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Abstract

Looking at a link between blur and visual discomfort, in the present thesis, blur is
viewed as a cause of a cognitive loss, and the discomfort as the immediate consequence
of this loss. Among the basic cognitive functions of the Human Visual System (HVS),
detection, recognition, and coarse localization functions are strongly conditioned by
the individual experience. Conversely, it seems plausible that the fine localization
function is committed to stabler and inter-subjective functions of the HVS. After
a preliminary discussion of the operators and the ML model used (Part II), the
approach presented in Part III of this thesis starts from postulating that, in the
absence of vision problems, the HVS performs the fine localization of the observed
objects with the best accuracy allowed by its physical macro-structure. This is
a fundamental assumption, because it is known from the estimation theory that
the maximum accuracy attainable when measuring the fine position of patterns in
background noise is obtained by the Fisher Information about positional parameters.
In fact, the Fisher Information inverse yields the minimum estimation variance.
The proposed approach is based on an abstract, functional model of the Receptive
Fields (RF) of the HVS, referred to as Virtual Receptive Field (VRF) and it is
tuned to statistical features of natural scenes. It is a complex-valued operator,
orientation-selective both in the space domain and in the spatial frequency domain.
The role of the VRF model is to extract the Positional Fisher Information (PFI) as
a measure of the pattern localizability loss. In the Image Quality Assessment (IQA)
Full Reference (FR) environment, subjective assessments refer to the retinal image
and lead to the MOS/DMOS values (Difference of Mean Opinion Score). The quality
calculated by the IQA metrics is objective and refers to the image reproduced on the
display. A parametric scoring function maps these metrics onto the MOS/DMOS
values and depends critically on the Viewing Distance (VD) of the subject from
the monitor in which the image is reproduced. When objective quality estimates
for different VDs are required, as in the case of auditoria, cinemas, classrooms, a
re-training procedure must be repeated for each different VDs. In the final part of
this thesis (Part IV), the problem of VD is dealt with from a theoretical point of
view and a model of the scoring function is defined for the case of blurred images
where image degradation substantially depends on the VD. Starting from a Fisher
Information loss model applied to the Gaussian distortion case in natural images, we
see that the VD is estimated from the data themselves. Several maps are given with
the aim of obtaining a DMOS prediction at different distances starting from the data
available for a specific distance, without performing new experiments. Moreover,
the theoretical results are verified on some most popular IQA FR methods and the
problem of VD correction is generalized to the other distortions. Finally, the impact
of isolated, long, strong, unidirectional edges on early vision is shown. As for the VD
correction, an a-priori linear estimator is presented. It does not require rectification
through a re-training procedure. Useful maps for detecting the position and the
intensity of the PFI losses in an image are given, and the isoluminance colors allow
to highlight strong and isolated edges, maintaining a constant intensity at the same
edge level. We have an easy visual feedback on the images themselves to see where
the greatest loss of information and the greatest discomfort due to blur are.
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Chapter 1

Introduction

1.1 Image Quality Assessment environment

Image Quality Assessment (IQA) is performed using subjective as well as objective
methods.

The subjective quality of an image is defined as an average of the quality scores
assigned to it by typical subjects, usually expressed in the MOS (Mean Opinion
Score) scale. Likewise, the DMOS (Difference of Mean Opinion Score) scale measures
the subjective degree of quality loss of an image with respect to its perfect quality
version.

Subjective methods are unpractical whenever the image quality must be assessed
in real time and repeatedly, such as in broadcasting. In these cases, algorithmic
methods are employed to calculate objective quality indices as estimates or predictions
of the subjective quality.

On the other hand, objective methods make use of a set of examples constituted
by empirical MOS/DMOS ratings, expressed by a pool of volunteer subjects that
visually compare a set of assorted, undistorted images with their degraded versions.
These images, annotated with their empirical MOS/DMOS values, form an IQA
database.

Several objective quality assessment methods and corresponding indices have
been proposed in the last decades, suited for different operative protocols [97, 81, 19].
Methods using a complete representation of the undistorted and degraded images, are
referred to as Full Reference (FR) IQA methods. For each set of images with artifacts
to be evaluated, the FR environment requires the complete set of pristine images.
Methods using incomplete representations are referred to as Reduced Reference (RR)
methods. RR requires only some features extracted from the pristine image set.
Finally, methods using only degraded images are referred to as No Reference (NR)
methods. In this case, no pristine image sets are required for the metrics calculation.
This thesis is concerned with FR methods.

In this thesis, we focus on four independent databases. The LIVE IQA Database
Release 2 (LIVE DBR2) [81] reports the quality ratings of 779 distorted versions of
29 reference images (included 145 blurred images) from about 23 subjects. Ratings
of subjective quality loss with respect to reference images were expressed on a
DMOS scale ranging from 0 (perfect quality) to 100 (bad quality) using a double
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stimulus strategy. The Tampere Image Database 2013 (TID2013) [75] contains 3000
distorted images, including 125 blurred images. Quality ratings were collected in five
independent labs and on the internet using more than 300 subjects. They were asked
to select the best image between two distorted images in direct comparison to the
reference image. The average quality scores were expressed on a MOS scale ranging
from 0 (bad quality) to 9 (perfect quality). The Computational and Subjective
Image Quality Database (CSIQ) [54] contains 30 reference images and 866 distorted
versions, including 150 blurred images. The database includes 5000 ratings of 25
subjects, and the ratings, obtained by comparative ratings between different images,
are reported in DMOS units. The LIVE Multiply Distorted Image Quality Database
(LIVE MD) [48] contains 15 reference images and 405 distorted images, including 45
blurred images, whose quality was rated by 37 subjects. The study was conducted
using a single stimulus with hidden reference strategy, using DMOS scores. All
databases contain natural images, i.e., images representing natural scenes, except
the image i25 of the TID2013 database.

1.2 Image Quality Assessment methods

One of the best performing methods in terms of linearity and r.m.s.e. is the Visual
Information Fidelity (VIF) [80, 81]. It is a natural image statistics based method and
it exploits Information Theory. Belonging to the broader class of the Information
Fidelity Criterion (IFC), VIF models the whole system as source (natural image),
channel (which implements the distortion process) and receiver (projection of the
image on the retina), and computes the mutual information between the wavelet
sub-bands of the reference and distorted images. The distortion model is obtained
by attenuating the source through the channel and adding Gaussian noise. VIF is
defined as the ratio of the test image information and the reference image information,
and the score of the metric is obtained from the sum of the mutual information of
all sub-bands.

The Multi-Scale Structural Similarity Index (MS-SSIM) [95] and the Feature
Similarity Index (FSIM) [109] are particular case of the wider class of the Structural
Similarity Index (SSIM). SSIM compares the reference and the distorted images
thorough the the mean intensity value (luminance), the standard deviation (contrast)
and the structure of the images in terms of correlation, once the means are removed
and the variances are normalized. These three operations are performed in the
spatial domain and a sliding window operator combines them in a local quality score.
The overall index is given by the mean of the local scores. To take into account the
different Viewing Distance (VD) a multi-scale version (MS-SSIM) uses five scales,
down-sampling the images by a factor of 2. On the other hand, FSIM uses phase
congruency (similarity) and the gradient magnitude (contrast) as image features.
As we will explain in the final part of this thesis, phase congruency implicitly takes
into account the different VD, so, also FSIM has a coarse VD correction.

Another structural similarity based method is the Gradient Magnitude Similarity
Deviation (GMSD) [108] that uses the gradient magnitude of the reference and
distorted images to have a local index on the map and the standard deviation as
pooling operator to obtain the overall quality index.



1.3 Framework 5

Still in use is the Peak Signal to Noise Ratio (PSNR), based on a logarithmic
form of the Mean Squared Error (MSE). Although it represents the energy of the
error signal, PSNR has a very poor correlation with perceptual image quality coming
from MOS/DMOS values.

The subsequent discussion of this thesis will have experimental results that will
be compared with the IQA methods presented above, but a comprehensive discussion
of the IQA methods is in [2].

1.3 Framework

In the search for a simple, linear model, the first step is to choose suitable operators
for the purpose (Part II). In the first part of this thesis, the entire theoretical part
of the Circular Harmonic Functions (CHF) [77, 65, 6, 63] was presented and useful
libraries to use these operators on images have been built. it has been observed
how the Laguerre-Gauss and Hermite-Gauss transforms reproduce the behavior of
the Human Vision System (HVS) well, and it was defined the Virtual Receptive
Field (VRF) model with a very simple formula that maintains its shape and linearity
even in the passage from space to frequency. The ML model in the Laguerre-Gauss
domain and the role of Positional Fisher Information (PFI) [69] have been reproposed.
Assuming, in fact, that the HVS performs the fine localization of the observed objects
with the best accuracy, from estimation theory, the maximum accuracy attainable
when measuring the fine position of patterns in background noise is pointed out
by the Fisher Information about positional parameters and the Fisher Information
inverse yields the minimum estimation variance. Therefore, this work focuses on how
blur discomfort depends on the undesired loss of the PFI about observed patterns.

In Part III, a new theoretical model for blur has been defined, based on the loss
of PFI, and the Scaled Blur Discomfort Index (SBDI) is defined. An experimental
verification of the estimator with the databases available in the literature has been
presented and an interesting application that allows us to calculate the loss of
a generic Optical Transfer Function (OPT) has been provided, i.e., the spatial
frequency response of the optical system, from the observed object to the retina,
through an isotropic Gaussian blur, within certain working ranges (the overall OTF
of a vision system, including the human eye, is a combination of the OTFs of cascaded
subsystems including the OTF of correcting lenses, the OTF of an imaging system,
the OTF of a display system, etc., and under the hypothesis of linearity, the overall
OTF is the product of the single OTFs). Moreover, two applications are reported:
the first one is about the equivalence of a sinc blur with a Gaussian blur, the second
one seeks the equivalence between an astigmatic Gaussian blur and the isotropic
Gaussian blur.

In Part IV, the VD and the role of the contents of the images are presented,
from an early vision point of view. When we talk about linearity, we cannot ignore
an in-depth study of the VD used in the experiments that led to the DMOS data
(Difference of Mean Opinion Score, the ratings of subjective quality loss with respect
to reference images). In some IQA methods, the images are re-scaled and filtered
to emulate different VDs, and the corresponding metrics are combined with the
criterion of optimizing the performance, but in the theoretical model, however, they
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lose linearity. As a practical application, a DMOS map has been provided, to allow
to calculate new DMOS values for the same blur level by changing the distance
parameter.

In the theoretical calculation of the SBDI estimator we always measure the Fisher
information loss, for each detail or cluster of details. The difference with real cases is
that the eye does not always see every object (isolated gradients that are too small
and not identifiable) or the displacement due to the loss of the Fisher Information
is so complex that noise is replaced by other noise (this is the case of textures)
and, therefore, our metric is too precise compared to what actually happens in
the HVS. In order to overcome this limit, a correction of the theoretical estimator
has been proposed, taking into account mainly the strong and isolated gradients
identified starting from a threshold that distinguishes them from textures and weak
edges, which we will call natural vision threshold, with reference to the index found
in Part III in the study of natural images affected by blur. The performances of
this new estimator, which always maintains a linearity of the model, are presented
and compared with the existing estimators in the literature that require neural
rectification. A very useful application for detecting the position and intensity of
the losses in an image has been provided: a certainty map that allows us to have
immediate visual feedback of the discomfort due to blur, highlighting the most
critical portions in degraded images.
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Chapter 2

Blur Perception and Viewing
Distance

2.1 Blur and Visual Discomfort

Among the various sources of non-clinical visual discomfort [20, 38], blur caused by
refractive errors is perhaps the most common one.

The discomfort associated with blur is often explained as a consequence of the
concentration of the spatial energy spectrum of the perceived image into some bands,
or as a byproduct of the discrepancy of this spectrum from the expected spectrum
of natural images [70, 106]. Alternative explanations addressed the mismatch of the
spatial patterns with the expected ones [50, 99, 4]. An in-depth account of previous
studies and mathematical models about the blur phenomenon is provided in [102].

Looking at a possible physical source of blur discomfort, three hypotheses are
examined in [71]. The first hypothesis is that discomfort is stimulated by the weak
response of the accommodation system. A second hypothesis, somewhat related to
the first one, is that discomfort arises because the “micro-fluctuations” observed
in the accommodation feedback signal become ineffective [17, 67, 59, 18]. A third
hypothesis maintains that, when an image is correctly projected onto the retina,
the receptive fields produce a parsimonious, sparse representation of this image [66].
The spatial spread caused by blur excites more receptors, producing a metabolic
overload [49].

In the present approach, blur is viewed as a cause of a cognitive loss, and the
discomfort as the immediate consequence of this loss. It is argued that, among the
basic cognitive functions of the Human Visual System (HVS), detection, recognition,
and coarse localization functions are strongly conditioned by the individual experience.
Conversely, it seems plausible that the fine localization function is committed to
stabler and inter-subjective functions of the HVS.

Based on the above consideration, the present approach starts from postulating
that, under normal conditions, the HVS performs the fine localization of the observed
objects with the best accuracy allowed by its physical macro-structure, given the
characteristics of the environment and man’s interaction.

This assumption is fundamental, because it is known from the estimation theory
that the maximum accuracy attainable when measuring the fine position of patterns in
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background noise is deduced from the Fisher Information about positional parameters.
In fact, the Fisher Information inverse yields the minimum estimation variance [91].

Therefore, the focus here is on how the discomfort of blurring depends on the
unwanted loss of PFI on observed patterns.

The present cognitive approach is agnostic as to whether the discomfort is related
to accommodation frustration or metabolic unbalances. On the other hand, it is
compliant with the fact that blur discomfort concerns the regions of visual interest
[87] and that blur is not always undesired or detrimental [85]. For instance, blur is
sometimes a wanted effect in photography and microscopy.

Previous analyses of the blur perception phenomenon were mainly oriented to
the study of the visual acuity, employing specific stimuli localized either in space,
such as edges, lines, crosses, or in the spatial frequency domain, such as sinusoidal
gratings, or even in both domains, such as Gabor wavelets [103].

The model presented here is oriented to the evaluation of the visual impact of
blur in the vision of natural scenes. To this purpose, a generic image projected on
the retina is viewed as an element of the random set of natural images, characterized
by stable statistical features.

The proposed approach is based on an abstract, functional model of the receptive
fields (RF) of the HVS, allowing for a direct computation of the PFI.

For analytical convenience, blur is modeled as a Gaussian shaped isotropic blur.
Then, the analysis is generalized to other types of blur, invoking a criterion of
informational equivalence with respect to isotropic Gaussian blur under the PFI
paradigm.

In Part III, the model-based discomfort predictions were first compared to
empirical data about the subjective quality loss of blurred images, which is argued
to be strictly related to blur visual discomfort. These data are available in organized
databases containing the results of experimental sessions finalized to IQA, conducted
for multimedia industry purposes [97, 10, 39]. Moreover, the model is applied to
blurred images annotated with ratings of visual discomfort. The results of these
experiments confirm the validity of the approach.

2.2 Full Reference environment and Viewing Distance

The typical scheme of IQA methods first consists of the local extraction of some
features suggested by similarity criteria or visual information loss among reference
and distorted images. This stage is followed by a pooling over the entire image of
the selected features, whose result is usually referred to as IQA metric.

The final stage is the application to the metric of a parametric scoring function
that map the metric values onto the MOS/DMOS scores.

The parameters are determined by interpolating the metric on the empirical
MOS/DMOS data contained in the IQA databases. The VQEG [93, 94] suggests a
logistic function using from three to five parameters. In [42] the scoring function is
a S-curve function regulated by three parameters.

The scoring function first depends on the database images, which are represen-
tative of the images of interest for a specific application. Most popular databases
contain natural images, i.e., images captured by optical cameras, usually experienced
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by subjects in their everyday life.
For a given images set, the scoring function depends critically on the experimental

settings and protocols employed in a database, and, specifically, on the VD [55]. In
fact, subjective MOS/DMOS scores are obtained by the images perceived by the
retina, which vary with the VD, while the objective quality is calculated from the
images reproduced on the display.

Unfortunately, the existing scoring functions lack an interpretation in terms
of the VD. By consequence, whenever the VD employed in an application differs
from the one used in experiments, it is necessary to modify the scoring function.
So, if objective quality estimates for different VDs are required, as in the case of
auditoria, cinemas, classrooms, etc., the re-training procedure must be repeated for
each different VDs.

In some IQA methods, namely the Multi-Scale Structural Similarity (MS-SSIM)
[98] and the Feature Similarity Index (FSIM) [109] methods, the dependence of their
scoring function on the VD is attenuated by mixing a set of metrics calculated at
different resolutions and encompassing the VD of addressed databases. Extending
this approach, in [35] a preprocessing stage is applied to different IQA methods.
Images are re-scaled and filtered to emulate different VDs, and the corresponding
metrics are combined with the criterion of optimizing the statistical performance.

All these methods do not elude the crucial necessity of specific experiments for
the blind determination of the right VD parameters. Noticeably, the VD has been
recently included as a learnable parameter in a CNN based NR IQA method [10].

In this work, following a quite opposite approach, the problem is tackled using a
theoretical viewpoint, based on principles and reasonable hypotheses. The essential
scope is to define an effective model of the scoring function explicitly related to the
VD.

To this purpose, the case of blurred images is adopted as a significant benchmark.
In fact, in this case, the image degradation substantially depends on the VD, being
scarcely influenced by additional environmental factors, such as room illumination
or display contrast ratio. In addition, modeling the effects of blur is mathematically
feasible, and relatively easy in the case of natural images.

The analysis conducted here stems from the overarching principle that the Human
Vision System (HVS) is an optimal device for fine pattern localization, given the
eye macro-structure. This feature is especially important for stereoscopic vision.
The outstanding consequence, drawn from information theory, is that the variance
of fine localization of structures in observed images is objective, and calculable as
a function of the degree of blur. It is approximated by the inverse of the Fisher
Information about the position of observed patterns.

Based on this principle and on well-known spectral properties of natural images,
the scoring function mapping the degree of Gaussian blur to the subjective quality
loss can be expressed in a closed form, where it was ascertained that this function
fits well empirical DMOS data provided of independent, well known IQA databases.

In Part IV, an essential account of these theoretical results is provided, with
some extensions about the role of the VD. One remarkable feature of the theoretical
model, referred to as the canonical model for IQA FR of blurred images, is that
the VD is estimated from the data themselves. Moreover, the applicability of the
theoretical results to some most popular IQA FR methods is verified, with the scope
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of applying them to the DMOS prediction at various distances starting from the
data available for a specific distance, without performing new experiments.
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Chapter 3

From Gabor Functions to
Harmonic Angular Functions

The discovery of spatial frequency and orientation tuned channels started the modern
spatial vision [13, 14] and, later, the existence of these channels was confirmed by
different indipendent studies, including signal mixture and adaptation experiments
[7, 34]. The postulate of independent spatial frequency and orientation channels
allows predicting detection thresholds for any signal pattern from the knowledge of
the Fourier spectrum of the stimulus and the sensitivity to single sinusoidal gratings
of different frequencies, i.e., the contrast sensitivity function. In the image processing,
an example of operator is the log-Gabor, which corresponds to a Gaussian shape in
log-frequency and in orientation. A log-Gabor is directly and completely defined by
its preferred spatial frequency and orientation and its bandwidth in each dimension.
In general, Gabor-filters are maximally localized jointly in space and frequency, have
a monotonically and smoothly decreasing response for frequencies and orientations
moving away from the preferred parameters, and no response to uniform fields.
These are all desirable properties for a subband decomposition. Linear filters are
also tuned to the phase of the stimulus as simple cells in primary visual cortex are
[22], even if, psychophysical performance seems not to depend on absolute phase
[79].

In the field of the 2-dimensional anisotropic visual filters, a two-dimensional
Gabor representation is an attractive framework for a unified theory of visual cortical
representation, because such filters simultaneously capture all the fundamental
properties of linear neural receptive fields in the visual cortex: spatial localization,
spatial frequency selectivity, and orientation selectivity. In particular, an optimal two-
dimensional Gabor filter can achieve very sharp spatial resolution but poor spectral
resolution in one orientation, while simultaneously achieving very sharp spectral
resolution but poor spatial resolution in the perpendicular orientation. Thus, none
of these standard models, when quantified, have polar separable two-dimensional
spectra; rather, these models (including generalized two-dimensional Gabor filters)
possess different orientation characteristics at different spatial frequencies and vice
versa. Any simple concatenation of any number of spatial differential operators in
a (neural) filter hierarchy which begins with an isotropic two-dimensional filter as
its first stage can only produce two-dimensional filters whose orientation selectivity
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and spatial frequency selectivity are independent (i.e., filters with polar separable
two-dimensional spectra). A neurophysiologically relevant corollary is that such
filters with polar separable two-dimensional spectra would have the same orientation
tuning curve for single thin bars as for sine wave gratings [23].

The Harmonic Angular Functions (HAFs) are polar-separable, and they have a
polar-separable two-dimensional Fourier transform. Compared to the two-dimensional
Gabor functions, they possess the same shape orientation tuning curve for sine wave
gratings as for thin bar (property 6 of [23]) allowing for two-dimensional analysis
both in space and in the spatial frequency domain [22], without involving the use
multiple channels, as usual [79]. The HAFs were introduced for digital image analysis
in [44, 43] leading to the definition of the Complex Harmonic Wavelets [46].
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Part II

Orthogonal Operators and ML
Model for Image Processing





15

Chapter 4

Object decomposition into
weighted sums of
orthogonal basis functions

4.1 Normalized Hermite Functions and Cartesian Shapelets
Basis Functions

High precision image processing and analysis is a fundamental requirement in many
fields of applications. Circular Harmonic Functions (CHF) are widely used in the
analysis of a wide range of textures, recreating synthetic objects that match very
well with the targets. It has also been shown that they reproduce the behavior of
the Human Visual System (HVS) with applications such as restoring blurry moving
text images, blurry sharp images, and blurry natural images. [15, 72].

We now refer to a linear decomposition of the object observed in a series of
basis functions with a set of weighted Hermite polynomials corresponding to a
distorted gaussians [77]. Unlike the wavelet transform which decomposes the image
into a sum of basis functions of different scales but with a set shape, the set of
Hermite polynomials decompose the image into a series of compact disjoint objects
of arbitrary shapes. The normalized Hermite functions ϕn have the orthogonality
property: ∫ +∞

−∞
ϕn (x)ϕm (x)dx = δmn (4.1)

where δmn is the usual Kronecker δ, which is one when m = n and zero otherwise.
ϕn can be thought of as shape perturbations around the Gaussian ϕ0(x), so the
Shapelets dimensionless basis functions are defined as distorted Gaussians:

ϕn (x) ≡
[
2nπ1/2n!

]−1/2
Hn (x) e−x2/2 (4.2)

where Hn(x) is the Hermite polynomials of order n, with n ≥ 0:

Hn (x) = (−1)n ex2 dn

dxn
e−x2 (4.3)
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The first few terms of the Hermite polynomials are:

H0 (x) = 1
H1 (x) = 2x
H2 (x) = 4x2 − 2
H3 (x) = 8x3 − 12x
H4 (x) = 16x4 − 48x2 + 12

(4.4)

with the useful recurrences and derivatives properties:

Hn+1 (x) = 2xHn (x) − 2nHn−1 (x)

H ′
n (x) = 2nHn−1 (x)

Hn (x) = (−1)n ex2 dn

dxn
e−x2 = ex2/2

(
x− d

dx

)
e−x2/2

(4.5)

In Fig. 4.1 are plotted the first terms of the Hermite polynomials.

Figure 4.1. The first five terms of the Hermite polynomials.

The Hermite functions can be efficiently computed using a three-term recursion
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Table 4.1. Normalization factor dn = π1/42n/2
√
n! increasing n.

n dn 1/dn

0 1.33 0.75
1 1.88 0.53
2 3.77 0.27
3 9.22 0.11
4 26.09 0.04

relation from two starting values:

ϕ0 (x) ≡ π−1/4e−(1/2)x2

ϕ1 (x) ≡ π−1/4√
2xe−(1/2)x2

ϕn+1 (x) ≡
√

2
n+ 1xϕn (x) −

√
n

n+ 1ϕn−1 (x)

(4.6)

The unnormalized Hermite polynomials Hn (x) are ill-conditioned in numerical
applications but have coefficients which are integers. The relationship between
normalized and unnormalized Hermite functions is given in Tab.4.1.

Recall the first five expansion terms:

ϕ0 (x) ≡ π−1/4e−(1/2)x2

ϕ1 (x) ≡
√

2
π1/4xe

−(1/2)x2

ϕ2 (x) ≡
[√

2x2 − 1√
2

]
π−1/4e−(1/2)x2

ϕ3 (x) ≡
[√

4/3x3 −
√

3x
]
π−1/4e−(1/2)x2

ϕ4 (x) ≡
[√

2/3x4 −
√

6x2 +
√

6/4
]
π−1/4e−(1/2)x2

(4.7)

The Hermite functions satisfy recursion relations which are very useful in appli-
cations such as

xϕn (x) =
√

(n+ 1) /2ϕn+1 (x) +
√
n/2ϕn−1 (x) (4.8)

In Fig. 4.2 are plotted the first terms of the Shapelets polynomials.
So, in a more general form, ϕn (x) are rescaled to the dimensional basis functions:

Bn (x;β) ≡ β−1/2ϕn

(
β−1x

)
(4.9)

where β is the scale close to the size of the object. Applying these functions on the
one-dimensional signal S(x), it can be expressed as:

S (x) =
∑

n

SnBn (x;β) (4.10)
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Figure 4.2. The first five terms of the Laguerre polynomials.

Also Bn (x;β) function has the orthonormality property:∫ +∞

−∞
Bn (x;β)Bm (x;β)dx = δmn (4.11)

Thus, we can solve the coefficients as follow:

Sn =
∫ +∞

−∞
S (x)Bn (x;β)dx (4.12)

The series S(x) converges quickly if the object is enough compact and if β and
the origin are respectively close to the size and the location of the object. The
dimensional basis functions Bn (x;β) increase the oscillation extension with the
order n and decrease the scale factor, maintaining β constant.

From a computational point of view, looking at 4.8, the first derivative can be
computed by the following recurrence:

dϕn (x)
dx

= −
√
n+ 1

2 ϕn+1 (x) +
√
n

2ϕn−1 (x) (4.13)

or using this alternative form:

dϕn (x)
dx

= −xϕn (x) +
√

2nϕn−1 (x) (4.14)
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both with n ≥ 0, using as initialization:

dϕ0 (x)
dx

= − 1√
2
ϕ1 (x) = −xϕ0 (x) = −xπ−1/4e−(1/2)x2 (4.15)

Anyway, in practical application is preferred the following explicit formula for
the derivative of ϕ1 (x):

dϕ1 (x)
dx

=
√

2
[
1 − x2

]
ϕ0 (x) =

√
2π−1/4e−(1/2)x2 [1 − x2

]
(4.16)

The one-dimensional formalism is easily extended to image domain. Each
two-dimensional basis function is the tensor product of two one-dimensional basis
functions. Defining the dimensionless functions:

ϕn (x) ≡ ϕn1 (x1)ϕn2 (x2) (4.17)

where x = (x1, x2) and n = (n1, n2). Considering again of as perturbations around
the 2-dimensional Gaussian ϕ00 (x), the two-dimensional basis function become:

Bnx1 nx2
(x1;x2;β) = Bnx1

(x1;β)Bnx2
(x2;β) (4.18)

It is possible to prove that they maintain the orthogonality property:∫ +∞

−∞
Bn (x;β)Bm (x;β)d2x = δm1n1δm2n2 (4.19)

Finally, the image I (x) can be decomposed in this orthonormal, complete basis
as follows:

I (x) =
+∞∑

n1,n2=0
InBn (x;β) (4.20)

with coefficients:
In =

∫ +∞

−∞
I (x)Bn (x;β)d2x (4.21)

In Fig. 4.3 are plotted the overall 3D plots of the Hermite polynomials.

4.2 Quantum Harmonic Oscillator approach

Recall the previous formula for the Shapelets dimensionless basis functions:

ϕn (x) ≡
[
2nπ1/2n!

]−1/2
Hn (x) e−x2/2 (4.22)

We see that these are also the eigenfunctions of the Quantum Harmonic Oscillator
(QHO) [77], so for our calculus we can use the formalism of the Quantum Mechanics.
The Fourier transform follow from the succeeding considerations. The dimensionless
1D equation of the QHO looks like:

ĤΦ =
(
x̂2 + p̂2

)
Φ = EΦ (4.23)



20
4. Object decomposition into weighted sums of

orthogonal basis functions

Figure 4.3. The overall 3D plots of the Hermite polynomials.

In position space, the base kets used are the position kets x̂| x′⟩ = x′| x′⟩, which
has the orthonormal property ⟨x′′|x′⟩ = δ(x′′ − x′). Considering the kets basis
| α⟩ =

∫
dx′| x′⟩ ⟨x′|α⟩, we have for any physical states ⟨β|α⟩ =

∫
dx′ϕ∗

β(x′)ϕα(x′),
where ϕα(x′) is equal to ⟨x′|α⟩. Similar consideration for momentum space, with
the base kets p̂| p′⟩ = p′| p′⟩, the orthonormal property ⟨p′′|p′⟩ = δ(p′′ − p′) and the
expansion in the base kets | α⟩ =

∫
dp′| p′⟩ ⟨p′|α⟩. At this point, using momentum

as generator of translations:

p̂| α⟩ =
∫
dx′| x′〉 (−iℏ ∂

∂x′
〈
x′∣∣α〉) (4.24)

⟨x′|p̂|α⟩ = −iℏ ∂

∂x′
⟨x′|α⟩ (4.25)

(we avoid the proof) and consequently:

⟨x′|p̂|p′⟩ = p′ ⟨x′|p′⟩ = −iℏ ∂

∂x′
⟨x′|p′⟩ (4.26)

and finally, we have the relation between position and momentum space:

⟨x′|p′⟩ = Ae
ip′x′
ℏ (4.27)

where the normalization imposes that the term A is equal to 1√
2π

and hence:

| Φ⟩ =
∫
dp| p⟩ ⟨p|Φ⟩ =

∫
dp| p⟩ϕ(p) (4.28)

ϕ (x) = ⟨x|Φ⟩ =
∫
dp ⟨x|p⟩ϕ (p) =

∫
dp

1√
2π
e

ip′x′
ℏ ϕ (p) (4.29)
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So, from the symmetry between x and p, we deduce that the Fourier transform of
the basis function should be, up to a multiplicative constant, equal to the same basis
function and we have:

ϕ̃ (k) = inϕn (x) (4.30)

In the image case (bidimensional), the Fourier transform of an image consists of
the components of a vector with shapelets coefficients and a scale parameter β,
multiplied with factors of i, and with scale 1/β.

Looking at the recursive formulas 4.13-4.16, the similarity of the results of the
operations of differentiation and of multiplication by x make it possible to define so-
called raising and lowering operators. The motive for these names is self-explanatory
in that the raising operator R, when applied to a Hermite function of degree n, gives
a result which is proportional to the Hermite function of the next highest degree.
Similarly, the lowering operator L reduces the degree of a Hermite function by one.
For the raising operator we have:

R ≡
(
d

dx
− x

)
(4.31)

Rϕn = −
√

2 (n+ 1)ϕn+1 (4.32)

and for the lowering operator:

L ≡
(
d

dx
+ x

)
(4.33)

Lϕn =
√

2nϕn−1 (4.34)

Thus, the Hermite eigenoperator

H ≡
(
d2

dx2 − x2
)

(4.35)

Hϕn = − (2n+ 1)ϕn (4.36)

can be written in terms of the raising and lower operators as

H ≡ 1
2 (RL + LR) (4.37)

The operations of differentiation and multiplication by x can also be expressed in
terms of the raising and lowering operators:

xϕn = 1
2 (L − R)ϕn =

√
n/2ϕn−1 +

√
(n+ 1) /2ϕn+1 (4.38)

d

dx
ϕn = 1

2 (L + R) =
√
n/2ϕn−1 −

√
(n+ 1) /2ϕn+1 (4.39)

For our practical interest, we can use the lowering and raising operators defined
as:

â ≡ 1√
2

(x̂+ ip̂) (4.40)
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â† ≡ 1√
2

(x̂− ip̂) (4.41)

They commute as
[
â, â†

]
= 1 and are related to the basis function as âϕn =

√
nϕn−1,

â†ϕn =
√
n+ 1ϕn+1. The Hamiltonian can then be rewritten as Ĥ = N̂ +1/2, where

the number operator N̂ ≡ â†â has the property that N̂ϕn = nϕn. The dimensional
basis functions are the eigenfunctions of the Hamiltonian:

Ĥβ = 1
2
[
β−2x̂2 + β2p̂2

]
(4.42)

With the bra-ket notation, the dimensional basis functions are then given by

Bn (x;β) = ⟨x|n;β⟩ (4.43)

since Ĥβ |n;β⟩ = (n+ 1
2) |n;β⟩.

4.3 From cartesian to polar basis functions – A first
evidence

Exploiting the analogy with Quantum Mechanics, we give a first proof of the
transition from a Cartesian base to a polar base [77]. The Cartesian basis functions
discussed above are separable in the Cartesian coordinates x1 and x2. It is also
useful to construct basis functions which are separable in the polar coordinates x
and φ. These are eigenstates of the Hamiltonian Ĥ and of the angular momentum
L̂ simultaneously. Defining the left and right lowering operators as

âl = 1√
2

(â1 + iâ2) (4.44)

âr = 1√
2

(â1 − iâ2) (4.45)

We have the non-vanishing commutators between these operators if:[
âl, â

†
l

]
=
[
âr, â

†
r

]
= 1 (4.46)

where â†
l and â†

r are the raising operators. In terms of raising and lowering operators,
the Hamiltonian and the angular momentum operators

Ĥ = 1
2
[
x̂2

1 + x̂2
2 + p̂2

1 + p̂2
2
]

(4.47)

L̂ = x̂1p̂2 − x̂2p̂1 = i
(
â1â

†
2 − â†

1â2
)

(4.48)

can be written as
Ĥ = N̂r + N̂l + 1 (4.49)

L̂ = N̂r − N̂l (4.50)

where N̂l = â†
l âl, N̂r = â†

râr, so the operators â†
l , â†

r, âl, and âr can thus be thought
of as creating and destroying left- and right-handed quanta. Since the operators
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N̂r and N̂l form a complete set of commuting observables, their eigenstates | nl, nr⟩
provide a complete basis for our function space. By applying the raising operators
several times on the ground state, we can build the quantum states:

| nr, nl⟩ = (â†
r)nr (â†

l )
nl

√
nr!nl!

| 0, 0⟩ (4.51)

and it is easy to verify that

Ĥ |nl, nr⟩ = (nr + nl)| nl, nr⟩ (4.52)

L̂ |nl, nr⟩ = (nr − nl)| nl, nr⟩ (4.53)

then, we can recall the states in terms of their energy and angular momentum
numbers, n = nr + nl and m = nr − nl as

| n,m⟩ = | nl = 1
2 (n−m),nr= 1

2 (n+m)⟩ (4.54)

The angular momentum quantum number takes on the n + 1 values given by
m = −n, −n + 2, . . . , n − 2, n. Using the x-representation for â†

l and â†
r, we

can see that the basis function χnl,nr (x, φ) ≡ ⟨x|nl, nr⟩ for the angular momentum
states are given by

χnl,nr (x, φ) = [πnl!nr!]−1/2Hnl,nr (x) e−x2/2ei(nr−nl)φ (4.55)

where Hnl,nr (x) are the polar Hermite polynomials. The useful recursive function
can be used to compute them as follow:

l − k

x
H

k,l
(x) = lHk,l−1 (x) − kHk−1,l (x) (4.56)

initialized with H0,0 (x) = 1, with the diagonal polynomials computed as

Hk,k (x) = Hk+1,k−1 (x) − x−1Hk,k−1 (x) (4.57)

They are symmetric, i.e., Hk,l (x) = Hl,k (x), and their derivative obey

H ′
k,l (x) = kHk−1,l (x) + lHk,l−1 (x) = 2xHk,l (x) −Hk+1,l (x) −Hk,l+1 (x) (4.58)

Following, the first few terms of the polar Hermite polynomials:

H0,0(x) = 1
H0,1(x) = H1,0(x) = x
H0,2(x) = H2,0(x) = x2

H1,1(x) = x2 − 1
H0,3(x) = H3,0(x) = x3

H1,2(x) = H2,1(x) = x3 − 2x
H0,4(x) = H4,0(x) = x4

H1,3(x) = H3,1(x) = x4 − 3x2

H2,2(x) = x4 − 4x2 + 2

(4.59)
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Dimensional polar basis functions can be constructed as

Anl,nr (x, φ;β) = β−1χnl,nr

(
β−1x, φ

)
(4.60)

and it preserves the orthonormal property:∫ 2π

0
dφ

∫ +∞

0
dxxAnl,nr (x, φ;β)Anl′,nr ′ (x, φ;β) =

⟨nl, nr;β|nl′, nr′;β⟩ = δnl,nl′δnr,nr ′

(4.61)

From the equations 4.44, 4.45 and 4.51 we can obtain the following relation
between cartesian and polar bases:

⟨n1, n2|nl, nr⟩ = 2−(1/2)(nr+nl)inr−nl

[
n1!n2!
nr!nl!

]1/2
δn1+n2,nr+nl

×

×
nr∑

nr ′=0

nl∑
nl′=0

inl′−nr ′
(
nr

nr′

)(
nl

nl′

)
δnr ′+nl′,n1

(4.62)

and the result is that only the states with n1 + n2 = nr + nl are mixed.The first
angular momentum states | n,m⟩ in cartesian states are:

|n = 0 , m = 0⟩ = |0 , 0⟩

|n = 1 , m = 1⟩ = 1√
2

(|1 , 0⟩ + i |0 , 1⟩)

|n = 1 , m = −1⟩ = 1√
2

(|1 , 0⟩ − i |0 , 1⟩)

|n = 2 , m = 2⟩ = 1
2
(
|2 , 0⟩ + i

√
2 |1 , 1⟩ − |0 , 2⟩

)
|n = 2 , m = 0⟩ = 1√

2
(|2 , 0⟩ + |0 , 2⟩)

|n = 2 , m = −2⟩ = 1
2
(
|2 , 0⟩ − i

√
2 |1 , 1⟩ − |0 , 2⟩

)

(4.63)

Because the polar shapelet states are eigenstates of the angular momentum, they
have simple rotational properties. Indeed, under a finite rotation by an angle ρ, the
polar states transform as

| nr, nl⟩ ′ = e−iρL̂| nr, nl⟩ = e−iρ(nr−nl)| nr, nl⟩ (4.64)

In this basis, finite rotations thus correspond only to a phase factor. It is therefore
a simple matter to rotate an arbitrary function f (x). First, we decompose it into
polar shapelet coefficients fnr,nl

= ⟨nr, nl;β|f⟩, with an appropriate shapelet scale
β. The coefficients of the rotated function are given by

f ′
nr,nl

= e−iρ(nr−nl)fnr,nl
(4.65)

By contrast, operating a finite rotation in the cartesian basis requires an infinite
number of applications of the R̂ = −iL̂ operator. On the other hand, convolutions do
not have simple analytical expressions in the polar basis, as they do in the cartesian
basis.
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4.4 Fourier Transform of the Hermite Functions

The Hermite functions are (to within a factor of in) their own Fourier transform.
Consequently, one can sometimes easily obtain the Hermite series of a function
f(y) by calculating the Hermite expansion of its Fourier transform F (k) and then
multiplying the coefficients by in. A function that is a truncated series of Hermite
functions can be expressed as:

fN (x) =
N∑

j=0
ajϕj (x) (4.66)

where ϕj (x) ≡ Hj (x) e−x2/2. If we define the forward and inverse transforms via

F (k) ≡ (2π)−1/2
∫ +∞

−∞
eikxf (x)dx (4.67)

f (x) ≡ (2π)−1/2
∫ +∞

−∞
e−ikxF (k)dk (4.68)

then
inϕn (k) ≡ (2π)−1/2

∫ +∞

−∞
eikxϕn (x)dx (4.69)

Thus, the Hermite functions are, to within in, their own Fourier transforms. For
the Hermite functions of degree 4n, i4n = 1 so that ϕ4n (x) is self-reciprocal with
respect to the Fourier Transform. Conversely, a function which is Fourier Transform
self-reciprocal has a Hermite series expansion involving only the Hermite functions
whose degree is an integer multiple of four.

4.5 Complex polar-separable functions

Shapelets are a complete, orthonormal set of 2D basis functions [65, 6, 63]. A linear
combination of these functions can be used to model any image, in a similar way
to Fourier or wavelet synthesis. The surface brightness f(x) of an object can be
written as

f (x) =
+∞∑
n=0

n∑
m=−n

anmχnm (x − xc;β) (4.70)

where β is a scale parameter, and xc is the position of the center of the basis
functions. These functions are defined only for combinations of n and m where both
are even or both are odd. In the field of optical systems, it is customary to define
the set of mode functions as

Φm
p (r, θ) =

[ (2 − δ0m) p!
πβ2 (p+ |m|)!

]1/2
x|m|/2e−x/2L|m|

p (x) eimθ (4.71)

where x = r2

β2 and L
|m|
p (x) are the standard associated Laguerre polynomials. The

functions Φm
p are conventionally called the Gaussian beam pm-modes or simply the

pm-modes and form an orthonormal set over the infinite Euclidean plane. The radial
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index can take the values p = 0, 1, 2, . . . ,∞, and the azimuthal index m can take
the values m = 0,±1,±2, . . . ,±∞.

Lq
p (x) ≡ x−qex

p!
dp

dxp

(
xp+qe−x

)
(4.72)

with the useful recurrences:

Lq
0 (x) = 1

Lq
1 (x) = 1 − x+ q

Lq
p (x) =

(
2 + q − 1 − x

p

)
Lq

p−1 (x) −

−
(

1 + q − 1
p

)
Lq

p−2 (x) = Lq+1
p (x) − Lq+1

p−1 (x) =
p∑

i=0
Lq−1

i (x)

(4.73)

and derivatives properties:

dLq
p (x)
dx

= x−1
[
pLq

p (x) − (p+ q)Lq
p−1 (x)

]
= −Lq+1

p−1 (x) (4.74)

dL0
p (x)
dx

=
dL0

p−1 (x)
dx

− L0
p−1 (x) = −

p−1∑
i=0

L0
i (x) (4.75)

In Fig. 4.4 are plotted the first terms of the Laguerre polynomials.
Using the convention in [65], and remember the analogy with the Quantum

Mechanics, it is more usual to label the modes in terms of the energy quantum
number n = 2p + |m| and m, rather than p and m. The eigenfunctions can be
defined as:

χn,m (r, θ;β) = −1(n−|m|)/2

β|m|+1 ×

×
[ ((n− |m|) /2)!
π ((n+ |m|) /2)!

]1/2
r|m|L

|m|
(n−|m|)/2

(
r2

β2

)
e

− r2
2β2 e−imθ

(4.76)

where the index n describes the radial oscillations and the index m describes the
order of rotational symmetry.

As in the case of Cartesian shapelets, the polar shapelet basis functions are
orthonormal:∫ +∞

−∞

∫ +∞

−∞
χ∗

n,m (r, θ;β)χn′,m′ (r, θ;β) rdrdθ = δn,n′δm,m′ (4.77)

and complete:

+∞∑
n=0

n∑
m=−n

χn,m (r, θ;β)χn,m (r′, θ′;β) = δ
(
r − r′) δ (θ − θ′) (4.78)

where δ is the Kronecker delta and the asterisk denotes complex conjugation.
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Figure 4.4. The first five terms of the Laguerre polynomials.

For reasonable choices of the centroid xc and scale size β, the image shape informa-
tion is contained within only the first few shapelet coefficients. The two-dimensional
Gauss-Laguerre continuous mode functions are the simultaneous eigenstates of en-
ergy and angular momentum for the two-dimensional isotropic quantum harmonic
oscillator. The main advantage of using the Gauss-Laguerre polynomials is the
high quality of the image reconstruction for each type of shape. In addition, we
have excellent data compression by simply setting the minimum and maximum
physical scale of interest. The deviation of the coefficients of order greater than n
contains a small amount of information at high spatial frequencies, which, however,
are corrupted by noise. In the reconstruction, however, we must pay attention to
the possible artifacts created by the truncation. Orthonormality ensures that the
shapelet coefficients an,m are given by

an,m =
∫ 2π

0
dθ

∫ +∞

0
rdrf (r, θ)χn,m (r, θ;β) (4.79)

These are Gaussian-weighted multipole moments of the surface brightness.
Thus, in polar coordinates, we have the brightness of f(r, θ) [64] equal to:

f (r, θ) =
+∞∑
n=0

n∑
m=−n

an,mχn,m (r, θ;β) (4.80)
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Figure 4.5. The overall 3D plots of the Laguerre polynomials. Each pair of columns
represents the real and imaginary components of the signal: the basis functions are
only defined if n and m are both even or both odd. The polar shapelet basis functions
and coefficients are also complex numbers. However, the constraint that a combined
image should be a wholly real function introduces degeneracies, an,m = a∗

n,−m and the
coefficients with m = 0 are wholly real.

These are successive perturbations around a Gaussian of width β, parameterized
by indices n and m. The mathematics of a shapelets is somewhat analogous to
Fourier synthesis, but with a compact support well-suited to the modelling of localized
image shapes. For example, a shapelet decomposition can similarly be truncated to
eliminate the highly oscillatory basis functions that correspond noise in the original
image. A polar shapelet decomposition conveniently separates components of an
image that are intuitively different (see Fig. 4.5). The index n describes the total
number of oscillations (spatial frequency) and also the size (radius) of the basis
function. The index m describes the degree of rotational symmetry of the basis
functions. Basis functions with m = 0 are rotationally invariant. A circularly
symmetric object contains power only in these states; its flux and radial profile are
defined by the relative values of its m = 0 coefficients. Basis functions with |m| = 1
are invariant only under rotations of 360°. These coefficients encode an object’s
centroid: their real and imaginary parts correspond to displacements in the x and
y directions. Alternatively, their moduli correspond to an absolute distance, and
their phases indicate a direction. Basis functions with |m| = 2 are invariant under
rotations of 180°, and become negative versions of themselves under rotations of
90°. These are precisely the properties of an ellipse. Indeed, an object’s Gaussian-
weighted ellipticity e ≡ e1 + ie2 is simply given by f2,±2. Its unweighted ellipticity
is a combination of all of the |m| = 2 shapelet coefficients. Ellipticity estimators can
also incorporate coefficients with |m| = 6, 10, 14, ..., because their basis functions
also contain at least the necessary symmetries. All linear transformations can be
described in shapelet space by the mixing of power between a few adjacent shapelet
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coefficients. An initially circular object may contain power in all of its m = 0
coefficients. After a small shear, it also contains power in its |m| = 2 coefficients:
the combination of circularly-symmetric plus quadrupole states produces an ellipse.
Using shapelets, every shapelet coefficient with |m| = 2 can provide a statistically
independent ellipticity estimator. Multiple shear estimators are very useful. Firstly,
they can act as a consistency check to examine measurement errors within each
object. They can also be combined to increase S/N . For example, it is possible to
take a linear combination of |m| = 2 coefficients that is independent of the choice of
β. However, the most successful estimator involves a multiple multipole combination
of |m| = 2, 6, 10, ... shapelet coefficients.

This simple expression results from the fact that only the m = 0 basis functions
are invariant under rotations. These are given by

χn,0 (r;β) = −1n/2

β
√
π
L0

n/2

(
r2

β2

)
e

− r2
2β2 (4.81)

We expand the first few rotationally invariant basis functions:

χ0,0 (r;β) = 1
β

√
π
e

− r2
2β2

χ2,0 (r;β) = −1
β

√
π

(
1 − r2

β2

)
e

− r2
2β2

χ4,0 (r;β) = 1
β

√
π

(
1 − 2 r

2

β2 + 1
2
r4

β4

)
e

− r2
2β2

χ6,0 (r;β) = −1
β

√
π

(
1 − 3 r

2

β2 + 3
2
r4

β4 − 1
6
r6

β6

)
e

− r2
2β2

χ8,0 (r;β) = 1
β

√
π

(
1 − 4 r

2

β2 + 6
2
r4

β4 − 4
6
r6

β6 + 1
24
r8

β8

)
e

− r2
2β2

χ10,0 (r;β) = −1
β

√
π

(
1 − 5 r

2

β2 + 10
2
r4

β4 − 10
6
r6

β6 + 5
24
r8

β8 − 1
120

r10

β10

)
e

− r2
2β2

(4.82)

Thus, we developed the formalism of polar shapelets, in which an image is
decomposed into components with explicit rotational symmetries. Whilst the original
Cartesian shapelets remain useful in certain situations, the polar shapelets, which
are separable in r and θ, frequently provide a more elegant and intuitive form.

In Fig. 4.5 are plotted the overall 3D plots of the Laguerre polynomials.
Cartesian shapelets are real functions, but polar shapelet basis functions χn,m

and coefficients an,m are both complex. However, their symmetries

χn,−m (r, θ;β) = χ∗
n,m (r, θ;β) = χn,m (r,−θ;β) (4.83)

simplify matters somewhat if we are concerned only with the representation of real
functions f(x), such as the surface brightness of an image. Equations 4.77 and 4.83
imply that f(x) is real if and only if

an,−m = a∗
n,m (4.84)
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orthogonal basis functions

Coefficients with m = 0 are thus wholly real. All polar shapelet coefficients are
paired with their complex conjugate on the other side of the line m = 0. Therefore,
even though the polar shapelet coefficients an,m are generally complex, the number
of independent parameters in the shapelet decomposition of a real function is
conserved from the Cartesian case. A set of Cartesian shapelet coefficients an1,n2

with n1 + n2 ≤ nmax can be transformed, into polar shapelet representation with
n ≤ nmax, using

an,m = 2−n/2im
[

n1!n2!
((n+m) /2)! ((n−m) /2)!

]1/2
δn1+n2,n×

×
nr∑

nr ′=0

nl∑
nl′=0

im′
(

(n+m) /2
nr′

)(
(n−m) /2

nl′

)
δnl′+nr ′,n1an1,n2

(4.85)

4.6 Fourier Transform of the Laguerre-Gauss Functions
The Harmonic Angular Filter (HAF) are complex-valued and polar-separable func-
tions formed by the product of a radial isotropic profile with an azimuthal harmonic
function. Considering only the first-order component of a local expansion over the
orthogonal family of the Laguerre Gauss (LG) functions [66, 79, 46] it is possible
to define the Virtual Receptive Field model (VRF, whose concept will be better
extended in Part III) with a very simple formulas:

h(r, φ) = r

2πs2
G

e
− r2

2sG
2 ejφ (4.86)

where r =
√
x2

1 + x2
2, φ = tg−1x2

x1
and sG is a parameter that defines the spatial

resolution as the grid in the background in Fig. 4.6.

Figure 4.6. (left) |h(x1, x2)|, (center) Re{h(x1, x2)}, (right) Im{h(x1, x2)}. They represent,
respectively, the magnitude of the Point Spread Function (PSF) of the VRF, its real
and imaginary parts, referred to the 1 arcmin ideal retina grid.

With reference to the spatial frequency domain, defined by the horizontal and
vertical frequencies f1,f2, and to the polar coordinates ρ =

√
f2

1 + f2
2 and ϑ =

arctan

(
f2
f1

)
, where the ρ [22] is referred to as the radial frequency and ϑ is the

azimuth, the Fourier spectrum H(ρ, ϑ) is defined as

H(ρ, ϑ) = j2π
(
ρe−S2

Gρ2 · ejϑ
)

(4.87)
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where j is the imaginary unit. It represents the Virtual Neural Transfer Function
(VNTF, see Part III) and it indicates how much the complex amplitude of a single
harmonic image component is modified by the VRF. This spectrum is polar separable,
i.e., it is the product of a function of the radial frequency, and a function of the
azimuth, as shown in Fig. 4.7.

Figure 4.7. (left) |H(f1, f2)|, (center) Re{H(f1, f2)}, (right) Im{H(f1, f2)}. They rep-
resent, respectively, the magnitude of the VNTF, its real and imaginary parts in the
spatial frequency plane. The vertical and horizontal spatial frequencies span the (−30, 30)
cycles/degree range.
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Chapter 5

ML estimator and Positional
Fisher Information

5.1 Pattern localization
Pattern localization is one of the most critical issues of artificial vision. Classical
applications of pattern recognition and localization are found in robotics (with
applications in the field of automatic inspection in industrial production), as well
as automatic driving. Accurate pattern localization also plays a vital role for
images registration in many relevant applications, such as image mosaicing, video
compression and enhancement, multi-spectral overlap, etc. On the other hand, the
exponential growth of large scientific image databases in different domains (e.g.,
remote sensing, medical imaging, genomics, climate modeling, astrophysics, etc.)
demands for effective and accurate pattern recognition techniques to automate the
exploration of data. The search of images in large archives distributed on the web
is increasing in the world of Internet. Therefore, Content-Based Image Retrieval
(CBIR) constitutes one of the most relevant challenges in the area of multimedia
image processing.

The proposed method is suited for a large variety of applications, such as image
archive exploration, data mining, map registration for telesensing and medical
imaging, optical telemetry. Besides, it has been employed for motion estimation in
video sequences that were required to be robust to rotation and zoom. A simpler
form for computer-assisted reassembly of fragmented frescoes in the context of a
research program for artwork recovery has been also experimented.

5.2 ML estimate in the Gauss-Laguerre domain
A set of consecutive points (pixels) of an image are by definition independent on the
plane and equally spaced. It is possible to work on single spots and then combine
the results for the study of an entire image I(x) [69]. We consider I(x) a noisy
version, translated into position b = [b1, b2]T , rotated by φ and scaled with respect
to parameter a, of the reference image Ĩ(x), so we have:

w (Rφ (x − b)) I (x) = w (Rφ (x − b)) Ĩ
(
Rφ

(x − b
a

))
+ v (x) (5.1)
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where Rφ =
[
cos (φ) sin (φ)

−sin (φ) cos (φ)

]
is a rotation operator and v (x) is the white circular

Gaussian, zero expected value, random, added noise with power density spectrum
equal to (N0/4). To estimate the parameters b, φ and a, we need a window w (x) to
isolate the objects to be identified in the image. For each portion of the corrupted
image analyzed, the similar portion of the reference image is rotated and scaled to
search for corresponding patterns, by varying the size of the window according to
the variation of the scale factor. The conditional probability density of I(x) w.r.t.
b, φ and a corresponds to the p.d.f. of v (x):

p (I (x) /a, φ,b) = pv

(
w (Rφ (x − b))

[
I (x) − Ĩ

(
Rφ

(x − b
a

))])
(5.2)

The maximum likelihood functional for our two-dimensional study is the following
(we have assumed v (x) as an implementation of a random Gaussian process with
zero expected value):

ln Λ (I (x) ; a, φ,b) = − 2
N0

∫∫
|w (Rφ (x − b))|2

∣∣∣∣I (x) − Ĩ

(
Rφ

(x − b
a

))∣∣∣∣2dx
(5.3)

The scale factor with respect to the size of the window used is a critical point
because extracted patterns could be introduced to the analyzed area of the reference
image or, on the contrary, patterns of interest could be eliminated, even in the
case of correct positioning and correct orientation. Recalling the Gauss-Laguerre
polynomials seen in the previous chapter Φq

p (r, θ), it is possible to represent locally
each type of angular harmonic by means of its series expansion with respect to this
orthonormal basis:

Φq
p (r, θ) =

[ (2 − δ0q) p!
πa2 (p+ |q|)!

]1/2(r2

a2

)|q|/2

e−(r2/a2)/2L|q|
p

(
r2

a2

)
eiqθ (5.4)

where we have replaced β with a (scale parameter) and x = r2

a2 . Using a symmetrical

circular Gaussian window w (x) = V (x/σ), with V (x) = e−π|x|2 , we can avoid the
explicit scale parameter a as follow:

Φq
p (r, θ) = (−1)p 2(|q|+1)/2π|q|/2

[
p!

(p+ |q|)!

]1/2
r|q|e−πr2

L|q|
p

(
2πr2

)
eiqθ (5.5)

The generalized Laguerre polynomials Lq
p (x) are defined by the Rodrigues’

formula:
Lq

p (x) ≡ x−qex

p!
dp

dxp

(
xp+qe−x

)
(5.6)

Thus, each image I (x) can be represented by its local expansion with respect to
point b, in terms of the orthonormal basis Φq

p (r, θ):

I (x)V
(x − b

σ

)
=
∑

q

∑
p

Dq,p (b) 1
σ

Φq
p

( |x − b|
σ

, θ (x − b)
)

(5.7)
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where Dq,p (b) are the expansion coefficients defined as:

Dq,p (b) =
〈
I (x)V

(x − b
σ

)
,

1
σ

Φq
p

( |x − b|
σ

, θ (x − b)
)〉

=

I (b) ∗ V
(−b
σ

)[ 1
σ

Φq
p

( |−b|
σ

, θ (−b)
)] (5.8)

We have, therefore, the Gauss-Laguerre transform of image I (x), which is by
fact the polar form of the Hermite Transform. Images are represented by means of
special Circular Harmonic Functions (CHF), called Gauss-Laguerre (GL) functions.
In general, CHF’s are complex, polar separable functions with harmonic angular
shape, suited for generating rotation invariant signatures closely related to moment
invariants. GL functions have the important isomorphic property with respect to
their Fourier transforms and, since they can be easily obtained from the differentiation
of isotropic Gaussian functions, they are widely used in computer vision. Applying
the GLT to the image Ĩ(x) we have:

V

(
Rφ (x − b)

σ

)
Ĩ

(
Rφ

(x − b
a

))
=
∑

q

∑
p

ηq,p (a) e−iqφ 1
σ

Φq
p

( |x − b|
σ

, θ (x − b)
)

(5.9)

with ηq,p (a) =
〈
Ĩ

(x
a

)
V

(x
σ

)
,

1
σ

Φq
p

( |x|
σ
, θ (x)

)〉
. By replacing the last expres-

sions found in the likelihood function and considering that the Gaussian window is
invariant to rotations, we have the new expression for the likelihood functional:

ln Λ (I (x) ; a, φ,b) = − 2
N0

+∞∑
q=0

+∞∑
p=0

∣∣∣Dq,p (b) − ηq,p (a) e−iqφ
∣∣∣2 (5.10)

We note a dependence of the coefficients ηq,p on the scale parameter a. If the
function Ĩ (x)V

(x
σ

)−1
V
(

ax
σ

)
is square-integrable as:

Cq,p =
〈
Ĩ (x)V

(x
σ

)
,

1
σ

Φq
p

( |x|
σ
, θ (x)

)〉
(5.11)

then, the GLT coefficients of the scaled image can be determined starting from new
coefficients Cq,p of the non-scaled image. We thus obtain a new expression for the
coefficients ηq,p:

ηq,p (a) =
+∞∑
l=p

B(a; q, p, l)Cq,l (5.12)

where

B (a; q, p, l) = (−1)l−p

√
(q + l)!l!
(q + p)!p!

a−q−2p

(l − p)!

(
1 − 1

a2

)l−p

(5.13)

with l ≥ p, and the likelihood functional becomes independent of rotation and scale
factor a:

ln Λ (I (x) ; a, φ,b) = − 2
N0

+∞∑
q=0

+∞∑
p=0

∣∣∣∣∣∣Dq,p (b) −
+∞∑
l=p

B (a; q, p, l)Cq,le
−iqφ

∣∣∣∣∣∣
2

(5.14)
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At this point, the maximum value with respect to scale and orientation is:

GLLM (b) = max
a,φ

{ln Λ (I (x) ; a, φ,b)} (5.15)

that we can call Gauss-Laguerre Likelihood Map (GLLM), whose absolute maximum
indicates the pattern location along with the associate scale and orientation. The
essential point of this method is that the true ML solution can be approximated by
GLT truncation, and that few GLT coefficients are most often sufficient to obtain
unambiguous and reliable estimates.

5.3 Position Fisher Information
and the positional structural information

Among the basic cognitive functions of HVS, detection, recognition, and coarse local-
ization are strongly conditioned by the individual experience. It seems plausible that
the fine localization function is largely committed to low-level and inter-subjective
functions of the visual sensory apparatus. The present approach starts from pos-
tulating that, under normal conditions, the HVS performs the fine localization of
the observed objects with the best accuracy allowed by its physical macro-structure,
considering the characteristics of the environment and of the human interaction with
it. From estimation theory, the maximum accuracy attainable when measuring the
fine position of patterns in background noise is pointed out by the Fisher Information
about positional parameters and the Fisher Information inverse yields the minimum
estimation variance [91]. Therefore, in this work, attention is focused to how blur
discomfort depends on the undesired loss of the Positional Fisher Information (PFI)
about observed patterns. In other studies, distance estimation through binocular
vision requires accurate displacement estimation of patterns in the image plane
[8]. Estimation theory provides a well-defined measure of the allowable accuracy
of localization of an image pattern and suggests that the positional FI should be
correlated with the subjective rating of image quality.

In the study of an image, in natural vision condition and no occlusions, i.e., in
situations where no artificial additions appear (for instance, a title in an image), so
that only natural images are considered (with spectrum equal to 1/ρ), we can use
the concept of the Fisher Information to find the global minimum (second order is
sufficient). Fisher Information grows with the square of the image area and with the
size of the samples N . Even in the case of Fisher Information close to zero, for the
identification of the minimum we would always have information that grows more
slowly than N , considering higher order components, not reachable with polynomial
techniques.

As mentioned, when we talked about the ML model, we want to compare the
portion of the selected distorted image with the corresponding reference image and
the translation operation in one dimension can be written as follows:

f(x) + ∂f(x)
∂x

∆x (5.16)

We approximate f(x) to order zero with a Gaussian curve and with Hermite-Gauss
or Laguerre-Gauss functions for higher orders. As seen, up to a scale factor, they
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form an orthogonal base and with the use of a Gaussian window, the spectrum drops
as e−x2 . Other structures do not allow such a rapid decrease of the spectrum even
in the case in which the system is well identified (think, for example, of the Cauchy
structure, in which the system, although very well identifiable, tends to a constant
value or decreases very slowly).

To locate a pattern in an image, we can calculate the associated Fisher Information
relating to position, rotation, and scale [69]. By defining a single vector θ =
[b1 b2 φ a], Fisher Information J is defined as follows:

J (θ) = E
{

∇θ ln p (I; θ) [∇θ ln p (I; θ)]T
}

(5.17)

which we can divide into several contributions:

J = J
(̃

I
)

+ J(w) + J
(̃

I,w
)

+
[
J
(̃

I,w
)]T

(5.18)

where
J
(̃

I
)

=
( 4
N0

)∫∫
∇θ

{
I (x) − Ĩ

(
Rφ

(x − b
a

))}
×

×∇θ

{
I (x) − Ĩ

(
Rφ

(x − b
a

))}T

|w (Rφ (x − b))|2dx
(5.19)

is the main information associated with the pattern we are looking for,

J(w) =
( 4
N0

)∫∫ [
I (x) − Ĩ

(
Rφ

(x − b
a

))]2
×

×∇θ {w (Rφ (x − b))} ∇θ {w (Rφ (x − b))}Tdx
(5.20)

is the information associated with the particular windows adopted,

J
(̃

I,w
)

=
( 4
N0

)∫∫
w (Rφ (x − b))

[
I (x) − Ĩ

(
Rφ

(x − b
a

))]
×

×∇θ

{
I (x) − Ĩ

(
Rφ

(x − b
a

))}
∇θ {w (Rφ (x − b))}Tdx

(5.21)

represents the cross pattern/window information.
In all cases of interest, the pattern has a significant weight in the image and the

value of the J
(̃

I
)

information is dominant over the other components:∣∣∣∣∣
[
J
(̃

I
)]

q,p

∣∣∣∣∣ ≫
∣∣∣∣[J(w)

]
q,p

∣∣∣∣∣∣∣∣∣
[
J
(̃

I
)]

q,p

∣∣∣∣∣ ≫
∣∣∣∣∣
[
J
(̃

I,w
)]

q,p

∣∣∣∣∣
J ∼= J

(̃
I
)

(5.22)



38 5. ML estimator and Positional Fisher Information

Then, we write the J
(̃

I
)

matrix with respect to the parameters considered, to
obtain Jb, Jφ and Ja, which represent the information of each parameter brought
by the noisy measurements:

J
(̃

I
)

=

 Jb Jb,φ Jb,a

JT
b,φ Jφ Jφ,a

JT
b,a JT

φ,a Ja

 (5.23)

From an energy point of view, we can write:

Jb = 4
N0

RφE∇
Ĩx
RT

φ (5.24)

Jφ = 4
N0

a2
(
M(0,2)

x1,x1 − 2M(1,1)
x1,x2 + M(2,0)

x2,x2

)
(5.25)

Ja = 4
N0

(
M(2,0)

x1,x1 + 2M(1,1)
x1,x2 + M(0,2)

x2,x2

)
(5.26)

where

E∇
Ĩx

=

 E
Ĩx1

E
Ĩx1 Ĩx2

E
Ĩx1 Ĩx2

E
Ĩx2

 (5.27)

is the windowed energy tensor of ∇
Ĩx

and

M(h,k)
xq ,xp

=
∫ +∞

−∞

∫ +∞

−∞
xh

1x
k
2
∂

∂xq
Ĩ (x1, x2) ∂

∂xp
Ĩ (x1, x2) |w (ax1, ax2)|2dx1dx2 (5.28)

are the windowed moments of partial derivatives Ĩx1 (x1, x2) and Ĩx2 (x1, x2).
In particular, the energy components can be expressed as:

E
Ĩx1

=
∫ +∞

−∞

∫ +∞

−∞

∣∣∣Ĩx1 (x1, x2)
∣∣∣2 |w (ax1, ax2)|

2
dx1dx2 (5.29)

E
Ĩx2

=
∫ +∞

−∞

∫ +∞

−∞

∣∣∣Ĩx2 (x1, x2)
∣∣∣2 |w (ax1, ax2)|

2
dx1dx2 (5.30)

E
Ĩx1 Ĩx2

=
∫ +∞

−∞

∫ +∞

−∞
Ĩx1 (x1, x2) Ĩx2 (x1, x2) |w (ax1, ax2)|2dx1dx2 (5.31)

Finally, in a more compact view, the positional FI carried by the image portion
captured by the spot is calculated as

J (∆) = T∆
σ2

N

(5.32)

where

T∆ =
[

E11 E12
E21 E22

]
(5.33)
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is the structure tensor (ST) within the spot, defined by the following integrals:

E11 =
+∞∫

−∞

+∞∫
−∞

[
∂i (p1 + ξ1, p2 + ξ2)

∂ξ1

]2
w(ξ1, ξ2)2dξ1dξ2

E22 =
+∞∫

−∞

+∞∫
−∞

[
∂i (p1 + ξ1, p2 + ξ2)

∂ξ2

]2
w(ξ1, ξ2)2dξ1dξ2

E12 = E21 =
+∞∫

−∞

+∞∫
−∞

[
∂i (p1 + ξ1, p2 + ξ2)

∂ξ1

∂i (p1 + ξ1, p2 + ξ2)
∂ξ2

]
w(ξ1, ξ2)2dξ1dξ2 .

(5.34)

Being proportional to the ST, J (∆) is symmetric and can be diagonalized by
rotating the local coordinates into the coordinate system determined by the ST
orthogonal eigenvectors. In addition, the eigenvalues of J (∆), λ1 and λ2, represent
the independent contributions to the FI along the two orthogonal axes in the
eigenvector reference system. The total FI for the considered spot in the presence of
additive WGRF is calculated as

λ1 + λ2
σ2

N

= E11 + E22
σ2

N

(5.35)

This quantity is herein referred to as Positional Structural Information (PSI) carried
by the generic spot.

ST is used in artificial vision: by exploiting its eigenvalues it is possible to
detect fundamental local characteristics of an image (orientation, amplitude of
strong edges, textures). In the analysis of textures, the ST is able to identify the
dominant directions, in other cases, it can be used as a strong edge extractor. In
video analysis, the ST detects the smallest eigenvector, which is useful for finding
space-time direction with the least change. In recent years, ST has been used to
guide diffusion processes to improve structural coherence.

We will retrieve this elegant formulation in Part IV, where an empirical estimator
that works with strong edges and textures is presented.
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Part III

A Mathematical Model of Blur
Perception
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Chapter 6

Predicting Blur Visual
Discomfort by the Loss of
Positional Information

6.1 Introduction to the methodologies adopted

6.1.1 Blur and discomfort

Blur is generally understood as a smoothing of the image, which is accompanied
by a form of visual discomfort. This is subjective blur. Blur is generally modeled
through low-pass filtering applied to the image. Through such a model it is possible
to define an objective blur, and its measure. Two simple blur models are the circular
aperture (sinc) and the Gaussian blur, both characterized by a single parameter.

The discomfort that matches viewing a blurry image is explained in several ways.
Mostly, it is argued that the discomfort is felt because blur causes a deviation of the
spectrum of the image projected on the retina with respect to a spectrum typical of
real world images, the so-called “natural scenes”.

One of the possible reasons is that the discomfort stems from the vain effort
to eliminate blur through the eye accommodation system. From another point of
view, the discomfort would be felt due to the inefficiency, caused by blur, of the
image coding system towards the brain, which would cause metabolic overload. In
both cases, we are dealing with physiological explanations of the phenomenon of
discomfort.

6.1.2 The functional cognitive approach

The discomfort can also be explained as a consequence of a cognitive deficit. The
discomfort would be due to the sensation of a loss of the ability to interact with the
observed reality. According to this point of view, the discomfort due to blur would
be measurable based on the loss of information about the content of the image. In
this perspective, the goal is to define a function that links the blur level to the loss
of the Fisher Information, without taking into consideration how its calculation is
actually implemented by the Human Visual System (HVS).
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This “cognitivist” and “functional” approach is inspired by the theory of vision
set out by Marr in his book [60] and has already been used, for example, in the
studies of image coding systems. In such cases, Shannon’s Information theory and
Kolmogorov’s algorithmic Information theory were used. In the present context we
consider the so-called Fisher Information, which is simple to measure and relates
directly to blur.

Fisher Information indicates the degree of precision with which an observation
system can measure the parameters of an observed system.

In our case, the observed system is the image projected on the retina. The
essential parameters of interest are those that identify the position of objects.

6.1.3 The principle of efficiency and its consequences

Fundamental principle:
“The Human Visual System is efficient from the point of view of estimating the

positional parameters of an object”.
This principle is of fundamental importance. It implies that the HVS is able

to calculate the Fisher Information contained in the image projected on the retina.
Since the Fisher information of the observed image can be calculated objectively, it
is possible to measure the Fisher Information that the subject perceives.

6.1.4 Measuring Positional Fisher Information using VRF

In the recent past, Fisher Information computation schemes have been defined and
can be implemented through the so-called Laguerre-Gauss transform. It is achieved
by means of a bank of spatial filters whose impulsive responses are constituted by
Laguerre-Gauss functions, organized in a layered structure.

In particular, this scheme allows us to calculate the Positional Fisher Information
(FPI) using only the first order Laguerre-Gauss functions. These functions can be
interpreted as the real and the imaginary parts of a complex filter that calculates
the smoothed complex gradient at each point of the image. The complex gradient
is essentially a gradient defined in every direction by the Pythagorean theorem
applied to the horizontal and vertical gradient considered as cathets. Its modulus is
measured by the length of the hypotenuse. The smoothed complex gradient is the
complex gradient calculated after the image has been smoothed by a Gaussian filter.

This filter performs the function of a Virtual Receptive Field (VRF), which
calculates the Fisher Information loss regardless of how this function is actually
performed by the system of the real receptive fields. The Fisher Information contained
in an areola of the image (detail) is finally obtained by calculating the total energy
of the complex gradient within the detail.

6.1.5 The Fisher Information loss

We accept the following hypothesis:
“A loss of the Fisher Information causes increasing cognitive discomfort with the loss
itself.”

Therefore, if the Fisher Information loss is measured, it is possible to think of
measuring the discomfort. Fisher Information depends on the prevalence of the
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contrast of the objects with respect to the background thermal noise. This ratio
decreases in low light conditions, only partially compensated by the accommodation
mechanisms, but it decreases mainly due to refractive defects, especially blur.

The eye mechanisms that give rise to blur are very simple compared to the
enormous complexity of the HVS, and they can be described using parametric
models suggested by physical optics. Using these models it is possible to objectively
calculate the Fisher Information loss caused by blur.

6.1.6 The hypothesis of linearity

The relationship that links the growing discomfort to the Fisher Information loss
is detectable only through experimental tests. However, an a-priori hypothesis can
be advanced. The inverse of the Fisher Information represents the variance of the
estimation error on the position for an efficient estimator. Therefore, its square root
measures the uncertainty about the position. Since the reality perceived by the HVS
is evidently represented in a 3-D Euclidean space, it is plausible that the discomfort,
interpreted as the perception of the cost of the position error, is proportional to the
increase in uncertainty.

Hence, it can be reasonably assumed that:
The inconvenience is proportional to the increase in uncertainty calculated using the
Fisher Information.

6.1.7 The Fisher Equivalence

The formula of the expected discomfort through the Fisher Information loss due
to blur is analytically very simple if blur is Gaussian. This simplicity translates
into immediate interpretability and the possibility of deducing interesting, even if
approximate, properties. This suggests replacing, when possible, the actual blur
with a Gaussian blur that causes the same loss of information, which, therefore, is
Fisher Equivalent to the original one.

For example, since the neural blur is Gaussian, it is immediate to measure the
impact of the optical blur using the neural blur as a natural reference and unit of
measure for blur.

6.2 The physical and perceptual effects of blur

It is possible to interpret blur as a decrease in information at high spatial frequencies
[12]. There are many ways to quantify blur: we can think of the global statistical
luminance or the slope of the local luminance gradients in the image. One way
to characterize an image is its amplitude spectrum, which represents the relative
amplitude of the information present in the entire image at different spatial scales.
In one step, the amplitude of the harmonics falls with a 1

f pattern: higher harmonics
have smaller amplitudes. Removing harmonics from this waveform has the effect of
reducing the high spatial frequency content, decreasing local luminance gradients,
and making the image look more like a sine wave.

Even the modification of the phase influences, in part, the gradients of the
waveforms [3]: the image can have the same amplitude spectrum, but a flatter



46 6. Predicting Blur Visual Discomfort by the Loss of Positional Information

gradient, if the spatial frequencies of the components are out of phase with respect
to those in phase. The slope of the luminance gradients can be changed by reducing
the amplitude at high spatial frequencies, thus increasing the slope of the amplitude
spectrum, or by changing the phase relationships of the information in the image.
Both the removal of spatial high frequencies and the phase shift in local luminance
gradients contribute to the perception of blur. Therefore, if we have a visual
discomfort due to a variation in the slope of the local luminance gradients, we can
say that the subjective judgment is influenced by blur, as a result of amplitude and
phase changes.

Understanding the cause of blur is simple in the case of artificial images, but
very complex if we consider natural images. There are several techniques for adding
blur to natural reference images. The use of a Gaussian filter has been used in
the past to reproduce the effect of optical blur [9]; actually, it is a limited model
because it does not add the phase correction factor, due to the diffraction of the
light passing through the pupil and which modifies the image created on the retina.
In addition, we have a phase inversion that produces stripes around the edges of the
reproduced image, modifying the shape of the amplitude spectrum and, therefore,
the local luminance gradients. Using a sinc filter we have a more realistic model that
takes these corrections into account [68]. However, studies on subjective perception
have shown that there is a sensitivity only to the spectrum of the amplitude of blur.
The phase, although it modifies the edges, is not perceived as a nuisance. Basically,
the blur transfer function does not have to be Gaussian and symmetrical; it can be
asymmetrical and the eye would not distinguish it from a symmetrical one. These
studies bring qualitative results: changing the phase, people’s judgment remains the
same.

Although, as mentioned, there are many descriptions of blur (lack of contrast,
loss of high frequencies, smoothing of the edges), the work presented in this thesis
includes all these definitions, demonstrating that blur depends on the energy of
the gradient. Furthermore, we establish the fundamental concept of equivalence
between Gaussian and asymmetric blur. Indeed, blur of the eye is unknown, it is
not Gaussian, except when it is very small, because we also have astigmatism or
other simultaneous defects. In the study of our model, we bring everything back
to Gaussian and look for an equivalent Gaussian blur from the Fisher Information
point of view. Therefore, it is possible to consider any blur perceptually equivalent
to a Gaussian blur with a certain sB standard deviation value (at this point, all the
blur information focuses on this parameter).

Finally, we have two fundamental concepts:

• Fisher Information as a quantity that must be optimized by the eye to eliminate
the discomfort. It is a quantity that we can maximize following a Gaussian
model: any blur can be traced back to the Gaussian one from the Fisher
Information point of view.

• The stimulus which gives a measure of perceived discomfort. The estimator
calculates the amplitude of the gradients because the receptive fields are
sensitive to this, not directly to the Fisher Information. The magnitude
proposed in this study is the stimulus signal which mechanically regulates the
pupil. For healthy subjects, this signal always tends to zero. In the case of
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vision disturbances due to blur, the adjustment stimulus that is generated in
the retina never returns to zero. Hence, the higher the sensation of discomfort
is and the longer it persists, the more the disturbance increases. The estimator
indicates the level of the error and, therefore, represents the level of the
annoyance.

6.3 Visual discomfort and accommodation system

We can think of blur as a cause of a cognitive loss, and the discomfort as the
immediate consequence of this loss. We look for a relationship between judgments
of visual discomfort and changes in image content. Visual discomfort is represented
by all the subjective side effects that occur in the visualization of certain stimuli.
Changes in the content of spatial frequencies modify image quality judgment and
deviations from natural image statistics cause visual discomfort [49]. Natural images
are the basis for comparisons of corrupted images, as they have reliable statistical
properties. In particular, Fourier analysis reveals that the amplitude of the luminance
decreases with the increase of the spatial frequency: Fourier amplitude spectrum 1

fβ ,
with β ∼ 1 [76] and, therefore, we have more contrast energy at low frequencies than
at high frequencies. The HVS is thought to be optimized to encode stimuli with
the luminance statistics of natural images [30], and, indeed, visual discomfort could
grow precisely from stimuli that do not have these natural statistics, which are not
processed in the optimal way. Moreover, deviations from natural image statistics
have been shown to influence subjective quality judgments [70]. The causes of the
increase in visual discomfort can be either an increase in contrast energy, resulting in
an increase in the amplitude spectrum, or an increase in β, which makes the shape
of the amplitude spectrum steeper, with relatively lower information on the spatial
frequency.

Therefore, in relating visual discomfort to blur we find objective techniques, in
which a direct link is sought with a physical fact, in particular, with the change in
contrast at each frequency, as perceived by the eye, and subjective techniques, in
which mental mechanisms that give a measure of the discomfort in seeing a blurred
image are considered. Actually, these mechanisms give no idea of what is happening
in the eye. The discomfort associated with blur is often explained as a consequence
of the concentration of the spatial energy spectrum of the perceived image into some
bands, or as a byproduct of the discrepancy of this spectrum from the expected
spectrum of natural images, as we said. Looking at a possible physical source of
the blur discomfort, a first hypothesis is that discomfort is stimulated by the weak
response of the accommodation system.

Alternative explanations addressed the mismatch of the spatial patterns with
the expected ones. To understand what happens at the physiological level in the
eye, it is useful to study the accommodation mechanism: this can be thought of as a
computational increase necessary to perform the deblurring, in case the mechanical
action has not brought the eye back to nominal conditions of vision (residual
blur). Therefore, discomfort arises because the “microfluctuations” observed in the
accommodation feedback signal become ineffective [17, 67, 59, 18]. For example,
in digital photography we first try to focus mechanically, then, if there is still an
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unresolved blur, we process the image afterwards.
A third hypothesis is that, when an image is correctly projected onto the retina,

the receptive fields produce a parsimonious, sparse representation of this image [66].
The spatial spread caused by blur excites more receptors, producing a metabolic
overload [49]. This post-processing is very expensive and causes visual discomfort,
both for purely physiological reasons (increase in blood pressure in the eye) and
for neuronal reasons, understood as an increase in energy consumption due to the
greater number of neurons used and as anxiety (stress) created for failure to correct
(there may be an effect on the higher semantic level). We can therefore think of
statistical features strongly correlated with the feeling of blur.

Corrective answers provide a possible reason why blur could cause discomfort.
One goal of corrective responses is maximizing the contrast of the image on the retina.
We could think of refocusing a blurred image at an appropriate distance, but there
would still be a limited understanding of what spatial frequency information is used
by the corrective system [57]. There is also uncertainty as to whether the system uses
local or global image statistics to achieve this. Among the basic cognitive functions
of the HVS, detection, recognition, and coarse localization functions are strongly
conditioned by the individual experience. Conversely, it seems plausible that the
fine localization function is committed to stabler and inter-subjective functions of
the HVS.

The fundamental assumption is that, under normal conditions, the HVS performs
the fine localization of the observed objects with the best accuracy allowed by its
physical macro-structure, given the characteristics of the environment and man’s
interaction. Indeed, it is known from the estimation theory that the maximum
accuracy attainable when measuring the fine position of patterns in background
noise is deduced by the Fisher Information (FI) about positional parameters. In
fact, the FI inverse yields the minimum estimation variance [91].

Therefore, the focus in this thesis is on how the discomfort of blurring depends
on the unwanted loss of PFI on observed patterns. Even if the present cognitive
approach remains agnostic, it is compliant with the fact that blur discomfort concerns
the regions of visual interest [87] and that blur is not always undesired or detrimental
[85]. For instance, blur is sometimes a wanted effect in photography and microscopy.

Previous analyses of the blur perception phenomenon were mainly oriented to
the study of the visual acuity, with specific attention to specific stimuli localized
either in space, such as edges, lines, crosses, or in the spatial frequency domain,
such as sinusoidal gratings, or even in both domains, such as Gabor wavelets. The
model presented here is oriented to the evaluation of the visual impact of blur in the
vision of natural scenes. To this purpose, a generic image projected on the retina
is viewed as a realization of a random set, constituted by the universe of natural
images, characterized by stable statistical features.

6.4 The Virtual Receptive Field model

The proposed approach is based on an abstract, functional model of the Receptive
Fields (RF) of the HVS, referred to as VRF. The role of the VRF model is to extract
the PFI as a measure of the pattern localizability loss.



6.4 The Virtual Receptive Field model 49

For analytical convenience, blur is initially modeled as a Gaussian shaped isotropic
blur. Then, the analysis is generalized to other types of blur, invoking a criterion
of informational equivalence with respect to isotropic Gaussian blur under the PFI
paradigm.

The VRF model is based on Harmonic Angular Functions (HAFs), which are
basically different from the functions employed in the back-pocket model. The
HAFs are polar-separable, and they have a polar-separable two-dimensional Fourier
transform.

In particular, the VRF is complex valued in a different sense compared to the
complex valued Gabor functions, whose paired phase/quadrature components are the
real and imaginary parts of the complex envelope with respect to a spatial modulating
grating harmonic carrier for a fixed orientation. The VRF have phase quadrature
components that are geometrically orthogonal in the image plane. Therefore, they
are steerable in azimuth by multiplication by a complex number [74].

The scope of this unusual approach is to capture the blur perception phenomenon
with an essential, handy model. This approach provides a functional model of the
discomfort phenomenon due to the optical blur, aimed to quantitatively predict
psycho-physical findings irrespective of the underlying mechanisms.

To verify the limits of the present approach, the model-based discomfort pre-
dictions were first compared to empirical data about the subjective quality loss of
blurred images, which is supposed to be highly correlated with the discomfort. These
data are available in organized databases containing the results of experimental
sessions finalized to Image Quality Assessment (IQA), conducted for the multimedia
industry purposes [97, 10, 39]. Then the model is applied to empirical data about
the visual discomfort. The results of these experiments confirm the validity of the
approach.

As the luminance plays a dominant role for the localizability of patterns, for the
sake of simplicity only the luminance component of the images is accounted for.

The retina in the foveal vision is abstractly modeled as a rectangular grid
of receptors, whose position is individuated by the coordinate pair p ≡ (x1, x2).
Receptors are regularly spaced one arcmin apart. The density of 60 receptors/degree
assures that all the image information within the 30 (=60/2) cycles/degree spatial
bandwidth is captured by the retina, according to the Nyquist sampling rule.

For any p, the RF calculates a weighted sum of the luminance I (p) in a neighbor-
hood of p, yielding a visual map y (p). This operation corresponds mathematically
to a spatial convolution, indicated by the symbol ∗, between I (p) and the visual
map of a single lighting point in the dark, indicated by h(p) and referred to as the
Point Spread Function (PSF) of the RF:

y (p) = I (p) ∗ h(p) . (6.1)

As we said, the RF model considered here is a harmonic angular filter (HAF).
HAF filters are complex valued functions, i.e., they represent pairs of real filters [44].

With reference to the spatial frequency domain, defined by the horizontal and
vertical frequencies f1, f2, and to the polar coordinates ρ =

√
f2

1 + f2
2 and ϑ =

arctan
(
f2
f1

)
, where ρ [22] is referred to as the radial frequency and ϑ is the azimuth,



50 6. Predicting Blur Visual Discomfort by the Loss of Positional Information

the Fourier spectrum H(ρ, ϑ) of the RF model is defined as

H(ρ, ϑ) = j2π
(
ρe−S2

Gρ2 · ejϑ
)

(6.2)

where j is the imaginary unit, and sG is a parameter. This spectrum is polar
separable, i.e., it is the product of a function of the radial frequency, and a function
of the azimuth. One outstanding feature of this RF model is that it is also polar
separable in the space domain [23]. In fact, taking the inverse Fourier transform of
H(ρ, ϑ), with reference to the space polar coordinates r =

√
x2

1 + x2
2 and φ = tg−1x2

x1
,

the PSF of the RF is:

h(r, φ) = −2π
3

s4
G

(
re

− r2π
sG

2 · ejφ

)
(6.3)

which has the same shape of the VNTF, except for a scale factor.
This RF is used herein as a functional spatial vision model and, for this reason,

it is referred to as VRF. For short, the term “VRF” will be used in the following to
indicate also its PSF and its HAF shape, whereas its Fourier transform H(ρ, ϑ) will
be referred to as Virtual Neural Transfer Function (VNTF), because it represents
the spatial frequency response of the VRF.

The magnitude and the real components of the VRF are displayed in the upper
row of Fig.6.1, where the ideal retinal grid is shown in the background. In the same
figure, the magnitude, the real and the imaginary parts of the VNTF are displayed
in the lower row.

Figure 6.1. Upper row: the magnitude of the VRF, its real and imaginary parts referred
to the ideal retina grid. Lower row: the magnitude of the VNTF, its real and imaginary
parts in the spatial frequency plane. The vertical and horizontal spatial frequencies span
the (−30, 30) cycles/degree interval.

The magnitude of the VNTF frequency response versus the radial frequency is
the same in any orientation. It is displayed in Fig.6.2.
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Figure 6.2. The radial frequency response magnitude of the VNTF for sG = 2.5 arcmin
normalized with respect to its maximum value.

Here, and from now on, sG is assumed equal to sG = 2.5 arcmin, unless otherwise
noted. This choice sets the maximum of the radial frequency response magnitude at
about 8.5 cycles/degree in the radial frequency, according to the experimental data
provided in [11] and [107].

In the lowest spatial frequency range, the magnitude of the VNTF increases
linearly. At higher spatial frequencies, the VNTF exhibits a soft-decaying low-pass
behavior, reaching an attenuation of about 40 dB at 30 cycles/degree at the Nyquist
frequency.

This behavior can be interpreted by regarding the VNTF as the cascade of two
basic operators:

• an orientation selective complex gradient operator
(
∂

∂x1
+ j

∂

∂x2

)
[78], whose

frequency response is obtained by the Fourier transform derivation rule:

j2πf1 + j(j2πf2) = j(2πρcosϑ+ j2πρsinϑ) = j2πρejϑ ; (6.4)

• a radial frequency selective Gaussian smoothing operator, represented by the
frequency response:

G(ρ, θ) = e−S2
Gρ2 (6.5)

which is responsible of a neural blur.

Therefore, the visual map y (p) of the VRF is globally interpreted as a complex,
Gaussian-smoothed gradient field associated to the retinal image. The parameter sG

will be referred to as the spread of the VRF, or as the neural spread.
Different from the complex Gabor functions, whose paired real components are

aligned each other [24, 104], the paired real components of the VRF are mutually
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orthogonal in the image plane (Fig.6.1). As such, the VRF is steerable [82] and more
specifically scalar steerable, i.e., it rotates in azimuth by multiplication by a complex
number.

h(r, φ− α) = h(r, φ)ejα ;
H(ρ, ϑ− α) = H(ρ, ϑ)ejα .

(6.6)

This implies that rotated version of the VRFs by a generic azimuth α are obtained
by linear combinations of real components Re{h(r, φ)} and Im{h(r, φ)}:

Re{h(r, φ− α)} = Re{h(r, φ)}cosα− Im{h(r, φ)}sinα ;
Im{h(r, φ− α)} = Re{h(r, φ)}sinα+ Im{h(r, φ)}cosα . (6.7)

The VRF model materializes into the visual map y (p). In the correspondence of
an edge of I (p), the magnitude of y (p) measures the edge strength, while the phase

tg−1
[
Im{y (p)}
Re{y (p)}

]
indicates the orientation orthogonal to the edge [47, 45, 66]. In

the example of Fig.6.3, the luminance of a retinal image (left) and its visual map in
false color (right) are displayed. In the visual map the gradient strength is indicated
by the luminance component whereas, for visual immediateness, only the direction
of the gradient in the interval [0, π) is indicated with the hue color component.

The visual map y (p) is a near-complete, sparse representation of I (p). In fact,
except for its mean value, I (p) can be fully recovered from y (p) by spectral inversion
(i.e., by division by H(ρ, ϑ) in the frequency domain).

Standard multichannel spatial vision models (see [79] for a historical account)
follow a tomographic-like approach. Around any point, they analyze the image from
a limited number of azimuthal views. For each view, they apply co-oriented filters
tuned to different bands. Their outputs are then combined in different ways.

In comparison, around any point, the VRF performs a full-band radial tomo-
graphic analysis in every orientation, as described in [21, 44]. For the scope of this
work, the outstanding advantage of the VRF is that its output (the visual map)
allows straightforward computation of the PFI [69] as described in the next section.

The VRF is the simplest functional spatial vision model based on HAFs. It
coincides with the first order component of the orthogonal family of the Laguerre
Gauss (LG) functions [92, 46, 63] or, equivalently, of the 2D Hermite functions, which
span the same signal space [61, 29]. Higher order LG analysis provides functional
spatial vision models oriented to structures more complex that simple edges [28, 69].
HAF based wavelets can be also used for multiresolution analysis [46].

6.5 The Positional Fisher Information
The adoption of a polar separable complex-valued receptive field model, and of a
visual information loss criterion, led to compact theoretical formulas for the prediction
of the blur visual discomfort for natural scenes, exhibiting a good predictive power
faced to several independent experimental data. The approach may provide coarse
estimates of the discomfort caused by undesired blur, for optical correction in natural
vision, and for calibration of image reproduction apparatus.

A detail dp(q) of a visual map y (p) is formally defined as:

dp(q) = wp(q) · y (p − q) (6.8)
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Figure 6.3. The luminance of an image (left) of the database LIVE [81] compared to the
corresponding visual map y (p) (right), where the magnitude of the edges is coded into
luminance, and their direction, in the interval [0, π), into hue. The hue/direction code is
read in the edges of the upper-left superimposed polygonal.

where wp(q) is a sampling window centered on p.
A comprehensive calculus of the Fisher Information of a detail about its position,

orientation, and scale, in the presence of a background Gaussian white noise, was
provided in [69]. As specified in [28], the total PFI of a detail is calculated as:

ψ(p) = λ(p)
σ2

V

(6.9)

where λ(p) is the smoothed gradient energy of the detail, computed as

λ(p) =
∑

q
wp(q)2 |y (p − q)|2 (6.10)
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and σ2
V is the variance of the background noise1.

The inverse square root of the PFI

eMIN (p) =
√

1
ψ(p) =

√
σ2

V

λ(p) (6.11)

represents the minimum standard deviation of the detail position error eMIN (p),
achievable with an unbiased estimator, irrespective of the employed estimation
method [91]. Thus, the quantity√

ψ(p) = 1
eMIN (p) (6.12)

measures the certainty of the detail position in the visual plane. For a given amount
of background noise, the higher the smoothed gradient energy, the higher the PFI,
the greater the certainty about the detail position.

The smoothed gradient energy λ(p) is significantly expressed by the (two-
dimensional) Fourier transform of the detail. Applying the Parseval theorem (which
equates the energy calculated in the space and in the spatial frequency domains)
the PFI of the detail represented by its Fourier transform Dp(ρ, ϑ) is

ψ(p) = 1
σ2

V

∫ 2π

0

∫ +∞

0
ρ2 |G(ρ, ϑ)|2 |Dp(ρ, ϑ)|2 |B(ρ, ϑ)|2 ρdρdϑ (6.13)

where B(ρ, ϑ) is the Optical Transfer Function (OTF), i.e., the spatial frequency
response of the optical system, from the observed object to the retina [100]. Its
inverse 2D transform is the Optical PSF b(r, φ).

The overall OTF of a vision system, including the human eye, is a combination
of the OTFs of cascaded subsystems including the OTF of correcting lenses, the
OTF of an imaging system, the OTF of a display system, etc..

Under the hypothesis of linearity, the overall OTF is the product of the single
OTFs. In other terms, the overall Optical PSF is the cascaded 2D convolution of
the single PSFs.

1Strictly speaking, the PFI of a detail does not coincide with the PFI of the pattern “contained
in” the detail. In fact, the window itself carries its own PFI. In the following, the latter contribution
will be neglected, assuming that the window is so smooth that the information carried by its shape
is small with respect to the information carried by the captured pattern.
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Chapter 7

PFI Equivalence

7.1 The natural scene spectrum and the PFI equivalence

7.1.1 The PFI of natural scenes

For a generic natural image, the average PFI calculated on a group of N details
visited during the visual exploration is:∑

p λ(p)
Nσ2

V

=

= 1
σ2

V

∫ 2π

0

∫ +∞

0
ρ2 |G(ρ, ϑ)|2 |DN (ρ, ϑ)|2 |B(ρ, ϑ)|2 ρdρdϑ

(7.1)

where
|DN (ρ, ϑ)|2 = 1

N

∑
p

|Dp(ρ, ϑ)|
2

(7.2)

is the average energy spectrum of the N visited details. The expected value Ψ of
the PFI over the random set of natural images is defined as:

Ψ .= E

{∑
p λ(p)
Nσ2

V

}
=

= 1
σ2

V

∫ 2π

0

∫ +∞

0
ρ2 |G(ρ, ϑ)|2E

{
|DN (ρ, ϑ)|2

}
|B(ρ, ϑ)|2 ρdρdϑ

(7.3)

where E
{

|DN (ρ, ϑ)|2
}

denotes the expected value of the energy spectrum of the
visited details over the random set of natural images.

It is well known that the expected value of the energy spectrum of natural
images is proportional to the inverse of the square of the radial frequency, i.e., to 1

ρ2 .
The generality of this spectral distribution is supported by theoretical arguments
[83, 31, 33, 51, 90, 5].

Here, this property is attributed to the average spectrum of the visited details.
Posing, for the sake of generality [88]

E
{

|DN (ρ, ϑ)|2
}

= f(ϑ) 1
ρ2 ; (7.4)
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it follows that

Ψ = 1
σ2

V

∫ 2π

0
f (ϑ)

∫ +∞

0
|G(ρ, ϑ)|2 |B(ρ, ϑ)|2 ρdρdϑ (7.5)

and, in the absence of blur:

Ψ0 = 1
σ2

V

∫ 2π

0
f (ϑ)

∫ +∞

0
|G(ρ, ϑ)|2 ρdρdϑ . (7.6)

In the case of isotropic Gaussian blur, the OTF is

B(ρ, ϑ) = e−s2
Bρ2 (7.7)

where sB is referred to as the optical spread. Therefore,

Ψ = F

σ2
V

∫ +∞

0
e−2(s2

G+s2
B)ρ2

ρdρ (7.8)

Ψ0 = F

σ2
V

∫ +∞

0
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where the coefficient F is
F =

∫ 2π

0
f (ϑ) dϑ . (7.10)

Finally, from the equality∫ +∞
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it follows that
Ψ
Ψ0

= s2
G

s2
G + s2

B

. (7.12)

7.1.2 The PFI equivalence

The above result is so simple owing to the Gaussian shape of blur. However, having
assumed that the blur discomfort depends only on the PFI loss, the discomfort
due to different types of blur could be predicted by the same formula applying the
concept of PFI equivalence.

Definition 7.1.1 (PFI Equivalence). A blur characterized by the generic OTF
B(ρ, ϑ) is said to be PFI equivalent to an isotropic Gaussian blur with standard
deviation (spread) sB if it yields the same expected PFI for natural images, i.e.:∫ 2π

0

∫ +∞

0
e−2s2

Gρ2 |B(ρ, ϑ))|2 ρdρdϑ =

=
∫ 2π

0

∫ +∞

0
e−2(s2

G+s2
B)ρ2

ρdρdϑ .

(7.13)
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This equivalence criterion is intuitive. It equals the energies of the actual OTF
and of an isotropic Gaussian OTF, both weighted by the squared magnitude of the
VNTF. In particular, the PFI equivalence does not depend on the phase of the OTF.

An important example of PFI equivalence is the one of the out-of-focus blur,
whose PSF is modeled as a cylinder of unitary volume and radius R. It is referred
also to as the disc blur, or the sinc blur, and is characterized by the following OTF:

B(ρ, ϑ) = 2J1(2πρR)
2πρR . (7.14)

Equating the PFI of the sinc blur and of the Gaussian isotropic blur yields

4
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2πρR
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ρdρ =
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ρdρ = 1
4(s2

G + s2
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.

(7.15)

The left side integral is not available in closed form. A careful numerical
integration provides a value of the optical spread sB of the isotropic Gaussian
blur as a function of its PFI equivalent sinc blur of radius R, as plotted in Fig.7.1
and is roughly expressed by the rule sB

R
≈ 3

8 . In the same figure some subjective
equivalence judgments averaged over a pool of six observers are also reported. These
empirical data refer to synthetic images whose contours emulate the ones of natural
images [68].

Figure 7.1. The radius of the sinc blur versus the spread of its PFI equivalent Gaussian blur.
The red points indicate some average results of experiments conducted with synthetic
images emulating natural images [68].

From a perceptual viewpoint, it appears that this equivalence works generally
well. Here, to provide the reader with visual examples, the most critical cases in
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the Tampere image database (TID2013) [75], are reported in Fig.7.2, including
the non-natural image i25 as a benchmark. Notice that some grating patterns are
cancelled out or amplified by the sidelobes of the OTF of the sinc blur in comparison
to the Gaussian blur. Notice also that these effects are not present in the natural out-
of-focus blur, owing to the apodization of the pupil, which attenuates the sidelobes
[110].

Figure 7.2. Upper row: two original images. Second and third rows: Gaussian blurred
image (left) and Fisher equivalent sinc blurred images (right). The values of R were
chosen to put into evidence the effects of the spectral sidelobes of the sinc blur (see the
encircled patterns). Natural image (i19 of the database): R = 6 arcmin, corresponding
to sB = 3.1 arcmin. Synthetic image (i25 of the database): R = 7 arcmin, corresponding
to sB = 3.4 arcmin.
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A second example of PFI equivalence regards the non-isotropic Gaussian blur,
referred to as astigmatic Gaussian blur. For the sake of simplicity, this equivalence
is calculated here only for the case of isotropic image spectral energy distribution.
Using for convenience the Cartesian coordinates, the OTF of this blur is:

B(f1, f2) = e−2(s2
V f2

1 +s2
Hf2

2 ) (7.16)

where sH and sV are the horizontal and vertical optical spreads. A straightforward
algebraic analysis shows that the astigmatic Gaussian blur is PFI equivalent to the
isotropic Gaussian blur with spread

sB =
√√

s4
G + s2

G(s2
H + s2

V ) + s2
V s

2
H − s2

G . (7.17)

An example is provided in Fig.7.3. Two versions of an original image, respectively
affected by an astigmatic Gaussian blur with sH = 4, sV = 1 and with sH = 1, sV = 4
are compared to the same image affected by their PFI equivalent isotropic Gaussian
blur. Notice that the sea waves are better localized in presence of horizontal blur,
while masts are better localized in presence of vertical blur. The average localizability
loss is visually balanced by the isotropic Gaussian blur.

Figure 7.3. A unblurred image (upper left) and its astigmatic blurred versions. For sH = 4,
sV = 1 (horizontal blur, upper right), and for sH = 1, sV = 4 (vertical blur, lower left).
They are PFI equivalent to the isotropic Gassian blurred version shown in the lower
right image with sB = 2.54.
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Chapter 8

Experimental Measures

8.1 Measuring blur discomfort

Consider the pooling Γ of the samples the observed details:

Γ = 1
N

[∑
p

∑
q

√
wp(q)y (p − q)

]
(8.1)

and the quantity

ΓΓ∗ = 1
N2

[∑
p

∑
q

√
wp(q)y (p − q)

] [∑
u

∑
v

√
wp(v)y∗ (u − v)

]∗

. (8.2)

The terms of the cross products y (p − q)·y∗ (u − v) of this sum become uncorrelated
as far as the mutual distance of their locations exceeds the blur spread. For sufficiently
high N, the contribution of these products to the above average tend to vanish, so
that the following approximation holds

ΓΓ∗ ≃ σ2
V Ψ. (8.3)

The consequence is that the computation of the uncertainty
√

Ψ from y (p) is
straightforward and simple:

√
Ψ ∝

∑
p

∑
q

√
wp(q) |y (p − q)|. (8.4)

As far as the knowledge of
√

Ψ0 is concerned, for natural images it can be blindly
extrapolated by means of simple operations [111]. However, it is conceivable that it
is simply guessed from the subject’s visual experience.

Following the above considerations, the amount of blur discomfort is assumed
proportional to the relative certainty loss about the details position1 defined as:

ε =
√

Ψ0 −
√

Ψ√
Ψ0

= 1 −
√

Ψ
Ψ0

. (8.5)

1An exponentiated version of such a measure was employed in [27].
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This assumption is suggested by the belief that the perceived cost of wrong
localization is proportional to the uncertainty of the Euclidean distances, at least
for small errors.

Then, for the random set of natural images and for isotropic Gaussian blur,
using (7.12) the relative certainty loss takes the form of the following a-dimensional
discomfort index:

ε = 1 −
√

Ψ
Ψ0

= 1 −
√√√√√ 1

1 +
(
sB

sG

)2 . (8.6)

This index ranges between 0 (in the absence of blur) to 1 (for diverging blur). It
depends only on the normalized blur, i.e., the ratio between the optical spread on
the retinal image and the neural spread of the VRF.

The optical blur spread sB is subject to change by the action of the natural
accommodation system and, in the context of a composite optical system, by the
action of technical devices. The neural spread sG plays instead the role of an inner
reference. At a glance, it could be argued that it is a stable parameter. However,
some experiments indicate that the sG value is adaptive [105]. It appears that the
visual adaption to a blurred image causes a dilation of the spread sG, leading to a
reduction of the normalized blur, so that the spectrum of the image looks wider and
the image sharper.

The discomfort formula is now applied to the blur caused by out-of-focus condition
of the eye optics, i.e., in natural vision. Using the geometrical arguments of [86], it
is deduced that the radius R of the out-of-focus optical PSF in arcmin is

R = 1.71p |D| (8.7)

where p is the pupil diameter (in mm) and the D is the out-of-focus measure in
diopter units (m−1).

Applying the sB
R ≈ 3

8 rule it follows that the spread of the PFI equivalent blur of
the out-of-focus blur measured in diopters is approximated as

sB ≈ 0.64p |D| (8.8)

so that a coarse estimate of the blur discomfort in natural vision is:

ε = 1 −
√√√√√ 1

1 +
(

0.64 p

sG
D

)2 . (8.9)

In the chart of Fig.8.1 this theoretical discomfort index ε is plotted versus D for
different pupil diameters. The scale of ε is expressed in centesimal units.

This chart essentially says that, if the out-of-focus discomfort is proportional to
the relative certainty loss, as assumed, it is not linear with the blur spread. Moreover,
since the sensitivity of the discomfort index with respect to the normalized spread
ξ
.= sB

sG
is calculated as

dε

dξ
= ξ

[ 1
1 + ξ2

] 3
2

; (8.10)
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Figure 8.1. The value of the theoretical discomfort index in centesimal units versus the
diopters (measured in m−1) for different values of the pupil diameter (measured in mm).
(A typical pupil diameter when reading at normal illumination is 3 mm).

the increment ∆ξ necessary to produce a given increment ∆ε is approximated as:

∆ξ = 1
ξ

[
1 + ξ2

] 3
2 ∆ε . (8.11)

This increment exhibits a typical “dipper shape” [70, 84] as shown in Fig.8.2.
The theoretical minimum occurs in the correspondence of the normalized spread
value ξ = sB

sG
= 1√

2
.

In the plot of Fig.8.3, the curves of ∆sB
sG

versus sB
sG

for different values of ∆ε are
plotted.

In the above formulas, diffraction and aberration contributions to blur discomfort
are considered negligible. Non-negligible aberrations could be accounted for by
adopting parametric models for characterizing their PSFs [32, 101], and calculating
the PFI equivalent blur. A simple example is the aberration due to astigmatic
Gaussian blur provided in Sect.4, where blur is characterized by the two parameters
sH and sV .

8.2 Experimental verification

The above results about the phenomenon of blur discomfort for natural images are
derived by principles and assumptions. To assess their effectiveness in the reality,
the theoretical model was first verified against empirical ratings of the subjective
quality loss of images caused by blur, which are argued to be strictly related to
the blur discomfort. These data were released in response to the growing demand
by the media industry for reliable automatic IQA through objective metrics. Four
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Figure 8.2. The theoretical increment ∆
(

sB

sG

)
versus sB

sG
for ∆ε = 0.05 in a log/log scale.

Curves for different values of ∆ε are obtained by vertical translation.

Figure 8.3. The theoretical increment of blur ∆sB

sG
versus sB

sG
for different values of the

discomfort index ∆ε.

independent IQA databases were employed, based on different methodologies and
protocols, and following different strategies to prevent biases and side effects.

IQA databases include images affected by Gaussian blur, which is considered
sufficiently representative of the perceptual effect of blur in many technical applica-
tions.

Subsequently, the predictions of the model were compared to experimental data
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where subjects were literally asked to rate “the visual discomfort” due to blur [71].
All these experiments do not account for blur discomfort secondary effects.

Furthermore, in these experiments the eye optical blur of the observers is corrected
if present. So, blur applied to the observed images emulates an undesired natural
optical blur on the retina plane. In fact, under the hypothesis of linearity, the natural
optical blur and the artificial blur applied to the observed images are interchangeable,
because of the well-known property of cascaded convolutions.

Before presenting the experiments and discussing the results, it is essential to
illustrate how the discomfort index must be scaled to fit the experimental settings
of a database.

8.2.1 The Scaled Blur Discomfort Index

To this purpose, the following parametric “Scaled Blur Discomfort Index” (SBDI) is
defined from (8.6):

SBDI
.= a

1 −
√√√√√ 1

1 +
(
γ2 sB

sG

)2

 (8.12)

where the gain a fixes the scoring scale [80], and γ is the Viewing Distance (VD)
defined as

γ
.= δ0
δ

(8.13)

where δ0 is nominal VD, i.e., the distance from which the density of pixels projected
on the retina matches the previously assumed density of the receptors (60/degree)
and δ is the VD adopted in the experiment.

Differently stated, γ equals the ratio between the number of pixels viewed within
one degree at distance δ0 (60 pixels) and the number of pixels viewed within one
degree at distance δ.

The role of the distance parameter is understood considering that the VRF
spread on the image projected on the retina is sG

γ
, i.e., it increases proportionally

with the VD. Conversely, the projection of the spread of blur applied to the observed
image is γsB, i.e., it is inversely proportional to the VD.

Unless specified, the parameters a and γ can be determined from data by
regression.

8.2.2 The “subjective quality loss” experiments

The essential features of the employed IQA databases are illustrated below.
The LIVE IQA Database Release 2 (DBR2) [81] reports the quality ratings of

779 distorted versions of 29 reference images (included 145 blurred images) from
about 23 subjects. Ratings of subjective quality loss with respect to reference images
were expressed on a DMOS (Difference of Mean Opinion Score) scale ranging from 0
(perfect quality) to 100 (bad quality) using a double stimulus strategy.

The Tampere Image Database 2013 (TID2013) [75] contains 3000 distorted images,
including 125 blurred images. Quality ratings were collected in five independent labs
and on the internet using more than 300 subjects. They were asked to select the
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best image between two distorted images in direct comparison to the reference image.
The average quality scores were expressed on a Mean Opinion Score (MOS) scale
ranging from 0 (bad quality) to 9 (perfect quality).

The Computational and Subjective Image Quality Database (CSIQ) [54] con-
tains 30 reference images and 866 distorted versions, including 150 blurred images.
The database includes 5000 ratings of 25 subjects, and the ratings, obtained by
comparative ratings between different images, are reported in DMOS units.

The LIVE Multiply Distorted Image Quality Database (LIVE MD) [48] contains
15 reference images and 405 distorted images, including 45 blurred images, whose
quality was rated by 37 subjects. The study was conducted using a single stimulus
with hidden reference strategy, using DMOS scores.

All databases contain natural images, i.e., images representing natural scenes,
except the image i25 of the TID2013 database (which was used as a benchmark in
Fig.7.2).

In the graphs of Fig.8.4 the subjective quality loss prediction curves for the
blurred images of the different databases are superposed to the empirical DMOS
values, plotted versus the normalized spread sB/sG. These empirical DMOS data
represent average scores of the pool of the observers. In addition, in the TID2013
and LIVE MD cases, averages with respect to the sample images are also indicated
by filled circles.

Figure 8.4. The empirical DMOS values of the subjective quality loss for the blurred images
of the databases versus the normalized blur spread compared to the values predicted by
the theoretical model (dashed curves). Averages with respect to images are indicated by
the filled circles in the TID2013 and LIVE MD scatterplots.
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In the TID2013 database, ratings are available as MOS values. The DMOS
values were inferred considering that the best MOS ratings do not exceed 7.5 (see
Fig.20 of [75]). Therefore, posing MOS = 7.5 in correspondence to DMOS = 0 and
MOS = 0 in correspondence to DMOS = 100 yields

DMOS = (100/7.5) · (7.5 −MOS) . (8.14)

In the CISQ database, the DMOS was normalized between its minimum and
maximum empirical value.

The blur values of the LIVE MD database were not available. They were
estimated through a regularized spectral division of the blurred images with the
unblurred ones.

The fitting of the empirical data with the theoretical prediction of the subjective
quality loss is substantially linear, as evidenced by the scatterplots of the DMOS
empirical ratings versus the predicted ones for all the images contained in the
different databases (Fig.8.5). In the TID2013 and LIVE MD scatterplots, averages
with respect to the sample images are indicated by filled circles.

Figure 8.5. The scatterplots of the DMOS ratings versus the corresponding SBDI values
predicted by the model for each blurred image in the different databases. Averages
with respect to images are indicated by filled circles in the TID2013 and LIVE MD
scatterplots.

Finally, in the Fig.8.6, a comprehensive scatterplot of the empirical data of the
four databases is displayed.
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Figure 8.6. The cumulative scatterplot of all the ratings of the different databases versus
their values predicted by the theoretical model.

In Tab.8.1 the most relevant data about the experimental validation of the
model are resumed. The Pearson Linear Correlation Coefficient (PLCC) and the
Root Mean Square Error (RMSE) between theoretical and empirical data are also
provided. The “claimed” normalized VDs were calculated with the information
about the experimental settings provided by the respective authors2. The sign “−”
stands for “not available”3.

Table 8.1. Summary of the experimental verification for the four databases and sG = 2.5

DATABASE a δ
δ0

δ
δ0

PLCC RMSE
estimated claimed estimated

LIVE DBR2 93 0.46/0.57 0.53 0.96 5.44
TID2013 80 − 0.44 0.92 6.82
CSIQ 98 0.65 0.60 0.97 7.47
LIVE MD 107 0.84 0.76 0.83 8.57

ALL − − − 0.95 6.44

2The VDs of CISQ and LIVE MD are slightly (10%) underestimated. The maximum absolute
difference is within ten centimeters. However, the “physical” VD does also depend on the physical
dimension of the pixels of the screen.

3The Authors are grateful to Prof. Ponomarenko for providing details about the blur settings in
the TID2013 database in a personal communication.
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8.2.3 The “blur discomfort” experiments

In [71] the results of some experiments aimed to investigate the relationship between
visual discomfort judgments and image manipulations causing blur are reported. In
particular “Experiment 3” regards natural images.

In these experiments sixty natural images were taken from a database whose
images pertain to two general categories: distant natural scenes and closeups natural
scenes. In particular, ten images from the first category whose spectral energy has

a mean radial frequency decay of the kind
( 1
ρβ

)2
with β = 1.39, and ten images

from the second category, characterized by β = 0.95, were selected. The scope of
this diversity was to see if visual discomfort judgments would depend on deviation
from ideal spectral decay of natural scenes (β = 1).

During experimental sessions, thirteen subjects were asked to formulate discomfort
judgments following a pairwise comparison strategy.

Differently from the preceding experiments, ratings are averaged not only over
the pool of observers, but also over groups of images. One average regards the
distant natural scenes, and the other one regards the closeups natural scenes. As
in the TID2013 and in the LIVE MD experiments, few (three) Gaussian blur
values were employed, with standard deviations 8, 16, and 32 cycles/degree in the
spatial frequency domain, corresponding respectively to sB = 3.75, sB = 1.875
and sB = 0.9375 arcmin in the spatial domain. In the Fig.8.7 the results of these
experiments are reported, along with the discomfort predicted by the SBDI index.
The results were expressed in the Thurnstone scale [89], according to the method
employed for calculating the discomfort scores, and then converted into the discomfort
scale of the SBDI by the following affine transformation:

SBDI = 50 · (Thurnstone+ 1) . (8.15)

The VD, determined by regression, is δ
δ0

= 0.6, corresponding to γ = 1.66.
The scatterplots of the discomfort ratings versus the normalized Gaussian blur

spread are displayed in Fig.8.7 for the groups of images contained in the database,
along with the superimposed theoretical prediction curve. The triangles refer to the
distant natural scene category, and the circles to the closeups scene category.

The fitting of the empirical data with the theoretical prediction of the subjective
quality loss is substantially linear, as evidenced by the scatterplots of the empirical
ratings versus the predicted ones for all the images contained in the database
(Fig.8.8).

The Pearson Linear Correlation Coefficient (PLCC) between the average ratings
and the predicted SBDI is 0.98. These results support the argued strict relationship
between the subjective quality loss ratings and the visual discomfort ratings caused
by blur.

8.3 Discomfort and quality loss

In principle, the visual discomfort and the quality loss are different concepts. The
visual discomfort is a generic negative feeling caused by some visual stimuli. The
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Figure 8.7. The scatterplots of the subjective discomfort ratings versus the normalized blur
spread for the images in [71]. The triangles refer to the distant natural scene category,
and the circles to the closeups scene category.

Figure 8.8. The subjective discomfort ratings versus their theoretical predictions for the
images in [71]. The triangles refer to the distant natural scene category, and the circles
to the closeups scene category.
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image quality loss is the subjective impairment of a reproduced image with respect
to an expected standard.

However, restricting the interest on blur, and interpreting it in terms of PFI loss,
the two concepts significantly overlap. In fact, in the referred experiments, the eye
optical blur was always corrected. Blur applied to the observed images emulates an
undesired optical blur that cannot be compensated by accommodation [25].

Moreover, the subjective quality measured in experiments may be not indicative
of the visual discomfort, because the quality is also influenced by the content of
the images presented to the subjects. The visual discomfort should be considered
as a basic inter-subjective aspect of a more complex phenomenon of quality loss
perception. Such thesis is corroborated by the vertical clustering of the empirical data
in the final scatterplots of the databases TID2013 and LIVE MD (see “Experimental
verification” chapter). This occurs because few blur spread values were applied to
the entire body of original images. In the LIVE DBR2 and in the CSIQ databases,
this dependence is masked by the irregular variety of blur spread values applied to
the images.

The present theoretical model is unable to explain these DMOS differences. On
the other hand, being the subjective ratings averaged over different subjects, it is
ascertained that they must depend on the different image content. Notably, some
methods expressly designed for measuring the subjective image quality do correlate
better with the DMOS data for blurred images with respect to the SBDI. This
indicates that these methods implicitly account for content-related image features,
other than blur.

To understand better this circumstance, in Fig.8.9 the points representing the
DMOS values at different blur for the same image are linked together. It comes out
that the ranking of the subjective image quality remains substantially the same for
different values of blur.

The effects of the contents of the images will be better studied in the following
chapters, completing the estimator with the analysis of the fourth order moments.

The PFI, upon which the present analysis is based, has the form of a signal to
noise ratio, the signal being constituted by averages of gradient magnitude, and
the noise by white Gaussian noise. The complex valued receptive field model VRF
whitens the typical spectrum of natural images. This circumstance, along with the
analytical simplicity of the Gaussian blur and of the Fisher equivalence criterion, has
led to a formally compact model of the blur discomfort. The aim of these result is to
contribute to verify in which sense and at which extent the blur visual discomfort can
be regarded as an inter-subjective phenomenon. The model obtained may provide
initial estimates of the blur discomfort for the design process of vision correcting
systems, imaging, compression, and reproduction devices.
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Figure 8.9. The DMOS values of the blurred images of the TID2013 database versus blur,
showing the persistence of the DMOS ranking across different blur spreads.
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Part IV

The Role of the Viewing
Distance and the Diversity of

Image Content
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Chapter 9

Dependence on the Viewing
Distance of the Theoretical
DMOS

9.1 Full Reference IQA and subjective distance

Image Quality Assessment (IQA) is based on subjective as well as objective methods.
The subjective quality of an image is defined as the average quality score assigned to
it by a class of human subjects, usually expressed in the MOS (Mean Opinion Score)
scale. Likewise, the subjective quality loss with respect to a pristine version of the
same image considered of perfect quality (reference image) is expressed in DMOS
(Difference of Mean Opinion Score) units.

The objective quality consists of the algorithmic prediction of the subjective
quality based on measurable image features, expressed as well in MOS/DMOS units.

In the recent decades, many objective quality assessment methods have been
proposed. Methods requiring a complete representation of the reference image are
referred to as Full Reference (FR) IQA methods, while methods using incomplete
representations of are referred to as Reduced Reference (RR). Methods based only
on the knowledge of degraded images are finally referred to as No Reference (NR)
methods. The present discussion is concerned with FR methods.

The typical scheme of objective FR IQA methods includes first a local comparative
analysis of the pristine and of the degraded image stage, followed by a pooling stage
over the whole image. The result is the so-called as IQA metric (sometimes referred
as objective quality for short).

Formulation of existing metric was guided by different inspiring criteria. Some
metrics measure the similarity among image signals (reproduction fidelity), possibly
accounting for constraints suggested by more or less sophisticated models of the
Human Visual System (HVS). Other classical metrics measure a loss of a somehow
defined visual information caused by the image degradation, with reference to a
cognitive interpretation of the HVS role. Mostly, these metrics are in the form of
scalar metrics, even if some vector metrics have been adopted to distinguish among
different types of image degradation.

The final step is the application of a scoring function whose goal is to convert



76 9. Dependence on the Viewing Distance of the Theoretical DMOS

the IQA metric values into the subjective MOS/DMOS scales (for short, the result
is sometimes referred to as subjective quality, subtending “estimates of”).

The scoring function is typically formulated as a parametric function suggested
by the aim to model threshold and saturation phenomena. Parameters are adjusted
by non-linear regression using available empirical examples. Following the VQEG
suggestions [93, 94], the scoring function for a scalar metric consists of a logistic
function whose typical form is

m̂(ζ) = β1

[1
2 − 1

1 + eβ2(ζ−β3)

]
+ β4ζ + β5 (9.1)

where ζ is the metric value, m̂(ζ) is the estimated DMOS value [81], and βi are
parameters usually adjusted minimizing the r.m.s. distance of empirical DMOS
values from the estimated ones m̂(ζ). Of course, the larger the number of parameters,
the more accurate is the tracing of the specific training examples. But, on the other
hand, the greater is its variability across different sets of examples (overfitting). The
generalizability of the scoring function across different examples datasets decreases
with the number of adjustable parameters [1]. As a matter of fact, it is hard to find
default values for these parameters in the available literature. Even if it compen-
sates for the variability of methodologies employed for subjective quality collection,
example-based calibration prevents a fair comparison of quality measurement across
applications. Notice that in [42] it reduces to the application of a S-shaped function
regulated by three parameters only.

The scoring function depends critically on many factors, such as initialization
of the non-linear optimization and experimental settings, display contrast, room
illumination, angle of view, etc., other than by different protocols.

More evident, it does depend on the Viewing Distance (VD). In fact, the objective
quality is calculated from the images reproduced on the display, while the subjective
quality depends on the images perceived on the retina, whose scale depends on the
VD. Unfortunately, the said parametric forms of scoring functions generally lack an
explicit interpretation in terms of VD.

To attenuate the effect of the VD, in some IQA methods, namely the Multi-Scale
Structural Similarity (MS-SSIM) [98] and the Feature Similarity Index (FSIM) [109],
the dependence of their scoring function on the VD is attenuated by adjusting a
mix of metrics calculated at different scales. Generalizing this approach, in [35] a
preprocessing stage is applied to different IQA methods. Images are rescaled and
filtered to emulate different VDs, and the corresponding metrics are combined using
the criterion of optimizing the overall statistical performance. The VD was also
included, as a learnable parameter, in a CNN based NR IQA method [10].

Here, following a quite opposite approach, the problem is tackled using a theoret-
ical viewpoint, based on principles and reasonable hypotheses. The essential scope
is to define an effective model of the rating function explicitly related to the VD.

To this purpose, the case of blurred images is adopted as a significant benchmark.
In fact, in this case, the image degradation substantially depends on the VD, being
scarcely influenced by additional environmental factors, such as room illumination
or display contrast ratio. In addition, modeling the effects of blur is mathematically
feasible, and relatively easy in the case of natural images.



9.1 Full Reference IQA and subjective distance 77

The analysis conducted here stems from the overarching principle that the Human
Vision System (HVS) is an optimal device for fine pattern localization, given the
eye macro-structure [26]. This feature is especially important for stereoscopic vision.
The outstanding consequence, drawn from information theory, is that the variance
of fine localization of structures in observed images is objective, and calculable as
a function of the degree of blur. It is approximated by the inverse of the Fisher
Information about the position of observed patterns.

Based on this principle, and on well-known spectral properties of natural images,
the rating function relating the degree of Gaussian blur to the subjective quality loss
can be expressed in a closed form, where it was ascertained that this function fits
well with empirical DMOS data provided by independent well known IQA databases.

In the past, various simplified modes of the HVS were adopted for IQA devel-
opment. Here, an essentially abstract model of the HVS composed of the optical
tract and of the neural tract (from the retina up to the visual cortex) is adopted.
The last one is modelled by a single, complex valued, Virtual Receptive Field (VRF)
accounting for pattern orientation selectivity and, at the same time, for 2D spatial
frequency selectivity. It is viewed as the cascade of an ideal complex gradient
operator, and a low-pass filter which produces a so-called neural blur. The VRF
model allows straightforward calculation of the PFI of image details, and subsequent
pooling.

The second, substantial simplification comes from restricting the analysis to
the class of the so-called natural scenes, i.e., the images usually seen by subjects
during their everyday experience directly or through imaging devices. In the present
chapter, natural images are modeled as elements of a random set whose ensemble
radial spectral energy distribution decays exponentially [88]. It is important to
outline that in the IQA context other characterizations of natural images are used.
See for instance the Natural Scene Statistics (NSS), employed in [80].

At this point, it is assumed that the perception of the quality loss follows the
psycho-physical Weber-Fechner law with respect to PFI losses. It follows that an
estimate of the presumed subjective quality loss in the case of Gaussian blurred
images is expressed in a closed, unexpectedly simple form and constitutes the
so-called canonical IQA method based on the canonical metric. This metric is
constituted by the standard deviation of the Gaussian blur operator normalized
with respect to the standard deviation of the Gaussian neural blur operator. The
associated rating function conforms to the expected thresholding and saturating
behavior, but it is characterized by two significant and operative parameters, the VD
normalized with respect to a nominal VD (indicating the resolution of the display),
and a scoring gain depending on conventional quality scores assigned to “anchor”
images. After verification conducted on independent IQA databases, the canonical
method exhibits a remarkable linearity versus empirical MOS/DMOS measurements
reported in different independent IQA databases.

Subsequently, the applicability of the theoretical results to some most popular
IQA FR methods is verified, with the scope of applying them to the prediction of their
DMOS at various distances starting from the data available for a specific distance,
without performing new experiments. The key result is that the calculus of the
expected value of quality predicted with a scalar IQA metric can be decomposed into
the cascade of an intrinsic metric distortion, typical of that metric, with the rating
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function of the canonical method. This permits quality estimates parameterized
only by the VD and the conventional scoring gain.

The final part of this chapter is devoted to the extension of these theoretical
results to other types of image degradation, beyond the case of Gaussian blur. To
this purpose, the relationship between metrics of some mainstream IQA methods and
the canonical metric is discussed in some detail. The analysis starts from the basic
consideration that usual IQA methods using scalar metrics are purposely designed
to estimate the subjective image quality loss irrespective of the degradation cause.
So, it is expected that different types of degradation will properly map onto the
canonical metric provided that they are perceptually and unambiguously equivalent,
in terms of image quality, to a certain level of normalized Gaussian blur. If this
verifies, the a-priori linearity of the overall scoring function follows as a logical
consequence.

Some mainstream IQA methods (VIF, MS-SSIM, FSIM, and GMSD) are specifi-
cally examined as possible candidates for rectification-free subjective quality predic-
tion, showing the effectiveness of this approach for a technically significant class of
image degradation. An exhaustive comparative analysis of performance with conven-
tional rectification prone methods is provided. To this purpose the scatterplots of
the DMOS actual data with respect to the estimates are shown and some statistical
indices are reported in synoptic tables.

9.2 The retinal image versus the viewing distance
The retina in the foveal region is modeled as a distribution of light receptors whose
position is individuated by the coordinate pair p ≡ (x1, x2). The projection of an
image on the retina generates an image, whose luminance component is I (p). The
chrominance components are ignored here. It is assumed that I (p) is sampled by a
grid of receptors, whose average density is assumed as 60/degree of the angle of view.
Since these receptors are not regularly placed on the retinal surface, invoking the
generalized theory for non-baseband and nonuniform samples of [52], this amounts
to say that I (p) is correctly represented provided that its 2D bandwidth does not
exceed (+30,−30) cycles/degree, i.e., (−1/2,+1/2) cycles/arcmin. This is the
assumed retinal resolution, corresponds to the so-called Snellen acuity.

The screen is a rectangular array of pixels characterized by its resolution R
expressed in pixel/mm, i.e., spaced d = 1

R mm apart. The image is projected onto
the retina without loss of information and without redundancy if the spacing d
matches the said 60/degree density of receptors. This occurs at a distance given by:

δ0 = 1
R× tg(1) (9.2)

called hereafter nominal VD, where δ0 is measured in meters, and angles in arcmins.
In the ITU recommendations [40] this distance is referred to as the Design Viewing
Distance (DVD), or Optimal Viewing Distance (OVD).

Specifically, for a screen of height H and characterized by L pixel rows with
reference to the center of the screen:

δ0 = H

L× tg(1) = H

L
× 3.438 (9.3)
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For instance, the nominal distance for a 4k, 32 inch screen is:

δ0 = H

L
× 3.438 = 440

2160 × 3.438 = 0.7 (9.4)

At nominal VD the spatial Fourier spectra of the images projected onto the retina
are limited into the range (−1/2,+1/2) cycles/arcmin ((−30,+30) cycles/degree),
according to the Nyquist criterion. For a generic VD δ the spectrum of the
retinal images lies within the band (−1

2
δ

δ0
,+1

2
δ

δ0
) cycles/arcmin (−30 δ

δ0
,+30 δ

δ0
)

cycles/degree) both in horizontal and vertical directions. Thus, if the VD is less
than the nominal one, the bandwidth of the sensed image shrinks. If the distance
exceeds the nominal one, the bandwidth broadens.

9.3 The abstract model of vision
The HVS processes the visual information captured by the retina in successive
stages of the neural tract connecting the output of the retina to the visual cortex,
using receptive fields distributed across the visual field [36]. In the present work, no
attempt is made to model the physical receptive fields.

Henceforth, here it is assumed that the eye accommodation mechanism properly
works. More generally, that refraction defects are suitably corrected with lenses, so
that the images are perfectly focused on the retina.

As far as the neural tract is concerned, it is abstractly modeled as the convolution
of the sensed image I (p) with an operator h (p),

y (p) = I (p) ∗ h (p) (9.5)

The output y (p) will be referred to as the visual map. According to the general
principles of Daugman [23], the operator h (p) is an abstract functional model aimed
to account for the orientation selective behavior and the spatial frequency selective
behavior of the HVS.

This operator will be referred also as the VRF [26]. It is a complex valued
operator, as a pair of real operators:

h (p) = Re{h (p)} + jIm{h (p)}. (9.6)

It is significantly described in the polar coordinates r =
√
x2

1 + x2
2 and φ =

tg−1x2
x1

as

h(r, φ) = r

2πs2
G

e
−
r2

2sG
2
ejφ (9.7)

where the parameter sG is the spatial spread of the VRF. It is a polar-separable
function, whose real components are orthogonal and also orthogonally oriented (see
Fig.9.1 and Fig.9.2).

The VRF is a eigen-function with respect to 2D Fourier transformation. With
reference to the polar coordinates in the frequency domain

ρ =
√
f2

1 + f2
2 (9.8)
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Figure 9.1. Laguerre real part of the Virtual Receptive Field (VRF) complex operator.

Figure 9.2. Laguerre imaginary part of the Virtual Receptive Field (VRF) complex
operator.

ϑ = tg−1 f2
f1

(9.9)

where ρ is the radial frequency, the Fourier transform of the VRF is

H(ρ, ϑ) = j2πρejϑe−S2
Gρ2 (9.10)

referred in the sequel to as Virtual Neural Transfer Function (VNTF). Its magnitude
is a model of the Contrast Sensitivity Function (CSF) [58], as shown in Fig.9.3.
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Figure 9.3. The radial frequency response magnitude of the VNTF for sG = 2.5 arcmin
in 3D representation (up) and splitted in its Gaussian and linear components (down).
The spread sG = 2.5 arcmin of the VRF sets the maximum of the VNTF at about 8.5
cycles/degree, and a loss of ∼40dB at 30 cycles/degree.

The radial frequency response of the VRF is a model the CSF (blue line), viewed
as the cascade of an ideal complex gradient operator (red line) and of a low pass
filter (green line).

The maximum of the VNTF along the radial frequency is posed at about 8.5
cycles/degree, according to the experimental data provided in the Fig.5 of [11]. This
does correspond to a value sG = 2.5 arcmin, and a loss of ∼40dB at the Nyquist
frequency. The VRF is also interpreted as the cascade of two operators. With
reference to the same Fig.9.3, the first one is the magnitude of j2πρejϑ which
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represents the (unsmoothed) complex spatial gradient operator [78] defined as

∇I (p) .= ∂I (x1, x2)
∂x1

+ j
∂I (x1, x2)

∂x2
(9.11)

while the second factor
G(ρ, ϑ) = e−S2

Gρ2 (9.12)

represents a Gaussian-shaped smoothing filter, interpreted as the source of a neural
blur.

Thus, the whole VRF is interpreted as a complex, smoothed Gaussian gradient
operator, acting as an edge extractor. Following the Marr’s theory of vision [60], the
visual map depicts a complex version of the image skeleton, where the magnitude
indicates the edge strength, and the phase indicates the edge orientation.

Now, let the image on the display ID (p) be a blurred version of a pristine
(non-degraded) image ĨD (p), it is modeled as the convolution with the blur kernel
b (p):

ID (p) = ĨD (p) ∗ b (p) (9.13)

so that the blurred image on the retina is modeled as

I(p) = ĨD

(
p δ

δ0

)
∗ b
(

p δ

δ0

)
(9.14)

and finally the visual map is modeled as

y (p) = ĨD

(
p δ

δ0

)
∗ b
(

p δ

δ0

)
∗ h(p) (9.15)

9.3.1 The canonical IQA method

The accuracy of detail localization is a primary need of living beings. We assume
then as a principle that the position of details in the observed images is determined
with the maximum allowable accuracy, given some structural constraints. This
means that such accuracy, measured by the inverse of the Fisher information, is
intersubjective.

The Positional Fisher Information (PFI) of a detail of a pristine image and
extracted by a window wp(q), centered on p in presence of background white
Gaussian noise with variance σ2

V is calculated in [69] as:

ψ̃ (p) = λ̃ (p)
σ2

V

(9.16)

where
λ̃ (p) =

∑
q
wp(q)2 |ỹ (p − q)|2 (9.17)

is the energy of the detail. Likewise, for the same detail of a degraded version of the
image we have

ψ (p) = λ (p)
σ2

V

(9.18)
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where
λ (p) =

∑
q
wp(q)2 |y (p − q)|2 (9.19)

Let us now calculate the PFI in the frequency domain. Here, a Gaussian blur
applied to the observed image is described in polar frequency coordinates as

B(ρ, ϑ) = e−s2
Bρ2 (9.20)

where the parameter sB will be referred as to the spatial span of the blur operator.
Referring to the Fourier spectra of a generic detail, by the Parseval theorem:

ψ (p) = 1
σ2

V

∫ 2π

0

∫ +∞

0
|Dp (ρ)|2 ρ2 |G(ρ, ϑ)|2 |B(ρ, ϑ)|2 ρdρdϑ

ψ̃ (p) = 1
σ2

V

∫ 2π

0

∫ +∞

0
|Dp (ρ)|2 ρ2 |G(ρ, ϑ)|2 ρdρdϑ

(9.21)

Let us now refer specifically to natural images. It is known that in this case [88]

E
{

|Dp(ρ, ϑ)|2
}

= f(ϑ) 1
ρ2 (9.22)

So, for the random set of natural images, the average PFI in presence of blur is
calculated as

Ψ = E [ψ (p)] = K

∫ +∞

0
|G(ρ, ϑ)|2 |B(ρ, ϑ)|2 ρdρ (9.23)

and, in the absence of blur

Ψ̃ = E
[
ψ̃ (p)

]
= K

∫ +∞

0
|G(ρ, ϑ)|2 ρdρ (9.24)

where
K = 1

σ2
V

∫ 2π

0
f(ϑ)dϑ (9.25)

From known results of integral calculus, we arrive at the following closed form
results:

Ψ = K

∫ +∞

0
e−2(s2

G+s2
B)ρ2

ρdρ = K

4
(
s2

G + s2
B

) (9.26)

Ψ̃ = K

∫ +∞

0
e−2s2

Gρ2
ρdρ = K

4s2
G

(9.27)

Now, let us assume that the perceived loss of positional uncertainty is propor-
tional to the objective one, considering the necessary consistency of the position
estimates in the 3D Euclidean space during the interaction of the subject with
its surrounding environment. According to classical psycho-physical laws, let us
assume that the differential sensitivity to stimuli is inversely proportional to the
size of the initial stimuli (Weber-Fechner law [26]). Identifying the stimulus as the
positional uncertainty (see (9.26) and (9.27)), the following index is then proposed
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as a psycho-physically grounded model of the quality loss perception caused by
Gaussian blur applied to natural images:

ε(ξ) =
√
ψ (p) −

√
ψ̃ (p)√

ψ (p)
=

√
s2

G + s2
B −

√
s2

G√
s2

G + s2
B

= 1 −
√

1
1 + ξ2 (9.28)

having introduced the Normalized Blur (NB) sB

sG
= ξ, which is by fact the metric

of this quality estimator. This index is straightforward mapped onto the DMOS
scale (which assigns the value 0 to perfect quality, and 100 to the “worst” quality)
by scaling it in centesimal units:

ˆd(ξ) = 100
[
1 −

√
1

1 + ξ2

]
(9.29)

This theoretical DMOS estimator is plotted in Fig.9.4. It presents a characteristic
sigmoidal behavior, with a threshold for small input values and a saturating behavior
for large input. The psycho-physical plausibility of the proposed rating function
is well supported by its compliance with the typical “dipper” shape [84] of the
incremental blur producing a Just Noticeable Difference (JND) of the perceived
quality. Specifically, as shown in [26], the theoretical minimum occurs in the
correspondence of

ξ =
√

1
2 (9.30)

corresponding to d̂(ξ) = 18.4.

Figure 9.4. The rating function of the canonical DMOS estimator versus the metric ξ (in
centesimal units DMOS). The blue dot indicates the point of maximum sensitivity of
the HVS with respect to the variations in blur.
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Still, this DMOS estimate remains undetermined. First, the concept of worst
quality is undefined. To fix it, it is necessary to assign by convention the subjective
quality in correspondence of a chosen value of the blur spread. This is done by
introducing a scoring gain parameter Q so that

Q = dA

100

[
1 −

√
1

1 + ξA

]−1

(9.31)

where dA is a DMOS value conventionally attributed to a selected image for ξA

(“anchor”).

9.4 The canonical IQA method at different VD
The above estimates refer to the nominal VD, i.e., to the case where δ = δ0.
Accounting for the scaling of the retinal image due to the actual visual distance we
have

Ψ = K

∫ +∞

0
e

−2

[(
δ

δ0
sG

)2

+
(
δ0
δ
sB

)2]
ρ2

ρdρ = K

4
[(

δ

δ0
sG

)2
+
(
δ0
δ
sB

)2]
Ψ̃ = K

4
(
δ

δ0
sG

)2

(9.32)

So, posing for notational simplicity τ = δ

δ0
we finally obtain the following

theoretical formula for the prediction of the DMOS of blurred natural images:

d̂CAN (Q, τ, ξ) = 100 ×Q

1 −
√√√√√ 1

1 + ξ2

τ4

 (9.33)

referred to as canonical estimate of the DMOS of Gaussian blur of natural images,
characterized by Q and the dimensionless parameter τ . It provides the theoretical
expected value of the DMOS for the random set of natural images.

Incidentally, let us observe that using if a set of empirical DMOS data is available
for Gaussian blurred images Q and τ can be blindly estimated by regression. Provided
that the distribution of the spectra of such images contained in the database is well
balanced, i.e., that the empirical values of the DMOS scatter symmetrically around
their expected value d̂CAN (Q, τ1, ξ).

Applying for instance this method to the blurred images of the LIVE Database
Release 2 (DBR2) [81], the Tampere Image Database (TID2013) [75], the LIVE
Multi Distortion (MD) [48], and to the Computational and Subjective Image Quality
Database (CSIQ) [54], it leads to the scatterplots of the DMOS empirical values
versus their blur values (Fig.9.5) and to the scatterplots of the DMOS empirical



86 9. Dependence on the Viewing Distance of the Theoretical DMOS

Figure 9.5. The canonical method (curves) and the DMOS values (scatterplots) versus the
normalized blur spread for each database and in an overall comparative view.

values versus their estimates (Fig.9.6) obtained from the data of Tab.8.1 in Sect.8.2.2
[26].

The fit of theory based DMOS estimates with ground truth is quite good.
However, one could notice that the scattering of DMOS data is greater with respect
to some other methods, and specifically to the VIF method. This is explained by the
fact that the canonical method, based on the measure of the PFI does not account
at all for the image content. This is clearly revealed by the scattering of the plots
for the TID2013 and the LIVE MD methods, where few distinct levels of blur are
applied to the pristine images. Thus, the estimated DMOS values are vertically
aligned, revealing the independent effects of blur and the image content on the
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Figure 9.6. The scatterplots of the actual DMOS values versus the ones predicted by the
canonical estimator for the IQA databases DBR2 (o), TID2013 (*), CISQ (+). LIVE MD
(x). These scatterplots corroborate the theoretically predicted linearity of the canonical
estimator for natural images.

perceived quality. The same does not occur for other methods where the image
content plays a role.

9.5 The zooming function

Let us explicit how the theoretical estimate d̂CAN (Q, τ, ξ) depends on the VD using
the interconversion formula

cCAN (Q, τ1, τ2, ξ) =

1 −
√√√√√ 1

1 + ξ2

τ4
2

1 −
√√√√√ 1

1 + ξ2

τ4
1

(9.34)

that will be referred to as the zooming function.
The zooming function allows us to predict the subjective quality at any VD

starting from the subjective quality at nominal distance, and vice versa, as:

d̂CAN (Q, τ2, ξ) = cCAN (Q, τ1, τ2, ξ)d̂CAN (Q, τ1, ξ) (9.35)
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Figure 9.7. Iso-level contours as the ratio of the reference case and the nominal one with
τ1 = 1. Variable ζ is used here instead of ξ following the generalization explained in
section 9.7 (ξ(ζ)).

This function is depicted in Fig.9.7 using iso-level contours for the reference case
where the starting visual distance is the nominal one (τ1 = 1).

For VDs closer than the nominal ones, the effect of blur amplifies, and this
amplification is more and more perceptually important as blur increases. For
example, for sB =

√
2sG, at a distance one half of the nominal one (a distance

adopted in the popular LIVE DBR2 database), the theoretically estimated DMOS
for blurred natural images doubles with respect to the DMOS estimated for the
nominal distance (see Fig.9.8).

Of course, for VDs farther than the nominal distance, the effect of blur diminishes
with the distance.

It important to underline that the above formulas model the quality loss in a
Full Reference scenario. They predict the quality loss caused by blur but are not
indicative of the perceived quality in a No Reference scenario. In fact, in this case,
the perceived quality may improve with the VD, depending on the content of the
image. Thus, almost by principle, it is not correct to assess the performance of NR
IQA methods using as reference the performance of FR IQA methods.

Finally, in Fig.9.9, it is highlighted how the theoretical estimate DMOS(τ,Q, ξ)
depends on ξ (normalized sB) for different τ (VD). It is possible to recognize the
shape of the canonical estimator found in Part III for the viewing conditions of each
database.
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Figure 9.8. The theoretical estimate DMOS(τ,Q, ξ) depends on the VD using the
interconversion formula (9.34), with the nominal distance as reference, where τ1 = 1 and
Q1 = Q2 (same DB).

9.6 Behavior of common IQA methods versus the view-
ing distance

General purpose IQA methods are designed to consistently predict the subjective
quality for different types of distortion. This implies that the rating functions for
different degradations should overlap each other, and specifically with the blur rating
function, that we have used as a benchmark.

To investigate this point, let us preliminarily observe how the rating functions
for Gaussian blur modify across different databases. To this purpose, let us display
the scatterplots of the DMOS estimates for Gaussian blurred images coming from
different databases using different distances, for different IQA methods, along with
their scoring functions. Gaussian blur distorsions are considered in Fig.9.10.

The methods give different results at different VDs, with the notable exception
the FSIM [109], the MS-SSIM [95], and of the PSNR. This is justified because,
as noted in introduction, the FSIM and the MS-SSIM are equipped with a rough
pre-processing stage that adapt the resolution to the VD. As far as the PSNR is
concerned, its behavior is intrinsically insensitive to the VD, because it does not
account for any characteristic of the HVS. Instead, the VIF [80, 81], the GMSD
[108] and the MAD [53] methods, are not robust across VD: their rating functions
must be recalculated changing the VD.
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Figure 9.9. The theoretical estimate DMOS(τ,Q, ξ) depends on ξ (normalized sB) for
different τ (VD). In particular, τDBR2 = 0.53, τT ID2013 = 0.44, τCSIQ = 0.60 and
τLIV EMD = 0.76.

9.7 Generalizing the use of the zooming function

Let us verify at which amount the results obtained for the canonical method apply
to other IQA metrics and to other distortions.

We make the hypothesis that the modification of the regression function across
different databases, for other IQA method and for other distortions is described by
the same mechanism of (9.35).

d̂ (Q, τ2, ζ) = cCAN [Q, τ1, τ2, ξ(ζ)] d̂ (Q, τ1, ζ) (9.36)

where ζ is a generic IQA metric.
This hypothesis amounts to say that the modification of the regression function

caused by a change of the VD is substantially independent of the metric.
To verify the hypothesis, it is necessary preliminarily to determine the function

ξ(ζ) that align the metric ζ to the canonical metric ξ so that they refer to the same
estimated DMOS, say d̂.

To determine such a function, let us before invert the regression curve for the
canonical method.

ξ(d̂) = τ2
√√√√√√

1[
1 − d̂

100 ×Q

]2 − 1 (9.37)
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Figure 9.10. The scatterplots of the DMOS ratings versus the corresponding IQA methods
values for each blurred image in the different databases.

Likewise, the equivalent value of the corresponding generic metric ζ that produces
the same estimated DMOS is (empirically) determined by inverting the specific
regression curve.

This allows us to determine the functional relationship ξ(ζ) and, by consequence,
the proper value of ξ in the interconversion formula (9.37).

The inverse function ζ(ξ) is interpreted as the intrinsic distortion of the method
based on this metric, and (9.37) can be viewed as a composition of the intrinsic
distortion with the distortion caused by the change of the VD.

To corroborate the validity of the hypothesis, let us compare the regression
curve of a database starting from the one predicted by the zooming function, by the
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regression curves of the other databases using different VD. In particular, in Fig.9.11,
LIVE DBR2 and TID2013 are considered with the VD varying from δ

δ0
= 0.44

(TID2013 distance, more linear) to δ
δ0

= 0.76 (LIVE MD distance, more bending).
In addition to the zooming function obtained for each distance, we also have the
displacement of the DMOS recalculated for the new VDs, useful for understanding
the variance (as a continuous lines to highlight the range): the variance decreases as
the distance increases, the curvature increases as the distance increases.

Figure 9.11. VIF and MS-SSIM methods with DMOS data at 3 different distances. Dotted
lines: the regression curves predicted by the zooming function. Continuous lines: the
raw data for the blurred images at different viewing conditions. The variance decreases
as the distance increases and the curvature increases as the distance increases (from
TID2013 ( δ

δ0
= 0.44), LIVE DBR2 ( δ

δ0
= 0.53) to LIVE MD ( δ

δ0
= 0.76)).

The good matching of the predicted empirical regression curves with the actual
ones does suggest that the zooming function can be used with a good approximation
to the considered distortions.

9.8 Relationship among the canonical IQA method and
other IQA methods

The scope of this section is to analyze the possibility of linearizing a-priori the
behavior of a generic IQA method using the already known properties of the
canonical method. For the sake of clarity, let us limit preliminarily to the case of
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Gaussian blurred images.
Let us consider a generic IQA method based on the scalar metric ζ, and let us

assume that this metric is monotonically related with the degree of Gaussian blur
applied to images, i.e., with the canonical metric ξ.

Then, it is possible, almost in principle, to convert the metric ζ into the metric
ξ. Such a conversion is obtained by searching for the function ξ(ζ, τ) that satisfies
the equality of the DMOS estimates:

d̂CAN (ξ, τ) = d̂IQA(ζ, τ) (9.38)

The function d̂CAN (ξ, τ) is directly available in an analytical closed form, but
d̂IQA(ζ, τ) is only available through the numerical calculus of this IQA metric.
Therefore, we may approximate the conversion function ξ(ζ, τ) using a semi-numerical
method, calculating d̂IQA(ζ, τ) for a typical natural image, i.e., an image ĨT yp whose
radial energy Fourier spectrum coincides with the average one of natural images,
and interpolating it piecewise.

One could attempt to synthesize such an image, as exemplified in [68]. More
pragmatically, we preferred to search for an exemplar in the LIVE MD dataset and
selected the image “Iceroad” displayed in Fig.9.12.

Figure 9.12. The image “Iceroad” selected as a specimen of a typical natural image, i.e., an
image possessing an energy Fourier spectrum close to the expected value of the energy
Fourier spectrum of the random set of natural images.

A suite of fifty Gaussian blurred versions IT yp of “Iceroad” (of which we report a
few examples in Fig.9.13), whose estimated quality spanned the whole DMOS range,
was prepared (see Fig.9.14). The resulting collection of points satisfying the equality
is traced in Fig.9.15 for some mainstream IQA methods.

The semi-numerical solution for the function ξ(ζ, τ) for the considered IQA
method is formally provided in the form of the Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) Matlab® function and displayed in Fig.9.15 for a single value
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Figure 9.13. Four blurred images from “Iceroad” with sB = 1, sB = 3, sB = 6 and sB = 11
(from top-left to down-right). Recall ξ = sB/sG, with sG = 2.5 arcmin.

Figure 9.14. A suite of fifty Gaussian blurred versions IT yp whose estimated quality spans
the whole DMOS range. The magenta stars represent the blurred images and it is
possible to see how well they fit the canonical model of the LIVE MD database (which
contains the “Iceroad” image).
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Figure 9.15. The Equivalent Normalized Blur function for the considered IQA method.
The scales of the metrics of the MS-SSIM , FSIM and GMSD, at their own VD, are
purposely aligned to the scale of the VIF metric to put into evidence their common
asymptotic behavior.

of τ . Moreover, in Fig.9.16, the metric conversion function for the VIF method at
different VDs are shown.

Let us observe that the fundamental behavior of the function ξ(ζ, τ), referred
also to as Equivalent Normalized Blur (ENB), is analogous for all the considered
methods. It compresses the equivalent blur values for high degraded images, and
conversely expand them for low degraded images.

Once mapped on the equivalent Gaussian blur axis ξ, a linear estimate of the
DMOS Gaussian blurred natural images is finally obtained as

d̂(ζ) = 100 ×Q

1 −
√√√√√ 1

1 + ξ(ζ, τ)2

τ4

 (9.39)

To give a visual account of the actual linearity and of the statistical accuracy
of this IQA method, in Fig.9.17 the scatterplots of the DMOS estimates for the
canonical method against the same estimates obtained with the LVIF method
are provided for Gaussian blur. Notice, in particular, that the obvious vertical
alignments of the DMOS values in the case of the TID2013 database are destroyed
by the conversion. In Fig.9.18, the scatterplots for the individual databases are
given.
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Figure 9.16. The metric conversion function for the VIF method at different VDs:
τ = 0.53, τ = 0.44, τ = 0.60, and τ = 0.76, corresponding respectively to the LIVE
DBR2, TID2013, CSIQ and LIVE MD VDs, and τ = 1 for the nominal VD.

9.9 Extension of the method beyond Gaussian blur
The analysis conducted so far, limited to the case of Gaussian blurred natural images,
is of limited practical interest. From an applicative viewpoint, it is important to have
a method for assessing the quality of images subject to different types of degradation.

At a glance, it could appear that the conversion to the metric ξ of a generic IQA
metric ζ is vane, since the metric ξ measures only one type of degradation, that
cannot reflect for instance the effect of noise, which is neatly distinct with respect
to blur from a perceptual viewpoint [62].

However, the metrics of some mainstream methods are purposely designed to
measure a distance that is well correlated with the human quality score, producing
the same MOS/DMOS even if its causes are different [96]. This aspect is also
specifically discussed in [27] where two separate metrics are jointly employed and
a two-dimensional scoring function is defined to achieve linearity of IQA estimates
using a reduced number of adjustable parameters. Therein, it was outlined that
the perceptual quality equivalence among blur and noise is interpersonal and then,
assumed as constant. See also [16].

This implies that the conversion function ξ(ζ, τ) makes sense even if the values
of the metric ζ are not only determined by the presence of blur, but by other factors
that produce the same values of d̂CAN (ξ) = d̂IQA(ζ). This is specifically the case of
the considered metrics. For instance, in the VIF method the metric is computed as
the contribution of many terms measuring losses of Shannon information, where the



9.9 Extension of the method beyond Gaussian blur 97

Figure 9.17. The scatterplots of the DMOS empirical measurements for blurred images
versus the values predicted using respectively the canonical method (*) and the linearized
VIF method (°) for different databases.

effect of increasing noise is equivalent to that caused by the reduction of the image
signal energy due to blur.

A comprehensive look is given in Fig.9.19, where all distortions are considered
for the LVIF method. More specifically, in Fig.9.20, an overall view of the only blur
are proposed. In Tab.9.1 and Tab.9.2 are the respectively performance.
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Figure 9.18. The scatterplots of the DMOS empirical measurements for blurred images
versus the values predicted using respectively the canonical method (*) and the linearized
VIF method (°) for individual databases.

9.10 Performance evaluation

The most fundamental difference between the conventional IQA methods considered
above and their calibration free counterparts is that the former ones adapt a generic
parameterized scoring function to the available examples to define a MOS/DMOS
estimation rule minimizing empirical distances, while the latter ones adopt a scoring
function parameterized only by the VD and the scoring gain to calculate the
MOS/DMOS estimate as their expected value for natural images, using principles
and theoretical arguments. By doing so, we trade adherence to particular empirical
data for greater generalizability and for the ability to estimate subjective quality at
different VDs.

The expected operational advantage of the calibration-free procedure is to allow
comparison of MOS/DMOS estimates across different applications. The expected
toll is a lower accuracy within contexts characterized by possibly unmodeled causes
of quality loss.

To tangibly guess the entity of this trade-off, we present here a statistical
performance comparison of some popular classical IQA methods already considered
above, subject to final calibration according to VQEG recommendations, with their
counterpart, indicated with the prefix L, LIQA methods, which do not make use of
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Figure 9.19. The scatterplots of the DMOS empirical measurements for all distorted images
versus the values predicted using the linearized VIF method for different databases.
Performance are in Tab.9.1

Table 9.1. Summary of the experimental verification for the LVIF (rectified IQA metrics)
for DBR2, TID2013, CSIQ and LIVE MD, and for the overall case. Four distortions
subsets for LIVE DBR2, TID2013 and CSIQ: blur, noise, JPEG, JPEG2000. Five
distortions subsets for LIVE MD: blur, noise, JPEG, blur+JPEG, blur+noise.

Model RMSE SROCC LCC

LVIF LIVE DBR2 8.6653 0.96536 0.95636
LVIF TID2013 7.0170 0.92782 0.92789
LVIF CSIQ 7.5789 0.95878 0.96336
LVIF LIVE MD 9.2065 0.92673 0.93604
LVIF OVERALL 8.3421 0.95350 0.94307
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Figure 9.20. The scatterplots of the DMOS empirical measurements for blurred images
versus the values predicted using the linearized VIF method for different databases.
Performance are in Tab.9.2

Table 9.2. Summary of the experimental verification for the LVIF (rectified IQA metrics)
for DBR2, TID2013, CSIQ and LIVE MD, and for the overall case. Only blur is
considered for all databases.

Model RMSE SROCC LCC

LVIF LIVE DBR2 4.3647 0.97222 0.97526
LVIF TID2013 4.9705 0.96529 0.95452
LVIF CSIQ 6.8154 0.97470 0.97409
LVIF LIVE MD 9.3008 0.78363 0.81243
LVIF OVERALL 6.2095 0.96525 0.96196
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empirical calibration, whose estimate has the same form as the (9.39):

d̂LIQA(ζ) = 100 ×Q

1 −
√√√√√ 1

1 + ξ(ζ, τ)2

τ4

 (9.40)

The present comparative analysis is limited to degradation types that appeared
suitable for conversion to the canonical metric, namely, additive noise, JPEG and
JPEG2000 compression, including some examples of multiple degradations [48]. To
this purpose, four different well-known collections of examples have been employed,
namely the above indicated subsets of the LIVE DBR2, the TID2013, the CISQ and
the LIVE MD databases. These databases are built using independent protocols
and methods for calculating the DMOS, which is used as a common measure of
quality loss. Even if indications about the VD used in experiments are available,
both the normalized VD τ and the scoring gain Q where independently estimated
by regression of the available blur DMOS data, using the canonical estimator.

The results of this comparative analysis are reported in Tab.9.3 for the IQA
methods equipped with the scoring functions [93, 94] calibrated on the empirical
DMOS values of each database, and in Tab.9.4 for the LIQA methods. The selected
statistical quality indices where the RMSE (indicative of the average distance
between the actual DMOS values and the ones provided by the method), the SROCC
(Spearman’s Rank Correlation) [37] which reveals the monotonicity between predicted
and actual DMOS values, and the PLCC (Pearson Linear Correlation Coefficient)
which measures the linearity of the DMOS mapping.

These tables indicate that the DMOS estimates based on theoretical modeling are
statistically slightly more dispersed than the ones determined using empirical fitting
to specific data, using the five parameter curve of (9.1). However, this advantage
does depend on the adopted fitting model. For instance, the three-parameter curve
of [41] would exhibit in principle a larger RMSE in change of a better stability across
applications, thus reducing this advantage over LIQAs.

On the other hand, the PLCC and the SROCC indices remain substantially the
same for the IQAs and LIQAs methods.

Further indications come from the observation of the scatterograms of empirical
DMOS values versus the estimated ones, reported in Fig.9.21,9.22,9.23,9.24. The
most evident is that a numerical saturation occurs toward the extremely bad quality,
in correspondence of the vertical asymptotes of the intrinsic distortion, of scarce
practical relevance.

9.11 Implementation issues
The computational steps for the implementation of the a-priori Linearized methods
are summarized as follows:

1. With reference to a typical natural image chosen as specimen whose spectral
decay is invariant with respect to the VD stipulate a conventional DMOS for
that image at some level of blur (anchor value). This determines the value of
Q.
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Table 9.3. Summary of the experimental verification for the original IQA metrics
for DBR2, TID2013, CSIQ and LIVE MD. Four distortions subsets for LIVE DBR2,
TID2013 and CSIQ: blur, noise, JPEG, JPEG2000. Five distortions subsets for LIVE
MD: blur, noise, JPEG, blur+JPEG, blur+noise.

Model RMSE SROCC LCC

VIF LIVE DBR2 7.3992 0.96535 0.96181
VIF TID2013 6.3344 0.92782 0.94021
VIF CSIQ 9.5763 0.92283 0.93089
VIF LIVE MD 7.3096 0.92199 0.94277
VIF OVERALL − − −

MSSIM LIVE DBR2 8.4663 0.95307 0.94969
MSSIM TID2013 6.7297 0.91745 0.93224
MSSIM CSIQ 13.1528 0.88089 0.86502
MSSIM LIVE MD 10.0285 0.87118 0.88922
MSSIM OVERALL − − −

FSIM LIVE DBR2 7.2289 0.96846 0.96358
FSIM TID2013 5.4113 0.95343 0.95673
FSIM CSIQ 10.5632 0.92742 0.91522
FSIM LIVE MD 7.9413 0.90831 0.93207
FSIM OVERALL − − −

GMSD LIVE DBR2 6.9278 0.96888 0.96660
GMSD TID2013 5.5523 0.95059 0.95440
GMSD CSIQ 8.1502 0.95490 0.95044
GMSD LIVE MD 8.7612 0.89582 0.91666
GMSD OVERALL − − −

2. Calculate the intrinsic distortion ξ(ζ; τ) of the chosen conventional IQA method
for the VD values of interest τ1, τ2, ..., τN , thus obtaining a set of scoring
functions for each VD normalized to δ0. Since the exponential specimen image
spectral decay is invariant with respect to VD, each image is resampled for
each distance of interest. The image size scales up as τ−1, i.e., it shrinks for a
larger normalized VD.

3. Select the IQA method and the corresponding scoring functions ξ(ζ; τ), for
the selected values of τ .

4. Calculate the IQA metric ζ for the scaled original and distorted image pairs
and use it in the calculus of d̂LIQA(ζ).

Since the step 2 is off-line, the computational cost reduces to that of the conven-
tional IQA method.
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Table 9.4. Summary of the experimental verification for the rectified IQA metrics for
DBR2, TID2013, CSIQ and LIVE MD, and for the overall case. Four distortions subsets
for LIVE DBR2, TID2013 and CSIQ: blur, noise, JPEG, JPEG2000. Five distortions
subsets for LIVE MD: blur, noise, JPEG, blur+JPEG, blur+noise.

Model RMSE SROCC LCC

LVIF LIVE DBR2 8.6653 0.96536 0.95636
LVIF TID2013 7.0170 0.92782 0.92789
LVIF CSIQ 7.5789 0.95878 0.96336
LVIF LIVE MD 9.2065 0.92673 0.93604
LVIF OVERALL 8.3421 0.9535 0.94307

LMSSIM LIVE DBR2 9.5823 0.95323 0.93910
LMSSIM TID2013 7.8579 0.91745 0.91394
LMSSIM CSIQ 8.5463 0.95445 0.95326
LMSSIM LIVE MD 13.8323 0.87709 0.84556
LMSSIM OVERALL 10.3989 0.92951 0.91107

LFSIM LIVE DBR2 8.8302 0.96851 0.95149
LFSIM TID2013 7.3283 0.95341 0.93291
LFSIM CSIQ 8.1802 0.96164 0.95810
LFSIM LIVE MD 12.0365 0.91389 0.88788
LFSIM OVERALL 10.0099 0.93155 0.91882

LGMSD LIVE DBR2 7.2629 0.96888 0.96478
LGMSD TID2013 6.7091 0.95059 0.93579
LGMSD CSIQ 7.7122 0.96909 0.96232
LGMSD LIVE MD 12.9031 0.90144 0.87629
LGMSD OVERALL 9.1525 0.94904 0.93314

The value of sB is directly calculated from the blurred and reference images of
the databases by straightforward spectral division (see Sect.10.5).

9.12 Conclusive remarks

Resuming, generalizability of results and comparability among different conventional
IQA measurements is problematic. Moreover, the availability of IQA databases is
inherently limited, and the risk of overfitting is always lurking. Using the theoretical
results for the case of blur degradation, which is easy to analyze, an a-priori lin-
earization procedure is derived. Results are then generalized invoking the perceptual
equivalence, from the viewpoint of image fidelity, of different causes of degradation.
This equivalence deserves some more comments.

This aspect is specifically discussed in [27] where two separate metrics are jointly
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employed, and a two-dimensional scoring function is defined to achieve linearity of
IQA estimates using a reduced number of adjustable parameters. Therein, it was
outlined that the perceptual quality equivalence among blur and noise is interpersonal
and then constant. See also [16].

With respect to conventional approaches, a-priori linearization presents the
fundamental advantage of allowing for the quality prediction at any wanted VD.
In other words, it may be used for calculating whole maps of estimated subjective
quality, for instance in conference rooms. This possibility is precluded to conventional
example calibrated methods, also because the scarcity of empirical data taken at
different VDs [56].

Of course, the resulting rectification free method are not completely independent
on the operative scenario since they do still depend on the parameters Q and
τ . However, unlike parameters employed in conventional parametric a-posteriori
calibration, these parameters have a direct operative meaning.

Let us observe, besides, that an absolute version of the calibration free methods
is easily defined by fixing the parameters Q and τ . For instance, one could adopt
for τ a VD corresponding to that of a specified specimen, and for Q a value which
determines a DMOS for the specimen for a given normalized blur.

As a final remark, let us observe that, from a rigorous conceptual viewpoint,
the rectification-free methods are not completely independent on empirical data
since the settings of the employed IQA methods where already established through
a lot of past experiments. However, it is implicitly assumed that these consolidated
methods are not subject to significant modifications.
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Figure 9.21. The scatterplots of the DMOS empirical measurements for blur, noise, JPEG,
JPEG2000 distorsions versus the values predicted using respectively the linearized VIF
method (left column) and the original IQA method (right column) for different databases.
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Figure 9.22. The scatterplots of the DMOS empirical measurements for blur, noise, JPEG,
JPEG2000 distorsions versus the values predicted using respectively the linearized MS-
SSIM method (left column) and the original IQA method (right column) for different
databases.
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Figure 9.23. The scatterplots of the DMOS empirical measurements for blur, noise, JPEG,
JPEG2000 distorsions versus the values predicted using respectively the linearized FSIM
method (left column) and the original IQA method (right column) for different databases.
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Figure 9.24. The scatterplots of the DMOS empirical measurements for blur, noise, JPEG,
JPEG2000 distorsions versus the values predicted using respectively the linearized GMSD
method (left column) and the original IQA method (right column) for different databases.
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Chapter 10

Diversity of Image Content in
the Early Vision

10.1 The raw early sketch

The image content can be thought of as an edge distribution above a certain threshold
of visibility. Natural images are composed for the most part by isolated, long, strong,
unidirectional edges, and textures (which are composed of weak edges, close to each
other, multi-directional, above the noise level, but partially unsolved by the eye),
and flat areas which do not carry information and which are also covered by noise.
Referring to the VRF model studied in Part III, we now want to understand how
these different objects behave with respect to the loss of the PFI. The strong edge is
what attracts our attention most [60, 83]. The eye has the ability to compensate for
losses up to a certain level of added blur. We want to understand in what proportion
and with what impact these different objects represent the contents of an image and
contribute to the estimation of subjective quality. Furthermore, we know that if
the edge is already partially blurred in the reference image, the task of judging the
degradation becomes more difficult.

A strong edge carries Fisher Information in the direction orthogonal to the edge
itself (locally it is like a degenerate saddle point). Its degradation due to blur occurs,
therefore, only on the cross-section.

The visible textures, that can be seen as edges close to each other, have a
much more uniform distribution of Fisher Information on space (distributed in
two directions, not separable), and much more variable from the point of view of
subjective judgment. With closer edges, the PFI increases, we have two components,
and the eye cannot immediately perceives how much and in what direction the
portion of image with textures is blurred. Our personal judgment is much more
complex and causes large variations in DMOS values.

It has been verified experimentally that removing the weakest edges from the
estimate up to a certain threshold, the spread is reduced. The optimal search for
the threshold comes from the theoretical estimator studied in Part III and we call
it the natural vision threshold, dependent on the degree of blur applied. A stable
judgment is, therefore, based mainly on the dominant edges.

Starting from a visual inspection of some images of the LIVE MD database,
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we can see the proportion and magnitude of strong edges and textures. In the left
image of Fig.10.1, we have a dominance of strong edges, which however are already
slightly out-of-focus in the original image, due to the imprecision of the depth of
field shooting system (see the seat and the profile of the face). We also edges that
are weaker but very focused, with strong changes of direction (see hair with more
brightness) and textures of low intensity (see darker hair). In the right image of
Fig.10.1, we have an example of extended textures (the animals themselves, the field
in the foreground and the background), with a few more strong edges (contours of
the animal and the strong edge of land-sea separation). We will resume these visual
inspections and give them more emphasis in the Certainty map section (sec.10.4),
where we will explain the isoluminance filter that gives immediate feedback on
contents.

Figure 10.1. Two example of the dominance of strong edges (left image) and the dominance
of textures (right image). In the second rows, it is used the Canny operator for zero-
crossing, only to give a first evidence of the edges and textures.
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10.2 Empirical estimation of the DMOS
Starting from the theoretical SBDI estimator already found in Part III, the new
estimator must also take into account the variation in subjective quality due to the
contents of the image. So, it is possible to define the empirical DMOS as

DMOSemp = α(1 −
√
Q) (10.1)

where α is the gain parameter that fixes the scoring scale of the database considered,
and

Q = 1
NΩ

∑
p⊂Ω

λ (p)
λ̃ (p)

(10.2)

NΩ is the set of points where ỹ(p) exceeds a minimum value, and

λ(p) =
∑

q
wp(q)2 |yδ (p − q)|2 ,

λ̃(p) =
∑

q
wp(q)2 |ỹδ (p − q)|2 .

(10.3)

yδ (p) is the visual map (see (9.5)) for the blurred image, calculated at the actual
distance, and ỹδ (p) for the reference image.

For isolated edges, let us consider, without loss of generality, a vertical edge
placed on x2 = 0, Gaussian smoothed at nominal VD:

ỹ(x) = δ(x1) ∗ F−1(e−s2
Gρ2) (10.4)

Its Fourier transform is

Y (f) = δ(f2) · e−s
2
G(f2

1 + f2
2 ) = δ(f2) · e−s

2
Gf

2
1 (10.5)

We have for the reference

ỹ(x1, 0) =
√
π

sG
e

−
π2x2

1
s2

G (10.6)

and for the blurred version

y(x1, 0) =
√
π√

s2
G + s2

B

e
−

π2x2
1

s2
G + s2

B (10.7)

Therefore, the ratio of the profiles is

y(x1, 0)
ỹ(x1, 0) =

√
π√

s2
G + s2

B

e
−

π2x2

s2
G + s2

B

√
π

sG
e

−
π2x2

s2
G

= sG√
s2

G + s2
B

=
√√√√√√ 1

1 + s2
B

s2
G

(10.8)
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This result is useful as a reference and it is the starting point for the certainty
map in section 10.4. In the first column of Fig.10.2, it is shown an isolated, vertical
edge in teal color (purple color is an effect of the window of the operator adopted).
Moreover, in the second column, it is possible to appreciate the difference between
an isolated edge (left of the image) compared to edges that are closer to each other
(right of the image). The color changes according to the proximity of the edges:
edges closest to each other take on a red color in the map (greater degradation due
to blur), more isolated edges keep the teal color, an index of resistance to blur.

From a theoretical point of view, in a single resolution case

s
(δ)
G = sG

δ

δ0
, (10.9)

with reference to the Structure Tensor (see section 5.3)

J =
[
E11 E12
E21 E22

]
(10.10)

The PFI in presence of additive white Gaussian noise of variance σ2
N is

λ1 + λ2
σ2

N

(10.11)

where λ1 and λ2 represent the contributions to the PFI along the orthogonal axes of
the eigenvectors of the Structure Tensor.

In general, the loss of information due to blur is determined by both the eigen-
values.

In the case where the image is 1D, typically correspondent to isolated edges, the
loss of positional information due to blur is substantially determined by the highest
eigenvalue, since the effect of blur along the orthogonal direction is small.

The loss of positional information is defined as:

Q = 1
NΩ

∑
p⊂Ω

λ1 (p)
λ̃1 (p)

+ 1
NΩ

∑
p⊂Ω

λ2 (p)
λ̃2 (p)

(10.12)

where the second term is small in correspondence of edges.
In the frequency domain, the correct sampling of the images is assumed, ac-

cording to the Nyquist criterion. At nominal VD δ0, the spatial Fourier spectra
are limited into the the range (−1

2 ,+
1
2) cycles/arcmin ((−30,+30) cycles/degree).

For closer VDs, the spectra of the retinal images range in the band from −1
2

δ
δ0

to +1
2

δ
δ0
cycles/arcmin ((−30 δ

δ0
,+30 δ

δ0
) cycles/degree). Using a N points FFT

representation, the spectra range from −N
2

δ
δ0

to +N
2

δ
δ0

.

Let us now think of the map defined as:

M (p) = |y (p)|
|ỹ (p)| , if

|y (p)|
|ỹ (p)| ≤ 1 ,

M (p) = 0 , elsewhere .
(10.13)
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Figure 10.2. Upper row: two original images. Second rows: Gaussian blurred images with
sB = 3.7. Lower rows: certainty maps (see also section 10.4). The images in the left
column correspond to an isolated edge in teal color. The images in the right column
correspond to several edges and the color changes according to the proximity of the
edges: edges closest to each other take on a red color in the map (greater degradation
due to blur), more isolated edges keep the teal color, an index of resistance to blur.
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A good separation threshold between strong edges, which give the main Fisher
information contribution in the estimation, and weak edges or textures, is what we
can define as natural vision threshold:

y(x1, 0)
ỹ(x1, 0) =

√√√√√√ 1

1 + s2
B

s2
G

(10.14)

The empirical linear estimator is obtained from the portion of the image where
the natural and strong edges dominate:

M(p) ⩾
√√√√√√ 1

1 + s2
B

s2
G

(10.15)

so, the empirical SBDI is defined as:

SBDIempirical = α(1 −
√
Q) (10.16)

where α is the gain parameter that fixes the scoring scale of the database, and

Q = 1
NΩ

∑
p⊂Ω

λ (p)
λ̃ (p)

, if M(p) ⩾
√√√√√√ 1

1 + s2
B

s2
G

,

Q = 0 , elsewhere .

(10.17)
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10.3 Experimental results and considerations
The performance of the empirical estimator found in the previous section, the
empirical SBDI, are compared here with those of the IQA methods known in
literature. For the evaluation of the goodness of an estimator, two fundamental
requirements are the linearity and the r.m.s. of the scatterplot of a metric with
respect to the DMOS values. In the reference IQA estimators, these requirements
are satisfied by applying neural rectification as a post-processing. In particular,
linearization was performed by a parameter (blur) monotonic logistic function,
trained by the BRLS modified Newton algorithm [73] over 250k runs, to minimize
the risk of stop into local minima. Good performance evaluation indices are MSE,
SROCC (The Spearman rank-order correlation measures the relative monotonicity
between predictions and DMOS values), and LCC (The Pearson correlation coefficient
measures how good is the correlation of the predictions with the DMOS values):
the lower their values are, more uniform and linear will be the scatterplot of the
estimator. Here, we consider both the best performing and most used estimators
in the real applications. As an experimental verification, the metrics related to the
following databases are compared for the IQA Full Reference scenario: LIVE DBR2
[81], TID2013 [75] and LIVE MD [48]. The performance of the empirical SBDI are
compared to the theoretical SBDI (found in Part III), the VIF [80, 81], the MS-SSIM
[95], the FSIM [109] and the GMSD [108] methods.

As explained in section 8.2.2, in the TID2013 database, ratings are available
as MOS values, so the DMOS values were inferred considering that the best MOS
ratings do not exceed 7.5. Therefore, posing MOS = 7.5 in correspondence to
DMOS = 0 and MOS = 0 in correspondence to DMOS = 100 yields DMOS =
(100/7.5) · (7.5 −MOS).

Tab.10.1 shows the performances of the estimators for LIVE DBR2, Tab.10.2
for TID2013 and Tab.10.3 for LIVE MD. Fig.10.4 shows the scatterplot of the
empirical SBDI estimator for the databases considered. Finally, in Tab.10.4, the
overall performances for the combined databases (LIVE DBR2, TID2013 and LIVE
MD) are shown.

It is possible to appreciate how the empirical SBDI has performances comparable
to those of the best estimators for each DB (VIF for LIVE DBR2 and LIVE MD, MS-
SSIM for TID2013) and for overall performance (VIF). It is also important to point
out that performance is compared between a linear estimator and IQA estimators
that need neural regression. Furthermore, the simplicity of implementation allows
us to save costs and resources compared to the well-known IQA estimators, which
are multi-channel and multi-resolution.
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Table 10.1. Summary of the experimental verification for the LIVE DBR2 database for
Gaussian blur.

Model RMSE SROCC LCC

VIF 4.1546 0.9722 0.9744
MSSIM 5.4069 0.9538 0.9562
FSIM 4.2168 0.9708 0.9736
GMSD 5.0932 0.9567 0.9612

SBDItheoretical 5.4318 0.9579 0.9604
SBDIempirical 4.4068 0.9686 0.9715

Table 10.2. Summary of the experimental verification for the TID2013 database for
Gaussian blur.

Model RMSE SROCC LCC

VIF 5.0236 0.9653 0.9533
MSSIM 4.4638 0.9676 0.9633
FSIM 4.9398 0.9551 0.9549
GMSD 6.9378 0.9114 0.9089

SBDItheoretical 6.8326 0.9339 0.9188
SBDIempirical 4.5994 0.9653 0.9630

Table 10.3. Summary of the experimental verification for the LIVE MD database for
Gaussian blur.

Model RMSE SROCC LCC

VIF 8.1955 0.7836 0.8376
MSSIM 9.4893 0.7684 0.7745
FSIM 8.8431 0.7693 0.8078
GMSD 9.2812 0.7728 0.7856

SBDItheoretical 8.6268 0.8276 0.8301
SBDIempirical 8.6194 0.7925 0.8274
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Figure 10.3. The scatterplot of the DMOS ratings versus the corresponding IQA methods
for the blurred image in LIVE DBR2, TID2013 and LIVE MD databases. Linearization
was performed by a parameter (blur) monotonic logistic function, trained by the BRLS
modified Newton algorithm over 250k runs.

Figure 10.4. The scatterplot of the DMOS ratings versus the corresponding SBDI
empirical values predicted by the model for the blurred image in LIVE DBR2, TID2013
and LIVE MD databases. RMSE=5.3081, SROCC=0.9524, LCC=0.9537.
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Table 10.4. Summary of the experimental verification for the DBR2, TID2013 and
LIVE MD databases for Gaussian blur.

Model RMSE SROCC LCC

VIF 5.2667 0.9533 0.9531
MSSIM 5.8504 0.9410 0.9418
FSIM 5.3889 0.9498 0.9509
GMSD 5.8249 0.9425 0.9423

SBDIempirical 5.2865 0.9526 0.9540

10.4 Certainty map for blur degradation
Recalling the equation 10.13, we now define the certainty map as:

M (p) = |y (p)|
|ỹ (p)| , if

|y (p)|
|ỹ (p)| ≤ 1 ,

M (p) = 0 , elsewhere .
(10.18)

The weighted certainty map is then obtained by multiplication by the local
contrast given by

MW (p) = M(p) · f
( |ỹ(p)|

|ỹMAX |

)
. (10.19)

MW (p) has been conventionally mapped to colors by attributing warm colors to
small values (edges close together) and cold colors to large values (isolated edges),
referring to the value that M (p) assumes at ideal edges in the original image, a
nominal value which is:

M̄(p) =
√

s2
G

s2
G + s2

B

(10.20)

f

( |ỹ(p)|
|ỹMAX |

)
follows the logarithmic law log

(
1 + |ỹ(p)|

|ỹMAX |

)
to enhance the intensity

of stronger edges.
We can therefore divide the image into a set of ΩC points where the losses are

lower than the nominal one due to the fact that there are already blurs in the original
image (cold area):

M(p) ⩾
√

s2
G

s2
G + s2

B

(10.21)

and a set of ΩH points where the losses are higher than the nominal one because
they are not isolated straight edges (hot area):

M(p) <
√

s2
G

s2
G + s2

B

(10.22)
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Furthermore, this can also happen if there is an edge enhancement in the original
image. This occurs in some images of the LIVE MD database, causing a bias. In the
case of images or portions of the image already blurred in the reference, the effect of
blur is less and in the certainty map we will see a color tending to purple, which
indicates greater certainty. If the reference images are perfectly focused, we will see
the isolated and strong edges of a teal color, as they are in the range of natural
losses. In fact, we know from the theory that if we only had isolated and strong
edges, perfectly in focus, the image spectrum goes as 1/ρ2 (see Part III) and in our
map this theoretical threshold coincides with the teal color.

In Fig.10.5 and Fig.10.6, in the colorbar on the left of the image, we can
distinguish a purple dotted line that represents the theoretical index (SBDI found in
Part III) useful for distinguishing the threshold of natural losses and dependent on
the level of blur sB (it is the reference color and will always be teal). On the other
hand, the dark dotted line represents the subjective judgment given to the image
(the DMOS values). In the case of the image in the left column of Fig.10.5, for
example, the subjective judgment is better than that estimated by the theoretical
index. This indicates that the image is rated better than it really is, as shown by the
dominance of the purple color. On the contrary, in the image of the right column,
we note how the subjective judgment is worse than the theoretical one. The image
is perceived very degraded, and the dominance of red gives the visual feedback.
In Fig.10.6, we have two images with no dominance of red or purple. Let’s see
how, as the blur level increases from sB = 1.5 to sB = 3.7, the image degradation
increases, in particular, where the edges are less strong and close to each other. On
the contrary, we appreciate how strong and isolated edges are less affected by the
added blur and keep their purple color, a sign of high certainty.



120 10. Diversity of Image Content in the Early Vision

Figure 10.5. Upper row: two original images. Second rows: Gaussian blurred images.
Lower rows: certainty maps. The images in the left column correspond to an image
judged with very low DMOS (high quality), on the other hand, in the right column with
very high DMOS (low quality). It is possible to appreciate a high dominance of purple
which represents greater certainty, in the image with higher quality (left column), and a
high dominance of reds which represents greater loss, in the image with worse quality
(right column). The isoluminance colors maintain a constant intensity at the same edge
level, so, only the weight defines the local contrast. The blur levels are sB = 2.4 for the
left column image and sB = 2.5 for the right column image.
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Figure 10.6. Upper row: two original images. Second rows: Gaussian blurred images with
sB = 1.5. Third rows: Gaussian blurred images with sB = 3.7. Lower rows: certainty
maps for sB = 1.5 and sB = 3.7. As the blur level increases from sB = 1.5 to sB = 3.7,
image degradation (red color) increases where the edges are less strong and close to each
other. On the contrary, strong and isolated edges are less affected by the added blur
(purple color).
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10.5 Empirical estimation of the blur value

At this point, it could be argued that to find the proposed empirical estimator,
it is necessary to know the value of the added blur (sB), different for each image,
required to have the natural vision threshold. To overcome this limitation, working
on spectral analysis, it is possible to estimate this parameter with good precision
starting from the real part of the ratio of the Fourier transform of the blurred image
and the Fourier transform of the reference image.

I (k) ≡ (2π)−1
∫ +∞

−∞

∫ +∞

−∞
eikxI (x)dx (10.23)

Ĩ (k) ≡ (2π)−1
∫ +∞

−∞

∫ +∞

−∞
eikxĨ (x)dx (10.24)

P (k) ≡ Re

(
I(k)
Ĩ(k)

)
(10.25)

where P (k) is the profile of the ratio.
In Fig.10.7, 3D images of this ratio are shown for images of the LIVE DBR2

database with different blur levels.

Figure 10.7. 3D representation of the real part of the ratio of the Fourier transform of the
blurred image and the Fourier transform of the reference image for different images and
blur levels.
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In Fig.10.8, a median profile is shown for sB that increases from 0.5, 0.65, 1 to
1.7. A median profile is defined as:

P̄ (k) = median

[
Re

(
I(k)
Ĩ(k)

)]
(10.26)

where Re
(
I(k)
Ĩ(k)

)
is a vector representing 128 viewing angles (rotations around

the axis passing between 0 and the center of the Gaussian peak). The theoretical
Hermite-Gauss kernel is shown with a black curve and the empirical result is in a
blue curve.

Figure 10.8. The median profile for sB that increases from 0.5 (upper-left image), 0.65
(upper-right image), 1 (lower-left image) to 1.7 (lower-right image).

By selecting the frequency point corresponding to P̄ (k) ≡ 0.6, it is possible to
obtain the estimated sB as:

ŝB = NF F T /2
π × freq0.6

(10.27)

where NF F T is the number of points for the FFT transform and freq0.6 is the
frequency value corresponding to P̄ (k) ≡ 0.6.

In Fig.10.9, the scatterplots of the reference sB from LIVE DBR2 and TID2013
(the only databases that provide these data) and the estimated sB are shown1.

1In TID2013 database, the particular case with sB = 4 has a kernel error in the reference values.
Hence, the estimated sB are the correct ones (communication with the author Ponomarenko by
e-mail on November 11, 2019).
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Figure 10.9. The scatterplots of the reference sB versus the estimate sB for the blurred
image in LIVE DBR2 and TID2013 databases.

In Tab.10.5, the performances of the sB estimators for the LIVE DBR2 and
TID2013 are shown.

Table 10.5. Summary of the experimental verification for the sB estimation for the LIVE
DBR2 and TID2013 databases.

Database RMSE SROCC LCC

LIVE DBR2 0.2158 0.9994 0.9992
TID2013 0.5751 0.9829 0.9817
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Conclusions and Remarks

In this thesis, a new model of blur based on the loss of Positional Fisher Information
(PFI) has been presented. The loss of Fisher Information has been shown to be
directly linked to visual discomfort due to blur and the “Scaled Blur Discomfort
Index” (SBDI) has been obtained from a theoretical model with two parameters:
the Viewing Distance (VD) parameter of the experiment (γ or its inverse τ) and
the amplification coefficient (the scoring scale Q) of the DB. A useful application
has been provided to map the loss of a generic Optical Transfer Function (OPT) to
the Gaussian case and the range of validity for the sinc and astigmatic cases has
been given. The adoption of a polar separable complex-valued receptive field model,
and of a visual information loss criterion, predicts well the blur visual discomfort for
natural scenes and reflects the cognitive deficiencies of fine localization of the objects
in a natural image. This abstract, functional model may provide coarse estimates
of the discomfort caused by undesired blur, for optical correction in natural vision,
and for calibration of image reproduction apparatus.

With respect to conventional empirical approaches, a-priori linearization has
been presented with the advantage of predicting the quality at any wanted VD. This
possibility is precluded to conventional example-calibrated methods, also because of
the scarcity of empirical data taken at different VD. Let us underline that in the
present approach we are not estimating the quality of specific images, but the quality
of realizations of a relatively tiny random set of images, satisfying recognized ensemble
properties of Gaussian blurred natural images as a function of the normalized blur
spread, and parameterized by the VD and an unpredictable multiplicative parameter
Q, the so called rating gain. Moreover, the linearity of such estimates is derived
from principles assumed as universally valid, namely the optimality of Human Visual
System (HVS) with respect to structure localization and from the Weber-Fechner
psycho-physical law. Several DMOS maps have been provided to calculate the
new Linearized Image Quality Assessment (LIQA) metrics at the desired VD. Of
course, the resulting rectification free method are not completely independent on the
operative scenario, since they do still depend on the parameters Q and τ . However,
unlike parameters employed in conventional parametric a-posteriori calibration,
these parameters have a direct operative meaning. Furthermore, from a strict
conceptual viewpoint, the rectification-free methods are not absolutely independent
of empirical data, since the settings of the employed IQA methods were already
established through a lot of past experiments. It is implicitly assumed here that
these consolidated methods are not subject to significant modifications.

Finally, an empirical estimator has been presented based on the selection of
details with stronger, isolated and longer edges, which takes better account of the
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eye behavior: it is known, indeed, that the difference with the real cases of natural
scenes directly projected onto the retina (not through a display) is that the eye does
not always see each and every details in the image (isolated gradients that are too
small and not identifiable) or the displacement due to fact that the loss of the Fisher
Information is so complex that noise is replaced by other noise (textures). Therefore,
we need to adjust the metric with the HVS. In addition to the estimator, a filter has
been provided to clearly highlight where the losses due to blur in an image are and
what intensity they have.

The next step will be the study of a model that takes into account the contents of
the images that can be extended to all distortions. This approach will be critical to
provide a scientific justification to the variation in subjective quality values already
found in the images of the databases considered. A new definition of a noise model
is also needed. The logarithmic function used in many performing estimators for
the noise metric is not justifiable for a good theoretical model and lacks theoretical
principles. It is known, indeed, that blur and noise form an orthogonal basis to
model apparently more complex distortions. By combining the two models, it will be
possible to have a performing and linear estimate of the complete set of distortions
for all databases. Other important aspects so far left out will need to be further
analyzed to include them in the model: the maximum luminance of the display
and its dynamic range expressed as the ratio between the luminances of pure white
and pure black in a dark environment; ambient illumination; extension of operator
to a 3-D space by adding a third orthogonal axis (coding-related distortions and
artifacts).
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