
Quantum Null Energy Condition, Loop Groups and
Modular Nuclearity

Facoltà di Scienze Matematiche, Fisiche e Naturali

Dottorato di Ricerca in Matematica – XXXIV Ciclo

Candidate

Lorenzo Panebianco
ID number 1735138

Thesis Advisor

Prof. Roberto Longo

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Matematica

2021/2022



Thesis defended on March 2, 2022
in front of a Board of Examiners composed by:

Prof. Carpi, Sebastiano (chairman)
Prof. Pinzari, Claudia
Prof. Rehren, Karl-Henning

Quantum Null Energy Condition, Loop Groups and Modular Nuclearity
Ph.D. thesis. Sapienza – University of Rome

© 2022 Lorenzo Panebianco. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: April 5, 2022

Author’s email: panebianco@mat.uniroma1.it

mailto:panebianco@mat.uniroma1.it


iii

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 3.0 Unported” li-
cense.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en




God may or may not play dice but she sure loves a von Neumann algebra

Vaughan Jones





vii

Acknowledgments

Quello della ricerca è, come tanti altri, un mondo di contraddizioni. È un mondo
che vuole idealmente porsi l’obiettivo di incrementare la conoscenza e quindi il benessere,
ma in cui i ricercatori influenzano dati e risultati, e non solo perché costretti dal bisogno
di costante produttività. È un mondo in cui si auspica l’utilizzo di un linguaggio univer-
sale, ma in cui è richiesta una specializzazione tale da rendere sfidante la comunicazione
anche tra esperti dello stesso campo. È un mondo di eccellenze ma anche di tantissimo
precariato, in cui ottenere una posizione lavorativa stabile prima dei 35 anni è un lusso,
e in cui spesso prima di allora bisogna sottostare a contratti che non garantiscono dei
diritti essenziali come l’indennità per congedo di maternità. È un mondo di solitu-
dine, rimpianti e frustrazione, in cui non si è mai soddisfatti né dei propri risultati né
dell’ambito di ricerca in cui si lavora, in cui sono richieste enormi capacità di adat-
tabilità e autosufficienza, e in cui la sindrome dell’impostore sembra quasi essere un
requisito necessario. Alla luce di quest’amara verità, le uniche armi in nostro possesso
sono la solidarietà e l’affetto, ed è la riconoscenza per simili gesti e sentimenti a rendere
importante la sezione dei ringraziamenti.

Il mio primo ringraziamento va al mio relatore Roberto Longo, per avermi concesso
l’opportunità di lavorare sotto la sua supervisione. Ringrazio poi le persone con cui ho
collaborato o anche solo discusso di matematica in questi tre anni: Henning Bostelmann,
Daniela Cadamuro, Simone Del Vecchio, Alessio Ranallo, Yoh Tanimoto, Benedikt We-
gener, solo per dirne alcuni. Ringrazio i miei genitori e mia sorella Valentina per il
supporto e l’incoraggiamento, specialmente all’inizio di questo dottorato. Ringrazio i
miei compagni di dottorato dell’Università di Roma “La Sapienza”, per avermi aiutato
a trascorrere con più leggerezza questi tre anni. Infine, per tutto il tempo trascorso
insieme, ringrazio tutti i miei amici più stretti conosciuti all’infuori dell’ambito matem-
atico: le persone che frequento sin dai tempi del liceo, tutti quelli di “Osservatorio” con
inclusi gli altri compagni di Dungeons & Dragons, e tutte le altre persone a me care che
ho conosciuto tramite queste. Se non vi nomino individualmente è solo per pigrizia, in
quanto sarebbe una lista piacevolmente lunga.





ix

Contents

Introduction xi

1 Mathematical background 1
1.1 Modular theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Standard subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Quantum channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Quantum entropy basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Half sided modular inclusions . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Algebraic formulation of Quantum Field Theory . . . . . . . . . . . . . 20
1.7 DHR charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Quantum Null Energy Condition on conformal nets 27
2.1 Statement of the Quantum Null Energy Condition . . . . . . . . . . . . 27
2.2 Conformal nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Analysis on Virasoro nets . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 QNEC and Bekenstein bound for solitonic states . . . . . . . . . . . . . 38
2.5 Additional remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Positive Energy Representations of Loop Groups 49
3.1 Infinite dimensional Lie algebras . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Loop groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Solitonic representations from discontinuous loops . . . . . . . . . . . . 58
3.4 Sobolev loop groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 QNEC on loop group models . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 QNEC on LSU(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Nuclearity as an entanglement measure 77
4.1 Modular nuclearity conditions . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Entanglement Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Modular nuclearity and entanglement . . . . . . . . . . . . . . . . . . . 82
4.4 Application to local quantum field theory . . . . . . . . . . . . . . . . . 86
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A DR categories 93



x Contents

Bibliography 101



xi

Introduction

Entropy is a concept almost as old as thermodynamics, a quantity that measures the
“disorder” and hence our “ignorance” of a given state of the system. When dealing with
Quantum Information objects in Quantum Field Theory (QFT), the algebraic approach
seems a good choice, since the tools regarding quantum entropy can be formulated very
precisely in terms of operator algebras. Quantum information aspects of QFT naturally
take place in the framework of quantum black holes thermodynamics, as for example
the Bekenstein Bound and the Landauer’s principle show [69, 70]. However, more un-
expected and interesting connections between the relative entropy and the stress energy
tensor have arisen, and in particular it is of interest to provide and prove an axiomatic
formulation of the Quantum Null Energy Condition (QNEC).

Classically, the Null Energy Condition (NEC) is a constraint on the stress energy
tensor stating that Tabkakb ≥ 0, where ka is a null vector field. This constraint is mo-
tivated by the positivity of the energy, and it is a necessary condition for the field ka

to have some physical meaning. However, quantum fields can violate all local energy
conditions, including the NEC. At any point the energy density 〈Tkk〉 can be made nega-
tive, with magnitude as large as we wish, by an appropriate choice of a quantum system
[43]. In the study of relativistic QFT coupled to gravity, Bousso, Fisher, Leichenauer
and Wall [14] establish a new and surprising link between Quantum Information and
the stress energy tensor. In this work, a Quantum Null Energy Condition is defined as a
null energy lower bound which is expected to be satisfied by most reasonable quantum
fields. Informally, this formulation of the QNEC can be described as follows. Given a
null plane N and Cauchy surface C in the Minkowski space, denote by R one half of C
obtained as the linear manifold N “cuts” the surface C. For a null direction v of N , one
can deform R in the v-direction and define a family of regions Rt, t ∈ R. Denote by
S(t) the von Neumann entropy of some state ψ restricted to the region Rt. The QNEC
[14] states that, in natural units, every physical state ψ shall verify the inequality

〈Tvv(t)〉 ≥
1

2πS
′′(t) . (0.1)

Here T is the stress-energy tensor, 〈Tvv(t)〉 = 〈Tvv(pt)〉ψ is its density at some point
pt in Rt ∩ N in the state ψ and S′′(t) is the second derivative of the von Neumann
entropy of ψ with respect to the deformation parameter. However, this statement lacks
mathematical rigour and a different entropy-type state functional is required in order to
properly formulate the QNEC.
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The first non-commutative entropy notion, von Neumann’s quantum entropy, was
originally designed as a Quantum Mechanics version of Shannon’s entropy: if a normal
state ψ is given by a density matrix ρψ, then the von Neumann entropy is defined by

S(ψ) = −tr ρψ log ρψ .

However, in Quantum Field Theory local von Neumann algebras are typically factors of
type III1, hence no trace or density matrix exists. The von Neumann entropy can still
be defined on these von Neumann algebras, but by the Connes-Störmer homogeneity
theorem it results to be infinite for every state. Nontheless, the Tomita-Takesaki modular
theory applies and if M is a von Neumann algebra in standard form then one may
consider the relative entropy of Araki between two normal states ϕ and ψ, namely [82]

S(ϕ‖ψ) = −(ξ| log ∆η,ξξ) .

Here ξ and η are the representing vectors in the natural cone of ϕ and ψ respectively
and ∆η,ξ is the relative modular operator. The relative entropy generalizes the classical
Kullback-Leibler divergence and measures how ψ deviates from ϕ. From an information
theoretical viewpoint, S(ϕ‖ψ) is the mean value in the state ϕ of the difference between
the information carried by the state ψ and the state ϕ. By using the Araki’s relative
entropy, a rigorous statement of the QNEC can be given as follows. Let (A, U,Ω) be a
local QFT on the Minkowski space Rn+1 with vacuum state ω and C∗-algebra of quasi-
local observables A. Consider unique the future-pointing null directions u tangent to the
Rindler wedge W of equation x1 > |x0|. More generally, we can replace W with some
deformed wedge WV , where V is some non-negative continuous function on Rn−1 (see
Section 2.1), and then apply a Poincaré transformation g in order to define the deformed
wedge gWV = g(WV ). If Vt = (1 + t)V and Mt = A(gWVt), we will say that a state
ψ of A satisfies the Quantum Null Energy Condition (QNEC) if the relative entropy
S(t) = SMt(ψ‖ω) is convex for any such couple (g, V ). This formulation of the QNEC
does not involve null energy lower bounds, but it has been found in [58] by physical
arguments as a condition equivalent to (0.1).

The first chapter of this Ph.D. thesis is a collection of mathematical preliminaries
about Operator Algebras and the general structure of the algebraic formulation of local
QFT. This chapter contains a few personal remarks like Lemma 5, identity (1.8) and
Proposition 24, but it is mostly just a summary of well known results.

In the second chapter we describe a particular class of local QFTs, namely that of
1 + 1-dimensional chiral Conformal Field Theories (CFTs). The study of these models
can be reduced to the study of local nets of von Neumann algebras parametrized by
open intervals of a lightray. By Cayley transform, these models can be defined as local
nets on the circle which are known as conformal nets. In this Ph.D. thesis we prove the
QNEC for some solitonic states constructed in [34] on a generic conformal net. This
is the main theorem of the second chapter. The proof relies on explicit computations
on the Virasoro nets and on the use of vacuum preserving conditional expectations. In
order to provide this proof, partial results of [51] have been of relevance. This theorem
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can be considered as a particular case of a very much more general theorem proved in
[27], but our explicit proof allows us to add explicit formulae and other intermediate
results of interest. For example, we can show that the solitonic states of [34] verify the
Bekenstein Bound [69].

The third chapter is the one containing the most of the results of this Ph.D. thesis.
We focus on conformal nets induced by vacuum Positive Energy Representations (PERs)
π of a loop group LG = C∞(S1, G), where G is a compact, simple and simply connected
Lie group. The first result of this chapter is the construction of some solitonic repre-
sentations σγ of such conformal nets. In general, these solitons are induced by a path γ
in C∞([−π, π], G). If the path γ satisfies some periodicity conditions on its derivatives,
then it can be extended to what we call a discontinuous loop. Discontinuous loops are
defined as elements of

LhG =
{
ζ ∈ C∞(R, G) : ζ(x)−1ζ(x+ 2π) = h

}
,

where h is a generic element of G. If the discontinuity h of ζ is in the center Z(G),
then it is already known that the obtained soliton σζ extends to a DHR representation
which corresponds to a PER ζ∗π of same level as π [93]. What we show here is that
this condition is also necessary: the soliton σζ extends to a DHR representation if and
only if the discontinuity h is central. The proof follows by a contradiction argument,
since a locally normal DHR representation is automatically Rot-covariant [33]. The
other main result is about Sobolev extensions of Positive Energy Representations. More
specifically, we show that any PER of a loop group LG can be extended to a PER of the
Sobolev loop group Hs(S1, G) for s > 3/2. In the case G = SU(n), we can show that
this is true even for s > 1/2 by using explicit constructions of [95]. Actually, results of
this type had already been achieved in [80] in the more general context of semibounded
representations, but the proof here presented is completely original. Such a Sobolev
extension allows us to compute the adjoint action of Hs+1(S1, G) on the stress energy
tensor, which is one more interesting result of this chapter. These technical results,
together with some intermediate lemmas of [27], are used to prove the QNEC for the
above solitonic states by explicitly computing the relative entropy. As in the previous
chapter, the obtained formula allows us to prove the Bekenstein Bound in a very simple
way. Finally, an alternative and simpler proof of the QNEC is provided in the case
G = SU(n).

The topic of the fourth and last chapter is entanglement. Entanglement is a typi-
cal quantum mechanical phenomenon giving rise to some randomness of the state on a
bipartite system even without “lack of knowledge” as the state is restricted to its sub-
systems. States exhibiting such a behavior are called entangled. Entanglement has been
profoundly investigated as a means of probing the very foundations of quantum mechan-
ics (as in the EPR paradox and Bell’s inequalities) as well as a resource for quantum
information theory. In the operator algebraic language, an entanglement measure for a
bipartite system is a state functional that vanishes on separable states and that does
not increase under separable operations. For pure states, essentially all entanglement
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measures are equal to the von Neumann entropy of the reduced state, but for mixed
states this uniqueness is lost. The role of entanglement in QFT is more recent and
increasingly important [73]. It appears in relations with several primary research topics
in theoretical physics as area theorems [52], c-theorems [25] and quantum null energy
inequalities [76, 85].

Several approaches towards a rigorous definition of some entanglement entropy rely
on some nuclearity conditions of the system. Explicitly, let O 7→ A(O) ⊆ B(H) be some
local Haag net on the Minkowski space. Denote by Ω the vacuum vector and by ω the
corresponding vacuum state. Given an inclusion O ⊂ Õ of spacetime regions, one says
that the modular nuclearity condition holds if the map [19, 20]

Ξ: A(O)→ H , Ξ(x) = ∆1/4xΩ , (0.2)

is nuclear, with ∆ the modular operator of the bigger local algebra A(Õ) with respect
to Ω. If the map (0.2) is p-nuclear then one will say that the modular p-nuclearity
condition is satisfied. If modular p-nuclearity holds for some 0 < p ≤ 1 then the
modular nuclearity condition is satisfied, and if so then it is well known that the split
property holds, namely there is an intermediate type I factor A(O) ⊂ F ⊂ A(Õ). The
existence of such an intermediate type I factor implies some statistical independence
of the local algebras A(O) and A(Õ′) ⊆ A(Õ)′, since one has a spatial isomorphism
A(O) ∨ A(Õ)′ ∼= A(O) ⊗A(Õ)′ [71]. In the last chapter, based on [86], we gather and
prove some results on this topic. In particular, we prove that if modular p-nuclearity
holds for some 0 < p < 1 then the mutual information is finite. In general, the mutual
information for a bipartite system A⊗B is given by

EI(ω) = S(ω‖ωA ⊗ ωB) .

In the notation above, bipartite systems in QFT contexts are given by setting A =
A(O) and B = A(Õ′). Inspired by [83], we also prove a similar result for a different
entanglement entropy. We then add a few additional remarks concerning area laws by
applying results of [52]. Finally, we apply these considerations to a wide family of 1 + 1-
dimensional integrable models with factorizing S-matrices [60]. These models provide a
very interesting example of local quantum field theories for which modular p-nuclearity
holds for wedge algebras inclusion, which is no more true in higher dimension. In this
context, in which nuclear norms have been estimated very sharply [2, 62], we briefly
investigate the asymptotic behaviour of different entanglement measures as the distance
between two causally disjoint wedges diverges.
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Chapter 1

Mathematical background

1.1 Modular theory

This section aims to provide a very concise overview of some important results of
the modular theory of operator algebras. The Tomita-Takesaki theorem is a powerful
result which states that any von Neumann algebraM can be represented on a Hilbert
space H on whichM is anti-isomorphic to its commutant. The Tomita-Takesaki theory
was successfully used by A. Connes to classify type III factors [29].

Theorem 1. LetM be a σ-finite von Neumann algebra acting on a Hilbert space H. If
there is a standard vector Ω in H, then there is an anti-unitary involution J such that

JMJ =M′ , JxJ = x∗ if x ∈ Z(M) .

Explicitly, J is given by the polar decomposition S = J∆1/2, where S is the closure of
S0(xΩ) = x∗Ω for x inM. Furthermore,

σt(x) = ∆itx∆−it , σt(x) = x if x ∈ Z(M) ,

is a group of automorphisms of bothM andM′.

The operators J and ∆it are respectively called modular conjugation and modular
operator. The most general statement of the Tomita-Takesaki theorem is given by using
the language of Hilbert algebras, and we refer to [90] for a full treatment of the topic.
Without using all such an equipment, we can simply talk about standard forms. More
precisely, if M is a von Neumann algebra then a standard form for M is a quadruple
(H, π,P, J) where H is a Hilbert space, π is a faithful normal representation of M on
H, J is an antiunitary involution and P is a closed cone of H, such that the conditions

(i) Jπ(M)J = π(M)′,
(ii) JxJ = x∗, x ∈ Z(π(M)),
(iii) Jξ = ξ, ξ ∈ P,
(iv) JxJxP ⊆ P, x ∈ π(M),
are satisfied. We will refer to J as the modular conjugation and to P as the natural

positive cone of the standard form.
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The standard form (H, π,P, J) ofM is unique in the following sense: if (H̃, π̃, P̃, J̃)
is another standard form for M, then there is a unique unitary operator u from H to
H̃ which intertwines π with π̃, J with J̃ and such that uP = P̃. If p is a projection of
M and q = pj(p), then (qH,Ad q ·π, qP, qJq) is a standard form of the reduced algebra
pMp. Below we describe the relations which connect these objects one each other and
doing this we shall identify M with π(M). Every positive normal functional ϕ of M
has a unique representative vector ξϕ in P, and the map ϕ 7→ ξϕ is norm continuous as
shown by the estimate [90]

‖ξϕ − ξω‖2 ≤ ‖ϕ− ω‖ ≤ ‖ξϕ − ξω‖‖ξϕ + ξω‖ .

Since the conjugate-linear ∗-isomorphism j(x) = JxJ mapsM onto its commutantM′,
a vector ξ in P is cyclic if and only if it is separating. Whenever ϕ is faithful, the set of
vectors xj(x)ξϕ with x inM is dense in P. Finally, the natural positive cone is self-dual
in the following sense:

ξ ∈ P if and only if (ξ|η) ≥ 0 for every η ∈ P .

We now move to define and study the modular operators as in [27]. We consider two
vectors ξ and η in H, generally not in the natural cone, and we denote by ϕ and ψ

the corresponding normal vector states. The supports of ϕ and ψ on M are given by
s(ϕ) = [M′ξ] and s(ψ) = [M′η], while on the commutant we have s′(ϕ) = [Mξ] and
s′(ψ) = [Mη]. We define the Tomita relative operator

Sξ,η(xη + ζ) = s(ψ)x∗ξ , x ∈M , ζ ∈ [Mη]⊥ .

This densely defined conjugate-linear operator is closable. Its closure will be equally
denoted and its polar decomposition is given by

Sξ,η = Jξ,η∆
1/2
ξ,η ,

where

supp∆ξ,η = s(ϕ)s′(ψ) , J∗ξ,ηJξ,η = s(ϕ)s′(ψ) , Jξ,ηJ
∗
ξ,η = s′(ϕ)s(ψ) .

In the case ξ = η we will write Sξ = Sξ,ξ, and similarly Jξ = Jξ,ξ and ∆ξ = ∆ξ,ξ. If ξ
and η are both in the natural cone, then we also have the polar decomposition

Sξ,η = J∆1/2
ξ,η ,

with J the modular conjugation. Finally, by using apices to denote the modular opera-
tors of the commutant, we have the identities

Jξ,η∆
1/2
ξ,η Jξ,η = ∆−1/2

η,ξ , J ′ξ,η = Jη,ξ , (∆′η,ξ)z = ∆−zξ,η .

We now give a few very simple lemmas.
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Lemma 2. LetM be a von Neumann algebra on H and u ∈ U(H) a unitary operator.
Consider two vectors ξ and η of H.

(i) If ξ is standard forM then uξ is standard for uMu∗.
(ii) ∆uMu∗

uξ,uη = u∆Mξ,ηu∗.
(iii) If u = vv′, with v and v′ unitary operators in M and M′ respectively, then

∆Mξ,uη = v′∆Mξ,ηv′∗.
(iv) If u = vv′ as in (iii), then ∆Muξ,η = v∆Mξ,ηv∗.
(v) If v and w are isometries inM′, then ∆Mvξ,wη = w∆Mξ,ηw∗.

Proof. (i) uMu∗(uξ) = Mξ, so uξ is cyclic and the same holds for uη. Since the
commutant of uMu∗ is uM′u∗, the assertion follows. (ii) The proof is standard: one
first proves that SuMu∗

uξ,uη = uSξ,ηu
∗ and then uses the fact that ∆ξ,η = S∗ξ,ηSξ,η. (iii) In

this case we have that uMu∗ =M. The thesis follows by noticing that Sξ,uη = vSξ,ηv
′∗

and applying the definition of ∆ξ,uη. (iv) By applying (ii) and (iii), the statement follows.
(v) As before, one can check the identity SMvξ,wη = vSMξ,ηw

∗, so that ∆Mvξ,wη = w∆Mξ,ηw∗
follows by definition.

Lemma 3. Let M be a von Neumann algebra acting on a Hilbert space H. Let ϕ and
ψ be two vector states on B(H) respectively represented by the vectors ξ and η. Suppose
that ϕ|M′ = ψ|M′. Then there is an isometry u in M such that uξ = η. Moreover, if
ϕ|M is faithful then u is unitary if and only if ψ|M is faithful too.

Proof. By hypothesis we have that x′ξ + y 7→ x′η + y, with x′ ∈ M′ and y orthogonal
toM′ξ, is a well defined isometric map u. By construction uξ = η and u ∈ M′′ =M.
Suppose now ϕ|M to be faithful, so that ξ is cyclic forM′. By explicit computation one
can notice that u∗x′η = x′ξ for x′ ∈ M′. Therefore uu∗ = 1 onM′η and the assertion
follows.

Corollary 4. Let ϕ be a positive normal functional of a standard von Neumann algebra
M represented by a vector ξ in the natural cone P. If η is another vector representing
ϕ then η = vξ for some isometry v in M′, and if ϕ is faithful then v is unitary if and
only if η is cyclic forM.

Proof. Just recall that the representing vectors in the natural positive cone P are cyclic
if and only if they are separating and apply the previous lemma.

Consider now two normal positive functionals ω and ψ ofM respectively represented
by vectors ξ and η of H. Relative modular operators can be used to explicit compute
the Connes cocycle between two normal states. SupposeM to be σ-finite and let ϕ be
a normal faithful state represented by a vector ζ. The operator

∆z
η,ζ∆−zξ,ζ , z ∈ C ,

is independent by the choice of the standard vector ζ representing ϕ. In our convention
if A is a positive operator then Az stands for the usual power Az on suppA = (kerA)⊥
and for 0 on kerA. The Connes cocycle between ψ and ω is then defined by

(Dψ : Dω)t = ∆it
η,ζ∆−itξ,ζ , t ∈ R .
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If s(ψ) and s(ω) commute then (Dψ : Dω)t is a partial isometry with initial and final
projection s(ψ)s(ω). Clearly (Dψ : Dω)∗t = (Dω : Dψ)t, and (Dψ : Dω)t is a family of
unitary operators if ω and ψ are both faithful. Always for ζ standard we have that

σωt (x) = ∆it
ξ,ζx∆−itξ,ζ , x ∈M , (1.1)

maps M onto the reduced algebra Ms(ω) = s(ω)Ms(ω). The family of operators σω
defines a group of automorphisms ofMs(ω) and is called the modular group of the normal
state ω. The group (1.1) extends the modular automorphism of Ms(ω) mentioned in
Theorem 1, where ω is faithful onMs(ω) by construction. Finally, we notice the cocycle
relation

σψs (x) = Ad (Dψ : Dω)s · σωs (x) , x ∈M .

As mentioned above, modular theory has been used by A. Connes to classify III-type
factors into the IIIλ-type factors, since IIIλ-type factors exhibit a different S-invariant
for different values of λ in [0, 1] [29, 90]. This phenomenon does not appear in I-type and
II-type factors as in these cases the modular group σϕt is inner for each parameter t and
each normal faithful state (n.f.s.) ϕ. However, the S-invariant is not the only property
to differently characterize IIIλ-type factors. For example, one more phenomenon that
shows up only in III1-type factors is the existence of a n.f.s. with trivial centralizer,
namely a n.f.s. ϕ such that the only elements fixed by σϕ are the scalars. To be more
precise, if a von Neumann algebra different from C admits such a state then it must be a
III1-type factor [71]. The converse implication, up to now, is not known to hold or not.
The hyperfinite III1-type factor admits infinitely many n.f.ss. with trivial centralizer
which are dense in norm in the convex set of all the normal states. To show this one
first shows the existence of one n.f.s. with trivial centralizer (namely the vacuum state
on the von Neumann algebra generated by the CCR relations [16]), then applies the
Connes-Störmer homogeneity theorem (Thm. 5.12. of [90]) and then recalls that n.f.ss.
are norm dense in the space of normal states if the von Neumann algebra is properly
infinite [37].

It can be shown that if ψ is a n.f.s. with trivial centralizer, then it is the only
σψ-invariant n.f.s. ([90], Corollary 3.6). Therefore, on such a space we have that the
action of σψ is ergodic. With the following lemma we further characterize this ergodicity
property by showing that ψ is attractive with respect to the modular dynamics.

Lemma 5. Consider two positive normal functionals ϕ and ψ on a von Neumann algebra
M. If ψ has trivial centralizer, then

ϕ · σψt (x)→ ϕ(s(ψ))ψ(x)

for every x ∈M as |t| → +∞.

Proof. We first notice that the restriction of ϕ on Ms = sMs, with s = s(ψ), is still
normal. Therefore, if the assertion holds with ψ faithful then the general case follows
by noticing that

ϕ · σψt (x) = ϕ · σψt (sxs)→ ϕ(s)ψ(sxs) = ϕ(s)ψ(x) .
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We now suppose ψ to be faithful, we assume M to be in standard form on a Hilbert
space H and we denote by η the standard vector in the natural cone representing ψ.
Set ∆it = ∆it

η . Since ψ has trivial centralizer, the vectors in Cη are the only ∆it-
invariant vectors (see [50], Thm. §2). Therefore, if P is the orthogonal projection onto
Cη then by the Howe-Moore vanishing theorem ∆it → P in the weak operator topology
as |t| → +∞. Now consider an element y in M′ and notice that for every x in M we
have

(σψt (x)− ψ(x))yη = y(σψt (x)− ψ(x))η → y(Px− ψ(x))η = 0 .

By the faithfulness of ψ we have that M′η is dense in H and therefore σψt (x) → ψ(x)
weakly as |t| → +∞. By averaging on the vector of H representing ϕ we have the
thesis.

1.2 Standard subspaces

Standard subspaces arise naturally in the modular theory of von Neumann algebras
and are widely used in local QFT contexts. In this section we summarize some general
facts about this unexpectedly rich theory. We follow [68].

Let H be a complex Hilbert space and H ⊆ H a real linear subspace. The symplectic
complement H ′ of H is the real Hilbert subspace

H ′ = {ξ ∈ H : Im(ξ|η) = 0 , η ∈ H} .

Clearly H ′ = (iH)⊥, where ⊥ denotes the real orthogonal complement in H, namely
the orthogonal complement with respect to the real scalar product Re(·|·). Therefore
H ⊆ H ′′ and H = H ′′. Moreover, H ′1 ⊇ H ′2 if H1 ⊆ H2. A closed real subspace H is
called cyclic if H + iH is dense in H and separating if H ∩ iH = (0). It is easy to check
that H is cyclic if and only if H ′ is separating. A standard subspace H of H is a closed,
real linear subspace of H which is both cyclic and separating. Clearly a closed subspace
H is standard if and only if H ′ is.

If M is a von Neumann algebra acting on H and ξ ∈ H is a standard vector for M ,
then the map M → H given by x 7→ xξ is injective and

HM = {xξ : x = x∗ , x ∈M}

is a standard subspace of H. Conversely, there is a natural way to associate a von Neu-
mann algebra in the bosonic and fermionic Fock space of H to every standard subspace
H ⊆ H, and this assignment has many nice properties [67, 68, 79]. This establishes a
direct connection between standard subspaces and pairs (M, ξ) of von Neumann alge-
bras with standard vectors.

Let H be a standard subspace of H. On the domain D = H + iH we define the
anti-linear operator S = SH by S(ξ + iη) = ξ − iη. The operator S is well-defined,
densely defined and clearly satisfies S2 = 1.
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Proposition 6. [68] The map H 7→ SH is a bijection between the set of standard
subspaces of H and the set of closed, densely defined, anti-linear involutions of H. The
inverse map is given by S 7→ ker(1−S). Moreover, this map is order preserving, namely
H1 ⊆ H2 if and only if SH1 ⊆ SH2, and we have S∗H = SH′.

The closable operator SH can be used to define some modular theory in analogy to
that of σ-finite von Neumann algebras in standard form. Let

SH = JH∆1/2
H

be the polar decomposition of S = SH . Also, set J = JH and ∆ = ∆H . Then J is
an anti-unitary involution, namely J = J∗ = J−1. The operator ∆ = S∗S is positive,
non-singular and such that J∆J = ∆−1. It follows that [68]

Jf(∆)J = f̄(∆−1)

for every complex Borel function f on R, and in particular J commutes with ∆it. Also,
JH′ = JH and ∆H′ = ∆−1

H . Finally, if U is some unitary operator on H then UH = H

if and only if U∆HU
∗ = ∆H and UJHU

∗ = JH . The operator ∆H is called modular
operator and JH is called modular conjugation of H. The following theorem is the real
Hilbert subspace (easier) version of the fundamental Tomita-Takesaki theorem for von
Neumann algebras.

Theorem 7. [68] With ∆ = ∆H and J = JH as above, we have for all t ∈ R:

∆itH = H , JH = H ′ .

Proof. The proof is provided in [68] and we write it here just for the sake of completeness.
∆it commutes with ∆1/2 and J , thus with S. Therefore, the first relation follows because
if ξ ∈ H then S∆itξ = ∆itSξ = ∆itξ, namely ∆itH ⊆ H for any t in R, hence
∆itH = H. Concerning the second relation, notice that if ξ is in H then (Jξ|ξ) =
(JSξ|ξ) = (∆1/2ξ|ξ) belongs to R, thus (J(ξ+η)|ξ+η) is real for all ξ, η ∈ H. It follows
that Im(Jξ|η) = 0, namely JH ⊆ H ′. As JH = JH′ , we also have JH ′ ⊆ H ′′ = H and
therefore JH = H ′.

Corollary 8. [68] If H is a Hilbert space, then there is a bijective correspondence between
standard subspaces H of H and pairs (A, J) where A is a selfadoint linear operator on
H, J is some anti-unitary involution on H and JAJ = −A.

Proof. The proof is provided in [68] and we write it here just for completeness. Given
H standard, the corresponding pair is (log ∆H , JH). Conversely, given (A, J) then S =
JeA/2 is an anti-linear closed involution and one gets a standard subspace H by the
mentioned above procedure H = ker(1 − S). Clearly these constructions are one the
inverse of the other.

Let H be a real linear subspace of H and V a one-parameter unitary group of
H leaving H globally invariant. We now consider the following (one particle) KMS
condition at inverse temperature β > 0: for every ξ, η ∈ H there exists a function
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F = Fξ,η which is bounded and continuous on the strip Sβ = {z ∈ C : 0 ≤ Imz ≤ β},
analytic in the interior Sβ of Sβ and such that

F (t) = (V (t)ξ|η) , F (t+ iβ) = (η|V (t)ξ) .

As the uniform limit of a net of holomorphic functions is a holomorphic function, it
follows that if the KMS condition holds for H then it holds for H. If H is standard,
then ∆−itH and H satisfy the KMS condition at inverse temperature 1. Conversely, if
V (t) and H as above satisfy the KMS condition at inverse temperature β = 1 then H
is a standard subspace of H and V (t) = ∆−itH [68]. Similarly, the modular conjugation
JH can be characterized as follows.

Proposition 9. [68] Let H be standard. Then JH is the unique anti-unitary involution
J of H such that JH ⊇ H ′ and (Jξ|ξ) ≥ 0 for all ξ ∈ H.

Proof. As above, this fact is already proved in [68] and we write it here just for com-
pleteness. The positivity property holds for JH because (JHξ|ξ) = (∆1/2

H ξ|ξ) ≥ 0 for
all ξ ∈ H. On the other hand, let J be some anti-unitary involution that satisfies the
above positivity condition. Then for all ξ, η ∈ H we have that (J(ξ + η)|ξ + η) is real,
so (Jξ|η) is real. Therefore JH ⊆ H ′. Assuming that JH ⊇ H ′ we then have JH = H ′.
Moreover, for all ξ + iη in H + iH we have

(JSH(ξ + iη)|ξ + iη) = (Jξ|ξ) + (Jη|η) ≥ 0 .

So there is a canonical, positive selfadjoint operator ∆ on H, with D(∆1/2) ⊇ D(SH)
(use the Friederich extension) such that

(JSHξ|ξ) = (∆1/2ξ|ξ) , ξ ∈ D(∆1/2
H ) = D(SH) . (1.2)

Now ∆it
H commutes with SH and with J (because JH = H ′) so with JSH . Therefore

∆it
H commutes with ∆1/2. By functional calculus it follows that ∆1/2

H commutes with
∆1/2, thus they have a common core, so ∆1/2 is selfadjoint on D(SH). By (1.2) we then
have JSH = ∆1/2, and by the uniqueness of the polar decomposition SH = J∆1/2 we
have ∆ = ∆H and J = JH .

We conclude this section by mentioning the relation between the theory of standard
subspaces and the classical modular theory, which is our motivational setting. Let M
be a von Neumann algebra on a Hilbert space H and Ω ∈ H a vector. Clearly

HM = MsaΩ

is a real Hilbert subspace of H, where Msa denotes the selfadjoint part of M . It follows
from the definitions that Ω is cyclic if and only if HM is cyclic, and Ω is separating if
and only if HM is separating as well.

We now assume Ω to be standard for some von Neumann algebra M . The map
M 7→ HM is not injective. However, HM gives the full knowledge of the modular
operator and the modular conjugation of M since

∆M = ∆HM , JM = JHM ,
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because of the KMS property and Proposition 9. In particular, H ′M = HM ′ because
H ′M = JHMHM = JMMsaΩ = M ′saΩ = HM ′ . It is also easy to verify that if N1, N2 are
two von Neumann subalgebras of M then N1 ⊆ N2 if HN1 ⊆ HN2 . As a corollary, if N
commutes with M and HN = H ′M , then N = M ′.

1.3 Quantum channels

The purpose of this section is to provide a few basic definitions, examples and theo-
rems about completely positive maps and conditional expectations.

The quantum operation formalism is a general tool for describing the evolution of a
quantum system in a wide variety of circumstances. If we describe quantum states by
a density matrix ρ, then a quantum operation, or also a quantum channel in Quantum
Information Theory, will be represented by a linear operator which maps positive op-
erators in positive operators. However, this positivity property is not mathematically
sufficient to define a quantum process in a sufficiently satisfactory way. The desire to ap-
ply the same experimental manipulations independently to n copies of the same system
motivates the definition of complete positivity.

Definition 10. A linear map F : A2 → A1 between two C∗-algebras is called positive
(p) if F(a) is positive whenever a is. F is called completely positive (cp) if 1n ⊗ F is
positive as a map Mn(C) ⊗ A2 → Mn(C) ⊗ A1 for every n ≥ 1, with Mn(C) ⊗ Ai the
algebraic tensor product. A (completely) positive map between unital C∗-algebras is
called unital if F(1) = 1. A positive unital map F gives rise to a map F∗ : A∗1 → A∗2
defined by (F∗ω)(a) = ω(F(a)). A positive unital map F is called normal whenever F∗
maps normal states to normal states.

In the operator formalism, quantum channels are usually defined as completely pos-
itive unital (cpu) maps. Depending on the context, other requirements can be added
to the definition [70]. In addition to a quantum channel, one could perform measure-
ments and post-select a sub-ensemble according to the results. For a von Neumann
measurement, mathematically given by a collection of orthogonal projections Pk of a
von Neumann algebra A which sum up to 1, we note that the maps Fk : A → A de-
fined by Fk(a) = PkaPk are cp. By the measurement on a state ω we obtain a new
state ωk = F∗kω/ω(Pk) with probability ω(Pk), when ω(Pk) > 0. A combination of
quantum channels and measurements is called an operation. It is described by a family
Fk : A2 → A1 of cp maps with

∑
k Fk(1) = 1, which transform a state ω on A1 into

ωk = F∗k/pk with probability pk = ω(Fk(1)) when pk > 0.

Definition 11. Let B ⊆ A be an inclusion of C∗-algebras and let ε : A→ B be a linear
mapping. If ω is state on A, then ε is said to be ω-preserving if ω · ε = ω. The map
ε is said to be a projection if ε(b) = b for every b in B, while it is said to be B-linear
if ε(ab) = ε(a)b and ε(ba) = bε(a) for every a in A and b in B. A B-linear positive
projection ε : A→ B is said to be a conditional expectation. Finally, ε is called a Schwarz
mapping if ε(a)∗ε(a) ≤ ε(a∗a) for all a in A.
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It follows by the definition that any projection ε has norm ‖ε‖ ≥ 1. We now mention
a few standard facts related to conditional expectations, the interested reader can con-
sult [89] for details. Every conditional expectation ε : A → B is a completely positive
projection of unital norm, and if A is unital then B is also unital and ε(1A) = 1B.
A Schwarz mapping which is also a projection is a conditional expectation and every
conditional expectation is a Schwarz mapping. Finally, every projection of unital norm
is a conditional expectation.

Example 1. Let us give some examples of cp maps and conditional expectations.

(i) Trivially, any (unit preserving) ∗-homomorphism between C∗-algebras is a (unital)
cp map. Furthermore, every conditional expectation is a cp map.

(ii) If V : H → K is a bounded linear map between Hilbert spaces, then F : B(K) →
B(H) given by F(a) = V ∗aV is a cp map. Furthermore, any state of a C∗-algebra
is a cpu map.

(iii) Let H be a Hilbert space carrying a continuous unitary representation U of some
compact Lie group G. The map F : B(H)→ B(H) given by

F(x) =
∫
G
dg U(g)xU(g)∗ ,

with dg the normalized Haar measure, is a cpu map. It is also a conditional
expectation onto the commutant of the representation U .

(iv) If A and B are von Neumann algebras, then F : A→ A⊗B given by F(a) = a⊗1
is a cpu map.

(v) Given a state ω on B then the map F : A⊗ B → A given by F(a⊗ b) = aω(b) is
a cpu map. It is also a conditional expectation onto A.

A general result due to Stinespring shows that, given a C∗-algebra A, all cp maps
F : A→ B(H) can be written as F(a) = V ∗π(a)V , where π is a representation of A on
some Hilbert space K and V : H → K is bounded. When F is unital, one can suppose
V to be an isometry. Furthermore, if A already acts on H and π is a countable direct
sum of identity representations, one recovers a formulation in terms of Kraus operators
(or noise operators in Quantum Information Theory) for F as follows

F(a) =
∑
j

V ∗j aVj ,
∑
j

V ∗j Vj = 1 .

It follows from standard properties of finite type I factors, that in this case all cp maps
arise in this way. On a much more general class of von Neumann algebras, a generaliza-
tion of the Stinespring dilation theorem can be given as follows.

Let α : N →M be a normal cpu map between von Neumann algebras. A pair (ρ, v)
with ρ : N → M a homomorphism and v ∈ M an isometry such that α(n) = v∗ρ(n)v
for n in N will be called a dilation pair for α, and ρ a dilation homomorphism. With
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(ρ, v) a dilation pair, the subspace ρ(N )vH of the underlying Hilbert space H is clearly
both ρ(N )-invariant and M′-invariant, thus the projection e onto ρ(N )vH belongs to
ρ(N )′ ∩M. We shall say that (ρ, v) is minimal if e = 1.

Theorem 12. [70] Let α : N →M be a normal cpu map between two properly infinite
von Neumann algebras. Then there exists a minimal dilation pair (ρ, v) for α. Further-
more, if (ρ′, v′) is another minimal dilation pair for α, then there exists a unique unitary
u inM such that uρ(n) = ρ′(n)u and v′ = uv.

Corollary 13. Let A be a unital C∗-algebra and Φ: A → M a cpu map, with M a
properly infinite von Neumann algebra. Then there exist an isometry v ∈ M and a
representation ρ of A on H with ρ(A) ⊆M such that Φ(x) = v∗ρ(x)v.

Proof. This fact has been proved in [70], here we provide the proof just for completeness.
Let ψ be a faithful normal state ofM and ϕ = ψ ·Φ its pullback to a state of A. Then Φ
factors through the GNS representation πϕ of A given by ϕ, namely we have Φ = Φ0 ·πϕ
with Φ0 : N → M a completely positive map and N = πϕ(A)′′. Indeed, if a ∈ A then
we have

πϕ(a) = 0⇒ ϕ(a∗a) = 0⇒ ψ · Φ(a∗a) = 0⇒ Φ(a∗a) = 0⇒ Φ(a) = 0 ,

since Φ(a)∗Φ(a) ≤ Φ(a∗a). As ψ · Φ0 is normal on N , it follows that Φ0 is normal too.
We now want to apply Theorem 12. If N is properly infinite then we are done. In
general, we may consider the spatial tensor product N ⊗ F , with F a type I∞ factor,
and a faithful normal conditional expectation ε : N ⊗ F → N . Therefore we can apply
Theorem 12 to Φ0 · ε, and by the commutative diagram

A M M

N N ⊗F

Φ

πϕ

Ad v

Φ0

i

Φ0·ε ρ

the thesis follows.

The following corollary extends to the infinite-dimensional case the known construc-
tion of Kraus operators.

Corollary 14. Let α : F → F be a normal cpu map with F a type I∞ factor. Then
there exist a sequence of elements Ti ∈ F with

∑
i TiT

∗
i = 1 such that

α(x) =
∑
i

TixT
∗
i , x ∈ F .

Proof. This proof has been provided in [70] and we write it here just for completeness.
Write α(·) = v∗ρ(·)v by Theorem 12, with (ρ, v) a minimal dilation pair for α. As shown
in [64], every endomorphism of a type I factor is inner, namely there exist a sequence of
isometries vi ∈ F with

∑
i viv

∗
i = 1 such that

ρ(x) =
∑
i

vixv
∗
i , x ∈ F ,
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where the sum is meant to be strongly convergent. Thus

α(x) = vρ(x)v∗ =
∑
i

v∗vixv
∗
i vi =

∑
i

TixT
∗
i , x ∈ F ,

with Ti = v∗vi.

We conclude this section by mentioning a different context in which cp maps arise.
LetM be a von Neumann algebra with a normal state ϕ. Given a von Neumann subal-
gebraM0 ofM, we denote by ϕ0 the restriction of ϕ onM0 and we set p0 = suppϕ0.
Let (H, π,P, J) and (H0, π0,P0, J0) be the standard representations ofM andM0, and
denote by ξ and ξ0 the representing vectors for ϕ and ϕ0 in P and P0 respectively.
We define a partial isometry V from H0 to H with initial projection [π0(M0)ξ0] by the
formula V π0(x)ξ0 = π(x)ξ for x in M0. One can check that V ∗π(M)′V ⊆ π0(M0)′.
Hence, there is a unique element ε(x) in p0M0p0 such that π0(ε(x)) = J0V

∗Jπ(x)JV J0
for a fixed x in M. The just constructed map ε : M → p0Mp0, originally introduced
in [1], is called a generalized conditional expectation. By construction, the generalized
conditional expectation is a cp mapping such that supp ε = suppϕ, ϕ · ε = ϕ and
ε(suppϕ) = p0 [82]. In particular, by the invariance property ϕ · ε = ϕ it follows that
ε is faithful and normal if ϕ is faithful and normal. In local QFT contexts, generalized
conditional expectations typically appear as canonical endomorphisms [71].

1.4 Quantum entropy basics

The first non-commutative entropy notion, von Neumann’s quantum entropy, was
originally designed as a Quantum Mechanics version of Shannon’s entropy: if a state ψ
of B(H) has density matrix ρψ then the von Neumann entropy is given by

S(ψ) = −tr ρψ log ρψ .

The von Neumann entropy can be viewed as the lack of information about the system
in the state ψ, assuming that the observer has, in principle, access to all observables in
B(H). This interpretation is in accord for instance with the facts that S(ψ) ≥ 0 and
that a pure state has vanishing von Neumann entropy.

A related notion is that of relative entropy. On a type I factor B(H), it is defined
for two normal states ω and ϕ with density matrices ρω and ρϕ by

S(ω‖ϕ) = tr ρω(ln ρω − ln ρϕ) (1.3)

if supp ρϕ ≥ supp ρω and by S(ω‖ϕ) = +∞ otherwise. If H = Hn is finite dimensional
then S(ω) = −S(ω‖Tr), with Tr the unnormalized trace of B(Hn). The relative entropy
S(ω‖ϕ) generalizes the classical Kullback-Leibler divergence and measures how ϕ devi-
ates from ω. From an informational theoretical viewpoint, S(ω‖ϕ) is the mean value
in the state ω of the difference between the information carried by the state ϕ and the
state ω. However, in Quantum Field Theory local von Neumann algebras are typically
factors of type III1, no trace or density matrix exists and the von Neumann entropy
is undefined [63]. A generalization of the relative entropy to a generic von Neumann
algebra was found by Araki [4, 5].
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Definition 15. Let M be a von Neumann algebra in standard form on H and let ϕ,
ψ be two normal positive linear functionals onM represented by two vectors ξ, η. The
relative entropy between ϕ and ψ is defined by

S(ϕ‖ψ) = −(ξ| log ∆η,ξξ) (1.4)

if s(ϕ) ≤ s(ψ), otherwise S(ϕ‖ψ) = +∞ by definition.

We will write S(ϕ‖ψ) = SM(ϕ‖ψ) if we want to stress the dependence on M. As
follows by Lemma 2 and Corollary 4, equation (1.4) does not depend on the choice of
the representing vectors. If M is not in standard form, then equation (1.4) holds if
the relative modular operator is replaced with a spatial derivative [82]. The motivation
of this definition comes from the well known modular theory of type I factors, as the
following example shows.

Example 2. For a type I factorM = B(H), normal faithful states ω and ϕ correspond
to density matrices ρω and ρϕ. The relative modular operator ∆ϕ,ω corresponds to ρϕ⊗ρω
in the GNS representation of M on H ⊗H with respect to ω. In this representation ω
is represented by the vector Ω = ρ

1/2
ω , and the definition (1.4) gives

S(ω‖ϕ) = −(Ω|(log ρω ⊗ 1− 1⊗ log ρϕ)Ω) = −trρω(ln ρϕ − ln ρω) ,

and therefore we recover the classical relative entropy (1.3).

The scalar product (1.4) has to be intended by applying the spectral theorem to the
relative modular operator ∆η,ξ, namely we have

S(ϕ‖ψ) = −
∫ 1

0
log λ d(ξ|Eη,ξ(λ)ξ)−

∫ ∞
1

log λ d(ξ|Eη,ξ(λ)ξ) , (1.5)

where the second integral is always finite by the estimate log λ ≤ λ. In particular,
S(ϕ‖ψ) is finite if and only if the first integral appearing in (1.5) is finite. By this
remark it follows that [82]

S(ϕ‖ψ) = i
d

dt
ϕ((Dψ : Dϕ)t)

∣∣∣∣
t=0

= −i d
dt
ϕ((Dϕ : Dψ)t)

∣∣∣∣
t=0

, (1.6)

where (Dϕ : Dψ)t = (Dψ : Dϕ)∗t is the Connes cocycle. Identity (1.6) can be proved by
using the dominated convergence theorem if S(ϕ‖ψ) is finite and by the Fatou’s lemma
if S(ϕ‖ψ) = +∞ [28]. We recall some properties of the relative entropy [82].

(r0) S(ϕ‖ψ) ≥ ϕ(I)(logϕ(I) − logψ(I)), and S(λϕ‖µψ) = λS(ϕ‖ψ) − λϕ(I) log(µ/λ)
for any λ, µ ≥ 0. Moreover, S(ϕ‖ψ) ≥ ‖ϕ−ψ‖2/2, so that S(ϕ‖ψ) = 0 if and only
if ϕ = ψ.

(r1) S(ϕ‖ψ) is lower semi-continuous in the σ(M∗,M)-topology.

(r2) S(ϕ‖ψ) is convex in both its variables. By (r0) this is equivalent to the subaddi-
tivity of S(ϕ‖ψ) in both its variables.
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(r3) S(ϕ‖ψ) is superadditive in its first argument. Furthermore, S(ϕ‖ψ) ≤ S(ϕ′‖ψ′) if
ψ ≥ ψ′ and ϕ ≥ ϕ′ with ‖ϕ‖ = ‖ϕ′‖.

(r4) If α : M1 →M2 is a Schwarz mapping such that ϕ2 ·α ≤ ϕ1 and ψ2 ·α ≤ ψ1, then
SM1(ϕ1‖ψ1) ≤ SM2(ϕ2‖ψ2). In particular, S(ϕ‖ψ) is monotone increasing with
respect to inclusions of von Neumann algebras.

(r5) Let (Mi)i be an increasing net of von Neumann subalgebras ofM with the prop-
erty (∪iMi)′′ =M. Then the increasing net SMi(ϕ‖ψ) converges to S(ϕ‖ψ).

(r6) Let ε : M→N be a faithful normal conditional expectation. If ϕ and ψ are normal
states onM and N respectively, then SM(ϕ‖ψ · ε) = SN (ϕ‖ψ) + SM(ϕ‖ϕ · ε).

(r7) Let ϕ be a normal state on the spatial tensor product M1 ⊗M2 with partials
ϕi = ϕ|Mi . Consider then normal states ψi onMi. As a corollary of (r6), we have
S(ϕ‖ψ1 ⊗ ψ2) = S(ϕ1‖ψ1) + S(ϕ2‖ψ2) + S(ϕ‖ϕ1 ⊗ ϕ2).

By using the universal representation, the relative entropy can be defined on a generic
C∗-algebra. If we replace the strong closure with the norm closure in (r5) and the
σ(M∗,M)-topology with the weak topology in (r1), then properties from (r0) to (r5)
still hold in the C∗-algebraic setting [82]. We now provide a few little personal remarks
on the relative entropy. Further results can be found in [38] and related works. As
shown in [82], if ψ is a positive normal functional ofM and t ∈ R, then the sublevel

K(ψ, t) = {ϕ ∈M∗+ : S(ϕ‖ψ) ≤ t} (1.7)

consists of normal functionals and it is a convex compact set with respect to the
σ(M∗,M)-topology.

Lemma 16. K(ψ, t) is sequentially σ(M∗,M)-compact and its set of extremal points is

E(ψ, t) = {ϕ ∈M∗+ : S(ϕ‖ψ) = t} . (1.8)

Moreover, after a restriction to Ms(ψ), the union K(ψ) =
⋃
tK(ψ, t) is norm dense in

the set of normal positive functionals of the reduced von Neumann algebraMs(ψ).

Proof. The first two claims follow by the Eberlein-Smulian theorem and Donald’s iden-
tity ([82], Proposition 5.23). The last point holds if ψ is faithful, since in this case the
set of positive normal functionals ϕ such that ϕ ≤ αψ for some α > 0 is norm dense
in M+

∗ ([15], Theorem 2.3.19). The general case follows by noticing that SM(ϕ‖ψ) =
SMs(ψ)(ϕ‖ψ) if s(ϕ) ≤ s(ψ), which is a necessary condition for SM(ϕ‖ψ) to be finite.

Definition 17. If ϕ is a state on a C∗-algebra A, then the von Neumann entropy of ϕ
is defined by

SA(ϕ) = sup
{∑

i

λiS(ϕi‖ϕ) :
∑
i

λiϕi = ϕ
}
,

where the supremum is over all decompositions of ϕ into finite (or equivalently countable)
convex combinations of other states. If A is clear, we will simply write SA(ϕ) = S(ϕ).
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Some properties of S(ϕ) are immediate from those of the relative entropy: S(ϕ) is
nonnegative, vanishes if and only if ϕ is a pure state and it is weakly lower semicontin-
uous. On type I factors, the von Neumann entropy of a normal state ϕ with density
matrix ρ is given by S(ϕ) = −tr ρ ln ρ. We now list a few properties of the von Neumann
entropy [82] (the notation η(t) = −t ln t is standard in information theory):

(s0) (concavity) Given states ϕ and ω, then λS(ϕ)+(1−λ)S(ω) ≤ S(λϕ+(1−λ)ω) ≤
λS(ϕ)+(1−λ)S(ω)+H(λ, 1−λ) for 0 < λ < 1, whereH(λ, 1−λ) = η(λ)+η(1−λ).

(s1) (strong subadditivity) On a three-fold-product B(H1)⊗B(H2)⊗B(H3), a normal
state ω123 with marginal states ωij satisfies S(ω123) + S(ω2) ≤ S(ω12) + S(ω23).

(s2) S(ψ) = inf
{
−
∑
i η(λi)

}
, with η(t) = −t log t and where the infimum is taken over

all the possible decompositions into pure states.

(s3) (tensor product) On the projective tensor product A ⊗ B, we have the identity
S(ϕ1 ⊗ ϕ2) = S(ϕ1) + S(ϕ2).

Definition 18. Consider an inclusion of C∗-algebras A ⊆ B and a state ϕ on B. The
subalgebra entropy of ϕ with respect to A is

HB
ϕ (A) = sup

{∑
i

λiSA(ϕi‖ϕ) : ϕ =
∑
i

λiϕi
}
, (1.9)

where the supremum is over all finite (countable) convex linear decompositions of ϕ on
into states of B.

The subalgebra entropy is actually a particular case of what is known as conditional
entropy. If there is no ambiguity about the bigger C∗-algebra B, we will enlighten the
notation by setting HB

ϕ (A) = Hϕ(A). We list a few of its properties [31, 82].

(c0) (monotonicity) HB
ϕ (A) ≤ HB

ϕ (A) if A ⊆ A and B ⊆ B.

(c1) (semicontinuity) ϕ 7→ HB
ϕ (A) is weakly lower semicontinuous.

(c2) (martingale property) limiH
B
ϕ (Ai) = HB

ϕ (A) if (Ai)i is an increasing net of C∗-
subalgebras of B whose union is norm dense in A.

(c3) (concavity) λHB
ϕ1(A) + (1 − λ)HB

ϕ2(A) ≤ HB
ϕ (A) ≤ λHB

ϕ1(A) + (1 − λ)HB
ϕ2(A) +

H(λ, 1−λ) for ϕ = λϕ1+(1−λ)ϕ2 on B and λ in (0, 1),H(λ, 1−λ) = η(λ)+η(1−λ).

In (c2), the union ∪iAi can be strongly dense if all the C∗-algebras are replaced with
von Neumann algebras and the state ϕ is normal. We point out that the concavity of
Hϕ(A) mentioned in (c3) certainly holds whenever A is AF ([82], Theorem 5.29 and
Proposition 10.6), but the general case is a bit unclear to the author [31]. What is clear
instead, is the following original simple lemma which says whenever the inequality (c0)
reduces to an equality in the case A = A.

Lemma 19. Consider the C∗-algebras inclusions A ⊆ B ⊆ B and A ⊆ A ⊆ B. Let ϕ
be a state on B. If there is a ϕ-preserving conditional expectation ε : B → B, then

HB
ϕ (A) ≤ HB

ϕ (A) .
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Proof. We can follow Proposition 6.7 of [82]. Indeed, if ψ is a state of B then ψ · ε is a
state of B. Therefore, if ϕ =

∑
i λiϕi on B for some states ϕi of B then ϕ =

∑
i λiϕi·ε is a

decomposition of ϕ into states of B. The rest follows from SA(ϕi‖ϕ) ≤ SA(ϕi ·ε‖ϕ).

1.5 Half sided modular inclusions

J. Bisognano and E. Wichmann [10] made a discovery about the connection of the
modular operator and the modular conjugation for the von Neumann algebra generated
by quantum fields in a wedge region of the Minkowski space-time. H. J. Borchers [11]
formulates an important feature of this connection in the abstract setting of a pair of
von Neumann algebras N ⊆ M with a common cyclic and separating vector Ω and a
one-parameter group of unitaries Ut having a positive generator. A further development
has been achieved by by H. W. Wiesbrock [96], who introduces the notion of half sided
modular inclusion and obtains the underlying group structure. In this section we define
and describe some properties of this purely operator algebraic object.

Let N ⊆M be an inclusion of σ-finite von Neumann algebras on a Hilbert space H
and ω a faithful normal state given by a unit vector ω in H which is standard for both
N andM. We shall say that the inclusion N ⊆M is ±half-sided modular (±hsm) with
respect to ω if

σωs (N ) ⊆ N , ±s ≥ 0 ,

where σωs = Ad∆is
M is the modular operator and ∆is

M = ∆is
Ω . For simplicity, in the

following we will only consider -hsm inclusions, yet every statement will have a dual
statement for +hsm inclusions.

Theorem 20. [6, 12] Let N ⊆M be a -hsm inclusion of σ-finite von Neumann algebras
as above. Denote the corresponding modular operators and conjugations by ∆M, JM and
∆N , JN respectively. Then

P = 1
2π
(

log ∆N − log ∆M
)

(1.10)

is an essentially self-adjoint operator with positive closure still denoted by P . If Us =
eisP for s ∈ R, then we have the following:

(i) ∆−itM Us∆it
M = ∆−itN Us∆it

N = Ue2πts,
(ii) JMUsJM = JNUsJN = U−s,
(iii) U1−e2πt = ∆−isN ∆is

M and ∆is
N = U1∆is

MU
∗
1 ,

(iv) U2 = JNJM and JN = U1JMU
∗
1 ,

(v) N = U1MU∗1 and UsMU∗s ⊆M for s ≥ 0.
Furthermore, Us can be strongly continuously extended to the complex half-plane

Im s ≤ 0 where it is bounded by 1 in norm and analytic in the interior.

It can be noted by the identity ∆−itM Us∆it
M = Ue2πts that the modular operator ∆it

M
and the unitary group Us define a unitary representation of the ax+ b group. For this
reason, the operator (1.10) is often referred to as the generator of translations. It is also
of interest to notice that if Ω is, up to a phase, the unique vector fixed by the translation
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group Us, then ω has trivial centralizer and henceM must be a III1-type factor, unless
of course M = C and H is one dimensional. Furthermore, it has been recently shown
in [72] that the 2 × 2 Connes’ matrix trick can be used in order to provide a relative
analogue of Theorem 20. We describe how.

Let N ⊆ M be a -hsm inclusion of von Neumann algebras with respect to ϕ, a
faithful normal state represented by a standard vector ξ in the natural cone. We then
have the translation tunnel Mt = UtMU∗t , with N = M1. Let ψ be another faithful
normal state onM given by a standard vector η in the natural cone which is standard
for bothM and N . We will assume the Connes Radon-Nikodym unitary cocycle to be
localized as follows:

ws = (Dψ : Dϕ)s ∈MR , s ≤ 0 , (1.11)

for some R ≥ 1. We then have:

Lemma 21. [72] N ⊆ M is -hsm with respect to ψ. Moreover, we have σψs (Mt) =
Mte−2πs for t ≤ R and s ≥ 0.

Proof. This lemma, proved in [72], is here written just for the sake of completeness. The
first claim is immediate by the identity σψs (N ) = wsσ

ϕ
s (N )w∗s ⊆ wsNw∗s = N , which

holds for s ≤ 0. To prove the other assertion, we notice that 1 = ws−s = wsσ
ϕ
s (w−s),

namely ws = σϕs (w∗−s). Let s ≥ 0. Since w−s ∈ MR, it follows that ws ∈ σϕs (MR) =
MRe−2πs . Therefore, for t ≤ R we have

σψs (Mt) = wsσ
ϕ
s (Mt)w∗s = wsMte−2πsw∗s =Mte−2πs .

because ws ∈MRe−2πs ⊆Mte−2πs .

Consider now the 2× 2 matrix algebras over N andM, namely

Ñ = N ⊗Mat2(C) , M̃ =M⊗Mat2(C) ,

and denote by ϑ the positive linear functional on M̃ given by

ϑ(x) = ϕ(x11) + ψ(x22) , x = (xij) ∈ M̃ .

Corollary 22. [72] The inclusion Ñ ⊆ M̃ is -hsm with respect to ϑ. Moreover, σϑs (Mt⊗
Mat2(C)) =Mte−2πs ⊗Mat2(C) for s ≥ 0 and t ≤ R.

Proof. As above, here we write a fact already proved in [72] just for the sake of com-
pleteness. We have [90]

σϑs

(
x11 x12
x21 x22

)
=
(
σϕs (x11) σϕs (x12)w∗s
wsσ

ϕ
s (x21) σψs (x22)

)
,

thus the assertions follows by the previous lemma.
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Theorem 23. [72] Let N ⊆ M be a -hsm inclusion with respect to ξ and η with the
property (1.11) as above. Then

P = 1
2π
(

log ∆η,ξ,N − log ∆η,ξ

)
is an essentially self-adjoint operator with positive closure still denoted by P . The one
parameter group U generated by P satisfies

UtMU−t =Mt , Ut log ∆η,ξU
∗
t = log ∆η,ξ,Mt , t ≤ R .

Furthermore, Ut and ∆is
η,ξ provide a representation of the ax+ b group, namely

∆is
η,ξUt∆−isη,ξ = Ute−2πs , s, t ∈ R .

Proof. This theorem, proved in [72], is here written just for the sake of completeness.
The idea is to apply Theorem 20 to the -hsm inclusion given by Corollary 22 and then
to restrict the operators in order to have the claimed relations. The GNS Hilbert space
of ϑ is H̃ =

⊕
ij Hij , with Hij = H and where ϑ is given by the vector θ = ξ ⊕ η in

H11 ⊕H22. The modular operator ∆θ = ∆
θ,M̃ decomposes as ∆θ =

⊕
ij ∆ij , with

∆11 = ∆ξ,M , ∆22 = ∆η,M , ∆12 = ∆ξ,η,M , ∆21 = ∆η,ξ,M .

Then, by applying Theorem 20 we have that

P̃ = 1
2π
(

log ∆
θ,Ñ − log ∆θ

)
is an essentially self-adjoint operator with positive closure. It follows that the generated
one parameter group decomposed as Ũ =

⊕
ij Uij as well, where U11 and U22 are the

generators of translations of the -hsmi N ⊆ M with respect to ξ and η respectively.
Finally, the restriction of P̃ on the subspace H21 gives identity (23), while the other
relations follow by the decomposition of Ũ and by the identity M̃t = Mt ⊗ Mat2(C)
which holds for t ≤ R.

With the aim of studying the Quantum Null Energy Condition in a model indepen-
dent setting, half sided modular inclusions have been recently studied in [27]. Here we
exhibit some intermediate results. Hereafter, we will use the notation Pξ = (ξ|Pξ) where
ξ is some vector of H and P is some self-adjoint operator. By the spectral theorem, the
scalar product (ξ|Pξ) is a well defined finite quantity if |P |ξ is finite, namely if ξ is in
the domain of |P |1/2.

Proposition 24. LetM be a von Neumann algebra on H and let Us = e−isP be a one
parameter strongly continuous unitary group such that U−sMUs ⊆ M for s ≥ 0. If u
and u′ are isometries inM andM′, then for every vector ξ in H we have

Puu′ξ + Pξ = Puξ + Pu′ξ ,

under the assumption that the quantities |P |uu′ξ, |P |uξ, |P |u′ξ, and |P |ξ are all finite.
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Proof. This proposition is a very little variation of a proposition proved in [26], a few
personal notes auxiliaries to [27]. Take s > 0 and consider

D = (ξ|U−sξ) + (uu′ξ|U−suu′ξ)− (uξ|U−suξ)− (u′ξ|U−su′ξ) .

Note that (uu′ξ|U−suu′ξ) = (ξ|(u∗U−suU−s)(u′)∗U−su′ξ), where we used the fact that
u∗U−suUs belongs toM for s > 0. Thanks to this remark, we can write D = D1 +D2 +
D3 +D4, where

D1 = (u∗(Us − 1)uξ|Us(u′)∗(U−s − 1)u′ξ) ,
D2 = (u∗(Us − 1)uξ|(Us − 1)ξ) ,
D3 = ((U−s − 1)ξ|(u′)∗(U−s − 1)u′ξ) ,
D4 = −((U−s − 1)ξ|(U−s − 1)ξ) ,

and so we have the estimate |D| ≤ |D1| + |D2| + |D3| + |D4|. We can bound all of
these terms as |Di| ≤ ‖(Us − 1)η1‖ ‖(Us − 1)η2‖, where η1, η2 ∈ {ξ, uξ, u′ξ}. For ζ in
{ξ, uξ, u′ξ} we can use the spectral representation of P to write, for s > 0, the identity

(ζ|(1− Us)ζ)/s =
∫ 1− e−isλ

s
d(ζ|Eλ(P )ζ) .

By |1−e−isλ|/s ≤ |λ| and by the finiteness of |P |ζ we can use the dominated convergence
theorem, and so we have

lim
s→0+

(ζ|(1− Us)ζ)/s = iPζ .

It follows that

lim
s→0+

‖(Us − 1)ζ‖2

s
= lim

s→0+
2Re(ζ|(1− Us)ζ)/s = 0 ,

and so by the estimates above we finally obtain that D/s→ 0 for s→ 0+. Therefore

0 = lim
s→0+

D/s = Pξ + Puu′ξ − Puξ − Pu′ξ ,

and the thesis follows.

We now introduce some identities used in [27]. Let N ⊆M be a -hsm inclusion with
common standard vector ξ giving a normal state ω and positive generator of translations
P . If ψ is another normal state given by a vector η, then we can consider the modular
cocycles

us = (Dω : Dψ)s = ∆is
ξ ∆−isη,ξ , u′s = (Dω : Dψ)′s = (∆′ξ)is(∆′η,ξ)−is .

We can similarly define the conjugation cocycles

Θ = JξJη,ξ ∈M , Θ′ = J ′ξJ
′
η,ξ ∈M′ .

If we define
Θs = ∆is

ξ Θ∆−isη,ξ , Θ′s = (∆′ξ)isΘ′(∆′η,ξ)−is ,
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then we have the relations

∆is
ξ u
′
s = us∆is

η , ∆is
ξ u
′
s∆−isξ = (u′s)∗ ,

Jξ∆is
ξ Θ′s = Θ′−sJη∆is

η , Jξ∆is
ξ Θ′sJξ∆−isξ = Θ∗s ,

along with the commutant version of these. Now consider the vector state ψ, ψ̂ and ψ̃
represented by the vectors η, η̂ = Θ′η and η̃ = Θη respectively. We define the families
of states

ψs(x) = (ηs|xηs) , ηs = u′sη , u′s = (Dω : Dψ)′s ,
ψ̂s(x) = (η̂s|xη̂s) , η̂s = û′sη = Θ′sη , û′s = (Dω : Dψ̂)′s ,

ψ̃s(x) = (η̃s|xη̃s) , η̃s = ũ′sη = ∆is
ΩΘsη , ũ′s = (Dω : Dψ̃)′s .

Similarly, if Pη = (η|Pη), P̂ = (η̂|P η̂) and P̃ = (η̃|P η̃), then we can consider

Ps = (ηs|Pηs) , P̂s = (η̂s|P η̂s) , P̃s = (η̃s|P η̃s) .

Theorem 25. [27] If Pη < +∞, then Ps, P̂s and P̃s are finite for all s in R. Moreover,
we have

2Ps = P̂ + P̃ e−2πs ,

2P̂s = (1 + e−2πs)P̂ ,
2P̃s = (1 + e−2πs)P̃ .

(1.12)

Proof. (Sketch) This last theorem is very technical but is one of the most interesting
results of [27]. The idea of the proof is to study analytic continuations of the function

g(s, t) = (ψs|U−aψs) , U−a = eiaP , a = εe2πt , s, t ∈ R ,

for a fixed ε > 0. By the Vitali-Porter theorem one is able to study the limit ε→ 0, and
by doing so one can show that if Pη is finite then Ps is finite for all s in R. Similar but
more tricky techniques of complex analysis show that if Pη is finite then so do P̂ and P̃ ,
hence all the quantities appearing in (1.12) are finite. Finally, Proposition 24 and some
simple algebraic manipulations imply the relations (1.12).

The previous theorem is a technical result used to study the relative entropy S(t) =
SMt(ψ‖ω) in the general context of hsm inclusions. Here ω is the state represented by
the standard vector Ω, P ≥ 0 is the generator of translations and Mt = UtMU∗t with
Ut = eitP . The main assumption is the requirement for the state ψ to be represented,
at least for t ≥ c for some c ∈ R, by some vector η in H with finite null energy, namely
such that Pη < +∞. One more partial result that we will use later is the following.

Lemma 26. [27] Let (Mt)t∈R be a decreasing family of von Neumann algebras associ-
ated to some -hsm inclusion. Let ψ be a vector state represented by a vector η in H and
consider the relative entropies S(t) = SMt(ψ‖ω) and S(t) = SM′t(ψ‖ω). We assume Pη,
S(c) and S(c) to be finite for some c ∈ R. Then, for all t1, t2 in R we have

(S(t1)− S(t2)) + (S(t2)− S(t1)) = 2π(t2 − t1)Pη .

Corollary 27. S(t) and S(t) are everywhere finite and Lipschitz continuous.
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1.6 Algebraic formulation of Quantum Field Theory

In this section we recall the framework of Algebraic Quantum Field Theory (AQFT).
An introduction to the subject can be found in [7, 48]. We begin with some geometric
preliminaries. We consider the Minkowski space Rn+1 with inner product

x · y = x0y0 − (x1y1 + · · ·+ xnyn) , n = 0, 1, 2, 3 . (1.13)

Notice that in the case n = 0 we have the real line with standard inner product. Hereafter
we will work with natural units c = ~ = 1. The subregions of points x with x · x > 0,
x · x < 0 and x · x = 0 are called timelike, spacelike and lightlike, respectively. The set
of lightlike vectors is called the light cone. The sets

V+ = {x ∈M : (x, x) > 0, x0 > 0} , V− = {x ∈M : (x, x) > 0, x0 < 0} ,

are called the future cone and the past cone. A double cone O is defined as a non-empty
intersection of a forward cone x+V+ and a backward cone y+V−, with x and y in Rn+1.

The symmetry group of this space is the Poincaré group P, which is generated
by translations, time-fixing isometries, time inversion and boost transformations. The
connected component of the identity is called the proper orthocronus Poincaré group
and it is denoted by P↑+. In the n = 1 case, boost transformations correspond to the
matrices

Λ(λ) : x 7→
(

coshλ sinhλ
sinhλ coshλ

)
x , λ ∈ R . (1.14)

For the localization of physical observables, different regions of Rn+1 will be of interest for
us. We adopt the convention to work with open regions only, and we define the spacelike
complement O′ of a region O ⊂ Rn+1 as the interior of {x ∈ Rn+1 : (x−y)2 < 0 , y ∈ O}.
Of particular significance for us is the family of wedges, which is defined as follows. The
so-called right wedge is the set

WR = {x ∈ Rn+1 : x1 > |x0|} ,

and the left wedge is WL = W ′R = −WR. An arbitrary wedge is defined to be a set
of the form gWR, where g ∈ P is a Poincaré transformation. The set of all wedges
will be denoted by W. The wedges WR and WL are invariant under the action of the
boost transformations, hence W is given by the translated left wedges WL + x and by
the translated right wedges WR + x, with x ∈ Rn+1. In the n = 1 case, a non-empty
intersection of a right wedge and a left wedge is a double cone.

We now define the formalism for a relativistic quantum theory on the Minkowski
space Rd+1. In the algebraic approach to Quantum Field Theory, a model is character-
ized in terms of a C∗-algebra A of quasi-local observables, which are given by bounded
self-adjoint operators on a fixed Hilbert space H. All the physical information of the
theory is encoded in a map

Rn+1 ⊇ O 7→ A(O) ⊆ B(H) , (1.15)
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where O is an open region of Rn+1 and A(O) is a von Neumann algebra on a fixed Hilbert
space H. The von Neumann algebras A(O) are called local algebras. The generated C∗-
algebra, denoted by A =

⋃
OA(O), is called the algebra of quasi-local observables.

Definition 28. A local quantum field theory on the Minkowski space Rn+1, or shortly
a local net of von Neumann algebras, is a map (1.15) satisfying the following axioms:

(a0) (Isotony) A(O1) ⊆ A(O2) if O1 ⊆ O2.

(a1) (Causality) A(O1) ⊆ A(O2)′ if O1 ⊆ O′2.

(a2) (Covariance) For each g in P̃↑+, there is an automorphism αg of A such that
αg(A(O)) = A(g.O). Such an automorphism is implemented by a strongly con-
tinuous unitary representation U of P̃↑+ on H.

(a3) (Vacuum) There is a vector Ω of H, called vacuum vector, which is cyclic for A.
Furthermore, Ω is the only vector fixed by U up to a phase.

(a4) (Spectrum condition) The representation U must be with positive energy, namely
if U(x) = eix·P is the unitary associated to the translation of x ∈ Rn+1 then the
energy momentum spectrum, namely the joint spectrum of P = (P ν), must be
contained in the closed future cone V+.

In the following, local quantum field theories
will be shortly denoted by the triple (A, U,Ω).
Two local theories will be said to be equivalent
if there is a unitary operator intertwining the lo-
cal net A, the unitary representation U and the
vacuum vector Ω. The state ω induced by Ω
is called vacuum state. Notice also that, by as-
sumption, A is faithfully represented in its GNS
representation induced by the vacuum state ω,

and hence its identity representation will be called the vacuum representation. Notice
that the isotony property implies that (1.15) is a functor. The causality axiom is also
called locality axiom. A further requirement could be some tighter connection between
the local algebras associated to double cones.

(a5) (Additivity) A(Õ) =
∨
O⊂ÕA(O) for every double cone Õ.

This additivity axiom can be reformulated by replacing Õ with a generic wedge W .
Additivity for wedges has been used in [60] to transport the Reeh-Schlieder property
from wedge algebras to double cone algebras. Furthermore, with a very reasonable
assumption of weak additivity it can be proved the following property [52]:

(a6) (Reeh-Schlieder) The vacuum vector Ω is cyclic for each local algebra A(O), with
O ⊆ Rn+1 open and not empty.

Notice that, by the causality and the Reeh-Schlieder properties, Ω is a standard vector
for A and hence ω is faithful. The condition of locality can be strengthened by requiring
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(a7) (Haag duality) A(O′) = A(O)′ for every double cone O.

This property is often satisfied by local quantum field theories describing bosonic parti-
cles. In other cases, Haag duality can be replaced by some twisted analogue [74]. Finally,
the following property sets up a connection between the modular theory and the boost
symmetries [10]:

(a8) (Bisognano-Wichmann) ∆−isW = U(ΛW (2πs)).

The Bisognano-Wichmann theorem can be proved under very general assumptions which
include Reeh-Schlieder and Haag duality for the wedges W and W ′. Here W is the right
wedge (1.6), ∆W is the modular operator of A(W ) associated to the vacuum vector Ω
and ΛW is the one-parameter group of boosts preserving W (given by equation (1.14)
in dimension 1 + 1).

One last mathematical object concerning the algebraic formulation of quantum field
theory is the stress-energy tensor. The stress-energy tensor of a local quantum field
theory (A, U,Ω) on Rn+1 is a local object which is not included in the basic axioms
of algebraic quantum field theory. However, the common mathematical structure is
more or less the one depicted in [43]. In general, it corresponds to a family Tµν(f) of
sesquilinear forms on some dense domain D, where f is a test function on Rn+1 and
µ, ν = 0, . . . , n. More explicitly, one has a map

Tµν : D(Rn+1)→ Q ,

with Q the space of sesquilinear forms on D, a dense U -invariant common core for the
generators of translations P = (P ν)ν containing the vacuum vector Ω. For each real
test function f one has that T (f) is an hermitian form, and the notation (ξ|Tµν(f)η) =
Tµν(f)(ξ, η) is commonly used. Also, we expect the identities (Ω|Tµν(·)Ω) = 0, Tµν =
Tνµ and ∂µTµν = 0 to be satisfied. Finally, if σ is a space-like plane then we expect that

lim
n

(ξ|Tµν(fn)η) = (ξ|P νη)

for some sequence 0 ≤ fn ≤ 1 of real test functions such that ∩nsuppfn ⊆ σ and
fn|σ ⇀ 1, namely fn → 1 in the distributional sense when restricted to σ [43]. Finally,
one could ask the stress-energy tensor to be a tempered distribution, so that it would
make sense to talk about stress-energy tensor density Tµν(x).

For a complete exposition, we conclude this section by describing the free scalar
Klein-Gordon field of mass m ≥ 0 on a (n + 1)-dimensional Minkowski space. Free
scalar fields on the Minkowski space are the simplest example of local quantum field
theories and, as the name suggests, these theories describe noninteracting particles.
There exist actually several formulations of the theory of free fields [7, 52, 88]. One way
to proceed is the following [7].

We consider the Minkowski space Rn+1 with inner product (1.13). Denote by S the
space of Schwartz functions and by H+

m the Lorentz hyperboloid of mass m ≥ 0, namely
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H+
m is the manifold

H+
m =

{
p ∈ Rn+1 : p2 = m2 , p0 > 0

}
.

This manifold, also called upper mass shell, is endowed with a Lorentz invariant measure
given, in local coordinates, by dµ(p) = (p2 +m2)−1/2dp. The Hilbert space of this theory
is the bosonic Fock space [3]

Γ(H1) = CΩ⊕
⊕
n>0

EnH⊗n1 ,

with H1 = L2(H+
m, dµ) the one particle space. Here En is the projection onto the

subspace of EnH⊗n1 of totally symmetric elements. On this Fock space one can define
the creation operator a∗(χ) and the annihilation operator a(χ), with χ in H1. Explicitly,
for any Ψn = En(ψ1 ⊗ · · · ⊗ ψn) one defines

a∗(χ)Ψn = (n+ 1)1/2En+1(χ⊗Ψn) ,

a(χ)Ψn = n−1/2
n∑
j=1

(χ|ψj)En−1(ψ1 ⊗ · · · ⊗ ψ̂j ⊗ · · · ⊗ ψn) ,
(1.16)

where by definition E0Ω = Ω and a(χ)Ω = 0, with Ω a vector of unital norm by definition
called vacuum vector. These operators are closable, verify a(χ) = a∗(χ)∗ and satisfy the
Canonical Commutation Relations (CCR) [a(χ), a∗(χ′)] = (χ|χ′) on their common core
given by the algebraic sum of the subspacesHn = EnH⊗n1 . Notice that a∗(χ) is complex-
linear in χ, while a(χ) is conjugate-linear in χ. Consider now a real valued Schwartz
function f in SR. Its Fourier transform is naturally given by

f̃(p) = (2π)−(n+1)/2
∫
eip·xf(x)dx . (1.17)

We then define an operator E : SR → H1 with dense range by restriction of f̃ on H+
m,

that is Ef = f̃ |H+
m
. The Segal field associated to f is the densely defined operator

φ(f) = a∗(Ef) + a(Ef) .

If W (f) = eiφ(f) is the associated Weyl operator, then we have the Weyl relations

W (f)W (g) = W (f + g)e−iσ(f,g) , W (f)∗ = W (−f) ,

where σ(f, g) = Im(Ef |Eg). Notice that the natural action u of P↑+ on S induces
a unitary action U on L2(H+

m, dµ) by using the intertwining property of the Fourier
transform (1.17). Therefore, the Fock functor Γ(U) induces a unitary representation of
P̃↑+ on H satisfying the covariance property Γ(U)W (f)Γ(U)∗ = W (u.f). Finally, the
local net of this theory is given by

A(O) =
{
W (f) : f ∈ SR , suppf ⊂ O

}′′
.

For different values of the mass m ≥ 0 these theories are inequivalent in the sense that
there is not a unitary map preserving all the field theory structures. These models verify
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Haag duality and energy nuclearity on double cones [20, 60].

Lastly, we describe the stress energy tensor of this theory [28]. Let φ ∈ S ′ be a
solution of the Klein-Gordon equation, namely φ is a tempered distribution such that

(� +m2)φ = 0 , (1.18)

where � = ∂2
0 − ∂2

1 − · · · − ∂2
n. Then, the Fourier transform φ̃ of φ is supported on the

closure Hm = H+
m ∪ −H+

m. If φ is real, then φ̃(−p) = φ̃(p), so φ̃ is determined by its
restriction to H+

m. As known, if f, g are real Schwartz functions on Rn, there is a unique
smooth real solution φ of (1.18) with Cauchy data φ|x0=0 = f and ∂0φ|x0=0 = g. This
solution is explicitly given by an integral formula and the partial functions φ(x0, ·) are in
the Schwartz space S. We will call wave any real smooth solution of the Klein-Gordon
equation with compactly supported Cauchy data, and denote by T the real linear space
of such waves. The map E : T → H1 given by Eφ = φ̃|H+

m
is well defined, injective and

its range is a real linear total subspace of H1. Let now g = (gµν) = (gµν) be the Lorentz
metric. If ∂µ is the partial derivative with respect to xµ, then we will set ∂µ = gµν∂ν .
Notice that, in our convention, ∂0 = ∂0. The stress-energy tensor density (Eφ|Tµν(·)Eφ)
associated with a wave φ ∈ T is then given by the function [28]

Tµν = ∂µφ∂νφ− gµνL , L = 1
2
(
gµν∂

µφ∂νφ−m2φ2
)
, (1.19)

where L is the Lagrangian density. In particular,

T00 = 1
2
( n∑
µ=0

(∂µφ)2 +m2φ2
)
, T0ν = ∂0φ∂νφ , ν = 1, . . . , n .

1.7 DHR charges

DHR theory was historically developed in [41]. The starting point of this successful
theory is the choice of a selection criterion for the representations ρ of a local theory A

which are of interest in elementary particle physics. The motivation for this criterion
is the idealization of the absence of matter at infinity. Of course, such a mathematical
issue appears since in general A has infinitely many inequivalent irreducible representa-
tions. In this section we illustrate a brief overview of this topic [72].

Let (A, U,Ω) be a local QFT on the Minkowski space of spacetime dimension n+ 1
on the vacuum Hilbert space H. Let A be the C∗-algebra of quasi-local observables.
More in general, given a spacetime region F , let A(F ) be the C∗-algebra generated by
all the von Neumann algebras A(O) where O runs on the double cones contained in F .
We denote by A(F ) the weak closure A(F )′′ of A(F ) and we assume weak additivity, so
that the Reeh-Schlieder theorem holds and the vacuum vector is standard for F when-
ever F and F ′ have non-empty interiors. We also assume Haag duality.
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Let now ρ be a covariant representation of A on a Hilbert space Hρ, so there exists
a positive energy unitary representation Uρ of P̃↑+ on Hρ such that

ρ(U(g)xU(g)∗) = Uρ(g)ρ(x)Uρ(g)∗ , x ∈ A , g ∈ P̃↑+ . (1.20)

Assume for the moment that Uρ is massive, namely the energy-momentum spectrum
has an isolated lower mass shell. Then, for any spacelike cone S in the Minkowski
spacetime, the restriction ρ|A(S′) is unitarily equivalent to id|A(S′), with id the vacuum
representation. Thus, up to unitary equivalence, we may choose a spacelike cone S0,
identify Hρ with H and assume that ρ(x) = x for x in A(S ′0). We then say that ρ is
localised in S0. This motivating discussion motivates the DHR selection criterion and
leads to the following definition.

Definition 29. Let (A, U,Ω) be a local QFT on the Minkowski space. A DHR charge,
or also a sector, is the unitary equivalence class [ρ] of a representation ρ of A such that
ρ|A(O′) is equivalent to id|A(O′) for some double cone O. Furthermore, this equivalence is
supposed to still hold if O is replaced with g.O for some g is in P↑+. The corresponding
endomorphisms of A are called localized endomorphisms, where we will say that ρ is
localized, or also supported, in O if ρ(x) = x for x in A(O′).

We now want to further describe the structure of DHR charges. If we assume that
Haag duality holds for spacelike cones and that ρ is localized in S0, then ρ maps A(S0)
to A(S0). Now, ρ|A(S0) is normal because S0 ⊂ S ′ for some spacelike cone S. So ρ|A(S0)
extends to a normal endomorphism ρS0 of A(S0), and similarly to a normal endomor-
phism ρW of A(W ) if W ⊃ S0 is a wedge. We may loosely say that ρS0 and ρW are the
restrictions of ρ on A(S0) and A(W ) and still denote them simply by ρ if it is clear from
the context that we are dealing with restrictions.

The important fact of the DHR criterion is that, by identifying sectors with local-
ized endomorphisms, they can be composed. This allows us to define the composition
of sectors by [ρ1][ρ2] = [ρ1ρ2]. This induces a structure of monoidal C∗-category on the
DHR charges. Explicitly, we have a category with localized endomorphisms as objects,
intertwiners as arrows and composition as tensor product. Such a category, denoted by
TA, is called superselection theory. We refer to Appendix A for further details.

Now consider an irreducible DHR charge ρ. Suppose the covariance property (32)
to be satisfied for space-time translations. We also assume, as above, the corresponding
representation Uρ to satisfy the spectrum condition and to be massive. Then, it can
be shown the existence of a finite integer number d(ρ) called the statistical dimension
of ρ. Allowing the case d(ρ) = ∞, the statistical dimension can be defined for any
localized endomorphism [48]. We will provide further details of this dimension function
in Appendix A. The statistical dimension d(ρ) is a natural number uniquely determined
by the sector [ρ], it is multiplicative with respect to the composition of sectors and it
is additive with respect to direct sums of representations. If ρ is localized in a double
cone O, the DHR dimension d(ρ) of ρ turns out to be the square root of the minimal
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Jones index [A(O) : ρ(A(O))] [65]. If ρ has finite Jones index, then there exists a stan-
dard left inverse Φ = Φρ of ρ, namely a completely positive map Φ: A → A such that
Φ·ρ = id. Indeed, Φ = ρ−1·ε with ε : A→ ρ(A) the minimal conditional expectation [65].

Given an endomorphism ρ localized in O as above, we shall consider the charged
state ψ = ψρ given by ψρ = ω · Φρ, with ω the vacuum state. Note that ψ is localised
in O as above, namely ψ = ω on A(O′), and that, by composing ψ with the adjoint
action of a localised unitary, we get a state localised in any given double cone. If W is
a wedge region containing O, then ψ|A(W ) extends to a normal faithful state of A(W )
(ψ is inner automorphism equivalent to a state localised in W ′) that we denote by ψW ,
and similarly ωW = ω|A(W ).

Let now uρg = Uρ(g)U(g)∗, with g in P̃↑+, be the covariance cocycle of some covariant
localised endomorphism ρ with finite index. Thus

ρ(x) = uρgρg(x)uρg∗ , ρg(x) = U(g)ρ(U(g)∗xU(g))U(g)∗ .

If ρ is localised in O then the charge ρg is localised in g.O. If Õ is a double cone
containing both O and g.O, then then both ρ and ρg act identically on A(Õ′), and thus
by Haag duality we have that uρg is in A(O). With W a wedge region and ΛW the
corresponding boost one parameter group, let ρ be localised in W . Then uρΛW (s) is in
A(W ) for any s in R. More specifically, we have the relation [66]

uρΛW (s) = d(ρ)is(DψW : DωW )s , s ∈ R . (1.21)

Thus, while the Bisognano-Wichmann theorem sets up a connection between the mod-
ular theory and the vacuum boost symmetries, formula (1.21) sets up a connection
between the relative modular operator and the boost symmetries in the charged repre-
sentation. Indeed, this formula is equivalent to

2πKρ,W = − log ∆η,ξ,W − log d(ρ) ,

where ξ is the vacuum vector, η is any standard vector for A(W ) representing ψW and
Kρ,W is the modular hamiltonian, namely the selfadjoint generator of the boost one
parameter unitary group Uρ(ΛW (·)). From a physical point of view, Eρ = (Ω|Kρ,WΩ)
is the is mean vacuum energy for a Rindler observer.
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Chapter 2

Quantum Null Energy Condition
on conformal nets

2.1 Statement of the Quantum Null Energy Condition

This section aims to provide a brief overview about the Quantum Null Energy Con-
dition (QNEC). The QNEC was originally stated in [14], then reformulated in [58] and
finally rigorously treated in [27, 72]. As mentioned in the introduction, in [14] a Quan-
tum Null Energy Condition (QNEC) is defined as a stress-energy tensor density lower
bound which is expected to be satisfied by most reasonable quantum fields. More specif-
ically, consider a local QFT on the Minkowski space Rn+1 with stress-energy tensor T .
Then, one uses a function V in order to “cut” a null plane and define a region R as in
figure 2.1.

Figure 2.1. This image depicts a section of the plane u = t − x = 0. The region R is
defined to be one side of a Cauchy surface split by the codimension-two entangling surface
∂R = {u = 0, v = V (y)}. The dashed line corresponds to a flat cut of the null plane.

Then, by considering Vt = (1 + t)V one obtains a one-parameter family of regions
Rt. If we denote by S(t) the von Neumann entropy of a state ψ restricted to Rt, or
rather to some von Neumann algebra A(Rt). Then, the QNEC [14] states that

〈Tvv(y)〉 ≥ ~
2πS

′′(y) , (2.1)
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where 〈Tvv(y)〉 = 〈Tvv(y)〉ψ and S′′(y) is defined after a limit procedure on S′′(t) as V
approaches some delta distribution supported on y [58]. However, this statement of the
QNEC lacks mathematical rigour. For example, the von Neumann entropy S(t) has to
be constantly infinite as long as we expect the identity A(Rt) = A(R′′t ) to hold [76].

In order to fix this problem, a rigorous statement of the QNEC can be given as
follows [72]. Let (A, U,Ω) be a local QFT on the Minkowski space Rn+1 with vacuum
state ω and C∗-algebra of quasi-local observables A.

Let W be the right wedge region x1 > |x0|. We
will use the coordinates u = (x0 − x1)/

√
2, v = (x0 +

x1)/
√

2 and yk = xk for k > 1. Let V (y) be a non-
negative continuous function of y = (y2, . . . , yn) and
define

WV = {(u, v, y) : u < 0 , v > V (y)} . (2.2)

We now set Vt = (1 + t)V for t in R and Mt =
A(WVt). More generally, after a Poincaré transforma-
tion g one can associate a family of deformed wedges
gWVt = g(WVt) and define Mt = A(gWVt). Notice

that W ′ = τW , with τ the reflection with respect to the x0 axis.

Definition 30. We will say that a state ψ of A satisfies the Quantum Null Energy
Condition (QNEC) if S(t) = SMt(ψ‖ω) is convex for any couple (g, V ) as above.

According to Definition 30, the QNEC does not involve any stress-energy tensor and
it is not formulated as a null energy lower bound. However, this formulation of the
QNEC is motivated by some physical arguments of [58], in which the inequality (2.1)
is (not rigorously) shown to be equivalent to the positivity of the second derivative of
some relative entropy. The convexity of the relative entropy has been rigorously proved
in a model independent setting for a very wide class of states.

Theorem 31. [27] Let N ⊆ M be a ±hsm inclusion with standard vector Ω giving
the state ω. Denote by P the positive generator of translations and by (Mt)t∈R the
associated flow of von Neumann algebras. If ψ(x) = (η|xη) is a vector state with finite
null energy, namely such that

Pη = (η|Pη) < +∞ , (2.3)

then the relative entropy S(t) = SMt(ψ‖ω) is convex. Furthermore, if S(t0) is finite
then we have

− S′(t) = 2π inf
w′∈C′t

Pw′η , t ≥ t0 a.e. , (2.4)

where C ′t is the set of all the isometries w′ in M′t such that the complement relative
entropy S̄w′(t) = SM′t(ψw′‖ω) is finite, with ψw′(x) = (w′η|xw′η). Identity (2.4) is
satisfied at each point such that S′(t) exists and on such points it can be computed by

− S′(t) = 2π inf
s
Ps(t) = πP̂ (t) . (2.5)
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In the above notation, we have

Ps(t) = Pu′s(t)η , u′s(t) = (Dω : Dψ ;M′t)s , (2.6)

and P̂ (t) = Pη̂t, where η̂t is the unique vector in the natural cone of Mt representing
the state ψ.

Actually, the provided proof refers to -hsm inclusions, but the +hsm case can be
similarly proved. It is also shown that the null energies (2.6) are finite and that the
infimum (2.5) is obtained as s→ ±∞ if the inclusion is ∓hsm.

In this chapter, based on the paper [84], we study the QNEC on a generic conformal
net. Our proof is based on a direct computation on the Virasoro nets and then on the
use of some conditional expectations in order to extend the result to a generic conformal
net.

2.2 Conformal nets

Chiral Conformal Field Theories (CFTs) describe one chiral half of a conformal field
theory in 1+1-dimensions and are well-investigated. They are described in the algebraic
setting by conformal nets, namely local nets of von Neumann algebras parametrized by
open intervals of the circle. We now briefly recall some basic definitions about conformal
nets. We refer to [34, 45, 93] for further treatments of the topic.

Let K be the family of all the open, nonempty and non dense intervals of the circle.
For I in K, I ′ denotes the interior of the complement. The Möbius group Möb acts on
the circle by linear fractional transformations. A Möbius covariant net (A, U,Ω) consists
of a family {A(I)}I∈K of von Neumann algebras acting on a separable Hilbert space H,
a strongly continuous unitary representation U of Möb and a vector Ω in H, called the
vacuum vector, satisfying the following properties:

(i) A(I1) ⊆ A(I2) if I1 ⊆ I2 (isotony),
(ii) A(I1) ⊆ A(I2)′ if I1 ⊆ I ′2 (locality),
(iii) U(g)A(I)U(g)∗ = A(g.I) for every g in Möb and I in K (Möbius covariance),
(iv) the representation U has positive energy, namely the generator of rotations has

non-negative spectrum (positivity of the energy),
(v) Ω is cyclic for the von Neumann algebra

∨
I∈KA(I), and up to a scalar Ω is the

unique Möb-invariant vector of H (vacuum).

By the Howe-Moore vanishing theorem, it follows by the axioms (iv) and (v) that the
vacuum vector Ω is, up to a phase, the only vector fixed by the subgroups of rotations,
translations and dilations defined below (2.9). With these assumptions, the following
properties automatically hold [34, 45]:

(vi) A(I ′) = A(I)′ for every I in K (Haag duality),
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(vii) A(I) ⊆
∨
αA(Iα) if I ⊆

⋃
α Iα (additivity),

(viii) if I+ is the upper half of the circle and ∆ is the modular operator associated
to A(I+) and Ω, then for every t in R we have

∆it = U(δ−2πt) , (2.7)

where δ is the one parameter group of dilations (Bisognano-Wichmann),
(ix) each local algebra A(I) is a type III factor and

∨
I∈IR A(I) = B(H), with IR

the set of all the open, nonempty and non dense intervals of S1 \ {−1} (irreducibility).

Definition 32. By a conformal net, or also a Diff+(S1)-covariant net, we shall mean a
Möb-covariant net (A, U,Ω) which satisfies the following condition:

(x) U extends to a projective unitary representation of Diff+(S1), the Fréchet Lie
group of the orientation preserving diffeomorphisms of the circle, such that

U(ρ)A(I)U(ρ)∗ = A(ρ.I) , ρ ∈ Diff+(S1) , I ∈ K .

Furthermore, we require that

U(ρ)xU(ρ)∗ = x , x ∈ A(I) (2.8)

if supp ρ ⊂ I ′, with supp ρ the support of ρ, namely the closure of the complement of
the set of the points z such that ρ(z) = z.

A Möbius covariant net is either also conformal or not, but if it is, the extension of
the representation to Diff+(S1) is unique [22, 23]. It is known that to any representation
U as above satisfying (iv) and (x), it can uniquely assigned a real number c ≥ 0 called
the central charge of the representation. This number will be called the central charge
of the conformal net. In a conformal net, the following is automatic [75]:

(xi) if Ī ⊂ J then there is a type I factor R such that A(I) ⊂ R ⊂ A(J) (split
property).

If the interval I does not contain the point −1, it is
a common procedure to pass from the circle picture to
the real line picture [34, 45]. Namely, one can change
variables z = C(x) by using the Cayley transform

C(x) = (1 + ix)/(1− ix) ,

so that I can be identified with a proper open interval
of the real line. In the real line picture the point −1
of S1 corresponds to ∞, where R∪ {∞} is the classical

Alexandroff compactification of the real line. Thanks to this identification, we can easily
define the one parameters groups of rotations, dilations and translations mentioned
above:

Rθ.z = eiθz , z ∈ S1 , δt.x = etx , x ∈ R , τa.x = x+ a , x ∈ R . (2.9)
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By using the real line picture, conformal nets can be used to describe chiral CFTs on
the 1 + 1 dimensional Minkowski space. To be more explicit, consider a conformal net
(A, U,Ω) in its real line picture. If we denote by (x0, x1) our spacetime coordinates, then
by passing to light ray coordinates ξ± = x0 ± x1 we can denote by L± = {ξ : ξ± = 0}
the two light ray lines. If I± ⊆ L± are open intervals, then for the region O = I+ × I−
we can define the corresponding local algebra by

A(O) = A(I+)⊗A(I−) , (2.10)

where the tensor product is the spatial tensor product of von Neumann algebras. Similar
techniques can be used to define other types of Conformal Field Theory [9, 56].

We provide a few more definitions. Let (A, U,Ω) be a Möbius covariant net on
a Hilbert space H. We call a family B = {B(I)}I∈K of von Neumann subalgebras
B(I) ⊆ A(I) a subnet of A if it satisfies isotony and Möbius covariance with respect to
U . We will use the notation B ⊆ A to denote the subnets B of A. If A(I)′∩B(I) = C for
one (and hence for all) interval I in K, then the inclusion B ⊆ A is said to be irreducible.
If we denote by e = [HB] the orthogonal projection onto HB =

∨
I∈K B(I)Ω, then it is

easy to notice that e is in the commutant of all the von Neumann algebras B(I) and
that it commutes with U . Then B induces a Möbius covariant net on eH by considering
the induced von Neumann algebras eB(I)e with unitary representation the restriction
of U on eH. By the Reeh-Schlieder property Ω is standard for all the B(I) and hence e
is actually the Jones projection of each inclusion B(I) ⊆ A(I) (see Proposition 3.1.4. of
[54]). If we have an inclusion of nets B ⊆ A, then for each interval I there is a canonical
faithful normal conditional expectation εI : A(I) → B(I) which preserves the vacuum
state ω by Bisognano-Wichmann and the Takesaki’s theorem ([90], Theorem IX.4.2.).

Proposition 33. Let B ⊆ A be an inclusion of a Möbius covariant nets. Then all
the canonical conditional expectations εI : A(I) → B(I) extend to a unique vacuum-
preserving conditional expectation ε : A → B, with A and B the C∗-algebras generated
by the local algebras A(I) and B(I) respectively, namely A is the norm closure of the
union of the local algebras A(I) and similarly for B.

Proof. Denote by ω(·) = (Ω| · Ω) the vacuum state and by e the orthogonal projection
onto HB =

∨
I∈K B(I)Ω. As mentioned above, for each interval I in K we have that

e(xΩ) = εI(x)Ω for x in A(I). As the vacuum is locally faithful by Reeh-Schlieder, this
implies that the conditional expectations are compatible, namely εJ is an extension of εI
whenever I ⊆ J . Therefore, for x in the union

⋃
I∈KA(I) we can define ε(x) by setting

ε(x) = εI(x) whenever x is in A(I). The map ε is bounded since every εI has unital
norm, hence we can continuously extend ε to A (this procedure is sometimes known as
the BLT theorem [88]). Finally, ε is a conditional expectation since by continuity ε is a
positive B-linear projection, and the identity ω = ω · ε follows as well.

The index [A : B] of the inclusion B ⊆ A is defined as the Jones index [A(I) : B(I)]
with respect to the conditional expectation εI [59]. Such an index does not depend on
I. If the index is finite, then the inclusion is irreducible. More in general, this index can
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be defined whenever a Möbius covariant net A is an extension of a Möbius covariant net
B, namely if B is unitarily equivalent to a subnet of A.

We now provide some notions about the representation theory of conformal nets.
A (locally normal) DHR (Doplicher-Haag-Roberts) representation of a conformal net
(A, U,Ω) is a family ρ = {ρI}I∈K of normal representations ρI of the von Neumann
algebras A(I) on some Hilbert space Hρ such that ρI = ρJ |A(I) if I ⊆ J . We say that
two DHR representations ρ1 and ρ2 are equivalent if there is some unitary operator
U from Hρ1 to Hρ2 such that Uρ1,I(x) = ρ2,I(x)U for every x in A(I) and I in K.
The DHR representation induced by the identity is called the vacuum representation. A
DHR representation ρ is said to be irreducible if

∨
I∈K ρI(A(I)) = B(Hρ). If a topological

group G acts continuously on S1 by elements of Diff+(S1), a DHR representation ρ is said
to be G-covariant if there exists a strongly continuous unitary projective representation
Uρ of G such that

AdUρ(g) · ρI(x) = ρg.I(AdU(ι(g)) · x) , x ∈ A(I) ,

for all g in G and I in K, where ι : G → Diff+(S1) is the induced homomorphism. A
locally normal DHR representation is automatically Möb-covariant [33].

A larger class of representations of a conformal net is given by the so-called solitonic
representations. In the following, we will denote by IR the set of all the open, nonempty
and non dense intervals of S1 \ {−1}. A (locally normal) soliton σ of a conformal net
(A, U,Ω) is a family of maps σ = {σI}I∈IR where σI is a normal representation of the
von Neumann algebra A(I) on a fixed Hilbert space Hσ such that σI = σJ |A(I) if I ⊆ J .
If G is a topological group equipped with some homomorphism ι : G → Diff+(S1), then
we will say that a soliton σ is locally G-covariant if there is a unitary projective con-
tinuous representation Uσ of G which satisfies the following property: if I is in IR and
V is a connected neighborhood of the identity in G such that g.I is in IR for every g
in V , then AdUσ(g)σI(x) = σι(g).I(AdU(ι(g)) · x) for every x in A(I). With R± con-
sidered as elements of IR, the index of a soliton σ is the Jones index of the inclusion
σ(A(R+)) ⊆ σ(A(R−))′.

We now illustrate a class of proper solitonic representations of a conformal net con-
structed in [34]. Let Diff+(S1,−1) be the class of orientation preserving homeomor-
phisms ν of S1 which have the following properties:

(i) ν(−1) = −1,
(ii) ν is smooth on S1 \ {−1}, the left and right derivative at all orders exist at the

point −1, and the first left and right derivatives are nonzero.

Let now (A, U,Ω) be a conformal net on S1 on some Hilbert space H. For ν in
Diff+(S1,−1) and for every interval I in IR we choose νI in Diff+(S1) which agrees with
ν on I (there is such νI even if one of the endpoints of I is −1 [34]). We denote by σν
the family of maps

σIν : A(I)→ B(H) , σIν(x) = AdU(νI)(x) ,
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where ν ∈ Diff+(S1,−1) and I ∈ IR.

Proposition 34. [34] For ν in Diff+(S1,−1), σν is an irreducible soliton of the con-
formal net A with index 1.

As for DHR representations, solitons can be used to construct solitonic states. In
this case, as the Jones index is 1, the solitonic state associated to some homeomorphism
ν in Diff+(S1,−1) is given by

ων = ω · σ−1
ν . (2.11)

By use of the modular theory, and in particular by using the fact that on III1-type
factors the modular group σt is inner if and only if t = 0, it can be shown that if ν has
different left and right derivatives then σν is a proper soliton [34]. Let us introduce the
notation for left and right derivatives:

∂±ν(−1) = −i lim
θ→0±

ν(−eiθ)− ν(−1)
θ

.

We will denote their ratio by r(ν) = ∂+ν(−1)/∂−ν(−1). Furthermore, we will denote by
Diff1,ps

+ (S1) the group of piecewise smooth C1-diffeomorphisms of S1, namely γ belongs
to Diff1,ps

+ (S1) if it is a C1 diffeomorphism and S1 can be decomposed into finitely
many closed intervals on each of which γ is smooth in the interior and has derivatives
of all orders at the end points. Finally, we will denote by Diff1,ps

+,0 (S1) the subgroup
of Diff1,ps

+ (S1) given by all the homeomorphisms γ fixing −1 and by Diff1,ps
+,1 (S1) the

subgroup of Diff1,ps
+,0 (S1) of all the elements γ such that γ′(−1) = 1.

Theorem 35. [34] If ν in Diff+(S1,−1) verifies r(ν) 6= 1, then σν is a proper, irreducible
Diff1,ps

+,0 (S1)-covariant soliton of A. Furthermore, σν1 and σν2 are unitarily equivalent if
and only if r(ν1) = r(ν2).

Finally, we end this section by describing the most simple example of conformal
net. We consider an irreducible, unitary projective representation U of Diff+(S1). We
require U to be with positive energy, namely we assume the group of rotations to have
a positive generator (that is the induced unitary representation of its universal covering
has a positive generator). Such a representation is uniquely determined by a couple of
values (c, h), where c is called the central charge and h is called the trace anomaly. More
precisely, h ≥ 0 is the lowest eigenvalue of the generator of rotations and c ≥ 0 uniquely
determines the 2-cocycle

U(ρ1)U(ρ2) = eicB(ρ1,ρ2)U(ρ1ρ2) , (2.12)

with B the Bott cocycle [44]

B(ρ1, ρ2) = − 1
48πRe

∫
ln((ρ1ρ2)′(z)) d

dz
ln(ρ′2(z))dz . (2.13)

It can be shown that the Bott cocycle lifts to a cocycle of the universal covering
Diff+(S1)∼ of Diff+(S1), and a projective unitary representation U of Diff+(S1)∼ sat-
isfying (2.12) is called a multiplier representation. The mentioned irreducible positive
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energy representation U of Diff+(S1) exists if and only if c ≥ 1 and h ≥ 0 (continuous
series representation), or (c, h) = (c(m), hp,q(m)), where [55]

c(m) = 1− 6
(m+ 2)(m+ 3) , hp,q(m) = (p(m+ 1)− qm)2 − 1

4m(m+ 1) ,

with m, p and q integers such that m ≥ 3 and 1 ≤ q ≤ p ≤ m − 1 (discrete series
representation). If h = 0, then U is called a vacuum representation. Since it can be
shown the existence of a vector Ω of norm one which is, up to a phase, the unique vector
fixed by the rotation group [45], by the Howe-Moore theorem Ω is also, up to a phase,
the unique vector fixed by Möb ⊆ Diff+(S1).

Definition 36. If U is a vacuum representation of Diff+(S1), then the Virasoro net of
central charge c is the conformal net (Vc, U,Ω) with local algebras

Vc(I) = {U(ρ) : supp ρ ⊂ I}′′ .

Also in this case, these models are endowed with a stress energy tensor density
described in detail in the next chapter. Virasoro nets have a very different nature for
different values of the central charge c < 1 and c ≥ 1.

Definition 37. A conformal net (A, U,Ω) is said to be strongly additive if, for I1, I2 ∈ K
adjacent intervals and I = (I1 ∪ I2)′′ = I1 ∪ I2

◦, the identity A(I1) ∨ A(I2) = A(I)
holds. The µ-index of A, denoted by µ(A), is the minimal Jones index of the inclusion
A(I1)∨A(I3) ⊆ (A(I2)∨A(I4))′, where Ii ∈ K are disjoint intervals in a clockwise order
whose union is dense in S1. A conformal net is completely rational if it strongly additive
and with finite µ-index.

For c < 1 it is known that Vc is completely rational, while for c ≥ 1 the µ-index is not
finite and Vc is not even strongly additive [91]. The Virasoro nets are the operator alge-
braic version of the so called minimal models. Such theories describe discrete statistical
models at their critical points. For example, the case c = 1 corresponds to the critical
Ising model. For a conventional description of such models, see [36]. The importance of
the Virasoro nets lies in the fact that any Diff+(S1)-covariant conformal net contains a
Virasoro net as a subnet, as simply follows by (2.8). This fact has been exploited in the
classification of conformal nets with charge c < 1 [57]. A deeper analysis of the Virasoro
nets will be provided in the next section.

2.3 Analysis on Virasoro nets

We begin by describing our notation and some basic facts about the structure of a
Virasoro net. The material is standard and more details may be found e.g. in [44]. The
starting point is the Virasoro algebra, that is the infinite dimensional Lie algebra Vir
with generators {Ln, c}n∈Z obeying the relations

[Ln, Lm] = (n−m)Ln+m + 1
12n(n2 − 1)δn,−mc , [Ln, c] = 0 . (2.14)
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A (unitary) positive energy representation of Vir on a Hilbert space H is a representation
such that

(i) L∗n = L−n,
(ii) L0 is diagonalizable with non-negative eigenvalues of finite multiplicity,
(iii) the central element is represented by c1.

From now, we assume such a positive energy representation on the infinite dimen-
sional separable Hilbert space H. We assume furthermore that H contains a vector
Ω annihilated by L−1, L0, L+1 (sl(2,R)-invariance) which is a highest weight vector of
weight 0, that is LnΩ = 0 for all n > 0. In [18], [23], [46] and [47] one can find the proof
of the bound

‖(1 + L0)kLnΨ‖ ≤
√
c/2(|n|+ 1)k+3/2‖(1 + L0)k+1Ψ‖ (2.15)

for Ψ ∈ V =
⋂
k≥0D(Lk0) and k ≥ 0 integer. Given a smooth function f(z) on the circle,

one defines the stress energy tensor

T (f) = − 1
2π

+∞∑
n=−∞

(∫
S1
f(z)z−n−2dz

)
Ln .

Notice that T (f) has zero expectation on the vacuum, that is (Ω|T (f)Ω) = 0. This
follows by the commutation relations of the Virasoro algebra (2.14), since L−nΩ is an
n-eigenvalue of the conformal hamiltonian L0. The notation

T (f) =
∫
S1
T (z)f(z)dz , T (z) = − 1

2π

+∞∑
n=−∞

z−n−2Ln , (2.16)

is widely used. Moreover, the estimate (2.15) shows that T (f) is well defined and closable
for any function f in the Sobolev space S3/2 = W 3/2,1(S1), since

‖Lk0T (f)ξ‖ ≤ (c/2)1/2‖f‖3/2+k,1‖(1 + L0)k+1ξ‖ (2.17)

for every k ≥ 0 natural and ξ in D(Lk+1
0 ). It follows that V is a dense invariant domain

for T (f) if f is smooth. We recall that the norm of W s,p is

‖f‖s,p =
(∑

n

|f̂n|p(1 + |n|)ps
)1/p

,

where f̂n is the n-th Fourier coefficient. If we now define Γf(z) = −z2f(z), then the
stress-energy tensor is an essentially self-adjoint operator on any core of L0 (such as V)
for any function f ∈ S3/2 obeying the reality condition

Γf = f . (2.18)

More in general, one has that T (f)∗ = T (Γf) as shown in [22]. We also point out that
T (f) must be thought of as an operator depending not on the function f(z), but rather
on the vector field f(z) ddz . In particular, we have that

Ln = iT (ln) , ln = zn+1 d

dz
. (2.19)
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Notice that by changing variables z = eiθ, the stress energy tensor may be written as

T (f) =
∑
n

f̂nLn ,

with f = f(θ). As a little remark, we can notice by the relations (2.14) and the hy-
pothesis L0Ω = 0 that T (f)Ω = 0 if and only if f is in the Hardy space H2(S1), that
is if and only if f̂n = 0 for every n < 0. Furthermore, let Hfin be the dense subspace
of finite energy vectors, that is the algebraic direct sum of the eigenspaces of L0. Then
the vectors Ψ ∈ Hfin are entire analytic vectors for the stress energy tensor. This indeed
can be easily proved for eigenvectors for L0 by using the estimate (2.15) and by a simple
induction. For further properties of the stress-energy tensor, see [44].

We now make the connection with the representation of the diffeomorphism group
on the circle. To do this, given a function f ∈ C∞(S1) real in the sense of equation
(2.18), we denote by Exp(tf) = ρt ∈ Diff+(S1) the 1-parameter flow of orientation
preserving diffeomorphisms generated by the vector field f . In other words, ρt is uniquely
determined by the conditions

∂

∂t
ρt(z) = f(ρt(z)) , ρ0 = id . (2.20)

Notice that ρt acts as the identity for all t ∈ R outside the support of f . The uni-
tary operators W (f) = eiT (f) can be thought of as representers of the diffeomorphisms
Exp(f). More precisely, there exists a strongly continuous unitary projective represen-
tation Diff+(S1) 3 ρ 7→ V (ρ) ∈ U(H) satisfying:

(v0) V leaves invariant V,
(v1) V is a multiplier representation,
(v2) d

dtV (Exp(tf)) = itT (f) on any core of T (f). In particular, we have that
eiT (f) = eiα(t)V (ρt), with α′(0) = 0.

We now describe the commutation rules between two operators eiT (f) and eiT (g). For
a smooth diffeomorphism ρ on the circle, the Schwarzian derivative is defined by

Sρ(z) =
(
ρ′′(z)
ρ′(z)

)′
− 1

2

(
ρ′′(z)
ρ′(z)

)2
.

It has been shown in [44], which uses results of [46] and [92], that on the domain V we
have the relations

V (ρ)T (f)V (ρ)∗ = T (ρ∗f) + β(ρ, f)1 , (2.21)
i[T (f), T (g)] = T (f ′g − g′f) + cω(f, g)1 , (2.22)

meaning that (2.21) holds on V and (2.22) on V ∩ D(T (f)T (g)) ∩ D(T (g)T (f)). Here
ρ∗g is the push-forward of the vector field g(z) ddz through ρ and

β(ρ, f) = − c

24π

∫
S1
f(z)Sρ(z)dz , ω(f, g) = − c

48π

∫
S1

(f(z)g′′′(z)− f ′′′(z)g(z))dz .
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Equation (2.21) implies that we have the commutation relations

W (f)W (g) = eiβ(ρ,g)W (ρ∗g)W (f) ,

with W (h) = eiT (h) and ρ = Exp(f). We also notice that, by comparing the identities
(2.16) and (2.21) for each test function f we have

(V (ρ)∗Ω|T (z)V (ρ)∗Ω) = − c

24πSρ(z) ,

where T (z) has to be meant as the density of the distribution f 7→ T (f). Notice that by
(2.17) we already knew the stress-energy tensor to be a tempered distribution. In the real
line picture, the stress energy tensor Θ on R is defined by the formula Θ(f) = T (C∗f),
with C∗f the pushforward of the vector field on the real line f(u) d

du through the Cayley
trasform C(u) = (1 + iu)/(1 − iu). By definition, the stress energy tensor on the real
line is then

Θ(u) =
(
dC(u)
du

)2
T (C(u)) = − 4

(1− iu)4T (C(u)) . (2.23)

Using the equations (2.23) and (2.19), we obtain an expression for the generators of
sl(2,R). In particular, the generator D = − i

2(L1 − L−1) of dilations is given by

D =
∫ +∞

−∞
uΘ(u)du .

We recall that, by the Bisognano-Wichmann theorem, we have log ∆ = −2πD: the
modular dynamic is implemented by boost transformations.

We end this section with a few remarks about the representation V of Diff+(S1)
and the stress energy tensor. Given n points on S1, say zi with i = 1, . . . , n, we denote
by B(z1, . . . , zn) the group of all the piecewise smooth and C1 diffeomorphisms ρ of S1

which are smooth except that on the points zi and such that ρ(zi) = zi and ρ′(zi) = 1.
By piecewise smooth we mean that left and right derivatives exist at all orders at every
point, hence we have B(−1) = Diff1,ps

+,1 (S1) in the notation of Section 2.2. A similar
notation will be used in the real line picture, where in this case we will be particu-
larly interested in B(∞). The unitary projective representation V can be extended to
B = Diff1,ps

+ (S1) in such a way that the properties (v0), (v1) and (v2) are still satisfied.
For details, see [51] and the appendix of [34]. The relation (v2) is then satisfied by
any real valued C1 function f on S1 which is smooth except that on a finite number of
points zi such that f(zi) = 0 and f ′(zi) = 0. We precise that if g is a piecewise smooth,
real, compactly supported C1-function on S1, then by standard arguments g ∈W s,1 for
any s < 2 (see Lemma 3.1. of [34]). Therefore, T (g) is a closable essentially self-adjoint
operator and (v2) is verified. Furthermore, in [22] it is proved that if gn → g in W 3/2,1

then eiT (gn) → eiT (g) in the strong operator topology.

The groups B(z, z′) are of interest also for the following reason. Given two points z
and z′ of the circle, consider a diffeomorphism ρ in B(z, z′), that is a diffeomorphism in
Diff+(S1) fixing z and z′ and with unital derivative in such points. Given an interval
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I in K, we will say that a diffeomorphism ρ in Diff+(S1) is localized in I if ρ(z) = z

for z in I ′. Define I = (z, z′), where the interval is obtained moving counterclockwise
from z to z′. Then it is possible to define a diffeomorphism ρ+ localized in I and a
diffeomorphism ρ− localized in I ′ such that ρ = ρ+ρ− = ρ−ρ+. If ρ = Exp(f), then this
is possible if f and its derivative vanish at the points z and z′. This splitting property
of a diffeomorphism ρ in B(z, z′) will be of interest in the next section.

2.4 QNEC and Bekenstein bound for solitonic states

In this section we will prove the QNEC on a generic conformal net for the solitonic
states (2.11). The proof relies on explicit computations on the Virasoro nets and on the
use of Proposition 33. As an intermediate result, we show that the same states verify
the Bekenstein Bound [69].

Let (A, V,Ω) be a conformal net of central charge c on a Hilbert space H. In order
to fix some notation, we set ωU = ω ·AdU∗, where ω is the vacuum state and U is some
unitary operator on H. In particular, we notice that if ρ = Exp(f) for some real smooth
function f andW (f) = exp(iT (f)) then ωW (f) = ωV (ρ). Finally, if ωρ is a solitonic state
associated to some homeomorphism ρ in Diff+(S1,−1) then we will denote by SI(ωρ‖ω)
the relative entropy S(ωρ‖ω) on the local algebra A(I) for some interval I in IR. In this
section we will first compute SI(ωρ‖ω) when I is a bounded interval of the real line,
and this will imply the Bekenstein Bound. Then, by Möb-covariance we will be able to
compute SI(ωρ‖ω) whenever I is unbounded and check the QNEC.

We begin by making a few considerations about SI(ωV (ρ)‖ω) and the Connes cocycle
(DωV (ρ) : Dω)t of A(I). Working in the real line picture, by Möb-covariance we can
assume I = (0,+∞). We consider a diffeomorphism ρ in B(0,∞), so that ρ(0) = 0
and ρ′(0) = 1. We also have ρ(u) → 0 and ρ′(u) → 1 if u → ∞. It then follows
that V (ρ) = V (ρ+)V (ρ−) up to a phase, where V (ρ+) belongs to A(0,+∞) and V (ρ−)
belongs to A(−∞, 0). Notice that the same properties hold for the map

η = ρ−1 = Exp(−f) . (2.24)

Therefore, it follows by (2.21) that

S(0,+∞)(ωV (ρ)‖ω) = − c

12

∫ +∞

0
uSη(u)du . (2.25)

Notice that the integral on the r.h.s. is finite, since through the Cayley transform it
reduces to an integral of a bounded continuous function on the upper half circle. To
prove this one also has to take advantage of the chain rule for the Schwarzian derivative

S(f · g)(z) = g′(z)2Sf(g(z)) + Sg(z) .

Therefore, integrating by parts we obtain the expression

S(0,+∞)(ωV (ρ)‖ω) = c

24

∫ +∞

0
u

(
η′′(u)
η′(u)

)2
du . (2.26)
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This formula holds if ρ is in B(0,∞), or equivalently if ρ is in B(∞) ∼= Diff1,ps
+,1 (S1)

verifies ρ(0) = 0 and ρ′(0) = 1. To remove these boundary conditions, we need to prove
the ansatz on the Connes cocycle

(DωV (ρ) : Dω)t = V (ρ+ · δt · ρ−1
+ · δ−t)eia(t) , (2.27)

with δt(u) = e−2πtu and a(t) ∈ R to be determined.

Proposition 38. [51] If ρ(0) = 0 and ρ(∞) = ∞, then equation (2.27) has a solution
on the Virasoro nets.

Proof. Let (Vc, V,Ω) be the Virasoro net of central charge c. We denote by ut the
r.h.s. of equation (2.27), with a(t) to be determined. Notice that even though ρ+ is
not globally C1, (2.27) is well defined since the combination [ρ, δt] = ρ+ · δt · ρ−1

+ · δ−t
is globally C1, using the usual notation [g1, g2] = g1g2g

−1
1 g−1

2 for the commutator in a
group. Moreover the diffeomorphism α = ρ+ · δt · ρ−1

+ · δ−t belongs to B(0,∞), hence ut
belongs to Vc(0,+∞) for every t ∈ R. Therefore, the thesis follows if we find a function
a(t) such that ut verifies the relations

(i) σtωV (ρ)
(x) = utσ

t
ω(x)u∗t , x ∈ Vc(0,+∞) ,

(ii) ut+s = utσ
t
ω(us) .

Note that the first relation suffices to be verified for x = V (τ), with τ = Exp(g) and
supp g ⊆ (0,+∞). Notice also that, since ρ(0) = 0, we can apply Lemma 2. Therefore,
by noticing that ρ · δt · ρ−1 · τ · ρ · δ−t · ρ−1 = ρ+ · δt · ρ−1

+ · τ · ρ+ · δ−t · ρ−1
+ and by the

explicit expression of the Bott 2-cocycle (2.13) we have

σtωV (ρ)
(V (τ)) = V (ρ)V (δt)V (ρ)∗V (τ)V (ρ)V (δ−1

t )V (ρ∗)

= V (ρ+)V (δt)V (ρ−1
+ )V (τ)V (ρ+)V (δ−1

t )V (ρ−1
+ )

= V (ρ+ · δt · ρ−1
+ · δ−t)V (δt)V (τ)V (δ−1

t )V (ρ+ · δt · ρ−1
+ · δ−t)∗

= utσ
t
ω(V (τ))u∗t .

(2.28)

We now study the condition (ii). This is equivalent to

a(t) + a(s)− a(t+ s) = b(t, s) , (2.29)

where
b(t, s) = cB([ρ+, δt], δt · [ρ+, δs] · δ−1

t ) .

We can rewrite this condition as ba=b, where b is the cocycle operator on the additive
group R. Since there are not non-trivial 2-cocycles on this group, solutions a of (2.29)
can be found provided that bb=0, with

bb(t, s, r) = b(t, s)− b(t+ s, r) + b(t, r + s)− b(s, r) .

By using the identity bB(g1, g2, g3) = 0 one can directly verify that bb(t, s, r) = 0 (see
Lemma 2. of [51] for the explicit computation). This concludes the proof.

Remark 39. Notice that the proposition can be easily adapted to a generic bounded
interval (a, b) of the real line, provided that ρ(a) = a and ρ(b) = b.
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Now we assume I to be a bounded interval of the real line. First of all we notice
that the dilation operator of I = (a, b) can be computed as D(a,b) = Θ(D(a,b)(u)), with

D(a,b)(u) = 1
b− a

(b− u)(u− a) .

We proceed by cases. Suppose that ρ belongs to B(a, b), that is ρ fixes a and b and has
unital derivative in such points. As in the case of the half-line we have that V (ρ) =
V (ρ+)V (ρ−) up to a phase, with V (ρ+) in Vc(a, b) and V (ρ−) in Vc(a, b)′. Therefore,
we can take advantage of the formula (2.25), and integrating by parts we obtain

S(a,b)(ω‖ωV (ρ)) = c

24

∫ b

a
D(a,b)(u)

(
ρ′′(u)
ρ′(u)

)2
du+ c

12

∫ b

a
D′(a,b)(u)

(
ρ′′(u)
ρ′(u)

)
du

= c

24

∫ b

a
D(a,b)(u)

(
ρ′′(u)
ρ′(u)

)2
du+ c/6

b− a

∫ b

a
log ρ′(u)du .

Now we generalize the previous equation to the case in which ρ′(a) and ρ′(b) are
generic. Given r > 0, consider the sequence of functions

hn(u) = (n log r)−1(en(log r)u − 1) . (2.30)

Notice that hn(0) = 0, hn(1/n)→ 0 if n→ +∞, h′n(0) = 1 and h′n(1/n) = r. Notice
also that ∫ 1/n

0
u

(
h′′n(u)
h′n(u)

)2
du = (log r)2

2 . (2.31)

If we denote the function (2.30) by hrn and we set ra = ρ′(a), rb = ρ′(b) then we can
define

h1
n(u) = a+ hran (u) , h2

n(u) = b− hrbn (b− u) .

We now consider the following maps: given to intervals [a, b] and [c, d], let g[c,d]
[a,b](u) =

mu+ q be the affine function mapping [a, b] to [c, d]. If an = a+ 1/n and bn = b− 1/n,
then we define

g1
n = g

[h1
n(an),h2

n(bn)]
[a,b] , g2

n = g
[a,b]
[an,bn] .

Finally, we consider the following sequence of functions:

ρn(u) =


u u ≤ a , u ≥ b
h1
n(u) a ≤ u ≤ an
g1
nρg

2
n(u) an ≤ u ≤ bn

h2
n(u) bn ≤ u ≤ b

.

Up to mollify a bit ρn in an and bn, we have that ρn is a sequence of C1 functions such
that ρ′n(a) = ρ′n(b) = 1. Moreover, by (2.31) one can notice that∫ b

a
D(a,b)(u)Sρn(u)du→ −(log ra)2 + (log rb)2

4 +
∫ b

a
D(a,b)(u)Sρ(u)du . (2.32)

Now we arrive to the crucial point of the proof. The idea is to approximate S(a,b)(ω‖ωV (ρ))
with S(a,b)(ω‖ωV (ρn)), since for the functions ρn formula (2.4) holds. Unfortunately, the
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relative entropy does not behave well in the limit. However, by studying the Bott 2-
cocycle (2.13) it is shown in [51] that S(a,b)(ω‖ωV (ρ)) and limn S(a,b)(ω‖ωV (ρn)) are both
solutions of an equation whose solutions are unique up to a constant term mρ. More
precisely, this term depends only on the derivatives ra = ρ′(a) and rb = ρ′(b). Therefore
by (2.32) we obtain that

S(a,b)(ω‖ωV (ρ)) = ν(ra, rb) + c

24

∫ b

a
D(a,b)(u)

(
ρ′′(u)
ρ′(u)

)2
du+ c/6

b− a

∫ b

a
log ρ′(u)du

for some function ν(ra, rb) which we are now going to prove is zero. To do this, we will
construct sequences of functions ρn with the same derivatives as ρ at u = a and u = b.
For simplicity we consider (a, b) = (0, 3). The general case will follow by covariance,
that is by noticing that

S(a,b)(ω‖ωV (ρ)) = S(0,3)(ω‖ωV (αρα−1)) ,

with α(u) = cu+ d in the Moebius group mapping (0, 3) in (a, b). We start by proving
that 0 ≤ ν(r0, r3). Given r > 0, consider the sequence of functions

σn(u) = logn
log(n/r)

[
(u+ 1/n)log(n/r)/ log(n) − (1/n)log(n/r)/ log(r)

]
. (2.33)

We notice that σn(0) = 0, σn(1− 1/n) = logn
log(n/r)

(
1− r

n

)
→ 1 and σ′n(1− 1/n) = 1.

If we denote the function (2.33) by σrn, then we define

ρn(u) =


σr0
n (u) 0 ≤ u ≤ 1− 1/n

3− σr3
n (3− u) 2 + 1

n ≤ u ≤ 3
γn(u) otherwise

,

with γn a smooth function such that ρn is C1. Moreover, since ρn(1 − 1/n) → 1 and
ρn(2 + 1/n) → 2, we can suppose that γn converges uniformly with its derivatives (up
to the second order) to the identity function on [1, 2]. In particular we can assume that∫ 2+1/n

1−1/n
ρn(u)du→ 0 if n→∞ .

Therefore, by the positivity of the relative entropy we have

0 ≤ ν(r0, r3) + c

24

∫ 3

0
D(0,3)(u)

(
d

du
log ρ′n(u)

)2
du+ c

18

∫ 3

0
log ρ′n(u)du

∼ ν(r0, r3) + c

24

[( log r0
logn

)2 ∫ 1−1/n

0

D(0,3)(u)du
(u+ 1/n)4 +

( log r3
logn

)2 ∫ 3

2+1/n

D(0,3)(u)du
(3− u+ 1/n)4

]

+ c

18

[
log r0
logn

∫ 1−1/n

0

du

u+ 1/n + log r3
logn

∫ 3

2+1/n

du

(3− u+ 1/n)

]
→ ν(r0, r3) ,

where ∼ means the equality up to a term going to zero. This proves that ν ≥ 0. Now
we prove the other inequality. Given r > 0, consider

ζn(u) = − 1
n

+
∫ u

−1/n
exp[(log r)(ns+ 1)1/n]ds . (2.34)
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Notice that ζn(−1/n) = −1/n, ζ ′n(−1/n) = 1 and ζ ′n(0) = r. Notice also that ζn(0)→ 0
and d

du log ζ ′n(u) = (log r)(1 + nu)1/n−1. Always in the case I = (0, 3), if we denote the
function (2.34) by ζrn then we can define

ρn(u) =



ζr0
n (u) − 1/n ≤ u ≤ 0
σr0
n (u) + cn 0 ≤ u ≤ 1− 1/n

3− σr3
n (3− u) + dn 2 + 1/n ≤ u ≤ 3

3− ζr3
n (3− u) 3 ≤ u ≤ 3 + 1/n

γn(u) otherwise

,

with γn, cn and dn such that ρn is C1. Notice that cn → 0 and dn → 0, so that we can
suppose that γn(u)→ u in [1, 2] as before. Moreover, if we mollify ζn at u = 0 then by
monotonicity we get

S(0,3)(ω‖ωV (ρn)) ≤ S(−1/n,3+1/n)(ω‖ωV (ρn)) . (2.35)

Notice that on the right side of (2.35) the term ν(r0, r3) does not appear. Therefore, up
to a term going to zero we have

ν(r0, r3) ≤ c

24In + c/6
3 + 2/nJn ,

with

In = dn(log r0)2
∫ 0

−1/n
(1 + nu)−2(1−1/n)du+ dn(log r3)2

∫ 3+1/n

3
(1 + n(3− u))−2(1−1/n)du ,

Jn = (log r0)
∫ 0

−1/n
(1 + nu)1/ndu+ (log r3)

∫ 3+1/n

3
(1 + n(3− u))1/ndu .

But by direct computation and by the estimate D(−1/n,3+1/n)(u) ≤ u+1/n one has that
In → 0 and Jn → 0, and so ν(r0, r3) ≤ 0, as required. We can then conclude with the
following formula: if ρ(a) = a and ρ(b) = b, then

S(a,b)(ω‖ωV (ρ)) = c

24

∫ b

a
D(a,b)(u)

(
ρ′′(u)
ρ′(u)

)2
du+ c/6

b− a

∫ b

a
log ρ′(u)du (2.36)

= − c

12

∫ b

a
D(a,b)(u)Sρ(u)du+ c

12 log ρ′(a)ρ′(b) , (2.37)

where the second expression is obtained by integration by parts. This expression al-
lows us to compute the relative entropy with switched states. Indeed, if we consider a
transformation α in the Möbius group such that ηα fixes η(a) and η(b), then we have

S(a,b)(ωV (ρ)‖ω) = Sη(a,b)(ω‖ωV (η)) = S(η(a),η(b))(ω‖ωV (ηα)) . (2.38)

Therefore, to generalize the formula (2.37) to a generic diffeomorphism ρ in Diff+(S1)
fixing∞ it suffices to find a diffeomorphism α in the Möbius group such that ρα(a) = a,
ρα(b) = b and α(∞) =∞. Finally, by Proposition 33 we have the following.
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Theorem 40. If ρ is a diffeomorphism in Diff+(S1) such that ρ(∞) = ∞ in the real
line picture, then on a generic conformal net of central charge c we have

S(a,b)(ω‖ωV (ρ)) = − c

12

∫ ρ−1(b)

ρ−1(a)
Dρ−1(a,b)Sρ(u)du

+ c

12 log ρ′(ρ−1(a))ρ′(ρ−1(b)) + c

6 log
(
ρ−1(b)− ρ−1(a)

b− a

)
.

(2.39)

for any bounded interval (a, b). Similarly, by applying η = ρ−1 we have that

S(a,b)(ωV (ρ)‖ω) = − c

12

∫ b

a
D(a,b)Sη(u)du+ c

12 log η′(a)η′(b)

− c

6 log
(
η(b)− η(a)

b− a

)
.

(2.40)

Theorem 41. Let (A, V,Ω) be a conformal net of central charge c. Given some home-
omorphism ν in Diff+(S1,−1), denote by ων = ω · σ−1

ν the associated solitonic state.
Define

S(r) = S(−r,r)(ω‖ων) , S̄(r) = S(−r,r)(ων‖ω) .

Then, we have the Bekenstein Bounds

S(r) ≤ πr inf
ρ
Eρ , S̄(r) ≤ πr inf

ρ
Ēρ , (2.41)

where the infima are over all the diffeomorphisms ρ in Diff+(S1) such that ρ = ν on
(−r, r), Eρ = (Ω|HτΩ) is the mean vacuum energy in the representation τ = AdV (ρ)
and Ēρ is the mean vacuum energy in the conjugate representation τ̄ = AdV (ρ)∗.

Proof. We prove the Bekenstein Bound involving S(r), the other case can be equally
proved. Since σν is locally implemented by some unitary operator, we can assume ν to
have trivial ratio r(ν) = 1. We then replace ν with some diffeomorphism ρ in Diff+(S1)
as S(−r,r)(ω‖ων) = S(−r,r)(ω‖ωρ) for such a diffeomorphism ρ. By Proposition 33 and
property (r6) of the relative entropy mentioned in Section 1.4 we can actually assume
(A, V,Ω) to be a Virasoro net of same central charge c. Furthermore, as the vacuum is
Möb-invariant we can replace ρ with ρα where α is some Möbius transformation such
that ρα fixes ±r. We also do the following remark: if γ is an orientation-preserving
diffeomorphism fixing a and b, then by the Jensen inequality

1
b− a

∫ b

a
log γ′(u)du ≤ log

(
1

b− a

∫ b

a
γ′(u)du

)
= 0 . (2.42)

Therefore, if η = ρ−1 then by (2.39) we have

S(r) ≤ cr

48

∫ r

−r

(
ρ′′(u)
ρ′(u)

)2
du

and the first bound follows, as

Eρ = (Ω|HτΩ) = (Ω|V (ρ)HV (ρ)∗Ω) = c

48π

∫ +∞

−∞

(
ρ′′(u)
ρ′(u)

)2
du .
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We recall that H =
∫

Θ(u)du is the generator of translations, while Hτ is the generator
of translations in the representation τ (see Section 1.7). Notice also that the conjugate
charge of τ is τ̄ = AdV (ρ)∗: the conjugate equation is trivially satisfied and d(τ) = 1
(see Appendix A). Hence in this case the mean vacuum energy is

Ēρ = (Ω|Hτ̄Ω) = c

48π

∫ +∞

−∞

(
η′′(u)
η′(u)

)2
du ,

and the thesis follows.

Our next step will be the proof of the main theorem of this chapter, namely the
QNEC for solitonic states. However, before doing that we want to do a few remarks
about the notion of energy density. The infima appearing in (2.41) suggest us some
model independent definition of energy density of a DHR state on some subregion,
namely one defines it as the infimum on a proper family of DHR representations of all
the associated vacuum mean energies. In the particular case of above, we have

Eρ(t, t′) = c

48π

∫ t′

t

(
ρ′′(u)
ρ′(u)

)2
du .

This approach seems reasonable if we want to define the energy as an extensive quantity.
If we then want to define a punctual energy density, then a reasonable definition would
imply that

Eρ(t) = c

48π

(
ρ′′(t)
ρ′(t)

)2
. (2.43)

The definition we will use here is simply

Eρ(t) = lim inf
t′→t+

Eρ(t, t′)
t′ − t

,

and similarly for Ēρ(t). This topic will be further treated in Section 3.5 of the next
chapter. We point out that this (null) energy density must not be confused with the
stress-energy tensor density, which in the real line picture is given by

(Ω|V (ρ)Θ(t)V (ρ)∗Ω) = − c

48πSρ(t) .

Theorem 42. Let (A, U,Ω) be a conformal net of central charge c. Given some home-
omorphism ν in Diff+(S1,−1), denote by ων = ω ·σ−1

ν the associated solitonic state and
set η = ν−1. Define

S(t) = S(t,+∞)(ων‖ω) , S̄(t) = S(−∞,t)(ων‖ω) .

Then S(t) and S̄(t) are both finite and explicitly given by

S(t) = c

24

∫ +∞

t
(u− t)

(
η′′(u)
η′(u)

)2
du , S̄(t) = c

24

∫ t

−∞
(t− u)

(
η′′(u)
η′(u)

)2
du . (2.44)

In particular, the QNEC is satisfied with the equalities

Ēρ(t) = S′′(t)/2π ≥ 0 , Ēρ(t) = S̄′′(t)/2π ≥ 0 . (2.45)
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Proof. As in the proof of Theorem 41 we can replace ν with some diffeomorphism ρ in
Diff+(S1) and the generic conformal net with a Virasoro net (A, V,Ω) of same central
charge. Equations (2.44) are implied by (2.39) and 2.40 after a limit step thanks to the
monotonicity property of the relative entropy (property (r5) in the Section 1.4 notation).
The QNEC (2.45) follows.

Remark 43. Thanks to property (r7) of the relative entropy (see Section 1.4) all the
theorems of this section have a natural generalization to (1 + 1)-dimensional chiral CFT
(2.10) for locally normal states of the type ων1 ⊗ ων2 .

2.5 Additional remarks

Despite this remark may lack of any physical meaning, it is natural to investigate
the convexity of the relative entropy Sν(t) = S(t,+∞)(ω‖ων). In this section we show a
counterexample to this property.

We first notice that an explicit expression for Sν(t) can be found by proceeding as
in (2.38). Then, for the sake of simplicity, we replace ν with some diffeomorphism ρ in
Diff+(S1). We also assume that ρ = Exp(f) for some smooth and compactly supported
vector field f . Clearly Sρ(ρ(t)) has negative derivative, and so Sρ(t) is decreasing since
ρ is increasing. In particular, we have

S′ρ(ρ(t))ρ′(t) = − c

24

∫ +∞

t

(
ρ′′(u)
ρ′(u)

)2
du ,

S′′ρ (ρ(t))ρ′(t)2 = c

24

(
ρ′′(t)
ρ′(t)

)2
− S′ρ(ρ(t))ρ′′(t)

= c

24
ρ′′(t)
ρ′(t)

(
ρ′′(t)
ρ′(t) +

∫ +∞

t

(
ρ′′(u)
ρ′(u)

)2
du

)
.

(2.46)

In this case we can notice that the relative entropy is convex in the average, that is if
[a, b] contains the support of f then∫ b

a
S′′ρ (t)dt = c

24

∫ b

a

(
ρ′′(t)
ρ′(t)

)2
du ≥ 0 ,

where this identity follows from (2.46) and from the fact that ρ(u) = u outside [a, b].
However, in this case the second derivative is not always positive, as shown by the
following counterexample. Let us consider the function

f(x) =
{ 1

1+tan(x)2 − π/2 ≤ x ≤ π/2
0 otherwise

.

This is a C1 function with compact support and smooth except that on the points
±π/2. We now compute its exponential map ρ. Clearly ρ(u) = u outside the interval
[−π/2, π/2], so we can suppose u ∈ (−π/2, π/2). Notice that the equation (2.20) can be
seen as a family of Cauchy problems

d

dt
ρu(t) = f(ρu(t)) , ρu(0) = u ,
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with ρu(t) = ρt(u). If f(u) 6= 0 then ρu(t) = F−1
u (t), with

Fu(s) =
∫ s

u

dv

f(v) = tan(s)− tan(u) . (2.47)

It then follows that ρt(u) = F−1
u (t) = arctan(tan(u)+t) and hence ρ(u) = arctan(tan(u)+

1) . In particular, we have ρ′′(0)/ρ′(0) = −1. Moreover, by numerical integration one
obtains that ∫ π/2

0

(
ρ′′(u)
ρ′(u)

)2
du ∼ 1.4 .

Therefore, by (2.46) we obtain

S′′ρ (π/4)/4 ∼ −c/60 ,

as announced before.

One more little remark we will add in this section is about some extensive property
of the relative entropy. For the sake of simplicity, as above we will consider a state
ωf induced by some diffeomorphism of the type ρ = Exp(f). It can be noticed by the
formulae given above that if Sf = SI(ωf‖ω) for some interval I, then Sf1+f2 = Sf1 +Sf2

if the supports of f1 and f2 are disjoint (up to a set of zero measure). Clearly if this is not
the case then this fact is no longer true. Therefore, if we define Sf (t) = S(t,+∞)(ωV (ρ)‖ω)
then we will have

Sf1+f2(t) = Sf1(t) + Sf2(t) + st(f1, f2)

for some term st(f1, f2). Here we give an estimate of st(f1, f2).

Let [a1, b1] and [a2, b2] be the supports of f1 and f2, with b1 ≤ b2. Clearly st(f1, f2) =
0 if t ≥ b1, since for such values of t we have that f1 does not contribute to the relative
entropy. We can then assume t ≤ b1. Before proceeding, we now make a general remark:
consider a real function f with compact support, and recall that if f(u) 6= 0 then the
exponential flow ρt(u) of f is obtained by inverting the function Fu(s) defined in (2.47).
Then by deriving the relation t = Fu(ρt(u)) with respect to the variable u we have

∂uρt(u) = f(ρt(u))
f(u) .

Deriving again and applying the obtained formulae to ρ−1 = ρ−1 = η and f = f1 + f2
one obtains

η′′

η′
= η′′1
η′1

+ η′′2
η′2

+ δ(f1, f2) ,

with
δ(f1, f2)(u) = f ′(η(u))− f ′1(η1(u))− f ′2(η2(u)) .

Notice that if suppf1 ∪ suppf2 ⊆ [a, b] then

‖δ(f1, f2)‖∞ ≤ |b− a| · ‖f ′′1 ‖∞ + |b− a| · ‖f ′′2 ‖∞ .
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We use this fact to estimate

c

24

∫ ∞
t

(u− t)δ(f1, f2)2du ≤ c

24
(
‖f ′′1 ‖∞ + ‖f ′′2 ‖∞

)2 (b− a)2 (b1 − t)2

2 = ε0(t) .

Moreover, by applying Cauchy-Schwarz with respect to the measure (u−t)du on (t,+∞)
we have

c

12

∫ ∞
t

(u− t)η
′′
i (u)
η′i(u) δ(f1, f2)(u)du ≤ c

12

√
Sfi(t)ε0(t) = εi(t) ,

for i = 1, 2. Always by Cauchy-Schwarz we have

c

12

∫ ∞
t

(u− t)η
′′
1η
′′
2

η′1η
′
2
du ≤ 2

√
Sf1(t)Sf2(t) = ε3(t) ,

and therefore we can conclude that |st(f1, f2)| ≤ ε(t), with

ε(t) = ε0(t) + ε1(t) + ε2(t) + ε3(t) .

We conclude by noticing that, since Sf1(t) vanishes with its first derivative at t = b1,
then ε(t) ≤ C(b1 − t) for t near to b1 for some C > 0.
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Chapter 3

Positive Energy Representations
of Loop Groups

3.1 Infinite dimensional Lie algebras

In this chapter, based on the paper [85], we emulate what we did on the Virasoro
nets in [84] but we focus on loop group models. In order to do so, we define solitonic
states by following [34] and we then follow [93] in such a way to explicitly compute the
needed algebraic relations. The other main result of this work is about Sobolev exten-
sions of Positive Energy Representations of Loop Groups. We begin this chapter with
some general notions of infinite dimensional Lie algebras [53, 55].

Let g be a simple complex Lie algebra. We fix the notation: h is a Cartan subalgebra,
or equivalently a maximal toral subalgebra, Φ is the relative root system with highest
root θ and ∆ is a set of simple roots, with ∆ = {α1, . . . , αl} if g has rank l. We then
denote by 〈·, ·〉 the normalized Killing form, namely we normalize it in such a way to
have a bilinear form 〈·, ·〉 on h∗ satisfying 〈θ, θ〉 = 2.

An

Bn

Cn

Dn

F4 G2

E6

E
7

E
8

Figure 3.1. Simple Dynkin diagrams

Let C[t, t−1] be the algebra of complex Laurent polynomials in t, that is the set of
the formal series f =

∑
k∈Z ckt

k where all but a finite number of ck are zero. We define
the residue of a Laurent polynomial f by Resf = c−1. Clearly Res is a linear functional
on C[t, t−1] and it satisfies Resf ′ = 0 where f ′ = df

dt is the formal derivative of f . We
observe that g[t, t−1] ∼= g ⊗C C[t, t−1] is a natural Lie algebra with bracket given by
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[x ⊗ tn, y ⊗ tm] = [x, y] ⊗ tn−m. It is a subalgebra of the rational maps from C∗ to g,
hence the evaluation of x ∈ g on S1 is then obtained by replacing t by eiθ. We will often
use the notation x(n) for x⊗ tn and identify g with g⊗ 1 in g[t, t−1].

Let Ω be the bilinear form on g[t, t−1] defined by Ω(f, g) = Res 〈f ′, g〉. Observe that
for x, y in g we have

Ω(x(n), y(m)) = nδn,−m 〈x, y〉 .
One easily checks that Ω is a two-cocycle on g[t, t−1] and hence we have a central

extension g̃ = g[t, t−1]⊕ C · c.

Consider the Lie algebra ∂ = C[z, z−1] ddz . It is a subalgebra of the Lie algebra of
rational vector fields on C and it is called the Witt algebra. The natural basis of ∂ is
given by dn = tn+1 d

dt where n ∈ Z. The commutation relations of ∂ are then

[dn, dm] = (n−m)dn+m , n,m ∈ Z .

The Witt algebra naturally acts on g[t, t−1] by derivations, and this action lifts to g̃ by
trivial action on the central element c. Explicitly one has

dnx(m) = −mx(n+m) , dnc = 0 .

Definition 44. The Virasoro algebra Vir is the central extension of the Witt algebra ∂
given by the two-cocycle

ω(dn, dm) = 1
12(n3 − n)δn,−m , n,m ∈ Z .

If Vir = ∂ ⊕ C · κ, then κ is called the central charge or the conformal anomaly.

Since κ is central, the Lie bracket of Vir is uniquely determined by

[dn, dm] = (n−m)dn+m + 1
12(n3 − n)δn,−mκ . (3.1)

Up to equivalence, Vir is the unique central extension of the Witt algebra. The action
of ∂ on g̃ on can be extended to an action of Vir by letting κ acting trivially. We now
show that this action allows us to further extend the Lie algebra g̃.

Definition 45. Let g and h be two Lie algebras and let ρ : g→ Der(h) be a homomor-
phism. The semidirect product g n h is the Lie algebra with underlying vector space
g⊕ h and whose Lie bracket is given by

[x1 + h1, x2 + h2] = [x1, x2] + ρ(x1)(h2)− ρ(x2)(h1) .

Clearly gn h depends on ρ. We note that h is an ideal of gn h. Indeed gn h is an
extension of g by h, that is we have a short exact sequence

0→ h→ gn h→ g→ 0 .

Let G n H be a semidirect product induced by τ : G → Aut(H). We remember that
Lie(Aut(H)) ⊆ Der(h), since by derivation we can consider Aut(H) as a subgroup of
Aut(h) and Lie(Aut(h)) = Der(h). Hence τ̃(g) = deH τ(g) belongs to Aut(h) for each
g ∈ G, where deH is the differential at the identity of H. As the notation suggests, the
Lie algebra of GnH is the semidirect product gn h induced by ρ = deG τ̃ .
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Definition 46. Let g be a complex simple Lie algebra. The (Kac-Moody) affine Lie
algebra of g is the central extension ĝ = g̃ o Cd induced by the derivation d = −d0 of
the Virasoro algebra.

We characterize Vir and ĝ in relation with an involution of g. Let gk be a real form
of g induced by a Chevalley basis. Let τ be the conjugation of g given by gk and define
the involution x∗ = −τ(x) for x ∈ g, so that gk = {x ∈ g : x∗ = −x}. The map x 7→ x∗

extends to an involution of g̃ by defining c∗ = c and x(n)∗ = x∗(−n). The compact form
of g̃k is the real form

g̃k = {x ∈ g̃ : x∗ = −x} .

We define an involution on Vir by setting d∗n = d−n and κ∗ = κ. This extension is
compatible with the action of Vir on g̃, that is it naturally extends to an involution of
m = g̃oVir. Note ĝ is a subalgebra of m close under involution. Furthermore,

∂k = {d ∈ ∂ : d∗ = −d}

is a real form of ∂ which coincides with the Lie algebra of real polynomial vector fields on
S1. Indeed, by evaluating on S1 we can identify d∗n−dn with 2 sinnθ d

dθ and (idn)∗− idn
with 2 cosnθ d

dθ . Since (dx)∗ = −d∗x∗ for each d ∈ ∂ and x ∈ g̃, then g̃k is stable under
the action of ∂k.

We further examine the structure of ĝ. The Lie algebra ĝ is neither semisimple nor
finite-dimensional, but we can equally describe a root space decomposition relative to
the abelian subalgebra ĥ = h⊕Cc⊕Cd as follows. A weight λ in h∗ can be extended to
ĥ by setting λ(c) = λ(d) = 0. Define δ ∈ ĥ∗ by setting δ(h) = 0, δ(c) = 0 and δ(d) = 1.
Since for each root α ∈ Φ we have

[h+ d, xα(n)] = (α(h) + n)xα(n) ,

where xα ∈ gα and h ∈ h, the root system of ĝ with respect to ĥ is

Φ̂ = {kδ + α | k ∈ Z, α ∈ Φ} ∪ {kδ | k ∈ Z∗} .

We now construct a Chevalley basis of g in the following way. We denote by gα the root
space associated to some root α ∈ Φ, we define a root vector as a nonzero vector of a
root space and then we choose a set of root vectors eα ∈ gα for each α ∈ Φ+. For each
positive root α ∈ Φ+ we find a root vector e−α ∈ g−α such that 〈eα, e−α〉 = 2/ 〈α, α〉. It
is easy to check that [eα, e−α] = hα where hα = 2η(α)/ 〈α, α〉 = η(α∨) and η : h∗ → h is
the isomorphism induced by 〈·, ·〉. If we define hi = hαi where αi is a simple root, then
we have just constructed a basis of g given by

{eα , α ∈ Φ ; hi , 1 ≤ i ≤ l} . (3.2)

Clearly since h is maximal toral then [hi, hj ] = 0 and [hi, eα] = α(hi)eα = C(αi, α)eα,
where C(αi, α) = 2 〈αi, α〉 / 〈αi, αi〉 is the Cartan integer. Note that [eα, e−α] = hα is a
linear combination with integral coefficient of the hi. Moreover, given α, β ∈ Φ we have
[eα, eβ] = cα,βeα+β if α+ β is a root.
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We now come back to study our affine Lie algebra ĝ. If we pick a Chevalley basis
associated to h as in (3.2), then the corresponding root spaces are ĝα+nδ = Ceα(n) and
ĝnδ = {h(n) |h ∈ h}. If we set

Φ̂+ = {α+ nδ |α ∈ Φ, n > 0} ∪ {nδ |n > 0} ∪ Φ+ ,

then a base of positive simple roots is ∆̂ = {α0, . . . , αl} where ∆ = {α1, . . . , αl} is simple
roots system of g and α0 = δ − θ. Note that by the condition 〈θ, θ〉 = 2 we have that
each root α ∈ Φ equals its coroot α∨ = 2α/ 〈α, α〉. Hence through the isomorphism
λ 7→ hλ the fundamental weights of g are given by Λi(hαj ) = δij . We define the coroots
of ĝ as the elements in ĥ given by ĥα0 = c − hθ and ĥαi = hαi for i = 1, . . . , l. The
fundamental weights Λ̂0, . . . , Λ̂l are then defined by

Λ̂i(ĥαj ) = δij and Λ̂i(d) = 0 .

Let g = h⊕n−⊕n+ be a triangular decomposition of g. Defining n̂− = n−⊕t−1g[t−1]
and n+ = n̂+ ⊕ tg[t], then we have the following triangular decomposition of ĝ:

ĝ = n̂− ⊕ ĥ⊕ n̂+ .

The restriction of Λ̂1, . . . , Λ̂l to h are the fundamental weights for g. Moreover, if
ai are the integers such that θ = a1αi + · · · + alαl then we have Λ̂i = Λi + aiΛ̂0. If
ρ =

∑l
i=1 Λi, then the dual Coxeter number of g is

g = 1 +
l∑

i=1
ai .

Note that g = 1 + 〈ρ, θ〉. If we set ρ̂ =
∑l
i=0 Λ̂i then ρ̂ = ρ+ gΛ0. The weight lattice of

ĝ is Π̂ =
∑l
i=0 ZΛ̂i and the set of dominant integral weights is Π̂+ =

∑l
i=0 Z+Λ̂i where

Z+ = {0, 1, . . . }. The level of Λ̂ ∈ Π̂+ is the positive number Λ̂(c). Levels of dominant
integral weights are integers, since Λ̂0(c) = 1 and Λ̂i(c) = ai for i = 1, . . . , l. Given
m ∈ Z+, denote by Π̂(m)

+ the set of dominant integral weights of level m. This is a
finite set for each m ∈ Z+ and Π̂(0)

+ = {0}. We extend the bilinear form 〈·, ·〉 on h∗ to a
symmetric bilinear form on ĥ∗ by

〈h∗,Cδ + CΛ̂0〉 = 0 , 〈δ, δ〉 = 〈Λ̂0, Λ̂0〉 = 0 , 〈δ, Λ̂0〉 = 1 .

Notice that Λ̂(c) = 〈Λ̂, δ〉.

We now provide some basic definitions about the representations theory of ĝ. For a
detailed study the reader can consult [55] or find other references in [45].

Definition 47. Let Λ̂ ∈ ĥ be a weight of ĝ. A ĝ-module (V, π) is a highest weight
representation with highest weight Λ̂ if there exists a cyclic vector vΛ̂ ∈ V such that

π(n̂+)vΛ̂ = 0 , π(h)vΛ̂ = Λ̂(h)vΛ̂ , π(U(ĝ))vΛ̂ = V ,

for h ∈ ĥ and where U(ĝ) is the universal enveloping algebra of ĝ.
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Like for the highest weight representations of finite-dimensional semisimple Lie alge-
bras, a way to exhibit a highest weight representation with highest weight Λ̂ is to prove
the existence of the Verma module M(Λ̂). The proof is analogous, since we still have
a triangular decomposition. Hence for each Λ̂ ∈ h∗ there exists a unique irreducible
highest weight representation of M(Λ̂) that we’ll denote by (L(Λ̂), πΛ̂). If Λ̂ ∈ Π̂+ is
a dominant integral weight, then L(Λ̂) is unitary, that is there exists a positive def-
inite hermitian form (·|·) on L(Λ̂) such that (πΛ̂(x)u|v) = (u|πΛ̂(x∗)v) for all u, v in
L(Λ̂) and x in ĝ. Such a hermitian form is said to be contravariant with respect to the
∗-conjugation of ĝ.

3.2 Loop groups

Let G be a Lie group. The loop group of G is LG = C∞(S1, G). It is a group
with respect to the pointwise composition in G. We see that it is a smooth manifold
as follows. If g is the Lie algebra of G, then we define on Lg = C∞(S1, g) a topology
of separable Fréchet space saying that {fk} converges to f in Lg if dnfk/dθn converges
uniformly to dnf/dθn for each n. Let now U be an open neighborhood of the identity
element in G which is homeomorphic by the exponential map to an open set Ǔ of the
Lie algebra g0 of G. We prescribe U = C∞(S1, U) to be open and homeomorphic to
Ǔ = C∞(S1, Ǔ). So LG is a Fréchet manifold, and moreover it is a infinite dimensional
Fréchet group [87]. The Lie algebra of LG is Lg0. The exponential map is well defined
and it is a local homeomorphism near the identity. If G has a complexification GC then
LG ha a complexification LGC = C∞(S1, GC) [87].

Through constant loops, we can think to G as a subgroup of LG. If G is simply
connected then LG is connected. We now consider the evaluation map e1 : LG → G

given by f 7→ f(1). We define its kernel the based loop group ΩG. It is a normal closed
subgroup of LG. The just defined two maps give rise to a split exact sequence

1→ ΩG→ LG→ G→ 1 ,

so that we can claim the isomorphism of Lie groups LG ∼= G n ΩG to be true. As
compact Lie groups are studied together with unitary representations, loop groups are
studied together with the so called Positive Energy Representations.

We mainly follow [93]. Let G be a compact, simple and simply connected Lie group.
A Positive Energy Representation (PER) of the loop group LG = C∞(S1, G) on a
separable Hilbert space H is a projective strongly continuous unitary representation π
of LGo T with a commutative diagram

LGo T π // PU(H)

T

OO

U // U(H)

OO
(3.3)
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where the torus T ∼= Rot acts on LG by rotations Rθ.γ(φ) = γ(φ − θ) and U is a
strongly continuous unitary representation inducing an isotypical decomposition H =⊕

n≥n0 H(n) for some integer n0. Without loss of generality, we can suppose that
n0 = 0 and that H(0) is not zero-dimensional. A PER is said to be of finite type if
dimH(n) < +∞ for every n. Irreducible PERs are of finite type.

We denote by g0 the Lie algebra of G and by g the complexification of g0. Recall that
g0 is a compact Lie algebra, that is its Killing form is negative definite. In particular,
there is an antilinear involution X 7→ X∗ of g such that

g0 = {X ∈ g : X∗ = −X} .

Let X(n) be the map θ 7→ Xeinθ for X in g and n integer. Then [X(n), Y (m)] =
[X,Y ](n+m), showing that the space spanned by these elements, which we will denote
by Lpolg, forms a Lie algebra. On Lpolg we can define an involution byX(n)∗ = X∗(−n).
Moreover, if Hfin is the subspace of finite energy vectors, namely the algebraic sum of
the subspaces H(n), then we can define a projective representation π of Lpolg on Hfin

in such a way to verify the commutation relations ([93], Theorem 1.2.1.)

[π(X), π(Y )] = π([X,Y ]) + i`B(X,Y ) , B(X,Y ) =
∫ 2π

0
〈X, Ẏ 〉 dθ2π .

We point out that the existence of such a representation of Lpolg is not a trivial is-
sue, since these commutation relations do not uniquely determine the projective rep-
resentation of Lpolg, and also the representation of LG cannot be differentiated in a
straightforward way as in finite dimensional cases. If d is the generator of rotations,
namely U(Rθ) = eiθd, then we have that [d, π(X)] = iπ(Ẋ) where Ẋ(θ) = d

dθX(θ).
The above operators are all closable and we also have the formal adjunction property
π(X)∗ = π(X∗) on Hfin. Furthermore, the projective representation π of Lpolg on Hfin

can be lifted to a projective representation π of Lg = C∞(S1, g) on H∞ in such a way
to verify all the previous relations, where H∞ is the Fréchet space of smooth vectors for
Rot. We recall that by definition H∞ =

⋂
sHs, where s ∈ R and Hs is the scale space,

that is the completion of Hfin with respect to the Sobolev norm ‖ξ‖s = ‖(1 +d)sξ‖. No-
tice that the projective representation π of Lg is actually a representation if restricted
on g, since the projective representation of G lifts to a unitary representation. Also, the
subspaces H(n) are G-invariant. The adjoint action of LG on the mentioned operators
is given by [93]

π(γ)π(X)π(γ)∗ = π(γXγ−1) + ic(γ,X) ,
π(γ)dπ(γ)∗ = d− iπ(γ̇γ−1) + c(γ, d) ,

(3.4)

where the real constants c(γ,X) and c(γ, d) are explicitly given by

c(γ,X) = −`
∫ 2π

0
〈γ−1γ̇, Ẋ〉 dθ2π , c(γ, d) = − `2

∫ 2π

0
〈γ−1γ̇, γ−1γ̇〉 dθ2π .

Here 〈·, ·〉 denotes the basic inner product, namely the Killing form normalized on the
highest root θ in such a way that 〈θ, θ〉 = 2. The elements γ−1γ̇ and γ̇γ−1 of Lg are the
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left logarithmic derivative and the right logarithmic derivative of γ, respectively defined
by [93]

γ−1γ̇(t) = d

dh

∣∣∣∣
h=0

γ−1(t)γ(t+ h) and γ̇γ−1(t) = d

dh

∣∣∣∣
h=0

γ(t+ h)γ−1(t) .

We will use the following notation:

x = π(X) , x(n) = π(X(n)) , 〈x, y〉 = 〈X,Y 〉 .

We can define a representation of the Virasoro algebra Vir

[Ln, Lm] = (n−m)Ln+m + δn+m,0
n(n2 − 1)

12 c , (3.5)

by Sugawara construction, that is such a representation is given by defining on Hfin the
operator

Ln = 1
2(`+ g)

∑
m

: xi(−m)xi(m+ n) : , (3.6)

where we used the Einstein convention on summations and the normal ordering notation,
namely the symbol : x(n)y(m) : stands for x(n)y(m) if n ≤ m and for y(m)x(n) if
n > m. The elements {xi} and {xi} appearing in (3.6) can be arbitrary dual basis
with respect to the basic inner product, namely 〈xi, xj〉 = δij , and g is the dual Coxeter
number, that is

g = 1 +
∑

a∨i , θ =
∑

a∨i α
∨
i ,

where α∨i are the simply coroots and a∨i are strictly positive. By the assumption 〈θ, θ〉 =
2 it can be shown that the dual Coxeter number is half the Casimir of the adjoint
representation, namely we have [Xi, [Xi, Y ]] = 2gY for Y in g. Notice that if Xi are in
g0 and such that −〈Xi, Xj〉 = δij then Xi = −Xi. The constant c uniquely determined
by (3.5) is called the central charge of the representation. If the PER is irreducible
then we have L0 = d + h for some rational number h, where h is therefore the lowest
eigenvalue of L0 and it is called the trace anomaly. In any irreducible PER, the central
charge and the trace anomaly are given by [45]

c = ` dim g

`+ g
, h = Cλ

2(`+ g) , (3.7)

where Cλ is the Casimir associated to the basic inner product 〈·, ·〉 and to the null energy
space H(0) = Hλ, which is the irreducible highest weight representation of g associated
to some dominant integral weight λ satisfying

〈λ, θ〉 ≤ ` . (3.8)

The set of dominant integral weights λ satisfying condition (3.8) is called the level `
alcove. We will say that π is a vacuum positive energy representation, or simply a
vacuum representation, if H(0) is one-dimensional. If H(0) = CΩ with (Ω|Ω) = 1,
then the state ω associated to Ω is called the vacuum state. Notice that π is a vacuum



56 3. Positive Energy Representations of Loop Groups

representation if and only if irreducible and with h = 0. More in general, if H(0) = Hλ
then the trace anomaly can be computed by taking in account that

Cλ = 〈λ, λ+ 2ρ〉 , g = 1 + 〈ρ, θ〉 ,

where ρ is the Weyl vector, that is the sum of all the fundamental weights. Equivalently,
the Weyl vector can be defined as half the sum of all the positive roots.

Consider now Diff+(S1), the Fréchet Lie group of the orientation preserving diffeo-
morphisms of the circle. The natural action of Diff+(S1) on LG is smooth. Furthermore,
every PER π of LG is Diff+(S1)∼-covariant, namely there is a projective unitary rep-
resentation U of the universal covering Diff+(S1)∼ such that U(ρ̃)π(γ)U(ρ̃)∗ = π(ρ.γ)
[44, 45]. Consider now H0,fin, the algebraic direct sum of the eigenspaces of L0. On the
infinitesimal level, in general the space H0,fin is a direct sum of infinitely many unitary
irreducible representations V (c, hi) of the Virasoro algebra. Such a representation in-
tegrates to a unitary projective representation U of Diff+(S1)∼, and if the appearing
highest weights hi differ only by integers then U reduces to a unitary projective represen-
tation of Diff+(S1) [34, 44]. Now we briefly study the irreducible unitary representations
V (c, h) of the Virasoro algebra appearing from an irreducible PER of level ` of LG. If
` = 0 then λ = 0, and by c = h = 0 we have the trivial representation of Vir. If ` ≥ 1,
then V (c, h) belongs to the continuous series, namely we have h ≥ 0 and c ≥ 1. The
estimate on the central charge follows by the inequality g + 1 ≤ dim g, which can be
noticed by studying the following table [55]:

Dynkin diagram Simple Lie algebra Complex dimension Dual Coxeter number
An sln+1 n2 + 2n n+ 1
Bn so2n+1 2n2 + n 2n− 1
Cn sp2n 2n2 + n n+ 1
Dn so2n 2n2 − n 2n− 2
E6 e6 78 12
E7 e7 133 18
E8 e8 248 30
F4 f4 52 9
G2 g2 14 4

Lemma 48. [Ln, x(k)] = −kx(n+ k) on H0,fin.

Proof. This is actually a well known lemma proved in [55], here we show a more basic
and personal proof following [87]. Let {xi} be a orthonormal basis in g0, so that its dual
basis is given by xi = −xi. We have the following relations:

[xy, z] = x[y, z] + [x, z]y ,
[x(a), [y, z](b)] = [[z, x], y](a+ b) + [[x, y](a), z(b)] ,

[xi(a), [xi, z](b)] = [xi, [xi, z]](a+ b) = 2gz(a+ b) ,

for any integers a and b. Notice also that on H0,fin we have

Ln = 1
2(`+ g)

∑
m≥−n/2

(2− δ−m,n/2)xi(−m)xi(m+ n) .
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Therefore we can compute

[xi(−m)xi(m+ n), xj(k)] = xi(−m)[xi(m+ n), xj(k)] + [xi(−m), xj(k)]xi(m+ n)
= −`kδi,j(δk,−m−n + δk,m)xj(n+ k)

+ xi(−m)[xi, xj ](m+ n+ k) + [xi, xj ](−m+ k)xi(m+ n) .

The structure constants {chij} relative to {xi}, that is the constants determined by
[xi, xj ] = chijxh, verify the relations chij = cijh = −cihj . It follows that

[xi, xj ](a)xi(b) = −xi(a)[xi, xj ](b) ,
xi(a)[xi, xj ](b) + xi(b)[xi, xj ](a) = 2gxj(a+ b) ,

xi(a)[xi, xj ](a) = gxj(2a) .

In particular, if Xm = xi(−m)[xi, xj ](m+n+k) then Xm+X−m−n−k = 2gxj(n+k). We
now assume k ≤ 0, since the general case easily follows by [Ln, xj(k)]∗ = [L−n, xj(−k)].
Thus, by explicit computation one can prove that

[Ln, xj(k)] = − k`

(`+ g)xj(n+ k) + 1
2(`+ g)

∑
m≥−n/2

(2− δ−m,n/2)(Xm −Xm−k)

= −kxj(n+ k) ,

and then we have [Ln, x(k)] = −kx(n+ k) on H0,fin for every x in g and k, n in Z.

As a corollary of Lemma 48, the representation of Vir = C · c⊕ ∂, with ∂ the Witt
algebra, extends to a representation of the semidirect product g[t, t−1] o Vir ∼= g̃ o ∂,
with g̃ = g[t, t−1] ⊕ C · c. Indeed, if we set Ln = π(`n), where `n(θ) = einθ ddθ , then we
can define the stress energy tensor π(h) =

∑
n ĥnLn for any polynomial vector field h

on the circle, namely a vector field which is a finite linear combination of the fields `n.
Therefore, by Lemma 48 we have [π(h), π(X)] = π(h.X) on H0,fin for every X in Lpolg,
where h.X(θ) = h(θ) ddθX(θ).

The Lie algebra Lpolg can be completed to a Banach Lie algebra Lgt for any t ≥ 0.
Indeed, given X =

∑
kXk(k) in Lpolg, we can define Lgt as the completion of Lpolg with

respect to the norm
|X|t =

∑
k

(1 + |k|)t‖Xk‖ .

We have norm continuous embeddings with dense range Cdte+1(S1, g) ↪→ Lgt ↪→ Cbtc(S1, g),
and for any t ≥ n we have ‖X(n)‖∞ ≤ |X|t. Notice that, in general, we can similarly
define the Banach Lie algebra Lgs,p as the completion of Lpolg with respect to the norm

|X|s,p =
(∑

k

(1 + |k|)sp‖Xk‖p
)1/p

.

We now set St = LCt, namely the space of continuous complex functions h on S1

satisfying
|h|t =

∑
k

(1 + |k|)t‖ĥk‖ < +∞ .
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Notice that we can naturally identify St with a space of Sobolev vector fields on the
circle. We can define two continuous actions of St by h.X(θ) = h(θ) ddθX(θ) and hX(θ) =
h(θ)X(θ). Indeed, by noticing that (1+ |n+k|)t ≤ (1+ |n|)t(1+ |k|)t we have |h.X|s,p ≤
|h|s|X|s+1,p and |hX|s,p ≤ |h|s|X|s,p.

3.3 Solitonic representations from discontinuous loops

In this section we follow [34] and we construct proper solitonic representations of
the conformal net associated to some vacuum positive energy representation of a loop
group. We begin by briefly recalling some basic definitions about conformal nets. We
refer to [34, 45, 93] for further treatments of the topic.

Let K be the set of open, nonempty and non dense intervals of the circle. For I in
K, I ′ denotes the interior of the complement. We consider a vacuum positive energy
representation π of level ` of some loop group LG. We always suppose G to be simple,
compact and simply connected. It can be shown that

A`(I) = {π̃(γ) : supp γ ⊂ I}′′ ,

is a conformal net [45, 93], where π̃ is the lift of π described below in Remark 61. We
will denote by U the projective unitary continuous representation of Diff+(S1) verifying
the covariance property. Consider now a smooth path γ : [−π, π] → G. We suppose γ
to admit, at all orders, finite right derivatives in −π and finite left derivatives in π. We
then define σγ = {σIγ}I∈IR as the collection of maps given by

σIγ : A`(I)→ B(H) , σIγ(x) = Adπ(γI)(x) , (3.9)

where γI is a loop in LG such that γI(θ) = γ(θ) for θ in I seen as a subinterval of
(−π, π).

Proposition 49. σγ is an irreducible locally normal soliton with index 1. Furthermore,
σγ is Diff1,ps

+,1 (S1)-covariant.

Proof. Normality on each A`(I) follows because on these local algebras σγ is given by
the adjoint action by a unitary operator. The compatibility property is clear, since if
I ⊆ J then π(γIγ−1

J ) is in A`(I ′) = A`(I)′. The index is 1 since if I is in IR then
σγ(A`(I)) = A`(I), and for the same reason we have that∨

I∈IR

σγ(A`(I)) =
∨
I∈IR

A(I) = B(H)

since the conformal net A` is irreducible. The last statement follows by Theorem 3.4.
of [34].

We will now focus on a smaller class of solitons. Given h in G, we define a discon-
tinuous loop as an element of the group

LhG =
{
ζ ∈ C∞(R, G) : ζ(x)−1ζ(x+ 2π) = h

}
. (3.10)
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The restriction of a discontinuous loop on [−π, π] clearly induces a soliton σζ . In the
following, we will study the equivalence classes of such solitonic representations.

Since π is irreducible if and only if it is irreducible as a projective representation of
LG, then σζ is irreducible if π is irreducible (see also Corollary 1.3.3. of [93]). Notice
that for ζ in LhG we have that ζt(φ) = ζ(φ)ζ(φ− t)−1 is in LG for any t in R. We now
denote by Rot∼ the universal covering of Rot ∼= T, the group of rotations of the circle. If
Ut is the unitary representation of Rot associated to π, then we can define V ζ

t = π(ζt)Ut
in PU(H) for t in R and notice that V ζ

t V
ζ
s = V ζ

t+s. However, in general V ζ
2π is not a

scalar and therefore σζ is not Rot-covariant but only locally Rot∼-covariant. We can
notice that if ζ is in LgG and η is in LhG then ζη−1 is in Lh−1gG if h−1g is in Z(G). In
particular, if ζ and η are both in LhG then ζη−1 is in LG and σζ is unitarily equivalent
to ση.

Theorem 50. Let π be a vacuum positive energy representation of LG of level ` ≥ 1.
Given ζ in LhG, the soliton σζ extends to a DHR representation if and only if h is
central.

Proof. First we suppose h to be in Z(G). A quick computation shows that in this case
V ζ

2π = π(h). By the identity π(h)eπ(X)π(h)∗ = eπ(X) for any X in Lg0 we have that
V ζ

2π is a scalar since π is irreducible. This implies that σζ is locally Rot-covariant and
we have that σζ can be extended to a locally normal DHR representation by using the
arguments of Proposition 3.8. of [34]. Now we suppose h to be not central. By absurd,
σζ extends to a DHR representation and thus it is Rot-covariant [33]. Denote by U ζθ the
corresponding intertwining projective representation of the circle. If we define the DHR
representation

ρζ(x) = AdUπ · σζ ·AdU−π · σζ−1 ·AdV ζ
π ·AdU−π(x) ,

then by construction ρζ is implemented by the unitary UπU
ζ
−πV

ζ
π U−π. Since σζ is a

locally normal DHR representation, by using the additivity property one can show that
ρζ(x) = x for x in A((0, π)) and for x in A((0, π))′. It follows that U ζ−πV ζ

π is a scalar
and thus V ζ

2π is a scalar. Now consider a maximal torus T ⊂ G containing h. Since
T is connected, we can suppose that ζ(x) belongs to T for any x in R, and by the
commutativity of T we have that V ζ

2π = π(h) in PU(H). Therefore we have that h is a
noncentral element acting on H as a scalar. If we now consider the kernel

N = {g ∈ G : π(g) ∈ T} ,

then N is a normal subgroup of G which is not contained in the center. But G is simple
and connected, hence we have that N = G, which is an absurd.

We conclude this section by studying the equivalence classes of the solitons con-
structed above. If z is in Z(G), then the DHR representations σζ with ζ in LzG corre-
spond to inequivalent irreducible positive energy representations ζ∗π of the same level
as π (see Remark 61 and Theorem 3.2.3. of [93]). Now we pick a maximal torus T in
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G. Consider ζ in LsG and η in LtG for some s and t in T . We can suppose ζ and η to
be both contained in T . It can be easily noticed that

σζ · ση = σζη , ζη ∈ LstG , σ−1
ζ = σζ−1 , ζ−1 ∈ Ls−1G .

It follows that σζ and ση are unitarily equivalent if and only if s = t, hence we have
infinitely many inequivalent solitons. If we consider two maximal tori T and T ′ = gTg−1,
then what we can say is that we have the identity

σgζg−1 = Adπ(g) · σζ ·Adπ(g)∗ ,

that is the solitons σgζg−1 and σζ are equivalent up to some inner automorphism.

3.4 Sobolev loop groups

We know that LG = C∞(S1, G) is a Fréchet Lie group if endowed with the Whit-
ney smooth topology. Its topology is induced by the norms defined on the Banach Lie
groups LkG = Ck(S1, G). The exponential map expLG : Lg0 → LG is naturally defined
by expLG(X) = expG ·X and is a local homeomorphism near the identity [87]. Here we
define and describe some properties of Sobolev loop groups.

Let M be a Riemannian manifold. Suppose M to be isometrically embedded in Rν
for some ν > 0. Define, for 1 ≤ p < ∞ and 0 ≤ s < ∞, the fractional Sobolev space
[13, 35]

W s,p(S1,M) = {f ∈W s,p(S1,Rν) : f(θ) ∈M a.e.} .

Here W s,p(S1,Rν) is the completion of C∞(S1,Rν) with respect to the norm ‖f‖s,p =
‖∆s/2f‖p + ‖f‖p, where ∆ ≥ 0 is the closure on Lp(S1,Rν) of the laplacian seen as an
operator on C∞(S1,Rν) [32]. We recall that the closure of an operator between lin-
ear subspaces of Banach spaces is its smallest closed extension, and that the fractional
Laplacian ∆α for 0 < α < 1 can be defined by the Fourier transform [35].

Hereafter, every compact Lie group G will be considered as a Riemannian Lie group
with respect to the unique Riemannian structure extending −〈·, ·〉, namely the opposite
of the basic inner product, and such that left and right translations are smooth isome-
tries. We show that if G is compact and simple then every faithful unitary representation
ρ : G→ U(n) induces an isometric embedding of G in some real euclidean space. By con-
tinuity of the representation we have that G is represented as a compact embedded Lie
subgroup of U(n). Moreover, by simplicity of g0 we have that λtr(ρ(x)∗ρ(y)) = −〈x, y〉
for some λ > 0. Therefore, if we consider Mn(C) as a real vector space with inner
product λRe tr(X∗Y ) then we have an isometric embedding G ↪→Mn(C).

Theorem 51. If G is a compact, simple and simply connected Lie group faithfully
represented in some space of matrices, then W s,p(S1, G) is an analytic Banach Lie group
for p and sp in (1,∞). Its Banach Lie algebra isW s,p(S1, g0), the exponential map exists
and it is a local homeomorphism. Moreover, C∞(S1, G) is dense inW s,p(S1, G) and thus
W s,p(S1, G) is connected.
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Proof. First we show that W s,p(S1, G) is a topological group. This can be proved by
using the fact that any two functions f, g in W s,p(S1,Rν) verify, for p and sp in (1,∞),
the estimate [32]

‖fg‖s,p ≤ Cs,p‖f‖s,p‖g‖s,p . (3.11)

By this estimate and by the identity f−1 − g−1 = f−1(g − f)g−1 it follows that
W s,p(S1, G) is a topological group for p and sp in (1,∞), since it is clearly a Haus-
dorff space. Now we define the map

exps,p : W s,p(S1, g0)→W s,p(S1, G) , exps,p(X)(z) = expG(X(z)) .

This map is well defined since expG ·X = eX is an absolutely convergent series and it is
also a local homeomorphism. We check thatW s,p(S1, G) is connected. By the density of
C∞(S1, G) inW s,p(S1, G) (see Theorem 1.1. of [13]), it suffices to prove that C∞(S1, G)
is path connected and then connected. But a smooth homotopy between two loops in G
is a path in C∞(S1, G), and the connectedness follows. Finally, we conclude if we prove
that the group operations of inversion and multiplication are analytic. By connectedness
we can reduce to prove this in an open neighborhood of the identity (see [93], Lemma
2.2.1.). The inversion X 7→ −X is clearly analytic. The analyticity of left and right
multiplication follows from the Baker-Campbell-Hausdorff-Dynkin formula, where the
continuity of the appearing homogeneous polynomials is guaranteed by equation (3.11).
The theorem is proved.

Corollary 52. Every loop γ in W s,p(S1, G) is a finite product of exponentials, since the
exponential map is a local homeomorphism and W s,p(S1, G) is connected.

Remark 53. Theorem 51 still holds if the circle S1 is replaced with a torus Tm. This
follows from the fact that the mentioned density theorem [13] is verified for a generic
cube Qm, that Tm can be defined as a quotient of Qm and that the convolution with a
smooth function preserves the periodicity.

We have formally defined our Sobolev loop group W s,p(S1, G) and we have checked
that such a space has good topological and analytical properties. Now we are finally
ready to extend our PER of LG. The definition of Positive Energy Representation of a
Sobolev loop group can be given just by replacing LG withW s,p(S1, G) in the definition
given above in (3.3).

Proposition 54. Let ι : G → H and π : G → U be two homomorphisms of topological
groups. We suppose H to be connected and ι(G) to be dense in H. Suppose the existence
of a neighborhood V of the identity in H and of a continuous function p0 : V → U such
that π(gα)→ p0(v) whenever ι(gα)→ v, with (gα)α∈A a net in G and v in V . Then, p0
extends to a continuous homomorphism p : H → U such that π = p · ι.

Proof. By the connectedness of H we have that H = ∪nV n. We show by induction
that p can be well defined on V n for every n. We set p = p0 on V . Suppose the thesis
true for V n, and consider elements w in V n and v in V . Pick a net (hβ)β∈B such that
ι(hβ)→ v. By inductive hypothesis the limit

p(wv) := lim
α
π(gα) = lim

α
lim
β
π(gαh−1

β )p0(v) = lim
(α,β)

π(gαh−1
β )p0(v) = p(w)p(v)
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is well defined and does not depend on the net (gα)α∈A such that ι(gα) → wv. Notice
that, in order to properly apply the inductive hypothesis, we considered A × B as a
directed set by using the lexicographic order. Hence p is a well defined group homomor-
phism. The continuity of p follows by induction as well, and the identity π = p · ι is
satisfied by construction.

Proposition 55. Let π be a PER of a loop group LG. If X is in W s,p(S1, g0) for
1 ≤ p ≤ 2 and s > 3/2 + 1/p, then π(X) is a closable operator which is essentially
skew-adjoint on any core of L0.

Proof. We first notice that by the Sugawara formula we have L0 ≥ 0, since we have
L0 = d + hi for some hi ≥ 0 on each irreducible summand πi of π. If H0,fin is the
algebraic direct sum of the eigenspaces of L0, then we will denote by H0,s the completion
of H0,fin with respect to the Sobolev norm ‖ξ‖0,s = ‖(1 + L0)sξ‖. By Lemma 48 and
Proposition 1.2.1. of [93], for ξ in H0,fin and X in Lpolg we have

‖π(X)ξ‖0,s ≤
√

2(`+ g)|X||s|+1/2‖ξ‖0,s+1/2 ,

‖[1 + L0, π(X)]ξ‖0,s ≤
√

2(`+ g)|X||s|+3/2‖ξ‖0,s+1/2 ,

for any s in R. By density one extends π to (Lg)|s|+3/2 in such a way to still verify
the same estimates for ξ in H0,s+1/2. It follows that if X is in Lg3/2 then both π(X)
and [1 +L0, π(X)] are bounded operators from H0,1/2 to H. By the Nelson commutator
theorem ([88], Thm. X.36) we have that if X is in (Lg0)3/2 then the restriction of π(X)
on

D =
{
ψ ∈ H ∩H0,1/2 : π(X) ∈ H

}
is a closable operator on H which is essentially skew-adjoint on any core of L0 such as
H0,fin. Notice now that, by standard arguments, there is a norm continuous embedding
W s,p(S1, g) ↪→ Lg3/2. Indeed, if X(θ) =

∑
kXke

ikθ then by the Hölder inequality

|X|3/2 =
∑
k

(1+|k|)3/2‖Xk‖ =
∑
k

(1+|k|)3/2−s(1+|k|)s‖Xk‖ ≤ As,p|X|s,p′ ≤ Bs,p‖X‖s,p ,

where As,p and Bs,p exist and are finite by construction and by Riesz-Thorin respectively.
Therefore, by the arguments given above we have that if X is in W s,p(S1, g0) then π(X)
is a skew-symmetric operator on H0,fin which is essentially skew-adjoint on any core of
L0.

Propositions 54 and 55 can be used to extend a strongly continuous projective rep-
resentation of LG to a strongly continuous projective representation of W s,p(S1, G).
However, for convenience in the following we will focus on Hs(S1, G) = W s,2(S1, G).
We show how a different approach can improve the results of Proposition 55.

Proposition 56. If π is a PER of a loop group LG, the induced projective representation
π of Lg can be extended to Hs(S1, g) for s > 3/2, with π(X) closable and such that

‖π(X)ξ‖0,1/2 ≤ Cs|X|s,2‖ξ‖0,1/2 , ξ ∈ H0,1/2 , (3.12)

for some Cs > 0. Moreover, π(X)∗ = π(X∗), and in particular π(X) is essentially
skew-adjoint if X is skew-adjoint.
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Proof. We use some techniques shown in [22]. Given X =
∑
nXn(n) in Lg1,1, the

operator π(X) is well defined on H0,1/2 and (3.12) follows by the previous estimates
since for t > 1/2 and s = 1 + t we have

|X|1 =
∑
n

(1 + |n|)‖Xn‖ =
∑
n

(1 + |n|)−t(1 + |n|)1+t‖Xn‖ ≤ ct|X|s,2 .

It is also closable since π(X∗) ⊆ π(X)∗. Notice also that since H0,fin is a core for
(1 + L0)1/2 then π(X∗) is the formal adjoint of π(X) on the associated scale space
H0,1/2 for any X in H3/2(S1, g). Now we define on H0,1/2 the operator

RX,ε = [π(X), e−εL0 ] ,

which is well defined since e−εL0 : H → H0,∞ ⊆ H0,1/2. By −RX∗,ε ⊆ R∗X,ε we have that
RX,ε is closable. Notice that if L0vk = kvk then

Rx(n),εvk = fn,k(ε)x(n)vk , fn,k(ε) = e−εk − e−ε(k−n) .

We will now show that ‖Rx(n),ε‖2 ≤ 2(` + g)|x(n)|1,1. The case n = 0 is trivial and we
can suppose n < 0 as −RX∗,ε ⊆ R∗X,ε. By simple analysis techniques one can prove that

|fn,k+n(ε)|2 ≤ n2

(k − n)2 ,
1 + k

(k − n)2 ≤
1
|n|

,

for any ε ≥ 0 and k ≥ 0. Therefore if v =
∑
k≥0 vk is in H0,fin then we have

‖Rx(n),εv‖2 =
∥∥∥∑
k≥0

Rx(n),εvk
∥∥∥2

=
∥∥∥∑
k≥0
|fn,k(ε)|2x(n)vk

∥∥∥2

=
∑
k≥0
|fn,k(ε)|2‖x(n)vk‖2

≤ 2(`+ g)
∑
k≥0

n2

(k − n)2 (1 + |n|)(1 + k)‖x‖2‖vk‖2

≤ 2(`+ g)
∑
k≥0

(1 + |n|)2‖x‖2‖vk‖2

= 2(`+ g)|x(n)|21,1‖v‖2 .

It follows that ‖RX,ε‖2 ≤ 2(`+g)|X|1,1 for every X in Lg1,1 and that RX,ε → 0 strongly
as ε→ 0. Moreover, by the identity R∗X,ε = −RX∗,ε we have that R∗X,ε → 0 strongly as
well. Now we arrive to the crucial point: if v is in D(π(X)∗) then

π(X∗)e−εL0v = π(X)∗e−εL0v = e−εL0π(X)∗v −R∗X,εv → π(X)∗v , ε→ 0 ,

and this concludes the proof since e−εL0v → v as ε→ 0.

Theorem 57. Let π : LG → PU(H) be a positive energy representation of LG. Then
π can be extended to a positive energy representation of Hs(S1, G) for s > 3/2.
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Proof. We consider an open neighborhood U in Hs(S1, g0) on which the exponential
map of Hs(S1, G) is a homeomorphism and set V = expHs(U). For γ = expHs(X) in V
we define in PU(H)

π(γ) = eπ(X) , X ∈ U .

The neighborhood V verifies Proposition 54, since if γα = exp(Xα) converges to γ =
exp(X) in V then the estimate (3.12) implies that π(Xα)ξ is a Cauchy net for every ξ
in H0,1/2. But the pointwise convergence of self-adjoint operators on a common core
implies the strong resolvent convergence of such operators (Theorem VIII.25.(a) of [88]),
thus π can be continuously extended. Finally, since the rotation group acts onHs(S1, G)
by continuous operators (see Lemma A.3 of [24]) and since LG is dense in Hs(S1, G), we
have that π is actually a Positive Energy Representation since it is Rot-covariant.

Proposition 58. Let ρs = expDiff+(S1)(sh) be a smooth diffeomorphism of S1, with h
a smooth real vector field of the circle. Set Rh = {ρs}s∈R. Then the exponential map
Lg0oRh→ LGoRh is well defined and continuous. Moreover, if Xα = ρα.X = X ·ρ−1

α

then

expLGoRh(X + αh) = lim
n→∞

expLG(X/n) expLG(Xα/n/n) · · · expLG(Xα(n−1)/n/n)ρα .
(3.13)

Proof. We follow [93]. To compute the exponential map, we fix X + αh in Lg0 o Rh
and look for f : R→ LGoRh which satisfies (X +αh)f = ḟ and f(0) = 1. We suppose
f to be of the form ft = γtρφ(t) with γ in LG. As a manifold, LGo Rh is the product
of LG and Rh, thus s 7→ expLG(sX)ρsα is the integral curve for X + αh at the identity.
Therefore, with the notation γs(θ) = γ(ρ−1

s (θ)) we have

(X + αh)ft = d

ds

∣∣∣∣
s=0

expLG(sX)ρsαγtρφ(t) = d

ds

∣∣∣∣
s=0

expLG(sX)(γt)sαρsα+φ(t)

= Xγtρφ(t) + α
d

ds

∣∣∣∣
s=0

(γt)sρφ(t) + αγthρφ(t) ,

ḟt =
(
d

dt
γt
)
ρφ(t) + φ′(t)γthρφ(t) ,

whence φ(t) = αt, and we must solve

d

dt
γt = Xγt + α

d

ds

∣∣∣∣
s=0

(γt)s , γ0 = 1 . (3.14)

Now we notice that if γt0 is a solution of the equation d
dtγ

t
0 = X−αtγ

t
0 with initial condition

γ0
0 = 1, then γt = (γt0)αt is the solution of (3.14) we were looking for. Therefore, if we

embed G in a space of matrices Mm(C) and we consider LG as a closed subspace of
C∞(S1,Mm(C)), then by Theorem 1.4.1. of [93] we have

γ1
0 = lim

n→∞
exp(X−α/n) exp(X−α(n−1)/n/n) · · · exp(X−α/n/n)ρα , (3.15)

where the right side of (3.15) converges in each Ck(S1,Mm(C)) and hence in LG. Finally,
equation (3.13) follows from γ1 = (γ1

0)α, and the continuity of expLGoRh follows from
Theorem 1.4.1. of [93].
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Corollary 59. The following holds in PU(H):

eπ(X+iαh) = π(expLGoRh(X + αh)) .

Proof. By the Trotter product formula and Proposition 58 we have the following iden-
tities in PU(H):

eπ(X+iαh) = lim
n→∞

(eπ(X/n)eiαπ(h)/n)n = lim
n→∞

π(expLG(X/n) expRh(αh/n))n

= lim
n→∞

π(expLG(X/n) expLG(Xα/n/n) · · · expLG(Xα(n−1)/n/n)ρα)

= π(expLGoRh(X + αh)) ,

where we used the identities eiT (h) = π(expRh(h)) and eπ(X) = π(expLG(X)) which hold
in PU(H).

Lemma 60. Let π : G → PU(H) be a strongly continuous projective representation of
a topological group G. Then the map

G× U(H)→ U(H) , (g, u) 7→ π(g)uπ(g)∗ ,

is well defined and strongly continuous.

Proof. The map is clearly well defined, and if gα converges to g in G then we can choose
lifts vα and v of π(gα) and π(g) such that vα converges to v in U(H), since the short
exact sequence given by U(H)→ PU(H) admits local continuous sections [8]. But in the
unitary group the strong topology and the ∗-strong topology coincide and multiplication
is continuous on bounded sets by the uniform boundedness principle, so the assertion
follows.

Remark 61. A continuous projective representation π : G → PU(H) can be naturally
lifted to a continuous unitary representation π̃ of G̃ =

{
(g, u) ∈ G× U(H) : π(g) = [u]

}
given by π̃(g, u) = u.

Theorem 62. If γ is in Hs(S1, G) and X is in Hs(S1, g0) for some s > 3/2, then

π(γ)π(X)π(γ)∗ = π(Ad(γ)X) + ic(γ,X) , (3.16)

for some continuous real function c(γ,X). Moreover, if γ is in H1+s(S1, G) and h is a
real vector field Ss, then

π(γ)π(X + ih)π(γ)∗ = π(Ad(γ)X) + iT (h) + π(hγ̇γ−1) + ic(γ,X) + ic(γ, h) (3.17)

for some continuous real function c(γ, h).

Proof. We first prove (3.17) in the smooth case. We will identify Rh with iRh for formal
convenience. By the previous propositions, if γ is in LG and Y = X+ ih is in Lg0o iRh,
then the following identities hold in PU(H):

π(γ)etπ(Y )π(γ)∗ = π(γ)π(expLGoRh(sY ))π(γ)∗

= π(γ expLGoRh(tY )γ−1)
= π(expLGoRh(tAd(γ)Y ))
= etπ(Ad(γ)Y ) ,

(3.18)
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and consequently π(γ)etπ(Y )π(γ)∗ = λ(t)etπ(Ad(γ)Y ) for some function λ : R → T. But
λ : R → T is a continuous homomorphism and therefore λ(t) = eiat for a unique real
number a = c(γ, Y ). We point out that Ad(γ) has to be intended as the adjoint action
with respect to the semidirect product LG o Rh. Notice also that c(γ, Y ) is linear in
Y , so we can write c(γ,X + ih) = c(γ,X) + c(γ, h), where we set c(γ, ih) = c(γ, h)
for simplicity. Therefore, the claimed expression follows by the Stone’s theorem and by
using the product rule for the derivative on the identity 1 = γt · γ−1

t .
Now we prove (3.16) in the Sobolev case. Consider (γα, Xα) in LG × Lg0 con-

verging to (γ,X) in Hs(S1, G) × Hs(S1, g0). We have that both π(γα)esπ(Xα)π(γα)∗
and esπ(Ad(γα)Xα) strongly converge to the corresponding terms in γ and X. By the
argument used before we have that eic(γα,Xα) converges to eic(γ,X), that is eic(γ,X) is
continuous in γ and X. But continuity is a local property and the exponential map
has local left inverses, thus c(γ,X) is continuous and the first part of the theorem is
proved. Now we prove (3.17) in the Sobolev case. Consider γ in H1+s(S1, G) and h real
in Ss. Notice that iπ(h) and π(hγ̇γ−1) are both essentially skew-adjoint. Consider now
smooth approximating nets γα → γ, Xα → X and hα → h as before. By the previous
propositions, the approximating right hand side of (3.17) minus c(γα, hα) converges in
the strong resolvent sense to the corresponding term in γ, X and h since we have a net of
skew-adjoint operators pointwise convergent on a common core. Similarly, π(Xα + ihα)
converges in the strong resolvent sense to π(X + ih) and therefore

π(γα)etπ(Xα+ihα)π(γα)∗ → π(γ)etπ(X+ih)π(γ)∗

strongly for every t in R. By the argument used before we have that eic(γ,h) is continuous
and thus c(γ, h) is continuous. The thesis is proved.

Corollary 63. The scale space Hα ⊆ H is Hs(S1, G)-invariant for α ≥ 0 and s > 5/2.
Moreover, for any integer n such that n ≤ bs− 1c, the corresponding map Hs(S1, G)×
Hn → Hn/T is continuous.

Proof. Since D(u∗Au) = u∗D(A) for every unitary u and every self-adjoint operator A,
then

D((1 + d)α) = π(γ)∗D((1 + d− iπ(γ̇γ−1) + c(γ, d))α)
⊆ π(γ)∗D((1 + d)α) .

(3.19)

Since D((1 + d)α) = Hα for α ≥ 0, the Hs-invariance follows. Now we prove the
second statement, where we can suppose n ≥ 1. By Proposition 1.5.3. of [93] we have
‖π(γ)ξ‖n ≤ (1 + Mn−1)n‖ξ‖n, where Mp = C|γ−1γ̇|p+1/2 + |c(γ−1, d)| for some C > 0,
and the joint continuity can be proved as in [93].

Theorem 64. With the hypotheses of Theorem 62, we have

c(γ,X) = −`
∫ 2π

0
〈γ−1γ̇, X〉 dθ2π , c(γ, h) = − `2

∫ 2π

0
h 〈γ−1γ̇, γ−1γ̇〉 dθ2π .

Proof. We follow Theorem 1.6.3. of [93], skipping some computations for the sake of
brevity. Consider a smooth loop γ in LG and a smooth real vector field h. For Y in
Lg0 o iRh we have

c(γ1γ2, Y ) = c(γ2, Y ) + c(γ1,Ad(γ2)Y ) . (3.20)
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If γt = expLG(tX), then the map t 7→ c(γt, Y ) is differentiable at t = 0 since LG×Rh →
LG is smooth. In particular, we have that

∂t
∣∣
t=0c(γ

t, Y ) = `B(X,Y ) ,

and so
∂t
∣∣
t=0c(γ

t, h) = 0 .

By using (3.20) we have that c(γt, h) is differentiable everywhere, with

∂tc(γt, Y ) = `B(X,Y ) + c(γt, [X,Y ]) ,

or more compactly
ċt(Y ) = iX`B(Y )− (X.ct)(Y ) . (3.21)

We naturally expect the solution of the ODE to be given by the Duhamel formula

c(γt, Y ) = `B(X,Ad(γt)
∫ t

0
Ad(γ−τ )Y dτ) = `B(X,

∫ t

0
Ad(γs)Y ds) . (3.22)

Using d
dtAd(γt)Y = [X,Ad(γt)Y ], it is easy to verify that (3.22) defines a C1(R, (Lg o

iRh)∗) solution of (3.21) with initial condition c0 = 0. The solution is unique. Finally,
one can use (3.22) and Corollary 1.6.2. of [93] to obtain the claimed expressions in the
smooth case. By the continuity of c(γ, Y ) shown in Theorem 62 the thesis is proved.

Corollary 65. By repeating the proof of Theorem 62, one can show that if γ is in
Hs(S1, G) and X is in Hs(S1, g0) for some s > 3/2, then

π(γ)∗π(X)π(γ) = π(Ad(γ−1)X) + ib(γ,X) , (3.23)

for some continuous real function b(γ,X). Similarly, if γ is in Hs+1(S1, G) and h is a
real vector field in Ss, then

π(γ)∗π(X + ih)π(γ) = π(Ad(γ−1)X) + iT (h)− π(hγ−1γ̇) + ib(γ,X) + ib(γ, h) (3.24)

for some continuous real function b(γ, h). In particular, by b(γ, Y ) = c(γ−1, Y ) we have

b(γ,X) = −`
∫ 2π

0
〈γ̇γ−1, X〉 dθ2π , b(γ, h) = − `2

∫ 2π

0
h 〈γ̇γ−1, γ̇γ−1〉 dθ2π .

3.5 QNEC on loop group models

We now denote by A` = {A`(I)}I∈K the conformal net associated to a level ` vacuum
representation π of some loop group LG. As before, we will denote by K the set of all
the open, non empty and non dense intervals of the circle. To each interval I in K we
associated the von Neumann algebra

A`(I) = {π̃(γ) : supp γ ⊂ I}′′ , (3.25)

where π̃ is the lift of π described in Remark 61 and the support of a loop γ is defined by

supp γ = {z ∈ S1 : γ(z) 6= e} .
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We are interested in computing

S(t) = SA`(t,+∞)(ωγ‖ω) , (3.26)

where ω is the vacuum state represented by the vacuum vector Ω and ωγ = ω ·Adπ(γ)∗
is represented by π(γ)Ω for some loop γ in LG. More in general, the same result will
apply to the solitonic states given by the solitons (3.9) of above. We introduce the
groups of Sobolev loops

B(z1, . . . , zn) =
{
γ ∈ H2(S1, G) : γ(zi) = e , γ̇(zi) = 0

}
. (3.27)

By standard arguments, continuously differentiable and piecewise smooth loops are in
Hs(S1, G) for s < 5/2 [34, 51], where we say that γ is piecewise smooth if right and
left derivatives always exist and if γ is smooth except on a finite number of points.
If there is no ambiguity, we will use a similar notation to denote the groups (3.27) in
the real line picture. Consider now the interval I = (z, w) of S1 obtained by moving
counterclockwise from z to w. We will denote by γI the map such that γI = γ on [z, w)
and γI = e on [w, z), so that we have write the identity

γ = γIγI′ . (3.28)

By Theorem 57 we have that if γ is a loop in B(z, w) then in PU(H) we have π(γ) =
π(γ(z,w))π(γ(w,z)). In particular, in this case π(γ(z,w)) is in A`((z, w)) and π(γ(w,z)) is in
A`((w, z)). We also recall that by the Bisognano-Wichmann theorem (2.7) we have the
identity log ∆ = −2πD with D = − i

2(L1 − L−1), that is log ∆ = −2πT (δ) with δ the
vector field generating δ(s).u = esu. Notice also that the vacuum expectation of

π(γ)∗T (δ)π(γ) = T (δ) + iπ(δγ−1γ̇) + b(γ, δ) (3.29)

is given by the real constant b(γ, δ) described in Corollary 65.

Proposition 66. Let γ be a loop in H3(S1, G). Pick a non dense open interval I =
(z, w) of the circle and write γ = γIγI′ as in (3.28). Denote by δI the generator of
dilations of the interval I and set ∆it

I = e−2πitT (δI). If γ̇ vanishes on the boundary of I
then the Connes cocycle (Dωγ : Dω)t of A`(I) is given by

(Dωγ : Dω)t = eit(a−2πc(γI ,δI))e−2πt(iπ(δI)+π(δI γ̇Iγ−1
I ))∆−itI (3.30)

for some a = aγ in R. In particular, a depends only on the values of γ at the boundary
of I and aγ = 0 if γ(z) = e for z in the boundary of I.

Proof. First we check that δI γ̇Iγ−1
I is in H2(S1, g0) since it vanishes with its first deriva-

tive on the boundary of I. Hence the right hand side of (3.30), which we denote by ut,
is a well defined unitary operator which is in A`(I) by the Trotter product formula. To
prove the existence of a in R as in the statement it suffices to check that ut verifies the
relations

(i) σγt (x) = utσt(x)u∗t , x ∈ A`(I) ,
(ii) ut+s = utσt(us) .
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Here σt and σγt are the modular automorphisms associated to the states ω and ωγ .
The first relation follows by noticing that

σγt (x) = Ad∆it
I,γ(x) = Adπ(γ)∆it

I π(γ)∗(x)
= Adπ(γ)∆it

I π(γ)∗∆−itI ∆it
I (x)

= Adut · σt(x) ,
(3.31)

where we used Lemma 2.(ii) and Theorem 64. The second relation can be easily verified
and thus a does exist. Now we prove that a = aγ depends only on the values of γ at the
boundary of I. Consider η in H3(S1, G) such that η(z) = e and η̇(z) = 0 for z in the
boundary of I. Notice that (Dωηγ : Dω)t = π(η)(Dωγ : Dω)tσt(π(η)∗). Therefore, with
the notation of Corollary 65 we have

aηγ + 2πb(ηIγI , δI) = −i d
dt
ωηγ((Dωηγ : Dω)t)

∣∣∣
t=0

= −i d
dt
ωηγ(π(η)(Dωγ : Dω)tσt(π(η)∗))

∣∣∣
t=0

= aγ + 2π(b(γI , δI) + b(ηIγI , δI)− b(γI , δI)) ,

and by the identity aηγ = aγ the assertion is proved. If γ(z) = e for z in the boundary
of I then π(γI) is in A`(I) and the last statement follows by Lemma 2.

Remark 67. If γ is an element of H2([−π, π], G), then as in the smooth case we can
consider the soliton σγ given above by (3.9). In particular, Proposition 66 still holds for
the solitonic states ωγ = ω · σ−1

γ with γ in H3([−π, π], G). This follows from the fact
that if η is a loop in H3(S1, G) such that γ = η on I, then ωη = ωγ on A(I).

Now we arrive to the main part of this chapter, that is we will use the previous results
to prove the QNEC on loop groups models for the solitonic states ωγ = ω ·σ−1

γ given by
(3.9). In the real line picture, the path γ corresponds to an element of H2(R, G).

Theorem 68. Let ωγ = ω·σ−1
γ be a solitonic state corresponding, in the real line picture,

to some element γ of H2(R, G). Then the relative entropy (3.26) is finite for every t in
R and explicitly given by

S(t) = − `2

∫ ∞
t

(u− t) 〈γ̇γ−1, γ̇γ−1〉 du . (3.32)

Proof. As discussed in Remark 67, we can suppose γ to be the real line parametrization
of some element of H2(S1, G). Since the vacuum is G-invariant, we can replace γ with
γg for any g in G, thus we can suppose γ(∞) = e. By using the real line picture notation
for the groups (3.27), we first suppose γ to be in B(∞). We point out that if γ(t) = e

and γ̇(t) = 0 then S(t) is finite and given by (3.32) since we can use equation (2.46),
Proposition 66 and the continuity of ωγ((Dωγ : Dω)t) with respect to γ in H2(S1, G).
Now we prove that S(t) is finite for any t real. Indeed, for any t real we can pick a
smooth loop η with supp η ≤ t and such that η(t− k) = γ(t− k)−1 and ˙(ηγ)(t− k) = 0
for some k > 0. This implies that

SA`(t,+∞)(ωγ‖ω) = SA`(t,+∞)(ωηγ‖ω) ≤ SA`(t−k,+∞)(ωηγ‖ω) < +∞ ,
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where the last relative entropy is finite by the argument used above. By similar argu-
ments we have that

S̄(t) = SA`(−∞,t)(ωγ‖ω) (3.33)

is finite for any t real. Now we focus on the case t = 0, since the general case follows by
covariance. We suppose γ̇(0) = 0 and we write γ = γ+γ−, with γ+(u) = e for u ≤ 0 and
γ−(u) = e for u ≥ 0. By Proposition 66 we have

S(0) = aγ −
`

2

∫ ∞
0

u 〈γ̇γ−1, γ̇γ−1〉 du .

Now we emulate some techniques used in [51] and we prove that aγ = 0. Given λ > 0
real, consider the function f(u) = ueλu. For n > 0 integer, we consider a smooth
diffeomorphism ρ = ρλ,n of the circle such that, in the real line picture, it verifies
ρ(u) = f(u) for 0 ≤ u ≤ n− 1

n and ρ(u) = f ′(n)u+ (f(n)− nf ′(n)) for u ≥ n. We also
suppose ρ(u)/ρ′(u) to be uniformly bounded for n− 1

n ≤ u ≤ n. Consider now the loop
γλ,n(u) = γ(ρ−1

λ,n(u)). By the identity aγ = aγλ,n and by monotone convergence once
more we have

0 ≤ inf
λ
SA`(0,+∞)(ωγλ,n‖ω) = aγ −

`

2

∫ ∞
n

(u− n) 〈γ̇γ−1, γ̇γ−1〉 du , (3.34)

and by monotone convergence we have aγ ≥ 0. Now we prove the other inequality.
Consider a smooth path ζn in G with extremes ζ(0) = e and ζ(1) = γ(0). We also
suppose that ζ̇(0) = ζ̇(1) = 0. We now define

γn(u) =


γ(u) u ≥ 0 ,
ζ(nu+ 1) −1/n ≤ u ≤ 0 ,
e u ≤ −1/n .

By monotonicity SA`(0,+∞)(ωγ‖ω) = SA`(0,+∞)(ωγn‖ω) ≤ SA`(−1/n,+∞)(ωγn‖ω), so that
after a limit we have the inequality

aγ ≤ −
`

2

∫ 1

0
u 〈ζ̇ζ−1, ζ̇ζ−1〉 du .

However, if we now consider the function gλ(u) = ueλ(u−1) and we define ζλ(u) =
ζ(g−1

λ (u)), then

aγ ≤ −
`

2

∫ 1

0
u 〈ζ̇λζ−1

λ , ζ̇λζ
−1
λ 〉 du ≤ −

`

2λ

∫ 1

0
u 〈ζ̇ζ−1, ζ̇ζ−1〉 du→ 0 , λ→ +∞ .

Finally, we have proved that aγ = 0 if γ̇(0) = 0. To remove this condition, we notice
that if P is the generator of translations then the average energy in the state ωγ is finite
and given by

Eγ = (π(γ)Ω|Pπ(γ)Ω) = − `2

∫ +∞

−∞
〈γ̇γ−1, γ̇γ−1〉 du2π . (3.35)

Therefore we can apply Lemma 26, namely for every t1 and t2 in R we have

(S(t1)− S(t2)) + (S̄(t2)− S̄(t1)) = (t2 − t1)2πEγ . (3.36)
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This implies that S(t) and S̄(t) are both Lipschitz functions. Consider now a smooth
real function ρ(u) defined on [0, 1] and such that ρ(0) = 0 and ρ(1) = 1. We also suppose
ρ′(0) = ρ′′(0) = 0, ρ′(1) = 1 and ρ′′(1) = 0. We define

γn(u) =


γ(u) u ≥ 1/n ,
γ(ρ(nu)/n) 0 ≤ u ≤ 1/n ,
η(u) u ≤ 0 ,

where η is a smooth function such that γn is in H2(S1, G). Therefore, by (3.36) we have

0 ≤ SA`(0,+∞)(ωγn‖ω)− SA`(1/n,+∞)(ωγn‖ω) ≤ 2π
n
Eγn → 0 ,

and thus we have
SA`(0,+∞)(ωγ‖ω) = lim

n
SA`(1/n,+∞)(ωγ‖ω) = lim

n
SA`(1/n,+∞)(ωγn‖ω)

= lim
n
SA`(1/n,+∞)(ωγn‖ω)− SA`(0,+∞)(ωγn‖ω) + SA`(0,+∞)(ωγn‖ω)

= lim
n
SA`(0,+∞)(ωγn‖ω)

= − `2

∫ ∞
0

u 〈γ̇γ−1, γ̇γ−1〉 du .

(3.37)

The most of the work is done. Now we just have to remove the condition γ̇(∞) = 0. If
we apply covariance to equation (3.37) then we have

SA`(−∞,0)(ωγ‖ω) = − `2

∫ 0

−∞
u 〈γ̇γ−1, γ̇γ−1〉 du

for any γ in H2(S1, G) such that γ̇(0) = 0. But this condition can be removed as in
(3.37), and by covariance the above expression of S(0) holds for all γ in H2(S1, G).

Corollary 69. Let η be a loop in H2(S1, G) such that η = γ on (−r, r) in the real line
picture. If Eη is the null energy (3.35), then we have the Bekenstein Bound

SA`(−r,r)(ωγ‖ω) ≤ πr inf
η
Eη , (3.38)

where the infimum is over all such η. Furthermore,

SA`(−r,r)(ωγ‖ω) = − `2

∫ r

−r

1
2r (r − u)(r + u) 〈γ̇γ−1, γ̇γ−1〉 du , (3.39)

and the complement relative entropy (3.33) is given by

S̄(t) = − `2

∫ t

−∞
(t− u) 〈γ̇γ−1, γ̇γ−1〉 du . (3.40)

Proof. As in the previous theorem, it is not restrictive to suppose γ to be in H2(S1, G).
The statement then follows by Möb-covariance, since in general we have

SA`(a,b)(ωγ‖ω) = − `2

∫ b

a
D(a,b)(u) 〈γ̇γ−1, γ̇γ−1〉 du , (3.41)

for every interval (a, b) of the real line, with D(a,b)(u) the density of the dilation operator
of (a, b).
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We now discuss the QNEC. If P is the generator of translations, then by the Sugawara
formula we have P = Θ( d

du), hence the quantity E = Eγ given by (3.35) is an averaged
stress energy tensor in the null direction u in the state ωγ .

Theorem 70. Let γ be an element of H2(R, G) as in Theorem 68. If we consider the
null energy density

Eγ(t) = − `

4π 〈γ̇γ
−1, γ̇γ−1〉 (t) , (3.42)

then the states ωγ verify the QNEC with the equality

Eγ(t) = S′′(t)/2π ≥ 0 . (3.43)

Similarly, Eγ(t) = S̄′′(t)/2π ≥ 0, where S̄(t) is the complement relative entropy (3.33)
given by (3.40).

This theorem is the main result of this chapter. However, definition (3.42) may seem
not rigorous to the reader, since we can arbitrarily add a function with null average to
the integral (3.35). For this reason, we will now motivate our definition of null energy
tensor density (as anticipated in the previous chapter). In particular, the following argu-
ment will show a model-independent way to recover (3.42) by using some intermediate
results of [27].

Let N ⊆M be a -hsm inclusion with corresponding family of von Neumann algebras
(Mt)t∈R. We denote by P ≥ 0 the generator of translations and by ω the faithful normal
state given by the common standard vector Ω. Given two real parameters t < t′, consider
a normal state ψ ofMt with representing vector η. If u is some isometry, then we will
denote by ψu the vector state represented by uη. We will use the notation Pη = (η|Pη).
We define

Eψ(t, t′) = inf
(w′,w)∈C′t×Ct′

Pww′η , (3.44)

where C ′t is the family of all the isometries w′ inM′t such that Pw′η and SM′t(ψw′‖ω) are
both finite, and similarly Ct′ is the family of all the isometries w inMt′ such that Pwη
and SMt′ (ψw‖ω) are finite. Notice that Eψ(t, t′) is well defined as a state-dependent
quantity, since any two vectors which represent ψ onMt differ by an isometry ofM′t.
Finally, by using the proof of Theorem 31 and Proposition 24 we have the following fact.

Proposition 71. Given two real parameters t < t′, consider a normal state ψ of Mt

with representing vector η such that Pη < +∞. Consider the Connes cocycles

u′s(t) = (Dψ : Dω ;M′t)s , us(t′) = (Dψ : Dω ;Mt′)s .

If the relative entropies S(t) = SMt(ψ‖ω) and S̄(t′) = SM′
t′

(ψ‖ω) are finite, then

Eψ(t, t′) = inf
s,s′

Pu′s(t)η + Pus′ (t′)η − Pη = lim
s→+∞

Pu′s(t)η + Pu−s(t′)η − Pη . (3.45)

In other words, what we did was just to notice by the proof of Theorem 31 that,
under some finiteness assumptions, the null energies of all the representing vectors for
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a normal state are minimized by the Connes cocycles. Notice also that by Theorem 31
and (3.36) we have

Eψ(t, t′) = −S′(t)/2π + S̄′(t′)/2π − Pη .

Finally, we can define
Eψ(t) = lim inf

h→0+
Eψ(t, t+ h)/h . (3.46)

After this premise, we can show that the density (3.42) is actually given by the limit
(3.46). In this step we will use the results of [80], which ensures us that a PER of a
loop group LG can be extended to a PER of H1(S1, G). In particular, this implies that
Theorem 68 and Theorem 70 are still true in this generality. The same argument applies
to Proposition 75 below as well. Furthermore, as shown later in Proposition 75, we can
compute (3.44) by using (3.45). By doing so we have

Eγ(t, t′) = − `

4π

∫ t′

t
〈γ̇γ−1, γ̇γ−1〉 du ,

and this tells us that the null energy density (3.42) can be recovered by using (3.46).

We conclude this section by noticing that, for the loop states studied in this chapter,
the null energy density is equal to the stress-energy tensor density. We recall that, given
h in S3/2, in general we can consider two vectors ξ and η in V =

⋂
k≥0D(Lk0), recall that

|(η|Θ(h)ξ)| ≤ (c/2)1/2|h|3/2‖η‖‖(1 + L0)ξ‖ ,

and define (η|Θ(u)ξ) as the kernel of the tempered distribution h 7→ Θ(h). In our case,
by Corollary 65 in the real line picture we have

(π(γ)Ω|Θ(h)π(γ)Ω) = − `

4π

∫
h(t) 〈γ̇γ−1, γ̇γ−1〉 (t)dt ,

for every h, and this tells us that in this case we have the identity

(π(γ)Ω|Θ(t)π(γ)Ω) = Eγ(t) .

3.6 QNEC on LSU(n)

In this section we focus on the case G = SU(n) and we use a construction illustrated
in [95] to show that a Positive Energy Representation of LSU(n) can be extended to
a Positive Energy Representation of the Sobolev group Hs(S1, SU(n)) for s > 1/2. In
particular, we will use this fact to provide a simpler proof of the QNEC (3.43).

We begin by considering the natural action of G = SU(n) on V = Cn and we set
H = L2(S1, V ), or equivalently H = L2(S1)⊗ V . We can naturally define a continuous
action M of LG on H by Mγf(φ) = γ(φ)f(φ). We can also define an action of Rot on
H by Rθf(φ) = f(φ − θ) with respect to the representation of LG is covariant, that is
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it satisfies RθMγR
−1
θ = MRθγ . If P is the orthogonal projection onto the Hardy space

H+, namely

H+ =
{
f ∈ L2(S1, V ) : f(θ) =

∑
k≥0

fke
ikθ with fk ∈ V

}
,

then we can define a new Hilbert space HP which is equivalent to H as real Hilbert
space, but with complex structure given by J = iP − i(1− P ). The Segal quantization
criterion, which we now recall, allows us to define a positive energy representation of
LG on the fermion Fock space FP = ΛHP known as the fundamental representation
of LSU(n) [87, 95]. Notice that FP (0) = ΛV is the fundamental representation of
SU(n). The fundamental representation of LSU(n) is the direct sum of all the n + 1
irreducible positive energy representations of LSU(n) of level ` = 1. The fundamental
representation contains the basic representation, that is the unique level one vacuum
representation.

Definition 72. The restricted unitary group is the topological group

UP (H) =
{
u ∈ U(H) : [u, P ] ∈ L2(H)

}
,

where the considered topology is the strong operator topology combined with the metric
given by the distance d(u, v) = ‖[u− v, P ]‖2.

Any u ∈ U(H) gives rise to an automorphism of CAR(H), called Bogoliubov au-
tomorphism, via a(f) 7→ a(uf). For every projection P on H there is an irreducible
representation of CAR(H) on FP which is denoted by πP . The Bogoliubov automor-
phism is said to be implemented on FP if πP (a(uf)) = UπP (a(f))U∗ for some unitary
U ∈ U(FP ) [95].

Theorem 73. Segal’s quantization criterion. [95] If [u, P ] is a Hilbert-Schmidt
operator then u is implemented on FP by some unitary operator UP . Moreover, UP is
unique up to a phase and the constructed map UP (H)→ PU(FP ) is continuous.

Proposition 74. The fundamental representation of LSU(n) can be extended to a PER
of Hs(S1, SU(n)) for any s > 1/2. In particular, every positive energy representation
of LSU(n) extends to a positive energy representation of Hs(S1, SU(n)) for s > 1/2.

Proof. Notice that since a loop γ in LSU(n) is also a map from S1 to Mn(C), then we
can write γ as a Fourier series γ(z) =

∑
γ̂kz

k, where γ̂k ∈Mn(C). We consider on H the
basis ekj (z) = zkej , where (ej) is the standard basis of Cn. We define Mpq = γ̂p−q and
we note that Mγe

k
j =

∑
iMike

i
j , so that (epi ,Mγe

q
j) = (ei,Mpqej). So Mγ is represented

by a Z× Z matrix (Mpq) of endomorphisms. We have

‖[P,Mγ ]‖22 =
∑

p≥0,q<0
‖Mpq‖22 +

∑
p<0,q≥0

‖Mpq‖22

=
∑
k>0

k‖γ̂k‖22 −
∑
k<0

k‖γ̂k‖22

=
∑
k∈Z
|k|‖γ̂k‖22 ≤

∑
k∈Z

(1 + |k|)2s‖γ̂k‖22 ,
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for s > 1/2. It is easy to verify that the map γ 7→Mγ ∈ UP (H) is continuous. We also
have that the rotation group acts on Hs(S1, G) by continuous operators (see Lemma
A.3 of [22]), and by [Rθ, P ] = 0 we have that the projective representation of Rot is
actually a strongly continuous unitary representation. Therefore, the thesis follows by
Theorem 73, the complete reducibility of Positive Energy Representations (Thm. 9.3.1.
of [87]), Proposition 2.3.3. of [93] and remarks below.

Proposition 75. Let γ be a loop in H1(S1, SU(n)). Pick a non dense open interval
I = (z, w) of the circle and write γ = γIγI′ as in (3.28). Then, in PU(H) we have

(Dωγ : Dω)t = π(γIδI(−2πt).γ−1
I ) , (3.47)

where (Dωγ : Dω)t is the Connes cocycle of A`(I) and δI(t) denotes the dilation associ-
ated to I.

Proof. First we check that γIδI(t).γ−1
I is in H1(S1, SU(n)) since it is continuous on

the boundary of I, hence the right hand side of (3.47) is well defined. With the same
computations of Proposition 66 we have that σγt (x) = Adπ(γIδI(−2πt).γ−1

I ) · σt(x) for
x in A`(I). Therefore, we have that (Dωγ : Dω)t is equal to π(γIδI(−2πt).γ−1

I ) up to a
unitary V in the commutant of A`(I), but (Dωγ : Dω)t and π(γIδI(−2πt).γ−1

I ) are both
in A`(I) and thus V is a scalar.

Theorem 76. Let γ be a loop in H1(S1, SU(n)). Suppose also that, in the real line
picture, the support of γ is bounded from below. Then the relative entropy (3.26) is
finite and given by

S(t) = − `2

∫ ∞
t

(u− t) 〈γ̇γ−1, γ̇γ−1〉 du . (3.48)

In particular, the QNEC is satisfied as shown above in Theorem 70.

Proof. Since the vacuum is SU(n)-invariant, we can replace γ with γg for any g in
SU(n), thus we can suppose γ(∞) = e. As above, if γ(t) = e then S(t) is finite and
given by (3.48). We can prove that S(t) is finite for any t real as in Theorem 68,
and similarly we have that S̄(t) = SA`(−∞,t)(ωγ‖ω) is finite for any t real. If P is
the generator of translations then the average energy Eγ in the state ωγ is finite and
given by equation (3.35). Therefore we can apply Lemma 26, and equation (3.36) holds.
This implies that S(t) and S̄(t) are both Lipschitz functions and in particular they are
absolutely continuous. The next step is an estimate of S′(t). For simplicity we focus
on the case t = 0 and we write γ = γ+γ− with γ+(u) = e for u ≤ 0 and γ−(u) = e

for u ≥ 0. By Proposition 75 the Connes cocycle u′s = (Dω : Dωγ)s on A`(−∞, 0)
is equal in PU(H) to π(γ−δ(2πs).γ−1

− )∗. But also the state ωγ · Ad(u′s)∗ verifies the
finiteness conditions required to apply Lemma 1. and thus we have −S′(0) ≤ 2πEs,
where Es = (u′sπ(γ)Ω|Pu′sπ(γ)Ω) for s real. However, one can simply prove that

inf
s

2πEs = − `2

∫ +∞

0
〈γ̇γ−1, γ̇γ−1〉 du .

Therefore, by repeating the argument with any t in R we have

−S′(t) ≤ − `2

∫ +∞

t
〈γ̇γ−1, γ̇γ−1〉 du .
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Finally, if we define

F (t) = − `2

∫ ∞
t

(u− t) 〈γ̇γ−1, γ̇γ−1〉 du ,

then we can conclude that S(t) = F (t) for any t in R. Indeed, if the support of γ is
compact then H(t) = S(t)−F (t) is an absolutely continuous function with nonnegative
derivative and going to 0 as |t| → +∞. If the support of γ is contained in (k,+∞) then
by lower semicontinuity S(t) ≤ F (t) for every t real, and we can similarly deduce that
H(t) = 0 for every t real. Finally, the first identity appearing in (3.43) can be proved
as above, with the only exception that in this case we do not have to use [80] in order
to compute (3.42).
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Chapter 4

Nuclearity as an entanglement
measure

4.1 Modular nuclearity conditions

Let A, B be a couple of commuting von Neumann algebras on some Hilbert space
H. We shall say that the pair (A,B) is split if there exists a von Neumann algebra
isomorphism φ : A ∨B → A⊗B such that φ(ab) = a⊗ b. If A ∨B is σ-finite, then the
pair (A,B) is split if and only if for any given normal states ϕA on A and ϕB on B there
exists a normal state ϕ on A ∨B such that ϕ(ab) = ϕA(a)ϕB(b) [71].

Following standard arguments, we further characterize a split pair (A,B). We as-
sume A, B and A∨B to be in standard form with respect to some state ω given by some
vector Ω of H. We denote by JA = JA,Ω, JB = JB,Ω and JA∨B = JA∨B,Ω the correspond-
ing modular conjugations. As A⊗B is in standard form with respect to the state ω⊗ω,
the isomorphism φ : A∨B → A⊗B has a canonical implementation, namely is uniquely
implemented by some unitary U which maps the natural cone of A∨B onto the natural
cone of A ⊗ B [39]. It can also be shown that JA ⊗ JB = UJA∨BU

−1. The canonical
intermediate type I factors are F = U−1(B(H) ⊗ 1)U and F ′ = U−1(1 ⊗ B(H))U . By
construction, F is the unique JA∨B-invariant type I factor A ⊆ F ⊆ B′, and similarly
for F ′. If A and B are both factors then F = A ∨ JAJ = B′ ∩ JB′J , with J = JA∨B,
and therefore F ′ = B ∨ JBJ = A′ ∩ JA′J [39].

Definition 77. Let N ⊆M be an inclusion of von Neumann algebras on some Hilbert
space H. We shall say that N ⊆ M is a split inclusion if there exists an intermediate
type I factor N ⊆ F ⊆M .

Clearly the trivial inclusion N = M is split if and only if N is a type I factor. The
inclusion N ⊆M is said to be standard if there is a vector Ω which is standard for N ,M
and the relative commutant N ′ ∩M . If N ⊆ M is a standard split inclusion then each
intermediate type I factor is σ-finite and hence separable, therefore the Hilbert space H
has to be separable as FΩ is dense in H. If N ′ ∩M has a cyclic and separating vector,
then the pair (N,M ′) is split if and only if N ⊆M is split [71].
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Definition 78. Consider an inclusion N ⊆ M of von Neumann algebras on a Hilbert
space H. Assume the existence of a standard vector Ω for M and denote by ∆ the
corresponding modular operator. We will say that the inclusion N ⊆ M satisfies the
modular nuclearity condition if the map

Ξ: N → H , Ξ(x) = ∆1/4xΩ , (4.1)

is nuclear.

A modular nuclear inclusion of factors is split, and a split inclusion of factors implies
the compactness of the map (4.1) [19]. This motivates the interest in the split property
in local quantum field theory contexts, where the split property amounts to some form
of statistical independence between causally disjoint spacetime regions [52, 60]. We will
develop this topic in Section 4.4.

A similar nuclearity condition can be given by use of the language of standard sub-
spaces. A closed real subspace H of a complex Hilbert space H is called standard if
H ∩ iH = (0) and H + iH is dense in H. Standard subspaces arise naturally in the
modular theory of von Neumann algebras. If M is a von Neumann algebra acting on
H and ξ ∈ H is a standard vector for M , then the map M → H given by x 7→ xξ is
injective and

HM = {xξ : x = x∗ , x ∈M} (4.2)

is a standard subspace of H. Conversely, there is a natural way to associate to every
standard subspace H ⊆ H a von Neumann algebra in the bosonic and fermionic Fock
space of H, and this assignment has many nice properties [67, 79].

Definition 79. Let H be a complex Hilbert space and K ⊆ H an inclusion of standard
subspaces of H. We shall say that K ⊆ H satisfies the modular nuclearity condition if
the operator

Ξ = ∆1/4
H PK (4.3)

is nuclear, where PK is the real linear orthogonal projection onto K.

It is easy to check that if N ⊆M is a standard inclusion of von Neumann algebras,
then this inclusion satisfies modular nuclearity if the corresponding inclusion HN ⊆ HM

of standard subspaces given by (4.2) satisfies modular nuclearity [68]. If K ′∩H is a stan-
dard space and J = JK′∩H then on bosonic models the subspace F = K∨JK = H∩JH
is a standard space called the canonical intermediate type I standard subspace [73].

In the perspective of proving our main theorem, we now try to introduce a new
nuclearity condition. Given a pair (A,B) of commuting von Neumann algebras, assume
A and B to be both in standard form with respect to a normal state ω represented by
a standard vector Ω. Denote by ∆A and ∆B the corresponding modular operators. We
will say that the pair (A,B) satisfies the modular nuclearity condition if at least one of
the two maps

ΞA(b) = ∆1/4
A′ bΩ , ΞB(a) = ∆1/4

B′ aΩ , (4.4)
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is nuclear. In order to motivate our definition, we notice that if (A,B) satisfies the
modular nuclearity condition then the pair (A,B) is split.

The previous nuclearity conditions can be easily generalized as follows. Consider a
linear map Θ: E → F between Banach spaces. The map Θ is said to be of type lp, p > 0,
if there exists a sequence of linear mappings Θi : E → F of rank i such that [20]∑

i ‖Θ−Θi‖p < +∞ .

The map Θ will be said to be of type s if it is of type lp for any p > 0. Each mapping Θ
of type lp for some 0 < p ≤ 1 is nuclear. Indeed, there are sequences of linear functionals
ei ∈ E∗ and of elements fi in F such that

Θ(x) =
∑
i ei(x)fi , x ∈ E ,

is an absolutely convergent series for each x in E , with

Θ(x) =
∑
i ei(x)fi , Θ(x) =

∑
i ‖ei‖p‖fi‖p < +∞ .

The induced quasi-norm, also called p-norm, is given by

‖Θ‖p = inf
(∑

i ‖ei‖p‖fi‖p
)1/p

,

where the infimum is taken over all possible representations of Θ of the form (4.1). The
above conditions of nuclearity can be then rephrased as modular p-nuclearity conditions
if the maps (4.1), (4.3) or (4.4) are of type lp for some 0 < p ≤ 1.

4.2 Entanglement Measures

In this section we discuss entanglement in a general setting and we review some
quantitative measures of entanglement and their properties [52].

Let A,B be a couple of commuting von Neumann algebras. We will refer to the
spatial tensor product A ⊗ B as a bipartite system. A state ω on the bipartite system
A ⊗ B is said to be separable if there are positive normal functionals ϕj on A and ψj
on B such that ω =

∑
j ϕj ⊗ ψj , where the sum is assumed to be norm convergent.

Separable states are normal. A normal state which is not separable is called entangled.
In quantum field theory, bipartite systems are associated to causally disjoint regions.
Therefore, an entanglement measure for a bipartite system should be a state functional
that vanishes on separable states.

Definition 80. The relative entanglement entropy of a normal state ω on a bipartite
system A⊗B is given by

ER(ω) = inf
{
S(ω‖σ) : σ is a separable state

}
. (4.5)

The mutual information EI(ω) is given by

EI(ω) = S(ω‖ωA ⊗ ωB) .

where ωA = ω|A and similarly for B.
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Clearly ER(ω) ≤ EI(ω). As an example, let us consider a bipartite system given
by A = B(H) and B = B(H′), with H and H′ finite dimensional Hilbert spaces. The
mutual information is given by

EI(ω) = S(ωA) + S(ωB)− S(ω) . (4.6)

We point out that, without any finiteness assumption, on hyperfinite type I factors we
can only write EI(ω) + S(ω) = S(ωA) + S(ωB). It is an easy remark to notice that,
always by assuming A and B to be finite dimensional type I factors, if ω =

∑
j λjωj is

a convex decomposition of a state ω in states ωj , then∑
j λjEI(ωj)−

∑
j η(λj) ≤ EI(ω) ≤

∑
j λjEI(ωj) + 2

∑
j η(λj) .

By monotonicity of the relative entropy, the same inequalities hold if ω is normal and
A and B are both hyperfinite type I factors. Furthermore, if ω is pure then EI(ω) =
2S(ωA) = 2S(ωB) (Proposition 6.5. of [82]) while the relative entanglement entropy
between A and B is [94]

ER(ω) = S(ωA) = S(ωB) .

Definition 81. A cp map F : A1 ⊗ B1 → A2 ⊗ B2 between two bipartite systems will
be called local if it is of the form

F(a⊗ b) = FA(a)⊗FB(b) ,

where FA and FB are normal cp maps. More generally, a separable operation is by
definition a family of normal, local cp maps Fj such that

∑
j Fj(1) = 1. We think of

such an operation as mapping a state ω with probability pj = ω(Fj(1)) to F∗j ω/pj .

Separable operations map separable states to separable states. The relative entan-
glement entropy (4.5) of a bipartite system A⊗B has the following properties [52].

(e0) (symmetry) ER(ω) is independent of the order of the systems A and B.1

(e1) (non-negative) ER(ω) ∈ [0,∞], with ER(ω) = 0 if ω is separable and ER(ω) =∞
when ω is not normal. Furthermore, if ER(ω) = 0 then ω is norm limit of separable
states.

(e2) (continuity) Let (Ai)i and (Bi)i be two increasing nets of subalgebras of A and B
respectively, with Ai ∼= Bi

∼= Mni(C). Let ωi and ω′i be normal states on Ai ⊗Bi

such that limi ‖ωi − ω′i‖ = 0. Then

lim
i→∞

ER(ω′i)− ER(ωi)
lnni

= 0 .

(e3) (convexity) ER is convex.
1More precisely, we should require that ER(ω) = ER(ω ·π), with ER(ω ·π) the relative entanglement

entropy on B ⊗A and π the natural permutation isomorphism.
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(e4) (monotonicity under separable definitions) Consider a separable operation de-
scribed by cp maps Fj with

∑
j Fj(1) = 1. Then∑

j

pjER(F∗j ω/pj) ≤ ER(ω) ,

where the sum is over all j with pj = ω(Fj(1)) > 0.

(e5) (tensor products) Let Ai ⊗ Bi with i = 1, 2 be two bipartite systems, and let ωi
be states on Ai ⊗Bi. Then

ER(ω1 ⊗ ω2) ≤ ER(ω1) + ER(ω2) .

The mutual information (4.6) clearly satisfies (e0) and (e5), and it is shown in [52]
that it also satisfies properties (e2) and (e4). Property (e1) does not follow in a straight-
forward way from the definitions, as for separable states ω =

∑
j λjϕj ⊗ ψj we can only

show that EI(ω) ≤
∑
j η(λj), with η(t) = −t ln t the information function. Property

(e3) does not hold in general.

We now describe one more entanglement measure. This notion of entanglement,
known as entanglement of formation, is a well-known bipartite entanglement measure
with an operational meaning that asymptotically quantifies how many Bell states are
needed to prepare the given state using local quantum operations and classical commu-
nications. This last entanglement measure has already been studied in [78], and here we
discuss its properties in a personal fashion only for the sake of clarity and completeness.

Definition 82. [78] Let ω be a state on a finite dimensional bipartite system S = A⊗B.
The entanglement of formation of ω is defined by

ESF (ω) = inf
{∑

i

λiSA(ωi)
}

= inf
{∑

i

λiSB(ωi)
}
, (4.7)

where the infima are over all finite (countable) convex linear combinations ω =
∑
i λiωi

on A⊗B. More generally, given a bipartite system S = A⊗B one defines

ESF (ω) = sup
s
EsF (ω) ,

where the supremum is over all finite dimensional bipartite subsystems s of S.

The entanglement of formation is well defined because by the concavity of the von
Neumann entropy the above infima are obtained for convex linear combinations ω =∑
i λiωi in pure states, for which SA(ωi) = SB(ωi) (Lemma 6.4 of [82] is still true for

finite dimensional von Neumann algebras). If the system S = A ⊗ B is clear from
the context, we will simply write ESF (ω) = EF (ω). The entanglement of formation is
non-negative and satisfies properties (e0), (e3) and (e5). If A and B are both finite
dimensional factors, by exploiting the definitions (1.9) and (4.7) one also finds that [78]

EF (ω) +Hω(A) = SA(ω) , EF (ω) +Hω(B) = SB(ω) , (4.8)

where Hω(A) = HA⊗B
ω (A) and Hω(B) = HA⊗B

ω (B). By using equation (4.8), it is easy
to prove that if B ⊆ B and A ⊆ A, then EA⊗BF (ω) ≤ EA⊗BF (ω). One more result of [78]
is the following martingale property.
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Lemma 83. [78] Let ω be a normal state on a bipartite system S = A⊗B. We assume
A and B to be hyperfinite factors. Let (Ai)i and (Bi)i be two increasing nets of finite
dimensional subalgebras with ∪iAi and ∪iBi strongly dense in A and B respectively. If
EsiF (ω) is the entanglement of formation of ω on the subsystem si = Ai ⊗Bi, then

EF (ω) = lim
i
EsiF (ω) = sup

i
EsiF (ω) .

This lemma says that the entanglement of formation is well-behaved on hyperfinite
factors. In particular, always by assuming A and B to be hyperfinite factors, the en-
tanglement of formation vanishes on separable states, as the following original simple
lemma implies.

Lemma 84. Given two von Neumann algebras A and B, consider a state ω on the
bipartite system A⊗B. If ω is separable, then

SA(ω) = HA⊗B
ω (A) .

Proof. If ω =
∑
j φj ⊗ ψj and π is the GNS representation of A associated to the

marginal state ωA = ω|A, then we have an equivalence of GNS representations π ∼= ⊕jπj ,
where πj is the GNS representation of A given by ψj(1)φj . We can define a cpu map
εj : A ⊗ B → πj(A) by εj(a ⊗ b) = πj(a)ψj(b)/ψj(1), and this lead us to define a
conditional expectation ε : A ⊗ B → pAp by ε = π−1 · ⊕jεj , where p is the support
projection of ωA. The claim follows from the identity SA(ω) = SpAp(ω) (see the proof
of Proposition 6.8 of [82]) and Lemma 19.

Always by assuming A and B to be hyperfinite factors one can show that [78]

EF (ω) + η(λ) + η(1− λ) ≥ λEF (ω1) + (1− λ)EF (ω2) ,

with ω1 and ω2 states such that ω = λω1 + (1 − λ)ω2 and λ in (0, 1). If A and B are
hyperfinite type I factors, then by equation (4.6) and Lemma 83 it is easy to notice that

EI(ω) ≤ EF (ω) + min{S(ωA), S(ωB)} .

Moreover, under the assumption of Lemma 83 one has [78]

EF (ω) ≤ −(c− 1) ln(c− 1) + c ln c (4.9)

whether ω ≤ σ for some separable functional σ =
∑
j ϕj ⊗ ψj with norm ‖σ‖ = c.

4.3 Modular nuclearity and entanglement

Given a split pair (A,B) of von Neumann algebras on some Hilbert space H, assume
A, B and A∨B to be in standard form with respect to some state ω given by a standard
vector Ω. As in Section 4.1, we will denote by A ⊆ F ⊆ B′ the canonical intermediate
type I factor with respect to the inclusion A ⊆ B′.
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Definition 85. The canonical entanglement entropy of the bipartite system A⊗B is

EC(ω) = SF (ω) = SF ′(ω) ,

namely the von Neumann entropy of ω on the canonical intermediate type I factor F .

By construction, since ω is a pure state on B(H) then we have the identity [94]

EC(ω) = inf
{
S(ω‖σ ·AdU) : σ is separable on B(H)⊗B(H)

}
,

where U is the unitary canonically implementing the isomorphism A ∨ B ∼= A ⊗ B, so
that B(H) = F ∨ F ′ ∼= B(H)⊗B(H).

Conjecture 1. The canonical entanglement entropy is finite if the split pair (A,B)
satisfies the modular p-nuclearity condition for some 0 < p < 1.

This conjecture has been verified on the free Fermi net in [73], but up to now a
general proof on a model independent ground is lacking. In this chapter we provide a
few partial results in this direction.

Definition 86. Let (A,B) be a split pair of von Neumann algebras as above. Denote
by ΞA and ΞB the two maps (4.4). Given p > 0 we define the p-partition function as

zp = min{‖ΞA‖p, ‖ΞB‖p} . (4.10)

Lemma 87. Let (A,B) be a split pair as above. We assume modular p-nuclearity to
hold for some 0 < p ≤ 1, namely (4.10) is finite for some 0 < p ≤ 1. Given ε > 0, there
are sequences of normal linear functionals φj on A and ψj on B such that

ω(ab) =
∑
j

φj(a)ψj(b) , a ∈ A , b ∈ B , (4.11)

and
∑
j ‖φj‖p‖ψj‖p < zpp + ε.

Proof. We follow [52, Lemma 3]. We can assume zp = ‖ΞB‖p. Using the commutativity
of A and B, we note that

ω(ab) = (Ω|abΩ) = ((∆1/4 + ∆−1/4)−1(1 + ∆−1/2)b∗Ω|∆1/4aΩ)
= ((∆1/4 + ∆−1/4)−1(b∗ + JbJ)Ω|ΞB(a)) ,

where we set ∆ = ∆B′ . If zp is finite and ε > 0, then there are sequences of positive
normal functionals φj on A and vectors ξj in H such that

ΞB(a) =
∑
j

φ(a)ξj , a ∈ A ,

and
∑
j ‖φj‖p‖ξj‖p < zpp + ε. Define now normal functionals ψj on B by

ψj(b) = ((∆1/4 + ∆−1/4)−1(b∗ + JbJ)Ω|ξj) ,

and note that ‖ψj‖ ≤ ‖ξj‖ because of the estimate ‖(∆1/4 + ∆−1/4)−1‖ ≤ 1/2 and the
spectral calculus. Putting both paragraphs together we find the conclusion.
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Corollary 88. With the notation of the previous lemma, for every ε > 0 we can write
ω = (1 + λ)ω+ − λω−, where ω± are separable states and (1 + λ)p ≤ 4(zpp + ε).

Proof. We decompose φj =
∑3
k=0(i)αφαj and ψj =

∑3
k=0(i)αψαj in four positive normal

functionals. One also has that ‖φαj ‖ ≤ φj holds, and similarly for ψj . Since ω is positive,
then after the identification A ∨B ∼= A⊗B we find

ω =
∑
j

3∑
α=0

φαj ⊗ ψ4−α
j −

∑
j

3∑
α=0

φαj ⊗ ψ2−α
j ,

namely ω is difference of two separable functionals. The thesis follows.

Lemma 89. With the hypotheses of Lemma 87, assume ω to have an expression like in
(4.11) and assume µp =

∑
j ‖φj‖p‖ψj‖p to be finite for some 0 < p ≤ 1. Then there is

a separable positive linear functional σ such that σ ≥ ω on A ∨B and ‖σ‖p = µp1 ≤ µp.

Proof. We follow [52, Lemma 4]. By polar decomposition there are partial isometries
uj in A such that φ(uj ·) ≥ 0 on A and φj(uju∗j ·) = φj . It follows in particular that
φj(uj) = ‖φj‖ and

φ̄j(a) = φj(uju∗ja∗) = φj(uj(u∗ja∗)∗) = φj(ujauj)

for all a in A, where we used the fact that φj(uj ·) is hermitian (here ψ̄(a) = ψ(a∗)).
Similarly, there are partial isometries vj in B such that ψj(vj ·) ≥ 0 and ψj(vjv∗j ·) = ψj .
Note that the positive linear functional ρj = φj(uj ·) ⊗ ψj(vj ·) is separable. Writing
wj = uj ⊗ vj we then define

σj(·) = 1
2ρj(·) + 1

2ρj(w
∗ · w) ,

which is also separable, because w is a simple tensor product. Furthermore,

‖σj‖ = σj(1) = ρj(1) = ‖φj‖‖ψj‖ ,

and also
0 ≤ 1

2ρj((1− w
∗) · (1− w)) = σj −

1
2(φj ⊗ ψj + φ̄j ⊗ ψ̄j) .

We conclude that σ =
∑
j σj is a separable positive linear functional with

σ ≥ 1
2
∑
j

(φj ⊗ ψj + φ̄j ⊗ ψ̄j) = 1
2(ω + ω) = ω .

and ‖σ‖p =
(∑

j ‖σj‖
)p ≤∑j ‖σj‖p = µp.

Remark 90. Notice that, by the previous lemma, we have νp ≥ 1.

Theorem 91. Let (A,B) be a split pair of hyperfinite factors. Assume the p-partition
function (4.10) to be finite for some 0 < p < 1. Then the mutual information is finite,
with

EI(ω) ≤ cpzp + η(zp − 1)− η(zp) , (4.12)

where cp = 1
(1−p)e and η(t) = −t ln t.
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Proof. We begin the proof with a general remark. Consider a state ω on A ⊗ B, with
A and B finite dimensional type I factors. If ω =

∑
j λjωj is a convex decomposition in

states, then by (4.6) we have

EI(ω) ≥
∑
j λjEI(ωj)−

∑
j η(λj) .

By monotonicity of the relative entropy, the same expression holds if A and B are
hyperfinite factors. Therefore, if (A,B) is a split pair as in the statement, then by the
previous lemmas for every ε > 0 we have a separable state σ ≥ ω such that ‖σ‖p ≤ zpp+ε.
By setting σ̂ = σ/‖σ‖ we can write ω = ‖σ‖σ̂ − ‖τ‖τ̂ and notice that

‖σ‖EI(σ̂) ≥ EI(ω) + η(‖σ‖)− η(‖σ‖ − 1) ,

where we used the positivity property EI(τ̂) ≥ 0. The claimed estimate follows by the
inequalities η(t) ≤ cpt

p for p < 1, EI(σ̂) ≤ ‖σ‖−pcp(zpp + ε), and the monotonicity of
η(s− 1)− η(s) for s ≥ 1.

Remark 92. Due to the general inequality S(ϕ‖ω) ≥ ‖ϕ − ω‖2/2 [82], we can use the
previous result to estimate the distance between the states ω and ω ⊗ ω. See [75] for
related issues concerning the split property.

We now follow [83] and we show the finiteness of some “tailored” entanglement
entropy under the assumption of modular p-nuclearity for some 0 < p < 1. The result
is not strong enough in order to prove the Conjecture 1, but we find of interest to point
out a different approach.

Definition 93. [83] Let (A,B) be a split pair of von Neumann algebras on a Hilbert
space H. Assume A, B and A′∩B to be in standard form with respect to some vector Ω.
If u : H → H⊗H is a unitary implementing the natural isomorphism A ∨B′ ∼= A⊗B′,
then we will denote by Ru = u−1(B(H)⊗1)u the corresponding type I factor. We define
an intermediate pair any such pair (u,Ru).

Definition 94. [83] Let (A,B) be a split pair of von Neumann algebras as in the
previous definition. Given a state ψ on B(H), we call the Otani’s entanglement entropy
of ψ the functional

OH(ψ) = sup
(u,Ru)

inf
φ,λ

1
λ
S(φ) ,

where supremum is over all intermediate pairs, the infimum is over all states φ on B(H)
and real numbers 0 < λ ≤ 1 such that φ ≥ λψ on A ∨B′ and S(φ) is the von Neumann
entropy of φ on the intermediate type I factor Ru.

Theorem 95. Let A ⊆ B be a standard split inclusion w.r.t. some vector Ω. Denote
by zp the p-partition function (4.10). If zp is finite for some 0 < p < 1, then the Otani’s
entanglement entropy is finite. Explicitly,

OH(ω) ≤ zp ln zp + cpz
p
p . (4.13)
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Proof. The proof consists of a computation that does not depend on the choice of the
intermediate pair, which is therefore implicit in what follows. We will identify A with
A⊗1 and B with B(H)⊗B. Lemma 89 gives a separable dominating normal functional
σ ≥ ω with ‖σ‖p ≤ zpp + ε for ε > 0 arbitrarily small. We utilize the separability of
σ̂ = σ/‖σ‖ over the bipartite system A ∨ B′ ∼= A ⊗ B′ and decompose it into positive,
normal functionals, say σ̂ =

∑
j φj ⊗ψj . Without loss of generality we can assume φj to

be states on A. Now we notice that φj ⊗ ψj is a normal positive functional on A⊗ B′,
hence it can be extended by taking a representative vectors. Since such extension has
same norm, we can extend σ to a separable positive functional on B(H) ⊗ B(H) in
such a way that still ‖σ‖p ≤ zpp + ε. We introduce some further notation by setting
η(t) = −t ln t and 1/cp = (1− p)e. Therefore, we have

‖σ‖S(σ̂) ≤ ‖σ‖ ln ‖σ‖+
∑
j

η(‖ψj‖) ≤ ‖σ‖ ln ‖σ‖+ cp
∑
j

‖ψj‖p ,

and the claimed estimate follows by the arbitrarity of σ.

4.4 Application to local quantum field theory

Definition 96. A local quantum field theory (A, U,Ω) on the Minkowski space is said
to satisfy the split property (for double cones) if the inclusion A(O1) ⊆ A(O2) is split
whenever O1 ⊂ O2 is an inclusion of double cones such that O1 ⊂ O2 .

As mentioned in Section 4.1, the split property ensures some statistical independence
property of the considered model. The split property does not hold for unbouded regions
like wedges in more than two spacetime dimensions [17, 60].

In the literature there are several criteria which are known to imply the split property.
Many of them are formulated in terms of nuclear maps, and are therefore formulated as
“nuclearity conditions”. The first nuclearity condition was invented as some additional
requirement which ensures the theory to have a particle interpretation. In particular, a
theory complying with such a requirement should exhibit the thermodynamical behavior
expected from a theory of particles. In order to formulate this condition within the
theory of a local net on a d-dimensional Minkowski space, one considers a region O ⊆ Rd
and a parameter β > 0 representing the inverse temperature. In analogy with the form
of Gibbs equilibrium states in statistical mechanics, one defines the map

Θβ,O : A(O)→ H , Θβ,O(A) = e−βHAΩ , (4.14)

where H = P0 denotes the Hamiltonian with respect to the time direction x0.

Definition 97. A local quantum field theory on the Minkowski space Rd is said to
satisfy the energy nuclearity condition if the maps (4.14) are nuclear for any bounded
region O and any inverse temperature β > 0. Moreover, there must exist constants
β0, n > 0 depending on O such that the nuclear norm of Θβ,O is bounded by

‖Θβ,O‖1 ≤ e(β0/β)n , β → 0 .
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Definition 98. A local quantum field theory on the Minkowski space is said to satisfy
the modular nuclearity condition (for double cones) if the inclusion A(O1) ⊆ A(O2) is
modular nuclear whenever O1 ⊂ O2 is an inclusion of double cones such that O1 ⊂ O2.

A modular nuclear inclusion of factors is split, and a split inclusion of factors implies
the compactness of the map (4.1) [19]. As in Section (4.1), the previous nuclearity condi-
tions can be rephrased as modular p-nuclearity conditions by requiring to the considered
maps to be of type lp for some 0 < p ≤ 1. Modular p-nuclearity has been proved in the
theory of a scalar free field for any p > 0 [61] and holds on conformal nets satisfying the
trace class property [21].

It has been shown in [20] that in application to the local algebras of a quantum field
theory, the energy and the modularity conditions are essentially equivalent. However,
the argument used for the equivalence of the two conditions breaks down when applied
to local algebras associated to unbounded regions. In particular, this opens up the pos-
sibility for the modular nuclearity condition to hold for inclusions of wedge algebras in
two spacetime dimensions [60].

More specifically, it has been shown in [60] how to construct a wide class of integrable
models in 1+1 dimensional Minkowski space by proving the modular nuclearity condition
for wedge inclusions. The only input in this construction, apart from the value m > 0
of the mass of the basic particle, is a 2-body scattering matrix. Here we review the
structure and some property of such models.

Definition 99. A (2-body) scattering function is an analytic function S2 : S(0, π)→ C
which is bounded and continuous on the closure of this strip and satisfies the equations

S2(θ) = S2(θ)−1 = S2(−θ) = S2(θ + iπ) , θ ∈ R .

The set of all the scattering functions will be denoted by S. For S2 in S, we define

κ(S2) = inf{Im ζ : ζ ∈ S(0, π/2) , S2(ζ) = 0} .

The subfamily S0 ⊂ S consists of those scattering functions S2 with κ(S2) > 0 and for
which

‖S2‖κ = sup
{
|S2(ζ)| : ζ ∈ S(−κ, π + κ)

}
< +∞ , κ ∈ (0, κ(S2)) .

The families of scattering functions S and S0 can then be divided into “bosonic” and
“fermionic” classes according to

S± =
{
S2 ∈ S : S2(0) = ±1

}
, S = S+ ∪ S− ,

S±0 =
{
S2 ∈ S0 : S2(0) = ±1

}
, S = S+

0 ∪ S
−
0 .

The full S-matrix of an interacting quantum field theory is a very complicated object.
Indeed, if the structure of the two-particle S-matrix has been studied extensively, much
less is known about the higher S-matrix elements Sn,m with n,m > 2. However, the
interesting point in two-spacetime dimensions is that there do exist S-matrices, called
factorizing S-matrices, which are completely determined by the two-particle S-matrix.
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A factorizing S-matricx has the two following properties: Sn,m vanishes for n 6= m and
Sn = Sn,n factorizes into a product of several two-particle S-matrices. We now briefly
describe the structure of these models.

As for free fields, the single particle space H1 of the theory can be identified with the
space L2(R, dµ) of square integrable momentum wavefunctions on the upper mass shell
H+
m = {((p2 + m2)1/2, p) : p ∈ R}, where dµ(p) = (p2 + m2)−1/2dp is the usual Lorentz

invariant measure. However, on two-dimensional Minkowski space it is more convenient
to use as a variable the rapidity instead of the momentum. The rapidity θ ∈ R is a par-
ticular parametrization of the upper mass shell H+

m given by p(θ) = m(cosh θ, sinh θ).
In the rapidity space, the single particle space is H1 = L2(R, dθ).

The construction of the net O 7→ A(O) corresponding to a given S2 matrix starts
by considering an “S2-symmetric” Fock-space over H1 = L2(R, dθ). This Fock space
is a direct sum H = CΩ ⊕n≥1 Hn of n-particle spaces. By contrast to the case of the
bosonic Fock-space, Hn is not obtained by applying a symmetrization projection to
H⊗n1 . Rather, one applies a projection E based on S2. For that, let τi be an elementary
transposition of the elements i and i+1 in the symmetric group Sn. Define an exchange
operator Dn(τi) on H⊗n1 , identified with L2(Rn, dnθ), as

(Dn(τi)Ψn)(θ1, . . . , θi, θi+1, . . . , θn) = S2(θi+1 − θi)Ψ(θ1, . . . , θi+1, θi, . . . , θn) .

This exchange operator gives a unitary representation of Sn on H⊗n1 . Define an S2-
symmetric projection En = (1/n!)

∑
σ∈Sn Dn(σ), define Hn = EnH⊗n1 and define H =

CΩ ⊕n≥1 Hn. On this space one can define the creation operator z†(χ) and the anni-
hilation operator z(χ), with χ in H1. Explicitly, for any Ψn = En(ψ1 ⊗ · · · ⊗ ψn) one
defines

z†(χ)Ψn = (n+ 1)1/2En+1(χ⊗Ψn) ,

z(χ)Ψn = n−1/2
n∑
j=1

(χ|ψj)En−1(ψ1 ⊗ · · · ⊗ ψ̂j ⊗ · · · ⊗ ψn) ,

where by definition E0Ω = Ω and z(χ)Ω = 0, with Ω a vector of unital norm called
vacuum vector. These operators are closable and have a common core, namely the
algebraic sum of the subspaces Hn = EnH⊗n1 . Notice that z†(χ) is complex-linear in χ,
while z(χ) is conjugate-linear in χ.

If we write informally z†(Ψ) =
∫
dθΨ(θ)z†(θ) and similarly for z(Ψ), then these

operators satisfy the relations of the Zamolodchikov-Faddeev (ZF) algebra, namely

z(θ)z†(θ′)− S2(θ − θ′)z†(θ′)z(θ) = δ(θ − θ′) · 1 , z(θ)z(θ′)− S2(θ′ − θ)z(θ′)z(θ) = 0 .

Furthermore, we can define an operator J on H by

(JΨ)n(θ1, . . . , θn) = Ψn(θn, . . . , θ1) .

Consider now a Schwartz function f ∈ S(R2) and set

f±(θ) = 1
2π

∫
dxf(±x)eip(θ)·x , p(θ) = m(cosh θ, sinh θ) .
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The field operators φ(f) and φ′(f) are then defined as

φ(f) = z†(f+) + z(f−) , φ′(f) = Jφ(f∗)J ,

where f∗(x) = f(−x). These operators are closable and essentially self-adjoint if f is
real valued. Furthermore, if f and g are Schwartz functions with f supported in the
right wedgeWR given by x1 > |x0| and g supported in the left wedgeWL = W ′R, then we
have [φ′(f), φ(g)]Ψ = 0 for Ψ in a common dense core D. Finally, all this construction
gives rise to a local net W 7→ A(W ) of wedge algebras defined by

A(WL + x) =
{
eiφ(f) : f ∈ S(WL + x) real

}′′
,

A(WR + x) =
{
eiφ
′(f) : f ∈ S(WR + x) real

}′′
.

The algebra of observables localized in a double cone O = W1 ∩W2 is defined as

A(W1 ∩W2) = A(W1) ∩ A(W2) ,

and for arbitrary open regions Q ⊆ R2 we put A(Q) as the von Neumann algebra
generated by all the local algebras A(O) with O ⊆ Q. In [60], the author shows the
above models with scattering function S2 in S−0 to be well-posed, namely they satisfy
the basic axioms of algebraic QFT as long as the additivity property, the Reeh-Schlieder
property, Haag duality and Bisognano-Wichmann. In particular, the proof relies on the
following technical result.

Theorem 100. [2, 60, 62] Let (A, U,Ω) be an integrable quantum field theory on R2

given by some factorizing S-matrix S2 ∈ S. Define

Ξ(s) : A(WR)→ H , Ξ(s)A = ∆1/4U(s)AΩ , s > 0 , (4.15)

where U(s) is the unitary associated to the translation of (s, 0) and ∆ is the modular
operator of (A(WR),Ω). If S2 ∈ S−0 , then there is some splitting distance smin <∞ such
that Ξ(s) is p-nuclear for all p > 0 and s > smin. Moreover, ‖Ξ(s)‖p → 1 as s→ +∞.

By this theorem it follows that Ω is cyclic for the local algebra associated to the
double cone Oa,b = (WR+a)∩(WL−b) if b−a ∈WR and −(b−a)2 > smin. In particular,
local algebras associated to the double cones Oa,b mentioned above are hyperfinite III1-
factors in standard form. A proof of this result was originally given in [60], but due to
some incorrect estimated a new proof has been provided in [2] and [62].

Conjecture 2. By studying carefully [2], [60] and [62], it should also follow that the
maps

Σ(s) : A(WR)saΩ→ H , Σ(s)AΩ = ∆1/4U(s)AΩ , s > 0 ,

are p-nuclear for all p > 0 and s > smin.
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4.5 Conclusions

We close this chapter with some additional results that might be useful for future
research in this area.

Theorem 91 can be applied in any local QFT satisfying the Reeh-Schlieder axiom by
setting A = A(O) and B = A(Õ′), with O ⊂ Õ an inclusion of double cones satisfying
modular p-nuclearity condition for some 0 < p < 1. We point out that we are not
assuming Haag duality ([19], Lemma 2.4).

Corollary 101. Let (A, U,Ω) be a conformal covariant local QFT. Assume A and B
to be local algebras associated to causally disjoint spacetime regions SA and SB. Denote
by d the distance between these two regions. Then, by the results of [52, Section 5] it
follows that the mutual information is finite and satisfies lower bounds of area law type
in the limit d→ 0.

Due to the monotonicity of the relative entanglement entropy, one can also claim
that the canonical entanglement entropy EC(ω) satisfies lower bounds of area law type
in the limit d → 0 in conformal covariant local QFT. However, up to now a general
proof of the finiteness of this entanglement measure is missing [72].

We now investigate a bit the asymptotic behaviour of these two different entangle-
ment measures as s → +∞ in the setting of 1 + 1-dimensional integrable models. If
we denote by ER(s) the vacuum relative entropy of entanglement corresponding to the
wedge inclusion mentioned in Theorem 100, then by Lemma 87 and Lemma 89 it is easy
to notice that [52]

ER(s) ≤ ln ‖Ξ(s)‖1 → 0 , s→ +∞ .

However, if we denote by EI(s) the associated mutual information and we apply the
estimate (4.12) then we can state at most that

lim sup
s→+∞

EC(s) ≤ 1/e .

A similar remark can be done with the Otani’s entanglement entropy by applying (4.13).
About this point, the author is not sure if this depends on some nonoptimality of the
provided bounds or rather on some intrinsically different behaviour of these entangle-
ment measures.

The techniques of Section 4.3 rely on the presence of a separable state σ on the bi-
partite system A⊗B′ that dominates ω. If F is an intermediate type I factor A ⊆ F ⊆ B
arising from the natural isomorphism A ∨ B′ ∼= A ⊗ B′ as in Definition 93, then it is
possible to construct a separable functional on B(H)⊗B(H) ∼= F ∨ F ′ that dominates
ω on F and on F ′ by use of generalized conditional expectations.

More specifically, in the situation on 4.3 one has two ω-preserving generalized con-
ditional expectations, say ε and ε′, induced by the inclusions A ⊆ F and B′ ⊆ F ′
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respectively. By the isomorphism B(H)⊗B(H) ∼= F ∨F ′ = B(H) we can then define a
map ε⊗ε′ on B(H) extending both ε and ε′. If σ is the dominating separable functional
from Lemma 89, then σ0 = σ · (ε⊗ ε′) dominates ω0 = ω · (ε⊗ ε′). Notice that ω = ω0
on F and on F ′, but in general not on B(H). The functional σ0 =

∑
j φj · ε⊗ ψj · ε′ is

separable with
∑
j‖φj · ε‖p‖ψj · ε′‖p = µp finite (cf. Lemma 89 for notation), and in the

notation of Theorem 91 we have

EI(ω0) = S(ω0‖ωF ⊗ ωF ′) ≤ cpνp + η(νp − 1)− η(νp) ,

where the r.h.s. is finite under the assumption of modular p-nuclearity for some 0 <

p < 1. Unfortunately, this does not imply the finiteness of the canonical entanglement
entropy since ω0 is not a pure state on B(H). But we can make use of generalized
conditional expectations to give an equivalent description of the canonical entanglement
entropy. In particular, by use of equation (4.6) and Lemma 84 we can claim that

2EC(ω) = SB(H)(ω‖ωF ⊗ ωF ′) = 2SB(H)(ω0) = 2Hω0(F ) ,

with Hω0(F ) = H
B(H)
ω0 (F ) the conditional entropy. The authors of [42] argued on

grounds of physical arguments that

EC(ω) ≈ EF∨B′I (ω) = S(ω‖ωF ⊗ ωB′) ,

and indeed it is reasonable to expect that the results of this chapter can be properly
strengthened.

For example, Theorem 91 implies that EF∨B′I (ω) is finite if the ω-preserving gen-
eralized conditional expectation from F ∨ B′ onto A ∨ B′ is a separable operation in
the terminology of Definition 81. Another natural strategy could be that of estimating
the entanglement entropy of some energy cutoff of the vacuum state like in [83] and
then to operate some limit procedure. A different approach is the one of [73], in which
the authors use the language of standard subspaces. Unfortunately, even if completely
rigorous, this last work heavily depends on the structure of the free Fermi nets, and
a generalization of it seems quite challenging up to now. In this context, the author
expects the p-nuclearity of (4.3) with 0 < p < 1 to be a good assumption to start with.
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Appendix A

DR categories

The purpose of this appendix is to shed light on the mathematical structure of DR
categories in order to define the statistical dimension [7, 40, 48, 81].

Consider a local QFT (A, U,Ω) on the Minkowski space Rn+1 satisfying Haag duality.
With the notation of Section 1.7, A(F ) = A(F )′′ and A = A(Rn+1) denotes the C∗-
algebra of quasi-local observables. Denote by ∆ the semigroup of all the localized
endomorphisms. An intertwiner T between two localized endomorphisms ρ and ρ′,
namely an operator T such that ρ′(x)T = Tρ(x) for x in A, will be denoted by T =
(ρ′|T |ρ). The hom-set of intertwiners of this type will be denoted by (ρ′, ρ). If ρ and
ρ′ are localized in a double cone O, then T belongs to A(O′)′ = A(O). If T is also
unitary then ρ and ρ′ belong to the same sector (see Definition 29). We can then define
conjugation, product and crossed product of intertwiners via

(ρ′|T |ρ)∗ = (ρ|T ∗|ρ′) ,
(ρ′′|T2|ρ′) ◦ (ρ′|T1|ρ) = (ρ′′|T2T1|ρ) ,

(ρ′2|T2|ρ2)× (ρ′1|T1|ρ1) = (ρ′2ρ′1|T2ρ2(T1)|ρ2ρ1) .

By a simple calculation we have the following properties:

T3 × (T2 ×T1) = (T3 ×T2)×T1 ,

(T2 ×T1)∗ = T∗2 ×T∗1 ,
(T2 ◦T1)∗ = T∗1 ◦T∗2 ,

(T′2 ◦T2)× (T′1 ◦T1) = (T′2 ×T′1) ◦ (T2 ×T1) .

If a support of ρ1 is spacelike to a support of ρ2 and a support of ρ′1 is spacelike to a
support of ρ′2, then T1 = (ρ′1|T1|ρ1) and T1 = (ρ′2|T2|ρ2) are said to be causally disjoint.
If this is the case, then

T1 ×T2 = T2 ×T1 .

We now discuss permutations of n excitations. For ρ1, . . . , ρn in ∆ choose ρ̃j equivalent
to ρj such that the closures of the supports of ρ̃j lie spacelike to each other for different
indices j and fix an intertwiner Uj = (ρ̃j |Uj |ρj) for each ρj and ρ̃j . Let Sn be the
permutation group of n elements, and let e be its unit element. Given p in Sn, we write

U(p) = Up−1(1) × · · · ×Up−1(n) .
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Since supports of ρ̃j lie mutually spacelike, we obtain

ρ̃p−1(1) · · · ρ̃p−1(n) = ρ̃1 · · · ρ̃n .

Thus, we can define an intertwiner of the form

εp = (ρp−1(1) · · · ρp−1(n)|εp|ρ1 . . . ρn)

by the product
εp(ρ1 · · · ρn) = U(p)∗ ◦U(e) . (A.1)

Theorem 102. [7] The intertwiner εp is well defined, that is it depends neither on ρ̃j
nor on Uj. Moreover, it has the following properties:

(i) If the supports of the ρj have spacelike closures, then

εp(ρ1 · · · ρn) = 1 .

(ii) For each p, q in Sn it holds

εq(ρp−1(1) · · · ρp−1(n)) ◦ εp(ρ1 · · · ρn) = εpq(ρ1 · · · ρn) .

(iii) Given m < n, let τm be the permutation of m and m+ 1. Then

ετm(ρ1 · · · ρn) = 1ρ1 × · · · × 1ρm−1 × ετm(ρmρm+1)× 1ρm+1 × · · · × 1ρn .

Notice that given n intertwiners Tj = (ρ′j |Tj |ρj), we can define as before the permu-
tated crossed product

T(p) = Tp−1(1) × · · · ×Tp−1(n) .

Clearly if ρ′j and ρj are two collections of endomorphisms with mutually spacelike sup-
ports, then we obtain T(p) = T(e). More in general, the following formula holds:

T(p) ◦ εp(ρ1 · · · ρn) = εp(ρ′1 · · · ρ′n) ◦T(e) .

For the special case ρ1 = · · · = ρn = ρ, we write

εp(ρ · · · ρ) = ε(n)
ρ (p) = (ρn|ε(n)

ρ (p)|ρn) ,

and call ε(n)
ρ (p) the permutation operator.

Corollary 103. The map p 7→ ε
(n)
ρ (p) is a unitary representation of the permutation

group Sn and its equivalence class is determined solely by the equivalence class of ρ.
Moreover, ε(n)

ρ (p) belongs to ρn(A)′ for each p.

The permutation represented by ε(n)
ρ can be interpreted as a permutation of n space-

like separated excitations of the same kind. In particular, if S2 = {e, τ} then the
operator

ερ = ε(2)
ρ (τ) ,

called the statistics operator, is of interest. Its properties are described in [7]. We now
give a couple of definitions. We define a left inverse of a localized endomorphism ρ as a
positive linear map φ from A into itself such that φ(xρ(y)) = φ(x)y and φ(ρ(x)y) = xφ(y)
for any x and y in A. Furthermore, we denote by ∆irr the family of all the irreducible
localized endomorphisms.
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Theorem 104. [7] Given ρ in ∆irr, let φ be a left inverse of it. Then
(i) φ(ερ) = λ1 for some λ ∈ C.
(ii) λ is zero or ±d−1, where d is a natural number.
(iii) The value of λ uniquely determines the sector [ρ].

The parameter λ = λρ of the previous theorem is called the statistical parameter of
the sector [ρ]. Such a parameter describes the behavior under permutations of a number
of excitations [ρ] in vacuum. The number d = d(ρ) is called the statistical dimension of
the sector [ρ], with the convention that d =∞ if λ = 0. If d(ρ) is finite then we say that
[ρ] has finite statistics, otherwise we say that [ρ] has infinite statistics.

The above analysis as been described for the case of irreducible ρ in ∆irr. For a
general ρ ∈ ∆, there exists a ϕ among the left inverses φ of ρ such that φ(ερ)2 is a
constant multiple of the identity operator, and this φ is called a standard left inverse.
For a standard left inverse φ, ρ is said to have infinite statistics if φ(ερ) = 0 and finite
statistics otherwise. A necessary and sufficient condition for ρ to have finite statistics is
that it has a decomposition as a direct sum of a finite number of irreducible ρi ∈ ∆irr

with finite statistics [7, 48].

Theorem 105. [7] For ρ ∈ ∆irr with finite statistics, there is ρ̄ ∈ ∆irr with finite statis-
tics such that ρ̄ρ contains the vacuum representation ι, and [ρ̄] is uniquely determined
by [ρ]. In this case, ρ̄ρ contains ι with multiplicity 1 and λρ = λρ̄.

The sector [ρ̄] in this theorem is called the charge conjugate sector of [ρ]. Since
[ρ̄ρ] = [ρρ̄], from the uniqueness of charge conjugate sector we have [ ¯̄ρ] = [ρ].

Now recall that, in our notation, the superselection theory of A is the category TA
with localized endomorphisms as objects and intertwiners as arrows. With this last
theorem, we have finally described the main properties of the superselection theory
with finite statistics T fin

A , namely the full subcategory of TA whose objects are the
localized endomorphisms with finite statistics. More in general, these properties can be
formulated in the language of category theory.

Definition 106. A category C is a C∗-category if:
(i) each hom-set is a complex Banach space such that the composition of morphisms

(S, T )→ ST is a bilinear map with ‖ST‖ ≤ ‖S‖‖T‖,
(ii) there exists an antilinear contravariant functor * : T → T which is the identity

map on objects and such that T ∗∗ = T for each morphism T . Furthermore, it is required
that ‖T ∗T‖ = ‖T‖2 for each morphism T , and in particular End(U) = Mor(U,U) is a
unital C∗-algebra.

Using the ∗-operation we can define notions of projection, unitary, partial isometry,
etc., for morphisms. For example, a morphism u is called unitary if u∗u = 1. A C∗-
algebra is a C∗-category with a single object. A first example of C∗-category is clearly
Hilb, the category of Hilbert spaces with bounded linear operators as morphisms. One
fact about C∗-categories is that, as every C∗-algebra can be faithfully represented on a
Hilbert space, for every C∗-category there is a faithful functor on Hilb.
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Definition 107. A C∗-category is called a C∗-tensor category, or also a monoidal C∗-
category, if in addition are given a bilinear bifunctor ⊗ : C × C → C and natural unitary
isomorphisms

αU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

called associativity morphisms, an object 1, called unit object, and natural unitary iso-
morphisms

λU : 1⊗ U → U , ρU : U ⊗ 1→ U ,

such that
(iii) the pentagonal diagram

((U ⊗ V )⊗W )⊗X

(U ⊗ (V ⊗W ))⊗X (U ⊗ V )⊗ (W ⊗X)

U ⊗ ((V ⊗W )⊗X) U ⊗ (V ⊗ (W ⊗X))

α⊗ι α12,3,4

α1,23,4 α1,2,34

ι⊗α

commutes, where the leg-numbering notation for the associativity morphisms stands
for α12,3,4 = αU⊗V,W,X etc.,

(iv) λ1 = ρ1, and

(U ⊗ 1)⊗ V U ⊗ (1⊗ V )

U ⊗ V

α

ρ⊗ι ι⊗λ

(v) (S ⊗ T )∗ = S∗ ⊗ T ∗ for any morphisms S and T .

Definition 108. Let C be a monoidal C∗-category. We will say that
(vi) the category C is closed under finite direct sums if for any objects U and V

there exist an object W and isometries u ∈ Mor(U,W ) and v ∈ Mor(V,W ) such that
uu∗ + vv∗ = 1.

(vii) the category C is closed under subobjects if for any projection p in End(U) there
exist an object V and an isometry v ∈ Mor(V,U) such that vv∗ = p. Note that an object
defined by the zero projection 0 ∈ End(U) is a zero object, that is an object 0 such that
Mor(0,W ) = 0 and Mor(W,0) = 0 for any W ,

(viii) the unit object 1 is simple, that is End(1) = C,
(ix) the category C is strict if (U ⊗ V ) ⊗W = U ⊗ (V ⊗W ), 1 ⊗ U = U ⊗ 1 = U ,

and α, λ and ρ are the identity morphisms.

Definition 109. A braiding on a C∗-tensor category C is a collection of natural isomor-
phisms σU,V : U ⊗ V → V ⊗ U such that the hexagon diagram
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(U ⊗ V )⊗W

(V ⊗ U)⊗W U ⊗ (V ⊗W )

V ⊗ (U ⊗W ) (V ⊗W )⊗ U

V ⊗ (W ⊗ U)

σ⊗ι α

α σ1,23

ι⊗σ α

and the same diagram with σ replace by σ−1 both commute. When a braiding is fixed,
the category C is called braided. If in addition σ2 = ι, then C is called symmetric.

Definition 110. Let C be a strict C∗-tensor category. An object Ū is said to be
conjugate to an object U in C if there exist morphisms R : 1→ Ū⊗U and R̄ : 1→ U⊗Ū
such that the conjugate equations

(R̄∗ ⊗ ι)(ι⊗R) = ι , (R∗ ⊗ ι)(ι⊗ R̄) = ι ,

are satisfied. If every object has a conjugate, then C is said to be a rigid C∗-tensor
category, or a C∗-tensor category with conjugates.

Note that this definition is symmetric in U and Ū , so U is conjugate to Ū .

Proposition 111. [81] For any object U in C a conjugate object, if it exists, is uniquely
determined up to an isomorphism. More precisely, if (R, R̄) is a solution of the conjugate
equations for U and Ū , and (R′, R̄′) is a solution of the conjugate equations for U and
Ū ′, then

T = (ιŪ ⊗ R̄
′∗)(R⊗ ιŪ ′) ∈ Mor(Ū ′, Ū)

is invertible with inverse S = (ιŪ ′ ⊗ R̄
∗)(R′ ⊗ ιŪ ), and

R′ = (T−1 ⊗ ι)R , R̄′ = (ι⊗ T ∗)R̄ .

As a corollary, if U is a simple object, Ū is a conjugate object to U and (R, R̄) is
a solution of the conjugate equations for U and Ū , then any other solution has form
R′ = λ̄R and R̄′ = λ−1R̄ for some λ ∈ C∗. In particular, ‖R‖ · ‖R̄‖ is independent of
the solution.

Definition 112. Let C be a strict C∗-tensor category. If U is a simple object with a
conjugate Ū , the number

di(U) = ‖R‖ · ‖R̄‖

is called the intrinsic dimension of U . For a general U admitting a conjugate object Ū ,
decompose U into a direct sum of simple objects U = ⊕kUk and put di(U) =

∑
k di(Uk).

Note that di(1) = 1, hence the intrinsic dimension is always a natural number. If
an object U has a conjugate, then End(U) is finite dimensional (Proposition 2.2.8. of
[81]). In particular, every such object can be decomposed into a finite direct sum of
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simple objects, so the above definition is well posed. The class of objects of C that have
conjugates form a C∗-tensor subcategory of C. The intrinsic dimension for nonsimple
objects can be expressed in terms of solutions of the conjugate equations. In order to see
this, decompose an object U into a direct sum of simple objects, say U = ⊕kUk. This
decompositions means that we have isometries wk ∈ Mor(Uk, U) such that

∑
k w
∗
kwk = 1.

For every k choose a conjugate Ūk to Uk. Let Ū be the direct sum of the Ūk, and let
w̄k ∈ Mor(Ūk, Ū) be the corresponding isometries. If (Rk, R̄k) are solutions of the
conjugate equations for Uk and Ūk, then R =

∑
k(w̄k⊗wk)Rk and R̄ =

∑
k(w̄k⊗wk)R̄k

is a solution of the conjugate equations for U and Ū .

Definition 113. A solution of the conjugate equation for U and Ū of the form

R =
∑
k

(w̄k ⊗ wk)Rk , R̄ =
∑
k

(w̄k ⊗ wk)R̄k ,

with Uk simple and ‖Rk‖ = ‖R̄k‖ = di(Uk)1/2 for all k, is called standard.

The standard solution is unique in the following natural sense. If (R, R̄) and (R′, R̄′)
are standard solutions of the conjugate equations for (U, Ū) and (U, Ū ′) respectively,
then there exists a unitary T ∈ Mor(Ū, Ū ′) such that R′ = (T ⊗ ι)R and R̄′ = (T ⊗ ι)R̄.

Definition 114. Let C be a strict C∗-tensor category with conjugates. A dimension
function on C is a nonnegative number d(U) to every object U in C such that d(U) > 0
if U is nonzero, d(U) = d(V ) if U ∼= V ,

d(U ⊕ V ) = d(U) + d(V ) , d(U ⊗ V ) = d(U)d(V ) , and d(Ū) = d(U) .

Note that since 1 = 1 ⊗ 1 and 1 is a subobject of U ⊗ Ū for every nonzero U , we
automatically have d(1) = 1 and d(U) ≥ 1. The intrinsic dimension is an example of
dimension function. Finally, we now have all the ingredients in order to provide the
definition which names this appendix.

Definition 115. A strict symmetric monoidal C∗-category which is closed with respect
direct sums and subobjects, rigid and with simple unit object is called a DR-category.

The basic example of DR-category is TG, the category of finite-dimensional, contin-
uous, unitary representations of a compact group. Notice that in this case we also have
a dimension function in a natural way. The other important example of DR-category
is the superselection theory with finite statistics T fin

A . Explicitly, the monoidal struc-
ture is given by the composition of localized endomorphisms and the crossed product of
intertwiners, the braiding is given by (A.1) and the conjugate equations read

R̄∗ρρ(Rρ) = 1 , R∗ρρ̄(R̄ρ) = 1 . (A.2)

Furthermore, as mentioned above T fin
A is characterized by the existence of a dimension

function, namely the statistical dimension. The statistical dimension corresponds the
the intrinsic dimension in the sense mentioned above.



99

We conclude this appendix by mentioning one of the most important results emerged
in the study of Doplicher and Roberts on superselection theory. A classical result in
representation theory is the Tannaka-Krein duality. Tannaka’s theorem provides a way
to reconstruct the compact group G from its category of representations. Krein’s the-
orem shows necessary and sufficient conditions for a category to be the dual object of
a compact group. Therefore, the Tannaka-Krein duality finds necessary conditions for
a subcategory of Hilb to be the representation category of some compact group. The
stunning result proved in [40] is the characterization of all such subcategories: every
DR-category is isomorphic to a category TG for a compact group G which is unique up
to isomorphism. This result has added a new chapter to the mathematical theory of
group duality, and allow us to define the gauge group G of a superselection theory T fin

A
as its dual object.
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