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Abstract

Train scheduling is a critical activity in rail traffic management, both off-line (timetabling)
and on-line/in real-time (dispatching). This research aims at the design and development
of advanced optimization models and methods for the real-time re-scheduling. The study
covers two overlapping areas: managing the train service plans in an increasingly dynamic
management scenario; and ensuring the safety and reliability of the railway system in case
of major disruptions.

Although the real-time re-scheduling problem is relatively easy to depict, due to the inter-
dependent nature of trains moving along the networks lines, a huge challenge looms in the
search for an optimal schedule. A great variety of approaches have been proposed over the
years, but here we are interested in those based on Mixed Integer Linear Programming,
which are the most widely adopted in the literature. The main issue that such approaches
must face is how to represent the fact that two trains cannot occupy simultaneously the
same track (or other pairs of incompatible railway resources). Typically, Time-Indexed (TI)
formulations for scheduling problems are stronger than other classical formulations, like
big-M models. Moreover, they can be easily adapted to cope with complicating constraints
and non-linear objectives. Unfortunately, their size grows usually very large with the size of
the scheduling instance. As a consequence, TI formulations are not suitable for attacking
real-life instances, especially when fast, on-line responses are required. Further, the approx-
imation introduced by time discretization often leads to solutions which cannot be realized
in practice.
The Dynamic Discretization Discovery (DDD), introduced by Boland for the continuous-
time service network design problem, is a novel technique to keep at bay the growth of TI
formulations (and thus their response times) and, at the same time, ensure the necessary
modelling precision. Exploiting and extending the DDD paradigm, we develop a primal-
dual exact approach to train dispatching. The result is a restricted TI formulation and a
procedure with running times comparable with the best alternatives presented in the liter-
ature on our real-life instances of train dispatching. Furthermore, the method implemented
does not suffer by the approximation error introduced by a standard time discretization.
In our comparisons the big-M approach maintains the lead on average, but the distance is
getting smaller. Even though the method developed in this research is at its early stage, it
is very promising not only in a railway context but, more generally, for the broader field of
job-shop scheduling. In addition, it offers many hints and opportunities for enhancements
that will be investigated in future works.
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On the other hand, when major disruptions occur in a rail network a simple rescheduling
is not sufficient to re-ensure the viability of the network. Indeed, parts of the network may
become unavailable for inbound trains, and decisions must be taken to mitigate the impact
on the overall traffic. Arguably the most critical point is to avoid creating deadlocks, a
situation that arises when a group of trains is positioned in such a way that none can move
due to other trains in the group blocking their path. The infrastructure manager and train
operating companies in these cases may be forced to stop trains until the normal status is
recovered. A crucial aspect is thus to identify, for each train, a location where the train
can hold during the disruption, avoiding to disconnect the network and allowing for a quick
recovering of the original plan, at restart. A good location for holding a train is called a
safe place and it additionally serves the purpose of preventing trains to drive past the last
location where they can be safely parked, which could otherwise lead to further blockages
and deadlocks. We outline some necessary and sufficient conditions to achieve the desired
safe places properties. We then translate such conditions into constraints for a binary for-
mulation of the problem, which we named Safe Place Assignment Problem (SPAP).
The SPAP finds an application in the current usage of Advanced Traffic Management Sys-
tems (ATMSs). This digital train management solutions are called to solve instances of a
hard optimization problem in very limited computational time and they may fail to return
a plan for different reasons. Finding a solution to the SPAP in these cases adds an addi-
tional level of safety, as dispatchers are provided with the last safe location for a train to
drive within the plan’s horizon. Computational results on a set of instances provided by a
Class I U.S. railroad company show how the approach can be used effectively in the real-
life setting that motivates the study, by returning optimal assignments in fractions of second.

Both research outputs are very innovative and off the beaten track. The achievements
regards both the theoretical and methodological point of view and present in addition a
practical relevance.

Keywords: Real-Time Train Re-scheduling, Dynamic Discretization Discovery, Disruption Manage-
ment, Safe Place Assignment, Binary Linear Programming
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Chapter 1

Introduction

1.1 Research motivation

Railway transports represent the choice of the majority of passenger and freight movements.
In general, to increase the railway service quality means for many countries a big step in
solving the mobility issue and therefore is part of most government priority lists. Railways
are also the greenest mode of motorised transport in terms of greenhouse gas emissions.
Rail uses the more fuel-efficient vehicles and causes less noise, accidents and infrastructure
deterioration of car transport. Nowadays, with the environmental stewardship on the top
of the community agenda, a smarter (more technological) use of the railways can make
significant changes in reducing the human footprint while operating in a sustainable way.

One of the most challenging aspects in managing a railway systems regards the coordina-
tion of all its inherent processes, sectors and stakeholders. From the rolling stocks and the
energy management to the control command signalling, all involved areas should cooperate
in order to provide to the final customers a service that is safe and reliable. Since the dereg-
ulation of the European railway sector, the search for a balance that favours both sides of
the industry has even become more difficult. On the one hand, the railway infrastructure
managers want to achieve the higher utilization for the network and promote its maximum
accessibility and availability, increasing trains speed and infrastructures capacities. Simul-
taneously, the other side sees the railway operating companies trying to fulfill the market
demand in the best way possible and increasing their private market shares. Note that an
increased capacity exploitation leads to a more sensitive system where even a small delay
can seriously compromise the proper functioning of the whole railway traffic.
Of course, all the railway actors and organizations wish for the most efficient service that

1



1.1. Research motivation

guarantees the most reliable and secure movement of passengers and goods. This objective
is pursued at all levels of service planning (strategic, tactical, operational) which involve
different decision-making levels and span different time horizons. Nevertheless the service
quality is often compromised by unexpected events that can be endogenous (infrastructure
damages, maintenance, drivers behaviours, etc.) or exogenous (larger passenger boarding
times, adverse weather conditions, accidents, animals on the tracks, etc.). In addition to
an initial delay, these events can cause knock-on delays and/or even make trains to miss
scheduled connections and/or create conflicts among them. A conflict arises when two or
more trains require access to the same resource at the same time. We refer to an event
that causes minor deviations from the scheduled times as disturbance and to an incident
causing the interruption of the railway system as disruption. Usually, ideal time buffers
and margins are inserted in railways timetable scheduled offline to absorb minor delays and
dampen the knock-on (or domino) effect. However, in case of major disturbances and lo-
cal/global infrastructure interruptions, such an expedient is never sufficient. Therefore an
on-line monitoring and re-scheduling becomes essential to deal with unforeseen delays and
ensure an adequate level of service and adherence to the original schedule. The real-time
train re-scheduling aims at it. The goal is to restore a feasible situation for the network by
resolving conflicts among trains, adjusting their times and routes in real-time while adhering
as much as possible to the (off-line) scheduled plan.

The generational shift of the railway network to an automated digital control system is
also part of the scenario. In the last decades a vast portion of the literature has focused
on formulating models based on the availability of data on the fly. In addition, with the
use of a single and unified European system for signalling and speed control, the European
Rail Traffic Management System (ERTMS)1, the papers concerning the European railway
context may finally have a practical value. In general, a Traffic Management System (TMS)
allows to long-term and short-term planning and to control the network by detecting po-
tential conflicts and accordingly adjusting trains routes. There are of course benefits, both
in terms of reduced operation cost and customer service improvement, and challenges with
the introduction of these new automatic systems. Further, although TMSs already imple-
ment real-time control functions, the optimization models exploitation still has little room
to breathe within them. This can be attributed both to the lack of real-time data from
the field (and the possibility to share them) and the disregard of infrastructure managers.
The latter are rather skeptical and/or not fully aware of the power of an optimization-based

1 The ERTMS promotes the interoperability of different national railway systems; it incorporates
Automatic Train Protection (ATP) systems and enables for a faster data communication ([63]).

Anna Livia Croella 2



1.2. Research questions and goals

approach, but also disillusioned by various failures and unfulfilled promises from models
and algorithms. While the existing Decision Support Systems (DSSs) implement simple
dispatching rules (like the first come first served rule), now researcher are able to generate
very large and tailored solutions for all trains paths in a few minutes thanks to optimization
algorithms. Of course, dispatchers can always decide to follow the solutions proposed or
not. In the first case, we highlight that the most recent automated traffic control systems
are able to proceed according to the plan provided since they are directly connected with
the fields. On the other hand, when dispatchers choose to implement their own solutions
the algorithm should adapt in order to be ready for optimization in its successive calls. Note
that, when monitoring an extended and dense area of the network, it is difficult for traffic
controllers (and in general for a human mind) to fully understand and calculate all conse-
quences brought by a local decision. The use of enhanced algorithms can be in this case
the only way to cross the barrier. We believe that in the future the infrastructure managers
will be directly involved in the development of optimal real-time control systems, funding
research groups or even taking part of them (as in the case of the cutting-edge multinational
Alstom [2] and the large company Bombardier Transportation [106]). This collaboration
will bring advantages to both the service, improving punctuality and coordination within
lines, and the actors involved, for example reducing the dispatchers workload. An interested
reader can refer to [24] for more details.
Among other things, in the next years we can also expect an increasing number of disrup-
tions due to system failures as well as climate changes and heat-related damages. Since
disturbances and disruptions can severely alter the circulation of the train traffic, in order
to increase the reliability of the system, future control systems are required to implement
new protocols to ensure efficient recovery. Most retrieval practices still follow predetermined
procedures, contingency plans, or dispatcher instincts, and the literature lacks mathematical
modelling for innovative protocols and procedures.

1.2 Research questions and goals

When trains move through a railway network, they occupy a sequence of rail resources, such
as track sections, platforms, stations, etc.. Roughly speaking, train scheduling is about de-
termining the time in which each train enters and exits the resources encountered on its
path. Such a task is central in various phases of traffic planning. In the operational phase,
when trains finally move through the railway, the original schedule must be adjusted in
real-time to factor erratic train delays, small or large network disruptions, missing crews
and other unplanned events. The work carried out in this research project focuses on this
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Figure 1.1: A map section showing the railway network area surrounding the city of Rome, including
track types, station names, track numbers and milestones.

Source: https://www.openrailwaymap.org

on-line activity.
The research deals with the control of secure and reliable networks in an increasingly dy-
namic management scenario. The models developed tackle two different, but in a sense
complementary, aspects of the same problem: managing the system after an unforeseen
event that makes the planned activities no more feasible, and doing it as quickly and safely
as possible. These requirements directly derive from the need for a more rigorous coordina-
tion between all the different railway players and, in general, generates from the possibility of
adopting automated prototypes protocols in the real-life implementations for a new system-
changing railway framework. We can formalize them into two main research objectives
answering two different questions:

• in case of disturbance, how can we generate a new feasible plan quickly?

• in case of disruption (or partial re-scheduling information), how can we add an addi-
tional level of safety to the system?

Research Objective 1. Propose a new efficient method for the Real-time Train re-Scheduling
Problem (RTSP) that is capable to overcome the classical approaches drawbacks and pitfalls.
To push the limits on the achievable computational times of the re-scheduling phase.
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From the optimization theory standpoint, train scheduling is a generalization of the job-
shop scheduling (with blocking and no-wait constraints - [113]) and thus of the machine
scheduling, and as such it can benefit from a vast body of literature. We search for a
more efficient dynamic model that can quickly react to the occurrence of some delays and
disturbances. We investigate the exploitation of an innovative technique that has been
recently introduced in the context of the network design problem and that leaves for a
wide application area. In the present work, we start to design its effective and efficient
implementation and lay the foundation for its application in the train scheduling field. As
one of the most delicate phases of the deployment, the algorithm engineering is deeply
investigated focusing on both feasibility and optimality (while most of the works give a
predominant rule to the first aspect). The performance of our proposed procedure is thus
compared with the benchmark approaches of the case. In particular, we are interested in
a comparison with the models based on Mixed Integer Linear Programming, that are the
most adopted in the literature for the real-time train re-scheduling (and, in particular, for
the train traffic re-scheduling).

Research Objective 2. Outline an intelligent procedure to achieve a higher system safety
in case of a disruption occurrence. To ease its application into real-life protocols through an
efficient mathematical formulation of the model.

Existing decision support systems cannot cope with huge disruptions, thus, in the majority
of the cases, when a disruption occurs a list of predetermined rules is applied. However, very
little has been done for their real-life implementations. In this research project we reach
the formal definition of some common key objectives to mitigate the impact of unexpected
events and make the network more secure. We formulate an optimization model capable of
assigning trains to locations where they can be safely parked (hereafter simply referred as
safe place). The purpose of this second research goal is itself twofold, showing a proactive
aspect when used in combination with a movement planner (that estimate the future state
of the net) and a reactive one when used locally after a disruption event.

1.3 Research approach and contributions

The research approach is model-based. We first identify the train re-scheduling framework
and design two different problems. Thereafter we develop mathematical models to deal with
them. In particular, our focus is on pure binary optimization programs and their formu-
lation. We devise two linear models that are ideally suited to real-world applications and
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requirements. Going into more detail, we can identify a common structure in the formu-
lations of the two designed models. Indeed, both present families of packing constraints.
While the first model can be completely conducted to the integer programming formulation
of the minimum weight stable set problem, the second formulation presented shares with it
all but one of the constraints groups. In general, these type of problems are hard to solve,
but they have been much studied in the literature and most commercial solvers can exploit
the special structure of their constraint matrix.

Research Contribution 1. When modelling a railway system, each train service can be
seen as a set of arrivals and departure events. In a re-scheduling problem, given the current
status of the network, we want to determine new times for these event to take place since
the original one are not compatible anymore and, in doing so, we aim to minimize some
train-related delay measures. Although the (real-time re-scheduling) problem structure is
relatively easy to depict, due to the interdependent nature of trains moving along the net-
works lines, a huge challenge looms in the search for an optimal schedule. Exploiting and
extending a newly introduced technique, called Dynamic Discretization Discovery (DDD),
we develop a primal-dual approach to tackle this challenging aspect of the train dispatching.
The result of the study is a restricted time-indexed formulation and a procedure with run-
ning times comparable with the best alternatives presented in the literature on our real-life
instances. Furthermore, the newly introduced method does not suffer from the approxi-
mation error introduced by a standard time discretization. In our comparisons the big-M
approach, the most used in practise, retains the advantage on average, but the distance is
getting smaller. Even though the method developed in the research is at its early stage, it
is very promising not only in a railway context but, more generally, for the broader field of
job-shop scheduling. In addition, it offers many hints and opportunities for enhancements
that will be investigated in future works.

Research Contribution 2. When a severe disruption occurs, to stress the optimality
and feasibility of (re)scheduling outputs, great attention must be paid to the safety and
reliability of the entire railway system. In these cases a primary measure to mitigate its
impact is a timely/anticipatory control of trains moving towards the disrupted area. A
major contribution of this thesis is the formalization of a new mathematical model for a
train stop deployment protocol, an issue that very few previous papers have pointed out in
the literature (only three for the best of our knowledge). This type of protocols define how
to move or where to stop the trains around the affected region during a disruption, with
some (fairly basic) key objectives. Firstly, to leave a viable path in the network with no
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obstructions, so as to allow possible work/maintenance trains to reach the disruption site(s).
Secondly, to quickly return to the normal traffic regime once the disruption is over. To this
end, an heuristic idea suggests to push trains as far as possible along their original routes
before stopping them in a safe place. We define the necessary and sufficient conditions
for a safe place assignment to have the desired property and end up with a pure binary
integer linear formulation that present a remarkably low resolution time. The practical and
theoretical complexity of the underlying problem, named Safe Place Assignment Problem,
is hence discussed. We remark that such a procedure can also be exploited when an ATMS
fails to solve, in a short time, a particularly difficult re-scheduling problem. Moreover, even
though we trace a specific real-life protocol adopted by a large Class I North-American rail-
road company, the model formulated is highly flexible and can be adapted to the different
needs of railway operators and/or infrastructure managers.

Both research outputs are very innovative and off the beaten track. The achievements
regards both the theoretical and methodological point of view (DDD method) and present
in addition a practical relevance (Safe place assignment problem).

1.4 Outline

The thesis is structured as follows.

Chapter 2 presents the underlying theoretical framework and the mathematical foundations
necessary to interpret and understand the results discussed in the following chapters. We
provide the basic definitions and results of the optimization and the fundamental elements
of complexity and graph theories.

In Chapter 3 the RTSP is presented in detail. We give the state-of-the-art of the scientific
literature on the subject and report some background information on railway systems and
its mathematical modelling. The concept of disjunctive graph and the mathematical render-
ing of the conflicts constraints among shared resources is then addressed. A discussion on
the formulations mainly used in the field, with their strengths and pitfalls, closes the chapter.

The next two chapters generate from articles already submitted for publication and in con-
ference proceedings. They contain the main findings of the related research projects.
Chapter 4 focuses on a particular facet of the RTSP, the Train Traffic Re-scheduling Prob-
lem. In this chapter we exploit a recently introduced DDD technique to implement an
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algorithm that can overcome the drawbacks of the classical formulations (identified in the
previous chapter). We give an overview of the related works on the DDD paradigm and
then formally define our problem and the resolution steps engineering. The application of
the algorithm on a set of real-life instances and the resulting performance is thus analyzed
and compared with the benchmark approaches results.

Chapter 5 discusses a different aspect of train dispatching: the disruption management.
Following a review of research on the topic, we outline a real-life protocol that aims to
make the railway network more reliable and safe. We report the modelling choices that
allow us to microscopically represent the railroad system and formally state the objectives
pursued by the protocol. We thus derive a (binary linear) programming formulation for it.
A computational study on two data set of realistic instances, highlighting different features
of the formulated model, completes the work and shows the time efficiency of the program.

Finally, Chapter 6 summarizes the achievements and provides further ideas for extending
the research study. New possible solution procedures for the train traffic re-scheduling
algorithm are exposed, as well as new insights for tailor-made protocols in the field of
disturbance management. Additional implications and recommendations for future work
conclude the thesis.

Anna Livia Croella 8



Chapter 2

Preliminaries

2.1 Introduction

This chapter is devoted to the exposure of the theoretical framework necessary to under-
stand the research contributions shown in the present thesis.

Section 2.2 gives the basic definitions and relevant results about optimization problems
and, in particular, about linear programming. In Section 2.2.1 we introduce some basic
notions of complexity theory to distinguish between problems that are easily solvable and
problems that are classified as "hard" to handle. Then, we discuss two algorithms that
are at the foundation of integer linear programming. Two general techniques, row and
column generation methods, that can be applied to deal with large problems are hence
introduced in Section 2.2.4. Finally, Section 2.3 exposes some relevant elements of graph
theory and formally define two important problems that we will address in the rest of the
thesis and that are also widely used as subroutines in many resolution algorithms, namely
the shortest path problem and the maximum stable set problem. We refer the interested
reader to [34–36, 120, 141] for comprehensive overviews on the discussed topics.

2.2 Optimization problems

An optimization problem is a generic problem in which one has to choose among a set of
distinct and non-mixable alternatives, denoted by S and called feasible region. The choice
is made according to a quantitative criterion, namely according to a given objective function
f(·) : S −→ R that has to be maximized or minimized. Without loss of generality, we can
write a generic mathematical program as min{f(x) : x ∈ S}, where x is the vector of the
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variables to be optimized.
Three distinct scenarios may arise:

• the problem is infeasible, i.e. S = ∅ and no solution exists;

• the problem is unbounded, that is given a value M there always exists a vector x̄ such
that f(x̄) < −M ;

• the problem admits an optimal solution and there exists a vector x∗ ∈ S such that
f(x∗) ≤ f(x) for all x ∈ S; we refer to the value f(x∗) as optimum.

Real world optimization problems admit a finite number (however large it may be) of solu-
tions, i.e. the set S has a finite cardinality. The field of the applied mathematics addressing
optimization problem over a discrete set is called combinatorial optimization.
In general. the characteristics of the set S and the objective function properties determine
the computational complexity of the problem. In this thesis we will focus only on the so
called linear problems, that are problems showing a linear objective function and whose
feasible region can be expressed by a finite set of linear constraints. Among these we can
distinguish between pure Continuous Linear Programs (CLPs), Integer Linear Programs
(ILPs) or Mixed Integer Linear Programs (MILPs). Formally, a generic linear program can
be expressed in the form:

min cx

s.t. Ax ≤ b

x ≥ 0 integral or real

(2.1)

with A being a m × n matrix of (usually rational) elements, c a row vector in IRn and b

a column vector in IRm. We define a set of the type P = {x ∈ IRn : Ax ≤ b}, i.e. a
set of points satisfying a finite number of linear inequalities, as a polyhedron. A bounded
polyhedron is also called a polytope.
When talking about a CLP problem the variable vector x can only assume real values,
x ∈ IRn, while for an ILP the domain is the set of integer numbers and x ∈ Zn. One can
also identify a subclass of problems for the case of integer programming: a pure binary
problems is denoted by the presence of only binary variables, that is x ∈ {0, 1}n ⊆ Zn. On
the other hand, for a MILP we can identify two distinct variables vectors with their own
domain (x ∈ Znx and y ∈ IRny) and separate two row vectors for the objective function (c
and h) and two constraint matrices (A and G) respectively. A MILP problem can be thus
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formulated as follows:
min cx+ hy

s.t. Ax+Gy ≤ b

x ≥ 0 integral
y ≥ 0 real .

(2.2)

Figure 2.1 shows the representation in IR2 of a pure integer set (2.1b), a continuous set
(2.1a) and a mixed integer linear set (2.1c).

2.2.1 Elements of complexity theory

An optimization problem can be always formulated as a decision problem that allows only
two possible solution: "yes" or "no". Indeed, searching for a solution with certain properties
is equivalent to ask if a solution having that properties exists. Once formulated a decision
problem, one of the crucial question is how much time we need to compute a solution for it.
Basically, we want to answer this question for different sets of inputs, namely instances, that
we may provide to the model. Of course, different instances may be less or more complex
to solve. Moreover, the time needed to solve them strictly depends by the algorithm used.
Given a problem, an algorithm is a procedure that is able to find in a finite number of steps
the solution to a generic instance of it. In general, we can identify the dimension (or size)
φ(x) of a given instance x with the space needed to store the input data. We hence define
the algorithm complexity f(φ) as the number of steps (or arithmetic operation) it requires
to find the solution associated with an instance. Now, we can determine a bound for the
algorithm complexity solving the worst case instances of a problem and, in most of the
cases, it is convenient to use an upper approximation, that is easy to calculate, to bound
the size of the instance. We recall that, given two functions f(x) and g(x), we say that
f(x) = O(g(x)), if it exists a value x0 such that f(x) ≤ g(x) for all x > x0, that is after a
certain x0 the function f(x) definitely lies under g(x). Next we give two fundamental notion
of the complexity theory.

Definition 2.1. An algorithm has a polynomial complexity if and only if its complexity
f(φ) in the worst case instances is such that f = O(g(φ)), with g(φ) being a polynomial.
We call it a polynomial algorithm.

Definition 2.2. A decision problem belongs to the complexity class P if and only if there
exists a polynomial algorithm to solve it.

Obviously, when it comes to polynomial algorithms the degree of the polynomial is a mea-
sure of its efficiency: the lower the degree the better the procedure. We can also have
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(a) (b)

(c)

Figure 2.1: Example of a continuous (2.1b), a pure integer (2.1a) and a mixed integer (2.1c) linear set
defined by a finite number of linear inequalities in IR2.
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different trends for complexity, such as exponential or hyper-exponential. The latter, from
a certain value on, grows faster than a polynomial and are therefore considered inefficient.

Another important class of problems is the non-deterministic polynomial-time class, or NP
class.

Definition 2.3. A decision problem belong to the complexity class NP if there exists a
polynomial algorithm able to prove the validity of all the instances with a "yes"-certificate.

Roughly speaking, given a problem, each instance with a positive answer can be certified be-
ing so in polynomial time. This implies that the "yes"-certificate itself shows a size bounded
by a polynomial. On the other hand, for a "no"-answer instance we are not able to certify
whether the solution is correct or not in polynomial time. Mirror-like, to the class co-NP
belong all decision problems such that their "no"-certificate can be proved polynomially
while we cannot claim the same for its "yes"-answers instances.
Clearly, class NP includes all problem in P (P ⊆ NP), but we still do not know if the two
classes coincide (P = NP). Besides, we have that P ⊆ co-NP and therefore P ⊆ NP ∩
co-NP. In particular, the problems belonging to NP ∩ co-NP are those having a certifi-
cation for both the positive and negative answer case.
The NP class also includes NP-complete problems, known to be among the hardest prob-
lems.

Definition 2.4. A decision problem Π ∈ NP is said to be NP-complete if every problem
in NP can be reduced to Π in polynomial time.

Analogously, we have that Π is co-NP-complete if all other decision problems in co-NP
can be reduced to Π in polynomial time. Bear in mind that, when reducing a problem Π1

in a different one Π2, each instance with a "yes" answer in Π1 must generate a "yes" answer
in Π2. Further, if we consider a generic problem (not necessarily in NP) we can define the
following subset of problems:

Definition 2.5. A problem Π is said to be NP-hard if all other decision problems in NP
can be reduced to Π in polynomial time.

Hence we call NP-hard the problems whose complexity is considered at least as hard of any
other problem in NP. The basic example of an NP-hard problem is integer programming.
We remark that proving that a NP-complete problem can be solved by a polynomial al-
gorithm implies that all problems in NP are solvable in polynomial time, thus classes P
and NP are essentially the same class. Figure 2.2 shows the Euler diagrams for the above
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(a) P 6= NP assumption. (b) P = NP assumption.

Figure 2.2: Euler diagram for the complexity classes P, NP, NP-complete and NP-hard.

mentioned complexity classes assuming that P 6= NP (Figure 2.2a) and P = NP (Figure
2.2b).

2.2.2 Branch&Bound algorithms

The resolution of an linear program can be a non trivial task. In particular, solving an
ILP can be an hard mission since integer programming belongs to the NP-hard class. In
general, the most used approach is to exploit a relaxation of the original problem, hence
a set P ⊃ S, that is able to provide a good approximate solution easily. Such a solution
gives a lower bound (LB) (lower bound (UB)) for a minimization (maximization) problem
since it provides a lower (upper) limit for the optimal value reachable by the original integer
problem. By definition, the set P ⊃ S contains all points of S and it can hence provide a
solution at least (at most) equal to the one of the optimum value x∗ ∈ S. Moreover, a LB
(UB) allows to certify the quality of an integer solution, the shorter the distance within the
LB (UB) and a solution value, the closer the optimal integer value.
Now, given a generic MILP, a linear relaxation of S can be defined by a polyhedron of
the type P = {(x, y) ∈ IRnx × IRny : Dx + Qy ≤ u} ⊇ S. When D = A, Q = G

and u = b we call such polyhedron a natural linear relaxation of S. Note that P is
simply obtained by changing the domain of the x variables, from natural to real num-
ber. The corresponding natural Linear Program (LP) relaxation is hence formulated as
min{(x, y) ∈ IRnx × IRny : Ax+By ≤ b}.
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one of the most adopted approach using this basic concept is the Branch&Bound algorithm
(B&B). The algorithm proposes the exploration of the feasible region through an implicit
enumeration and the bounding of the objective value. In fact, the explicit enumeration
of all eligible solutions is in most of the cases computationally expensive and basically
an impracticable way. Given sufficient time, the B&B guarantees to find, if it exists, the
optimum of a ILP model and is hence classified as an exact algorithm.
Now, said Π = min{cx : x ∈ S}, with S = {x ∈ Zn : Ax ≤ b}, and being P = {x ∈ IRn :

Ax ≤ b} its relaxed polyhedron, we can rewrite Π as min{cx : x ∈ P ∩ Zn} and define its
natural relaxation as min{cx : x ∈ P}. The B&B proceeds partitioning the feasible region
into smaller subsets Pi and inserting them in a list L. By definition, all subsets must satisfy
the following properties:

•
⋃

i Pi = P, i.e. the union of all subsets is the polyhedron P;

• Pi ∩ Pj = ∅ for all pair-wise subsets with i 6= j, i.e. the intersection of any pair of
different subsets must be null.

Then, taken a subset Pi in the list L of all partitions, the algorithm solves the associated
problem min{cx : x ∈ Pi} and finds an optimal solution xi. We say that zi = cxi is its
relative optimum value. In particular, said z∗ the optimum value obtained so far, when
selecting (and removing) a subset Pi from the list L to solve it, the following two situations
can occur:

• zi = cxi < z∗, then the algorithm checks if the solution is integer. If xi ∈ Zn the
current value z∗ is updated and set equal to cxi, otherwise the current subset is further
partitioned into subsets that are easier to analyze and that will be added to the list
L. these new subsets must contain all the integer solutions of Pi but xi;

• zi = cxi ≥ z∗ and, since the considered subset cannot generate a solution that is better
than the current one, we can simply discard t.

We remark that if Pi = ∅ then the subset does not need to be considered any further and in
this case we say that is has been pruned. The algorithm terminates when all the sets in the
list L have been analyzed and an optimal solution of value z∗ is returned. The evolution
of the algorithm can be represented with a tree, called branching (or enumeration) tree. A
flowchart resuming the B&B steps for a minimization ILP is presented in Figure 2.3.

As the algorithm name suggests, the two main components of the algorithms are the branch-
ing technique, which allows to divide the problem in simpler sub-problems, and the bounding
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Figure 2.3: Flowchart of the steps performed by the Branch&Bound algorithm to solve a minimization
problem.
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technique, which allows to limit the search space by the evaluation of the solutions found.
The idea beyond the B&B algorithm is very simple, but of course there are several ways
to implement it. From the choice of the relaxed formulation1 to the criteria of selection for
the problems and branching variables, a number of factor influences the computational time
taken by the algorithm. One can also modify the objective function or settle for producing
only a good LB for each problem in order to speed up the resolution phase. Furthermore,
alternatives and variants of the algorithm can include additional phases before the branch-
ing steps. An example is given by the so called Branch&Cut algorithm that strengths the
LP formulation thanks to the addition of constraints limiting the feasible region of the re-
laxation. This constraints are called cuts and are based on the idea to find an inequality
of type αx ≤ β that "cuts out" and separate a current solution xi /∈ S, obtained solving
the problem in Pi. One can thus define a new polyhedron P ′

i := Pi ∩ {x : αx ≤ β} that
is stronger than the original formulation Pi. In fact, since S ⊆ P ′

i ⊂ Pi, the optimal value
provided by P ′

i will be at least equal to the one given by xi. We refer to the application of
this method as cutting plane. Of course the number of cuts satisfying this type of criterion
is infinite and some choices may be more effective than others in paving the way through the
integer optimum. However, even though the selection is made empirically and there is "no
free lunch", the Branch&Cut method represents still the foundation of the best state-of-art
commercial solver for integer programming.

2.2.3 Primal-dual algorithms

We now introduce the duality theory. This theory provides extremely relevant results both
from the theoretical and algorithmic perspectives. In particular, the duality theory allows to
associate to an optimization problem its dual problem which, under determined hypotheses,
may have a simpler structure and may be more prone to be exploited from a theoretical
and/or computational point of view.
In the following we give the definition of the dual problem and present one of the most
important theorem of linear programming. W.l.o.g with A, b, c we indicate respectively a
matrix in IRm×n, a vector in IRm, a vector in IRn, and with x and y we denote two variable
vectors belonging respectively to IRn and IRm.

Definition 2.6. Given a linear program of the type max{cx: Ax ≤ b}, its dual problem is
defined as min{yb: yA = c, y ≥ 0}. We refer to max{cx: Ax ≤ b} as primal problem.

1 For example, said xi ∈ Pi a feasible vector with xj being a fractional component, we can divide Pi

into two sets such that Pp = Pi ∩ {xj ≤ bxi
jc} and Pq = Pi ∩ {xj ≥ dxi

je}. Such a base partition
method is called binary branching.
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Theorem 2.1. Said P := {x : Ax ≤ b} and D := {y : yA = c, y ≥ 0} the polyhedra relative
to a primal problem and its dual, with both P 6= ∅ and D 6= ∅, then there exists a solution
x∗ ∈ P and a solution y∗ ∈ D and for them it applies that max{cx : Ax ≤ b} = min{yb :

yA = c, y ≥ 0}.

In other words, Theorem 2.1 claims that the optimality of a solution of a (primal) problem
can be demonstrated by giving for its dual a solution of equivalent value. This property is
called strong duality. It further follows that:

Corollary 2.1. Given a couple of primal and dual problems, max{cx : Ax ≤ b} and
min{yb : yA = c, y ≥ 0}, and said x̄ and ȳ two respectively feasible solutions, the following
statements are equivalent:

i) x̄ and ȳ are optimal respectively for max{cx : Ax ≤ b} and min{yb : yA = c, y ≥ 0};

ii) cx̄ = ȳb;

iii) ȳ(Ax̄− b) = 0.

The condition in iii) of the Corollary 2.1 is called primary complementary slackness condi-
tion and is at the foundations of the primal-dual approach. It states that for every non-zero
component of the variable vector y, the corresponding constraint of the primal problem is
satisfied at equality, i.e. it is active. We can also rewrite the Corollary 2.1 in a different
form:

Corollary 2.2. Given a couple of primal and dual problems min{cx : Ax ≥ b, x ≥ 0} and
max{yb : yA ≤ c, y ≥ 0}, and said x̄ and ȳ two respectively feasible solutions, the following
statements are equivalent:

i) x̄ and ȳ are optimal respectively for min{cx : Ax ≥ b, x ≥ 0} and max{yb : yA ≤
c, y ≥ 0};

ii) cx̄ = ȳb;

iii) (c− ȳA)x̄ = 0 and ȳ(Ax̄− b) = 0.

We call the first equality of iii) dual complementary slackness condition.

Primal and dual relations allow us to prove whether a linear program is unbounded of
infeasible. In particular, next theorem clears this point.
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Dual problem
Optimal solution Unbounded Infeasible

Optimal solution X - -
Unbounded - - XPrimal problem
Infeasible - X X

Table 2.1: Combinations that can occur in linear programming for a couple of primal and dual prob-
lems.

Theorem 2.2. Given a couple of primal and dual problems min{cx : Ax ≤ b} and max{yb :
yA = c, y ≥ 0}, the primal problem is unbounded if and only if its dual is infeasible. If the
primal problem admits an optimal solution, then also its dual admits an optimal solution.

Table 2.1 shows all possible combinations that can occur for a couple of primal and dual
problems. Observe that, the dual of a dual problem coincides with the primal problem.
We remark that the majority of the problem presented in practice admits a (finite number
of) solution(s), as in the case of the real-time train traffic rescheduling applications (see
Chapter 4). We therefore limit the discussion to this scenario.

Suppose now that we have a solution ȳ of the dual problem. A classical primal-dual method
proceeds searching for a solution of the primal problem x̄ that satisfies the complementary
slackness conditions. If none exists, a new feasible solution ŷ with a greater value can be
found solving the dual and the same procedure repeated until all the conditions are met
(until the optimality of both solutions is proved). Specifically, given feasible vector ȳ, we can
certify its optimality by solving an associated primal problem (restricted primal problem)
that minimizes the violation of the complementary slackness conditions while searching for
a solution in the feasible region. This approach leads to efficient algorithms when applied to
"weighted" optimization problems, since it allows to exploit the formulation of its unweighted
counterparts, which is an easier problem in most of the cases. Moreover, many of these type
of problems can be solved combinatorially instead of using linear programming techniques.
It is especially in these cases that the check on the slackness condition and the search for a
new feasible dual solution can be efficiently computed. This is why primal-dual methods are
also often devised to design good approximation algorithms for a (wide) variety of difficult
combinatorial problems.
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2.2.4 Row and Column generation methods

LPs may come with a large number of constraints defining the feasible region or may present
a huge number of variables, in this cases we can make use of two general techniques called
respectively row generation and column generation (or delayed column generation). The
word "generation" expresses the fact that a number of rows or columns are embodied in
the problem only as necessary. The crucial aspects of these approach retain in defining
the starting sub-problem (through warm-start techniques) and detecting, among all, the
best row and column candidates to integrate in it. Note that, as in the worst case scenario
we end up building the entire problem, both methods always require a finite number of steps.

The row generation method rests on the fact that only a subset of linear constraints is
actually needed to bound the area where good solutions can be found (think for example at
those problem whose feasible region is defined by all subset of a given ground set). Given
a generic optimization problem min{f(x) : x ∈ P}, this method starts selecting a basic
subset of constraints P ′ 6= ∅, such that P ⊂ P, and then proceeds by adding a row of the
matrix defining P every time we find a constraint violated by the current solution found in
P ′. The constraints added at each iteration define the region of the polyhedron where the
optimal solution is most likely to be achieved. Note that claiming the feasibility for a solu-
tion x in P is equivalent to state its optimality. Of course, in some cases one can also settle
for a feasible solution with an acceptable level of approximation. In case of an unbounded
problem the procedure terminates adding all constraints of the original polyhedron P.
Ideally, when adding a constraint we want to form the boundaries of the original polyhedron
and at the same time exclude a region of the polyhedron that is as large as possible. Besides,
we want to find a trade-off between the running time of the constraint identification phase
(separation phase) and the quality of the constraint added. We remark that the speed of
the algorithm is also decided by both the tractability of the problem solved at each itera-
tion and by the number of problems solved. The row generation method is usually used to
solve mixed integer programs, starting from the linear relaxation of the model and adding
rows to cut off the continuous values of integer variables, and is in general embodied in
Branch&Bound algorithms (see Section 2.2.2).

On the other hand, the idea under the column generation method is to solve a manageable
problem, called restricted master problem, defined only by a subset of variables and then
check whether the optimal solution of the restricted problem corresponds to the optimal
one of the whole problem, also called master problem. If the optimality check fails then
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new variables are added to the model in order to improve the "partial" solution. In formal
terms, the variables added represents the columns of the constraint matrix that defines a
linear program feasible region. Note that to add a column in a primal problem implies to
add a (row) constraints in its dual and, from the point of view of the latter, the procedure
can be seen as a cutting plane method. Thus, to choose among the candidate variables that
will enter the restricted master problem we can once again exploit the duality theory.
Going into details, given a problem of the type min{cx : Ax ≥ b, x ≥ 0n} the best candi-
date variables are the ones with the higher potential to decrease the value of the objective
function. Now, said max{yb : yA ≤ c, y ≥ 0m} the dual problem and xK the optimal
solution found for the restricted problem on the variable subset K (with |K| < n), we can
compute the dual cost vector y∗. Then, to discover the most promising variable(s) we solve
the following problem, know as pricing problem:

max
i=1,..,n

σi := ci − y∗Ai (2.3)

where with Ai we indicate the i−th row of matrix A. The objective function σ is the reduced
cost vector and its components represent the amount by which each variable’s objective
function coefficient needs to improve before the relative variable could assume a positive
value. In other words, we calculate how much the objective function can change when
making a zero-valued variable positive. It follows that if no variable presents a negative
reduced cost, i.e. σ∗ = 0, the solution of the restricted problem is optimal for the master
problem and, in this case, the primal complementary slackness condition are also satisfied.
Otherwise, if σ∗ < 0 we add the variable(s) xi satisfying σ∗ = ci − y∗Ai to the restricted
master problem and iterate the procedure. The flowchart in Figure 2.4 summarizes all the
steps performed by a generic column generation algorithm.
In many cases the condition σ∗ ≮ 0 is satisfied before the main problem becomes computa-
tionally intractable. Clearly, the column generation approach is particularly efficient when
most of the variables in the final solution are equal to 0. A classical example of its efficient
use is the Cutting Stock Problem2. Other problems, typically belonging to the combinatorial
field, often addressed with this technique concern Crew Scheduling3 and Vehicle Routing4.
Moreover, such a procedure can be exploited in a B&B approach to compute the bound at
each node of the branching tree; this hybrid techniques is known as Branch&Price.

2 The Cutting Stock Problem is the problem of cutting pieces of stock material with a fixed width
into smaller pieces of specified size, minimizing the amount of wasted material.

3 The Crew Scheduling Problem is the problem of assigning a group of crew members to a set of
scheduled flight or railway routes.

4 The Vehicle Routing Problem is the problem of finding an optimal route for a fleet of vehicles
visiting a set of locations.
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Figure 2.4: Flowchart of the steps performed by a generic column generation method.
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2.3 Elements of graph theory

Graphs are one of the most fundamental combinatorial structure. In this section we report
some essential definitions and present the basic elements that characterize the graph theory:
circuits, paths and trees. We then expose two well-known combinatorial problems that have
numerous and diverse applications.

2.3.1 Basic definitions

The graph theory studies the metric and topological properties of binary relations between
objects. A graph is a collection of vertices (also referred as node) and edges (also called arcs
or links) connecting them pairwise. More formally:

Definition 2.7. An (undirected) graph G is a triple (V,E,Φ) with V and E being disjoint
finite sets of vertices and edges and Φ a function that associate with each edge a pair of
vertices.

Usually, we simply write G(V,E) and implicitly imply the incidence function Φ. For the
sake of completeness we also report the notion of subgraph.

Definition 2.8. A subgraph H(V ′, E′) of G(V,E) is a graph defined on V ′ ⊆ V and E′ ⊆ E.
Given a subset of vertices N , a subgraph H(V ′, E′) with V ′ = V \N is said induced by N

if E′ = {{u, v} ∈ E : u, v ∈ V ′}. We refer to it as G(N). A subgraph H(V ′, E′) of G(V,E)

is spanning if V ′ = V .

In a directed graph we consider oriented edges connecting an head node to a tail node,
while an undirected graph is made up of non-ordered pairs of end nodes. Two vertices
connected by an edge are said adjacent to each other (or neighbors) and the edge is said
to be incident to them. Given a vertex v, the set of all neighbors vertices is given by
Γ(v) = {V 3 u : {u, v} ∈ E}. Besides, we denote with δ(v) the set of edges incident with
v, and with |δ(v)| the degree of node v. A vertex with degree equal to 0 is called isolated.
In particular, for a directed graph we have δ+(v) is the set of edges with head node in v

and δ−(v) the set of edges with v as tail node. By extension, given a set N ⊆ V , δ(N) is
the set of edges with an end node in N and the other in V \ N ; we call δ(N) a cut. An
edge connecting a vertex to itself is called loop, while two edges that are incident to the
same ends are said parallel. A graph is called simple if there are no loops and parallel edges.
In the remaining we will consider only simple graphs. Moreover, given a graph G(V,E),
the cardinality of the set V gives the order of the graph and is usually indicated with n,
while the number of elements in the set E denotes the size of the graph and is commonly
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Figure 2.5: Example of a complete graph having order equal to 5. The vertex label reports the vertex
degree.

indicated with m. A graph is said complete if it is simple and any pair of vertices in V is
connected by an edge. Its degree is thus equal to m = n · (n− 1) \ 2 and each vertex has a
degree of (n− 1). An example of a complete graph with 5 vertices (with degree equal to 4)
is shown in Figure 2.5. Lastly, given a graph G(V,E), a complement graph Ḡ(V, Ē) is such
that Ĝ(V,E ∪ Ē) is a complete graph.

Special structures.

Definition 2.9. A walk is an alternating sequence of vertices and edges in a graph. It is
said open if the first and last vertex differ, closed otherwise.

Said {v1, {v1, v2}, v2, ..., vn−1, {vn−1, vn}, vn} a walk, we call {v1, vn} terminal vertices and
{v2, ..., vn−1} internal vertices. The number of edges in the walk determines the length of
the walk. Note that some vertices and/or edges can be repeated. In the following we report
the definitions of some basic graph structures.

Definition 2.10. A trial is a walk with all distinct edges.

Definition 2.11. A circuit is a closed trial.

Definition 2.12. A path is a trial with all distinct vertices.

Definition 2.13. A cycle is a closed path.

Depending on whether we consider an undirected graph or a directed one, walks, trials,
circuits, paths and cycles may be oriented or not. We call a directed acyclic graph a DAG.
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Connectivity.

An undirected graph is connected if it exists a path connecting any two pairs of vertices.
Each connected subgraph is called a connected component or simply a component. A directed
graph is said strongly connected if, for any pair of vertices u and v, it exists a path connecting
u to v and a path connecting v to u. The strongly connected components of a directed graph
are represented by its strongly connected maximal subgraphs. We highlight that:

Theorem 2.3. A graph G(V,E) is connected if and only if each subset N of vertices, such
that ∅ 6= N 6= V , with δ(N) 6= ∅.

Definition 2.14. A forest is an acyclic graph, i.e. a graph that does not contain any cycle.

Definition 2.15. A tree is an acyclic connected graph.

We can also say that a forest is a collection of trees. Observe that, given a tree, there is
always a unique path between any pair of vertices.

2.3.2 Shortest Path problem

Given a graph G(V,E), we can associate a real cost (weight or length) ce to each edge e ∈ e.
Said P a path in G its cost can be hence calculated as c(P ) =

∑
e∈P ce. We can now

formulate the Shortest Path Problem (SPP) as follows:

Definition 2.16. Given a graph G(V,E), a source node s ∈ V and a destination node
t ∈ V , and said c ∈ IR|E| the cost vector of edges, find a path P from s to t with minimum
cost c(P ).

The SPP can be also formulated considering different variations. For example, we may
have only a source vector and we aim to find the shortest path from it to all other vertices
(single-source shortest path problem) or we may want to find the shortest paths between
every pair of nodes (all-pairs shortest path problem). Moreover, by reversing the direction
of each edge in the graph, the problem of a single-destination shortest path problem can
be reduces to a single-source shortest path problem. Figure 2.6a shows an example of a
directed connected graph and reports the costs associated with all edges. For In Figure 2.6b
we highlight in blue the shortest path between its nodes s and t, such a path has an optimal
value equal to 6.
By definition, if the graph is connected we know that there exists a path P connecting
any two pairs of nodes. In this case we can hence exclude the infeasibility of a SPP. Next
theorem, that applies both for directed and undirected graphs, states the condition under
which the problem is also bounded (and admits an optimal solution).
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(a) A directed and connected simple graph.

(b) Shortest path from node s to node t.

Figure 2.6: Example of a shortest path from s to t for a directed and connected graph.

Theorem 2.4. Given a connected graph G(V,E), a source node s ∈ V and a destination
node t ∈ V , and said c ∈ IR|E| the edges cost vector, it exists a shortest path from s to t if
and only if G does not contain negative cost cycles.

Proof. Note that, since G(V,E) is connected, there exists at least a path P connecting
node s to node t.
If. If no negative cost cycles exist, we can remove all cycles without increasing the cost of
all possible paths. Then, we can compute a finite number of paths between s and t and
choose the one with lower cost.
Only if. Suppose now that it exists a cycle going from u to v having a negative cost. Since
the graph is connected, we can construct a path P ′ going from s to u, traversing the cycle
an arbitrary number of times and then connecting v to t. Thus, we can always produce a
path with a lower (negative) cost and this proves that no solution is optimal and that the
problem is instead unbounded.
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Form the mathematical standpoint, a path P can be defined by an incidence vector x ∈
{0, 1}|E| of the type:

xe =

{
1 if edge e belong to P

0 otherwise

Moreover, for a path P going from vertex s to vertex t we have that:

(i)
∑

e∈δ−(s) xe = 1 for the source vertex s;

(ii)
∑

e∈δ+(t) xe = 1 for the destination vertex t;

(iii)
∑

e∈δ−(v) xe =
∑

e∈δ+(v) xe for all other vertices such that v 6= {s, t}.

Hence, the SPP can be simply stated as an ILP of the form: min{cx : x s.t. (i)-(iii), x ∈
{0, 1}|E|}. When no negative cost cycles exists the SPP can be easily solved and the optimal
path found efficiently (see Dijkstra’s algorithm, Floyd-Warshall’s algorithm, Bellman – Ford
algorithm etc.). The SPP resolution turns harder when the cycles do exist and the problem
belongs, in this case, to the class of NP-hard problems (see Section 2.2.1).
However, such a particularly complex issue goes beyond the scope of this work and we refer
an interested reader to [36] for a more in-depth discussion. We instead conclude the section
by presenting a problem related to the SPP that we will use in the future chapters, namely
the (single-pair) Longest Path Problem (LPP) on a DAG:

Definition 2.17. Given a DAG G(V,E), a source node s ∈ V and a destination node
t ∈ V , and said l ∈ IR|E| the edges length vector, find a path P with maximal length l(P ).

We underline that the LPP can be seen as a SPP obtained by inverting the sign of the
cost vector. From the Theorem 2.4 and the assumption of a DAG, it immediately follows
that there always exists an optimal solution for the problem. Moreover, a crucial result for
all scheduling problems is that such a solution can be computed in linear time thanks to a
topological ordering.

2.3.3 Maximal Stable Set problem

Said G(V,E) a graph, a stable set (independent set or vertex packing) S is a set of nodes no
two of which are adjacent. We call a clique a set C of pairwise adjacent nodes. Therefore,
given a stable set S there is no edge in G(V,E) connecting two vertices of S. On the other
hand, given a clique C there is always one connecting two node in it. The size of a stable
set (clique) is given by the number of vertices in the set and is referred as stability number.
We call a stable set (clique) maximal if it is not properly contained in any other stable
set (clique) of the graph. That is, no other vertex v ∈ V \ S (v ∈ V \ C) can join the
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Figure 2.7: Examples of stable sets (colored nodes) for a graph. The blue nodes belong to maximal
stable sets.

Figure 2.8: A set of nodes defines a maximal stable in a graph if and only if it defines a maximal
clique in its complement graph.

stable set S (clique C) and increase its size. We remark that the subgraph G(C) induced
by a maximal clique C is always complete. In Figure 2.7 we mark in red two different ex-
amples of stable sets for a graph and color the two maximal stable sets of the graph in blue.

The Maximal Stable Set Problem (MSSP) is a typical example of an NP-hard combinatorial
problem that has many real-life applications. It can be formally defined as follows:

Definition 2.18. Given a graph G(V,E), the Maximal Stable Set Problem (MSSP) is the
problem of finding a stable set that is maximal in it.

Note that the MSSP in G(V,E) is equivalent to the problem of finding a clique of maximum
cardinality in its complement graph Ḡ(V, Ē) (see Figure 2.8 for an example). Moreover,
said G(V,E) a weighted graph and W (·) the function that associates to each vertex v a
(rational) weight wv, we can define the weight of a stable set S as W (S) =

∑
v∈S wv. Then:

Definition 2.19. Given a graph G(V,E) and a weight function W (·), the Maximum Weight
Stable Set Problem (MWSSP) is the problem of finding a stable set S of maximum weight
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W (S).

The MSSP can be seen as a particular case of the Maximum Weight Stable Set Problem
(MWSSP), where all the vertices have a weight equal to 1. Besides, as for the MSSP,
searching for a maximum weight stable set in G(V,E) is equivalent to search for a maxi-
mum weighted clique in Ḡ(V, Ē).

The M(W)SSP can be mathematically defined through many different and equivalent for-
mulations of integer programming. Before providing a pure binary model for it, we need to
introduce the definition of a packing constraint. Indeed, all the integer programming solvers
in commerce rely on the graph representations of this type of constraints to formulate the
logical condition involving two (ore more) binary variables in an ILP.

Definition 2.20. Given a finite set E and a family F := {F1, ...., Fn} of subsets of E, a
subset S ⊆ E is a packing of F if S intersects each member of the family F at most once.
We have that:

S := {x ∈ {0, 1}|E| :
∑

v∈Fi
xv ≤ 1 , ∀ Fi ∈ F} .

Next, we define the incidence vector x ∈ {0, 1}|V | of a set S as:

xv =

{
1 if node v belong to S

0 otherwise

Now, since the set of edges E ⊆ V × V of a graph G(V,E) is a family of subsets of V , the
MWSSP can be therefore formulated through a group of packing constraints. We have the
following edge formulation:

max
∑

v∈V wvxv

s.t. xu + xv ≤ 1 ∀ {u, v} ∈ E

xv ∈ {0, 1} ∀ v ∈ V .

(2.4)

In general, such a formulation does not provide thigh bound, that is the value of the optimal
solution of its LP relaxation is not close to the optimal integer solution of (2.4). However,
the formulation can be strengthened by exploiting some families of inequalities, like those
related to cliques. In fact, one can replace the edge constraints of all pairs of nodes joining
a clique with a single condition of the type

∑
v∈C xv ≤ 1. This inequality allows to both

reduce the number of constraints and tighten the formulation. The strongest formulation
is then obtained by defining the packing constraints relative to all maximal cliques. Note
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that the inequality generated by a clique C ′ such that C ′ ⊂ C is always dominated by the
inequality defined by the clique C. Unfortunately, the number of clique inequalities of a
graph can be exponential and the related separation problem is also NP-hard.
A wide variety of heuristic and exact methods, and even reinforcement learning algorithms,
have been proposed over the years to solve the M(W)SSP, since the problem becomes very
difficult as the size of the graph increases. Naturally, one can also exploit the special
structure of the problems under analysis to add valid inequalities and provide tighter con-
straints. Besides, many families of graphs exhibit properties that make the MWSSP solvable
in polynomial time. In the present work we make use of MWSSP as a subroutine of the
implemented algorithm for real-time train re-scheduling (see Chapter 4).
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Chapter 3

The Real-time Train
re-Scheduling Problem

3.1 Introduction

Real-time train re-Scheduling is one of the most challenging tasks of the railway systems
management. Due to the limited solution time, the high interaction between processes,
and the different and sometimes conflicting needs of the agents involved in the process, the
search for a global (and optimal) new schedule can be hard and laborious. Moreover, an
initial delay on a train route can propagate as a secondary delay on other portions of the
network causing severe knock-on effects on the whole system. The wider the disturbance
taking place in the net, the harder is the recovering of the timetable planned off-line. The
dispatchers have the arduous task of supervising the correct traffic execution and intervene,
according to aforethought control sequences and dispatching rules, to re-establish a reg-
ular flow. In addition, the uncertainty on the future state of the network contributes to
increase the inherent complexity of the problem. Indeed, the solution just reached through
a re-scheduling may become impractical in the near future as a result of additional system
disturbances and disruptions.

Over the past 50 years, the literature focused on the mathematical representation and res-
olution of the Real-time Train re-Scheduling Problem (RTSP) while its implementation in
the field still leaves key players in traffic management skeptical. As a matter of facts, the
Decision Support Systems (DSSs) and Advanced Traffic Management Systems (ATMSs)
practically implemented in the recent years have been limited to small sub-systems and
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resulted to be capable to tackle only "smooth" disturbances. Commonly, the structure of
RTSP reduces to a Job-shop Scheduling Problem (JSP): the jobs are trains, while the se-
quences of operations performed on the different machines are represented by the track
segments traversed on the train service routes. Scheduled arrival and departure times are
seen as due dates, whilst additional constraints may establish precedence orders between
operations and other system requirements. In general, the railway system modelling can be
done using a macroscopic or a microscopic approach, depending on the level of detail con-
sidered for the network. Usually, the primary goal is the minimization of the deviation from
the off-line timetable that, in most of the cases, is translated in terms of primary and/or
secondary delays. On the other hand, the plans cost-effectiveness is often marginally af-
fected by rescheduling due to disturbances and/or disruptions and, for this reason, is poorly
addressed in the literature. The resolution of the RTSP is commonly addressed to the use
of disjunctive graph formulations and the problem is easily translated into Mixed Integer
Linear Programs (MILPs) (the so called big-M formulations). Alternative formulations for
train scheduling, and for the scheduling problems in general ([131]), come from the use of
pure binary models, as for the time-indexed formulation. However, the search for a feasible,
and/or optimal, schedule is not so trivial as its modelling and different approaches and
algorithms, heuristics and meta-heuristics have been proposed through the years.

The aim of this chapter is firstly to define in a structured way the RTSP, and secondly to
present the basic mathematical concepts and the main approaches adopted in the literature
to solve it (Section 3.2 and Section 3.3). In Section 3.4 we introduce the notions required to
understand the models and techniques we implemented to tackle the train dispatching in a
reactive and proactive way (see Chapter 4 and Chapter 5). In particular, we show how the
RTSP can be formulated as a JSP and solved through the use of disjunctive programming
and linear models. A brief discussion on the motivations that led us to the model presented
in Chapter 4 closes the chapter.

3.2 State-of-the-art

The scientific literature on train scheduling is very extensive and dates back almost half
a century. From the first example of linear programming in the train scheduling problem
in the early 70’s (see [145]), similar approaches exploiting Branch&Bound techniques were
adopted in the next decades for the timetable construction of single-track lines ([84, 85, 88,
115, 123, 126]). In 2004, the blocking time theory, which allows a blocking time stairway
to be reserved for each train and avoids any time overlapping between two different rolling
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Figure 3.1: Example of macroscopic, mesoscopic and microscopic representation of a portion of a
railway network made by two main lines and a station.

stocks (see [150]), is finally recognized as a standard. Since its successfully introduction in
the re-scheduling models (thanks to the use of the disjunctive graph formulations [113]),
a number of applications exploiting its possible translation into (mixed) integer programs
have been proposed in the literature making it the most widely used approach ([135]).
Several models have been proposed to mathematically represent the train scheduling prob-
lem through the years. According to the level of detail they can be "roughly" categorized
into macroscopic or microscopic models. Note that there is no exact definition for the char-
acteristics of each classification and the distinction is often blurry. We can also find models
that combine macro and micro aspects, called mesoscopic models, as in [31] and [98]. Figure
3.1 shows an example of the three modelling approaches. Naturally, a trade-off between the
fine modelling and the formulation efficiency should be considered. Work [93] reports the
performance, in terms of solution quality and computation times, of different modelling
choices. Most of the models proposed so far represent the time horizon as time-continuous,
while the discrete-time representation turns out to be less addressed. A rigorous definition
of the these two methods, with their strengths and weaknesses, is presented in [107] where
the authors analyze the use of integer programming to formulate and solve train dispatch-
ing problems. Moreover, in [80] Harrod and Schlechte compare the physical block occupancy
and the timed block occupancy representation on a set of instances and establish a relevant
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baseline comparison, concluding that the two models provide comparable solutions in the
aggregate.

Extensive surveys tackling different aspects of the RTSP can be found in [16], [27], [38],
[46], [64], [91], [100], [96] and [159].
Paper [38] conducts a preliminary wide investigation of rail optimization in all its aspects,
from strategic planning to routing and scheduling.
In [27], in addition to providing a clear distinction between the terms disturbance and dis-
ruption (see next Section for more details), Cacchiani at al. classify the academic literature
into two categories, dealing with macroscopic or microscopic approach. They point out
that the number of models treating a macroscopic level of detail far exceeds the number of
microscopic models studied. Besides, they show how the number of works addressing the
customer perspective is quite limited.
In [64] Fang et al. review 128 papers and, like previously published surveys [118] and [148],
divide the management of a railway system in four levels (strategic, tactical, operational
and re-scheduling) that differ for the decision level considered and the time horizon spanned.
The articles are classified based on the mathematical/non-mathematical strategies adopted,
the solution approaches, the problem types and the chosen objective functions.
Corman and Meng in [46] give a specific focus on the dynamic and stochastic aspects of
the railway traffic re-scheduling problems. Two main distinctions are explored: static ap-
proaches (executed once and for all) versus dynamic approaches (acquiring information over
time); and reactive approaches (considering no future) versus proactive approaches (looking
probabilistically at the next states of the system).
On the other hand, the work presented by Lamorgese et al. in [100] provides an overview on
different train dispatching aspects and summarizes the solution methods adopted over the
years to solve them. The authors push for a greater exploitation of the theoretical results
achieved in the practical development of automated re-scheduling systems.
Besides, passenger-oriented re-scheduling methods and models are investigated in [91], where
the authors suggest a more judicious choice of performance metrics to maximize customers
satisfaction.
Recent survey [159] categorizes 153 works after defining three different types of data-driven
models: stochastic methods, graphic models and machine leaning methods. Further, com-
prehensive reviews and relevant insights for the recent application of big data in the context
of railway engineering can be found in [74] and [95].
Paper [96] explores instead challenges and limitations of the Artificial Intelligence (AI) ap-
plications in the rail industry. Work [16] gives a comprehensive review of research projects
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and published articles after presenting the state-of-the-art of AI in the field. Currently, AI
is used to predict delays, avoid disruptions, regulate rolling stocks speeds, and more (see
[144] and [55]), and represents an effective lever to increase the market share of railroads.
The downside, however, is represented by a very real threat of cyber-attacks and by the
blurred line traced between passenger privacy and acquired information.

Nevertheless, most of the presented works are based on abstracted models and simplified
assumptions and none of the methods and algorithms proposed so far is able to solve real-
world or continental-scale train dispatching problems in a competitive time. There have
been only a handful of real-life implementations, and in any case rather small in size or
restricted to special cases. The implemented solution approaches are indeed typically lim-
ited to simple local heuristics, and most research advances remain on paper or, at best,
at the prototype level. Thankfully, the landscape has changed quite rapidly over the past
few years. Over the past two decades, the interest in the development of DSSs and large
scale Traffic Management Systems (TMSs) to automatize the dispatching process has grown
remarkably. Through the use of information technology systems, advanced software and re-
mote equipment, a TMS is able to provide a permanent control over the entire rail network
and enables long and short-term planning. A TMS may require human interaction to ap-
prove, validate, and implement the solution provided by the software (semi-automation) or
may directly forward the instructions to a signaling system (full automation). The poten-
tial of such support tools, and especially those embedding optimization-based algorithms,
is increasingly recognized by infrastructure managers and operators.
In [24] the authors discuss three success stories on integrated optimization in railway systems
and present a real-world successful implementations for each of them. As for the real-time
train dispatching area, they describe two real-time traffic control applications (reported in
[106] and [108]) on a Mass Transit (generally dedicated to urban public transport) and on
a Main Line (one of the main arteries of a railway system), which are capable to provide
a real-time timetable solution through a closed loop control and the use of MILP. The
optimization-based models were implemented for the metro system of the city of Milan and
for the Italian single-track line Trento-Bassano and were fully operative by the end of 2012.
Several European projects have also been launched in the practical field. Examples include:
ARRIVAL (Algorithms for Robust and on-line Railway optimisation) [61], whose aim was
to develop the foundation algorithmic research for robust and on-line train service plan-
ning; ON-TIME (Optimal Networks for Train Integration Management across Europe) [62],
carried out by a multidisciplinary team of 19 partners in 4 countries (Sweden, UK, Nether-
lands and Italy), the project developed new methods and processes to make the European
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rail network more reliable and resilient (see also [130]); and COMBINE (enhanced COntrol
center for a Moving Block signalling systEm) [60], for the implementation of innovative
optimization tools in the moving block traffic management systems (see also [114]).
In [49] a DSS called ROMA (Railway traffic Optimization by Means of Alternative graphs)
is applied in two densely used areas of the Dutch railways and proved to be able to suc-
cessfully handle real-time schedule disturbances. [58] presents ICONIS (Integrated CONtrol
and Information System), an advanced system implementing AGLIBRARY, a tailored opti-
mization system that is capable to quickly compute near-optimal conflict-free train schedules
and that has been applied to a large area of the British railway. A new operational traffic
control system whit a user-centred design process, called STEG (from Swedish "Steering
of Train Traffic with Electronic Graph"), has also been developed and operationally tested
in Sweden (see [149]). Furthermore, since 2011 INFORMS has issued a "Railroad Problem
Solving Competition" to promote the interest of railway operators in implementing auto-
mated decision-making systems. This year’s challenge focuses on a possible rule of the RFID
reader technology in producing a more accurate estimate for trains arrivals times (see [132]).
The Chinese project "Safety, Reliability, and Disruption Management of High-Speed Rail
(HSR) and Metro Systems" ([151]) aims to create the fundamental science and method-
ologies for rail safety, monitoring, and control by involving an international consortium of
experts.

In addition, some infrastructure managers in Europe, such as Bane NOR in Norway (see
[9]), DSB in Denmark (see [56]), UP in North America (see [87]), and others, have issued
tenders for a renewal of their TMSs including some explicit requirements for autonomous
and optimized real-time scheduling functions.
In North-America, Class I railroads1 Norfolk Southern and General Electric Company (GE)
deployed an automated movement planner which incorporates some optimization capabil-
ities. In [23] Bollapragada et al. show how the software-based optimization algorithm is
able to dispatch thousands of trains by considering, among other things, additional tasks
such as crew expiration and relief crews transportation. Using a Branch&Bound approach
with a beam-search branching strategy the algorithm delivers, in less than two minutes, an
eight-hour plan that minimizes the weighted sum of several objectives (formulated as eco-
nomic measurements). The GE movement planner was recently rolled out also by Aurizon,
the largest rail freight operator in Australia (see [4]).

1 The United States classifies the railroad carriers into Class I, II, or III according to size criteria
established by the Surface Transportation Board (STB). Class I includes the seven largest railroads
in North America.
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Similarly, the North America’s largest freight rail network BNSF Railway is directly in-
volved in advanced research on dispatch optimization. The work presented in [25] addresses
the railway multiterritory dispatch planning problem on this Class I railroad.
Far from being exhaustive, the above examples show that the interest in ATMSs is on the
rise and that the penetration of such tools, or at least the awareness of their potential, is
growing in the industry.

Besides, as highlighted by the authors of [92], an evaluation framework to access the real
capability and performances of the various algorithms and approaches proposed in the lit-
erature is still missing. They hence propose a tool that can be exploited by practitioners to
select the most appropriate strategy to adopt, considering the characteristics of the railway
system under analysis.

3.3 Problem description

A railway network is a set of basic elements, such as lines, stations, tracks, junctions and sig-
nals (see Figure 3.2). In the first place, a railway can be decomposed in sub-networks called
lines. Lines can be traversed by trains in two directions, conventionally called east-bound
and west-bound. Each line can be thus defined as the ordered set of the track segments (or
block sections) that make up its route and that can accommodate only a train at a time.
The beginning and the end of each track segment is denoted by the presence of a signal.
According to the color of the signal (red, green or yellow in a standard fixed block signaling
system) some train movements can be denied. Signals, in combination with interlocking and
Automatic Train Protection (ATP)2 systems, enable compliance with the minimum safety
distance among trains. In a fixed block system only a train at time is allowed to occupy
a track segment, while in a moving block system the safety is maintained thanks to speed
regulation and the continuous control on train positions. We refer the reader to [124] and
[76] for further information on the argument.

With the term stations we identify railway facilities (or areas) where trains can stop, pos-
sibly load/unload passengers and/or freight and perform service operations. A station can
be reached directly through segments on adjacent tracks, or from different tracks thanks to
junctions (or switches) that allow the connection.
A train visits a sequence of stations running on track segments in two possible directions.

2 The ATP is a type of train safety system that continuously monitors the speed of trains and is able
to force the rolling stocks braking in some circumstances.
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Figure 3.2: Schematic microscopic representation of the main elements of a railway system.

Trains running in opposite directions are called crossing trains and may share some tracks
on the network; they will cross them in opposite orders. Trains running in the same di-
rection are instead called followers. Each train has its own speed profile depending on the
rolling stock and infrastructure characteristics, and on the actions taken by the driver. The
train speed profile influences the running time (or occupation time) needed by each train to
traverse a segment. We can distinguish between a theoretic (nominal/scheduled) running
time and the running time truly occurred when observing a railway system or sub-system.
Usually, the theoretic running time is given as the sum of the time needed by the train to
traverse a segment at a theoretical speed plus a possible dwell time at a platform and some
buffer times inserted to avoid/reduce potential delays.
A timetable is a list of all established trains routes and their scheduled times planned off-
line to meet the railway system traffic constraints and requirements. A sequence of track
segments to be visited is given for each train, along with the expected arrival and depar-
ture times. One can visualize the trains movements on a net using a train graph, a tool
displaying, as a function of time, all trains running across the main rail segments. Figure
3.3 shows an example. On the y-axis we can see a portion of a railway line, while the time is
plotted on the x-axis. Each piece-wise line on the graph depicts a trains, moving from A to
B with a positive slope, and from B to A when showing a negative slope. The slopes of the
segmented lines make it possible also to represent trains speeds: the higher the slope the
faster the train. Note that a train waiting at a track segment is represented by an horizontal
line. The points were two line intersect indicate instead meet-and-pass events, i.e. locations
where trains moving in opposite directions may meet. It is here that the priorities and the
timing for the blocks occupancy must be decided.
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Figure 3.3: Example of a train graph that allows to visualize all trains movements on a portion of a
railway line going from station A to station B.
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The formulation of a timetable is typically done off-line by means of efficient mathematical
programming and optimization techniques. With the work [29] the authors present the
state-of-the-art methods for obtaining robust timetables, i.e. plans capable to avoid the
delay propagation as much as possible, and show their main advantages and drawbacks.
While paper [28] reviews the literature on nominal and robust versions of the problem,
highlighting the differences between several models and methods developed over the years.
Still, the real-time application of this planned schedules remains non-trivial. A large set of
endogenous and exogenous factors and unexpected events can influence the trains adher-
ence to the established times. Weather conditions, over-crowded stations platforms, drivers
behaviors, rolling stocks breakdowns, damages at the physical infrastructure or signal mal-
functions, can determine delays and deviations from the planned activity. Work [27] makes
a distinction between unexpected events that cause minor deviations from the scheduled
times, referred in the literature as disturbance, and incidents causing the interruption of the
railway system, denoted with the term disruption.
We can also classify the delays in primary (or initial) delays and secondary (or knock-on)
delays. The first refers to the delays affecting the track segment(s) or the network area
where the disturbance/disruption occurred, while the secondary delays are generated by
the propagation of the primary ones. Goverde ([77]) analyzes the delay propagation behav-
ior through an algorithm capable of handling large-scale networks. Paper [137] investigates
instead on how to determine, once given the amount of delay registered, its primary and
secondary causes through some Machine Learning techniques.
The occurrence of delays can make a timetable infeasible and produce conflicts and dead-
locks. We say that there is a conflict between two, or more, trains if they are trying to access
a track segment at the same time. On the other hand, in a deadlock configuration trains
cannot move ahead due to the positioning of other trains; in this case at least one rolling
stock must be moved backwards to restore a feasible situation. A set of trains is called
bound-to-deadlock if, starting from their current positions and time, they will inevitably end
up in a deadlock (see [48] for a more in-depth discussion).

The real-time train re-scheduling, also referred as train dispatching, aims at restoring a
feasible and reliable situation for the railway system. We can separate two different facets:
the traffic re-scheduling from the transport service re-scheduling. The aim of the traffic re-
scheduling is to establish new scheduled times for the trains affected by a delay acting on
service re-timing and re-ordering. On the other hand, the transport service re-scheduling
concerns the possibility to define new trains routes, the cancellation of some courses and the
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Figure 3.4: Historic timetables of the Union Pacific Railroad dating back to 1866.

Source: https://www.uprrmuseum.org/uprrm/exhibits/curators-corner/employee-timetables/index.htm
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short-turning of the rolling stocks. Generally speaking, the main challenges of the real-time
re-scheduling lie in:

• the difficulty of acquiring accurate and up-to-date data from the field,

• the limited time available to take effective and efficient corrective actions,

• the complex implementation of an automated DSS that is required to be also fast and
reliable.

Moreover, depending on the network congestion and the amount of the primary and sec-
ondary delays, the generation of a new plan can be more or less difficult. In a high-traffic
system, most planners fail to provide a new global feasible schedule in a short time frame.
This can be due to both the time spent acquiring data from the system and the inherent
complexity of the solved model. The expertise of dispatchers is therefore critical to ensuring
continuity of service. Besides, since train operations are assumed to be stochastic processes,
the traffic controllers are called upon to choose between various strategies, such as adjusting
running speeds, altering dwell times, and modifying trains overtakes in order to absorb the
delays. We remark that, when a severe disruption occurs, they can make use of emergency
timetables (called contingency plans) that are computed off-line according to transport op-
erating companies and infrastructure managers guidelines.
When attempting to restore a timetable feasibility, the key goal is to deviate as little as
possible from the original plan. In doing so, the majority of the models proposed in the
literature focus on the minimization of trains delays. These can be averaged, summed, or
only the maximum can be considered; in addition, one can also account for knock-on de-
lays. Other objectives may relate to the maximization of passengers satisfaction (see [147])
or attempt to weight the perception of customer discomfort respect to the deviation from
the planned schedule. Similarly, speed regulation and energy consumption aspects, as well
as the possibility of track re-assignments, can be taken into account when modelling the
train re-scheduling at a microscopic level. For more comprehensive reviews on the topic we
address the reader to [27] and [64].

Summarizing, the RTSP can be defined as follows.

Definition 3.1. Given a network and its current state at time t, a set of trains, their ordered
list of movements along with the planned arrival and departure times in and from each track
segment, find a new feasible schedule by re-timing, re-sequencing and/or re-routing trains
according to their position at time t while minimizing a measure of the deviation from the
original timetable.
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3.4 Problem formulation

As first showed by Szpigel in 1973 ([145]), the RTSP can be formulated as a JSP. A JSP
is a well-known NP-hard combinatorial problem (see [3, 102, 128] and Section 2.2.1 for
insights) that can be defined as follows:

Definition 3.2. Given a set of machines, a set of jobs defined as a sequence of operation
and their processing times, assuming that the machines are unitary resources (i.e. each
machine can process a unique job at a time) find a schedule for all jobs optimizing a given
objective function.

A job is an ordered list of operations, referred also as tasks or activities. When an operation
is performed all at once on a specific resource, we say that no preemption is allowed. Com-
mon objectives used in the JSP are the minimization of the maximum completion times
or of the maximum lateness/tardiness or also the minimization of the number of tardy
jobs. Additional conditions relate to the tasks processing times, possible machine and/or
sequence-dependent setup times, no-overlapping requirements, and so on.

Szpigel pointed out that similarly in a RTSP each train/job requires the access to a set of
single-track lines/machine and we can define different constraints depending on the network
structure. However, the idea of modelling each track segment (rather than the entire line)
as a single resource became the mostly used approach in literature in the following years
(we refer to [46] and [135] for further and more detailed references).
In 2002, Mascis and Pacciarelli ([112] [113]) introduced a disjunctive graph representation
for the JSP with blocking and no-wait constraints, that is a generalization of the disjunctive
graph first introduced by [136]. According to a blocking constraints a job cannot move to
the next machine until it is set free by the precedent job. On the other hand, a no-wait
constraint ensures that, for each job, a task is performed immediately after the precedent one
and without interruptions. Since then, the disjunctive graph formulation has been applied
to a large number of applications of RTSP: [18, 40–44, 50–52, 59, 68, 69, 98, 108, 110]
only to mention a few examples. The reason is that the disjunctive programming allows
to suitably model the conflicts arising in railways systems and the blocking time theory
defined by the UIC ([150]). In fact, while a blocking constraints guarantee the absence of
conflicts and deadlocks in the timetable schedule (no swap blocking constraints - see [113]),
no-wait constraints can help ensure that the minimum departure times are met and force
trains to leave a blocking section as soon as possible. A disjunctive formulation can also be
easily expressed into the form of a MILP and can be solved through the use of well-known
mathematical programming techniques and commercial solvers. We will discuss this aspect
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further later on this chapter (see Section 3.4.2), while in the next section we present the
disjunctive graph theory more in detail.

3.4.1 Disjunctive Graph representation

Assuming that all trains routes are given, we can associate a disjunctive graph to each train
scheduling instance. The disjunctive graphs were introduced in the context of production
scheduling (see [6, 8, 136]), but in general they can be exploited to represent any problem
in which we need to schedule a set of events ([26]).
A disjunctive graph is a triple G = (N,E,D). The nodes in N correspond to the events that
need to be scheduled (e.g. start of operations, landing times of airplanes, train occupation of
track segments, project milestones, etc.). N also contains two special nodes o and n, called
start/origin and end/destination, which represent respectively the event start and the end
of a schedule. A schedule is a vector τ ∈ IRN

+ which associates a time to each event in N .
All events are scheduled after o and before n and we may assume w.l.o.g. that τo = 0. E is
the set of directed fixed edges (or arcs) that impose the time precedence relations between
events. In particular, a fixed edge (u, v) ∈ E of length luv ∈ IR+ implies that a constraint
of the form τv − τu ≥ luv has to be satisfied. Since no events can start before the start o

and after the end n, we have that:

i) τv − τo ≥ 0 for v ∈ N

ii) τn − τv ≥ 0 for v ∈ N .

Moreover, we can set lov = 0 for all edges (o, v) ∈ E with v ∈ N \ {o} and lvn = 0 for all
edges (v, n) ∈ E with v ∈ N \ {n}. Finally, each element d ∈ D is called a disjunctive arc.
It is an unordered pair of directed edges d = {(u, v), (q,m)} and represents the alternative
sequencing of four (not necessarily distinct) events u, v, q and m. An example is shown in
Figure 3.5. Given a disjunctive arc d, any feasible schedule must satisfy either τv − τu ≥ luv

or τm − τq ≥ lqm, with luv, lqm ∈ IR+. Now, said G = (N,E,D) a disjunctive graph and
l a distance vector, in order to find a feasible schedule for the corresponding scheduling
problem, we have to decide for each disjunctive arc which of the two directed edges has to
be "satisfied". A set S of directed edges is said to be a complete selection if it intersects
exactly once all disjunctive couples. Therefore, for each pair of edges in D one and only one
arc can be taken in a complete selection.
We say that a schedule is feasible if, (i) for each edge (u, v) ∈ E, we have that τv ≥ τu + luv

and (ii) for each disjunctive pair d = {(u, v), (q,m)} ∈ D, we have either τv − τu ≥ luv, or
τm − τq ≥ lmq, with luv, lmq ∈ IR+. The following is a key result for the job shop scheduling
(and for the graph theory in general - see Section 2.3.2):
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Figure 3.5: A disjunctive graph. The dashed red edges form a disjunctive pair of arcs.

Theorem 3.1. An instance of a scheduling problem defined by a disjunctive graph G =

(N,E,D) admits a feasible schedule if and only if there exists a complete selection S such
that the graph G(S) = (N,E ∪ S) does not contain a strictly positive directed cycle.

Such a selection is defined as consistent. In particular, given a feasible schedule τ ∈ IRN
+ ,

we can immediately derive a selection S(τ) such that G(S) does not contain directed cy-
cles, by letting, for each {(u, v), (q,m)} ∈ D, (u, v) ∈ S if τu ≥ τv + luv, and (q,m) ∈ S

otherwise. On the other hand, given a consistent selection S, one can easily derive a fea-
sible schedule τ(S) by applying a longest path tree algorithm to the digraph G(S) (see [127]).

Now, let u and v be two event belonging respectively to train i and j and requiring the
access to the same track segment r, and σ(u) be the subsequent operation of a generic event
u. We say that there is a blocking constraint between u and v if u cannot be processed
until resource r is set free by v and vice versa. We can represent this scenario with a pair of
disjunctive arcs (σ(v), u), (σ(u), v) with length equal to 0. The example is drawn in Figure
3.6, where the disjunctive pair of edges is represented in red and dashed, while solid black
arrows represent fixed edges. Note that we set lσ(u)v = lσ(v)u = 0, however, when more
than two trains require access to the same block section r, a small positive length ε has
to be considered for the disjunctive arcs. This makes it impossible to select edges that
create a positive cycle. Since we are considering edge lengths in +, it is not hard to see that
if G = (N,E,D) is the disjunctive graph associated with an instance of train scheduling,
given a selection S, any cycle in G(S) will be strictly positive. So, the condition of Theorem
3.1 can be simply stated as G(S) = (N,E ∪ S) is acyclic, i.e. has no directed cycles. By
extension, we say that a feasible S is an acyclic selection of G.
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Figure 3.6: Example of a blocking constraint represented via disjunctive graph.

Figure 3.7: Example of a no-wait constraint.

On the other hand, let luσ(u) be the traversing time of a generic event u, and l̄u be the
maximum time that train i can wait before traversing the block segment σ(u). A no-wait
constraint (or perishability constraint) can be formulated through two fixed arcs (u, σ(u))

and (σ(u), u) having respectively a length equal to luσ(u) and −luσ(u) − l̄u (see Figure 3.7).
Naturally, when l̄u equals 0 the train must proceed without interruption.

To determine the feasibility of a generic instance of a JSP is a NP-complete problem (see
Section 2.2.1), and this holds also for JSPs with blocking and no-wait constraints. Moreover,
said c : IRN

+ → IR a cost function, finding a feasible schedule τ that minimize c(τ) is also a
difficult problem.
Now, let τ∗ be the minimum cost schedule and S∗ = S(τ∗) be the selection associated with
τ∗. We recall that, for all events u ∈ N , τ∗

u equals the length of a longest path from the
origin node o to u in G(S∗). If c is monotone and non-decreasing, given a selection S,
finding the associated feasible schedule τ∗(S) which minimizes c is computationally easy,
as it corresponds to computing a longest path tree in G(S). Then, given an instance of a
train scheduling problem at a normal traffic regime (i.e. with no ongoing disruption), its
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(a) A small railway network.

(b) A complete selection for the disjunctive graph associated with the rail network in Figure 3.8a.

Figure 3.8: Example of a small railway network (3.8a) and a complete selection for its disjunctive
graph formulation (3.8b).

disjunctive graph formulation is presented below:

min c(τ)

s.t. τu ≥ τv + luv (u, v) ∈ E

(τv − τu ≥ luv) ∧ (τm − τq ≥ lqm) {(u, v), (q,m)} ∈ D .

(3.1)

In Figure 3.8 we show a portion of a railway network (3.8a) and a complete acyclic selection
for its disjunctive graph formulation (3.8b). The network is divided in twelve block sections
and traversed by three trains: A, B and C. All track segments have a unary capacity
and are indicated in Figure 3.8 with increasing numbers from 1 to 12. Trains have fixed
preassigned routes: RA = {1, 2, 3, 11, 12}, RB = {9, 10, 6, 11, 12} and RC = {8, 7, 6, 5, 4}.
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Besides, train B has a deadline time to respect at station 10 (indicated by the parameter
l̄B,10), while train C is a passenger train that must respect the planned running times of
each track segment traversed, i.e. it cannot interrupt its run. In Figure 3.8b dashed red lines
represent the disjunctive edges of the complete selection, while solid black lines denote fixed
arcs. We refer to each event of the type "train i enters track segment r" with a node defined
by the couple (i, r). Note that a scheduled start time πi is given for each train i. Three
dummy nodes (i, out) have been added in the disjunctive graph to represent the end of the
trains last scheduled event and the edges connecting them to the end node n are said to
have a zero length. Lastly, once defined a cost function, the quality of the feasible solution
presented can be easily assessed through the calculation of the longest path between node
o and n.

3.4.2 MILP formulations

Balas was the first to treat the JSP as a disjunctive program ([6]). He translated the
disjunctive constraints of a single-machine scheduling problem into a linear program with
logical conditions ([8]). In fact, the disjunctive problem (3.1) presented in the previous
section can be converted with little effort into a (mixed linear) mathematical program. In
general, one can classify the scheduling models and formulations according to the decision
variables choices. In [94] four different Mixed Integer Program (MIP) formulations (using
completion times variables [7], time-indexed variables [143], linear ordering variables [57]
and assignment positional variables [131]) are presented and their computational perfor-
mance compared. The work concerns the single-machine scheduling problems but all the
formulations can be easily extended to the JSPs. Among all formulation, mainly two classes
have been adopted in the literature to solve train re-scheduling problems (see [79], [100]):
the big-M formulations, which use continuous-time variables, and Time-Indexed (TI) for-
mulations, which discretize the time horizon.

Big-M formulation. The big-M formulation is a natural MILP formulation able to trans-
late the disjunctive pair constraints. It associates to each event u ∈ N a continuous starting
time variables tu ∈ IR+ and uses a binary variables yuvqm ∈ {0, 1} to represent the alternative
selections of arcs. Each variable yuvqm models a pair of disjunctive edges {(u, v), (q,m)} ∈ D

and is set equal to one when the event u precedes v (arc (u, v) is selected), while is null
when q precedes m (arc (q,m) is selected). This is ensured by introducing two constraints
containing the notorious big-M term, that is a very large coefficient M , and is formulated

Anna Livia Croella 48



3.4. Problem formulation

as follows:

(a) tv − tu +M(1− yuvqm) ≥ luv

(b) tm − tq +Myuvqm ≥ lqm .

Note that yuvqm = 1 implies that tv ≥ tu + luv and makes constraint (b) redundant. A
mirrored scenario occurs for yuvqm = 0, when the condition tm ≥ tq+lqm holds and constraint
(a) is always satisfied. Summarising, given a proper cost function c, we may write Problem
(3.1) as:

min c(t)

s.t.

(i) tu ≥ tv + luv (u, v) ∈ E

(ii) tv − tu +M(1− yuvqm) ≥ luv {(u, v), (q,m)} ∈ D

(iii) tm − tq +Myuvqm ≥ lqm {(u, v), (q,m)} ∈ D

t ∈ IRN
+ y ∈ {0, 1}|D|

(3.2)

The formulation is extremely versatile and can be easily modified to incorporate constraints
of various types and different modelling requirements. As an example, it can be expanded
to include re-outing options, adding a binary variable for each alternative route of a train.
On the other hand, it is easy to see that such a formulation strongly depends on the value
assumed by the coefficient M that can affect both the algorithm resolution speed and the
solution quality. In [67] one can observe how the use of a simple heuristic preprocessing
phase (to be coupled with a commercial MILP solver) can largely improve the resolution
performances. Heuristics of various type, Branch&Bound methods, decomposition methods
and hybrid approaches have been proposed over the years to bypass the disadvantages of
such a direct mathematical rendering.

Time-indexed formulation. The idea of a TI formulation (from [129]) is to discretize
the planning horizon into a number p̄ of time-periods. Then, for each event u, a binary
variable xp

u refers to the period p and assumes value equal to 1 if operation u starts at time
period p and 0 otherwise. Moreover, the disjunctive pair constraints are translated into
packing constraints (see Definition 2.20) between incompatible events. Given two distinct
time events u and v and two period p and p′, we say that xp

u and xp′

v are incompatible
between each other if, depending on the length of the two events, u cannot start at p if v
started at p′. In turn, this yield at a constraint of the type:

xp
u + xp′

v ≤ 1. (3.3)
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thus, given a function c : p̄ × |N | → IR that associates a cost to each interval-variable x, a
TI formulation can be therefore expressed as follows:

min c(x)

s.t.

(i)
∑p̄

p=1 x
p
u = 1 u ∈ N

(ii) xp
u + xp′

v ≤ 1 (u, v) ∈ I

x ∈ {0, 1}p̄×|N |

(3.4)

where with I we indicate the set of incompatible events defined by both fixed and disjunctive
edges in E and D. Note that constraints (i) ensure that each event starts exactly once and
at a particular time p (non-preemption), while the packing constraints (ii) imply that only
one of two incompatible time events can occur.
The event-incompatibility constraints can also be expressed in different ways, such as for
the fixed precedence constraints stated by the arcs in E. We can indeed write:

p̄∑
p=1

p · xp
u ≥

p̄∑
s=1

s · xs
v + luv ∀(u, v) ∈ E

Obviously, all the formulation choices influence the goodness of the solution reached. In
addition, the spanned horizons and the interval widths heavily affect the formulation in
terms of number of variables and constraints. Even small instances have a tendency to
introduce a large number of variables and constraints that grows proportionally with the
parameter p̄, the number of potential conflicts and the events duration. For these reasons,
the TI models are often coupled with heuristic approaches that compute the earliest and
latest times of the events, allowing to reduce the time horizon to discretize, and accordingly
the formulation size.

3.5 Looking beyond the classical formulations

A number of alternative formulations have been proposed in the literature to overcome the
drawbacks of the classical models presented above. In addition, several heuristic approaches
and hybrid methods have been studied. As for example, in [146] four different event-based
models are compared to the base TI model presented for the resource-constrained project
scheduling problem. The author establishes an order of domination among the formulations
and summarizes which model best fits which type of instance. Another popular technique
consists of decomposing the original MILP problem into smaller sub-problems and then ob-
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tain a solution by merging the partials one. The approach is known as decomposition method
and can be applied to both the time and space dimensions. In the first case the method is
also called rolling horizon and consists in solving chronologically the sub-problem derived
from the partition of the time horizon into a smaller time intervals. Interesting works on
the topic can be found in [65], [122], [116], [139] and [161]. On the other hand, a "space
decomposition" generates smaller problems considering only a sub-area of the network or
a subset of trains at the time (see [45] and [14] respectively). An example of application
of the space decomposition approach is the definition of a different MILP model for each
line segment of the network. This mechanism assumes that the obtained solutions can be
embedded in a single global feasible solution for the complete problem. Recently, [147]
proposed a coordination framework to merge the adjacent area rescheduling solutions ob-
tained by a resource conflict graph model. A second space-based decomposition approach
resorts to the principle of macro/microscopic decomposition. It is a two-step procedure
that proposes the resolution of a macroscopic model in the first step and a check on the
validity of the solution in the second step, when all microscopic elements of the model are
included as well. Essentially, the second phase directs a search direction for the overall
solution and reduces the search space of the first phase through a control loop. In [98] and
[101] is instead presented an exact method exploiting the Benders’ decomposition approach
([13]). besides, the recent [156] presents a traffic optimization model with fixed train routes
that ensures the feasibility of the entire rail system when predicting the network state for
a finite horizon. The paper tries to decompose the original model according to time, con-
sidering shorter horizons, and space, considering a subset of trains. Note that both (space
and time) decomposition approaches track the actions taken by the dispatchers, who control
a limited physical portion of the network and chronologically address conflicts as they occur.

Starting from a classical Benders’ reformulation, in [109] the authors present a non-compact
formulation, named Path&Cycle and derived from [99]. The model concerns the air traffic
management but it can be easily extend to RTSPs and in general to JSPs. In particular,
it handles the search for the optimal solution by strengthening and lifting of the original
conflict constraints and looking for paths and cycles in the associated disjunctive graph
(exploiting the theory of Theorem 3.1 and the longest path tree definition). The model,
which allows us to get rid of the big-M term, proved to be very promising when compared
to the classical formulation, especially in the case of non-convex cost functions. This is
due to the fact that when used in a Branch&Bound approach, big-M formulations typically
return poor bounds, which in turn leads to large branching trees. As mentioned earlier, TI
formulations return in contrast better bounds and smaller trees. However, TI formulations
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have two main drawbacks depending on the choice of the granularity of the periods in the
discretized horizon ([5, 131]):

1. Oversize. When periods are small and many, TI formulations typically contains a very
large number variables and constraints. This slows down the solution time in each
branching node by a factor which is larger than the reduction in the tree size. In the
few comparative experiments available in the literature, the comparison is by far in
favor of the big-M alternative (see [108]).

2. Bad approximation. Larger and fewer periods result in fewer variables and constraints,
but poorer approximation. As consequence, solutions which appear feasible to the
model, may not be feasible in practice ([22, 78]).

For the above reasons, there are indeed not too many examples in the literature of TI-
formulations devoted to train scheduling. The majority of the application concerns the
off-line aspect of the train scheduling problem, i.e. the timetabling creation process (see
[29] for a survey) and only very few to dispatching, in most cases coupled with a time-
expanded graphs representation.
Harrod was one of the first to apply the concept of hypergraphs3 to conflicting resource and
railway scheduling: in [78] he exploits the flexibility of this representation to model trains
block occupancy and resource transitions. In [32] a discrete-time model considering the
blocking time theory is proposed and the induced mathematical formulation (a constrained
combinatorial assignment problem) analyzed. [138] develops a new integer formulation
(based on space-time network) considering practical constraints for the train dispatching
problem and designs an heuristic algorithms capable to find near-optimal solutions. Also
Bettinelli et al. present in [14] a greedy heuristic algorithm applied to a time-space network
able to solve in real-time (two seconds ca.) large instances (up to 150 trains and 2 hours
planning time horizon). [117] addresses both train re-routing and re-scheduling by decom-
posing the original problem into a sequence of optimization sub-problems, one per train.
For each problem, thy compute the shortest path in a time dependent graph, then a feasible
solution to the original problem is obtained by gathering together all partial outputs. As
[117], [133] focuses on re-routing and re-timing in real-time, however here a branch-and-price
algorithm is used to find the optimal solutions in less then 30 seconds for the majority if
the instances considered.
In any case, because the complete formulation would be too large to handle, most of the pa-
pers resort to delayed column generation and cut generation techniques (see [1, 54] and the
3 An hypergraph is a graphical representation that allows to describe non-binary constraint networks,

i.e. relations involving more than two objects.

Anna Livia Croella 52



3.5. Looking beyond the classical formulations

insights in Section 2.2.4). The idea is to start with only a subset of the variables (and con-
straints), solve this restricted problem and then identify and add the missing variables and
constraints before solving again. This procedure is iterated until some conditions are sat-
isfied and, typically, lead to a "final" model that is much smaller than the full TI formulation.

Despite of the complexity and ingenuity of the most recent solution algorithms, TI formu-
lations do not seem to perform better than a classical big-M formulation, solved with a
standard commercial solver (see, for instance, the experiments over a large junction per-
formed in [125] with an almost 10 year-old technology). On the other hand, it would be
very relevant to be able to solve large instances of train scheduling with TI rather than
big-M formulations. Indeed, TI formulations are more flexible than the big-M counterparts
in expressing and manipulating complicated constraints and non-linear objectives.
In the present dissertation we will exploit and extent the Dynamic Discretization Discovery
(DDD) technique recently introduced by Boland et al. ([20]) to keep at bay the growth
of TI formulations. The paradigm can be applied to the RTSP and, more in general, to
JSP (cfr. Chapter 4). In our approach, the intervals (and their associated variables) are
generated dynamically by iteratively subdividing and redefining the previous partitions of
the planning horizon. We show how the time-discretization can be chosen in such a way
that the approximation is not worse than the one introduced by a time-continuous (big-M)
formulation. We thus provide an exact algorithm to solve the problem under analysis.
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Chapter 4

Dynamic Discretization
Discovery for the Train Traffic
Re-scheduling Problem†

4.1 Introduction

Train scheduling is a critical activity in rail traffic management, both off-line (timetabling)
and on-line (dispatching). In the on-line/real-time field, rapid and responsive reactions are
required to ensure an adequate and consistent level of service in the rail system. Deviations
from planned and scheduled activities must be addressed in a very short time by dispatchers
and traffic controllers. The Train Traffic Re-scheduling Problem (TTRP) is the facet of the
Real-time Train re-Scheduling Problem (RTSP) that has to do with the on-line re-timing
and re-ordering of the trains. The goal is to establish new scheduled times for the train
plans affected by an unexpected event, whether a disturbance or a disruption - (see chapter
3 for more insight), making the off-line timetable out of date and unfeasible.

There are of course different approaches to tackle the traffic re-scheduling, here we are inter-
ested in those based on Mixed Integer Linear Program (MILP), which are the most adopted
in the literature. The main issue that such approaches must face is how to represent the fact

† This chapter is an extension of a work presented at RailBeijing 2021, the 9th International Confer-
ence on Railway Operations Modelling and Analysis (ICROMA). The original work is co-authored
with Prof. Carlo Mannino, from SINTEF (Oslo, Norway) and PhD Paolo Ventura from IASI at
CNR (Rome, Italy). [A. L. Croella, C. Mannino and P. Ventura. Dynamic Discretization Discovery
for the train scheduling problem. RailBeijing 2021. (in conference proceeding)]
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4.1. Introduction

that two trains cannot occupy simultaneously the same track (or other pairs of incompatible
railway resources). Then, in any feasible schedule, one of the conflicting trains must use the
contended resource before the other train occupies it, and this gives rise to a disjunctive
constraint on the scheduling variables. Big-M formulations annd Time-Indexed formula-
tions, with both their strengths and disadvantages, are the MILP classes mainly adopted in
the literature. Time-Indexed (TI) formulations have proven to be stronger than the clas-
sical and oldest big-M formulation. Moreover, they can be easily adapted to cope with
complex requirements and non-linear objective functions. Unfortunately, their size grows
usually very large with the size of the scheduling instance. As a consequence, formulations
are typically not fit to attack real-life instances of job-shop scheduling problems, especially
when fast, online responses are required. In addiction, the approximation introduced by
time discretization often leads to solutions which cannot be realized in practice ([21]). For
a more in depth discussion we refer the reader to Section 3.4.2 and Section 3.5.
Either way, as pointed out by Boland in [20], network design problems often rely on a
discrete horizon representation. It is indeed extremely tempting to exploit the flexibility
and tight bound produced by TI models in solving the TTRP. In the remain of the chap-
ter we present the application of the Dynamic Discretization Discovery (DDD) paradigm
to the railway scheduling framework. The DDD technique, recently introduced by Boland
et al. for the continuous-time Service Network Design Problem (SNDP)1 and the Travel
Salesman Problem with time windows (TSPTW)2 (see [22] for an extensive survey), aims to
reduce the TI over-sizing and response times while, at the same time, ensuring the necessary
modelling precision. The main idea is to consider, for each train i, a partition of the time
horizon into periods λ1, . . . , λni

of different sizes. Then a train i can enter resource k at
some time tik ∈ λp = [h, h+) of the p-th train time period (not necessarily at the beginning
of the period, as in the standard TI formulation). As a consequence, a packing constraint
(see Definition 2.20) is introduced between two time-events if and only if, for any choice
of tir ∈ λp and tjr ∈ λp′ , two trains i and j are in conflict on a shared resource r. For
each event the set of time periods is generated dynamically, as suggested by the name of
the method, and iteratively starting from the previous partition of the planning horizon.
We can also associate a graph for each iteration of the method: the nodes represent the
partitions intervals, while the edges translate the packing constraints between conflicting
resource time-assignments. Then the problem solved can be also seen as a maximum weight
stable set problem.
1 The Service Network Design Problem aims at finding an optimal allocation and utilization of re-

sources for the tactical planning process of freight transportation.
2 The Travel Salesman Problem is the problem of finding the most efficient route that visits all the

distinct locations in a list exactly once and ends at the original departure point.
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The DDDs specialize in the way intervals are recursively generated. We show how our for-
mulation can return a lower bound on the weight of the optimal solution. At termination,
the solution returned by last iteration is indeed feasible for the original problem, and thus
optimal. Although the idea of a dynamic discovery is fairly natural, there are many pos-
sible ways to implement it and the engineering the algorithm is one of the most delicate
phases of its deployment. In the present work, we start to design its effective and efficient
implementation and lay the foundation for its application in the train scheduling context.

The chapter is organized as follows: the Section 4.2 gives a review of the related works on the
newly proposed DDD technique and on the methods dealing with the poor approximation
and oversize drawbacks of the TI models. Section 4.3 then formally describes the TTRP and
the notation used. Section 4.4 and Section 4.5 respectively define its formulation through
the use of the DDD paradigm and show an efficient implementation to solve it. Section 4.6
hence presents the application of the designed algorithm with a simple illustrative example.
Computational results on a set of realistic instances are discussed in Section 4.7. Here
extensive comparisons with the big-M and TI formulations performances are presented. We
must anticipate that the average verdict is still in favor of the big-M formulation. However,
in many cases the computation times are comparable, which is a remarkable achievement
given previous experience. Concluding remarks in Section 4.8 finally indicate future research
directions to fill the residual gap.

4.2 Literature overview

The DDD is a novel technique to solve TI-formulations recently introduced in [20] and then
further extended in [81–83, 97, 111, 140, 155]. It was developed to cope with the (previously
discussed) size and approximation issues of the time-dependent models and it proposes to
create a TI model with both a fine (hence near-optimal) discretization and a limited number
of variables and constraints. This is done thanks to:

• the construction of (small) partially refined models that are easy to solve and that
provide either a lower bound, an upper bound or an exact solution,

• a dynamic discover mechanism able to quickly and efficiently refine the partial dis-
cretizations in order to produce a "better" model.

A generalized scheme of the paradigm DDD can be seen in Figure 4.1. Observe that when
the partial model provides a lower bound for the original problem, the refinement of the time
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Figure 4.1: Generalized flowchart of the DDD paradigm.
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discretization performed at step 3 makes the current solution infeasible for the newly gen-
erated partial model. Additional mechanisms can be added to the method, such as those
repairing a currently infeasible solution. Also, one can make use of models that provide
both an upper and a lower bound for the optimal solution. We remark that a number of
parameters, ranging from the way the new refinements are generated to the efficiency of the
algorithm used to solve the partial models, affects the implementation of the DDD paradigm.

Boland first uses the DDD technique to tackle the continuous-time SNDP ([20]). The
method proposed is based on the partitioning the time-defined windows into sub-windows,
as introduced by Wang and Regan in [157], and exploits the fact that the more refined the
intervals are, the closer the solution is to the optimal one ([158]). Of course, in the extreme
case, a complete discretization (a full TI model) leads to the optimal continuous-time so-
lution. Though, in the paper the explicit modelling of all the time points is avoided by
selecting only a few specific time points to be added by the algorithm at each iteration. In
this way, the size of the model is kept at bay making the TI version of the problem tractable
in practice.
An enhancement of the initial intuition on the use of the DDD paradigm for the service
network design problem is shown in [111]. Here the concept of interval-based variables is
introduced: a variable is associated with an event occurring at some time along an interval
[h, h+) (with h+ > h) of the discretized horizon rather than being associated with a spe-
cific time point belonging to it. The authors show that this interval-view approach proves
effective for the problem under analysis, leading to the construction of final models with
dimensions smaller than 1% of the corresponding full TI formulation.
Likewise, in [81] He et al. leverage on the interval concept to solve the Shortest Path Prob-
lem (SPP) with piece-wise linear arc travel times. Both lower bound and upper bound
solutions (the seconds obtained by repairing the lower bound ones) are used to iteratively
generate the partial models. In addition, the algorithm gives the possibility to drop some
of the previously generated intervals to improve the bounds. Computational experiments
indicate that the benefit of the considered approach increases as the size of the instances
grows.
Vu et al. instead apply in [155] the DDD framework to the TSPTW, starting from the
time-expanded method proposed in [53]. The technique is applied to a scenario with time-
dependent travel times and shows promising results also with regard to the robustness
feature of the algorithm. We highlight that the approach is superior to the best known
algorithms and methods presented in the literature in the related field.
Hewitt in [83] proposes instead an improved version of the paradigm for the continuous time
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load plan design problem. In the paper is presented a two-stage DDD that firstly solves the
linear relaxation of the problem and then uses the time-expanded representation obtained
to initialize the discretization discovery. Four additional enhancements attempt to reduce
the number of partial integer problems to be solved (i.e. the number of iterations) and/or
the time required to solve them.
The service network problem is also addressed in [140] where two revised version of the
DDD algorithm implemented in [83] are proposed. Here, the resolution of the intermediate
models is improved through the use of ad hoc heuristics and a set of valid inequalities that
are iteratively added in the formulations.
Finally, [82] shows an application of the technique for a service network design and routing
problem in a logistics hub network, while [97] applies the DDD concepts to the continuous
time inventory routing problem proving the high quality of the solutions achieved through
the algorithm.

A second trend of research dedicated to overcoming the pitfalls of TI is embodied in the
creation of exact integer problems based on partially discretized times. In this second re-
search stream, the time periods of the planning horizon are referred as buckets and, unlikely
the classical TI model, can have different lengths. Obviously, the lengths of the buckets
influence the size of the formulation and consequently its resolution times. It is easy to see
that a full TI model is a particular case of bucket discretization with a fixed unary interval
length. Firstly applied in the lot sizing context, the concept of bucket has also been applied
to non-preemptive single machine scheduling problems (see [11] and [19]). The resulting
models have been shown to outperform their naive TI counterparts, presenting good per-
formance even when considering large instances.
Besides, the idea of solving the Linear Program (LP) relaxation of the full TI formula-
tions represents an alternative search path. This can be done through the exploitation of
the Lagrangian relaxation model and/or its dual problem combined with branch-and-price
techniques. In particular, [75] introduces a new idea to recursively refine a time-expanded
graph representation. In this work the terminology iterative refinement (adopted from
[134]) is used in contrast to the term dynamic discretization discovery to highlight the fact
that the procedure goes beyond the discretization of the intervals and extends also to the
branch&bound exploration when solving a relaxation of the TI formulation, or in general
a MILP. The resulting algorithm, named branch-and-refine, is tested for both the SPP and
the TSPTW.
A different branch-and price method is instead proposed by Lusby et al. ([104, 105]) for
the real-time version of the problem of routing the trains through railway junctions. They
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propose a flexible set packing formulation (that can be also generated dynamically using
variable generation) that aims to minimize the delay propagation, while nevertheless placing
more value on feasibility than optimality. Trains are given the possibility of varying their
speed and the output is a set of conflict-free paths traversing the junctions and respecting
the signalling system and other additional constraints.

To the best of our knowledge, the dynamic generation of time-discretized networks in the
context of train scheduling has been studied also by Fisher et al.. In [66] the authors design
a dynamic graph generation procedure able to efficiently and rapidly compute the shortest
path on a truncated (hence restricted in size) graph. The modelling approach is here applied
to the off-line version of the train scheduling problem, i.e. the train timetabling, and tested
successfully on a large scale instances.
On the other hand, Ostrowski et al. recently showed in [12] the assumptions under which
the linear relaxation of the non-periodic train scheduling problem is able to provide an
integer solution. They propose a new formulation with discretized time intervals based on
the notions of multi-commodity flow and set-packing (similar to the one exposed later in
the present chapter). The decomposition of the basic problem into smaller problems then
allows for low resolution times and easy scalability.

4.3 Problem statement and notation

We applied the DDD paradigm to the TTRP. The problem can be seen as a particular case
of the RTSP (see Definition 3.1) where we do not consider the possibility of rerouting trains.
Its formal definition is stated below.

Definition 4.1. Given a network and its current state at time t, a set of trains, their ordered
list of movements along with the planned arrival and departure times in and from each track
segment, find a new feasible schedule by re-timing and re-ordering trains according to their
position at time t, while minimizing a measure of the deviation from the original timetable.

We remark that, when given a reference timetable (the public one) and the position of the
trains at the current time, trains may be delayed with respect to the original plan. Depend-
ing on the next scheduling decisions, some trains may reduce their delays at destination,
while others may increase it. The target is to schedule trains for the next few hours so to
minimize a function of the delays. We next introduce the main modelling choices adopted
and the necessary formalism for describing our model. Note that, although a more accu-
rate representation of the network is necessary for the practical implementation of such
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Figure 4.2: Schematic representation of a railway infrastructure. Stations are depicted as filled rect-
angles.

a method, a higher level of detail is not crucial in understanding the theory and can be
disregarded. For a more rigorous definition of the elements of the railway system we refer
the reader to Section 3.3.

Networks, trains and routes. In Figure 4.2 we show a schematic section of a railway
infrastructure composed of a number of sub-networks, called lines. Each line consists of
stations and tracks, connecting the station pair-wise. Tracks can also be divided in sub-
tracks, referred as tracks segments or block sections, that can accommodate a train at the
time. Particular type of track segments, called sidings, allow the trains to meet or bypass
each other. We can define a set R of all track segments that make up the network and that
can be traversed by trains either in one direction (unidirectional track) or in both directions
(bidirectional track). In the example, train i travels from east to west reaching station β,
while train j is departing from station from station γ running to east. Note that the latter,
starting from its position can reach both station β and station ϕ. Suppose next station
visited along its run is β, train i and j are said to be crossing (or opposite) trains, since
they visit station α and β in opposite order. On the contrary, trains running on the same
direction are instead called followers trains.
In the TTRP we are given a set of trains I and we assume they have fixed routes. Each
train route is a rail path, a list of atomic movements that can be defined as follows:

Definition 4.2. A rail path is a sequence of contiguous track segments of the line, ordered
either west-bound or east-bound.

For each train i ∈ I, we let Ri be the ordered set of track segments that i crosses from
origin to destination. We assume, without loss of generality, that each segment is traversed
at most once. We therefore have that R = ∪i∈IRi. Moreover, for r, q ∈ Ri, we use the
notation r ≺ q if r precedes q in the route of i.
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For r ∈ Ri, we also let lir ∈ Z+ be the amount of time i needs to cross track segment r.
Trains may also stop when at a station in order to load and/or unload passengers and/or
freights. In general, we include the value of this wait or dwell time in the amount lir of the
track segment r ending at that station. Furthermore, for each train i and for each segment
r of its route, either because the reference timetable establishes the wanted departure time
for every station, or because i is delayed, we can calculate a value tir, that is the earliest
time when the train can enter the block section (i.e. expected arrival time).

Conflicts and schedules. We say that there is a conflict between two track sections
r, q ∈ R if they cannot be occupied at the same time by two different trains. Although we
do not model trains length explicitly, trains may for example occupy more than one track
at a time. Also, two track segments r and q can share some piece of physical track and be
in conflict between each other. We let D denote the set of all couples of conflicting/non-
shareable track sections and, for each r in R, we let {r, r} ∈ D. Besides, for each {r, q} ∈ D
with r ∈ Ri and q ∈ Rj , i 6= j, we denote by lijrq ∈ Z+ the amount of time j has to wait
before using q, once i entered r (such amount is usually equal to lir plus some safety extra
time that depends on j and q).
Now, said tir the time in which train i enters a track r ∈ Ri, we define a schedule, i.e. a
vector specifying the timing of all planned trains movements, as τ = {tir | i ∈ I, r ∈ Ri}.
Note that trains cannot leave a station before the official departure time. Then, we say that
a schedule is feasible if:

i) each train i occupies the track segments of Ri according to the prescribed order;

ii) for each train i and track r ∈ Ri, the earliest time of arrival is respected;

iii) for each conflicting couple r, q ∈ R with r ∈ Ri and q ∈ Rj , either i enters r after j

has freed q, or j enters q after i has freed r.

More formally:

Definition 4.3. A schedule τ is said to be feasible if the following requirements hold:

i) tir ≥ tir, for each i ∈ I, and r ∈ Ri;

ii) tiq ≥ tir + lir, for each i ∈ I, and r, q ∈ Ri with r ≺ q;

iii) either tjq ≥ tir + lijrq or tir ≥ tjq + ljiqr, for each distinct i, j ∈ I, i 6= j, and r ∈ Ri,
q ∈ Rj with {r, q} ∈ D.

We will refer to the requirements of type i) as departure constraints, to those of type ii) as
route constraints, and to constraints iii) as disjunctive constraints.
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Objective function. The original timetable is the schedule planned in advance at the
strategic stage of the train scheduling process, while the real-time timetable is the one that
occurs in practice during the implementation of the first. The deviation between them can
be weighted according to a properly defined function. Thus, for each event we define a
weight that translates the train priority and/or the occupied resource relevance. In the
following, we assume the weight function w(τ) to be non-decreasing and separable, namely
w(τ) =

∑
i∈I

∑
r∈Ri

wir(tir). However, different objective functions can also be considered.
In the TTRP we want to find a feasible schedule τ that minimizes the objective function.
Observe, that, we can always assume that, for all components tir of τ , we have that 0 ≤
tir ≤ M , for some finite coefficient M ∈ Z. Indeed this is the basic assumption for all big-M
formulations (see Section 3.4.2).

4.4 The Dynamic Discretization Discovery problem

In this section, we present a new combinatorial problem whose optimal solution defines a
lower bound for the optimal solution of the TTRP.

We start by associating, with each train i ∈ I and each track section r ∈ Ri, a partition
Λir = {λir

1 , λ
ir
2 , . . . , λ

ir
nir

} of the time interval [tir,M), where we indicate with nir the index
of the last block λ. In particular, let λir

p = [hir
p , h

ir
p+1), with hir

p < hir
p+1, for 1 ≤ p < nir,

where hir
1 = tir, and λir

nir
= [hir

nir
,M). Observe that the departure constraints imposed by

condition i) of Definition 4.3 are easily satisfied thanks to the adoption of hir
1 = tir for each

i ∈ I and r ∈ Ri. We use Λ to denote the set of all partitions, for all i ∈ I and r ∈ Ri.
Also, we let w̄(λir

p ) = w(hir
p ) be the weight associated with the interval λir

p .
Now, let i ∈ I and r, q ∈ Ri with r ≺ q. We say that the intervals λir

p and λiq
p′ are route

incompatible if condition ii) of Definition 4.3 is violated for any tir ∈ λir
p and any tiq ∈ λiq

p′ .
Therefore, we have that:

Definition 4.4. Given two intervals λir
p = [hir

p , h
ir
p+1) and λiq

p′ = [hiq
p′ , h

iq
p′+1), with r, q ∈ Ri

and r ≺ q, they are said route incompatible if and only if hir
p + lir > hiq

p′+1.

In other words, if there is no way for train i to enter r during interval λir
p and, later on, to

enter q during time interval λiq
p′ . Furthermore, let i, j ∈ I with i 6= j, r ∈ Ri, and q ∈ Rj . We

say that the intervals λir
p and λjq

p′ are conflict incompatible if condition iii) of Definition 4.3
is violated for any tir ∈ λir

p and any tjq ∈ λjq
p′ . Namely, train i cannot enter r during interval

λir
p together with j entering q during time interval λjq

p′ . We have that:
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(a) Example of route incompatibility between two track segments traversed by train i and
such that r ≺ q.

(b) Example of conflict incompatibility between two distinct trains i and j traversing respec-
tively track segments r and q.

Figure 4.3: Example of intervals that are route incompatible (4.3a) and conflict incompatible (4.3b).

Definition 4.5. Given two intervals λir
p = [hir

p , h
ir
p+1) and λjq

p′ = [hjq
p′ , h

jq
p′+1), with i 6= j,

r ∈ Ri and q ∈ Rj, they are said conflict incompatible if and only if hir
p+1 < hjq

p′ + ljiqr and
hjq
p′+1 < hir

p + lijrq.

Figure 4.3 shows an example for the route incompatibility and one for the conflict incompat-
ibility. In Figure 4.3a we can see how all blocks going from λiq

1 to λiq
p′ are route incompatible

with λir
p , while in Figure 4.3b the interval λjq

p′ has a conflict incompatibility with the inter-
vals λir

p and λir
p+1. Moreover, we observe that, for both route incompatibility and conflict

incompatibility, the following holds.

Remark 4.1. Said λ, λ′ two incompatible intervals, let λ̄, λ̄′ be two intervals such that λ̄ ⊆ λ

and λ̄′ ⊆ λ′, then λ̄ and λ̄′ are incompatible interval.

Now we can formally define the set of intervals that we are interested in.

Definition 4.6. Given a set of partitions Λ, a set S ⊆ Λ of (distinct) intervals is said to
be Λ-feasible if

i) S contains exactly one interval for each Λir, with i ∈ I and r ∈ Ri;
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ii) all intervals of S are pairwise not incompatible.

Then, we introduce the function Ψ that assigns to each value tir the unique interval Ψ(tir) =

λir
p ∈ Λir such that tir ∈ λir

p . We extend the notation by denoting with Ψ(τ) the set of
(distinct) intervals {Ψ(tir) | i ∈ I, r ∈ Ri}. Now, given a set of partitions Λ, we can define
the DDD problem as the problem of finding the Λ-feasible set of intervals of minimum
weight. We now prove the following:

Lemma 4.1. The value of the optimal solution to the DDD problem defines a lower bound
for the value of the optimal solution to the corresponding TTRP.

Proof. Let τ be a feasible schedule. Then Ψ(τ) is a feasible set of intervals. Moreover,
since the objective function w is assumed to be non-decreasing, we have that w̄(Ψ(τ))

:=
∑

i∈I

∑
r∈Ri

w̄(Ψ(tir)) ≤
∑

i∈I

∑
r∈Ri

w(tir) = w(τ).

Let Φ be the function that assigns to each time interval [h, h+) the time instant t = h.
Moreover, we extend such definition to a set of interval S ⊆ Λ, so to let τ = Φ(S) be the
schedule {tir = hir

p | λir
p = [hir

p , h
ir
p+1) ∈ S}. Therefore, because of Lemma 4.1, if S∗ is a

Λ-feasible set of intervals of minimum weight, with respect to any given partition Λ, and
τ∗ = Φ(S∗) is feasible, then τ∗ is also optimal for the TTRP.

4.4.1 An ILP formulation for the DDD problem

We now present an Integer Linear Program (ILP) for the DDD problem.
For each i ∈ I and r ∈ Ri, we are given a partition Λir of the interval [tir,M). Then, we
introduce the following set of binary variables:

xir
p =

{
1 if the interval λir

p is taken
0 otherwise

i ∈ I, r ∈ Ri, λ
ir
p ∈ Λir .

Hence, the DDD problem can be formulated as follows:

min
∑

i∈I

∑
r∈Ri

∑
λir
p ∈Λir w̄(λir

p ) · xir
p

s.t.

(1)
∑

λir
p ∈Λir xir

p = 1, i ∈ I, r ∈ Ri

(2) xir
p + xjq

p′ ≤ 1, λir
p , λ

jq
p′ ∈ Λ with λir

p and λjq
p′ incompatible

xir
p ∈ {0, 1} i ∈ I, r ∈ Ri, λ

ir
p ∈ Λir .

(4.1)
One can easily see that constraints (1) and (2) implement conditions i) and ii) of Defini-
tion 4.6, respectively. Moreover, observe that the proposed formulation reduces the DDD
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problem to a particular packing problem where one has to minimize the sum of the weights
associated with the selected elements subject to some tight packing constraints (constraints
(1)). Thus it can be seen as a Maximum Weight Stable Set Problem (MWSSP) (simply
inverting the sign of the weight function). We will focus on this aspect further in the next
Section. Also observe that if all the intervals of Λ have length one, then the formulation
(4.1) does coincide with a standard time indexed formulation for the TTRP (see formulation
(3.4) in Section 3.4.2). Therefore, the following holds:

Observation 4.1. If a set of partition Λ is such that hir
p+1 = hir

p + 1, for all i ∈ I, r ∈ Ri,
and p = {1, . . . , nir−1}, then the value of the optimal solution of the DDD problem coincides
with the value of the optimal solution of the corresponding TTRP.

4.5 The algorithmic framework

In the following, we describe our implementation of the Step 1, Step 2, and Step 3 of the
DDD paradigm, exploiting the definition of the DDD problem that we gave in the previous
section. We propose an algorithm, named DDD-ALG, that iteratively solves a TTRP
instance Dk defined on a proper partition set Λk = {Λir

k | i ∈ I, r ∈ Ri}. Then, we prove
that the DDD-ALG terminates after a finite number of steps, returning the optimal solution
of the original TTRP.
Note that, for each iteration k, the set Λk is always more refined with respect to the partition
set Λk−1 defined at the previous iteration. Moreover, as we pointed out in Section 4.4.1
the DDD problem can be seen as a particular MWSSP. It follows that we can immediately
associate with each set of partitions Λk a DDD graph Gk(Vk, Ek). In particular, we have
that Vk := Λk, with Λir

k = {λir
1 , λ

ir
2 , . . . , λ

ir
nir

} for each train i ∈ I and each track segment
r ∈ Ri, while the set Ek contains an edge of the type {λir

p , λ
jq
s } for each incompatible couple

of intervals in Λk (with i, j and r,q not necessarily distinct).

4.5.1 Initialize the DDD-ALG (Step 1)

We define the initial model D0 of the DDD problem by just considering, for each resource
used by each train, a single interval of the type λir

1 = [tir,M). Thus, we set Λ0 = {Λir
k =

{λir
1 } | i ∈ I, r ∈ Ri}.

4.5.2 Solve the DDD problem (Step 2)

Observe that, for all i ∈ I and r ∈ Ri, the set of nodes of Λir
k ∈ Λk defines a clique in the

graph Gk. We denote such cliques as resource assignment cliques. One can also identify a
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second type of clique: given two consecutive track segments r and q traversed by a train
i such that r ≺ q, for each λir

p in the considered partition Λk, we can write a single fixed
precedence clique constraint defined by the route incompatibilities. As consequence, formu-
lation (4.1) can be strengthened, by substituting, for each clique C of Gk, the inequalities
of type xir

p + xjq
p′ ≤ 1 of λir

p , λjq
p′ ∈ C, with an equivalent clique inequality

∑
λir
p ∈C xir

p ≤ 1

(see [141]). We have that:

xir
p +

∑
λiq

p′ | hiq

p′<hir
p +lir x

iq
p′ ≤ 1 i ∈ I, r, q consecutive ∈ Ri | r ≺ q, λir

p ∈ Λip
k . (4.2)

One can visualize an example of fixed precedence clique in Figure 4.3a. Here all intervals of
Λiq highlighted in cyan belong to the clique defined by λir

p .
Resuming, the DDD problem associated with Λk (and Gk), and solved at Step 2 of the
DDD-ALG, reduces to find a minimum weighted stable set S∗

k of Gk that intersects:

• each resource assignment clique of Gk exactly once,

• each fixed precedence clique at least once,

• and each incompatible couple of intervals at least once.

4.5.3 Refine the DDD problem (Step 3)

Let Λk be the set of partitions defined at iteration k of DDD-ALG, Gk be the corresponding
graph, and let S∗

k be the optimal stable set of Gk (i.e. the optimal solution of the DDD
problem Dk associated with Λk). Now, as already noticed, if τ∗

k = Φ(S∗
k) is a feasible

schedule than it defines an optimal solution to the TTRP and we are done. So, assume
τ∗
k is not feasible. This means that S∗

k contains two intervals, say λir
p = [hir

p , h
ir
p+1) and

λjq
s = [hjq

s , hjq
s+1) that are compatible (since S∗

k is Λk-feasible) but such that tir = hir
p and

tjq = hjq
s violate either constraint ii) or constraint iii) of Definition 4.3. We consider

separately the two cases.

A route constraint is violated. In this case, i = j and we can assume, w.l.o.g., that
r ≺ q. Since tir and tiq violate a route constraint, then tir + lir < tiq. Moreover, as λir

p

and λiq
s are compatible in S∗

k , then tir + lir ≤ hiq
s+1. Therefore, we construct Λk+1 from

Λk (and then Gk+1 from Gk) by replacing the interval λiq
s with the two smaller intervals

λiq
s′ = [hiq

s , t
ir + lir) and λiq

s′′ = [tir + lir, hiq
s+1).

Observe that, in Λk+1, the intervals λir
p and λiq

s′ are incompatible and, as a consequence, the
optimal stable set S∗

k+1 (the optimal schedule τ∗
k+1) calculated at the next iteration of the

algorithm cannot contain both λir
p and λiq

s′ (tir = hir
p and tiq = hiq

s ). This is equivalent to

Anna Livia Croella 68



4.5. The algorithmic framework

(a) Violated route constraint between two track segments traversed by train i, with r ≺ q.

(b) Resolution of the route incompatibility shown in Figure 4.4a.

Figure 4.4: Example of resolution of a route incompatibility at Step 3 of the DDD-ALG.

add an edge {λir
p , λ

iq
s′} in the set Ek+1, and thus append the term xiq

s′ to the fixed precedence
clique associated to xir

p . Concurrently, we also have to insert a new fixed precedence clique
relative to the interval λiq

s′′ . Figure 4.4 shows how, starting from the route constraint violated
in Figure 4.4a, the new intervals λiq

s′ and λiq
s′′ are generated.

A disjunctive constraint is violated. In this case, we have that i 6= j, tjq < tir + lijrq

and, at the same time, tir < tjq + ljiqr. Since λir
p and λjq

s are compatible in S∗
k , we have that

tir + lijrq ≤ hjq
s+1 and tjq + ljiqr ≤ hir

p+1. Therefore, we obtain Λk+1 from Λk by breaking λir
p

into λir
p′ = [hir

p , t
jq + ljqqr) and λir

p′′ = [tjq + ljqqr, h
ir
p+1), and λjq

s into λjq
s′ = [hjq

s , tir + lijrq) and
λjq
s′′ = [tir + lijrq, h

jq
s+1).

Again here, we observe that the newly generated intervals λir
p′ and λjq

s′ are now incompatible.
This implies that an edge {λir

p′ , λ
jq
s′ } must be added in the set Ek+1 since τ∗

k+1 = Φ(S∗
k+1)

cannot contain the couple (tir = hir
p , t

jq = hjq
s ). Also, note that other conflicts and route

incompatibilities may be generated by the definition of the new intervals. Consequently,
these incompatibilities should be properly added to the set Ek+1. In Figure 4.5 we report
the generation of the new intervals.

In both cases, once a new interval is defined, we can propagate the new time points discov-
ered along the train route in order to ensure a time consistency with the intervals belonging
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(a) Violated conflict constraint between two different trains i and j traversing the non-
shareable track segments r and q.

(b) Resolution of a conflict incompatibility shown in Figure 4.5a.

Figure 4.5: Example of resolution of a conflict incompatibility at Step 3 of the DDD-ALG.

to subsequent track segments. With some abuse of notation in the following, given a track
segment r traversed by a train i, we indicate the subsequent track segment on the rail path
of i with the index (r + 1). Then, said λir

p = [hir
p , h

ir
p+1) a newly generated interval and

λ
i(r+1)
s = [h

i(r+1)
s , h

i(r+1)
s+1 ) = max{Λi(r+1)

k 3 λ
i(r+1)
s | hi(r+1)

s < hir
p + lir}, we define two

new intervals of the type λ
i(r+1)
s′ = [h

i(r+1)
s , hir

p + lir) and λ
i(r+1)
s′′ = [hir

p + lir, h
i(r+1)
s+1 ). This

procedure allows us to identify a lower bound h
i(r+1)
s′′ for (r+1) that avoids the violation of

the route constraints. The propagation is thus recursively applied on λ
i(r+1)
s′ until the train

destination segment is reached. Naturally, the creation of these intervals must be done in
conjunction with the addition of any resulting route and/or conflict incompatibility between
the intervals in Λk.

Summarizing, said Gk(Vk, Ek) the DDD graph at a generic iteration k, the DDD-ALG
follows the steps reported below. Note that, since we apply a route time consistency each
time we propagate a new interval, the feasibility check on the associated schedule τ∗

k can be
limited to the disjunctive constraint.
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DDD-ALG k − th iteration

Data: Graph Gk(Vk := Λk, Ek), functions Φ(S) : Λk → IR+ and w̄(S) : Λk → IR+.

Solve the DDD problem (Step 2)
Find S∗

k on Gk(Vk, Ek) and compute τ∗
k = Φ(S∗)

♦Check for solution optimality

For each i, j ∈ I, i 6= j, and r ∈ Ri, q ∈ Rj with {r, q} ∈ D
If tir, tjq ∈ τ∗

k violate a disjunctive constraint (Definition 4.3 iii)) Then

(i) from λir
p ∈ S∗

k define λir
p′ = [hir

p , t
jq+ljqqr) and λir

p′′ = [tjq+ljqqr, h
ir
p+1),

set Λir
k = Λir

k \ {λir
p } ∪ {λir

p′ , λir
p′′};

(ii) from λjq
s ∈ S∗

k define λjq
s′ = [hjq

s , tir+lijrq) and λjq
s′′ = [tir+lijrq, h

jq
s+1),

set Λjq
k = Λjq

k \ {λjq
s } ∪ {λjq

s′ , λ
jq
s′′};

(iii) set Ek = Ek ∪ {λir
p′ , λ

jq
s′ }.

If @ violated disjunctive constraint Then
Stop. τ∗ = τ∗

k with value w(τ∗) = w̄(S∗
k).

Refine the DDD problem (Step 3)

For each newly defined interval λir
p

(i) update resource assignment clique: for each λir
p′ ∈ Λir

k \ {λir
p } set Ek =

Ek ∪ {λir
p , λ

ir
p′};

(ii) update fixed precedence clique (Definition 4.4): for each λiq
s ∈ Λiq

k with
(q + 1) = r such that hiq

s + liq > hir
p+1 add a new edge {λir

p , λ
iq
s } to Ek;

(iii) update conflict incompatibility (Definition 4.5): for each λiq
s ∈ Λiq

k with
i 6= j, {r, q} ∈ D, such that hir

p+1 < hjq
p′ + ljiqr and hjq

p′+1 < hir
p + lijrq add a

new edge {λir
p , λ

jq
s } to Ek;

(iv) propagate along the train route: if exists (r + 1) ∈ Ri, let λ
i(r+1)
s =

max{Λi(r+1)
k 3 λ

i(r+1)
s | hi(r+1)

s < hir
p +lir}, define λi(r+1)

s′ = [h
i(r+1)
s , hir

p +

lir) and λ
i(r+1)
s′′ = [hir

p + lir, h
i(r+1)
s+1 ), set Λ

i(r+1)
k = Λ

i(r+1)
k \ {λi(r+1)

s } ∪
{λi(r+1)

s′ , λ
i(r+1)
s′′ }.

Set Vk+1 = Vk and Ek+1 = Ek

k = k + 1
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4.5.4 Convergence of the algorithm

We now show that the DDD-ALG converges to the optimal solution in a finite number of
steps. We remark that our approach to solve the TTRP can be also seen as a primal-dual
procedure with both row and column generations (see Section 2.2.4). At each iteration k a
restricted relaxation of the basic problem is solved, if the solution cannot be converted into
a feasible solution for the original formulation (at least) a row is added to the constraints
groups and (at least) a new variable is generated and added to the problem Dk+1. Otherwise,
Lemma 4.1 ensure that a solution of the same value can be obtained for the TTRP. In
particular, we prove the following:

Theorem 4.1. The DDD-ALG does always terminate providing the optimal solution of
the TTRP.

Proof. Lemma 4.1 shows that at each iteration k of the DDD-ALG, the value of the optimal
solution S∗

k defines a lower bound on the value of the optimal solution of the TTRP. At
the first iteration of the algorithm, each partition Λir is defined by one interval (see Section
4.5.1). As shown in Section 4.5.3, at each iteration k, we add at least one interval to the
current set Λk. Then, Observation 4.1 implies that, after at most

∑
i∈I |Ri|M iterations,

the DDD-ALG terminates providing the optimal solution for the TTRP.

4.6 An illustrative example

In this section we present an example application showing how the DDD graph is iteratively
built by the DDD-ALG.

We are given four trains: I = {1, 2, 3, 4} running on a railway network portion composed
by seven distinct track segments: R = {a, b, c, d, e, f, g}. Trains routes, i.e. the ordered
sequences of track segments occupied by each train, are defined as follows: R1 : {a, b, g},
R2 : {c, b}, R3 : {d, b, f} and R4 : {e, f}. All trains have the same characteristics and priori-
ties, therefore the time needed to traverse the track segments does not depend on the rolling
stock and the train service. We have that l = {la, lb, lc, ld, le, lf , lg} = {6, 3, 4, 9, 10, 5, 8}.
All trains depart from their origin at time 0. Figure 4.6 schematically depicts the rail-
way network topography, showing for each track segment the traversing time. Then, the
graph in Figure 4.7 presents the trains given routes (oriented black lines) and the po-
tentially conflicting pairs of non-shareable resources (red lines) defined by the set: D =
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Figure 4.6: Topography of the example rail network. For each track segments we report in red, next
to its label, the time needed by the trains to traverse it.

Figure 4.7: Graph of the trains routes. Oriented black lines represents trains fixed precedence, while
red edges identify the couples of potentially conflicting events.

{{1b, 2b}, {1b, 3b}, {2b, 3b}, {3f, 4f}}. We simply consider the weight function in terms of
scheduled departure times and for each interval λir

p we set w̄(λir
p ) = wir(hir

p ) = hir
p .

Initialize the DDD problem. We build the initial graph G0(V0, E0) considering for
each i ∈ I and r ∈ Ri an initial partition composed only by the interval λir

1 = {[tir,M)} =

{[0, 30)}. We thus associate with each interval a node in V0. Each node is referred as virh ,
where h is the lower bound hir

p of the represented interval λir
p , and labelled with h. We

initialize E0 = ∅. In Figure 4.8 we report the DDD graph G0, where each train corresponds
to a different layer in the graph. Note that at the beginning of the DDD-ALG we have
only isolated nodes since we define a partition set with no route or conflict incompatibilities
(see Definition 4.4 and Definition 4.5).

Anna Livia Croella 73



4.6. An illustrative example

Figure 4.8: Graph G0(V0, E0) associated with the initialization of the DDD-ALG applied to the
proposed example.

Apply the DDD-ALG. We now set k = 1 and apply to the example the proposed
algorithm. Figure 4.9a, 4.9b and 4.9c respectively report the DDD graphs at the end of
each iteration k = {1, 2, 3}. In particular, for each train i we visually group the nodes by
track segments. We draw the edges belonging to the resource assignment clique in black
and the one belonging to the fixed precedence clique in blue, while the arcs referring to the
disjunctive conflicts are colored in red. Finally, the nodes belonging to the optimal stable
set computed at Step 2 are depicted filled in light green.
Note that at termination, the set S∗

3 in the DDD graph G3(V3, E3) does not contain any
adjacent node. The solution is therefore a stable set for the graph, namely the one having
the minimum weight.
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(a) G1(V1, E1)

(b) G2(V2, E2)

(c) G3(V3, E3)

Figure 4.9: Graphs associated with the iterations of the DDD-ALG when applied to the proposed
example.
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DDD-ALG 1− st iteration

Data: G1(V1, ∅), Φ, w̄.

Solve the DDD problem (Step 2)
S∗
1 = V1 = {v1a0 , v1b6 , v1g9 , v2c0 , v2b4 , v3d0 , v3b9 , v3f12 , v

4f
0 , v4f10 }, τ∗

1 = {0, 6, 9, 0, 4, 0, 9, 12, 0, 10}

♦Check for solution optimality

We find t1b = 6 and t2b = 4 such that 6 < 4 + 3 = 7 and 4 < 6 + 3 = 9 hence:

(i) we define λ1b
1 = [6, 7), λ1b

2 = [7, 30), and add v1b7 to V1;

(ii) we define λ2b
1 = [4, 9), λ2b

2 = [9, 30), and add v2b9 to V1;

(iii) we add edge {v1b6 , v2b4 } to E1.

We find t3f = 12 and t4f = 10 such that 12 < 10 + 5 = 15 and 10 < 12 + 5 = 17 hence:

(i) we define λ3f
1 = [12, 15), λ3f

2 = [15, 30), and add v3f15 to V1;

(ii) we define λ4f
1 = [10, 17), λ4f

2 = [17, 30), and add v4f17 to V1;

(iii) we add edge {v3f12 , v
4f
10 } to E1.

Refine the DDD problem (Step 3)

We select the new interval λ1b
2 = [7, 30):

(i) we add edge {v1b6 , v1b7 } to E1;

(ii) we add edge {v1b7 , v1g9 } to E1;

(iv) we propagate λ1b
2 = [7, 30) on track segment g: we define λ1g

1 = [9, 10), λ1g
2 =

[10, 30), and add v1g10 to V1.

We select the new interval λ2b
2 = [9, 30):

(i) we add edge {v2b4 , v2b9 } to E1.

We select the new interval λ3f
2 = [15, 30):

(i) we add edge {v3f9 , v3f15 } to E1.

We select the new interval λ4f
2 = [17, 30):

(i) we add edge {v3f17 , v
4f
10 } to E1.

We select the new interval λ1g
2 = [10, 30):

(i) we add edge {v1g9 , v1g10} to E1.

We set V2 = V1 and E2 = E1

k = 2

Anna Livia Croella 76



4.6. An illustrative example

DDD-ALG 2− nd iteration

Data: G2(V2, E2), Φ, w̄.

Solve the DDD problem (Step 2)
S∗
2 = {v1a0 , v1b7 , v1g10 , v

2c
0 , v2b4 , v3d0 , v3b9 , v3f15 , v

4f
0 , v4f10 }, τ∗

2 = {0, 7, 10, 0, 4, 0, 9, 15, 0, 10}

♦Check for solution optimality

We find t1b = 7 and t3b = 9 such that 7 < 9 + 3 = 12 and 9 < 7 + 3 = 10 hence:

(i) we define λ1b
2 = [7, 12), λ1b

3 = [12, 30), and add v1b12 to V2;

(ii) we define λ3b
2 = [9, 10), λ3b

3 = [10, 30), and add v3b10 to V2;

(iii) we add edge {v2b7 , v2b9 } to E2.

Refine the DDD problem (Step 3)

We select the new interval λ1b
3 = [12, 30):

(i) we add edges {v1b6 , v1b12} and {v1b7 , v1b12} to E2;

(ii) we add edges {v1b12, v1g9 } and {v1b12, v1g10} to E2;

(iv) we propagate tλ1b
3 = [12, 30) on track segment g: we define λ1g

2 = [10, 15), λ1g
3 =

[15, 30), and add v1g15 to V2.

We select the new interval λ3b
3 = [10, 30):

(i) we add edges {v3b9 , v3b10} to E2;

(ii) we add edges {v3b10, v3f12 } to E2;

(iv) we propagate λ3b
3 = [10, 30) on track segment f : we define λ3f

2 = [10, 13), λ1g
3 =

[13, 15), and add v3f13 to V2.

We select the new interval λ1g
3 = [15, 30):

(i) we add edges {v1g9 , v1g15} and {v1g10 , v
1g
15} to E2.

We select the new interval λ3f
3 = [13, 15):

(i) we add edges {v3f13 , v
3f
12 } and {v3f13 , v

3f
15 } to E2;

(iii) we add edge {v3f13 , v
4f
10 } to E2.

We set V3 = V2 and E3 = E2

k = 3
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DDD-ALG 3− rd iteration

Data: G3(V3, E3), Φ, w̄.

Solve the DDD problem (Step 2)
S∗
3 = {v1a0 , v1b7 , v1g10 , v

2c
0 , v2b4 , v3d0 , v3b10, v

3f
15 , v

4f
0 , v4f10 }, τ∗

3 = {0, 7, 10, 0, 4, 0, 10, 15, 0, 10}

♦Check for solution optimality

No violated disjunctive constraint
Stop. τ∗ = τ∗

3 with value w(τ∗) = w̄(S∗
3) = 56.

4.7 Computational experiments

In this section we report the results of the computational experiments conducted to asses the
performance of the DDD approach in the train re-scheduling context. The test set consists
of 20 real-life instances derived from two single-track railroad networks, later named Line
A and Line B, of the Norwegian railway. We run the experiments considering a step-wise
linear convex function that weights the trains delays. We compare the results achieved
by the DDD-ALG with the ones obtained by the big-M formulation and by the (full) TI
formulation.

4.7.1 Instances

The instances considered refer to portions of a physical railway infrastructure composed
by stations and tracks. A set of trains with different speed classes traverses the net. For
each of them we are given a desired timetable. At a given instant in time, the state of
the network is provided by means of the current position of all trains and their deviations
from the scheduled departure times. Note that when taking a snapshot of the network at
a particular instant, a train may result on time, i.e. its arrival and departure times adhere
to the timetable schedule, or it may be affected by a delay. Besides, a train can be either
positioned at a station (i.e. in station) or on an open line track (i.e. in connection). In
the second case, the delay refers to the time at which the the train entered the last track
segment traversed, i.e. the one it is occupying at that moment. We do not consider the
possibility of accelerating or decelerating the rolling stock, therefore we consider the train
speeds, and consequently the train travel time, as fixed.
Table 4.1 reports some details about the test instances. For each of them, we present
the number of trains (|I|), the total number of tracks (|R|), the average number of track
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Instance |I| |R| E[Ri] |D| #Dly E[d](ms)

IA
1 28 33 20 5322 3 242

IA
2 24 33 18 3145 8 501

IA
3 16 33 21 1848 3 313

IA
4 12 33 20 943 4 293

IA
5 12 33 17 744 6 285

IA
6 8 33 17 250 4 406

IA
7 8 33 11 92 7 115

IA
8 25 33 19 3889 6 526

IA
9 19 33 19 2129 5 608

IA
10 16 33 17 1383 8 205

IB
1 18 25 16 1771 2 227

IB
2 5 25 13 69 2 105

IB
3 5 25 15 116 2 150

IB
4 16 25 17 1724 3 98

IB
5 5 25 16 116 1 157

IB
6 5 25 14 76 2 72

IB
7 18 25 16 2002 3 95

IB
8 4 25 14 54 3 59

IB
9 6 25 12 81 4 84

IB
10 6 25 11 64 4 68

Table 4.1: Relevant statistics of test instances.

segments per train (E[Ri]), the total number of conflicting tracks pairs (|D|), the number
of trains having a positive delay at the "snapshot time" (#Dly) and their average delay in
milliseconds (E[d](ms)). In the following, we will refer to the instances with the notation
I l
n, where by l ∈ {A,B} we denote the line to which they belong and by the subscript

n ∈ {1, ..., 10} we indicate the instance number. In particular, Line A is 124 km long line
for passenger trains and includes 30 stations and 33 track segments. The A-instances present
on average a set of 17 trains with an average of 18 track segments each. Line B is smaller
(115 km, 20 stations and 25 tracks) and is crossed by commuters and freight trains. The
B-instances present, on average, 9 trains and 14 track segments for each scheduled path. We
emphasize that, since the instances of Line A include in most of the cases more trains than
those belonging to Line B, the number of potential conflicting resources can be significantly
higher for them, thus they will produce more complex models.

4.7.2 Settings

Given the state of the network at a particular instant in time, we define as optimal a sched-
ule that minimizes the train delays at their final destination stations. Thus, we assign a
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Figure 4.10: Example of a step-wise linear convex function considered to weight the delay (in seconds)
of a generic train.

positive weight to the (positive) delays affecting the last scheduled activity of each train.
We do not consider early arrivals since trains scheduled departure times are considered as
constraints on the time of departure (see Section 4.3). The weight function considered is a
step-wise linear convex function. Each train has its own steps valid for specific delay range
values. An example for the function considered for a generic train is shown in Figure 4.10.
Here we have respectively a step equal to 2 for the delay values between 0 and 3 minutes,
a step equal to 6 between 3 and 6 minutes and a step of 18 for the remaining values of the
delay. Note that such a weight function allows us to define different categories for delays and
to classify trains into priority classes. Thus, trains with higher steps show a higher priority
and we expect that an eventual delay for them is displaced among other trains belonging
to a lower class.

We use an x64 MS Windows 10 machine with an Intel (R) Core (TM) i7-10510U CPU
and 16 GB of RAM. The algorithm is implemented in Java and uses IBM ILOG CPLEX
v12.10 to solve, at each iteration, the associated DDD problem presented in Section 4.4.1.
We use the same Mixed Integer Program (MIP) optimizer to solve for the big-M and TI
formulations of the problem. All default CPLEX settings are used when testing the big-M
and TI models. On the other hand, when solving the DDD problem, we force CPLEX
to delete all MIPStarts solutions (which slow down the Branch&Bound search) and set a
MIPGap tolerance to 5%. Besides, for the TI formulations, we consider a time window of
30 minutes and a fixed intervals width of 30 seconds (a standard value for the context under
analysis).
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Instance k #Conf E[Λir] Time(ms) %Opt %Built OptLast(ms)

IA
1 17 214 8 10758 69 % 30 % 446

IA
2 12 103 5 1780 71 % 28 % 144

IA
3 8 70 5 701 76 % 22 % 88

IA
4 4 29 3 155 79 % 19 % 36

IA
5 10 47 4 473 82 % 17 % 74

IA
6 4 12 2 57 91 % 8 % 15

IA
7 4 8 3 50 92 % 8 % 13

IA
8 15 166 7 4901 65 % 34 % 320

IA
9 24 130 5 2630 88 % 11 % 119

IA
10 5 27 2 164 88 % 10 % 36

IB
1 10 62 4 559 84 % 15 % 90

IB
2 60 68 4 669 96 % 2 % 12

IB
3 4 10 2 46 95 % 4 % 10

IB
4 15 84 6 2222 79 % 20 % 149

IB
5 3 21 5 134 74 % 25 % 35

IB
6 4 6 2 40 95 % 3 % 9

IB
7 13 107 7 2264 74 % 25 % 182

IB
8 5 10 3 40 95 % 5 % 8

IB
9 2 8 2 16 95 % 5 % 6

IB
10 1 2 1 6 91 % 0 % 2

Table 4.2: DDD-ALG computational results.

4.7.3 Computational results

Table 4.2 shows the computational results obtained by applying the DDD-ALG to the
considered instances. The first columns present, for each instance (Instance), the number
of iteration performed by the algorithm (k), the number of violated disjunctive constraints
identified in the optimality check (#Conf), the average number of intervals created for each
train-track couple (E[Λir]). Column Time(ms) reports then the total computation time (in
milliseconds), while columns %Opt and %Built respectively show the percentage of time
spent in solving the DDD problems and the percentage of time used to identify the conflicts
and refine the DDD problem at each iteration (Step 2-3 of the DDD-ALG). Finally, last
column (OptLast(ms)) provides the resolution time of the DDD problem in the last itera-
tion of the algorithm.

The DDD-ALG is able to solve to optimality all the instances of the considered data set.
Note that, the number of iterations and the number of solved conflicts can vary significantly
from instance to instance. Both these indicators affect the overall solution time. In fact,
at each iteration k, a new DDD problem has to be solved and its complexity grows with
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Figure 4.11: Correlation of the algorithm total running time Time(ms) with the number of iterations
k (on the left), and with the number of solved conflicts #Conf (on the right).

the number of nodes and edges defined in Gk. The scatter plots in Figure 4.11 show the
correlation of the total running time (Time(ms)) with the number of iterations k of the
DDD-ALG and with the number of violated disjunctive constraints solved #Conf (on
the right). However, despite their size, all the DDD problems at the last iteration of the
DDD-ALG are solved in a matter of milliseconds. Furthermore, we can observe that most
of the time is taken by the DDD-ALG to solve the corresponding DDD problem. Though,
detecting the conflicts and constructing the new model is not a negligible operation and, for
3 of the 20 instances, it takes about 30% of the total computation time. We highlight that,
in these cases we also have an high number of conflicts pairs and intervals.

Table 4.3 compares the performances of the big-M and TI formulations with the one ob-
tained by our algorithm. For each instance (Inst), we report the total number of trains
(|I|) and the average number of track segments traversed by the trains (E[Ri]). Then, for
each resolution approach we report the following metrics. In columns Obj and Time(ms)

we present, respectively, the value of the optimal solution and the total computational time
(in milliseconds). In particular, for the TI formulation section we report in parenthesis in
the Opt column the percentage gap with respect to the real optimal solution value, due to
the time step rounding. Besides, for the big-M and the TI approaches, columns #V ar and
#Con report the number of variables and constraints of the related formulations. Columns
#Nod and #Edg in the DDD-ALG section refer instead to the number of nodes and edges
of the DDD graph Gk at the last iteration of the algorithm.
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Figure 4.12: Computation times performance comparison between our algorithm and the big-M model
(above) and between our algorithm and the TI model (below).
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Figure 4.13: Comparison on the solution quality obtained by the big-M model, the TI model and the
DDD-ALG.

Figure 4.12 and Figure 4.13 allow to visualize, respectively, the computational time perfor-
mances and the solutions quality provided by the three models tested. We can notice that
the DDD-ALG outperforms the TI formulation approach on all the considered instances.
Observe that the TI approach is not able to solve one of the instances; this because the
generalized assumptions made on the time window and interval width do not fit the spe-
cial case of IB

2 . Moreover, the TI approach reaches the real optimal solution only for 14
instances, while the huge number of variables and constraints introduces by the formulation
drastically affects its resolution time. Thus, beside the fact that the DDD-ALG always
provides the exact optimal solution, it also requires much less computation time.
On the other hand, by examining the performance of big-M models, we show that our algo-
rithm exhibits similar performance in terms of computation time on medium-easy instances,
i.e., those with few train conflicts. Nevertheless, the big-M approach is definitively the most
efficient on the most difficult test instances.

We remark that the DDD problem generated by the last iteration of the DDD-ALG (column
OptLast(ms) of Table 4.2) is solved very efficiently and anyway faster than the big-M
model (see graph in Figure 4.14). This fact is particularly relevant for two aspects. First,
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Figure 4.14: Computation times performance comparison between last iteration model solved by our
algorithm and the big-M formulation model.

it encourages us to investigate a more effective way to detect and remove the conflicts at
each iteration of the procedure, so to reduce the total number of required iterations, and
therefore to speed up the total computational time. Secondly, the model resolution speed is
crucial when applied to the dynamic solution of train dispatching problems. In this case, a
new instance is generated from the field every ten seconds or so ([100]). Typically instances
only slightly change over time; therefore, one can massage the last instance generated at
the previous resolution process and hope to produce only a few new intervals3.

4.8 Conclusions and future works

The main purpose of this chapter is to show how the DDD paradigm can be exploited in
order to make the TI formulations competitive with the big-M formulations in the train
dispatching field. To this end, we demonstrate that our our approach outperforms the
standard TI formulation on all instances, whereas it is still inferior to the classical big-M
approach on the difficult instances. On the other hand, the fact that the DDD behaves well

3 We observe that this approach proved to be successful when extending the Path&Cycle formulation
to cope with dynamic instances of the TTRP ([110]).
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on instances with few conflicts, makes it suitable for real-time applications.

The fact that the DDD method can benefit more than other approaches from the computa-
tion performed in the previous iterations, makes it an excellent candidate for handling the
train rescheduling problem. Indeed, in this framework we aim to solve a dynamic problem
in which the next instance is very similar to the previous one.
It follows a very natural road map for future studies and developments. First, adapt the
approach to handle dynamic problems and re-optimization. Actually, the refinement of the
interval between an iteration and the next can be seen as a decomposition, so one can ask
how to fit previously generated resolution cuts to new partial models. Also, fixed variable
values retrieved in the preprocessing (solving) phase (or previously calculated bounds) can
be exploited for those elements that are not directly "involved" in the conflicts solved at
a generic iteration k. Second, explore ways to reduce the number of internal iterations of
the DDD-ALG, for example by generating more intervals at each iteration. Third, develop
techniques to limit the generation of sub-intervals at each iteration. In fact, it can be shown
that normally a small subset of the intervals of the last model is actually sufficient to find
an overall feasible (and thus optimal) solution. Fourth, the described methodology applies
to any job-shop scheduling problem, so it is logical to extend it to cope with other contexts,
such as industrial production or project scheduling.
Alternatively, a different line of research might be to reduce the DDD problem to a (Maxi-
mum) Satisfiability problem, by using the same idea of abstraction refinement with a unary-
number-like representation of the time-domain variables. In particular, the SATisfiability
problem (SAT) is the problem of deciding, given a boolean expression in variables, whether
some assignment of the variables makes the expression true. It is a canonical NP-complete

problem, however many commercial (exact) SAT solvers have been proposed, developed and
improved in the last decades. The good computational performances of such tools may turn
out to be very promising also when used to solve the DDD problem.
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Chapter 5

Safe Place Assignment for
reliable railway systems§

5.1 Introduction

When a disruption occurs on a railway network, timetables may become infeasible and
parts of the network unavailable for inbound trains. This requires decisions to be taken in
real-time to mitigate the impact on the overall traffic. Generally train movements have to
be re-planned in short time, that is, dispatchers have to take appropriate re-routing and
re-scheduling decisions. In the literature the whole process is referred as disruption manage-
ment. Arguably the most critical issue is to avoid creating deadlocks, a situation that arises
when a group of trains is positioned in such a way that none can move due to other trains
in the group blocking their paths. From the text of a law passed by the Kansas legislature
at the beginning of the 20th century we can read:

"When two trains approach each other at a crossing, both shall come to a full stop and
neither shall start upon again until the other has gone" .

Since different trains may require the same sections of the railway system, one or more
trains have to move backward in order to reach again a conflict-free situation. Deadlocks
are more prone to occur during disruptions, as the capacity of the network is often abruptly
reduced, and dispatchers face unfamiliar and critical circumstances. In order to prevent
§ This chapter is an extension of a work published on Transportation Science Journal [47]. The

original work is co-authored with Prof. Carlo Mannino, from SINTEF (Oslo, Norway), PhD Paolo
Ventura from IASI at CNR (Rome, Italy), PhD Veronica Dal Sasso e PhD Leonardo Lamorgese
from Optrail (Rome, Italy). [A.L. Croella, V. Dal Sasso, L. Lamorgese, C. Mannino and P. Ventura.
Disruption management in railway systems by safe place assignment. Transportation Science, 2021.]
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deadlocks and in general to mitigate the negative effects of a disruption, dispatchers are
required to implement specific recourse actions, sometimes based on predefined rules that
are tailored on the specific railway system. In fact, even though train scheduling problems
in different regions of the world share a common core problem, they may also differ signifi-
cantly in certain aspects. For example, in Europe rail traffic is largely focused on operating
passenger services, with the infrastructure manager being a single, public authority, and
the train operating companies competing to provide services to passengers and, to a lesser
extent, to ship goods. In other markets, such as the North American one, the rail industry
is predominantly shaped by freight-hauling companies, with most companies owning and
operating their rail network. Freight traffic presents some fairly different challenges from
passenger traffic. Firstly, train traffic is often "un-scheduled", that is, no official timetable
to adhere to exists. Secondly, railway business rules in America are somewhat more relaxed
than in Europe, where trains generally have rigid routes between stations and certain train
movements cannot be automated for (passenger) safety concerns. Finally, and perhaps more
importantly, freight trains are typically much longer than passenger ones, which drastically
amplifies the challenge described above in dealing with disruptions and their aftermath.

Commonly, the key objectives imposed aim:

• to leave, if possible, a viable path in the network with no obstructions, so as to allow
work and maintenance trains to reach the disruption site(s);

• to quickly return to the normal traffic regime once the disruption is over;

• to ensure continuity in the service offered to passengers, by taking recourse actions
such as minimizing cancellations, adding short-turn trains and substituting missing
segments with alternative bus transport, etc.. Note that in general the cancellation
of a train service is considered as the last option by dispatchers as it leads to major
delays and represents a significantly unpleasant event for passengers.

Most of the contributions presented in the literature on disruption management deal with
(some of) these three issues. However, despite quite a large scientific production on disrup-
tion management algorithms, we are not aware of existing real-life applications. Note that
such practical implementations will become indispensable once Advanced Traffic Manage-
ment Systems (ATMSs) will be used extensively. An ATMS is a digital train management
solution capable of generating in real-time routes and schedules (movement plans) for the
trains in a given region and planning horizon. ATMSs use on-train technologies and ad-
vanced digital communications to enforce safe trains movements improving system safety,
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efficiency and flexibility.

The model tackled in this chapter follows a real-life protocol adopted by a large Class I
North-American railroad company to manage disruptions. The purpose is to find, for each
train affected by a disruption, a safe place, that is a location on its path where the train can
be safely parked during the critical situation, allowing traffic to route around it. Note that
the word "safe" does not refer to the risk of accidents or damages to the infrastructure or
rolling stock, which is responsibility of the safety layer of the signalling system. Currently,
the safe place assignment is decided by experienced dispatchers in a greedy fashion. In the
following sections we present a mathematical formulation for the Safe Place Assignment
Problem (SPAP), later also denoted as SP-protocol. We develop an Integer Linear Program
(ILP) approach that allows us to find an optimal assignment in a fraction of a second even
for large instances and provides a strong support to dispatchers in their task. Indeed, as
mentioned above, the application of the SPAP can also be related to the current usage of
ATMSs. Since an ATMS solves instances of a hard optimization problem in very limited
computational time, it may in general fail to return a plan and this can happen for different
reasons. One possibility is that a solution exists, but the algorithm is not able to find it.
Another is that the problem is infeasible, but the algorithm is not able to prove it. Infea-
sible instances correspond to so called bound-to-deadlock configurations, that occur when,
given the trains’ current positions, the system will inevitably end up in a deadlock. Bound-
to-deadlock scenarios may vary in accordance with the railway layout in terms of number
of trains involved and/or distance between them. Depending on the underlying algorithm
used for planning, in these cases the ATMS may still be able to provide a partial plan, that
is, a (feasible) plan that however spans a shorter planning horizon. Scheduling algorithms
based on a "rolling horizon" paradigm, which tackle the problem by solving conflicts in a
chronological order1, are quite common in these applications ([116] [161]). The routes and
schedules of such partial plans become the inputs of the SPAP. Thus, finding a solution
to the problem for these plans adds an additional level of safety, as traffic controllers are
provided with the last safe location for a train to drive within the plan’s horizon. Trains
would not be automatically let past these locations until a complete plan is available, or
only when a dispatcher takes direct control of the situation.

The chapter is organized as follows. Section 5.2 gives an overview of related researches on
disruption management. SPAP key elements, basic definitions and properties are presented

1 This approach mimics the most common planning process of human dispatchers, that can therefore
be seen as a particular rolling horizon algorithm.
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in Section 5.3 and Section 5.4. Here we introduce the modelling choices adopted for the
problem under analysis, then its purely binary programming formulation is described in
Section 5.5. Finally, computational results over a set of instances of realistic size and
complexity are presented in Section 5.6.

5.2 Literature overview

In recent years disturbance and disruption management have aroused a strong interest in
the Operations Research (OR) field. Nielsen ([121]) gives a summary of the causes of dis-
ruptions., while in [90] Jespersen-Groth et al. describe the general disruption management
process for the European rail system and emphasize the important role that OR models
can play in limiting the impact of disruptions and improving railway systems performances.
A growing number of algorithms and methods for the real-time re-scheduling have been
proposed ever since, showing promising results both in terms of the solutions quality and
resolution times.
According to the topography of the infrastructures, the type of transportation or the dis-
turbance/disruption exact location and severity, different strategies can be used to recover
from an unexpected event and restore a steady state in the network. Basically, a railway
disruption management can be divided in three main sub-problems: timetable adjustment,
rolling stock and crew re-scheduling. In the reminder of this section we focus our attention
on the literature related to the timetable adjustment challenges and its various solution
approaches. In particular, re-timing, short-turning, trains cancellation and stopping trains
are just some of the possibilities at hand for the dispatchers that, at present, manually
handle the timetable re-scheduling. We underline that most of the works presented on the
real-time train re-scheduling, during and after a disruption, consider the railway system at
macroscopic level ([27]). Next we report some examples of mathematical models developed
in the disruption management context, for an extensive review on train re-scheduling models
we refer the reader Section 3.2.

Narayanaswami and Rangaraj introduce in [119] the disruption events in a Mixed Integer
Linear Program (MILP) re-scheduling model for a single-track line. Their formulation allows
to re-time only the trains affected by the disruption (letting the others keep their schedule)
and produces a new conflict-free timetable, to be applied at the end of the disruption. The
goal is to minimize total delay of all trains at their respective destinations. However, a set
of rigid assumptions limits the validity of the model for real re-scheduling applications.
Paper [142] implements an integrated real-time disruption control model acting at the
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macroscopic level. A MILP model is used to decide between waiting, expressing and short-
turning strategies to decrease the average passenger waiting time in a single-line system.
The work highlights the sensitivity of short-turning to the accuracy of the disruption dura-
tion estimate.
Paper [89] develops instead a Mixed Integer Program (MIP) to reinsert the cancelled train
services once an adequate level of regularity has been re-established. The objective is to
recover the traffic regime scheduled by a periodic timetable as quickly as possible, by de-
ciding which rolling stock units should cover which train services and when. The tests are
carried on two lines running between Frederikssund and Farum station in Denmark and
show a substantial improvement in the level of service offered to the passengers due to the
real-time application of the mathematical formulation.
Paper [116] studies different probabilistic scenarios to generate and select meet-pass plans
using a rolling horizon solution approach. Here, Meng and Zhou try to minimize the ex-
pected additional delay when restoring the original plan after a disruption event and do
consider the uncertainty on the input data and recovery times.
Paper [30] addresses the disruption management problem in rapid transit network. The
authors design an integrated approach for both timetable re-scheduling and rolling stock
optimal assignment taking into account passenger demand behavior. A MILP model is for-
mulated and tested on realistic instances of of a Spanish rail operator. Computation times
account for a few minutes and show that the model is implementable in practice.
In [37] Coor simulates short-turning on a rail transit line (the Blue Line of the Massachusetts
Bay Transportation Authority) in the morning peak period. Through this thesis work, a
more critical use of the short-turning technique to minimize passenger wait times is ad-
dressed. In fact, for the rail system under analysis, short-turning appears to be valuable
only in the case of severe delays.
For the case of partial or complete blockages in the network, [103] makes use of a MILP
model for maximizing the level of service perceived by passengers: this means minimizing
the number of canceled trains and the delays of the running trains. In the article Louwerse
and Huisman take into account an estimation for the duration of the disruption event and
determine a new schedule for the subset of trains that are allowed to run during the block-
ade. Moreover, they introduce the possibility of delay some trains with a few minutes and
show how in this way the number of cancelled train service can be reduced.
The macroscopic model of [103] is extended in [154] by considering rerouting of trains and
is formulated through an ILP as an event activity network. Tests on the Dutch railway
network show that it can be successfully applied to handle large-scale disruptions. Indeed,
a very low computation time (below 90 seconds) demonstrates its applicability in practice.
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Paper [39] proposes instead an advanced re-scheduling approach to manage the traffic in a
seriously disrupted and busy network with high risk of deadlocks. Both a centralized and a
distributed procedure are tested. However, since the model is managed at the microscopic
level, good quality solutions can only be found by reducing the time horizon considered (up
to one hour).
Paper [17] formulates instead a macroscopic multi-objective ILP that takes into account pas-
sengers satisfaction, operational costs and deviation from the original timetable. By includ-
ing several dispatching measures (cancellation, delay, rerouting, emergency train scheduling)
the authors show that it is possible to include a demand-driven approach into disruption
management with promising results. Yet, the work represents only a first step and is based
on several simplified assumptions.
Ghaemi, Cats and Goverde propose in [71] and [72] two MILP models dealing with complete
track blockages and describing the network respectively at a microscopic and macroscopic
level. [71] model extends the formulation proposed in [125] by including short-turning pos-
sibilities. The aim is to find the optimal conflict-free routes for all trains in the net while
choosing short-turning stations for a subset of them. The model is applied to two Dutch
railway corridors when disruptions impede the normal traffic for a long time. Further, the
formulation in [72] considers both sides of a disrupted location and includes short-turning,
partial cancellation and re-timing of the trains. The possibility for each train to choose
between two candidate short-turn stations is also added. Assuming that the length of the
duration is known upon occurrence, the model seems promising in a real-time application.
The work [164] adds (to the dispatching measures to be adopted during disruption events)
the possibility of skipping and adding stops and gives trains a full choice on short-turn sta-
tions. A macroscopic MILP model is formulated to minimize the re-scheduling impact on
passengers satisfaction during complete track blockages. Results on double and single-track
railway lines of the Dutch railway system show that the new dispatching options can lead to
less passenger delays and knock-on delay effects. However, this is at expense of an increased
number of cancelled train and of a higher sensitivity to the disruption length. A trade-off
between the quality of the solution and the computation time should be considered.
Paper [166] addresses the case of multiple disruptions connected pairwise by at least one
train line. All possible dispatching measures presented so far to handle a disruption appear
in the model, that allows for train re-timing, reordering and cancellation, stops addition
and flexible short-turning. Both a sequential approach (considering a single disruption at a
time, respecting their order of occurrence) and a combined multi-disruptions technique are
investigated. The latter, supported by a rolling-horizon method, is able to provide a solu-
tion for all experiments tested and appears to be the most efficient providing high-quality
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re-scheduling in an acceptable time.
Paper [152] proposes a macroscopic MILP model for the timetable adjustment problem un-
der infrastructure maintenance possession. Apart from re-timing and reordering measures,
the model includes short-turning (handled in a preprocessing step) and trains cancellation.
Furthermore, to account for station capacity constraints the authors propose a row genera-
tion approach able to tackle larger and more complex instances. The model is extended in
[153] by integrating flexible short-turning possibilities and tested on large-scale networks in
Netherlands. We remark that the validity of this model has been recognized by planners.
Lastly, Josyula et al. in [92] address a framework to classify, evaluate and compare the
performances and capabilities of alternative approaches. The authors also applied the pro-
posed evaluation framework as proof-of-concept to two train re-scheduling algorithms.

Depending on the traffic state of the network, Ghaemi et al. divide in [73] the disruption
management process into three different phases, each of them marked by an essential decision
to be made when handling a disruption. The article also operates a critical review of the
models presented in the literature, highlighting the challenges faced by railways operators
and traffic controllers. More in detail, the three different stages encountered by the network
in case of disruption can be defined as follows:

• first phase: traffic decreases, the disruption impact and length are estimated; counter-
measures and transition plans are evaluated,

• second phase: traffic remains low while a disruption timetable is applied;

• third phase: traffic and services are restored, a transition plan is applied to return to
the original timetable.

One of the main task of the first phase is the discussion on the adoption of a contingency
plan. A contingency plan (or disruption program) is a predefined solution given by a set of
actions that are established by traffic controllers and railway operators and are based on a
specific disruption scenario. Countries such as Netherlands, Denmark, Germany, Switzer-
land and Japan currently use this system to deal with major disruptions and decide which
trains should be cancelled or short-turned (and in which stations). Along the lines, the
Norwegian infrastructure manager Bane NOR published a list of such rule, called action
cards (see [10] - text is in Norwegian), defining how to move or where to stop the trains in
the affected region during a disruption. Of course, all the designed contingency plans/action
cards cannot cover all the disruption events that may arise in different portions of the net.
These static solutions always need to be adapted and re-shaped according to the real state
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of the system and, unfortunately, there is no universal formula to apply.
In [33] Chu and Oetting underline instead that one of the main cause of delays in the third
phase is the queuing of trains at and in front of stations. Thus, they propose a method to
better design the contingency plans by considering additional blocking times for trains at
the microscopic level. The method is applied to two large German S-Bahn networks and
used to assess the feasibility of such contingency plans.

On the other hand, when no contingency plan can be applied, the railways operators first
aim is to isolate the disrupted network portion by holding trains in stop positions ([73]).
However, despite its significant practical relevance, this approach (in any of its variants) is
rarely addressed in the scientific literature and we are only aware of three other papers on
the subject.
In case of a long lasting line blockage due to an accident, [86] [160] and [162] refer to the
process of establish which train should be stopped and where it should be parked as the
train stop deployment planning. Hirai et al. ([86]) present a Petri-net-based model to assign
trains to parking locations and formulate the problem as an integer program. The input of
the model consists in (i) possible location where to stop train and (ii) a set of track that
should be unoccupied. A number of constraints and not mandatory requirements limiting
the choice of the trains parking locations is also identified. For example, trains can only
stop at block sections with a platform that can fully accommodate it and that allows other
trains to pass through the stations. The output of the model not only determines the fi-
nal stop locations of the trains, but also the sequence of atomic movements that must be
performed to reach them. Unfortunately, the resulting algorithm does not scale well and,
since the network is described at a microscopic level, it cannot solve real-world instances in
a reasonable time (as reported in [162]).
In [160] the train rescheduling management problem is tackled when a complete blockage in
the network impedes the train short-turning and forces them to wait at a station until the
disruption event is over. The authors formulate a mixed integer program to decide where
to stop trains and their precedence in leaving the stations once the service is restored. In
addition, the possibility of cancellation of train services is here taken into consideration
and it is supposed to be minimized, along with the weighted delays of running trains. The
model is macroscopic and does not account for information about the train routes and the
signal systems. Nonetheless, it considers the timetable rescheduling for the entire day. The
tests are carried on several disruption scenarios in one of the longest and busiest high-speed
railway lines in China connecting Beijing to Shanghai. The research shows how the use
of the MILP formulation is able to significantly reduce the impact of the disruption and
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compares the results with the heuristic approach used in practice by train dispatchers (First
Scheduled First Served (FSFS)). However, the complexity of the model necessitates in some
experiments a two-step approach addressing the problem in separate steps, before and after
the disruption is over.
Zhan et al. present in [162] a MILP model derived from [160]. It aims at re-scheduling
and/or canceling and/or assigning trains to stop locations during a major disruption that
presents a (complete) blockage for a relatively long period of time. Both long-distance and
short-distance trains operating in the Beijing-Shanghai high-speed railway line are taken
into account. Besides, unlike the majority of the previous works (and [160]), the authors
chose to model at the macroscopic level the trains services with different directions, thus to
manage also local and cross-line trains. The key objective is to minimize cancelled trains
by deviating as little as possible from the original schedule and ensuring that the halted
long-distance trains do not hinder other local trains routes. Given the capacities, the latter
requirement is met by imposing that for each station at least a track is always available.
Not too surprisingly, computational results show that disruptions of longer duration lead to
an increase in both system complexity and computation time. Though, the model is able
to find a solution in an acceptable amount of time (100 seconds ca.) for real-time application.

Note that, long high-speed railway lines that use seat reservations, such as the Chinese and
the Japanese ones, usually need to stop trains on tracks or in stations for the time needed
to recover from the disruption (see [160, 162]). In fact, it can be very inconvenient for the
passengers to switch from one train to another. In these cases, the train stop deployment
planning (also referred as disrupted train service waiting strategy) is one of the input of the
train re-scheduling phase ([86]). On the other hand, short-line networks, as the ones in
the European countries, where trains can be more easily rescheduled, usually apply trains
cancellation and short-turning approaches (see [17, 71, 72, 103, 142, 152–154, 164, 166]).
Other aspects of the disruption management problem are considered in [165] and [167]
that take into account the uncertainty on the disruption duration. Indeed, in the current
practice, the disruption length is only estimated on a series of predictions based on expert
opinion and mechanics’ judgment. In [167] a Copula Bayesian Network model is developed
to predict the disruption length and assist the Dutch Operational Control Center Rail. The
authors take into account both factors affecting latency and repair time length and proved
the real-life application of the model to be fast and robust. [165] focuses on the case of a
complete blockage of all tracks connecting two stations and uses a two-stage rolling horizon
stochastic approach to deal with the disruption duration uncertainty. Several scenarios with
different disruption lengths are considered. The innovation lies in the fact that, once the real
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(a) Single-track network.

(b) Multiple-track network.

Figure 5.1: Schematic railway networks. Figure 5.1a shows a single-track area, where stations are
linked by only one track, while Figure 5.1b shows a portion of a multiple-track network, where more
than one track enters/exits a station or a crossover.

disruption duration overtake a fixed range, the model is updated and a new re-scheduling
model (based on the one presented in [164]) is solved. Then, new scenarios are accordingly
defined. The performances of the procedure in a portion of the Dutch railway network show
the primacy of the proposed approach on the deterministic rolling horizon models.
Furthermore, the concept of resilience of a railway network is addressed by Bešinović in [15],
by considering proactive (planning a robust system) and reactive (efficiently recovering from
a disruption) issues. Here, the term resilience is defined as "the ability of a railway system
to provide effective services in normal conditions, as well as to resist, absorb, accommodate
and recover quickly from disruptions or disasters". The author also gives a comprehensive
review of railway resilience papers (relying on [163]) and classifies metrics and approaches,
while evaluating the great potential of the mathematical optimization methods in improving
the railway systems reliability.

5.3 Modelling the network

In this section we give a formal definition of the key elements of the SPAP, namely the
railway network, trains and their movements.
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Figure 5.1 shows a schematic representation of a portion of railway line. Here, solid seg-
ments represent tracks, while the small squares at the extreme of each track denote differ-
ent objects: orange and blue squares correspond to signal points, locations where a signal
is present and trains will stop (assuming a red light). Signal points are partitioned into
east-bound signal points (where east-bound trains can stop) and west-bound signal points
(where west-bound trains can stop). The orange squares are the east-bound signal points
and are denoted by si, with i odd, while the blue squares are the west-bound signal points
si with i even. The black squares represent junction points, where a track splits into two (or
two tracks converge) and are instead denoted by bi, with i ∈ N+. Note that the junctions
actually identify track portions of different lengths for the different railway branches, but we
model them as points. The length difference of using a reverse switch or not will be reflected
on the length of occupied track portions, without the need of knowing the exact position
of the ideal junction point. The track between two successive points z, f (either signals
or junctions) is called a (track) segment (or block section) and denoted as an unordered
pair of extremes r = {z, f}. Each track segment can accommodate at most one train at
time. Example of segments are {b4, s8}, {s1, s2}, {b4, s9}, etc.. Following the movement of
trains through the line, two "opposite" partial orders can be defined over the points and
segments of a rail network: an east-bound order, corresponding to the order in which tracks
are traversed by an east-bound train, and a west-bound order. Observe that for two points
(segments) s1, s2 (r̄, r̂) we have that s1 ≺ s2 (r̄ ≺ r̂) in the east-bound order if and only if
s2 ≺ s1 (r̂ ≺ r̄) in the west-bound order.

Rail paths. We now give a formal definitions for a rail path.

Definition 5.1. A rail path is an alternating sequence of points and segments of the line
that is ordered either west-bound or east-bound.

In Figure 5.1, PW = (s5, {s5, s6}, s6, {s6, b3}, b3, {b3, s7}, s7, {s7, s8}, s8) is a west-bound
rail path and PE = (s14, {s14, s13}, s13, {s13, b5}, b5, {b5, s10}, s10) is an east-bound rail
path. Note that the alternating sequence (s5, {s5, s6}, s6, {s6, b3}, b3, {b3, s4}, s4) is not
a rail path, because it is ordered neither west-bound nor east-bound. Note that the initial
position of an X-bound train, from its head to its tail, defines an X-bound rail path, with
X ∈ {east, west}. We say that two rail paths intersect if they share at least a segment.

Train movements. Said I a set of trains, we assume that trains have fixed routes. Let
i be an X-bound train, with X ∈ {east, west}, the movement of i across the network is
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identified by the movement of its head. The route Ri of a train i ∈ I is the rail path obtained
by concatenating the segments occupied by the train in its initial position, with the X-path
followed by the head of i from origin to destination across the line. We let R = ∪i∈IRi.
For our purpose we can decompose trains movements into a discrete sequence of elementary
movements, or steps, from an X-bound signal to the next X-bound signal on Ri, and we
can assume that, at the end of each elementary movement, the head of the train is always
facing a signal (point) in such direction. After each elementary step, the train can stop at
the signal point or proceed with the next step. Trains running on intersecting rail paths can
be either followers, both running X-bound, or crossing trains, traversing the net in opposite
directions. In single-track lines networks follower and crossing trains can meet or pass each
other at a siding, a short track parallel to the main one that is able to accommodate a
train. As an example, looking again at Figure 5.1a, segments {s5, s6} and {s6, b3} can be
considered suitable siding allowing meet-pass events with the segment {s3, s4}.

Conflicts, blocking paths and schedules. As already mentioned, a conflict arises when
two or more trains require the access to the same segment at the same time. We underline
that, depending on its length from head to tail, a train i occupies a portion of the line
which cannot be traversed by other trains. This portion starts at the signal point faced by
the head of i and includes all the segments physically occupied by the train from head to
tail. However, for safety reason, the portion of the line forbidden to other trains (blocked
segments) can be extended "backward" on Ri from the segment containing the tail of i until
a segment containing a signal point (in any direction) is met. This motivates the following
definition:

Definition 5.2. Say i a X-bound train with X ∈ {east, west}, Ri the route of i and assume
that the head of i is at the X-bound signal point s. Then we associate with i, s a blocking
path P (i, s) as follows:

1. P (i, s) is a sub-path of Ri with head-point at s,

2. The tail-point of P (i, s) is a signal point,

3. P (i, s) contains all segments physically occupied by i,

4. P (i, s) is minimal.

Condition 4 implies that any rail path satisfying conditions 1, 2 and 3 contains P (i, s).
To better grasp this definition we can look at Figure 5.2. Suppose, the segments {s4, s3},

Anna Livia Croella 100



5.4. The Safe Place Assignment Problem

Figure 5.2: Examples of blocking paths occupied by trains. Trains i and j are east-bound trains
having their heads at signal point s4. We have that P (i, s4) = ({s4, s3}) and P (j, s4) = (s4, {s4, s3}, s3,
{s3, b2}, b2, {b2, s2}, s2).

{s3, b2}, and {b2, s2}, have length, respectively, 2100, 900 and 400 m and assume that an
east-bound train i has its head at signal s4. Now, if the length of a train i is ≤ 2100 m,
then i occupies only the segment ({s4, s3}). On the other hand, if a train j has length 2450
m then j blocks the entire blocking path (s4, {s4, s3}, s3, {s3, b2}, b2, {b2, s2}, s2). Note
that the route Ri of i can also be viewed as an ordered sequence of blocking paths, which in
turn corresponds to the ordered sequence of elementary movements of i. Also observe that
two blocking paths of the same train can overlap on some segments. Summarising, when
a train i is at a signal point s, it is actually blocking, or virtually occupying, all segments
in the blocking path P (i, s). Blocking paths play a central role when coordinating trains
through the network since two trains can never occupy overlapping blocking paths at the
same time.
Now, whit a train plan we specify the route for each train i and the schedule of i, i.e. the
time train i enters each blocking path in its route. If Pi is a blocking path on the route Ri

of i and Pj is a blocking path on the route Rj of another train j, and Pi and Pj intersect, we
say that there is a potential conflict between i and j, and either i moves through Pi before
j moves through Pj , or vice versa. Any feasible schedule for the trains in the network will
hence establishes which train goes first for any potential conflicting pair of blocking paths.

5.4 The Safe Place Assignment Problem

One of the main goals of disruption management is to avoid deadlocks when trains resume
their trip after a blockage event. Disruptions reduce the capacity of the network and may
force dispatchers to hold a subset of trains, as their final destination is no longer reachable.
As these disruptions may last for a long time, it is crucial to avoid that trains "pile" around
the interested area, as trains should be able to reach their destination once the disruption
is lifted. Moreover, depending on the type of disruption, it may be required that emergency
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vehicles reach the disruption location. These requirements introduce the idea of assigning
safe places to the trains, that are locations where the trains can stop without impeding
entirely the traffic flow.

In this section we describe an optimization model to support the SP -protocol for disruption
management developed by a Class I North-American railway operator. We recall that when
a major disruption occurs dispatchers may not be able to stick to the (real-time) plan they
initially established. The SP -protocol enforces that affected trains hold at some location
along their planned routes until the disruption is over and a regular traffic is restored. Now,
an X-bound train i can only stop at an X-bound signal, and therefore the set of potential
holding places is in correspondence to the X-bound signal points in Ri. Moreover, because
i will indeed virtually occupy an entire blocking path, we can say that the set of (potential)
safe places for i is the set P(i) = {P (i, s) : s ∈ Ri} of its blocking paths. Thus, the Safe
Place Assignment Problem consists in assigning a safe place P i ∈ P(i) to each train i. In
finding the best possible holding locations, i.e. the safe places, the SP -protocol pursues
three distinct and somehow conflicting objectives:

O1 The primary goal is to avoid that when the disruption is lifted trains are bound-
to-deadlock.

O2 Secondly, there is the need to leave some paths free of trains so that worker
trains can reach the disrupted area.

O3 Finally, the aim is to "push" trains as far along their routes as possible, so as
to mitigate the impact of the disruption in terms of train delays.

Objectives O1 and O2 are conditions imposed on the feasible assignments and will be
translated into constraints of the ILP formulation in Section 5.5. In contrast O3 only affects
the objective function of the formulation. Notice that this SP -protocol has been defined
according to the requirements of one railway operator. The particular type of trains and
layout of the railway network considered may affect the definition of the preferred, or even
of the feasible, safe places assignments. However, the formulation presented in this thesis
is flexible and can be adapted to different requirements. As an example, if the preferred
policy is not to push all the trains as far as possible, but there is a special focus on not
stopping passengers trains outside of a station, this could be easily integrated in the model
by properly modifying the objective function.
Next we show how the disjunctive graph theory (see Section 3.4.1) can be exploited in order
to find a suitable set of safe places for the trains.
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5.4.1 Implementing goal O1

We start the discussion with how to pursue goal O1 . We assume that, before the disruption
occurs, trains run through the network according to a feasible plan which specifies the
routing and the schedule τ for all trains. As described in Section 3.4.1, we can associate
with such a plan a disjunctive graph G = (N,E,D) with arc lengths l, which represents our
instance at the moment the disruption strikes. Note that the planned schedule τ induces a
selection S = S(τ), and G(S) is acyclic. However, as a consequence of the disruption, trains
have to hold somewhere on their routes, the scheduling instance changes and (in general)
the schedule τ is no longer feasible.
Therefore, let φ be the function that, when the disruption occurs and according to the
SP -protocol, assigns each train i a safe place P i ∈ P(i). Trains will arrive at their assigned
safe place and will hold there until the disruption is lifted. Now, to represent the new
scheduling instance associated with the disruption event and the additional constraints
imposed on the movement of trains by the SP -protocol, we derive from the original instance
G = (N,E,D) a new disjunctive graph G′(φ) = (N ′, E′, D′) and distance function l′. The
node set N ′ = N ∪{∆} contains a new element ∆ that represents the end of the disruption.
Next, the set E′ properly contains the original set E ⊂ E′, with their original lengths.
Moreover, since we assume trains arrive at their assigned safe places before the disruption
ends, we have (P i,∆) ∈ E′, with l′

P i∆
= 0, for i ∈ I. Also, since the trains can only

move away from their safe places after the disruption ends, we have (∆, σ(P i)) ∈ E′, with
l′
∆σ(P i)

= 0, for i ∈ I. Finally, because train routes have not changed and there are no new
blocking paths, we have D′ = D, and the edges in each disjunction maintain their original
lengths.
Summarizing, the disjunctive graph G′(φ) = (N ′, E′, D′) with edge lengths l′, associated
with an assignment of safe places φ = {P i ∈ P(i) : i ∈ I}, is defined as follows:

• Node set N ′ = N ∪ {∆}. Node w represents the event end of disruption.

• Edge set E′ = E∪Ein
∆ ∪Eout

∆ , where Ein
∆ = {(P i,∆) : i ∈ I}, representing the fact that

trains enter their safe place before the end of the disruption, and Eout
∆ = {(∆, σ(P i)) :

i ∈ I}, representing the fact that trains exit their safe place after the end of the
disruption. Moreover, l′e = le if e ∈ E, and l′e = 0 otherwise.

• Disjunctive arcs D′ = D and l′e = le for e ∈ D′.

Note that, since D′ = D, the selection S = S(τ) of G associated with the original schedule τ

is also a (not necessarily acyclic) selection of G′(φ), although τ is not a feasible schedule for
G′(φ). Observe now that, in order to achieve objective O1 , we need to find an assignment
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of safe places φ and a selection S such that G′(φ)(S) is acyclic. We now present a theorem
that provides a way to find such an assignment and a selection in a natural and effective
way by exploiting S̄. In the proof we make use of the following well known results of graph
theory (see [36]):

Definition 5.3. Given a directed graph G = (N,E), a topological ordering is a function
f : N → Z+ which associates with every node a non-negative integer such that f(v) > f(u)

for all (u, v) ∈ E.

Theorem 5.1. A directed graph G(N,E) admits a topological ordering f if and only if it
does not contain a directed cycle.

Next theorem hence provides a necessary and sufficient condition on φ so that G′(φ)(S) is
acyclic, i.e. so that the selection induced by the original schedule τ is still feasible after the
disruption. This result is the basis for our ILP formulation in Section 5.5. In the following,
for any i ∈ I and P,Q ∈ P(i), we let P � Q (P ≺ Q) if Q does not precede P (Q strictly
follows P ) on the route Ri of train i.

Theorem 5.2. Let G(S) = (N,E ∪ S̄) be acyclic and let φ assign each train i a safe place
P i ∈ P(i). Then the following claims are equivalent

i) G′(φ)(S) = (N ′, E′ ∪ S̄) is acyclic;

ii) for each (σ(Pi), Pj) ∈ S with P i � Pi, we have that P j ≺ Pj.

Proof. We first show that i) implies ii). In particular, we prove that if S contains an
edge (σ(Pi), Pj) such that P i � Pi with P j � Pj , then G′(φ)(S) admits a cycle C. Indeed,
since P i � Pi, then σ(P i) � σ(Pi). Therefore, σ(Pi) follows σ(P i) on the route of train
i and there is a path in G′(φ) from σ(P i) to σ(Pi), say Qi (see Figure 5.3). Similarly, as
Pj � P j , G′(φ) also contains a directed path, say Qj , from Pj to P j . Now, we get C by
concatenating (∆, σ(P i)), Qi, (σ(Pi), Pj), Qj , and (P j ,∆).
Now we prove that ii) implies i). First observe that, since G(S) is acyclic, there is a
topological ordering f : N → {1, . . . , n} of its nodes. Now, let B = {Pi � P i : i ∈ I}, and
let A = N \B. Then we have N ′ = A ∪B ∪ {∆}. We define f ′ : N ′ → Z+ as follows:

f ′(u) =


f(u) if u ∈ A ;

f(u) + n+ 1 if u ∈ B ;

n+ 1 if u = ∆ .

Figure 5.4 show graph G′(φ). Here, red filled nodes represent the chosen safe place assign-
ment φ and black solid edges belong to the original set of arcs E, while edges belonging to
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Figure 5.3: Proof of Theorem 5.2 i) -> ii).

E′ \E are drawn in cyan (solid arrows for Ein
∆ and dashed arrows for Eout

∆ ). Then, we show
that f ′ is a topological ordering of G′(φ).
Suppose not, then there is an edge (u, v) ∈ E′ ∪ S such that f ′(u) > f ′(v).

• If u = ∆, then v = σ(P j) for some j ∈ I. But then σ(P j) ∈ B, f ′(σ(P j)) ≥ n+2 and
we have f ′(u) = f ′(∆) = n+ 1 < f ′(σ(P i)) = f ′(v), a contradiction.

• If v = ∆, then u = P j for some j ∈ I. But then P j ∈ A, f ′(P j) ≤ n and we have
f ′(u) = f ′(P j) ≤ n < n+ 1 = f ′(∆) = f ′(v), a contradiction.

• Finally, consider the case with u, v 6= ∆. Then arc (u, v) belongs also to G, implying
f(u) < f(v). Let u = σ(Pi) ∈ P(i), for a i ∈ I and v = Pj ∈ P(j), for a j ∈ I. Since
f ′(u) > f ′(v), but f(u) < f(v), we must have u = σ(Pi) ∈ B and v = Pj ∈ A. But
this implies that i 6= j, and (σ(Pi), Pj) ∈ S. Then we have P i ≺ σ(Pi) and Pj � P j ,
a contradiction.

Thanks to Theorem 5.2 we can ensure that the safe place assignment complies with all
meet-pass events scheduled by the original plan. As, an example consider the railway area
in Figure 5.5a. Two west-bound trains i and j are traversing the net when a disruption
occurs. Their path are drawn in solid colored lines. The blocking paths are defined as
follows:

• P(i) = {P (i, s2) = ({s1, b1}, {b1, s2}), P (i, s4) = ({s2, b2}, {b2, s2}), P (i, s5) = ({s4, b3},
{b3, s5}, P (i, s6) = ({s5, s6}}, P (i, s7) = ({s6, s7}};
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Figure 5.4: Proof of Theorem 5.2 ii) -> i).

Figure 5.5: Example of a net portion traversed by two trains (above) and its disjunctive graph repre-
sentation (below). Train i and j are shown in their current positions. Train i precedes train j on the
rail segments ({b2, s4}, {s4, b3}) in the original timetable.
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• P(j) = {P (j, s3) = ({s1, b1}, {b1, s3}), P (j, s4) = ({s3, b25}, {b2, s4}), P (j, s8) = ({s4, b3},
{b3, s8}, P (j, s9) = ({s8, s9}, P (j, s10) = ({s9, s10}}.

According to the scheduled plan, train i precedes train j on the rail segments ({b2, s4} and
{s4, b3}). This precedence constraints are represented by a selection of arcs on the associated
disjunctive graph G, as shown in Figure 5.5. Then, Figure 5.6a and Figure 5.6c present re-
spectively a feasible safe place assignment and an infeasible selection of safe place positions
for the two trains. For both solutions we report in Figure 5.6b and 5.6d the new disjunctive
graphs G′ associated with these assignments. Note that, the infeasible assignment gener-
ates a cycle (P (i, s5), P (j, s8)) → (P (j, s8), P (j, s9)) → (P (j, s9),∆) → (∆, P (i, s5)) in the
associated disjunctive graph (Figure 5.6d) while int the feasible assignment graph presents
no cycle (Figure 5.6b).

As a consequence of Theorem 5.2 we have that, if G(S) is acyclic, then we can always assign
all trains the safe places associated with their starting positions. Indeed, the following holds
true.

Corollary 5.1. Let G(S) be acyclic and let φ̃ assign each train i a safe place P̄i that
corresponds to its starting position P 0

i . Then G′(φ̃)(S) is acyclic.

Proof. At the beginning of the planning horizon, every train i ∈ I is in its starting
position P 0

i implying P̄i = P 0
i � Pi, for all Pi ∈ P(i). Suppose now (σ(Pi), Pj) ∈ S for some

σ(Pi) ∈ P(i), Pj ∈ P(j), with i 6= j. Since no train can enter (a segment of) P 0
j before j,

we must have Pj 6= P 0
j , and so P 0

j ≺ Pj , thus verifying condition ii) of Theorem 5.2.

In our ILP model (see Section 5.5), we assume that a newly computed schedule that factors
in the safe place assignment will also agree with the selection S associated with the original
schedule τ . Then, we have constraints imposing that the safe place assignment φ̃ satisfies
the condition ii) of Theorem 5.2.

5.4.2 Implementing goal O2

The purpose of goal O2 is to allow worker trains to reach the disruption, bypassing trains
that are parked in safe places. In order to model this requirement, we need first to give a
formal definition for a rail path Q to bypass a blocking path P .

Anna Livia Croella 107



5.4. The Safe Place Assignment Problem

(a) Feasible safe place assignment for the net in Figure 5.5.

(b) Disjunctive graph associated with the feasible safe place assignment shown in
Figure 5.6a.

(c) Infeasible safe place assignment for the net in Figure 5.5.

(d) Disjunctive graph associated with the infeasible safe place assignment shown
in Figure 5.6c. The set of ticker arcs {(P (i, s5), P (j, s8)), (P (j, s8), P (j, s9)),
(P (j, s9),∆), (∆, P (i, s5))} form a directed cycle..

Figure 5.6: Examples of a feasible and an infeasible safe place assignment for the net portion in Figure
5.5.
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Figure 5.7: Example of paths that can be used to bypass a train parked in a safe place. Signals with
the same token are endpoints signals for the paths that allow to bypass the safe place segment marked
with the same color.

Definition 5.4. Let P be a blocking path and Q be a rail path with endpoints s and s′.
Then we say that Q bypasses P if

(i) Q does not contain any segment of P ,

(ii) there exists a rail path between s and s′ that contains (all the segments of) P .

Informally, condition (ii) states that P "lies" between s and s′ and condition (i) ensures that
there is a path (Q) between s and s′ which avoids P . The immediate example of a bypassing
route in a network with single-track lines is the presence of a (sufficiently "long") siding that
allows meet-pass events between trains. As an example for a multiple-track network, in
Figure 5.7, path P = (s3, {s3, b5}, b5, {b5, b6}, b6, {b6, s4}, s4, {s4, s5}, s5) is bypassed by
path Q = (s1, {s1, b1}, b1, {b1, b4}, b4, {b4, s11}, s11, {s11, s12}, s12, {s12, b7}, b7, {b7, b8},
b8, {b8, s13}, s13, {s13, s14}, s14, {s14, b11}, b11, {b11, b10}, b10, {b10, s6}, s6, {s6, s7}, s7).
Therefore, goal O2 can be implemented by requiring that each train, once stopped in a safe
place (i.e. in a blocking path), has to be bypassed by some "short" rail path that will not be
occupied by other trains parked in their safe places. The maximum length of such short rail
path is a requirement that can be defined from time to time according to some rules fixed
by the rail company. For example, a path can be considered short if it does not exceed a
given length or, alternatively, if it is composed by at most a given number of segments. All
these alternatives can be easily implemented in the proposed model.

In the SP -protocol considered here, the rail company directly identifies the set U of paths
that can be used to bypass the trains parked in the safe places, which is thus an input to
our model. In the following, for each possible safe place P ∈ P(i) for some train i ∈ I, we
will denote by UP the set of paths of U bypassing P . Such sets UP can be easily calculated
off-line for each P , once the family U is given. Then, in our model condition O2 is satisfied
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if the following holds: for each train i assigned to a safe place P ∈ P(i), at least one path
Q in UP is "free", i.e. it does not intersect with any safe place assigned to some train. In
other words, there exists a path Q in UP whose tracks are not occupied or blocked by the
train itself or any other train assigned to a safe place on the network. We say that, in this
case, Q is reserved (because of P ).

5.4.3 Implementing goal O3

The last goal O3 does not require further discussion, as it relates to the desirability of train
assignment choices and only affects the objective function on the ILP model.

5.4.4 A remedy to infeasibility

Since feasibility and precedence requests among trains can be hard to satisfy, we must
consider the case when no feasible assignment of blocking paths to trains exists. In this
situation, the SP -protocol introduces the possibility for any train i ∈ I to hold in the first
blocking path P 0

i of its route, while eventually violating the constraints associated with goal
O2 . We define such trains as halted. Note that the solution in which all trains are halted is
conflict-free (as trains are physically occupying these positions in the instance) and satisfies
the conditions imposed by goal O1 (thanks to Corollary 5.1). Clearly, this choice will be the
least valuable and we want to minimize the number of halted trains. The latter requirement
is thus taken into account in the objective function.
It must be noted that when the number of halted trains is larger than one, some conditions
must be verified before the safe place assignment can be applied automatically in the case
of a partial plan. Namely, the assignment can be carried out if, for every pair of halted
trains, these are either trailing, i.e. travelling in the same direction, or have no "interaction",
that is they do not risk having conflicts on any resource potentially reachable within the
planning horizon. These conditions are often satisfied in North-American freight railways,
where traffic is relatively sparse in lower capacity areas in which trains are more prone to
being "halted". In denser, typically multiple-track areas instead, the additional capacity
available will generally have fewer/no halted trains altogether. We remark that in those
rare cases of partial plans in which these conditions do not apply, the SP -protocol requires
that the dispatcher overseeing operations take control of the involved trains and "manually"
assign trains to their desired safe place (if any).
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5.5 A binary linear programming formulation

The purpose of the SPAP is to find an assignment of blocking paths to trains and a conflict-
free schedule pursuing objective O3 while conditions O1 and O2 are satisfied. In this section
we formally describe a mathematical formulation for it.

5.5.1 Variables and constraints

We recall that, given a set of east-bound and west-bound trains I, for each train i we let
P(i) be the set of its candidate safe places, ordered from the origin to the destination. We
denote with P 0

i the first blocking path on the route of train i (starting position), that is
the only assignable blocking path for a halted train. Next, we introduce the following set
of binary variables:

zPi =

{
1 if train i is assigned to safe place P

0 otherwise
i ∈ I, P ∈ P(i)

hi =

{
1 if train i is halted in its starting position P 0

i

0 otherwise
i ∈ I .

A feasible solution for the SPAP implies that each train is either halted in its initial position
or assigned to a safe place. This can be ensured thanks to a set of linear constraints:

hi +
∑

P∈P(i)

zPi = 1 i ∈ I . (5.1)

Note that the two conditions hi = 1 and z
P 0

i

i = 1, although train i is physically parked in
the same blocking path (the first), actually represent very different situations. Indeed, a
halted train does not need to satisfy condition O2 . Precisely to distinguish these cases, we
define P ∈ P(i) to be a safe place for i if and only if zPi = 1.

Clearly, if a train is parked (either halted or in safe place) in a blocking path P , then no
other train can be parked in a blocking path P ′ sharing a segment r ∈ P ∩ P ′. This is
guaranteed by the following two sets of constraints.

hi +
∑
j∈I

∑
P ′∈P(j):r∈P ′

zP
′

j ≤ 1 i ∈ I, r ∈ P 0
i , (5.2)
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∑
j∈I

∑
P ′∈P(j):r∈P ′

zP
′

j ≤ 1 i ∈ I, P ∈ P(i), r ∈ P . (5.3)

Once again, note that, since the input plan is feasible, we have that P 0
i ∩ P 0

j = ∅ for any
pair of distinct trains i, j.

In order to fulfill objective O1 , we want the solution to satisfy the condition ii) of Theo-
rem 5.2. Therefore, for each oriented arc (σ(Pi), Pj) in the current selection S, we forbid
that the conditions P i � Pi and P j � Pj both hold true.

hi +
∑

P∈P(i)|P�Pi

zPi +
∑

P∈P(j)|P�Pj

zPj ≤ 1 (σ(Pi), Pj) ∈ S . (5.4)

Now, to implement condition O2 we need to introduce the binary variables that define the
activation of the paths in U . A path Q is defined as active if it intersects with at least a
safe place assigned to some train. We have:

yQ =

{
1 if path Q is active
0 otherwise

Q ∈ U .

The following constraints imply that, whenever a train is assigned to safe place P , then at
least one path in UP must be reserved.∑

Q∈UP

yQ − zPi ≥ 0 i ∈ I, P ∈ P(i) . (5.5)

Then, we need to ensure that all reserved paths do not intersect a safe place assigned to
some train.

yQ + zPi ≤ 1 Q ∈ U , i ∈ I, P ∈ P(i) : P ∩Q 6= ∅ .

Since two assigned safe places cannot share a common segment, we can strengthen the
previous constraints as follows:

yQ +
∑
i∈I

∑
P∈P(i):s∈Q

zPi ≤ 1 Q ∈ U , s ∈ Q . (5.6)

Note that there is no analogous of constraints (5.5) and (5.6) involving the variables h in-
stead of variables x, as halted trains do not need to satisfy condition O2 .
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The set of constrains (5.1)-(5.6), plus the binary stipulation on the variables z, h, y, defines
the feasible set of solutions to the SPAP-ILP model. We underline that this set is non-empty
since the solution hi = 1 for all i ∈ I (all halted) is always feasible.

5.5.2 Objective function

To measure the cost of a feasible solution, we consider two components. First recall that
we want the trains to be parked in the farthest possible safe place (objective O3 ). To this
end, for each train i, and each potential safe place P ∈ P(i) we associated a cost ςPi that is
proportional to the distance of P from the final destination of i. In other words, ςP ′

i < ςPi

for any P ′ ∈ P(i) : P ≺ P ′. Then, we have a cost ς̄i for every halted train i. Since we want
to minimize the number of halted trains, we choose ς̄i >> ςPi for any P ∈ P(i). Thus, the
objective function of the SPAP-ILP writes as the following cost minimization:

min
∑
i∈I

ς̄i hi +
∑
i∈I

∑
P∈P(i)

ςPi zPi . (5.7)

Modelling the cost of a solution in this way allows us to achieve goal O3 .
As anticipated while defining the three objectives, this formulation can be modified to incor-
porate different requirements. For example, we may discourage to stop a passengers train
i on a potential safe place P̄ where there is no available platform by increasing costs ς P̄i .
Instead, consider a train having its starting position in a busy network portion, we may
foster the choice of a safe place on its route choosing a very large value for the coefficient ς̄i.

To conclude, note that all but one (family of) constraints are shared with the integer pro-
gramming formulation of a Maximal Stable Set Problem (MSSP), namely the node-packing
formulation (see Section 2.3.3). Although ILPs are in general hard to solve in practice and
in theory (see [70]), the associated integer polytope has been much investigated in the litera-
ture, and most commercial solvers can exploit the special structure of its constraint matrix.
The next section shows indeed that all instances can be solved in very short computing
time.

5.6 Computational experiments

We now present the results obtained by applying the SPAP formulation on sixty realistic
instances based on data provided by a Class I North-American railroad. The underlying
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Figure 5.8: Three sample portions of railway network. Stations (within dotted lines) can be connected
by a single or multiple (bidirectional) tracks. Stations can have a different number of tracks. There can
be junctions between different lines.

network alternates single-track and multiple-track stretches. Tracks are bidirectional. The
number of routes within a station may vary: most stations have two bidirectional tracks,
but some stations may have three or more of them. Data come from a wide area of the
railway network, which comprises almost 300 stations. Note that not all stations appear in
every instances, as some stations are not traversed by any train during the time interval
considered. In Figure 5.8 we show three sample portions of the net as examples. In particu-
lar, note that the network also includes junctions between different lines. Distance between
adjacent stations may vary considerably, from 6000 to 100000 ft in single-track areas, while
in multiple-track areas they are usually shorter (mainly spanning from 2000 to 20000 ft).
The trains in the network are mostly freight trains.

5.6.1 Instances

All instances considered refer to a network with both single and multiple track areas. As
already mentioned, here the set U of paths that can be used to bypass the trains parked in
the safe places is given explicitly. Moreover, given the planned route of each train i, we can
easily compute the set P(i) of the potential safe places of i: it is sufficient to enumerate
all blocking paths traversed by i along its scheduled route. Then, for each P ∈ P(i), we
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Instance |I| E[UP ] κ E[P(i)] iP(i)=0 iP(i)>0 iP(i)>1 iP(i)>5 iP(i)>10 iP(i)>15

I1 7 3 15 7 0 % 100 % 100 % 43 % 29 % 0 %
I2 4 1 13 9 0 % 100 % 100 % 100 % 25 % 0 %
I3 6 2 15 8 0 % 100 % 100 % 83 % 33 % 0 %
I4 4 1 13 8 0 % 100 % 100 % 50 % 25 % 0 %
I5 5 1 14 10 0 % 100 % 100 % 100 % 40 % 0 %
I6 4 2 15 10 25 % 75 % 75 % 75 % 75 % 0 %
I7 5 2 15 9 0 % 100 % 100 % 100 % 40 % 0 %
I8 4 3 15 10 0 % 100 % 100 % 75 % 50 % 0 %
I9 4 2 12 9 0 % 100 % 100 % 100 % 25 % 0 %
I10 5 2 11 6 0 % 100 % 80 % 60 % 0 % 0 %

Table 5.1: Dataset S1: relevant statistics of test instances.

construct UP ⊆ U by considering all paths of U that bypass P (see goal O2 in Section 5.4).
Observe that, in a directed graph G, a u-v path Q bypasses P if G \Q admits a u-v path
that contains P .
Our test-bed allows us to highlight the proactive and reactive aspect of our formulation. As
discussed in the introduction, we encounter the SPAP mainly in two application contexts:

(i) disruption management, when a major blockage occurs in the network;

(ii) partial plan recovering, when an ATMS fails to produce a solution for the entire plan-
ning horizon.

Accordingly, we generated two sets of instances: S1 and S2. Some statistics for the two
dataset are summarized respectively in Table 5.1 and Table 5.2. For each instances we
present the number of trains (|I|), the average number of bypassing paths per safe place
position (E[UP ]), the average number of safe places available for each train (E[P(i)]) and the
maximum number of available safe place positions among all trains (defined as κ). Moreover,
for every instance we report the percentage of trains that have either no safe place or more
than {0, 1, 5, 10, 15} potential safe place locations (columns iP(i)=0, iP(i)>0, iP(i)>1, iP(i)>5,
iP(i)>10, iP(i)>15).
The first dataset S1 = {I1, ..., I10} consists of ten instances related to the case (i). Each
instance relates to a small set of trains approaching an area affected by a disruption (on
average 4.8 trains per instance), in a limited time frame of two hours. For each instance,
the average number of potential safe place per train is 8.6. Note that trains have at least a
safe place position in their scheduled path in all instances except one. Indeed, instance I6

presents a train with no safe place position available. Of course, this train will be halted in
the optimal solution (see Section 5.6.3). Moreover, due to the presence of a major disruption
in the net we can count on a very low number of bypassing path per safe place position
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Instance |I| E[UP ] κ E[P(i)] iP(i)=0 iP(i)>0 iP(i)>1 iP(i)>5 iP(i)>10 iP(i)>15

I11 54 7 14 7 0 % 100 % 98 % 76 % 9 % 0 %
I12 47 7 23 12 0 % 100 % 98 % 81 % 62 % 34 %
I13 50 9 19 10 0 % 100 % 96 % 88 % 40 % 6 %
I14 45 7 23 13 2 % 98 % 96 % 87 % 64 % 31 %
I15 50 7 17 8 0 % 100 % 100 % 76 % 14 % 2 %
I16 54 7 22 10 2 % 98 % 98 % 89 % 48 % 9 %
I17 46 7 11 6 2 % 98 % 98 % 57 % 0 % 0 %
I18 54 8 19 10 0 % 100 % 98 % 89 % 57 % 7 %
I19 53 7 9 4 0 % 100 % 98 % 11 % 0 % 0 %
I20 53 7 7 3 0 % 100 % 98 % 2 % 0 % 0 %
I21 52 7 21 11 0 % 100 % 96 % 83 % 56 % 19 %
I22 43 7 21 12 0 % 100 % 100 % 88 % 67 % 21 %
I23 42 8 20 12 0 % 100 % 100 % 86 % 71 % 24 %
I24 44 6 21 11 0 % 100 % 98 % 86 % 55 % 23 %
I25 59 3 12 6 2 % 98 % 98 % 54 % 3 % 0 %
I26 51 2 12 6 2 % 98 % 96 % 65 % 2 % 0 %
I27 47 3 13 6 0 % 100 % 98 % 49 % 4 % 0 %
I28 46 2 18 11 0 % 100 % 100 % 89 % 57 % 7 %
I29 41 2 19 11 0 % 100 % 100 % 85 % 63 % 10 %
I30 57 3 19 11 0 % 100 % 98 % 91 % 65 % 7 %
I31 53 2 19 10 0 % 100 % 98 % 83 % 51 % 9 %
I32 57 3 21 11 0 % 100 % 96 % 86 % 61 % 12 %
I33 43 3 22 12 0 % 100 % 100 % 93 % 63 % 16 %
I34 45 3 26 11 0 % 100 % 100 % 82 % 64 % 9 %
I35 53 3 23 9 0 % 100 % 94 % 75 % 42 % 6 %
I36 48 2 14 6 0 % 100 % 98 % 56 % 2 % 0 %
I37 40 3 24 12 0 % 100 % 100 % 90 % 63 % 20 %
I38 42 3 25 10 0 % 100 % 100 % 81 % 45 % 12 %
I39 49 5 17 11 2 % 98 % 98 % 86 % 57 % 4 %
I40 40 5 19 11 0 % 100 % 98 % 88 % 63 % 8 %
I41 45 5 20 11 2 % 98 % 98 % 89 % 58 % 7 %
I42 49 5 19 10 0 % 100 % 100 % 90 % 57 % 2 %
I43 59 6 17 11 3 % 97 % 97 % 92 % 66 % 3 %
I44 46 6 17 11 2 % 98 % 98 % 91 % 72 % 7 %
I45 49 5 18 11 2 % 98 % 98 % 90 % 67 % 6 %
I46 50 6 13 6 0 % 100 % 100 % 56 % 2 % 0 %
I47 23 5 6 2 13 % 87 % 52 % 0 % 0 % 0 %
I48 29 2 13 4 14 % 86 % 76 % 48 % 3 % 0 %
I49 11 3 9 5 0 % 100 % 82 % 45 % 0 % 0 %
I50 31 2 11 5 0 % 100 % 90 % 42 % 0 % 0 %
I51 31 2 14 6 0 % 100 % 90 % 61 % 6 % 0 %
I52 29 2 10 5 0 % 100 % 86 % 45 % 0 % 0 %
I53 26 2 15 7 0 % 100 % 85 % 65 % 27 % 0 %
I54 32 2 11 6 0 % 100 % 100 % 69 % 0 % 0 %
I55 27 5 19 12 0 % 100 % 100 % 85 % 70 % 19 %
I56 44 2 10 5 2 % 98 % 93 % 55 % 0 % 0 %
I57 33 1 14 7 0 % 100 % 85 % 67 % 6 % 0 %
I58 15 2 12 6 0 % 100 % 100 % 60 % 7 % 0 %
I59 16 2 11 4 6 % 94 % 81 % 38 % 0 % 0 %
I60 27 2 10 3 11 % 89 % 70 % 15 % 0 % 0 %

Table 5.2: Dataset S2: relevant statistics of test instances.
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(from 1 to 3).
The second set S2 = {I11, ..., I60} refers to the case (ii). It includes fifty instances for
which the ATMS only provides a plan with a time horizon that is smaller than the default
planning horizon. The number of trains per instance considered ranges from a minimum of
11 to a maximum of 59 trains (42.6 on average). Here, the average number of possible safe
place positions per train varies greatly from instance to instance and from train to train,
and ranges from 2 to 13 (8.4 on average). Finally, the number of bypassing paths per safe
place position for this dataset is on average 4.3.

5.6.2 Settings

Since we want to park the trains as close as possible to their final destination (goal O3 ),
we let ςPi = κ · (κ− ρPi ), where ρPi indicates the index position of the safe place segment P

along the route of train i (the lower the index, the closer P is to P 0
i ). Furthermore, as our

main objective is to minimize the number of halted trains, in the numerical experiments we
set the value ς̄i = κ2 · |I|/2.
The experiments are performed using an x64 MS Windows 10 machine with an Intel (R)
Core (TM) i7-10510U CPU and 16 GB of RAM. The problem is implemented in Java and
uses IBM ILOG CPLEX v12.10 (all default settings) as MIP optimizer.

5.6.3 Computational results

Figure 5.9 gives a graphical representation of the input and output of the SPAP for instance
I7. As input (see Figure 5.9a) we have the scheduled plan for each train belonging to the
instance and its current position in the net (denoted with solid colored points). Three out
of five trains are obstructed by a disruption and need to be assigned to a safe place position,
while the remaining trains are moving away from the blockage. The optimal safe place
assignment for the instance (in solid colored rectangles) is shown in Figure 5.9b.

In Table 5.3 and Table 5.4, we report the computational results obtained solving our for-
mulation on the test instances of the set S1 and S2, respectively. The rows of the tables are
associated with the instances of the corresponding dataset. Then, in the first columns, we
give some detail about the instance - reporting the number of trains (|I|) and the average
number of safe places per train (E[P(i)]) - and the size of the corresponding ILP model, with
the number of variables (#V ar) and constraints (#Con). Finally, in columns #Halted and
Time (ms) we report respectively the number of halted trains in the optimal solution and
the CPU time needed to solve the formulation (expressed in milliseconds).
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Instance |I| E[P(i)] #V ar #Con #Halted Time (ms)
I1 7 7 278 550 0 9
I2 4 9 139 288 0 7
I3 6 8 189 425 1 8
I4 4 8 156 232 0 6
I5 5 10 221 367 0 7
I6 4 10 148 302 1 3
I7 5 9 236 546 0 9
I8 4 10 206 390 0 3
I9 4 9 168 264 0 3
I10 5 6 149 268 1 3

Table 5.3: Dataset S1: metrics and computational times results.

We first observe that, for the instances of S1, the CPU computational times are negligible.
While about 90% of the instances of S2 require around 200 milliseconds to be solved, only
five need more than 300 milliseconds to produce the final safe place assignments. This
proves that the proposed method can be very efficiently applied in a real-time setting. The
cumulative distribution of the computational times of the S1 and S2 instances are presented
in Figure 5.10. We also want to remark that all instances are solved at the root node of the
Branch&Bound approach implemented by the solver used. This proves the good quality of
the linear relaxation of the ILP model, that is the strength of our formulation.

In Figure 5.11, we show, for the two set S1 and S2, the cumulative distribution of the
instances according to the number of halted trains in the optimal solution. In particular, for
dataset S1, the optimal solutions of about 70% of the instances do not halt any train. This
is somehow surprising, since such instances are derived from network disruption situations.
In contrast, this percentage reaches about 50% when considering S2 instances. These data
could be explained by the fact that the number of involved trains is much smaller in the
S1 instances, which in turn implies: i) that the number of interactions (meets-pass events),
hence of precedence constraints is smaller and ii) that the network is less congested, which
increases the probability of satisfying condition O2 . Besides, in most of the instances of S2

(i.e. instances derived from a partial plan), the trains set as halted by the optimal solution
have a very small number of available safe places. We also point that, aside from instances
I47 and I48, in all other cases the halted trains comply with the conditions of either been
trailing trains or not having potential interactions with each other. As described in Section
5.4, in the other two special cases the dispatchers will monitor the output of the SP -protocol
and "safely" assign a position to the involved trains.
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Instance |I| E[P(i)] #V ar #Con #Halted Time (ms)
I11 54 7 2873 6628 0 429
I12 47 12 3261 9020 0 246
I13 50 10 3347 8648 0 103
I14 45 13 3027 8265 1 136
I15 50 8 2835 6683 0 538
I16 54 10 3203 8552 1 165
I17 46 6 2408 5188 1 44
I18 54 10 3176 8637 0 159
I19 53 4 1828 3674 0 600
I20 53 3 1920 3692 0 42
I21 52 11 3946 10596 0 180
I22 43 12 3911 10149 0 156
I23 42 12 4071 11170 0 143
I24 44 11 3221 7904 0 182
I25 59 6 1231 3455 1 314
I26 51 6 1149 3085 1 308
I27 47 6 1112 2732 0 237
I28 46 11 1987 4229 0 31
I29 41 11 2036 4271 0 32
I30 57 11 2654 6685 0 70
I31 53 10 2174 5105 0 47
I32 57 11 2502 6895 0 91
I33 43 12 2291 5320 0 42
I34 45 11 1956 5779 1 75
I35 53 9 2147 5777 0 62
I36 48 6 1479 2863 0 28
I37 40 12 1864 5394 0 47
I38 42 10 2075 4933 0 45
I39 49 11 2686 7075 1 135
I40 40 11 2458 5831 0 77
I41 45 11 2467 6469 1 121
I42 49 10 2644 7291 0 100
I43 59 11 3079 8742 2 139
I44 46 11 2610 7128 1 138
I45 49 11 2765 7398 1 157
I46 50 6 2091 4529 0 61
I47 23 2 407 743 7 6
I48 29 4 730 1183 5 19
I49 11 5 298 621 2 85
I50 31 5 997 1588 2 12
I51 31 6 1041 1747 2 22
I52 29 5 707 1423 6 18
I53 26 7 1169 2064 3 16
I54 32 6 1073 1807 2 13
I55 27 12 2021 6325 1 38
I56 44 5 1229 2070 4 27
I57 33 7 1039 1847 3 18
I58 15 6 559 973 0 16
I59 16 4 405 684 2 11
I60 27 3 596 983 12 8

Table 5.4: Dataset S2: metrics and computational times results.
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Figure 5.10: Computational times cumulative distribution for dataset S1 (above) and S2 (below).
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Figure 5.11: Distributions of halted trains per instance for dataset S1 (above) and S2 (below).
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5.7 Conclusions

In this chapter, we present a non-naive formulation for the SPAP, a problem that arises in
the context of railway disturbance and disruption management. Trains must be assigned
a location to "safely" park under certain circumstances, such as when a disruption occurs
on the network or when the ATMS produces a plan that can only partially be carried out.
In Section 5.6 we showed that realistic instances can be solved in a very small amount of
time, giving evidence that the proposed method can be effectively applied also in a practical
setting, where (quasi) real-time performance is required. It is perhaps worth noting that the
special structure of the model could be among the reasons behind the extremely low compu-
tational time. Indeed, as we observed in Section 5.5, the formulation shares all constraints
except one with a MSSP, it therefore presents a structure that most math programming
solvers are able to exploit to improve performances.

As possible future research directions, we consider the case of modelling tracks with a
capacity of two or more trains as well as the possibility of partially rerouting some of the
trains. Then, we can model the possibility to stop trains on block sections that do not appear
in their original schedules. Thus, in this scenario we aim to further reduce the number of
halted trains, combining with the SPAP the resolution of a train re-scheduling problem
after the end of the disruption. Moreover, by investigating the disparate requirements and
policies of different rail operators, more complex objectives can be addressed. The relative
closeness to the much-studied MSSP might also inspire alternative solution methods and
further work to strengthen the formulation.
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Chapter 6

Conclusions

6.1 Main findings

In this thesis we demonstrated the necessity of the use of rigorous mathematics tools in
train dispatching. We provided an overview of the state of the art in the field of Real-time
Train Re-scheduling and proposed a new re-scheduling model with the aim of overcoming
the main drawbacks of the standard optimization models used. We then focused on a special
aspect of the disruption management: finding locations, named safe places, where to park
trains in case of a major perturbation of the system.
The research subjects are both innovative and of high relevance in the railway sector and
beyond. Particular attention should be given to the designed re-scheduling procedure as it
can be applied to any job-shop scheduling problem. On the other hand, the topic of assign-
ing safe locations (and the related mathematical formulation) has been little addressed in
the literature and not so many papers can be found. The outputs of the present study are
two different optimization models that trace two opposite but complementary issues of the
real-time train re-scheduling: the reactive scheduling, allowing to efficiently recover from
unexpected events, and the proactive planning, aiming at building robust railways systems.

On the reactive side, we designed, implemented and evaluated a novel technique to re-
schedule trains and generate a consistent and conflict-free timetable. We relied on a re-
cently introduced paradigm, the Dynamic Discretization Discovery (DDD). We provided a
tailor-made implementation of the algorithm that iteratively solves a series of pure binary
linear problems until a feasible solution has been found. We compared the result obtained
on 20 real instances with the performance of the two most widely used optimization mod-
els, namely the big-M and time-indexed formulations. The results gave evidence that the
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procedure can be used efficiently in a dynamic environment and has great potential to be
adopted for real-time applications.
In the context of railway disturbance and disruption management, we have defined and
mathematically formulated the Safe Place Assignment Problem (SPAP). Such a problem
may be addressed in two cases: when a disruption occurs on the network or when an Ad-
vanced Traffic Management System (ATMS) is not able to produce a complete feasible plan
and ends up with a schedule that spans a shorter time horizon. Thus, its deployment area
covers both a reactive and proactive aspect. The model has been developed in close cooper-
ation with a large Class I North-American railroad company and the results have been very
welcomed by dispatchers. We tested the binary linear program we devised on two real-world
data sets which allowed us to highlight the suitability of the model for both facets of dis-
ruption management. The computational experiments indicated that a very small amount
of time is needed to solve the model, demonstrating its great potential for application in an
on-line context.

Note that the implementation of the two procedures developed strongly depends on the
disturbance/disruption length estimation and the knowledge on the exact location of all
rolling stocks when the unwanted event occurs. Up to date and accurate data are therefore
an essential prerequisite for their correct application in real life.

6.2 Recommendations for future research

Since both research projects debated in this thesis are off the beaten track, they leave a
wide room for further improvements and offer different research directions.

A first step towards the improvement of the DDD technique is to investigate on how the
discover of new time points to refine the intervals can be improved. In fact, this aspect can
be particularly time consuming since at each iteration we may have a non-trivial number of
candidate time points to add for a single resource. This is especially the case of a conflicting
resource involving more than two trains. One might want to find the best partition that
eliminates all possible pair-wise conflicting events at once, avoiding unnecessary iterations.
Moreover, it seems that the difficulty of this problem may vary significantly depending on
the different scenarios, criteria and conditions. In particular, a study on the influence of
the number of potentially conflicting resource pairs should be addressed. A potential time-
saving procedure introducing a concurrent use of macro-micro approaches to model the
network can also be tested. For example, one can explicitly model a conflicting pair only
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when it shows an incompatibility, and leave the associated resource in an aggregate form
when them do not interfere with the feasibility of the schedule. On the other hand, more
details can be considered in the model, such as trains cancellations, re-routing, optimal train
speed and efficient driving. Finally, the dynamic potential of the proposed technique can
also be exploited transforming the problem in a Maximum Satisfiability (MaxSAT) problem
and using the same idea of abstraction refinement with a unary-number-like representations
of time-domain variables.

There are also many insights for future research on the SPAP. As for the DDD case, the
model can include more details, such as capacity on tracks and at the stations. Re-routing
trains through a safe location that does not appear on the original planned route could also
be a way to make the network less congested on a disruption occurrence. Furthermore,
the strength of the binary formulation and its special structure resembling a maximum
stable set should be studied. Lastly, we underline that current models and systems usually
disregard passengers discomfort and focus their attention on minimizing the overall delay or
the number of delayed trains. Future research should therefore include, for both projects,
the passengers role and their expectations.

Anna Livia Croella 127





Bibliography

[1] J. Akker, C. Hurkens, and M. Savelsbergh. Time-indexed formulations for ma-
chine scheduling problems: Column generation. INFORMS Journal on Computing,
12:111–124, 05 2000.

[2] ALSTOM. Advanced computer-aided dispatching for centralized train control,
2000. https://www.yumpu.com/en/document/read/8277621/tms-alstom [Online.
Last Visited: 29 December, 2021].

[3] D. Applegate and W. Cook. A computational study of the job-shop scheduling prob-
lem. INFORMS Journal on Computing, 3:149–156, 05 1991.

[4] Aurizon - Railway Gazette International. Aurizon deploys ge transportation
movement planner tool, 2016. https://www.railwaygazette.com/australasia/

aurizon-deploys-ge-transportation-movement-planner-tool/42988.article

[Online. Last Visited: 29 December, 2021].

[5] S. Azem, R. Aggoune, and S. Dauzère-Pérès. Disjunctive and time-indexed formu-
lations for non-preemptive job shop scheduling with resource availability constraints.
In 2007 IEEE International Conference on Industrial Engineering and Engineering
Management, pages 787 – 791, 01 2008.

[6] E. Balas. Machine sequencing via disjunctive graphs: an implicit enumeration algo-
rithm. Operations research, 17(6):941–957, 1969.

[7] E. Balas. On the facial structure of scheduling polyhedra, pages 179–218. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1985.

[8] E. Balas. Disjunctive Programming. Springer Publishing Company, Incorporated,
2018.

[9] BaneNOR. The digital railway – bane nor signs contract with thales,
2018. https://www.banenor.no/Prosjekter/prosjekter/ertms/innhold/2018/

129



BIBLIOGRAPHY

the-digital-railway--bane-nor-signs-contract-with-thales/ [Online. Last
Visited: 29 December, 2021].

[10] BaneNOR. Bane nor action cards, 2021. https://orv.banenor.no/orv/doku.php?

id=sidebar&id=avvikshandtering:aksjonskort/ [Online. Last Visited: 29 Decem-
ber, 2021].

[11] P. Baptiste and R. Sadykov. On scheduling a single machine to minimize a piecewise
linear objective function: A compact MIP formulation. Naval Research Logistics
(NRL), 56(6):487–502, September 2009.

[12] M. Barah, A. Seifi, and J. Ostrowski. Decomposing the train-scheduling problem into
integer-optimal polytopes. Transportation Science, 03 2019.

[13] M. A. Bender, J. T. Fineman, S. Gilbert, and R. E. Tarjan. A new approach to
incremental cycle detection and related problems. ACM Transactions on Algorithms
(TALG), 12(2):14, 2016.

[14] A. Bettinelli, A. Santini, and D. Vigo. A real-time conflict solution algorithm for
the train rescheduling problem. Transportation Research Part B: Methodological,
106:237–265, 2017.

[15] N. Bešinović. Resilience in railway transport systems: a literature review and research
agenda. Transport Reviews, 40(4):457–478, 2020.

[16] N. Beinovi, R. Tang, Z. Lin, R. Liu, T. Tang, L. De Donato, V. Vittorini, Z. Wang,
F. Flammini, M. Pappaterra, and R. Goverde. Rails project deliverable d1.2: Sum-
mary of existing relevant projects and state-of-the-art of ai application in railways.
Technical report, 03 2021.

[17] S. Binder, Y. Maknoon, and M. Bierlaire. The multi-objective railway timetable
rescheduling problem. Transportation Research Part C: Emerging Technologies,
78:78–94, 2017.

[18] M. Boccia, C. Mannino, and I. Vasilyev. The dispatching problem on multitrack ter-
ritories: Heuristic approaches based on mixed integer linear programming. Networks,
62(4):315–326, 2013.

[19] N. Boland, R. Clement, and H. Waterer. A Bucket Indexed Formulation for Non-
preemptive Single Machine Scheduling Problems. INFORMS Journal on Computing,
28(1):14–30, February 2016.

Anna Livia Croella 130



BIBLIOGRAPHY

[20] N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The continuous-time service
network design problem. Operations research, 65(5):1303–1321, 2017.

[21] N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The price of discretizing time:
a study in service network design. EURO Journal on Transportation and Logistics,
8(2):195–216, June 2019.

[22] N. L. Boland and M. W. Savelsbergh. Perspectives on integer programming for time-
dependent models. Top, 27(2):147–173, 2019.

[23] S. Bollapragada, R. Markley, H. Morgan, E. Telatar, S. Wills, M. Samuels,
J. Bieringer, M. Garbiras, G. Orrigo, F. Ehlers, et al. A novel movement planner
system for dispatching trains. Interfaces, 48(1):57–69, 2018.

[24] R. Borndörfer, T. Klug, L. Lamorgese, C. Mannino, M. Reuther, and T. Schlechte.
Recent success stories on integrated optimization of railway systems. Transportation
Research Part C: Emerging Technologies, 74:196 – 211, 2017.

[25] C. Borraz-Sánchez, D. Klabjan, and A. Uygur. An approach for the railway multiter-
ritory dispatching problem. Transportation Science, 54(3):721–739, 2020.

[26] J. Baewicz, E. Pesch, and M. Sterna. The disjunctive graph machine representa-
tion of the job shop scheduling problem. European Journal of Operational Research,
127(2):317–331, 2000.

[27] V. Cacchiani, D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, and J. Wage-
naar. An overview of recovery models and algorithms for real-time railway reschedul-
ing. Transportation Research Part B: Methodological, 63:15 – 37, 05 2014.

[28] V. Cacchiani and P. Toth. Nominal and robust train timetabling problems. European
Journal of Operational Research, 219(3):727–737, 2012.

[29] V. Cacchiani and P. Toth. Robust train timetabling. In Handbook of Optimization in
the Railway Industry, pages 93–115. Springer, 2018.

[30] L. Cadarso, Ángel Marín, and G. Maróti. Recovery of disruptions in rapid tran-
sit networks. Transportation Research Part E: Logistics and Transportation Review,
53:15–33, 2013.

[31] G. Caimi, F. Chudak, M. Fuchsberger, M. Laumanns, and R. Zenklusen. A new
resource-constrained multicommodity flow model for conflict-free train routing and
scheduling. Transportation Science, 45:212–227, 05 2011.

Anna Livia Croella 131



BIBLIOGRAPHY

[32] G. Caimi, M. Fuchsberger, M. Laumanns, and M. Lüthi. A model predictive con-
trol approach for discrete-time rescheduling in complex central railway station areas.
Computers & Operations Research, 39(11):2578–2593, 2012.

[33] F. Chu and A. Oetting. Modeling capacity consumption considering disruption pro-
gram characteristics and the transition phase to steady operations during disrup-
tions. Journal of Rail Transport Planning & Management, 3(3):54–67, 2013. Robust
Rescheduling and Capacity Use.

[34] V. Chvatal. Linear programming. Macmillan, 1983.

[35] M. Conforti, G. Cornuejols, and G. Zambelli. Integer Programming. Springer Pub-
lishing Company, Incorporated, 2014.

[36] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. John Wiley &amp; Sons, Inc., USA, 1998.

[37] G. T. Coor. Optimization and simulation models applied to railway traffic. Master’s
thesis, Dept. of Civil and Environmental Engineering, Massachusetts, 1997.

[38] J. F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for train routing
and scheduling. Transportation Science, 32(4):380–404, November 1998.

[39] F. Corman, A. D’Ariano, I. A. Hansen, D. Pacciarelli, and M. Pranzo. Dispatching
trains during seriously disrupted traffic situations. In 2011 International Conference
on Networking, Sensing and Control, pages 323–328, 2011.

[40] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Evaluation of green wave pol-
icy in real-time railway traffic management. Transportation Research Part C: Emerg-
ing Technologies, 17:607–616, 12 2009.

[41] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Centralized versus distributed
systems to reschedule trains in two dispatching areas. Public Transport, 2:219–247,
08 2010.

[42] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. A tabu search algorithm for
rerouting trains during rail operations. Transportation Research Part B: Methodolog-
ical, 44:175–192, 01 2010.

[43] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Dispatching and coordina-
tion in multi-area railway traffic management. Computers & Operations Research,
44:146–160, 2014.

Anna Livia Croella 132



BIBLIOGRAPHY

[44] F. Corman, A. D’Ariano, M. Pranzo, and I. Hansen. Effectiveness of dynamic re-
ordering and rerouting of trains in a complicated and densely occupied station area.
Transportation Planning and Technology, 34, 06 2011.

[45] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Optimal inter-area coordi-
nation of train rescheduling decisions. Transportation Research Part E: Logistics and
Transportation Review, 48(1):71–88, 2012. Select Papers from the 19th International
Symposium on Transportation and Traffic Theory.

[46] F. Corman and L. Meng. A review of online dynamic models and algorithms for rail-
way traffic management. IEEE Transactions on Intelligent Transportation Systems,
16(3):1274–1284, 2015.

[47] A. L. Croella, V. Dal Sasso, L. Lamorgese, C. Mannino, and P. Ventura. Disruption
management in railway systems by safe place assignment. Transportation Science,
online, 2022.

[48] V. Dal Sasso, L. Lamorgese, C. Mannino, A. Onofri, and P. Ventura. The tick for-
mulation for deadlock detection and avoidance in railways traffic control. Journal of
Rail Transport Planning & Management, 17:100239, 2021.

[49] A. D’Ariano. Innovative decision support system for railway traffic control. Intelligent
Transportation Systems Magazine, IEEE, 1:8 – 16, 02 2009.

[50] A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo. Reordering and local rerout-
ing strategies to manage train traffic in real time. Transportation Science, 42:405–419,
11 2008.

[51] A. D’Ariano, D. Pacciarelli, and M. Pranzo. Assessment of flexible timetables in real-
time traffic management of a railway bottleneck. Transportation Research Part C:
Emerging Technologies, 16:232–245, 04 2008.

[52] A. D’Ariano and M. Pranzo. An advanced real-time train dispatching system for
minimizing the propagation of delays in a dispatching area under severe disturbances.
Networks and Spatial Economics, 9(1):63–84, 2009.

[53] S. Dash, O. Günlük, A. Lodi, and A. Tramontani. A time bucket formulation for the
traveling salesman problem with time windows. INFORMS Journal on Computing,
24(1):132–147, 2012.

[54] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column generation, volume 5.
Springer Science & Business Media, 2006.

Anna Livia Croella 133



BIBLIOGRAPHY

[55] DigiTwin project - Railway Gazette International. Automated wagon inspec-
tion project launched, 2021. https://www.railwaygazette.com/technology/

automated-wagon-inspection-project-launched/59167.article [Online. Last
Visited: 29 December, 2021].

[56] DSB - Railway Gazette International. Second ertms pilot line com-
missioned, 2019. https://www.railwaygazette.com/infrastructure/

second-ertms-pilot-line-commissioned/55385.article [Online. Last Vis-
ited: 29 December, 2021].

[57] M. E. Dyer and L. A. Wolsey. Formulating the single machine sequencing prob-
lem with release dates as a mixed integer program. Discrete Applied Mathematics,
26(2):255–270, 1990.

[58] A. D’Ariano, D. Nucci, D. Pacciarelli, M. Rosti, and A. F. S. B. Italia. Intelligent real-
time traffic management system for complex and busy railway networks. In Proceedings
of the 11th world congress on railway research—WCRR, 01 2016.

[59] A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Research,
183(2):643–657, 2007.

[60] European Commission. Moving block and traffic management in railway applications:
the EC project COMBINE, 2000. https://www.witpress.com/Secure/elibrary/

papers/CR00/CR00001FU.pdf [Online. Last Visited: 29 December, 2021].

[61] European Commission - CORDIS EU research results. Algorithms for robust and
on-line railway optimisation: Improving the validity and reliability of large-scale sys-
tems, 2006-2009. https://cordis.europa.eu/project/id/021235-2 [Online. Last
Visited: 29 December, 2021].

[62] European Commission - CORDIS EU research results. Optimal networks for train
integration management across europe, 2011-2014. https://cordis.europa.eu/

project/id/285243/reporting [Online. Last Visited: 29 December, 2021].

[63] European Railway Agency (ERA). European rail traffic management
system (ERTMS), 2021. https://www.era.europa.eu/activities/

european-rail-traffic-management-system-ertms_en [Online. Last Visited:
29 December, 2021].

Anna Livia Croella 134



BIBLIOGRAPHY

[64] W. Fang, S. Yang, and X. Yao. A survey on problem models and solution approaches
to rescheduling in railway networks. IEEE Transactions on Intelligent Transportation
Systems, 16(6):2997–3016, 2015.

[65] F. Fischer and C. Helmberg. Dynamic Graph Generation and Dynamic Rolling Hori-
zon Techniques in Large Scale Train Timetabling. In T. Erlebach and M. Lübbecke,
editors, 10th Workshop on Algorithmic Approaches for Transportation Modelling, Op-
timization, and Systems (ATMOS’10), volume 14 of OpenAccess Series in Informatics
(OASIcs), pages 45–60, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[66] F. Fischer and C. Helmberg. Dynamic graph generation for the shortest path problem
in time expanded networks. Mathematical Programming, 143(1-2):257–297, 02 2014.
Copyright - Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society
2014; Last updated - 2021-09-11; CODEN - MHPGA4.

[67] M. Fischetti and M. Monaci. Using a general-purpose mixed-integer linear program-
ming solver for the practical solution of real-time train rescheduling. European Journal
of Operational Research, 05 2017.

[68] M. Flamini and D. Pacciarelli. Real time management of a metro rail terminus.
European Journal of Operational Research, 189:746–761, 09 2008.

[69] S. Foglietta, G. Leo, C. Mannino, P. Perticaroli, and M. Piacentini. An optimized,
automatic tms in operations in roma tiburtina and monfalcone stations. WIT Trans-
actions on The Built Environment, 135:635–647, 2014.

[70] M. R. Garey and D. S. Johnson. Computers and intractability. A guiged to the theory
of NP-completeness. WH Freman and Company, San Francisco, 1979.

[71] N. Ghaemi, O. Cats, and R. M. Goverde. A microscopic model for optimal train short-
turnings during complete blockages. Transportation Research Part B: Methodological,
105:423 – 437, 2017.

[72] N. Ghaemi, O. Cats, and R. M. Goverde. Macroscopic multiple-station short-turning
model in case of complete railway blockages. Transportation Research Part C: Emerg-
ing Technologies, 89:113–132, 2018.

[73] N. Ghaemi, O. Cats, and R. M. P. Goverde. Railway disruption management chal-
lenges and possible solution directions. Public Transport, 9(1):343–364, July 2017.

Anna Livia Croella 135



BIBLIOGRAPHY

[74] F. Ghofrani, Q. He, R. M. Goverde, and X. Liu. Recent applications of big data
analytics in railway transportation systems: A survey. Transportation Research Part
C: Emerging Technologies, 90:226–246, 2018.

[75] F. Gnegel and A. Fügenschuh. Branch-and-refine for solving time-dependent problems.
In ottbus Mathematical Preprint COMP#13, 2020.

[76] E. Goddard. Overview of signalling and train control systems. In The 9th Institution
of Engineering and Technology Professional Development Course on Electric Traction
Systems, pages 336–350, 2006.

[77] R. M. Goverde. A delay propagation algorithm for large-scale railway traffic networks.
Transportation Research Part C: Emerging Technologies, 18(3):269–287, 2010. 11th
IFAC Symposium: The Role of Control.

[78] S. Harrod. Modeling network transition constraints with hypergraphs. Transportation
Science, 45(1):81–97, 2011.

[79] S. Harrod. A tutorial on fundamental model structures for railway timetable op-
timization. Surveys in Operations Research and Management Science, 17(2):85–96,
2012.

[80] S. Harrod and T. Schlechte. A direct comparison of physical block occupancy versus
timed block occupancy in train timetabling formulations. Transportation Research
Part E Logistics and Transportation Review, 54:50 – 66, 08 2013.

[81] E. He, N. Boland, G. Nemhauser, and M. Savelsbergh. A Dynamic Discretization Dis-
covery Algorithm for the Minimum Duration Time-Dependent Shortest Path Problem,
pages 289–297. Springer International Publishing, Cham, 2018.

[82] Y. He, F. Lehuédé, and O. Péton. A dynamic discretization approach to the integrated
service network design and vehicle routing problem. In VeRoLog 2019 : seventh annual
workshop of the EURO Working Group on Vehicle Routing and Logistics Optimization,
Sevilla, Spain, June 2019.

[83] M. Hewitt. Enhanced dynamic discretization discovery for the continuous time load
plan design problem. Transportation Science, 53(6):1731–1750, 2019.

[84] A. Higgins, E. Kozan, and L. Ferreira. Optimal scheduling of trains on a single line
track. Transportation Research Part B: Methodological, 30(2):147–161, 1996.

Anna Livia Croella 136



BIBLIOGRAPHY

[85] A. J. Higgins, E. Kozan, and L. Ferreira. Heuristic techniques for single line train
scheduling. Journal of Heuristics, 3:43–62, 1997.

[86] C. Hirai, T. Kunimatsu, N. Tomii, S. Kondou, and M. Takaba. A train stop de-
ployment planning algorithm using a petri-net-based modelling approach. Quarterly
Report of Rtri, 50:8–13, 01 2009.

[87] IRJ - International Railway Journal. Union pacific: on the rail road to ATO, 2019.
https://www.railjournal.com/in_depth/union-pacific-ato [Online. Last Vis-
ited: 29 December, 2021].

[88] M. Isaai and M. Singh. An intelligent constraint-based search method for a single-line
passenger-train scheduling problems. page 79 – 91, 2000.

[89] J. Jespersen-Groth and J. Clausen. Optimal reinsertion of cancelled train line. Tech-
nical report, Denmark & Informatics and Mathematical Modelling, The Technical
University of Denmark, aug 2006.

[90] J. Jespersen-Groth, D. Potthoff, J. Clausen, D. Huisman, L. G. Kroon, G. Maróti,
and M. N. Nielsen. Disruption Management in Passenger Railway Transportation,
pages 399–421. Springer Berlin Heidelberg, 2009.

[91] S. Josyula and J. Törnquist. Passenger-oriented railway traffic re-scheduling: A review
of alternative strategies utilizing passenger flow data. In 7th International Conference
on Railway Operations Modelling and Analysis, Lille, 2017.

[92] S. Josyula, J. Törnquist, and L. Lundberg. An evaluation framework and algorithms
for train rescheduling. Algorithms, 13, 12 2020.

[93] P. Kecman, F. Corman, A. D’Ariano, and R. Goverde. Rescheduling models for railway
traffic management in large-scale networks. Public Transport, 5, 03 2013.

[94] A. Keha, K. Khowala, and J. Fowler. Mixed integer programming formulations for
single machine scheduling problems. Computers & Industrial Engineering, 56:357–367,
02 2009.

[95] S. Kohli, A. Kumar, J. Easton, and C. Roberts. Innovative Applications of Big Data
in the Railway Industry. IGI Global, Philadelphia, PA, USA, 2017.

[96] N. Kumar and A. Mishra. Role of Artificial Intelligence in Railways: An Overview,
pages 323–330. Springer Nature, 02 2021.

Anna Livia Croella 137



BIBLIOGRAPHY

[97] F. Lagos, N. Boland, and M. Savelsbergh. The continuous-time inventory-routing
problem. Transportation Science, 01 2020.

[98] L. Lamorgese and C. Mannino. An exact decomposition approach for the real-time
train dispatching problem. Operations Research, 63(1):48–64, 2015.

[99] L. Lamorgese and C. Mannino. A noncompact formulation for job-shop scheduling
problems in traffic management. Oper. Res., 67:1586–1609, 2019.

[100] L. Lamorgese, C. Mannino, D. Pacciarelli, and J. Törnquist. Train dispatching. In
Handbook of Optimization in the Railway Industry, pages 265–283. Springer, 2018.

[101] L. Lamorgese, C. Mannino, and M. Piacentini. Optimal train dispatching by benders’
like reformulation. Transportation Science, 50(3):910–925, 2016.

[102] J. Lenstra and A. Rinnooy Kan. Computational complexity of discrete optimization
problems. In P. Hammer, E. Johnson, and B. Korte, editors, Discrete Optimization I,
volume 4 of Annals of Discrete Mathematics, pages 121–140. Elsevier, 1979.

[103] I. Louwerse and D. Huisman. Adjusting a railway timetable in case of partial or
complete blockades. European Journal of Operational Research, 235, 06 2014.

[104] R. Lusby, J. Larsen, D. Ryan, and M. Ehrgott. Routing trains through railway junc-
tions: A new set-packing approach. Transportation Science, 45:228–245, 05 2011.

[105] R. M. Lusby, J. Larsen, M. Ehrgott, and D. M. Ryan. A set packing inspired method
for real-time junction train routing. Computers & Operations Research, 40(3):713–724,
2013. Transport Scheduling.

[106] C. Mannino. Real-time traffic control in railway systems. In 11th Workshop on Algo-
rithmic Approaches for Transportation Modelling, Optimization, and Systems, pages
1–14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 01 2011.

[107] C. Mannino, L. C. Lamorgese, and M. Piacentini. Integer programming techniques for
train dispatching in mass transit and main line. Advances and trends in optimization
with engineering applications, 2017.

[108] C. Mannino and A. Mascis. Optimal real-time traffic control in metro stations. Op-
erations Research, 57(4):1026–1039, 2009.

[109] C. Mannino and G. Sartor. The path&cycle formulation for the hotspot problem in
air traffic management. In ATMOS, 2018.

Anna Livia Croella 138



BIBLIOGRAPHY

[110] C. Mannino and G. Sartor. An exact (re) optimization framework for real-time traffic
management. optimization on line, 2020.

[111] L. Marshall, N. Boland, M. Savelsbergh, and M. Hewitt. Interval-based dynamic dis-
cretization discovery for solving the continuous-time service network design problem.
Transportation Science, 55(1):29–51, 2021.

[112] A. Mascis. Optimization and simulation models applied to railway traffic. PhD thesis,
University of Rome "La Sapienza", Italy, 1997.

[113] A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking and no-wait con-
straints. European Journal of Operational Research, 143(3):498–517, 2002.

[114] A. Mascis, D. Pacciarelli, and M. Pranzo. Scheduling Models for Short-Term Railway
Traffic Optimisation, volume 600, pages 71–90. Springer, 01 2008.

[115] A. Mees. Railway scheduling by network optimization. Mathematical and Computer
Modelling, 15(1):33–42, 1991.

[116] L. Meng and X. Zhou. Robust single-track train dispatching model under a dy-
namic and stochastic environment: A scenario-based rolling horizon solution approach.
Transportation Research Part B: Methodological, 45(7):1080–1102, 2011.

[117] L. Meng and X. Zhou. Simultaneous train rerouting and rescheduling on an n-track
network: A model reformulation with network-based cumulative flow variables. Trans-
portation Research Part B: Methodological, 67:208–234, 2014.

[118] S. Narayanaswami and N. Rangaraj. Scheduling and rescheduling of railway opera-
tions: A review and expository analysis. Technology Operation Management, 2, 12
2011.

[119] S. Narayanaswami and N. Rangaraj. Modelling disruptions and resolving conflicts
optimally in a railway schedule. Computers & Industrial Engineering, 64(1):469–481,
2013.

[120] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization, volume 55.
John Wiley & Sons, 1999.

[121] L. Nielsen. Rolling Stock Rescheduling in Passenger Railways. Applications in short-
term planning and in disruption management. PhD thesis, Erasmus University Rot-
terdam, Netherlands, 2011.

Anna Livia Croella 139



BIBLIOGRAPHY

[122] L. K. Nielsen, L. Kroon, and G. Maróti. A rolling horizon approach for disrup-
tion management of railway rolling stock. European Journal of Operational Research,
220(2):496–509, 2012.

[123] E. Oliveira and B. M. Smith. A job-shop scheduling model for the single-track railway
scheduling problem. Technical report, Problem, research report 2000.21, University of
Leeds. Opentrack Railway Technology, Railway Simulation. http://www.opentrack.ch,
2000.

[124] J. Pachl. Railway operation and control. Mountlake Terrace, WA : VTD Rail Pub, 01
2002.

[125] P. Pellegrini, G. Marlière, and J. Rodriguez. Optimal train routing and scheduling for
managing traffic perturbations in complex junctions. Transportation Research Part
B: Methodological, 59:58–80, 2014.

[126] E. R. Petersen, A. J. Taylor, and C. Martland. An introduction to computerassisted
train dispatch. Journal of Advanced Transportation, 20:63–72, 1986.

[127] M. L. Pinedo. Planning and scheduling in manufacturing and services. Springer, New
York, NY, 2009.

[128] M. L. Pinedo. Scheduling. Theory, Algorithms, and Systems. Springer International
Publishing, 5 edition, 2016.

[129] A. Pritsker, L. J. Waiters, and P. Wolfe. Multiproject scheduling with limited re-
sources: A zero-one programming approach. Management Science, 16:93–108, 1969.

[130] E. Quaglietta, P. Pellegrini, R. Goverde, T. Albrecht, B. Jaekel, G. Marlière, J. Ro-
driguez, T. Dollevoet, B. Ambrogio, D. Carcasole, M. Giaroli, and G. Nicholson. The
on-time real-time railway traffic management framework: A proof-of-concept using a
scalable standardised data communication architecture. Transportation Research Part
C: Emerging Technologies, 63:23–50, 02 2016.

[131] M. Queyranne and A. S. Schulz. Polyhedral approaches to machine scheduling. Cite-
seer, 1994.

[132] RAS - The Institute for Operations Research and the Management Sciences. The
2021 railroad problem solving competition, 2021. https://connect.informs.

org/railway-applications/new-item3/problem-solving-competition681 [On-
line. Last Visited: 29 December, 2021].

Anna Livia Croella 140



BIBLIOGRAPHY

[133] E. Reynolds, M. Ehrgott, S. J. Maher, A. Patman, and J. Y. Wang. A multicommodity
flow model for rerouting and retiming trains in real-time to reduce reactionary delay
in complex station areas. Optimization Online, 2020.

[134] M. Riedler, M. Ruthmair, and G. Raidl. Strategies for Iteratively Refining Layered
Graph Models, pages 46–62. Springer, 01 2019.

[135] J. Rodriguez. Scheduling theory and constraint programming applied to rail traffic
management. Technical report, TECHNICAL UNIVERSITY DELFT, 2012.

[136] B. Roy and B. Sussmann. Les problemes d’ ordon ordonnancement avec constraints
disjunctives. Technical report, 1964.

[137] D. Rößler, J. Reisch, F. Hauck, and N. Kliewer. Discerning primary and secondary
delays in railway networks using explainable ai. Transportation Research Procedia,
52:171–178, 2021. 23rd EURO Working Group on Transportation Meeting, EWGT
2020, 16-18 September 2020, Paphos, Cyprus.

[138] G. Sahin, R. Ahuja, and C. B. Cunha. Integer programming based solution approaches
for the train dispatching problem. 2010.

[139] M. Samà, A. D’Ariano, and D. Pacciarelli. Rolling horizon approach for aircraft
scheduling in the terminal control area of busy airports. Procedia-Social and Behavioral
Sciences, 80:531–552, 2013.

[140] Y. O. Scherr, M. Hewitt, B. A. N. Saavedra, and D. C. Mattfeld. Dynamic discretiza-
tion discovery for the service network design problem with mixed autonomous fleets.
Transportation Research Part B: Methodological, 141:164–195, 2020.

[141] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer, 2003.

[142] S. Shen and N. H. Wilson. An Optimal Integrated Real-time Disruption Control Model
for Rail Transit Systems, pages 335–363. Springer Berlin Heidelberg, 2001.

[143] J. P. Sousa and L. A. Wolsey. A time indexed formulation of non-preemptive single
machine scheduling problems. LIDAM Reprints CORE 984, Université catholique de
Louvain, Center for Operations Research and Econometrics (CORE), 1992.

[144] South Western Railway (SWR). Machine learning deployed to support train
operations decision-making, 2021. https://www.railwaygazette.com/uk/

machine-learning-deployed-to-support-train-operations-decision-making/

59691.article [Online. Last Visited: 29 December, 2021].

Anna Livia Croella 141



BIBLIOGRAPHY

[145] B. Szpigel. Optimal train scheduling on a single line railway. Operations Research ’72,
pages 343–352, 1973.

[146] A. Tesch. A polyhedral study of event-based models for the resource-constrained
project scheduling problem. Journal of Scheduling, 23, 04 2020.

[147] A. Toletti and U. Weidmann. Modelling customer inconvenience in train rescheduling.
In Swiss Transport Research Conference (STRC2016), 05 2016.

[148] J. Törnquist. Computer-based decision support for railway traffic scheduling and
dispatching: A review of models and algorithms. OpenAccess Series in Informatics,
2, 01 2005.

[149] S. Tschirner, B. Sandblad, and A. W. Andersson. Solutions to the problem of in-
consistent plans in railway traffic operation. Journal of Rail Transport Planning &
Management, 4(4):87–97, 2014.

[150] UIC - Union internationale des chemins de fer. Uic leaflet 406, 2004.
https://tamannaei.iut.ac.ir/sites/tamannaei.iut.ac.ir/files/files\

char‘_course/uic406\char‘_2013.pdf [Online. Last Visited: 29 December, 2021].

[151] University of Hong Kong. Safety, reliability, and disruption management of high speed
rail and metro systems, 2016. http://www.cityu.edu.hk/csie/TBRS/ [Online. Last
Visited: 29 December, 2021].

[152] S. Van Aken, N. Beinovi, and R. Goverde. Designing alternative railway timeta-
bles under infrastructure maintenance possessions. Transportation Research Part B:
Methodological, 98:224–238, 04 2017.

[153] S. Van Aken, N. Beinovi, and R. Goverde. Solving large-scale train timetable ad-
justment problems under infrastructure maintenance possessions. Journal of Rail
Transport Planning & Management, 7, 07 2017.

[154] L. Veelenturf, M. Kidd, V. Cacchiani, L. Kroon, and P. Toth. A railway timetable
rescheduling approach for handling large scale disruptions. Transportation Science,
50:841–862, 01 2016.

[155] D. M. Vu, M. Hewitt, N. Boland, and M. Savelsbergh. Dynamic discretization dis-
covery for solving the time-dependent traveling salesman problem with time windows.
Transportation Science, 54(3):703–720, 2020.

Anna Livia Croella 142



BIBLIOGRAPHY

[156] R. Vujanic and A. Hill. Computationally efficient dynamic traffic optimization of
railway systems. ArXiv, abs/2105.03924, 2021.

[157] X. Wang and A. C. Regan. Local truckload pickup and delivery with hard time window
constraints. Transportation Research Part B: Methodological, 36(2):97–112, 2002.

[158] X. Wang and A. C. Regan. On the convergence of a new time window discretization
method for the traveling salesman problem with time window constraints. Computers
& Industrial Engineering, 56(1):161–164, 2009.

[159] C. Wen, P. Huang, Z. Li, J. Lessan, L. Fu, C. Jiang, and X. Xu. Train dispatching
management with data-driven approaches: a comprehensive review and appraisal.
IEEE Access, 7:114547–114571, 2019.

[160] S. Zhan, L. Kroon, L. Veelenturf, and J. Wagenaar. Real-time high-speed train
rescheduling in case of a complete blockage. Transportation Research Part B: Method-
ological, 78, 08 2015.

[161] S. Zhan, L. G. Kroon, J. Zhao, and Q. Peng. A rolling horizon approach to the high
speed train rescheduling problem in case of a partial segment blockage. Transportation
Research Part E: Logistics and Transportation Review, 95:32–61, 2016.

[162] S. Zhan, S. C. Wong, Q. Peng, and S. M. Lo. Train stop deployment planning in the
case of complete blockage: An integer linear programing model. Journal of Trans-
portation Safety & Security, 0(0):1–27, 2019.

[163] Y. Zhou, J. Wang, and H. Yang. Resilience of transportation systems: Concepts
and comprehensive review. IEEE Transactions on Intelligent Transportation Systems,
20(12):4262–4276, 2019.

[164] Y. Zhu and R. Goverde. Railway timetable rescheduling with flexible stopping and
flexible short-turning during disruptions. Transportation Research Part B Method-
ological, 123:149–181, 04 2019.

[165] Y. Zhu and R. Goverde. Dynamic and robust timetable rescheduling for uncertain
railway disruptions. Journal of Rail Transport Planning & Management, 04 2020.

[166] Y. Zhu and R. M. Goverde. Dynamic railway timetable rescheduling for multi-
ple connected disruptions. Transportation Research Part C: Emerging Technologies,
125:103080, 2021.

Anna Livia Croella 143



BIBLIOGRAPHY

[167] A. A. Zilko, D. Kurowicka, and R. Goverde. Modeling railway disruption lengths with
copula bayesian networks. Transportation Research Part C-emerging Technologies,
68:350–368, 2016.

Anna Livia Croella 144







Ringraziamenti

Lao Tzu scrisse "I nuovi inizi sono spesso mascherati da finali dolorosi". O più verosilmente
"新的開始往往被痛苦的結局所掩蓋。". In ogni caso sono d’accordo con lui.
Era ottobre 2018 e dopo quasi un anno di lavoro in consulenza, senza saperlo, non ri-
conoscevo più me stessa. Non voglio dire che è stato doloroso, straziante e avvilente, perché
a dir la verità non me la cavavo neanche male. Voglio dire che quel periodo per me è stato
snaturante e sono riuscita a capirlo solo dopo aver cominciato questo percorso di crescita,
accademica e personale, durato 3 anni (+ proroga). Ora credo di essere nel posto in cui
dovrei stare e vorrei ringraziare tutte le persone che mi ci hanno guidato.

Per questo vorrei dedicare qualche riga ai miei colleghi, o meglio amici, con i quali ho
trascorso la maggiorparte delle mie giornate in dipartimento, al cinema, alle stand up com-
edy o nelle escape room, da Mario, da Chamei o dai cinesi. Dal primo giorno al DIAG ho
capito di essere entrata in una nuova squadra, e che A114 e A115 erano solo un enorme
spogliatoio travestito da Aula Dottorandi. Tra i miei colleghi c’è chi mi ha sostenuto e
spronato prima che io imparassi a farlo da me. Non smetterò mai di ringraziare Tommaso
Giovannelli per quel mercoledì sera in cui è riuscito a convincermi a presentarmi all’esame
orale di ammissione. Un grazie speciale va a Edoardo, un completo sconosciuto che in pochi
mesi è diventato come un fratello. A volte sembra il maggiore, quando mi protegge e cerca
di mettermi in guardia dalle situazioni più indecifrabili, altre il minore, quando ha bisogno
di essere guidato e calmato prima che prenda una delle sue decisioni dell’ultimo minuto, con-
vinta e completamente insensata. Lo ringrazio per tutto ciò che ha condiviso con me e con gli
altri, per aver creato sempre un clima di profonda amicizia e mai di competizione. Ringrazio
Marco, per le mille curiosità e la cultura diffusa con ogni suo discorso, per i sondaggi e per
le domande pungenti sui sentimenti che neanche lui sa di saper fare. Ringrazio Giorgio per
aver semplicemente deciso di mostrarsi per la persona splendida qual è. Ci è voluto un
mese a farlo sciogliere durante il freddo inverno norvegese, ma sono felice che alla fine abbia
deciso di aprire il suo enorme cuore. Ringrazio Davide, per le notti da ventisettenni suonati
in stile The Sleepover Club e per il brio portato in dipartimento. Ringrazio Martina, per
essersi prestata a condividere i più disparati interessi, ma anche per tutti i racconti delle
improbabii situazioni in cui inciampa ogni giorno. Ringrazio Giulia, per il suo spontaneo e
disinteressato supporto, per i suoi piani, dalla A alla Z, e per i suoi incoraggiamenti. Grazie
a Riccardo per gli aperitivi e le incursioni serali in A114, per i mille aneddotti divertenti e
per gli sfottò, ma anche per la sua capacità di ascolto. Ringrazio Chiara per avermi fatto
sentire da subito inglobata e accolta in una nuova realtà, per le mille domande curiose, e



facilemente risolvibili, che sente la necessità di chiedere. Ringrazio Mirko per aver condiviso
la sua passione per la fotografia culinaria, per la sua rallegrante e sempre serena presenza.
Grazie a Luca per avermi perdonato dopo tre anni per il famoso lancio delle pietre. Ancora
grazie a Ruggiero, Marianna, Tiziana, Alessandro, Annarelli, Alice, Marta, Valerio, Andrea,
per i pranzi, le risate, le chiacchiere e per rendere un ambiente di lavoro una seconda casa.

Ringrazio i miei tutor, il Prof. Carlo Mannino e il Prof. Paolo Ventura, che mi hanno
espressamente richiesto dei ringraziamenti sarcastici. Grazie per i loro consigli, per le mille
videochiamate su meet ma soprattutto per la condivisione della loro conoscenza e cultura in
merito a fun facts. Grazie perchè ora so la vera storia di alcune espressioni come "spezzare
una lancia" o "essere sano come un pesce". Lasciando da parte l’umorismo, che ci accomuna,
vorrei ringraziare Carlo per la sua fondamentale guida e le sue sempre calzanti ed efficaci
direttive. Grazie a Paolo per aver messo sempre a disposizione la sua esperienza e presenza,
e per la sua disponibilità al confronto.
Vorrei aggiungere un grande ringraziamento alla Prof.ssa Laura Palagi, la mia tutor infor-
male, che ha sempre creduto nelle mie potenzialità e mi ha dato la possibilità di dimostrarle
più volte.
Un ringraziamento va anche al DIAG in quanto istituzione, per aver finanziato le sempre
magnifiche e mai ordinarie missioni, in Italia e all’estero. Grazie per Ischia, Firenze, Lis-
bona, Bolzano, Oslo e Atene.

Vorrei inoltre ringraziare chi c’è sempre stato, le mie mine vaganti che (r)esistonoo da sem-
pre. Un grazie a Valentina, sono felice di aver percorso anche questa strada al suo fianco,
spronandoci a vicenda. Siamo cresciute insieme in questi anni, forse più di quanto vogliamo
ammettere (ad oggi lei riesce addirittura a mandarmi dei cuori su Whatsapp), e non posso
che esserle grata di questo. Grazie a Maria, per la sua sensibilità e la sua ben nascosta
gentilezza, un grazie per tutte le volte in cui mi ha stupito con le sue parole, in cui non è
mancata dimostrando in ogni situazione la sua sincera amicizia. Grazie a Federica e Bea
per la loro generosità, ospitalità e abilità nel far sentire chiunque parte di un’unica famiglia
di pari. Ringrazio ancora una volta Bea e Assenzio per tutte le uscite delle ore 19, per gli
sfoghi e le risate sulle panchine di piazza Massa Carrara. Grazie a Marco, per la sua empatia
sentita, la sua immancabile presenza e i suoi consigli. Grazie a Valeria (e alla sua splendida
famiglia) per il loro dolce sostegno. Un grazie a Minni e Billi per le spumeggianti feste in
terrazza e la loro, ormai proverbiale, spensieratezza. Grazie a Peppe, Lorenzo, Francesca e
Marco per le serate in pista e per tutte quelle battute apparentemente stupide che hanno il
potere di farti sentire, strappandoti un sorriso, finalmente giusta e nel posto giusto.



Ringrazio Marta, per tutti quei momenti in cui siamo esistite soltanto noi, nel bel mezzo di
una pandemia a migliaia di km di distanza o senza un centimetro di spazio tra di noi.

Grazie alla mia famiglia, a mia madre e mio padre che hanno reso possibile tutto questo.
Ringrazio mia sorella per essere capace di dimostrarmi sempre il suo afetto, nonostante
io continui a "fare l’orso" con lei. Sono grata a tutti loro per dimostrarmi senza l’ausilio
di parole l’insegnameento più importante, quello di essere sempre più grandi delle nostre
sofferenze.

Ci sono altre persone che vorrei ringraziare, che sono passate nella mia vita e che nonostante
siano fisicamente distanti riescono comunque a essere presenti. Grazie a Lucie, Alessia, Giu-
lia, Vincenzo, Noemi, Gianmarco, Davide e Antonella.
Per la terza volta in una tesi ringrazio la mia squadra del cuore rosso-blu, che rimane come
una melodia di sottofondo, pronta a incoraggiarti e a farti sapere che ti sta guardando.
Ringrazio la mia attuale squadra, il mio mister e le mie compagne, che da settembre fanno
parte delle mie settimane e con le quali condivido emozioni sempre più forti.

So di avere ancora molto da impare e sono felice di questo. Grazie ancora una volta a tutti.
Mi piace immaginarvi tutti insieme, in stile Harry Potter e i doni della morte - parte II,
nella scena in cui Harry ha in mano la pietra della resurrezzione. Per i fan questa immagine
vale più di tutto quello che ho appena detto. Per chi non sa di cosa sto parlando, punto
primo sono veramente delusa!, punto secondo il succo è che vi ringrazio per avermi fatto
sentire amata e per essere stati al mio fianco. Ci sarà sempre un pezzo di ognuno di voi in
tutto quello che farò. Vi voglio bene.

La vostra AnnaLove di dipartimento
Roma, Dicembre 2021





Train scheduling is a critical activity in rail traffic management, both off-line (timetabling) and on-line/in

real-time (dispatching). This research aims at the design and development of advanced optimization mod-

els and methods for the real-time re-scheduling problem. The objective is twofold: managing the train

service plans in an increasingly dynamic scenario; and ensuring the safety and reliability of the railway sys-

tem in case of major disruptions.

The projects outputs are very innovative and off the beaten track.


