Poisson’s ratio,

is Young’s modulus in plane stress; KI,KII are the stress intensity factors in

opening and shearing modes, respectively, related to the -th contact action;

cı is the compliance of the spring representing the effect of the crack on the

-th contact action due to a unit value of the kinematic descriptor dual of the275

ı-th contact action (respectively, relative axial and transverse displacement, plus

rotation between the cross-sections corresponding to the lips of the crack).

Let the undamaged cross-sections be rectangles of height h; the damaged one

at x̄c exhibits a crack of depth a that can be at its opposite sides with respect

to the centre of curvature. The crack-related non-dimensional quantities are280

ā =
a

h
, K̄ı =

Kı

E
√
h
, Ūc =

Uc

hEA
,
(
c̄N̄N̄ , c̄Q̄Q̄

)
=
EI (cNN , cQQ)

l3
,

c̄M̄M̄ =
EIcMM

l
, c̄M̄N̄ = c̄N̄M̄ =

EIcMN

l2

(26)

For determining the stress intensity factors to insert in Eqs. (25), (26), we

use, as in [45, 42, 43], the numerical shape functions fı, ı = 1, 2, 3 provided by [7],

which depend on the depth of the crack. If ζ ranges along the non-dimensional

crack depth, we get the non-dimensional compliances

c̄N̄N̄ =
4π
√

3(1−ν2)

λ3

∫ ā

0

ζf2
1 (ζ) dζ, c̄Q̄Q̄ =

16π
√

3(1−ν)

Ā2λ3(1+ν)

∫ ā

0

ζf2
2 (ζ)dζ,

c̄M̄M̄ =
12π
√

3(1−ν2)

λ

∫ ā

0

ζf2
3 (ζ) dζ, c̄N̄M̄ =

12π(1−ν2)

λ2

∫ ā

0

ζf1 (ζ) f3 (ζ) dζ

(27)

Even though all fı have the same order of magnitude [7], the powers of the285

slenderness ratio λ in Eq. (27) provide very different compliances. Indeed, in

slender one-dimensional elements λ has order of hundreds, thus the compliances

of normal and shearing springs ≈ 10−6, that of the spring accounting for the

coupling of normal and bending actions ≈ 10−4, and that of the bending spring

≈ 10−2. This will result in quite different responses of the damaged arch, as290

our investigation of particular cases will highlight.

Since we will deal only with the non-dimensional quantities (16), (26), (27),

we will abuse of notation again and omit over-bars to lighten readability.
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At the damaged cross-section, inner actions are balanced for no point loads,

and the crack induces a jump of the kinematics descriptors, elastically linked to295

inner actions. These conditions are written in different triads, since the cross-

sections of the crack lips in general undergo different rotations. Without loss

in generality, we choose the triad pertaining to the right end of the left chunk

(henceforth labelled by the subscript l). To project quantities at the left end

of the right chunk (henceforth labelled by the subscript r) onto it, we use a300

change of basis, which is the transpose of the relative rotation between the left

and right crack lips, R(ϑl)R
T (ϑr)=R(ϑl−ϑr). Its transpose for ‘small’ angles

equals the opposite, so jump and balance conditions in the adjacent shape are

R (ϑr − ϑl) d̃r − d̃l = C∗f̃l R (ϑr − ϑl) f̃r − f̃l = 0,

C∗ =


cNN 0 pcNM

0 cQQ 0

pcNM 0 cMM

 , f̃ =
{
Ñ , Q̃, M̃

}T (28)

where C∗ is the matrix of the compliances in (27) and p=±1 is a non-material

parameter indicating that the crack is at the top or bottom of the cross-section305

with respect to the centre of curvature, respectively. Since we write all vector

fields in the actual shape with respect to the Frénet-Serret local basis in the

reference shape (see Eq. (7)), Eqs. (28)1,2 become

R(ϑr−ϑl)RT (ϑr)dr−RT (ϑl)dl =C∗RT (ϑl)fl,

R(ϑr−ϑl)RT (ϑr)fr =RT (ϑl)fl
(29)

Now, R (ϑr − ϑl) RT (ϑr) = RT (ϑl) (in two-dimensional spaces rotations are

commutative), thus Eq. (29) in matrix form in terms of the state vector y is310

yr(xc)=C(a, p)yl(xc), C (a, p)=

 I R (ϑl(xc)) C∗RT (ϑl(xc))

0 I

 , (30)

where 0, I are the 3×3 null and identity matrices. Eq. (30) is in finite form

and holds for any arch configuration, thus we submit it to the same first-order

perturbations performed for the field equations and get

yr(xc) = Ceyl(xc), yr(xc) = Cdyl(xc) (31)
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The first Eq. (31) provides jump and balance in the adjacent shape and was

provided also in [42]. The second provides jump and balance for the superposed315

small vibration and is not provided elsewhere; however, Cd depends on ϑd in a

rather extensive way that is not worth reporting here for the sake of space.

For both chunks Eq. (19) gives the static solution in terms of the twelve

parameters listed in the state vectors ye(x0l),ye(x0r) of two points x0l, x0r.

These are uniquely found by imposing boundary (three scalar equations at each320

end) and jump and balance conditions at xc (six scalar consequences), yielding

12 physically independent equations. To simplify calculations, though, it is

better to choose a point x0 (with no loss in generality, in the left chunk) and the

components of its state vector yel(x0) as parameters; then, the whole solution

depends on yel(x0) by accounting for the jump and balance in Eq. (31)1325

yer(x0)=Y−1
e (xc)

(
CeYe(xc)yel(x0)+

(
Ce−Î

)∫ xc

0

Y−1
e (ξ) qe (ξ) dξ

)
(32)

where Î is the 6×6 identity and Eqs. (17), (19) were considered. In this way, the

solution to the problem is again reduced to imposing the boundary conditions.

To investigate linear dynamics about the adjacent shape, we update the

principal matrix for a crack location xc inside the -th interval {x0, x}:

Yd(x, x0) = Yd (x, x0 + ∆x) YdcYd (x0 + (− 1) ∆x, x0)

Ydc = Y2 (x0 + ∆x, xc) CdY2 (xc, x0 + (− 1) ∆x)

(33)

where Y2 is in Eq. (21). Then, operating as before, to ensure non-trivial ȳ(x̄0),330

one must solve an eigenvalue problem analogous to Eq. (24) to get the natural

angular frequency of the damaged arch about a non-trivial pre-stressed shape.

5. Validation of the model and technique

In this section we provide a couple of validations of our resolution technique:

we first investigate the results that we get by the principal matrix when search-335

ing the natural angular frequencies of an undamaged parabolic arch: thus, we

show that the numerical technique is robust and reliable. In second place, we in-

vestigate the modulating effect of a pre-load on the natural angular frequencies
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of an undamaged parabolic arch, until the critical threshold of static stability is

reached and buckling occurs: thus, we show we can describe natural vibration340

superposed on a non-trivial adjacent shape.

5.1. Free Vibration of Undamaged Arches

It is easy to check that in absence of pre-loads the field equations proposed

here reduce to those presented and validated in [41]. We show their validity

and that of the proposed solution procedure by numerical comparisons with345

the results of the well-established finite element formulation for curved beams

presented in [59]. The numerical results for different geometric properties are

reported in Table 1 for a doubly clamped arch. The arch geometry accounts

for different shallowness ratios α and slenderness ratios λ; the cross-section is

rectangular, whence the shear-to-normal cross-section area ratio is Ā=0.1 which350

corresponds to an I-profile with wide flanges for Poisson’s ratio ν ≈ 1/3. The

numerical results are obtained for n=100 after a convergence analysis.

Table 1: First four natural frequencies of doubly clamped parabolic arches, Ā=0.1.

α = 0.2 α = 0.4 α = 0.6

λ [59] Present [59] Present [59] Present

15

6.446 6.443 8.093 8.080 6.554 6.540

9.591 9.576 9.267 9.262 10.960 10.946

16.569 16.521 14.989 14.944 13.126 13.086

22.591 22.538 20.793 20.711 18.532 18.428

30

10.692 10.687 10.385 10.364 8.196 8.175

12.499 12.476 16.419 16.397 16.340 16.275

23.554 23.475 21.977 21.918 22.990 22.967

35.122 34.936 31.099 30.924 26.593 26.422

50

13.552 13.525 11.183 11.158 8.736 8.712

16.126 16.115 20.924 20.853 18.202 18.120

27.350 27.257 31.342 31.308 30.361 30.145

41.483 41.236 36.232 36.006 36.992 36.937
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Our results well match those of the finite element formulation in [59], provid-

ing always lower values with respect to them and with an increasing, however

always small, discrepancy with the shallowness ratio α. The discrepancy is355

slightly affected by the slenderness ratio λ and grows with the frequency order.

This is in accord with the physical interpretation provided in [59]; however,

since we are interested in the accuracy of our method accounting for various ge-

ometrical and constitutive parameters, we are happy with the obtained results.

5.2. Critical Loads360

As another validation test of the approach presented here, let us examine the

possibility to detect the threshold of static buckling for undamaged parabolic

arches under the given initial load. A ‘vertical, dead’ load of uniform magnitude

q0 with respect to the arch span, according to (18), leads to the following local

components in the reference local Frénet-Serret triad365

qle =
2q0xα

L2(x)
, qme =

q0

L2(x)
(34)

Letting the load magnitude be the tuning parameter, the vanishing of the vi-

bration frequencies is an indicator of buckling: thus, we let ω = 0 and look for

the value q0 for which non-trivial solutions exist, yielding the critical loads.

Both for the purpose of comparison, and to test the present approach in a

limit case, we let λ→∞, which corresponds to a purely flexible arch. We com-370

pare the results obtained by the technique presented here with those in: [44],

obtained by either differential quadrature (DQM) and finite elements (FEM) us-

ing a commercial software package; the well-known monograph by Timoshenko

and Gere [60]. In Tab. 2 we see that the results are well in agreement, thus

providing another positive validation of our technique.375

6. A direct problem

The validity of the field equations derived here is ensured by both the rigour

of each step and a qualitative comparison with some literature [41, 42, 44]. Thus,
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Table 2: Critical loads for purely flexible doubly-clamped arches.

α DQM [44] FEM [44] [60] Present

0.2 7.616 7.617 7.588 7.594

0.4 12.887 12.888 12.625 12.851

we perform some applications: as for a direct problem, we examine the effects of

a ‘dead’ pre-load of uniform magnitude q0 with respect to the arch span on the380

natural ‘small’ transverse vibration frequencies of a doubly-clamped parabolic

arch. The non-zero components of the distributed load with respect to the local

referential Frénet-Serret triad are found by (18) and expressed by Eq. (34). In

order to plot some results, we choose the non-dimensional parameters to have

values α = 0.4, λ = 100, Ā = 0.3, roughly corresponding to a moderately shallow385

and moderately slender arch with rectangular cross-sections.
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Figure 2: First four frequencies vs. crack location for various pre-loads; a = 0.5.
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Fig.2 shows how the values of the first four vibration frequencies are affected

by a crack located at xc and by a set of discrete values of the pre-load growing

from zero, the latter case indicating an unloaded arch. Remark that only a

half of the arch is considered, due to the symmetry of the problem, hence the390

possible crack locations are 0 ≤ xc ≤ 1. We consider the set of values for q0 up to

approximately one half the critical load, which, as it is well known, corresponds

to the value for which the first natural angular frequency vanishes.

We may see that the natural angular frequencies decrease with increasing

pre-load, which thus acts as a frequency modulator; this is in accord with the395

fact that in this case the outer load is brought by the majority of the arch

by a compressive normal force. This, as it is well known, reduces the global

stiffness via a negative geometric contribution that sums with the structural

elastic stiffness; the opposite would hold if the normal force in the largest part

of the arch were of traction. This effect is similar at various levels of the external400

pre-load, as it is apparent in the plots of Fig. 2, though the curves are not exactly

shifted, which will be also highlighted below. In addition, each curve providing

the natural angular frequency for a given pre-load versus the crack location xc

along the undeformed axis is not monotonic. This also is physically justified: in

our model, various xc imply that the two regular chunks have different lengths,405

thus different distributions of the inner actions and of the consequent diminution

of the global stiffness, directly affecting the natural frequencies. This effect is

also reported in some recent literature [40, 41].

On the other hand, it is apparent that the effect of the crack location on

opposite sides of the damaged cross-section, parameterized by p, is different410

for odd and even modes: it is almost unappreciable for odd modes, quite re-

markable for even ones. For a better interpretation of this phenomenon, this

outcome shall be read along with Fig. 3, where the first two mode shapes for an

unloaded arch and the corresponding distribution of normal force and bending

moment due to the elastic response of the arch to the axial strains associated to415

small transverse vibration are provided for xc = 0.5, a = 0.5, p = 1. We remark

that such a particular choice does not affect the generality of the results and of
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Figure 3: First mode shapes and inner actions; xc = 0.5, a = 0.5, p = 1, q0 = 0.

their interpretation, since the following remarks hold for arbitrary values of the

meaningful parameters. Firstly, we focus on normal force and bending moment

only since the compliances of the springs simulating the reduced stiffness of the420

damaged cross-section, provided in Eq. (27), are coupled for these inner actions

(and, indeed, they both depend on elongation parallel to the axis), while the one

for shearing force is independent. The normal force and bending moment are

normalized by making the integral of the corresponding absolute total displace-

ment of the arch axis equal to unity, and mode shapes are re-scaled for visual425

purposes. The third and fourth mode shapes are reported in Fig.4 by similar

considerations, which have a similar pattern with respect to the first and sec-

ond. As a rule of thumb, the even mode shapes are almost symmetric, with a

slight deviation due to the presence of the local damage; while the odd mode

shapes are almost skew-symmetric, with a similar deviation due to the presence430

of the crack. With reference to Fig.3 and Fig.4, the orders of magnitude of the

normal force and bending couple (hence of the relevant distributions of axial

strain) are comparable for the first and third modes, while they are remarkably

different (one order of difference) for the second and fourth modes; this remark
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Figure 4: Third and fourth mode shapes and inner actions; xc = 0.5, a = 0.5, p = 1, q0 = 0.

can be extended to all odd and even modes, respectively. This means that435

in odd modes the effective compliance is cMM (check the comment after Eq.

(27)), the others being negligible in comparison. On the other hand, in even

modes the presence of a quite remarkable normal force implies that the coupled

compliance cNM = cMN , off-diagonal in the matrix representation Eq. (30),

is not negligible anymore and its presence softens the structure, representing a440

compliance added to that due to the bending couple, the latter being dominant

in odd modes. Moreover, the off-diagonal compliance is multiplied by the pa-

rameter p specifying the location of the crack on opposite sides of the damaged

cross-section, hence it is clear why odd modes do not seem affected by p, while

the opposite holds for even modes. Another point is that the difference in the445

orders of magnitude of non-dimensional bending couple and normal force for

the fourth mode is an order higher than the second mode. This explains why

the effect of damage location on the cross-section is more appraciable for the

fourth mode, as seen in Fig.2. We must note that this point shall be read with

the assumption of open crack in mind; the the difference may be less depending450

on the actual shape of the crack or damage and the amplitude of the motion.
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Figure 5: Relative variations of the first four frequencies, a = 0.5.

Since the global stiffness of the arch is sensitive to the compliances of the

springs simulating the damage, and the latter are strongly affected by the sever-

ity of the crack, the modulating effect of the external load might be confused

with the softening effect due to the presence of the crack, which reduces in any455

case the undamaged stiffness. Thus, from the point of view of identification,

neglecting a possible pre-load may lead to an overestimation of the severity of

the damage. In addition, Fig.5 shows the relative variations of the natural an-

gular frequencies with the load and the crack location: it is apparent that there

is some qualitative difference in them with the damage location. This is of ap-460

plicative interest as these relative variations are usually the data of structural

health monitoring process and damage identification procedures using dynamic

measurements data.

A better view of this situation is in Fig.6, where the relative variations

of natural angular frequencies are provided with respect to the pre-load (left465
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Figure 6: Relative variations of frequencies with pre-load and damage severity.

column) and the damage severity (right column). The damage locations xc =

0.25, 0.50, 0.75 are chosen as sampling points as they provide a variety of relative

variations of the first four frequencies. Depending on the crack location along

the axis, the pre-load affects the frequencies in different ratios, though always

lowering them. The increasing damage severity, on the other hand, always alters470

the frequencies in the same proportion. Relative change of frequency variations

with the pre-load resembles the effect of crack location along the axis; therefore,

neglecting the pre-load in identification problems may be misleading not only in

damage severity, but also on its position along the axis. This is not surprising
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from the modelling point of view, but it is also expected to have applicative475

interest since the effects of environmental and operational conditions on health

monitoring and identification are evidenced in many papers [23, 61, 62].
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Figure 7: Damage identification by the model with pre-load.

7. An inverse problem

We look for an estimate of the damage parameters in a doubly-clamped

parabolic arch by the variations of the first four frequencies. To this aim, we480

adopt a simple technique, widely used in the literature [28, 36]: for each fre-

quency variation, we find the set of pairs (xc, a) representing the iso-frequency

variation curve a = fωi
(xc), i.e., a curve of constant frequency, calculated by

imposing measured variations. In absence of experimental errors, environmental

effects, and other uncertainties, it is possible to find a single intersection point485
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when a sufficient number of frequencies are considered. The uniqueness of the

solution of the inverse problem, i.e., the possibility to identify the location of the

crack in an ideal case, is demonstrated in Fig. 7 using the model with pre-load.

However, in actual applications an optimum point that is closest to all iso-

frequency variation curves is looked for by means of a suitable objective function:490

H1(x) =

4∑
i,j=1
i 6=j

∣∣fωi (x)− fωj (x)
∣∣ (35)

Minimizing this function provides an estimation of the crack location along

the axis, xm. Using this value, the damage severity is estimated by another

minimization of this second objective function

H2(x) =

4∑
i=1

|fωi
(xm)− a| (36)

495

We examine an arch with same geometrical and material parameters in the

previous section, with a crack located at xc = 0.5 with a severity a = 0.3. We

consider both possible crack locations on the cross-section, p = ∓1, and obtain

the iso-frequency variation curves with both estimations of the parameter p. In

order to see the effects of neglecting the pre-load on the inverse problem, we500

use the frequency variations of the arch, pre-loaded with q0 = 4; however, we

deliberately use the mathematical model with no pre-load. This resembles an

actual set of measurements on a pre-loaded arch before and after the damage;

however, the mathematical model used in the estimation neglects the pre-load.

Fig.8 shows the iso-frequency variation curves, the location of the actual505

damage, and its estimation by means of minimization of objective functions

given in Eqs. 35 and 36 The points with the colour of the iso-frequency varia-

tion curves provide the estimation when the corresponding frequency is left out,

which may be needed in case of high noise or other apparent sources of error in

specific frequencies [36]. Neglecting the pre-load results in the loss of uniqueness510

of the solution of the inverse problem and provides different candidate points at
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Figure 8: Iso-frequency variation curves and estimation of damage parameters. q0 = 4

which different iso-frequency variation curves intersect which is usual in exper-

imental studies due to uncertainties of different sources. However, in this case

the estimation of the damage parameters based on a pseudo-experiment is also

affected. The importance of the damage location on the cross-section is also515

evident. We must note that the effect of p may be weakened due to the possible

closure of the crack during the initial loading and/or in vibration motion, which

calls for a nonlinear modelling of the damage. However, we assume that the

crack is always open for a linear modelling, as a first step. The top-left and the

bottom-right graphs of Fig.8 provide the estimations on damage location along520

the abscissa and its severity based on correct estimations of its location on the

cross-section. For p = 1 (bottom-right) we see that the estimations are always

close to the actual parameters of the damage: then again, other possible sources

of error may add to the inaccuracy of the estimations. This is a clear proof of
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possible misleading identification due to operational conditions, which can be525

improved by the enriched model presented herein.

8. Conclusions

We investigated dynamics of initially parabolic arches with local damages

under the effect of a vertical ‘dead’ pre-load, simulating possible permanent

weigths on the considered element. Starting from a damaged and unloaded530

configuration, we performed a first perturbation expansion of the finite field

equations, admitting infinitesimal axial displacement and cross-sections rota-

tion. This allowed us to find the linear approximations of the deformed shape

and the corresponding internal actions A second perturbation expansion was

performed about this deformed and pre-stressed configuration, admitting the535

incremental displacements and rotation to be infinitesimal again, and harmonic

in time.

This two-step perturbation of the field equations, equipped with suitable

balance and jump conditions, allowed us to examine the effects of pre-stresses

and pre-deformations on small linear transverse vibration of damaged arches.540

A vertical ‘dead’ pre-load leads to a decrease in vibration frequencies, as ex-

pected. The notable result is that the relative frequency variations depend on

the dead load, in addition to the crack location; this disrupts the uniqueness

of the inverse problem. In order to evaluate the negative effects of neglecting

the pre-load in identification procedures, we adopted a simple technique to find545

the optimum damage parameters. For this procedure we used the frequency

variations of a pre-loaded arch but neglected the effects of the pre-load in the

mathematical model, which resembles an actual application of an identification

procedure based on frequency shifts on a pre-loaded arch before and after the

damage. In addition to the loss of uniqueness of the inverse problem, we found550

that the estimation of damage parameters may be highly misleading even in the

absence of experimental errors, while the correct parameters are recovered for

the model accounting for the pre-load. We believe this contribution helps with
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practical problems of health monitoring, and increase the accuracy of identifica-

tion procedures by including the operational effects in mathematical modeling.555
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