
����������
�������

Citation: Martino, A.; Baldini, L.;

Rizzi, A. On Information Granulation

via Data Clustering for Granular

Computing-Based Pattern

Recognition: A Graph Embedding

Case Study. Algorithms 2022, 15, 148.

https://doi.org/10.3390/a15050148

Academic Editor: Xiao Huang

Received: 11 April 2022

Accepted: 24 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

On Information Granulation via Data Clustering for Granular
Computing-Based Pattern Recognition: A Graph Embedding
Case Study
Alessio Martino 1,* , Luca Baldini 2 and Antonello Rizzi 2

1 Department of Business and Management, LUISS University, Viale Romania 32, 00197 Rome, Italy
2 Department of Information Engineering, Electronics and Telecommunications,

University of Rome ”La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy; luca.baldini@uniroma1.it (L.B.);
antonello.rizzi@uniroma1.it (A.R.)

* Correspondence: amartino@luiss.it; Tel.: +39-06-8522-5957

Abstract: Granular Computing is a powerful information processing paradigm, particularly useful
for the synthesis of pattern recognition systems in structured domains (e.g., graphs or sequences).
According to this paradigm, granules of information play the pivotal role of describing the underlying
(possibly complex) process, starting from the available data. Under a pattern recognition viewpoint,
granules of information can be exploited for the synthesis of semantically sound embedding spaces,
where common supervised or unsupervised problems can be solved via standard machine learning
algorithms. In this work, we show a comparison between different strategies for the automatic
synthesis of information granules in the context of graph classification. These strategies mainly differ
on the specific topology adopted for subgraphs considered as candidate information granules and
the possibility of using or neglecting the ground-truth class labels in the granulation process. Compu-
tational results on 10 different open-access datasets show that by using a class-aware granulation,
performances tend to improve (regardless of the information granules topology), counterbalanced by
a possibly higher number of information granules.

Keywords: structural pattern recognition; supervised learning; graph classification; inexact graph
matching; granular computing; information granulation; data mining and knowledge discovery

1. Introduction

In the early 2000s, Granular Computing emerged as a novel information processing
paradigm that exploits pivotal mathematical structures called granules of information to
describe an underlying set of (likely complex) data, describing a (likely complex) process
under analysis [1,2]. The concept of information granulation dates back to the mid-1990s,
thanks to soft computing and fuzzy logic pioneer Lotfi Aliasker Zadeh. In their words:

Among the basic concepts which underlie human cognition there are three that stand out
in importance. The three are: granulation, organization and causation.

L.A. Zadeh [3]

and

Informally, granulation of an object A results in a collection of granules of A, with a
granule being a clump of objects (or points) which are drawn together by indistinguisha-
bility, similarity, proximity or functionality. In this sense, the granules of a human body
are the head, neck, arms, chest, etc. In turn, the granules of a head are the forehead, cheeks,
nose, ears, eyes, hair, etc. In general, granulation is hierarchical in nature. A familiar
example is granulation of time into years, years in months, months into days and so on.

L.A. Zadeh [3]

Algorithms 2022, 15, 148. https://doi.org/10.3390/a15050148 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15050148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1730-5436
https://orcid.org/0000-0003-4391-2598
https://orcid.org/0000-0001-8244-0015
https://doi.org/10.3390/a15050148
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15050148?type=check_update&version=1

Algorithms 2022, 15, 148 2 of 19

This philosophical viewpoint behind the birth of Granular Computing as human-
inspired information processing paradigm has been embraced by other well-known schol-
ars, notably Ronald R. Yager. In their words:

Language, which is central to most human cognitive activities, is based on granularization.
In addition human facilities for distinctions are limited. Being limited, at the very least
by language and perhaps additionally by their ability to perceive, human beings have
been developed a granular view of the world. Thus, we see that the objects with which
humankind perceives, measures, conceptualizes and reasons are granular.

R.R. Yager and D. Filev [4]

As the 1990s marked the golden age of fuzzy logic and fuzzy-based pattern recognition,
L.A. Zadeh further argues that information granules should be inherently fuzzy since most
of human reason and concept formation are fuzzy rather than crisp [3,5].

Clearly, Granular Computing is not a set of computational pipelines and is not a set
of algorithms; rather, it can be considered as a goal-driven umbrella that, according to
Y.Y. Yao, in their ”Granular Computing manifesto” [6] should fulfill the following points:

• Be a truthful representation of the real world;
• Be consistent with human thinking and problem solving;
• Allow a simplification of the problem;
• Provide economic and low-cost solutions.

Thus, in the realm of Granular Computing, we can easily find techniques that have
not been developed for Granular Computing but, nonetheless, they satisfy the above goals.
Indeed, information granulation can be performed by a plethora of different strategies,
notably fuzzy sets [3,7,8], rough sets [8–10], shadowed sets [11], interval analysis [12] and
data clustering [13–15].

In a general sense, the aim of a clustering algorithm is to group a finite set of data
into a finite number of groups in such a way that the elements within the same cluster
are more similar with each other with respect to elements belonging to other clusters [16].
The vagueness of such definition is not by chance as data clustering is an ill-posed problem.
There are two ways to confirm such statement. First, according to J. Hadamard [17],
a problem is said to be well-posed if a unique solution exists and the solution’s behavior
changes continuously with the initial conditions. Data clustering does not satisfy (at least)
the first requirement. Second, data clustering is an inverse problem (i.e., when we want to
calculate, starting from a finite set of data, the causal factors that produced them), which
are known to be ill-posed.

The lack of notion of what is a valid cluster and, in consequence, what is an appropriate
clustering algorithm to detect such clusters depends on the application at hand [18], leading
to the development of several families of clustering algorithms available in the current
literature [19]. The interested reader can refer to [16,20] for detailed surveys on clustering
algorithms. Here, we briefly discuss two families of clustering algorithms widely employed
in a Granular Computing setting: hierarchical and partitional clustering. Hierarchical
clustering algorithms aim at building a dendrogram that represents the dependency among
clusters; in particular, hierarchical clustering algorithms can be further divided in two
main families:

• Agglomerative clustering algorithms, which work in a bottom-to-top fashion by
starting with each data point forming its own cluster and then merging clusters until
all data points belong to the same cluster;

• Divisive clustering algorithms, which work in a top-to-bottom fashion by starting
with a single cluster embracing the entire dataset and then iteratively splitting the
clusters until each data point forms its own cluster.

Conversely, partitional clustering algorithms aim at assigning each data object to
one and only one cluster, where the number of clusters can be set a priori. In the latter

Algorithms 2022, 15, 148 3 of 19

case, k-means stems as the flagship of partitional algorithms [21], alongside its extensions
towards non-Euclidean dissimilarity measures [22,23] and fuzzy extensions [24].

In the former case (i.e., hierarchical clustering), the algorithm natively returns a multi-
scale overview of the dataset (i.e., the dendrogram linking its clusters at different scales).
In the latter case (i.e., partitional clustering), one can let fewer or more clusters emerge,
leading to partitions having different sizes. The possibility of analyzing the data (hence,
letting information granules to emerge) at different levels of abstraction is at the very heart
of the Granular Computing paradigm, which is why both approaches are commonly used
in a Granular Computing approach.

Recently, the Granular Computing paradigm has been employed for the synthesis of
pattern recognition systems, as well as in structured domains such as graphs, sequences and
images [25,26]. The rationale behind these pattern recognition systems is to automatically
extract recurrent and/or meaningful substructures (i.e., subgraphs, subsequences, portions
of images) suitable to be considered as granules of information. On the top of these
pivotal elements, it is possible to build an embedding space in such a way that the pattern
recognition problem is cast from the structured domain towards the Euclidean space.
The latter, being a metric space, allows to comfortably use one of the many statistical
classifiers currently available in the pattern recognition and machine learning literature [27].

In this work, we exploit clustering-based approaches for the automatic synthesis of
information granules in the context of graph classification. The information granules reflect
pivotal subgraphs extracted from the training data endowed with high discriminative
power. On the top of these information granules, we perform an embedding procedure
thanks to the symbolic histograms approach. In particular, we review and compare two
different candidate topologies for the synthesis of granules of information (paths and
cliques) and we compare two additional strategies for their synthesis: a stratified approach,
where the ground-truth labels of the classification problem play an important role in the
information granules synthesis, and a non-stratified approach, where the ground-truth
labels are completely discarded in the process.

The remainder of the paper is structured as follows: in Section 2, we describe the four
main building blocks of the GRALG framework (extraction and synthesis of granules of
information, graph embedding and classification), which we exploit in order to perform
our two-fold investigation. In Section 3, we discuss in detail four granulation strategies
based on different combination of subgraph topologies (paths vs. cliques) and stratification
(class-aware vs. no stratification). In Section 4, we detail how these building blocks co-
operate in order to synthesize an optimized model for graph classification. In Section 5,
we show the computational results obtained by the four combinations of topology and
granulation and, finally, Section 6 concludes the paper.

2. High-Level Framework Description

The GRALG framework is composed of the following four main modules:

• Extractor, which is in charge of extracting, from the training set, a suitable set of
candidate information granules;

• Granulator, which is in charge of building an alphabet of symbols starting from the
candidate information granules provided by the Extractor block;

• Embedder, which is in charge of mapping a graph dataset towards the Euclidean space;
• Classifier, which is in charge of training and testing a suitable classification system in

the Euclidean space spanned by the Embedder block.

2.1. Extractor and Granulator

Let P be an unknown, oriented and possibly complex process to be modeled, where
the inputs are annotated graphs and where the output domain is a finite set of class
labels. Furthermore, let S be an input-output sampling of P and let Str, Sval and Sts
be a split of S into training, validation and test sets, respectively. The split should be
performed so that each subset should share the same statistics, in order to be considered as

Algorithms 2022, 15, 148 4 of 19

valid representation of the same process. Moreover, this split must satisfy the following
partition properties:

• The union of the three sets yields the original set: Str ∪ Sval ∪ Sts = S ;
• The intersection of any two distinct sets is empty: Str ∩ Sval = Str ∩ Sts = Sts ∩ Sval = ∅.

The Extractor is a block that takes as input Str and returns a bucket B of subgraphs
drawn from graphs in Str.

Conversely, the Granulator block takes as input B and returns an alphabet of sym-
bols A ⊂ B, namely suitable granules of information, by running a clustering algo-
rithm over B, possibly electing the representative elements of the clusters as granules
of information [13–15,28]. In particular, the latter runs a Basic Sequential Algorithmic
Scheme (BSAS) [29] clustering algorithm driven by the following parameters:

• Q, namely, the maximum number of allowed clusters;
• θ, namely, the maximum radius for including a pattern into one of the already-

discovered clusters;
• A dissimilarity measure d(·, ·) between any two patterns.

The clustering algorithm addresses the dissimilarity between patterns (i.e., graphs)
thanks to a parametric Graph Edit Distance (GED) [30,31] dissimilarity measure called
node Best Match First (nBMF). The interested reader is referred to ([32], Appendix A) for
a full mathematical formulation of nBMF. At the end of the clustering procedure, each
cluster is evaluated by means of a suitable quality index that jointly takes into account
its cardinality (i.e., number of patterns) and compactness (i.e., average pattern-to-center
distance) and only the centers of well-formed (i.e., compact and populated) clusters are
admitted to be part of the alphabet.

Since the Extractor and the Granulator blocks are the main focus of this paper, the four
variants we aim to investigate will be thoroughly described in Section 3.

2.2. Embedder

The Embedder block takes as input the alphabet as returned by the Granulator block
and runs an embedding function in order to cast each graph (belonging to an input graph
set, e.g., Str) towards the Euclidean space.

The mapping function yields the so-called symbolic histogram [33] by transforming
each input graph G into an n-length feature vector of the form:

h(A,G) = [occ(s1,G), . . . , occ(sn,G)] (1)

where A = {s1, . . . , sn} and occ : A× G → N+
0 is the enumeration function that counts the

number of times each symbol s ∈ A appears in G.
The counting procedure operates as follows:

1. The input graph G is decomposed into its constituent parts, yielding a decomposition
G ′ = {g1, . . . , gk}. For the sake of consistency with the Extractor and Granulator
modules, in case of path-based subgraphs, the decomposition follows a Breadth First
Search strategy, whereas in case of cliques-based granulation, the decomposition
follows the maximal clique decomposition.

2. For the ith symbol in A:

(a) The pairwise dissimilarities between si and all subgraphs in G ′ are evaluated;
(b) All dissimilarities below a threshold ζi are retained and considered as a ‘hit’;
(c) The ith entry in h is filled with the number of occurrences (i.e., the number

of ‘hits’);

3. Repeat step 2 for i = 1, . . . , n.

Algorithms 2022, 15, 148 5 of 19

There are two important aspects in this procedure that need to be addressed. First,
the threshold ζi for scoring a ’hit’ is defined as:

ζi = 1.1 ·Φ(Ki) (2)

where Ki is the cluster whose representative element is si and Φ(·) is a function that
evaluates the compactness of the cluster (further details in Section 3). In this manner,
the threshold scales in a symbol-aware fashion by accounting the size of its cluster.

Second, the pairwise dissimilarities between symbols and subgraphs is evaluated by
means of the very same nBMF dissimilarity measure already used by the Granulator block.

2.3. Classifier

The Classifier block trains a classification system on the embedded version of Str, say
Htr, namely an |Str| × n instance matrix with patterns (i.e., graphs from Str) organized
as rows.

In order to validate the behavior of the classifier, the Classifier block also needs the
embedded version of Sval, say Hval. The ability of the classification system, previously
trained on Htr, in predicting the ground-truth labels of Hval dictates the performance of
the Classifier.

In this work, we use a K-Nearest Neighbors (K-NN) decision rule [34] with K = 5 as
the classification system.

3. Information Granulation Strategies
3.1. Random Walk

The random walk extractor, proposed in [32], takes as input a bucket B of candidate
information granules extracted via a plain random walk on the graphs belonging to the
training set.

In a plain random walk [35,36], the next-hop u ∈ V is chosen uniformly at random
among the neighbors of the current node v ∈ V . Formally, the probability of moving from
v to u is:

pv→u =

{
1

deg(v) , if u ∈ N (v)

0, otherwise
(3)

where N (v) is the neighborhood of node v and deg(v) is its degree, i.e., deg(v) = |N (v)|.
Populating the bucket B relies on two important parameters:

• W, the user-defined number of subgraphs in B, i.e., W = |B|;
• o, the user-defined maximum number of nodes for subgraphs in B.

and it works as follows:

1. Start with B = ∅;
2. Let W ′ = W

o be the number of subgraphs to be extracted for each of the candidate
subgraph orders;

3. For l = 1, . . . , o:

(a) Let B(l) = ∅ be a temporary bucket containing only subgraphs of order l;
(b) Until |B(l)| equals W ′:

i. Extract uniformly at random a graph G from the training set;
ii. Extract uniformly at random a node v from G;
iii. Start a simple random walk of length l from node v;
iv. The subgraph emerged from the random walk is added to B(l);

(c) B = B ∪ B(l);

The so-collected bucket B is the main input to the Granulator module.

Algorithms 2022, 15, 148 6 of 19

As anticipated in Section 2, the Granulator block runs the BSAS clustering algorithm
on B in order to extract suitable information granules, properly collected in the alphabet
A. Given a set of m candidate values for θ, i.e., {θ1, . . . , θm}, the Granulator block runs
m instances of BSAS, each with a different value for θ. Recalling that θ identifies the
radius of inclusion, exploring different θ values allows us to explore B at different levels
of resolutions, which, in turn, will yield granules of information at different levels of
granularity [37–40]. Recalling that each instance of BSAS is bounded by a maximum
number of clusters Q, the Granulation block yields at most O(Q ·m) clusters in the worst
case. Each cluster returned by the clustering ensemble, regardless of the θ value that
generated it, undergoes a cluster quality evaluation in order to address whether that cluster
is suitable for being elected as granule of information. Specifically, for any cluster K, we
define a cluster quality index F(K) that reads as:

F(K) = η ·Φ(K) + (1− η) ·Ψ(K) (4)

namely, as a linear convex combination between the compactness of the cluster Φ(K) and
its cardinality Ψ(K) weighted by a trade-off parameter η ∈ [0, 1]. In turn, the compactness
of the cluster is defined as the average pattern-to-center distance:

Φ(K) = 1
|K| − 1 ∑

i
d(g?, gi) (5)

where gi ∈ K is the ith pattern of cluster K and g? is the representative element of the
cluster. Since the Granulator deals with non-geometric entities (i.e., graphs), we consider
the medoid of the cluster as its representative [41]. Finally, the cardinality of the cluster is
defined as the relative size of the cluster K with respect to the overall number of candidate
information granules:

Ψ(K) = 1− |K||B| (6)

Since both Φ(K) and Ψ(K) are negative-oriented, a cluster is considered for being
part of the alphabet A if and only if its quality index F(K) is below a threshold τF ∈ [0, 1].
The medoids whose clusters satisfying such condition compose the alphabet of symbols A.

3.2. Clique

The clique extractor aims at investigating a particular subgraph topology: the clique,
namely an induced subgraph that is complete [42,43].

In this scenario, the bucket B will be filled with a subset of the cliques extracted
from the graphs belonging to the training set. The end-user is still required to specify
W, as for Section 3.1, yet the maximal order parameter o is meaningless as cliques are
concerned since the formation (and the size) of a clique is strictly topology-dependent
rather than user-defined.

The clique extractor works as follows:

1. Start with B = ∅;
2. For each graph G from the training set:

(a) Evaluate C as the maximal clique decomposition of G. The maximal clique
decomposition of a graph G = (V , E) can be evaluated thanks to the Bron–
Kerbosh algorithm [44] with a worst-case complexity of O(3|V|/3) [45];

(b) B = B ∪ C;

3. Let B′ be a set of W subgraphs selected uniformly at random from B;
4. B ← B′.

The so-collected bucket B is the main input to the granulator module.
The Granulator block works exactly as the one described in Section 3.1, yet on a bucket

B composed of cliques only.

Algorithms 2022, 15, 148 7 of 19

3.3. Stratified Clique

The two extractors and granulator strategies in Sections 3.1 and 3.2 populate the bucket
B uniformly at random. Such procedures present the following two potential drawbacks:

• The information about the ground-truth labels (freely available in classification prob-
lems) is not exploited in the extraction and granulation stages;

• A uniformly at random selection can bias the contents of B, especially in case of
unbalanced datasets; indeed, training graphs pertaining to the majority class have a
higher change of being selected.

In order to overcome both problems, we further proposed a stratified clique-based
extractor and granulator [46]. The main objective of the stratified extractor is to build the
bucket B as a set-of-sets B = {B(1), . . . ,B(p)}, with p being the number of classes for the
classification problem at hand, with the constraint that B(i) contains subgraphs drawn from
the subset of training graphs belonging to the ith class only.

The stratified clique-based extractor works as follows:

1. For each ground-truth class i = 1, . . . , p:

(a) Let S (i)tr be the subset of the training set containing only patterns belonging to
class i;

(b) Calculate the (relative) frequency of the ith class as fi =

⌊
|S (i)tr |
|Str| +

1
2

⌋
, where the

operator
⌊

x + 1
2

⌋
rounds x to the nearest integer;

(c) Evaluate Wi =
⌊

W · fi +
1
2

⌋
, namely the size of B(i);

(d) Set B(i) = ∅;

(e) For each graph G ∈ S (i)tr :

i. Evaluate C as the maximal clique decomposition of G;
ii. Update B(i) = B(i) ∪ C.

(f) If |B(i)| > Wi, then replace B(i) with a uniform random selection of Wi of its
own subgraphs.

Due to the set-of-sets nature of the stratified bucket, the Granulator described in
Section 3.1 and later employed in Section 3.2 loses its effectiveness. To overcome this
problem, we let p different Granulators to run independently on each of the class-stratified
buckets, yielding a class-related alphabet, say A(i) for the ith class, to be merged together
later in order to form the overall alphabet A. Specifically:

1. Start with A = ∅;
2. For each ground-truth class i = 1, . . . , p:

(a) Consider the sub-bucket B(i) containing subgraphs drawn from S (i)tr ;
(b) Run the Granulator (see Section 3.1) on B(i), yielding A(i);
(c) A = A∪A(i).

The above procedure allows to have, in the final alphabet A, information granules
extracted from all of the problem-related classes, which should yield not only a better
characterization of the data by means of a thorough extraction of pivotal elements, but also
a better separation of the classes themselves. Indeed, we advance the hypothesis that if
a particular subgraph is pivotal to characterize a given problem-related class, then the
number of occurrences in the symbolic histogram (cf. Equation (1)) will be higher if the
graph to be embedded belongs to the very same class. This comes with the drawback of a
potentially higher-dimensional alphabet: indeed, since the Granulator from Section 3.1 has
to be repeated p times, the worst-case size of A grows as O(p ·m ·Q).

Algorithms 2022, 15, 148 8 of 19

3.4. Stratified Random Walk

The stratified path-based extractor, originally proposed in [41], works as follows:

1. For each ground-truth class i = 1, . . . , p:

(a) Let S (i)tr be the subset of the training set containing only patterns belonging to
class i;

(b) Calculate the (relative) frequency of the ith class as fi =

⌊
|S (i)tr |
|Str| +

1
2

⌋
;

(c) Evaluate Wi =
⌊

W · fi +
1
2

⌋
, namely the size of B(i);

(d) Evaluate W ′i =
⌊

Wi · o + 1
2

⌋
, namely the number of subgraphs to be extracted for

each of the candidate subgraphs order, yet considering only graphs belonging
to class i;

(e) Set B(i) = ∅;
(f) For l = 1, . . . , o:

i. Set B(i,l) = ∅, namely a temporary bucket that will hold subgraphs of
order l extracted from graphs of class i;

ii. Until |B(i,l)| is equal to W ′i :

A. Extract uniformly at random a graph G from S (i)tr ;
B. Extract uniformly at random a node v from G;
C. Start a simple random walk of length l from node v;
D. The subgraph emerged from the random walk is added to B(i,l);

iii. B(i) = B(i) ∪ B(i,l)

The Granulator block works exactly as the one described in Section 3.3, yet on a
bucket-of-buckets B composed of random walks (cf. Section 3.1).

4. Model Synthesis and Testing

In this section, we explain in detail how the above-described four blocks (Extractor,
Granulator, Embedder and Classifier) co-operate in order to synthesize the classification
model and subsequent testing of its final performance on the test set. Since there are several
hyper-parameters involved in the model synthesis, notably:

• The clustering algorithm parameters for the Granulator block;
• The weights for the nBMF dissimilarity measure (used in both Granulator and Embedder).

We employ a differential evolution algorithm [47] for an automatic tuning of these
parameters, hence driving the overall model synthesis.

The model synthesis starts by triggering the Extractor block, which yields the set of
candidate information granules B by properly processing the training graphs. As B is
returned, the differential evolution optimization scheme can take place.

The search space for the optimization procedure is defined as:[
Q η τF wnode

sub wnode
ins wnode

del wedge
sub wedge

ins wedge
del Πedge Πnode

]
(7)

Each individual from the evolving population forwards B to the Granulator block.
As anticipated in Section 2, the Granulator runs a BSAS-based ensemble driven by a suitable
dissimilarity measure d(·, ·), a maximum number of allowed clusters Q and a threshold
value θ. Recall that the dissimilarity measure between any two patterns is evaluated by a
parametric nBMF dissimilarity measure that, in turn, depends on:

• Six real-valued weights that account for the importance of each atomic transformation

(insertion, deletion and substitution) on nodes and edges: wnode
sub , wnode

ins , wnode
del , wedge

sub ,

wedge
ins , wedge

del ;

Algorithms 2022, 15, 148 9 of 19

• A set Πedge of parameters, if needed, in order to drive the dissimilarity measure
between edges;

• A set Πnode of parameters, if needed, in order to drive the dissimilarity measure
between nodes.

At the end of the Granulation stage, the alphabet A is available for feeding the
Embedder block, which yields the embedded version of Str and Sval, namely Htr and Hval.

These two instance matrices are finally fed to the Classifier block, which trains a K-NN
decision rule on Htr and predicts the ground-truth labels on Hval.

Each individual is evaluated by means of a fitness function (to be minimized) formal-
ized as follows:

f = α · π + (1− α) · σ (8)

where π is an error term and σ is a penalty term. Specifically:

π = 1− 1
p

p

∑
i=1

rec(i) (9)

where rec(i) is the recall of class i. Hence, Equation (9) reads as the complement of the
balanced accuracy [48]. On the other hand, σ is a penalty term defined as:

σ =
|A|
|B| (10)

in order to penalize large alphabets and foster the optimization towards smaller alphabets.
At the end of the optimization stage, the best individual is retained, along with the

best alphabet A? synthesized with its genetic code and the two instance matrices H?
tr and

H?
val embedded against A?.

The choice of the trade-off parameter α ∈ [0, 1] in Equation (8) that weights perfor-
mance against dimensionality can hardly be set a priori. In order to overcome this problem,
a second lightweight optimization stage can be employed in order to further reduce the
size of the alphabet.

In this second optimization stage, the genetic code is simply a binary mask:

m = {0, 1}|A? | (11)

and each individual from the evolving population:

1. Projects H?
tr and H?

val on the subset of columns spanned by the indices {i : mi = 1},
say H?′

tr and H?′
val;

2. Trains the classifier on H?′
tr and validates its performance on H?′

val.

The fitness function (to be minimized) reads as:

f ′ = β · π + (1− β) · |{i : mi = 1}|
|A?| (12)

where the leftmost term reads as in Equation (9) and the rightmost term aims at fostering
the evolution towards smaller alphabets by preferring sparse binary masks.

At the end of this second optimization stage, the (possibly) reduced alphabetA?′ ⊆ A?

is retained, along with the projected training instance matrix H?′
tr . The test set is itself

embedded against A?′, yielding H?′
ts . The classifier is finally trained on H?′

tr and its final
performance is evaluated on H?′

ts .

5. Tests and Results
5.1. Datasets Description

The proposed comparison among different data granulation strategies involves 11
different datasets, with the first 6 datasets being taken from the IAM Repository [49] and

Algorithms 2022, 15, 148 10 of 19

the remaining ones being taken from the TUDataset Repository [50]. A brief description of
the datasets, along with the formal definition of the dissimilarity measures between nodes
and edges, follows:

AIDS: The AIDS dataset consists of 2000 graphs representing molecules showing activity
or not against HIV (two classes). Molecules are converted into graphs in a straight-
forward manner by representing atoms as nodes and the covalent bonds as edges.
Nodes are labeled by a three-element tuple that collects the 2D 〈x, y〉 coordinates of
the atom, the chemical symbol (categorical) and its charge (integer). Although edges
are originally labeled with the valence of the linkage, such a value has been discarded
since it is not useful for the classification task.

Letter-L: The Letter-L dataset involves graphs that represent distorted letter drawings
with a low level of distortion. The recognition task involves the 15 capital letters of
the Roman alphabet that can be represented by straight lines only. Each handwritten
letter is transformed into a graph by representing lines as edges and endpoints of
lines as nodes. Each node is labeled by a two-dimensional real-valued vector giving
its position within a reference coordinate system. Conversely, edges are unlabeled.

Letter-M: Same as Letter-L, but with medium level of distortion in handwritten digits.

Letter-H: Same as Letter-L, but with high level of distortion in handwritten digits.

GREC: The GREC dataset consists of symbols from electronic and architectural drawings
and, after suitable pre-processing, graphs are extracted from such images. Ending
points, corners, intersections and circles are represented by nodes and labeled with a
two-dimensional attribute giving their position. The nodes are connected by undi-
rected edges, which are labeled as ”line” or ”arc”. An additional attribute specifies
the ”angle” with respect to the horizontal direction or the diameter in case of arcs.

Mutagenicity: The Mutagenicity dataset consists of 4337 graphs corresponding to chemi-
cal compounds divided into two classes, depending on their respective mutagenic
propensity for being a marketable drug or not. Both nodes and edges are equipped
with categorical labels: node labels identify the atom type and edge labels identify
the valence of the linkage.

MUTAG: The MUTAG dataset consists of 188 graphs corresponding to chemical com-
pounds divided into two classes according to their respective mutagenic effect on a
bacterium. Both nodes and edges are equipped with categorical labels: node labels
identify the atom type and edge labels identify the bond type (single, double, triple
or aromatic).

DD: The DD dataset (also known as D&D) contains 1178 protein structures. Each protein
is represented by a graph, in which the nodes are amino-acids and two nodes are
connected by an edge if they are less than 6Å apart. Nodes encode a categorical label
(i.e., the amino-acid type), whereas edges are unlabeled. The prediction task is to
classify the protein structures into enzymes and non-enzymes.

NCI1: Each graph is used as representation of a chemical compound: each vertex stands for
an atom of the molecule, and edges between vertices represent bonds between atoms.
This dataset is relative to anti-cancer screens, where the chemicals are assessed as
positive or negative to cell lung cancer. Each vertex has a categorical label representing
the corresponding atom type, whereas edges are unlabeled.

ENZYMES: Each graph represents a simplified protein tertiary structure, where nodes
correspond to secondary structure elements and edges connect nodes if those are
neighbors along the primary structure (i.e., the amino-acid sequence) with the con-
straint that every node is connected to its three nearest spatial neighbors. Nodes
contain a categorical label stating the type of secondary structure (α-helix, β-sheet or
turn) and a real-valued vector containing 18 physical and chemical measurements.
Conversely, edges are unlabeled. The prediction task is used to classify the protein
structures into one of the six Enzyme Commission classes [51].

Algorithms 2022, 15, 148 11 of 19

Brief statistics about the datasets can be found in Table 1, along with the reference
paper in which each dataset has been originally presented, to which we refer the interested
reader for more information.

Table 1. Dataset statistics.

Dataset Name # Graphs Avg. # Nodes Avg. # Edges # Classes Balanced Domain Reference

AIDS 2000 15.69 16.20 2 No Chemoinformatics [49]
Letter-L 2250 4.7 3.1 15 Yes Computer Vision [49]
Letter-M 2250 4.7 3.2 15 Yes Computer Vision [49]
Letter-H 2250 4.7 4.5 15 Yes Computer Vision [49]

GREC 1100 11.5 12.2 22 Yes Electronics [49,52]
Mutagenicity 4337 30.3 30.8 2 No Chemoinformatics [49,53]

MUTAG 188 17.93 19.79 2 No Chemoinformatics [54,55]
DD 1178 284.32 715.66 2 No Bioinformatics [56,57]

NCI1 4110 29.87 32.30 2 Yes Chemoinformatics [57,58]
ENZYMES 600 32.63 62.14 6 Yes Bioinformatics [59,60]

Each dataset has been split into three disjoint sets: training, validation and test. For the
six IAM datasets, we used the very same training/validation/test splits provided in the
repository, whereas for the four TUDatasets, we had to perform our own splits with the
following ratio: training set (50%), validation set (25%) and test set (25%). The splitting
procedure has been performed in a stratified manner in order to preserve labels’ distribution
across the three sets.

For Letter-L, Letter-M, Letter-H, GREC and AIDS, details about the dissimilarity
measures on nodes and edges can be found in ([32] Appendix B). We anticipate that GREC
is the only dataset with parametric dissimilarity measures on nodes and edges, i.e., for
which Πedge 6= ∅ and Πnode 6= ∅.

For MUTAG and Mutagenicity, since in both datasets nodes and edges are equipped
with categorical labels, the dissimilarity between nodes and the dissimilarity between edges
are set as the plain discrete distance between labels (i.e., their distance is 1 if they are not
equal and 0 otherwise) ([61] Chapter 1).

For DD and NCI1, since in both datasets nodes are equipped with categorical labels
and edges are unlabeled:

• The dissimilarity between nodes reads as the plain discrete distance between labels;
• The dissimilarity between edges reads as a constant value.

Finally, for ENZYMES:

• The dissimilarity between nodes reads as the (normalized) Euclidean distance between
their respective 18-length attribute vectors if and only if the two nodes refer to the
same secondary structure (i.e., both are α-helices, β-sheets or turns); otherwise, their
dissimilarity is 1;

• The dissimilarity between edges (that are unlabeled) reads as a constant value.

5.2. Algorithmic Setup

The software has been fully implemented in Python with the support of the following
third-party libraries: NetworkX [62] and LittleBallOfFur [63] for handling and processing
graph data structures, Scikit-Learn [64] for machine learning routines and SciPy [65] for
optimization routines.

Other algorithm parameters have been configured as follows:

• α = 0.9 in the fitness function of the first genetic optimization (cf. Equation (8));
• β = 0.9 in the fitness function of the second genetic optimization (cf. Equation (12));
• Maximum number of 20 generations for both genetic optimizations;

Algorithms 2022, 15, 148 12 of 19

• A total of 20 and 100 individuals in the population for the first and second genetic
optimization, respectively;

• Maximum walk length o = 5;
• Candidate θ values are θ = {0.5, 0.25, 0.125};
• Q ∈ [1, Qmax], where Qmax = 500 for non-stratified Granulators and Qmax = 500/p

for stratified Granulators [41];
• The user-defined bucket size W has been chosen according to a given percentage of

the maximum number of paths or cliques that can be drawn from the training graphs.
The percentages are chosen according to the following rule: the larger the dataset,
the higher the subsampling rate. For the sake of shorthand, we omit any sensitivity
analysis on the behavior of the Granulators as a function of W. In this regard, we
refer the interested reader to our previous works [41,46,66] The values for W for both
clique-based and path-based Granulators are summarized in Table 2.

Table 2. Size of W for path-based and clique-based Granulators. Here, NP and NC refer to the number
of paths of maximum order o = 5 and the total number of maximal cliques that can be drawn from
the training set, respectively.

Dataset Path-Based Clique-Based

AIDS 10%× NP
with NP = 27,589

40%× NC
with NC = 3994

GREC 10%× NP
with NP = 21,009

40%× NC
with NC = 3367

Letter-L 10%× NP
with NP = 7975

40%× NC
with NC = 2391

Letter-M 10%× NP
with NP = 8217

40%× NC
with NC = 2412

Letter-H 10%× NP
with NP = 12,063

40%× NC
with NC = 2500

Mutagenicity 10%× NP
with NP = 449,519

40%× NC
with NC = 49,294

MUTAG 10%× NP
with NP = 15,530

40%× NC
with NC = 1897

DD 1%× NP
with NP = 22,024,059

10%× NC
with NC = 168,781

NCI1 5%× NP
with NP = 521,560

20%× NC
with NC = 66,522

ENZYMES 10%× NP
with NP = 383,730

40%× NC
with NC = 9897

5.3. Computational Results

In Figures 1 and 2 we show the accuracy on the test set and the number of resulting
alphabet symbols, respectively, with Figures 3 and 4 showing their respective detailed
breakdown. For the sake of completeness, in Figure 5, we show also the size of the alphabet
before the second genetic optimization stage. Due to the stochastic nature of the model
synthesis procedure, the results shown below have been obtained by averaging across
10 different runs of the algorithm. Each figure shows a heatmap whose color scale has been
normalized by rows (i.e., independently for each dataset) and ranges from white (lower
values) towards blue (higher values).

By considering Figure 1, it is possible to observe that (regardless of the topology) a
stratified approach leads to generally better performance (i.e., higher accuracy on the test
set). The breakdown of the shifts in accuracy is shown in Figure 3: for both path-based
and clique-based granulators, the majority of the differences between stratified and non-
stratified approaches are positive. For path-based extractors, the only two datasets for
which the opposite is true are AIDS and ENZYMES. Conversely, for clique-based extractors,

Algorithms 2022, 15, 148 13 of 19

ENZYMES emerges as the only dataset showing the same phenomenon. By looking at the
magnitude of the accuracy boost, cliques seem to benefit more from a stratified granulation
approach: indeed, the vast majority of the boosts in terms of accuracy are upper-bounded
by 10%, whereas the majority of path-based granulators reach at most a 3% accuracy boost
with respect to the non-stratified counterpart.

Paths

Stratifie
d Paths

Cliques

Stratifie
d Cliques

Letter-L

Letter-M

Letter-H

AIDS

GREC

Mutagenicity

MUTAG

ENZYMES

NCI-1

DD

96.8

79.13

68.14

83.69

30.44

73.67

82.15

69.98

85.82

27.33

74.8

96.31

58.36

74.4

97.93

66.86

77.56

77.96

67.61

91.11

88.31

99.09

73.02

97.2

92.09

90

99.02

73.41

90.3

72.84

88.65

34.89

76.38

97.51

99.4

90.94

72.84

90.07

33.78

76.95

Figure 1. Accuracy on the test set (in percentage).

By looking at Figure 2, we can observe the number of symbols (i.e., the size of the
alphabet) after the second genetic-driven feature selection stage. In principle, a clique-
based approach is likely to yield a smaller alphabet: this is due to the fact that an n-
vertex graph can have at most O(3n/3) cliques, whereas the number of paths can grow
as O(n!) in the worst case, so the set of prospective information granules (even without
any subsampling) is smaller. Conversely to the accuracy case, a stratified approach does
not necessarily yield benefits. As can be seen in the breakdown (Figure 4), as paths are
concerned, the stratification yields a smaller alphabet for 4 datasets out of 10. As cliques
are concerned, the same phenomenon happens for 3 out of 10 datasets. This phenomenon
is particularly evident for binary classification problems: a clear sign that building two
dedicate alphabets (one for the positive class, one for the negative class) is excessive and
just one alphabet would be a smarter choice.

Paths

Stratifie
d Paths

Cliques

Stratifie
d Cliques

Letter-L

Letter-M

Letter-H

AIDS

GREC

Mutagenicity

MUTAG

ENZYMES

NCI-1

DD

45

80

180

11

116

134

16

55

81

150

99

134

17

2

105

23

5

12

96

98

1

123

34

6

21

148

21

4

176

230

5

276

36

197

103

127

122

21

101

130

Figure 2. Size of the alphabet after feature selection.

Algorithms 2022, 15, 148 14 of 19

-6 -4 -2 0 2 4 6
Accuracy shift [%]

0

1

2

3

4

5

6

7

O
cc

ur
re

nc
es

(a)

-10 -5 0 5 10 15 20
Accuracy shift [%]

0

1

2

3

4

5

6

7

8

O
cc

ur
re

nc
es

(b)

Figure 3. Distribution of the accuracy boosts for paths and cliques across the 10 datasets. A pos-
itive shift means that the stratified approach outperforms the non-stratified approach. (a) Paths.
(b) Cliques.

-100 -50 0 50 100
Alphabet size shift

0

1

2

3

4

5

6

O
cc

ur
re

nc
es

(a)

-20 0 20 40 60
Alphabet size shift

0

1

2

3

4

5

6

O
cc

ur
re

nc
es

(b)

Figure 4. Distribution of the differences of the alphabet size for paths and cliques across the
10 datasets (after feature selection). A positive shift means that the stratified approach underperforms
the non-stratified approach. (a) Paths. (b) Cliques.

In Table 3, we finally show a brief comparison against current approaches for graph
classification. Competitors span a variety of techniques, including classifiers working on the
top of GEDs [49,67], kernel methods [68–71] and several embedding techniques [68,72,73],
including Granular Computing-based [32,74] and those based on neural networks and
deep learning [75–79]. We can see that our method has comparable performances against
current approaches in the graph classification literature. It is worth remarking that, aside
from the mere numerical results, our approach has considerable higher perspectives to
be deployed for analytical investigation by field experts thanks to its interpretability
advantages, a common facet of Granular Computing-based systems [32,74], since the
resulting set of automatically extracted granules of information can be analyzed by field
experts in order to gather further insights on the problem at hand, paving the way for
knowledge discovery.

Algorithms 2022, 15, 148 15 of 19

Paths

Stratifie
d Paths

Cliques

Stratifie
d Cliques

Letter-L

Letter-M

Letter-H

AIDS

GREC

Mutagenicity

MUTAG

ENZYMES

NCI-1

DD

104

173

327

476

75

260

463

66

144

189

71

283

347

43

10

212

70

20

246

45

303

202

12

120

31

70

509

85

111

500

377

696

130

744

198

245

87

207

349

355

Figure 5. Size of the alphabet before feature selection.

Table 3. Comparison against state-of-the-art graph classification system in terms of
classification accuracy.

Technique AIDS GREC Letter-L Letter-M Letter-H Mutagenicity MUTAG DD NCI1 ENZYMES Reference

Bipartite Graph Matching + K-NN - 86.3 91.1 77.6 61.6 - - - - - [67]
Lipschitz Embedding + SVM 98.3 96.8 99.3 95.9 92.5 74.9 - - - - [72]
Graph Edit Distance + K-NN 97.3 95.5 99.6 94 90 71.5 - - - - [49]

Graph of Words + K-NN - 97.5 98.8 - - - - - - - [73]
Graph of Words + kPCA + K-NN - 97.1 97.6 - - - - - - - [73]
Graph of Words + ICA + K-NN - 58.9 82.8 - - - - - - - [73]

Topological embedding 99.4 - - - - 77.2 - - - - [68,80]
FMGE 99.0 - - - - 76.5 - - - - [68,81]

Attribute Statistics 99.6 - - - - 76.5 - - - - [68,82]
Hypergraph Embedding + SVM 99.3 - - - - 77.0 84.6 - 72.7 43.1 [74]

ODD ST+ kernel 82.06 * - - - - - - - 84.97 * - [69]
ODD STTANH

+ kernel 82.54 * - - - - - - - 84.57 * - [69]
Laplacian kernel 92.6 - - - - 70.2 - - - - [68,83]

Treelet kernel 99.1 - - - - 77.1 - - - - [68,84]
Treelet kernel with MKL 99.7 - - - - 77.6 - - - - [68,85]

WJK Hypergraph kernel + SVM 99.5 * - - - - 82 * 90.9 * 78.9 * 70.7 * - [70]
CGMM + linear SVM 84.16 * - - - - - 91.18 * - - - [76]

G-L-Perceptron - 70 95 64 70 - - - - - [77]
G-M-Perceptron - 75 98 87 81 - - - - - [77]

C-1NN - - 96 93 84 - - - - - [77]
C-M-1NN - - 98 81 71 - - - - - [77]

EigenGCN-1 - - - - - 80.1 - 77.5 76.0 65.0 [75]
EigenGCN-2 - - - - - 78.9 - 77.0 76.7 64.5 [75]
EigenGCN-3 - - - - - 79.5 - 78.6 77.0 64.5 [75]

GCN with logical descriptors - 96.93 96.64 85.27 79.91 - - - - - [78]
MPNN - 89.5 91.3 81.2 64.24 - - - - - [79]

MPNN (no set2set) - 92.98 94.8 86.1 75.7 - - - - - [79]
Deep Graphlet Kernel - - - - - - 82.66 * - 62.48 * 27.08 * [71]

GRALG Paths 99.09 79.13 96.80 91.11 88.31 68.14 83.69 73.67 73.02 30.44 This work
GRALG Stratified Paths 99.02 82.15 97.20 92.09 90.00 69.98 85.82 74.80 73.41 27.33 This work

GRALG Cliques 97.93 90.3 96.31 58.36 74.4 72.84 88.65 76.38 66.86 34.89 This work
GRALG Stratified Cliques 99.22 92.74 97.24 80.22 77.82 72.7 90.07 76.95 67.61 33.78 This work

* Results refers to cross-validation rather than a separate test set.

6. Conclusions

In this work, we performed a two-fold investigation of clustering-based strategies for
the automatic synthesis of information granules in the graph domain for solving (graph)
classification problems on labeled graphs.

Our investigation jointly considers the subgraph topology in order to extract granules
of information (i.e., cliques vs. paths extracted via a random walk) and the possibility
of performing a class-aware, stratified clustering over the set of candidate information
granules to build class-specific alphabets of symbols.

Algorithms 2022, 15, 148 16 of 19

These strategies are tested within the GRALG framework, where the set of auto-
matically extracted granules of information serve as pivotal subgraphs for building and
embedding space. The soundness of the latter is addressed by a statistical classifier work-
ing on the embedding space. A two-stage optimization process takes care of tuning the
hyper-parameters of the classification model and performing an additional feature selection
to ensure the selection of optimal granules of information.

In order to address the behavior of the granulation strategies, we performed a two-fold
comparison in terms of classification performance and number of granules of information.
To this end, 10 different open-access datasets of labeled graphs pertaining to different
application domains have been considered. Computational results show that, regardless
of whether cliques or paths are employed, running a class-aware granulation is beneficial
in terms of classification accuracy. However, it has the potential drawback of yielding a
higher number of granules of information (i.e., higher dimensional embedding space).

Although in this paper we used the BSAS free-clustering algorithm as the core cluster-
ing algorithm for the Granulator module, in principle, any clustering algorithm suitable for
dealing with structured data and suitable for being equipped with an ad hoc dissimilarity
measure can be employed instead. In the GRALG framework, the Granulator process is
repeated many times (i.e., at least as many times as the are individuals in the first optimiza-
tion stage), and therefore, the computational complexity of the clustering algorithm plays
an important role in order to ensure reasonable training times (i.e., the BSAS clustering
algorithm is known to scale linearly with respect to the number of patterns). Future research
endeavours may investigate the trade-off in terms of training times against granulation
quality with different clustering algorithms.

Author Contributions: Conceptualization, A.M. and A.R.; methodology, A.M. and L.B.; software,
A.M. and L.B.; validation, A.M. and L.B.; formal analysis, A.M. and L.B.; investigation, A.M.; re-
sources, A.R.; data curation, A.M. and L.B.; writing—original draft preparation, A.M. and L.B.;
writing—review and editing, A.M. and A.R.; supervision, A.M. and A.R.; project administration, A.M.
and A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The six datasets taken from the IAM Repository can be downloaded
from https://fki.tic.heia-fr.ch/databases/iam-graph-database (access date 26 April 2022). The four
datasets taken from the TUDataset Repository can be downloaded from https://chrsmrrs.github.io/
datasets (access date 26 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BSAS Basic Sequential Algorithmic Scheme
GRALG GRanular computing Approach for labeled Graphs
GED Graph Edit Distance
K-NN K-Nearest Neighbors
nBMF node Best Match First

References
1. Bargiela, A.; Pedrycz, W. Granular Computing: An Introduction; Kluwer Academic Publishers: Boston, MA, USA, 2003.
2. Pedrycz, W.; Skowron, A.; Kreinovich, V. Handbook of Granular Computing; John Wiley & Sons: Hoboken, NJ, USA, 2008.
3. Zadeh, L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets

Syst. 1997, 90, 111–127. [CrossRef]

https://fki.tic.heia-fr.ch/databases/iam-graph-database
https://chrsmrrs.github.io/datasets
https://chrsmrrs.github.io/datasets
http://doi.org/10.1016/S0165-0114(97)00077-8

Algorithms 2022, 15, 148 17 of 19

4. Yager, R.; Filev, D. Operations for granular computing: Mixing words and numbers. In Proceedings of the 1998 IEEE Interna-
tional Conference on Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence (Cat. No.98CH36228),
Anchorage, AK, USA, 4–9 May 1998; Volume 1, pp. 123–128. [CrossRef]

5. Zadeh, L. Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 1996, 4, 103–111. [CrossRef]
6. Yao, Y. Perspectives of granular computing. In Proceedings of the 2005 IEEE International Conference on Granular Computing,

Beijing, China, 25–27 July 2005; Volume 1, pp. 85–90.
7. Pedrycz, A.; Hirota, K.; Pedrycz, W.; Dong, F. Granular representation and granular computing with fuzzy sets. Fuzzy Sets Syst.

2012, 203, 17–32. [CrossRef]
8. Dubois, D.; Prade, H. Bridging gaps between several forms of granular computing. Granul. Comput. 2016, 1, 115–126. [CrossRef]
9. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
10. Zhang, Q.; Zhang, Q.; Wang, G. The Uncertainty of Probabilistic Rough Sets in Multi-Granulation Spaces. Int. J. Approx. Reason.

2016, 77, 38–54. [CrossRef]
11. Pedrycz, W. Shadowed sets: Representing and processing fuzzy sets. IEEE Trans. Syst. Man Cybern. Part B 1998, 28, 103–109.

[CrossRef]
12. Kreinovich, V. Interval Computation as an Important Part of Granular Computing: An Introduction. In Handbook of Granular

Computing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1–31. [CrossRef]
13. Pedrycz, W. Proximity-based clustering: A search for structural consistency in data with semantic blocks of features. IEEE Trans.

Fuzzy Syst. 2013, 21, 978–982. [CrossRef]
14. Ding, S.; Du, M.; Zhu, H. Survey on granularity clustering. Cogn. Neurodyn. 2015, 9, 561–572. [CrossRef]
15. Peters, G.; Weber, R. DCC: A framework for dynamic granular clustering. Granul. Comput. 2016, 1, 1–11. [CrossRef]
16. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 264–323. [CrossRef]
17. Hadamard, J. Sur les problèmes aux dérivés partielles et leur signification physique. Princet. Univ. Bull. 1902, 13, 49–52.
18. von Luxburg, U.; Williamson, R.C.; Guyon, I. Clustering: Science or Art? In Proceedings of ICML Workshop on Unsupervised

and Transfer Learning; Guyon, I., Dror, G., Lemaire, V., Taylor, G., Silver, D., Eds.; PMLR: Bellevue, WA, USA, 2012; Volume 27,
pp. 65–79.

19. Bouveyron, C.; Hammer, B.; Villmann, T. Recent developments in clustering algorithms. In ESANN 2012; ESANN: Bruges,
Belgium, 2012; pp. 447–458.

20. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [CrossRef] [PubMed]
21. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18 July 1967; Volume 1, pp. 281–297.
22. Kaufman, L.; Rousseeuw, P. Clustering by means of Medoids. In Statistical Data Analysis Based on the L1 Norm and Related Methods;

Dodge, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 405–416.
23. Huang, Z. Clustering large data sets with mixed numeric and categorical values. In Proceedings of the First Pacific Asia

Knowledge Discovery and Data Mining Conference, Singapore, 23–24 February 1997; pp. 21–34.
24. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Kluwer Academic Publishers: Norwell, MA, USA, 1981.
25. Livi, L.; Del Vescovo, G.; Rizzi, A. Graph Recognition by Seriation and Frequent Substructures Mining. In Proceedings of the

ICPRAM 2012—1st International Conference on Pattern Recognition Applications and Methods, Algarve, Portugal, 6–8 February
2012; Volume 1, pp. 186–191.

26. Rizzi, A.; Del Vescovo, G. Automatic Image Classification by a Granular Computing Approach. In Proceedings of the 2006 16th
IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, Maynooth, Ireland, 6–8 September 2006;
pp. 33–38. [CrossRef]

27. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer:
Berlin/Heidelberg, Germany, 2009.

28. Pedrycz, W. Knowledge-Based Clustering: From Data to Information Granules; John Wiley & Sons: Hoboken, NJ, USA, 2005.
29. Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic Press: Cambridge, MA, USA, 2008.
30. Sanfeliu, A.; Fu, K.S. A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man

Cybern. 1983, SMC-13, 353–362. [CrossRef]
31. Gao, X.; Xiao, B.; Tao, D.; Li, X. A survey of graph edit distance. Pattern Anal. Appl. 2010, 13, 113–129. [CrossRef]
32. Martino, A.; Rizzi, A. An Enhanced Filtering-Based Information Granulation Procedure for Graph Embedding and Classification.

IEEE Access 2021, 9, 15426–15440. [CrossRef]
33. Baldini, L.; Martino, A.; Rizzi, A. Relaxed Dissimilarity-based Symbolic Histogram Variants for Granular Graph Embedding.

In Proceedings of the 13th International Joint Conference on Computational Intelligence—NCTA, Singapore, 10–13 November
2021; pp. 221–235. [CrossRef]

34. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
35. Lovász, L. Random walks on graphs: A survey. Combinatorics 1993, 2, 1–46.
36. Göbel, F.; Jagers, A.A. Random walks on graphs. Stoch. Process. Their Appl. 1974, 2, 311–336. [CrossRef]
37. Pedrycz, W.; Homenda, W. Building the fundamentals of granular computing: A principle of justifiable granularity. Appl. Soft

Comput. 2013, 13, 4209–4218. [CrossRef]

http://dx.doi.org/10.1109/FUZZY.1998.687470
http://dx.doi.org/10.1109/91.493904
http://dx.doi.org/10.1016/j.fss.2012.03.009
http://dx.doi.org/10.1007/s41066-015-0008-8
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/j.ijar.2016.06.001
http://dx.doi.org/10.1109/3477.658584
http://doi.org/10.1002/9780470724163.ch1
http://dx.doi.org/10.1109/TFUZZ.2012.2236842
http://dx.doi.org/10.1007/s11571-015-9351-3
http://dx.doi.org/10.1007/s41066-015-0012-z
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1109/TNN.2005.845141
http://www.ncbi.nlm.nih.gov/pubmed/15940994
http://dx.doi.org/10.1109/MLSP.2006.275517
http://dx.doi.org/10.1109/TSMC.1983.6313167
http://doi.org/10.1007/s10044-008-0141-y
http://dx.doi.org/10.1109/ACCESS.2021.3053085
http://dx.doi.org/10.5220/0010652500003063
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1016/0304-4149(74)90001-5
http://dx.doi.org/10.1016/j.asoc.2013.06.017

Algorithms 2022, 15, 148 18 of 19

38. Wang, G.; Yang, J.; Xu, J. Granular computing: From granularity optimization to multi-granularity joint problem solving. Granul.
Comput. 2017, 2, 105–120. [CrossRef]

39. Yao, Y.Y. The rise of granular computing. J. Chongqing Univ. Posts Telecommun. 2008, 20, 299–308.
40. Yao, Y.; Zhao, L. A measurement theory view on the granularity of partitions. Inf. Sci. 2012, 213, 1–13. [CrossRef]
41. Baldini, L.; Martino, A.; Rizzi, A. Towards a Class-Aware Information Granulation for Graph Embedding and Classification.

In Computational Intelligence, Proceedings of the 11th International Joint Conference, IJCCI 2019, Vienna, Austria, 17–19 September 2019,
Revised Selected Papers; Merelo, J.J., Garibaldi, J., Linares-Barranco, A., Warwick, K., Madani, K., Eds.; Springer International
Publishing: Cham, Switzerland, 2021; pp. 263–290. [CrossRef]

42. Tichy, N. An Analysis of Clique Formation and Structure in Organizations. Adm. Sci. Q. 1973, 18, 194–208. [CrossRef]
43. Luce, R.D.; Perry, A.D. A method of matrix analysis of group structure. Psychometrika 1949, 14, 95–116. [CrossRef] [PubMed]
44. Bron, C.; Kerbosch, J. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM 1973, 16, 575–577. [CrossRef]
45. Moon, J.W.; Moser, L. On cliques in graphs. Isr. J. Math. 1965, 3, 23–28. [CrossRef]
46. Baldini, L.; Martino, A.; Rizzi, A. Exploiting Cliques for Granular Computing-based Graph Classification. In Proceedings of the

2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–9. [CrossRef]
47. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces.

J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
48. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756.
49. Riesen, K.; Bunke, H. IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In

Structural, Syntactic, and Statistical Pattern Recognition; da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M.,
Anagnostopoulos, G.C., Loog, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 287–297.

50. Morris, C.; Kriege, N.M.; Bause, F.; Kersting, K.; Mutzel, P.; Neumann, M. TUDataset: A collection of benchmark datasets
for learning with graphs. ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020). arXiv 2020,
arXiv:2007.08663.

51. Webb, E.C. Enzyme Nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology on the Nomenclature and Classification of Enzymes, 6th ed.; Academic Press: Cambridge, MA, USA, 1992.

52. Dosch, P.; Valveny, E. Report on the Second Symbol Recognition Contest. In Graphics Recognition. Ten Years Review and Future
Perspectives; Liu, W., Lladós, J., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2006; pp. 381–397.

53. Kazius, J.; McGuire, R.; Bursi, R. Derivation and Validation of Toxicophores for Mutagenicity Prediction. J. Med. Chem. 2005,
48, 312–320. [CrossRef] [PubMed]

54. Debnath, A.K.; Lopez de Compadre, R.L.; Debnath, G.; Shusterman, A.J.; Hansch, C. Structure-activity relationship of mutagenic
aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem.
1991, 34, 786–797. [CrossRef] [PubMed]

55. Kriege, N.; Mutzel, P. Subgraph Matching Kernels for Attributed Graphs. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, Edinburgh, UK, 27 June–3 July 2012; Omnipress: Madison, WI, USA, 2012;
Volume ICML’12, pp. 291–298.

56. Dobson, P.D.; Doig, A.J. Distinguishing Enzyme Structures from Non-enzymes without Alignments. J. Mol. Biol. 2003,
330, 771–783. [CrossRef]

57. Shervashidze, N.; Schweitzer, P.; van Leeuwen, E.J.; Mehlhorn, K.; Borgwardt, K.M. Weisfeiler-Lehman Graph Kernels. J. Mach.
Learn. Res. 2011, 12, 2539–2561.

58. Wale, N.; Karypis, G. Comparison of Descriptor Spaces for Chemical Compound Retrieval and Classification. In Proceedings of
the Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; pp. 678–689. [CrossRef]

59. Schomburg, I.; Chang, A.; Ebeling, C.; Gremse, M.; Heldt, C.; Huhn, G.; Schomburg, D. BRENDA, the enzyme database: Updates
and major new developments. Nucleic Acids Res. 2004, 32, D431–D433. [CrossRef] [PubMed]

60. Borgwardt, K.M.; Ong, C.S.; Schönauer, S.; Vishwanathan, S.V.N.; Smola, A.J.; Kriegel, H.P. Protein function prediction via graph
kernels. Bioinformatics 2005, 21, i47–i56. [CrossRef]

61. Deza, M.M.; Deza, E. Encyclopedia of Distances, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009.
62. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings of

the 7th Python in Science Conference; Varoquaux, G., Vaught, T., Millman, J., Eds.; Los Alamos National Lab.: Pasadena, CA, USA,
2008; pp. 11–15.

63. Rozemberczki, B.; Kiss, O.; Sarkar, R. Little Ball of Fur: A Python Library for Graph Sampling. In Proceedings of the 29th ACM
International Conference on Information and Knowledge Management (CIKM ’20), Online, 19–23 October 2020; pp. 3133–3140.

64. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

65. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]

66. Baldini, L.; Martino, A.; Rizzi, A. Stochastic Information Granules Extraction for Graph Embedding and Classification. In Pro-
ceedings of the 11th International Joint Conference on Computational Intelligence, NCTA, (IJCCI 2019), Hendaye, France, 4–6
September 2019; Volume 1, pp. 391–402. [CrossRef]

http://dx.doi.org/10.1007/s41066-016-0032-3
http://dx.doi.org/10.1016/j.ins.2012.05.021
http://dx.doi.org/10.1007/978-3-030-70594-7_11
http://dx.doi.org/10.2307/2392063
http://dx.doi.org/10.1007/BF02289146
http://www.ncbi.nlm.nih.gov/pubmed/18152948
http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.1007/BF02760024
http://dx.doi.org/10.1109/IJCNN48605.2020.9206690
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1021/jm040835a
http://www.ncbi.nlm.nih.gov/pubmed/15634026
http://dx.doi.org/10.1021/jm00106a046
http://www.ncbi.nlm.nih.gov/pubmed/1995902
http://dx.doi.org/10.1016/S0022-2836(03)00628-4
http://dx.doi.org/10.1109/ICDM.2006.39
http://dx.doi.org/10.1093/nar/gkh081
http://www.ncbi.nlm.nih.gov/pubmed/14681450
http://dx.doi.org/10.1093/bioinformatics/bti1007
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.5220/0008149403910402

Algorithms 2022, 15, 148 19 of 19

67. Riesen, K.; Bunke, H. Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput.
2009, 27, 950–959. [CrossRef]

68. Conte, D.; Ramel, J.Y.; Sidère, N.; Luqman, M.M.; Gaüzère, B.; Gibert, J.; Brun, L.; Vento, M. A Comparison of Explicit and
Implicit Graph Embedding Methods for Pattern Recognition. In Graph-Based Representations in Pattern Recognition; Kropatsch,
W.G., Artner, N.M., Haxhimusa, Y., Jiang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 81–90. [CrossRef]

69. Da San Martino, G.; Navarin, N.; Sperduti, A. Ordered Decompositional DAG kernels enhancements. Neurocomputing 2016,
192, 92–103. [CrossRef]

70. Martino, A.; Rizzi, A. (Hyper)graph Kernels over Simplicial Complexes. Entropy 2020, 22, 1155. [CrossRef] [PubMed]
71. Yanardag, P.; Vishwanathan, S. Deep Graph Kernels. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining; Association for Computing Machinery: New York, NY, USA, 2015; Volume KDD ’15, pp. 1365–1374.
[CrossRef]

72. Riesen, K.; Bunke, H. Graph Classification by Means of Lipschitz Embedding. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 2009,
39, 1472–1483. [CrossRef] [PubMed]

73. Gibert, J.; Valveny, E.; Bunke, H. Dimensionality Reduction for Graph of Words Embedding. In Graph-Based Representations in
Pattern Recognition; Jiang, X., Ferrer, M., Torsello, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 22–31.

74. Martino, A.; Giuliani, A.; Rizzi, A. (Hyper)Graph Embedding and Classification via Simplicial Complexes. Algorithms 2019,
12, 223. [CrossRef]

75. Ma, Y.; Wang, S.; Aggarwal, C.C.; Tang, J. Graph Convolutional Networks with EigenPooling. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining; Association for Computing Machinery: New York, NY,
USA, 2019; Volume KDD ’19, pp. 723–731. [CrossRef]

76. Bacciu, D.; Errica, F.; Micheli, A. Contextual graph markov model: A deep and generative approach to graph processing.
In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 10–15 July 2018;
Volume 1, pp. 495–504.

77. Martineau, M.; Raveaux, R.; Conte, D.; Venturini, G. Learning error-correcting graph matching with a multiclass neural network.
Pattern Recognit. Lett. 2020, 134, 68–76. [CrossRef]

78. Kajla, N.I.; Missen, M.M.S.; Luqman, M.M.; Coustaty, M. Graph Neural Networks Using Local Descriptions in Attributed Graphs:
An Application to Symbol Recognition and Hand Written Character Recognition. IEEE Access 2021, 9, 99103–99111. [CrossRef]

79. Riba, P.; Dutta, A.; Lladós, J.; Fornés, A. Graph-Based Deep Learning for Graphics Classification. In Proceedings of the 2017 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 13–15 November 2017; Volume 2,
pp. 29–30. [CrossRef]

80. Sidère, N.; Héroux, P.; Ramel, J.Y. Vector Representation of Graphs: Application to the Classification of Symbols and Letters.
In Proceedings of the 2009 10th International Conference on Document Analysis and Recognition, Barcelona, Spain, 26–29 July
2009; pp. 681–685. [CrossRef]

81. Luqman, M.M.; Ramel, J.Y.; Lladós, J.; Brouard, T. Fuzzy multilevel graph embedding. Pattern Recognit. 2013, 46, 551–565.
[CrossRef]

82. Gibert, J.; Valveny, E.; Bunke, H. Graph embedding in vector spaces by node attribute statistics. Pattern Recognit. 2012,
45, 3072–3083. [CrossRef]

83. Brun, L.; Conte, D.; Foggia, P.; Vento, M. A Graph-Kernel Method for Re-identification. In Image Analysis and Recognition; Kamel,
M., Campilho, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 173–182.

84. Gaüzère, B.; Brun, L.; Villemin, D. Two New Graphs Kernels in Chemoinformatics. Pattern Recogn. Lett. 2012, 33, 2038–2047.
[CrossRef]

85. Gaüzère, B.; Brun, L.; Villemin, D.; Brun, M. Graph kernels based on relevant patterns and cycle information for chemoinformatics.
In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012;
pp. 1775–1778.

http://dx.doi.org/10.1016/j.imavis.2008.04.004
http://dx.doi.org/10.1007/978-3-642-38221-5_9
http://dx.doi.org/10.1016/j.neucom.2015.12.110
http://dx.doi.org/10.3390/e22101155
http://www.ncbi.nlm.nih.gov/pubmed/33286924
http://dx.doi.org/10.1145/2783258.2783417
http://dx.doi.org/10.1109/TSMCB.2009.2019264
http://www.ncbi.nlm.nih.gov/pubmed/19447721
http://dx.doi.org/10.3390/a12110223
http://dx.doi.org/10.1145/3292500.3330982
http://dx.doi.org/10.1016/j.patrec.2018.03.031
http://dx.doi.org/10.1109/ACCESS.2021.3096845
http://dx.doi.org/10.1109/ICDAR.2017.262
http://dx.doi.org/10.1109/ICDAR.2009.218
http://dx.doi.org/10.1016/j.patcog.2012.07.029
http://dx.doi.org/10.1016/j.patcog.2012.01.009
http://dx.doi.org/10.1016/j.patrec.2012.03.020

	Introduction
	High-Level Framework Description
	Extractor and Granulator
	Embedder
	Classifier

	Information Granulation Strategies
	Random Walk
	Clique
	Stratified Clique
	Stratified Random Walk

	Model Synthesis and Testing
	Tests and Results
	Datasets Description
	Algorithmic Setup
	Computational Results

	Conclusions
	References

