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Multicritical point of the three-dimensional Z2 gauge Higgs model
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We investigate the multicritical behavior of the three-dimensional Z2 gauge Higgs model at the multicritical
point (MCP) of its phase diagram, where one first-order transition line and two continuous Ising-like transition
lines meet. The duality properties of the model determine some features of the multicritical behavior at the MCP
located along the self-dual line. Moreover, we argue that the system develops a multicritical XY behavior at the
MCP, which is controlled by the stable XY fixed point of the three-dimensional multicritical Landau-Ginzburg-
Wilson field theory with two competing scalar fields associated with the continuous Z2 transition lines meeting
at the MCP. This implies an effective enlargement of the symmetry of the multicritical modes at the MCP to the
continuous group O(2). We also provide numerical results to support the multicritical XY scenario.
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I. INTRODUCTION

The three-dimensional (3D) Z2 gauge Higgs model is one
of the simplest gauge theories with matter fields that shows
a nontrivial phase diagram characterized by the presence of a
topological phase (see, e.g., Refs. [1–21]). The model can also
be related to the quantum two-dimensional toric model in the
presence of external magnetic fields by a quantum-to-classical
mapping [1,9,12] and to a statistical ensemble of membranes
[7,13].

A notable feature of the model [1,4,5] is the existence
of a duality transformation, which relates the free energy at
different points of the phase diagram [1,3–5]. A particular
line in the phase diagram, which will play an important role
in the following, is the self-dual line which is left invariant
by the duality transformation. In Fig. 1 we sketch the phase
diagram of the model in the space of the Hamiltonian param-
eters [they are defined in Eq. (1)]. It presents a topologically
ordered deconfined phase, delimited by two continuous Ising
transition lines that are related by duality. In the context
of two-dimensional quantum systems, such a topological or-
dered phase is realized in Z2 spin liquids [22–27], which is
the phase of matter realized by the toric code [9]. Moreover,
the 3D Z2 gauge Higgs model presents a first-order transition
line running along the self-dual line for a limited range of the
Hamiltonian parameters [6,8,12].

The available numerical results are consistent with the ex-
istence of a multicritical point (MCP), where the first-order
transition line and the two continuous Ising transition lines
meet (see, e.g., Refs. [12,19]). Assuming the existence of
the MCP, an interesting question concerns the nature of the
multicritical behavior. This issue was recently investigated in
Ref. [19], which reported apparently puzzling results, lead-
ing to estimates of the critical exponents that are consistent
with those of the XY universality class. This may suggest
that the multicritical behavior at the MCP is controlled by

the 3D XY fixed point, with an effective enlargement of the
symmetry of the multicritical modes to the continuous O(2)
group. This scenario was considered unlikely in Ref. [19]
because of the unclear relationship between the multicriti-
cal XY behavior and the mutual statistics of the condensing
quasiparticles [11,12,28,29] along the two distinct Ising tran-
sition lines meeting at the MCP. These mutual statistics do
not affect critical exponents on the Ising lines because only
one of the two excitations is massless on them, but both
excitations must become massless at the MCP. Therefore,
it is not clear how their competition can give rise to the
effective enlargement of the symmetry at the MCP, as re-
quired by the XY universality class. We also mention that
the emergence of an XY multicritical behavior at the MCP
has been also suggested in Ref. [30], addressing the electric-
magnetic self-duality properties in systems related to the toric
model.

In this paper we investigate the multicritical behavior at the
MCP. We argue that the multicritical behavior is controlled
by the stable XY fixed point of the 3D multicritical Landau-
Ginzburg-Wilson (LGW) field theory with two competing
scalar fields associated with the Z2 transition lines meeting
at the MCP [31–35]. Duality properties play a crucial role in
the realization of the multicritical XY scenario, which implies
an effective enlargement of the symmetry of the multicritical
modes to the continuous symmetry group O(2). To provide
further support for this scenario, we also report some nu-
merical finite-size scaling (FSS) analyses of data from Monte
Carlo (MC) simulations.

This paper is organized as follows. In Sec. II we present
the 3D lattice Z2 gauge Higgs model and summarize the
known features of its phase diagram. In Sec. III we discuss
the multicritical theory appropriate for the MCP and apply
the multicritical LGW field theory to predict a multicritical
XY behavior. In Sec. IV we report some numerical results
supporting the multicritical XY scenario, obtained with FSS
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analyses of MC simulations. Finally, in Sec. V we draw our
conclusions.

II. THE Z2 GAUGE HIGGS MODEL

A. Hamiltonian and duality transformations

We consider a lattice gauge model with Z2 gauge invari-
ance defined on a cubic 3D lattice with periodic boundary
conditions. The fundamental variables are Ising spins sx = ±1
defined on the lattice sites and Ising spins σx,μ = ±1 defined
on the bonds (σx,μ is associated with the bond starting from
site x in the μ direction, μ = 1, 2, 3). The model is defined by
the lattice Hamiltonian [1,4,5]

H = −J
∑
x,μ

sx σx,μ sx+μ̂ − κ
∑

x,μ>ν

�x,μν, (1)

�x,μν = σx,μ σx+μ̂,ν σx+ν̂,μ σx,ν . (2)

The corresponding partition function and free-energy density
are

Z =
∑
{s,σ }

e−βH (J,κ ), F (J, κ ) = − T

Ld
ln Z, (3)

where β = 1/T is the inverse temperature and Ld is the
volume of the system. This paper considers only three-
dimensional systems, and therefore, d = 3. However, when
arguments are independent of the space dimension, we keep d
generic. In the following, energies are measured in units of T ,
which is equivalent to fixing β = 1 in Eq. (3).

The model can be simplified by considering the so-called
unitary gauge. Indeed, the site variables sx can be eliminated
by redefining σx,μ as

sx σx,μ sx+μ̂ → σx,μ. (4)

Correspondingly, the partition function can be written as

Z =
∑
{σ }

e−Hug(J,κ ), (5)

Hug = −J
∑
x,μ

σx,μ − κ
∑

x,μ>ν

�x,μν. (6)

An important property of the 3D lattice Z2 gauge Higgs
model is the existence of a duality mapping [3] between
the Hamiltonian parameters that leaves the partition function
unchanged modulo a regular function of the parameters. If

(J ′, κ ′) = (− 1
2 ln tanh κ,− 1

2 ln tanh J
)
, (7)

we have [3]

F (J ′, κ ′) = F (J, κ ) − 3
2 ln[sinh(2J ) sinh(2κ )]. (8)

We can also define a self-dual line,

D(J, κ ) = J − J ′ = J + 1
2 ln tanh κ = 0, (9)

where the duality transformation maps the model to itself, i.e.,
J ′ = J and κ ′ = κ . Note that D(J, κ ) is odd under the duality
mapping (J, κ ) → (J ′, κ ′), i.e., D(J, κ ) = −D(J ′, κ ′).

B. The phase diagram

Some features of the phase diagram are well established
(see, e.g., Refs. [4,12,19]). A sketch of the phase diagram is

κ

J

?

0 κc

JIsMCP

CEP

Z2

Z2

FIG. 1. Sketch of the phase diagram of the 3D Z2 gauge Higgs
model (1). The dashed line is the self-dual line [see Eq. (9)]; the thick
solid line corresponds to first-order transitions on the self-dual line,
extending for a finite interval. The two lines labeled “Z2” are related
by duality [see Eq. (7)] and correspond to Ising-like continuous
transitions. They end at J = JIs ≈ 0.22165, κ = ∞ and at J = 0,
κ = κc ≈ 0.76141. The three lines are conjectured to meet at a
multicritical point (MCP) on the self-dual line at [κ� ≈ 0.7525, J� ≈
0.2258]. We argue that the multicritical behavior belongs to the XY
universality class. The other end point of the first-order transition line
should give rise to a critical end point (CEP).

shown in Fig. 1. For κ → ∞ an Ising transition occurs at [36]
JIs = 0.221654626(5). By duality, in the pure Z2 gauge model
a transition occurs at the corresponding point, J = 0 and

κc = − 1
2 ln tanh JIs = 0.761413292(11). (10)

Two Ising-like continuous transition lines, related by the dual-
ity transformation (7), start from these points [4] and intersect
along the self-dual line [19]. Moreover, some numerical stud-
ies [8,12] have provided evidence of first-order transitions
along the self-dual line in the relatively small interval

0.688 � κ � 0.753, 0.258 � J � 0.226. (11)

Since the first-order transition line is limited to an interval
along the self-dual line, there are only two phases, separated
by the two continuous transition lines (see Fig. 1). For small
J and large κ there is a topological deconfined phase. The
remaining part of the phase diagram corresponds to a single
phase that extends from the disordered small-(J, κ) region to
the whole large-J region. In particular, no phase transition
occurs along the line κ = 0, where the model (6) becomes
trivial.

A natural conjecture is that the first-order and two con-
tinuous Ising transition lines meet at the same point located
along the self-dual line, giving rise to a MCP. Numerical
results [12,19] are consistent with this conjecture. In partic-
ular, Ref. [19] reported evidence of a critical transition point
along the self-dual line—we identify it with the MCP—with
critical parameters κ� ≈ 0.7526 and J� ≈ 0.2257. The cor-
responding critical exponents are close to, and substantially
consistent with, those associated with the XY universality
class [34,35,37,38]. In spite of these results, Ref. [19] con-
sidered an XY multicritical behavior to be unlikely. In this
paper, we rediscuss the issue and give additional theoretical

165138-2



MULTICRITICAL POINT OF THE THREE-DIMENSIONAL … PHYSICAL REVIEW B 105, 165138 (2022)

and numerical arguments that support the hypothesis that the
MCP belongs to the XY universality class.

We finally note that the first-order transition line starting
from the MCP ends at J ≈ 0.258 and κ ≈ 0.688. This end
point is expected to correspond to a continuous transition
belonging to the Ising universality class. This was verified in
Ref. [19] (see Appendix C therein).

III. MULTICRITICAL BEHAVIOR

As discussed above, the phase diagram of the lattice Z2

gauge Higgs model shows a MCP, where a first-order and
two continuous transition lines meet (this MCP is usually
called bicritical [31–33]). In the following, we first discuss the
expected behavior of the model close to the MCP on the basis
of the renormalization-group (RG) theory. Then, we discuss a
LGW field theory characterized by two interacting local real
scalar fields [31–33,35], which may describe the multicritical
behavior.

A. Multicritical scaling theory

At a MCP, the singular part of the free-energy density can
be written as

Fsing(J, κ, L) = L−dF ({uiL
yi}), (12)

where ui are the nonlinear scaling fields and the RG exponents
yi are ordered so that

y1 > y2 > y3 > y4 > · · · . (13)

In the present model, we expect two relevant RG perturba-
tions. Therefore, y1 and y2 are positive, and the corresponding
scaling fields u1 and u2 vanish at the MCP. The exponents yi,
with i � 3, are instead negative and control the corrections to
the multicritical behavior. All the scaling fields ui are analytic
functions of the model parameters J and κ . In the infinite-
volume limit and neglecting subleading corrections, we can
rewrite the singular part of the free-energy density as

Fsing(J, κ ) = |u2|d/y2F±(X ), (14)

X ≡ u1|u2|−φ, φ ≡ y1/y2 > 1, (15)

where the functions F±(X ) apply to the parameter regions
in which ±u2 > 0 and φ is the so-called crossover exponent
associated with the MCP. Close to the MCP, the transition
lines follow the equation

X = u1|u2|−φ = const, (16)

with a different constant for each transition line. Since φ > 1,
they are tangent to the line u1 = 0.

The duality mapping (7) and, in particular, Eq. (8) imply
the relation

Fsing(J ′, κ ′) = Fsing(J, κ ). (17)

Then, if we set

u′
1 = u1(J ′, κ ′), u′

2 = u2(J ′, κ ′), (18)

using Eq. (14), we obtain the equality

|u2|d/y2F±(u1|u2|−φ ) = |u′
2|d/y2F±(u′

1|u′
2|−φ ). (19)

Since along the self-dual line u1 = u′
1 = 0, this relation can

be satisfied only if |u2| = |u′
2|. If we then expand the scaling

function F±(X ) in powers of X , Eq. (19) implies um
1 = (u′

1)m

for all values of m such that the derivative

Fm = ∂mF (X )

∂X m

∣∣∣∣
X=0

(20)

is nonvanishing. This condition can be satisfied only if u1

changes at most by a sign under duality. As we shall argue
below, u1 is odd under duality, i.e., u′

1 = −u1. In this case,
we should additionally require Fm = 0 for any odd m: the
functions F±(X ) are even in X .

To show that u1 is odd, note that, as discussed in Sec. II B,
the first-order transition line runs along the self-dual line (9)
ending at the MCP located at

J = J�, κ = κ� = − 1
2 ln tanh J�. (21)

This transition line is expected to coincide [31–33] with the
line u1 = 0, close to the MCP. Since the self-dual line is given
by D(J, κ ) = 0, we can make the identification

u1 = D(J, κ ) (22)

close to the MCP. As noted before, D(J, κ ) is odd under
duality. The scaling field u2 is then necessarily even under
duality and is therefore given by

u2(J, k) = −J + J� + 1

2
ln

tanh κ

tanh κ�
. (23)

The scaling fields can be straightforwardly linearized, leading
to

u1 ≈ 
J + c 
κ, u2 ≈ −
J + c 
κ, (24)

where


J = J − J�, 
κ = κ − κ�,

c = sinh(2J�) = 1

sinh(2κ�)
≈ 0.467. (25)

In terms of u1 and u2, close to the MCP the first-order tran-
sition line corresponds to X = 0, u2 < 0. The two continuous
transition lines are defined by X = ±k with u2 > 0.

Using the above results, we can also predict how the latent
heat 
h vanishes along the first-order transition line when
approaching the MCP. A straightforward scaling argument
[39] gives


t ∼ |u2|θ , θ = d − y1

y2
. (26)

Note that this scaling behavior is the same as that of the mag-
netization M at the Ising transition, with the correspondence
y1 = yh and y2 = 1/ν: M indeed vanishes as M ∼ |T − Tc|β ,
with β = (d − yh)ν (see, e.g., Ref. [34]).

B. Scaling of the energy cumulants

Because we are considering a lattice gauge theory and
therefore we cannot easily access the order parameters
associated with the phase transitions, we focus on the
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multicritical behavior of the energy operators. We define

HJ =
∑
x μ

σx,μ, Hκ =
∑

x μ>ν

�x,μν,

H = −JHJ − κHκ . (27)

We consider the cumulants

Cnm = −Ld ∂n+m

∂Jn∂κm
F (J, κ, L), (28)

where F is the free-energy density. For n + m � 3, Cnm =
Mnm, where Mnm are the central moments defined by

Mnm = 〈(HJ − EJ )n(Hκ − Eκ )m〉, (29)

with EJ = 〈HJ〉 and Eκ = 〈Hκ〉. For n + m � 4, central mo-
ments and cumulants differ. For instance, C40 = M40 − 3M2

20.
Using the cumulants Cmn, we can easily construct the cu-

mulants Kn of the total energy H , defined by the derivatives of
ln Z with respect to β [see Eq. (3)]. For example, we have

K2 = J2C20 + 2JκC11 + κ2C02,

K3 = −(J3C30 + 3J2κC21 + 3Jκ2C12 + κ3C03), (30)

etc. Note that the specific heat is given by CV = K2/V .
In the following, we consider periodic boundary con-

ditions, which preserve the duality property in finite-size
systems. Using Eq. (8) and taking the appropriate derivatives
with respect to J and κ , we can obtain an infinite series
of exact relations among the expectation values EJ and Eκ

and the cumulants Cmn at (J, κ ) and at the corresponding
duality-transformed couplings (J ′, κ ′) [see Eq. (7)]. Along
the self-dual line where (J, κ ) = (J ′, κ ′), they turn into an
infinite series of exact relations among expectation values of
cumulants computed on the self-dual line. The lowest-order
cumulants satisfy the relations

Eκ + sinh(2J ) EJ − 3 cosh(2J )L3 = 0, (31)

sinh2(2J )C20 − C02 − 2 cosh(2J ) Eκ + 6L3 = 0. (32)

Relations for higher-order cumulants are more cumbersome.
Neglecting the regular terms arising from the second term on
the right-hand side of Eq. (7), third-order cumulants satisfy
the relations

C12 + sinh(2J )C21 + 2 cosh(2J )C11 ≈ 0, (33)

C03 + sinh3(2J )C30 + 6 cosh(2J )C02

+2[3 + cosh(4J )]Eκ ≈ 0.

The scaling behavior of the cumulants Cnm can be derived
by differentiating the asymptotic scaling relation

Fsing(J, κ, L) ≈ L−d f (x1, x2), xi = uiL
yi , (34)

where we keep only the relevant RG contributions. Note that
the duality relation (8) for the free energy and the duality
properties of u1 and u2 imply that

f (−x1, x2) = f (x1, x2). (35)

Introducing the derivatives

fn,m(x1, x2) = ∂n+m f (x1, x2)

∂xn
1∂xm

2

, (36)

the leading critical contribution is generally given by

Cnm(J, κ, L) ≈ un
1,Jum

1,κL(n+m)y1 fn+m,0(x1, x2), (37)

where u1,J and u1,κ are the derivatives of u1 with respect to
J and κ . The cumulants of the total energy are expected to
develop an analogous scaling behavior, i.e.,

Kn(J, κ, L) ≈ Lny1Kn(x1, x2). (38)

Along the self-dual line u1 = 0, the duality symmetry leads
to some cancellations as a consequence of Eq. (35). For even
n + m, the leading terms of the cumulants Cnm are given by

Cnm(J, κ, L) ≈ un
1,Jum

1,κL(n+m)y1 fn+m,0(0, x2)

≈ cmL(n+m)y1 fn+m,0(0, x2). (39)

Note that Eq. (39) is consistent with the exact relations derived
from duality, such as Eq. (32). For odd n + m, the relation (35)
implies that

fn+m,0(0, x2) = 0. (40)

Therefore, the leading scaling behavior is obtained by differ-
entiating once with respect to u2. Thus, for odd n + m we
obtain

Cnm ≈ L(n+m−1)y1+y2 fn+m−1,1(0, x2)

× (
n un−1

1,J um
1,κu2,J + m un

1,Jum−1
1,κ u2,κ

)
≈ (m − n)cmL(n+m−1)y1+y2 fn+m−1,1(0, x2), (41)

where u2,J and u2,κ are the derivatives of u2 with respect to J
and κ , respectively. Using these asymptotic behaviors along
the self-dual line and relations (30), we can also derive the
corresponding asymptotic FSS of the cumulants Kn of the total
energy, which behave as

Kn ≈ Lny1 K̃n(x2) for even n, (42)

Kn ≈ L(n−1)y1+y2 K̃n(x2) for odd n. (43)

It is also useful to consider combinations whose cumulants
have definite properties under duality transformations. We
define [19]

A = HJ − sinh(2κ ) Hκ , (44)

S = HJ + sinh(2κ ) Hκ . (45)

Since

∂u1

∂J
+ sinh(2κ )

∂u1

∂κ
= 0,

∂u2

∂J
− sinh(2κ )

∂u2

∂κ
= 0, (46)

one can easily check that the cumulants An of operator A,
defined in Eq. (44), do not receive contributions associated
with the scaling field u1. Therefore, they generally scale as

An ≈ Lny2An(x1, x2), An = (−2)n f0n(x1, x2). (47)

The cumulants Sn of operator S behave as

Sn ≈ Lny1Sn(x1, x2), Sn = 2n fn0(x1, x2). (48)
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Along the self-dual line, however, this diverging behavior
is not observed for odd n since fn0(0, x2) = 0; thus, Sn is
expected to diverge as L(n−1)y1 .

We finally note that the above scaling equations assume
that the leading contribution is due to the singular part of the
free energy. However, contributions due to the regular free-
energy term, of order Ld , may provide the leading contribution
for the lowest-order cumulants, depending on the values of the
RG exponents y1 and y2.

C. Multicritical field theory

The results in Secs. III A and III B rely on only the ex-
istence of a duality transformation and make no assumption
about the nature of the MCP. To go further and make more
quantitative predictions, it is crucial to understand the nature
of the order parameters. Along the finite-J transition line
that ends at κ = ∞, the order parameter is expected to be
a local function of the sx fields, which should correspond to
the Ising magnetization. Of course, because of gauge invari-
ance, any rigorous definition requires the introduction of an
appropriate gauge fixing, which, however, would not change
any gauge-invariant correlation function (in Ref. [40] this
approach was used to obtain rigorous results for the phase
behavior of the U(1) Abelian-Higgs model). The order pa-
rameter for the Z2 gauge theory is instead expected to be
nonlocal, and indeed, the transition has a topological nature.
Apparently, this observation seems to indicate that one cannot
use standard symmetry arguments to understand the critical
behavior at the MCP, as they assume that the order parameters
are coarse-grained local functions of the microscopic fields.

We wish now to argue that, at the MCP (and only there),
because of duality, we can assume that both order parame-
ters are local. Strictly speaking, duality is only a mapping
of the Hamiltonian parameters, but here, we will enlarge its
role and assume that duality provides a mapping for all RG
operators. Essentially, let us assume that we are working in
the infinite-dimensional space of Hamiltonians on which the
RG transformations act [41]. If we start from a Z2 gauge
Hamiltonian, under RG transformations, we will generate
a flow towards a Z2 gauge-invariant fixed point; however,
starting from the usual Ising model, we will observe a flow
towards the Wilson-Fisher Z2 fixed point. The existence of
an exact microscopic relation between the Z2 gauge model
and the Ising model allows us to conjecture that the two fixed
points are equivalent, with the same set of RG dimensions
and operators. In other words, there is a mapping (we call
it duality) between all RG operators at the different fixed
points. It is then plausible that this duality transformation
maps the local order parameter of the Ising model to the
nonlocal order parameter of the gauge model. The mapping
changes the Hamiltonian parameters, except on the self-dual
line and therefore at the MCP. Here, the mapping would imply
the equivalence of the local and nonlocal order parameters for
the same model. Therefore, it seems reasonable to describe the
multicritical behavior in terms of two local quantities. We thus
consider two different scalar fields ϕ1(x) and ϕ2(x), associated
with the two transition lines.

To derive a Lagrangian for the effective model, we note
that the theory should be invariant under a change in sign of

κ

J

MCP

Z2

Z2

u2 = 0
u1 = 0

FIG. 2. Sketch of the phase diagram close to the MCP. We report
the first-order transition line (thick solid line), the self-dual line
(dashed line), the two continuous transition lines (thin solid lines),
and the line where u2 = 0 (dotted line). The line u1 = 0 coincides
with the self-dual line.

both fields, so that only even powers of each field are allowed.
Under these conditions the LGW Hamiltonian is [31–33]

H = 1
2 [(∂μϕ1)2 + (∂μϕ2)2] + 1

2

(
r1ϕ

2
1 + r2ϕ

2
2

)
+ 1

4!

[
v1ϕ

4
1 + v2ϕ

4
2 + 2w ϕ2

1ϕ
2
2

]
. (49)

This model has been studied at length. In the mean-field ap-
proximation [31–33], the field theory (49) admits a bicritical
point analogous to the one appearing in Fig. 2. Moreover,
if the transition is continuous, it should belong to the XY
universality class [31–35], thereby leading to an effective
enlargement of the symmetry from Z2 ⊕ Z2 to O(2).

Several field-theoretical and numerical works have de-
termined the exponents yi entering the multicritical scaling
ansatz (12) (see, e.g., Refs. [35,38]). As shown in Ref. [35],
the leading exponents correspond to the RG dimensions at the
isotropic XY fixed point of quadratic and quartic perturbations
that belong to different representations of the O(2) group. The
leading RG exponent y1 is associated with the quadratic spin-2
perturbation. The corresponding RG dimension is [35,38]

y1 = 1.7639(11). (50)

The second-largest exponent is associated with the spin-zero
quadratic operator and is directly related to the correlation-
length critical exponent at standard XY transitions:

y2 = 1

νxy
= 1.4888(2), (51)

where we used the estimate νxy = 0.6717(1) (see, e.g.,
Refs. [34,37,42–45] for theoretical results using various meth-
ods). Using the above results, we can estimate the crossover
exponent,

φ = y1/y2 = 1.1848(8). (52)

Scaling corrections at the multicritical XY point are controlled
by the negative RG dimensions yi. The most relevant ones are
[35,38,44,46]

y3 = −0.108(6), (53)

y4 = −0.624(10), (54)

y5 = −0.789(4), (55)
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which are related to the spin-4, spin-2, and spin-zero quartic
perturbations, respectively. Note that, at standard XY tran-
sitions, corrections decay as L−ω, with ω = −y5 ≈ 0.79. At
the MCP, scaling corrections decay much slower, as Ly3 ≈
L−0.108, which may complicate the analysis of the universal
multicritical XY behavior. Moreover, corrections with any
integer combination of the subleading exponents are also ex-
pected, and thus, corrections Lny3 with n = 2, 3, . . . should
also appear.

In the LGW approach the analog of the duality mapping
is the exchange of the two fields (ϕ1 → ϕ2, ϕ2 → ϕ1). The
RG operators associated with the scaling fields ui must have
definite properties under these transformations. The leading
operator of RG dimension y1 is odd under the field exchange.
This implies that u1 is odd under the simultaneous exchange
of r1 and r2 and of v1 and v2. In the Z2 gauge Higgs model
this implies that the scaling field u1 is odd under duality, in
agreement with the arguments presented in Sec. III A. Analo-
gously, we predict u2 is even, as already discussed. We can
also predict the transformation properties of the irrelevant
scaling fields: u3 and u5 are even functions under duality,
while u4 is odd. In particular, there are no corrections with
exponent y4 on the self-dual line.

IV. NUMERICAL RESULTS

In this section we report some numerical results supporting
our hypothesis of an emerging XY multicriticality at the MCP,
as discussed in the previous sections. For this purpose, we
present FSS analyses of MC simulations of the unitary-gauge
model (6), using a standard Metropolis upgrading of the dis-
crete spin link variables [47]. We consider cubic systems of
size L with periodic boundary conditions.

We perform simulations along the self-dual line u1 = 0
and along the line u2 = 0, measuring the energy cumulants
defined in Sec. III B. We verify the predicted FSS behavior,
using the RG exponents y1 = 1.7639(11) and y2 = 1.4888(2)
of the XY universality class. We should remark that the ob-
servation of the asymptotic scaling behaviors predicted by the
multicritical XY scenario is made difficult by the existence
of several sources of slowly decaying scaling corrections.
The leading ones decay very slowly, as Lny3 ≈ L−0.108n, with
n = 1, 2, . . .. Then, we should consider terms decaying as
L−(y1−y2 ) ≈ L−0.28 [they are absent on the self-dual line be-
cause of Eq. (35)], as L−2(y1−y2 ) ≈ L−0.55, L−y4 ≈ L−0.62 (they
are absent along the self-dual line), and L−y5 ≈ L−0.79. For
m + n = 2 also the regular background plays a role, giving
rise to corrections of order L3−2y1 ≈ L−0.53.

Along the self-dual line the scaling field u1 vanishes. Thus,
according to the RG analysis reported in Sec. III B, we expect
that the asymptotic scaling behavior of the energy cumulants
depends on the FSS variable x2 = u2Ly2 . Along the self-dual
line the numerical FSS analyses of the energy cumulants
Kn, An, and Sn are consistent with the predictions of the multi-
critical theory; see Eqs. (42) and (43) for the total energy, once
the XY values of the RG exponents reported in Eqs. (50) and
(51) are used. The most accurate estimate of the MCP point is
obtained by biased analyses of the third cumulant A3 ∼ L3y2

of the operator A [see Eq. (44)] along the self-dual line, using
the XY values for the exponents. Fitting the data to Eq. (47),
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FIG. 3. Scaling behavior of the third cumulant K3 of the Hamil-
tonian along the u1 = 0 line as a function of u2Ly2 . We use the XY
exponents y1 = 1.7639 and y2 = 1.4888 and κ� = 0.7525.

we obtain

κ� = 0.7525(1), J� = 0.22578(5). (56)

This estimate of the MCP is consistent with the results re-
ported in Ref. [19]. The analysis of the other cumulants gives
consistent results.

The accuracy of the description in terms of the multicritical
XY predictions is demonstrated by the scaling plots of the data
of the cumulants using the XY exponents and the estimates
(56). In Fig. 3 we show data for the third cumulant K3 of the
Hamiltonian, which is expected to scale with the power law
L2y1+y2 [see Eq. (43)]. We observe a reasonably good scaling:
scaling corrections are hardly visible within the statistical er-
rors. Note that, according to the multicritical XY scenario, we
expect slowly decaying corrections with exponent |y3| ≈ 0.11
[see Eq. (53)]. We do not observe them here. In our range of
values of L, Ly3 varies only slightly, and thus, it is conceivable
that they do not affect the divergent behavior of the observ-
ables, only the accuracy of the scaling functions. In Fig. 4 we
report the scaling plots of A3 and A4. Data are again in good
agreement with the theoretical predictions for their asymptotic
scaling behavior [see Eqs. (47)]. We do not report the second
cumulant A2, whose singular part should scale as L2y2 . Since
2y2 ≈ 2.9775 < 3, its behavior is dominated by the regular
contribution, which scales as the volume L3.

In addition to checking the consistency of the numerical
data with the multicritical XY scenario, we can perform un-
biased fits to determine y1 and y2. If we fit the third and
fourth cumulants of the Hamiltonian (they should scale as
K3 ∼ L2y1+y2 and K4 ∼ L4y1 , respectively), we obtain 2y1 +
y2 = 5.0(1) and 4y1 = 7.0(1), which are consistent with the
predictions 2y1 + y2 ≈ 5.02 and 4y1 ≈ 7.06. The exponent y2

can also be estimated from An. We obtain y2 = 1.495(10) and
y2 = 1.48(2) from A3 and A4, respectively. The agreement
with the conjectured XY values is quite good.

We also performed simulations along the u2 = 0 line [see
Eq. (23)] using the estimate κ� = 0.7525 obtained from the
FSS analyses along the self-dual u1 = 0 line. Along the u2 =
0 line, the asymptotic FSS of the cumulants of the total energy
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FIG. 4. Scaling behavior of cumulants A3 (top) and A4 (bottom)
along the u1 = 0 line as a function of u2Ly2 . We use the XY exponents
y1 = 1.7639 and y2 = 1.4888 and κ� = 0.7525.

is that given in Eq. (38), i.e.,

Kn ≈ Lny1Kn(x1, 0). (57)

Note that, for odd n, consistency with the FSS behavior along
the self-dual line [see Eq. (43)] requires Kn(0, 0) = 0. The
data are plotted in Fig. 5, We observe a nice collapse of the
data, again fully supporting the multicritical XY scenario.

Finally, we also check the scaling behavior of the third
cumulants of A and S along the u2 = 0 line in Fig. 6. The
scaling behavior of the cumulants of A is given in Eq. (47).
It depends on f0n(x1, 0), which is always an even function of
x1. The data shown in the top panel in Fig. 6 are definitely
consistent within the errors. As for the cumulants of S, they
scale as reported in Eq. (48). Relation (35) implies that the
odd (even) cumulants are odd (even) functions of x1. Again,
this is confirmed by the data shown in the bottom panel in
Fig. 6. In particular, the ratio S3/L3y1 is consistent with zero at
the critical point x1 = 0.

Note that statistical errors of the MC simulations along
the u2 = 0 line increase significantly in the region x1 � 1.
The link update algorithm for the model (6) indeed becomes
less efficient as κ and J are increased. Autocorrelation times
increase by more than one order of magnitude, likely due to
a different dynamic regime related to the presence of relevant
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FIG. 5. Scaling plot of the second cumulant K2 (bottom) and of
the third cumulant K3 (top) of the Hamiltonian along the u2 = 0 line,
using the XY exponent y1 = 1.7639 and κ� = 0.7525. Data confirm
the scaling prediction, Eq. (57). Notice that the error bars of K3

for u1Ly1 � 1 may be underestimated. In this region of the phase
diagram we observe an increasing inefficiency of the MC algorithm.

nonlocal configurations, which are hardly modified by local
moves.

The results we have presented here complement those
reported in Ref. [19], which already provided remarkable
evidence of the multicritical XY behavior (although the au-
thors were quite skeptical about its interpretation in terms of
multicritical XY behavior). In particular, their estimates for
the multicritical exponents y1 = 1.778(6) and y2 = 1.495(9)
(other compatible, but less precise, results were also reported
in Refs. [11,14]) substantially agree with the XY predictions
(50) and (51). The small difference in the estimate of y1

can easily be explained by the very slowly decaying scal-
ing corrections predicted by the multicritical XY scenario,
which make precise determination of the universal asymptotic
quantities very hard. The leading one vanishes as L−0.108, so
that to reduce it by a factor of 2, the lattice size must be
increased by a factor of 600, which is unattainable in practice.

Overall, we believe that the numerical results presented
in this paper and those already reported in Ref. [19] provide
strong evidence of the multicritical XY scenario put forward
in the previous sections.
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FIG. 6. Scaling plot of the third cumulants A3 (top) and S3 (bot-
tom) of operators A and S along the u2 = 0 line, using the XY
exponents y1 = 1.7639 and y2 = 1.4888 and κ� = 0.7525.

V. CONCLUSIONS

We studied the multicritical behavior of the 3D Z2 gauge
Higgs model at the MCP, where one first-order transition line
and two continuous Ising transition lines meet, as sketched in
Fig. 1. The duality properties of the model play a key role
in the phase diagram and in determining the main features of
the multicritical behavior at the MCP located on the self-dual
line.

We exploited duality to identify the scaling fields asso-
ciated with the relevant RG perturbations at the MCP and

outlined the corresponding multicritical scaling behaviors.
Moreover, we presented arguments supporting the identifi-
cation of the multicritical universality class with the one
controlled by the stable XY fixed point of the 3D multicrit-
ical LGW field theory (49), with two competing scalar fields
associated with the continuous Z2 transition lines meeting at
the MCP.

This identification relies on the following assumptions:
(1) The multicritical behavior is due to the competition

between the two order parameters associated with the Ising
transition lines meeting at the MCP. The relevant symmetry
group along each line is Z2, so the MCP effective theory
should have an effective Z2 ⊕ Z2 global symmetry.

(2) The two independent Z2 order parameters can be rep-
resented by local real scalar fields close to the MCP.

The first hypothesis does not require much discussion be-
cause the two transition lines belong to the Ising universality
class. The second hypothesis is the crucial one and was justi-
fied heuristically in Sec. III C. These two assumptions imply
the LGW multicritical theory discussed in this paper, which
is consistent with the phases expected around the MCP. The
analysis of its RG flow leads to the prediction that, if the
transition at the MCP is not of first order, then its multicritical
behavior should belong to the XY universality class. The XY
nature of the MCP implies an effective enlargement of the
symmetry of the multicritical modes to the continuous group
O(2).

The prediction of an XY multicritical behavior was tested
against numerical simulations. We reported an extensive nu-
merical FSS study of several energy cumulants along two
different lines in the phase diagram. The numerical results
are in good agreement with an XY MCP. We believe that our
numerical results, together with those already reported in the
literature (see, in particular, Ref. [19]) provide strong evidence
in favor of the multicritical XY scenario.

We finally mention that this scenario was deemed unlikely
in Ref. [19] because it was not clear how to formulate a
consistent microscopic model for the multicritical behavior
with XY symmetry. In their view, the apparent agreement
of the numerical estimates with the XY results was a mere
coincidence. We believe this opinion is implausible in view of
the present results, which are all consistent with an XY be-
havior with remarkable accuracy. Of course, this picture calls
for a deeper understanding of the mechanisms that combine
the local and nonlocal critical modes of the Z2 gauge Higgs
model to give rise to the multicritical XY behavior, entailing
an effective enlargement of the symmetry at the MCP to the
continuous group O(2).
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