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Abstract. Industry 4.0 represents the last evolution of manufacturing.
With respect to Industry 3.0, which introduced the digital intercon-
nection of machinery with monitoring and control systems, the fourth
industrial revolution extends this concept to sensors, products and any
kind of object or actor (thing) involved in the process. The tremendous
amount of data produced is intended to be analyzed by applying meth-
ods from artificial intelligence, machine learning and data mining. One
of the objective of such an analysis is Zero Defect Manufacturing, i.e., a
manufacturing process where data acquired during the entire life cycle of
products is used to continuously improve the product design in order to
provide customers with unprecedented quality guarantees. In this paper,
we discuss the design choices behind a Zero Defect Manufacturing system
architecture in the specific use case of spindle manufacturing.
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1 Introduction

In recent years, manufacturing processes have undergone several changes to meet
the ever increasing demand of customers for highly personalised and high qual-
ity products. Actually, conventional production strategies and methodologies,
which have been successfully applied in the past, are impractical in the modern
industrial setting [1], thus requiring more ones. Recent technological advances,
such as Internet-of-Things (IoT), Cyber Physical Systems (CPSs) and Artificial
Intelligence (AI), combined with the growing interest in Industry 4.0, fostered
the development of a novel paradigm shift in the production process called Zero
Defect Manufacturing (ZDM). This strategy aims at reducing the number of
defected products to zero by simultaneously considering production planning,
quality management, and maintenance management factors in a first-time-right
fashion [2]. More specifically, this strategy leverages the huge amount of hetero-
geneous data generated by a company (e.g., shop floor data, product operational
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data, supplier data) to build a self-correcting system to predict and detect prod-
uct defects before they propagate to downstream stages, and to continuously
enhance the product design to improve its quality.

The ZDM methodology was initially defined in the early 1960 s s in the US
[3] and was further developed in the following years [4]. Recent advances in
the manufacturing field, combined with the data-rich environment of modern
companies have fostered a renewed interest in ZDM with a vast literature of
surveys, frameworks and methodologies to enable and support ZDM strategies.
Psarommatis et al. [1] and Powell et al. [2] provide a literature review and inves-
tigate recent trends and perspectives in the ZDM field. Wang et al. [5] propose
a general framework for ZDM in which data mining techniques play a key role.
Angione et al. [6] describe a ZDM reference architecture for multi-stage manufac-
turing systems (e.g., automotive and semiconductor manufacturing companies)
and finally Magnanini et al. [7] present a layered reference architecture to enable
ZDM strategies which also relies on data generated from existing management
software such as Enterprise Resource Planning (ERP) and Manufacturing Exe-
cution System (MES).

In this paper, we present a specific example of ZDM support strategy in the
case of a spindle manufacturing company. Spindles are high-precision electrome-
chanical components mounted on top of machine tools and provide rotation to
the tool in order to generate working motion. They feature an external or inter-
nal electric motor and in the latter case the term electrospindle is used to denote
such kind of devices. Spindles are manufactured in a variety of configurations
and are deployed in several industrial processes, including milling, drilling or
grinding for a wide range of materials, including metal, marble and wood. The
Electrospindle 4.0 project aims at applying ZDM principles in the production
of spindles. Main goal is to realize new Zero Defect spindles produced by a Zero
Defect production process. An innovative family of spindles is equipped with sev-
eral sensors and computing capabilities; and a new production line is designed to
make it more intelligent. Spindles are a representative examples of manufactur-
ing processes of interest in Industry 4.0. Recent research focused on monitoring
spindles and their health status to predict and prevent future failures. Relevant
works in this field include [8] which propose a cloud-based architecture for pre-
dictive maintenance of spindles using Machine Learning (ML) techniques, and
[9] which reviews research on intelligent spindles.

The rest of the paper is organised as it follows. Section 2 describes the pro-
posed approach along with the Electrospindle 4.0 case study and finally Sect. 3
draws conclusions and outlines future works.

2 Proposed Spindle ZDM Approach

In this section, we describe in more details the proposed approach to support
ZDM in the case of spindle manufacturing. A high-level overview of the method-
ology is shown in Fig. 1. It consists of three main steps, namely Data collection,
Data analytics and Optimization, intended to continuously detect and predict
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failures and incrementally improve the product design and the assembly line. The
proposed approach is currently being adopted in the Electrospindle 4.0 project.

Fig. 1. An overview of the proposed approach to support ZDM

2.1 Data Collection

In this phase, data generated at different levels of the product lifecycle are col-
lected and sent to a cloud server for subsequent analyses. Four main sources of
information can be identified in Fig. 1: (i) assembly line data, (ii) data gener-
ated from the product in the customer environment, (iii) data stored in existing
management software, such as ERP and MES, and finally (iv) data provided by
suppliers of raw materials required to build the product. We note that the first
two sources of data require the use of highly-digitalized and intelligent products
and equipment to sense, collect and send data to a central cloud platform. On
the other side, information systems like ERP, MES and Product Lifecycle Man-
agement (PLM) provide additional information on the production process and
the product design (e.g., production planning and inventory management).

The innovative spindles designed in the Electrospindle 4.0 project, are capa-
ble of automatically collecting several operational parameters coming from the
customer environment (e.g., rotation speed, temperature, vibration, power con-
sumption, etc.) and send them to a cloud platform for further processing. Such
data will help the spindle manufacturing company to get insights on the prod-
uct usage patterns from the customer. In addition to that, the production line
is composed by new testing machines able to autonomously send the results of
performed tests to a central cloud platform to complement data generated from
the intelligent spindles and the other data sources mentioned before.

2.2 Data Analytics

Data collected from the previous step flows into a data lake provided by a
cloud platform for further processing. Data comes from the several sources
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(as described in Sect. 2.1), however a unique central origin is needed to make
analyses. Specifically, three main types of analyses are carried out in this step:
descriptive, predictive and prescriptive. Descriptive analytics uses data mining
techniques to get insights from historical data by means of dashboards or other
user-friendly interfaces. Predictive analytics uses statistical or AI-based models
trained on past data to predict future outcomes. Finally, prescriptive analytics
leverages predictive models, together with optimization and simulation tech-
niques to suggest corrective actions. Key enabling technologies for such analyses
include AI, process mining and Digital Twins (DTs).

In the Electrospindle 4.0 project, a line of research is devoted to the estima-
tion of the Remaining Useful Life (RUL) of spindles. Such information will be
beneficial for the spindle manufacturing company to assess the health status of
its products and suggest future maintenance activities (i.e., predictive mainte-
nance). Specifically, we devise the use of recent state-of-the-art ML techniques
to train a predictive model for RUL estimation using data stored in the data
lake and then deploy such a model directly into the spindle (this is a case of edge
computing) which in turn will use such reasoning capabilities to generate alerts
or warning both to the customers and the spindle manufacturing company. Pop-
ular techniques used in the industrial settings for RUL estimation include Auto
Encoders (AEs), Deep Belief Networks (DBNs), Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) [10–12].

We also devise the use of DTs to create a virtual representation of devices
and operations involved in the spindle manufacturing process based on [13], as
wells as process mining techniques to model the production line [14] and further
improve the automation level of the company. Both of them are crucial in our
approach to identify critical issues in the product and the assembly line which
may compromise the quality of the spindles manufactured and shipped by the
company.

2.3 Optimization

Optimization builds on the analyses carried out in the Data analytics phase to
support the company in improving both the product design and the assembly
line. We note that this requires domain expertise to adequately address design
and quality issues which may be highlighted in this step. Indeed, the current
step relies on a human-in-the-loop approach to suggest corrective actions.

More specifically, insights from real-time operation data of the product, com-
bined with past failures and faults-related data, should help project managers
and designers to identify Critical-To-Quality (CTQ) components of the product
and improve their design. Such information should be provided using graphical
interfaces, dashboards or any other human-interpretable technique. In addition
to this, models and simulations defined in the Data analytics step should also
inform company experts about potential bottlenecks, efficiency or quality issues
in the assembly line and provide proper steps to address them.

In the Electrospindle 4.0 project, we envision the use of recent machine learn-
ing explanation techniques and statistical analyses to extract knowledge from AI
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models developed in the previous step and find CTQ components of a spindle
which mainly affect the RUL of the product. Also, data generated at the shop
floor level, combined with DT-based simulations, process discovery and process
enhancement techniques, will be used to find bottlenecks and quality related
issues in the production process. Finally, we also plan to use Design-for-X [15]
based methodologies to build a knowledge base of best practises provided by
domain experts as well as general guidelines which will further inform and sup-
port designer to improve the manufacturing of spindles.

2.4 System Architecture

To support all the required functionalities, a mix of edge, public cloud and private
cloud computing [16] has been chosen as system architecture. Machine learning
(both training and evaluation) and data mining tasks will be executed using
resources from the public cloud (e.g., Azure Machine Learning). Also data from
the new family of spindles will be stored in a public cloud. Part of the models
will be trained in the public cloud and will be evaluated directly on the spindle
using edge computing [17].

A private cloud will be used to store data from information systems of the
spindle manufacturing company. These include the ERP, the Customer Relation-
ship Management (CRM) and the MES. A challenge here is the safe and secure
interaction between the spindle manufacturing company private cloud and the
public cloud solutions that will be used for training purposes. In order to pre-
serve the confidentiality of company’s data, data transfer flows must be designed
in order to keep the data in the public cloud only at training time.

3 Conclusions

In this paper, we outlined an approach to support ZDM strategies based on
cloud computing and data analytics. The proposed approach relies on the con-
stant execution of three main steps to incrementally improve the product design
and the manufacturing process, which can be summarized as the collect, ana-
lyze and optimize loop. We discussed those steps alongside the case study of
Electrospindle 4.0, a ZDM initiative involving a spindle manufacturing company
together with several industry experts and research institutions. As a future
work, we plan to revisit and refine the proposed approach, and to conduct fur-
ther investigations to evaluate whether the proposed approach can be readily
applied to other manufacturing domains which may be significantly different
from the spindle manufacturing one.

One of the technical challenge consists in the collection of a dataset big
enough to allow for machine (deep) learning training. Unfortunately, the avail-
able data could be severely unbalanced. High resolution spindle data will be
likely available only in certain phases of the life cycle, namely spindle manufac-
turing and spindle maintenance, whereas the data coming from the customers
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will be at a lower resolution (i.e., one measurement every 10 s), making it diffi-
cult to detect short term phenomena. This is due to the necessity of reducing the
data transmitted by customers for their installed spindles. This challenge could
be addressed, in principle, by adding a fog layer to the architecture, but the
consortium (spindle manufacturing company and research institutions) decided
that placing an additional infrastructure at the customer side is not feasible for
security and cost reasons.
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