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gravitational sector. We introduce here an effective description for perturbations around

spherically symmetric spacetimes in the context of scalar-tensor theories, which we apply

to study quasi-normal modes for black holes with scalar hair. We derive the equations of

motion governing the dynamics of both the polar and the axial modes in terms of the coeffi-

cients of the effective theory. Assuming the deviation of the background from Schwarzschild

is small, we use the WKB method to introduce the notion of “light ring expansion”. This

approximation is analogous to the slow-roll expansion used for inflation, and it allows us to

express the quasinormal mode spectrum in terms of a small number of parameters. This

work is a first step in describing, in a model independent way, how the scalar hair can affect

the ringdown stage and leave signatures on the emitted gravitational wave signal. Potential

signatures include the shifting of the quasi-normal spectrum, the breaking of isospectrality

between polar and axial modes, and the existence of scalar radiation.
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1 Introduction

The detection of gravitational waves by LIGO and Virgo [1–3] has opened up a new window

into the strong gravity regime. Up until now, observations appear to be very well described

by General Relativity (GR). Nevertheless, as more and more events are observed, it becomes

important to determine quantitatively the extent to which alternative theories of gravity

are ruled out. Effective field theories (EFTs) provide a framework to carry out this program

in a model-independent way. They also provide a general foil against which GR can be

tested. The only inputs required are the number and type of “light” degrees of freedom in

the gravity sector, and the symmetries that constrain their interactions.

If the only relevant degrees of freedom in the gravity sector are the two graviton polar-

izations, the only modification of GR that can (and should) be considered is the addition of

higher powers of curvature invariants to the Einstein-Hilbert Lagrangian [4]. These higher-

derivative operators modify (among other things) the phase, amplitude and polarization

of gravitational waves. Such corrections are suppressed schematically by powers of ω/Λ,

where ω is the frequency of gravitational waves and Λ is the scale at which “new physics”

kicks in. Observations can then be used to place a lower bound on the magnitude of Λ,

providing a model-independent constraint on new “heavy” physics in the gravitational sec-

tor.1 The exact same strategy is used at the LHC to place model-independent bounds on

physics beyond the Standard Model.

In this paper, we will focus on less minimal modifications of GR, in which the light

degrees of freedom include one additional light scalar besides the graviton — i.e., we will

consider scalar-tensor theories. Many examples of scalar-tensor theories exist of course, but

our goal is to be general: what is the most general dynamics of fluctuations around a black

hole with scalar hair? We are particularly interested in the way in which this extra scalar

mode affects the ringdown that takes place at the end of the merger process. Of course,

testing gravity using the ringdown is not a new idea (see e.g. [6, 7]). However, until now

these tests have been carried out on a model-by-model basis (e.g. [8, 9]). In this paper, we

propose instead a different approach — based on EFT techniques — which can be used to

place model-independent constraints on scalar tensor theories. More precisely, we introduce

an EFT framework to describe quasi-normal modes (QNMs) of static, isolated2 black hole

solutions with a scalar hair.

It is well known that such solutions are hard to come by if we demand asymptotic

flatness.3 This fact is encoded in a variety of “no-hair theorems” which, under fairly

general assumptions, forbid the existence of non-trivial scalar profiles surrounding black

hole solutions (see e.g. [12–14]). These assumptions can nevertheless be violated, and

as a result several solutions with non-trivial scalar hair can be found in the literature

1Such constraint can then be mapped onto specific models with a procedure known as matching [5].
2A more realistic program would require to estimate to what extent environmental effects are negligible

or affect instead the QNM spectrum. Disentangling the impact of the astrophysical environment from the

observations is a key ingredient in order to really constrain additional degrees of freedom in the gravitational

sector. For a study in this direction see e.g. [10].
3In the presence of a negative cosmological constant, instead, a non-minimal coupling of the form Φ2R

is sufficient to give rise to a stable scalar hair in a certain range of parameter space [11].
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(see e.g. [15–17]). Depending on the circumstances, such hairy solutions can even be

dynamically preferred over solutions with a vanishing scalar profile [18, 19]. Indeed, a fairly

simple way to endow black holes with hair does not even involve sophisticated dynamics;

all one needs is non-trivial boundary conditions. Take the example of a minimally coupled,

free scalar with a standard kinetic term: Jacobson [20] showed that a black hole has scalar

hair if the scalar approaches a pure function of time at spatial infinity. The amount of

hair, quantified by the scalar charge to mass ratio for instance, is generally small if the

time scale of variation (for instance, Hubble time scale) is long compared to the black hole

horizon size [21]. However, if the time variation is due to close-by objects (e.g. stars which

can well have scalar hair), the induced black hole scalar hair could be non-negligible [22].4

For a fairly exhaustive review of no-hair theorems as well as asymptotically flat solutions

with scalar hair, we refer the reader to [23].

While allowed from a technical viewpoint, one may still worry that hairy black holes

could already be ruled out by existing observations. For instance, it was recently ar-

gued [24] that a non-negligible amount of scalar hair would be incompatible with present

cosmological constraints when combined with current bounds on the speed of propagation

of gravitational waves [25]. Such a claim however is based on the assumption that the scalar

field remains weakly coupled from cosmological scales all the way to the scales relevant for

black hole mergers. This does not necessarily have to be the case, as was pointed out for

instance in the context of Horndeski theories [26]. Moreover, the speed of propagation

constraint can be viewed as putting a lower bound on the cut-off scale associated with

certain higher dimension operators. The bound is significant for cosmological applications,

but sufficiently weak to allow non-trivial effects on the horizon scale of astrophysically

interesting black holes.

In fact, one could even argue that a scalar hair is a natural feature to consider if we are

after observable departures from GR. The reason is that, if the scalar field profile around

two well-separated black holes is initially constant, scalar perturbations can be excited

at linear level by the merging process only if the scalar couples to the Riemann tensor.

For instance, one can consider a coupling between Φ and the Gauss-Bonnet invariant

GGB = RµνλρR
µνλρ − 4RµνR

µν + R2 of the form f(Φ)GGB, which is known to generate

scalar hair [27, 28]. This argument is admittedly more suggestive than it is rigorous, as

it discounts for instance the possibility that a small hair of cosmological origin [20] could

get amplified by non-linearities during the merger process, and in turn lead to a sizable

emission of scalar modes. Regardless, we are finally in a position where the absence of scalar

hair is a feature that can be tested experimentally rather than ruled out by no-go theorems

based on a set of assumptions. As such, one can also view our formalism as a pragmatic

attempt to study the possible observational consequence of a scalar hair during ringdown.

Another important constraint that scalar-tensor theories need to contend with is the

lack of evidence for additional polarizations in the gravitational wave spectra observed so

far [29, 30]. This, however, should be mostly viewed as a constraint on the strength of their

coupling to baryons rather than on their actual existence [31, 32]. To illustrate this point,

4A spatial gradient in the boundary condition is expected to have a similar effect.
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let’s consider scalar-Gauss-Bonnet gravity [16] without a tree-level coupling between the

scalar and baryons. The couplings with baryons induced by radiative corrections will be

suppressed by derivatives due to the shift invariance of this model, and thus can be easily

rendered weak enough to be undetectable.5 At the same time, one could have a significant

departure from the Schwarzschild metric for sufficiently large values of the scalar charge.

In this example, the polarizations of QNMs observed would be the same as in GR, although

their spectrum could be significantly different. As a matter of fact, the QNM spectrum

could differ significantly from the GR one even if the metric remained exactly Schwarzschild,

as is the case for the so-called stealth solutions [35, 36]. This is because metric perturbations

can mix with the scalar perturbation on a spherically symmetric background.

The spectrum of QNMs predicted by GR in the static case is comprised of two isospec-

tral towers of modes that are respectively even and odd under parity [37]. Setting aside

additional polarizations for a moment, modifications of GR can then be classified into

three distinct groups, depending on whether they (1) modify the spectrum of even and odd

modes while preserving isospectrality; (2) break isospectrality; or (3) mix the even and odd

modes, so that there is no longer a distinction between the two. The latter possibility is

realized if the scalar field that acquires a non-trivial profile is odd under parity. In fact, a

spherically symmetric profile for a pseudo-scalar spontaneously breaks parity, and therefore

perturbations around it are not parity eigenstates. The approach we develop in this paper

will make it explicit that this third option is always a higher derivative effect.

In this paper, we will make a first step towards a systematic exploration of the three

possibilities mentioned above by introducing an EFT for perturbations around static black

holes with scalar hair (section 2). Our approach will follow blueprints that were first de-

veloped in the context of inflation [38]. The main idea is that, if the scalar field has a

non-trivial radial profile, one can always choose to work in “unitary gauge” and set to zero

the scalar perturbation. This can be achieved by performing an appropriate radial diffeo-

morphism. When this is done at the level of the action, one is left with an effective theory

that is invariant under time- and angular-diffeomorphisms, but not under radial ones.

We will show how to appropriately reorganize this action in such a way that only a

finite number of terms contribute to the Lagrangian at any given order in perturbations

and derivatives. As a result, we will see that at quadratic order in perturbations (which

is all we need to study QNMs) and lowest order in derivatives, there are at most three

operators that we can add to the Einstein-Hilbert Lagrangian. Moreover, it turns out that

these three operators only affect the even sector (meaning the odd sector is completely

determined by the background metric, which could still be different from Schwarzschild

in general).6 The power of our approach lies in the fact that these three most relevant

5Strictly speaking this is true only in the asymptotic region close to the detector, where the background

value for the scalar hair vanishes and the metric is nearly Minkowski. Indeed, in general, a non-negligible

mixing with the graviton degrees of freedom induces shift-symmetry breaking corrections suppressed by

powers of MPl and proportional to background quantities, once the non-dynamical metric components are

integrated out. The non-invariance under shifts of the Hamiltonian constraints, responsible for this fact, is

at the core of the construction of shift-symmetric adiabatic modes on FLRW spacetimes [33, 34].
6In other words, the relevant potential for the odd modes depends exclusively on the background metric

components, with exactly the same functional dependence as in GR. This still leaves open the possibility
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operators, whose effect will be studied in detail in sections 5–6.2, could in principle arise

from an infinite number of diff-invariant scalar-tensor theories.

One obvious drawback of working with a theory that is not invariant under radial

diffeomorphisms is that its action will contain arbitrary functions of the radial coordinate.

These functions will in turn appear in the potential for the QNMs and, because of this,

calculating their spectrum could at first sight seem a hopeless task. In order to make it

more tractable, we can exploit the fact that current gravitational wave observations appear

to be consistent with GR. This suggests that, barring (un)fortunate coincidences, we can

assume the background to be “quasi-Schwarzschild”. This is certainly a natural assumption

to make from an EFT viewpoint, and when coupled with the WKB approximation [39, 40]

it allows us to express the QNM spectrum (section 3) in terms of a small set of parameters

— namely the values and derivatives of the EFT coefficients and the background metric

components evaluated at the light ring. We call this procedure light ring expansion. This

state of affairs should be reminiscent of what happens in inflation, where a WKB approx-

imation can also be employed to calculate the spectrum of primordial perturbations [41],

and departures from exact de Sitter is also encoded by a small number of parameters —

the first few derivatives of the inflaton potential. Our light-ring expansion is the analog of

the usual slow-roll expansion in inflation.

We should emphasize however that our EFT remains a useful tool even in situations

where the WKB approximation is not needed. For instance, this is the case if the EFT coef-

ficients are known functions of the radius. Then, our approach still provides a particularly

convenient way of organizing the calculation of the QNM spectrum in scalar-tensor theories.

This is not the first time that the idea of writing down an EFT for perturbations

around spherically symmetric backgrounds is put forward in the literature. For instance,

an approach very similar to the one we are proposing here was first explored in [42]. The

authors of that paper also focused their attention on static black hole solutions with a

scalar hair, and chose to work in unitary gauge. However, they performed a 2+1+1 ADM

decomposition and considered the most general action that is manifestly invariant under

angular diffeomorphisms, with the additional requirement that its coefficients depend only

on the radial coordinate.7 This construction is however more general than is necessary:

it gives rise to an effective action that is not invariant under time-diffeomorphisms, and

involves more free functions. Keep in mind that a single scalar acquiring a static radial

profile can only define a single preferred radial foliation, defined by the condition Φ = con-

stant. As we discussed earlier, by working in unitary gauge one should obtain a theory that

only breaks radial diffeomorphisms. For this reason, we expect that the effective action put

forward in [42] will generically propagate two scalar degrees of freedom (besides the gravi-

ton, of course) already at lowest order in the derivative expansion. In other words, tunings

are necessary to ensure that the low energy spectrum contains a single scalar mode in the

construction of [42]. In our formalism, these tunings are already enforced by symmetries.

of a modification to the odd QNM spectrum if the metric is different from Schwarzschild.
7Based on invariance under angular diffeomorphisms, these coefficients could in principle also depend on

time. However, the requirement that they are time-independent is technically natural, because it is protected

by invariance under time-translations, which is an isometry of the background we are considering.
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More recently, a different approach to perturbations of spherically symmetric gravita-

tional solutions was proposed in [43]. The advantage of this approach is that it applies to

any number and type of light degrees of freedom and that, unlike ours, none of these are

required to have a non-trivial background configuration — i.e., there is no need to consider

“hairy” solutions. The downside is that an in principle straightforward but in practice quite

lengthy procedure is needed to ensure invariance under diffeomorphisms. This procedure

was carried out explicitly in [43, 44] for a certain class of scalar tensor-theories assuming

that the background metric is exactly Schwarzschild and that the black hole has no scalar

hair. This procedure would need to be redone for more general backgrounds.

Invariance under diffeomorphisms is built into our formalism from the very beginning.8

Moreover, the derivative counting in unitary gauge is such that one is naturally led to con-

sider “beyond Horndeski” operators [45]. These operators do not lead to additional propa-

gating degrees of freedom, but would naively appear to be of higher order in the formalism

of [43]. Finally, we should point out that our approach could be easily extended to include

additional light degrees of freedom, as was already done for the EFT of inflation in [46].

A road map: let us give a road map of the main results of this paper, especially for

readers who are not interested in the technical details.

• The most general action for perturbations around a spherically symmetric background

at second order in derivatives is given in eq. (2.4). Note that the background needs

not be that of a black hole in general. The background metric is given by eq. (2.1)

while the background scalar profile is some general function of radius Φ̄(r).

• The quadratic action for perturbations in eq. (2.4) does not involve any epsilon tensor.

This means that, at quadratic order in derivatives, there is no way to tell whether the

underlying covariant scalar-tensor theory involves a pseudoscalar or a scalar. This

implies that mixing between even and odd modes cannot occur at this order in the

derivative expansion. In other words, mixing is always a higher derivative effect.

• The EFT for perturbations involves free functions of the radius r. For practical

applications, the freedom can be much reduced by assuming small departures from

GR. In that case, the position of the light ring is slightly displaced from its GR value.

Adopting the WKB approximation, we introduce the light-ring expansion to express

the quasi-normal spectrum in terms of the potential and its derivatives at the GR

light ring. This is discussed in section 4 and a concrete example is provided in 5.2.2.

• The quadratic action simplifies greatly if one restricts to the leading order in deriva-

tives, given in eq. (5.6) for odd perturbations, and eq. (6.5) for even perturbations.

There are only 2 free radial functions Λ(r) and f(r) in the odd perturbation action

(3 in the even perturbation action, with the addition M4
2 (r)), assuming a conformal

8Note, however, that invariance under temporal and angular diffeomorphisms is not maintained on a term

by term basis in the action — see discussion around eq. (2.4). Also, invariance under radial diffeomorphism

is manifest only after introducing the Goldstone π — see discussion in section 6.2.
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transformation to the Einstein frame has been performed. Working out the experi-

mental signatures would require specification of the coupling of matter to both the

metric and scalar perturbations (see discussion in section 7).

• For this lowest-order-in-derivatives action, there is a simple (tadpole) constraint on

the background metric given by eq. (2.14). In this case, the functions Λ(r) and f(r)

are completely determined by the background metric (eqs. (2.11) and (2.12), setting

α = 0 and M1 = MPl assuming conformal transformation to Einstein frame).

• The general metric perturbations are labeled in a manner following Regge and

Wheeler [47] (eqs. (3.8) and (3.7), or more explicitly eqs. (5.1) and (6.1)). We adopt

the Regge-Wheeler-unitary gauge whenever a gauge choice is made. This means the

scalar field fluctuation δΦ = 0, the odd sector metric perturbation h2 = 0 (eq. (5.1))

and the even sector metric perturbations H0 = G = 0 (eq. (6.4)). Note that Regge

and Wheeler also chose H1 = 0 which we can no longer do because of having set

δΦ = 0.

• For the lowest-order-in-derivatives action, the odd sector perturbations obey a simple

equation of motion (see eqs. (5.8) and (5.9)), which takes the same form as in GR

i.e. it has the same dependence on the background metric (2.1) and its derivatives,

though the background metric itself can in general be different from that of GR.

The corresponding action can be read off from eqs. (5.17) and (5.18) by setting α =

M2
10 = M12 = 0. The dynamics of the even sector is significantly more complicated

than that of the odd sector — the same is true in GR, but we also have an additional

scalar mode — and the corresponding action is given by eq. (6.5). Nonetheless, the

speeds of propagation of the even modes are simply expressed by eq. (6.13).

• Our action is invariant under time and angle diffeomorphisms. Restoring radial dif-

feomorphism invariance can be achieved by introducing a Goldstone mode π. This,

and the decoupling limit, is discussed in section 6.2.

• For readers interesting in going beyond the lowest order in derivatives, for instance

necessary to describe theories such as the galileon or a scalar coupled to the Gauss-

Bonnet term, a discussion can be found in section 5.3.

Conventions: throughout this paper we will work in units such that c = ~ = 1 and adopt

a “mostly plus” metric signature. Unless otherwise specified, we will work in spherical co-

ordinates with Greek indices µ, ν, λ, . . . running over the (t, θ, φ, r) components, lowercase

Latin indices a, b, c, . . . from the beginning of the alphabet running over the (t, θ, φ) compo-

nents, and lowercase Latin indices i, j, k, . . . from the middle of the alphabet running over

the (θ, φ). Finally, we will denote the scalar field with Φ, to avoid any potential confusion

with the angular variable φ.

A note regarding our notation on the transformed quantities. By transform we

mean spherical harmonic transform and/or Fourier transform. Take the example of the

metric fluctuation variable h0 (eq. (3.8) or eq. (5.1)). We use the same symbol h0 to denote

– 7 –
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(1) the fluctuation in configuration space i.e. a function of time and space h0(t, r, θ, φ),

or (2) the fluctuation in spherical harmonic space i.e. h0(t, r, `,m) (where the spherical

harmonic Y`m(θ, φ) has been used), or (3) the fluctuation in Fourier/spherical harmonic

space i.e. h0(ω, r, `,m) (where the spherical harmonic Y`m(θ, φ) and the Fourier wave e−iωt

have been used). We often omit the arguments for h0 altogether and rely on the context

to differentiate between these different meanings. See the discussion around eqs. (3.9)

and (3.10) for more details.

2 Effective theory in unitary gauge

In this section we construct an effective theory for perturbations around static and spher-

ically symmetric backgrounds. We highlight here the main steps, mostly focusing on the

results, and refer to appendix A for all the details. The procedure closely follows the logic

underlying the construction of the EFT of inflation [38, 48], but with respect to the case

of Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetimes some important differences

arise at the level of perturbations, as we shall discuss in details.

We assume that the theory consists of the metric gµν and a single scalar degree of

freedom Φ, which takes on an r-dependent profile Φ̄(r) that sources the background metric

ḡµν , defined by

ds2 = −a2(r)dt2 +
dr2

b2(r)
+ c2(r)

(
dθ2 + sin2 θdφ2

)
. (2.1)

Notice that, without loss of generality, one is always free to rescale the radial coordinate

in such a way to get rid of one of the three functions in (2.1). Nevertheless, in this section,

we will keep the metric in the redundant form (2.1): this will make the comparison with

known models in the current literature more transparent.

A convenient way of describing the low energy physics for the tensor and scalar exci-

tations is to work in the unitary gauge, defined by δΦ ≡ 0. This condition is equivalent to

using the radial diffeomorphism invariance to fix a specific hypersurface in the radial folia-

tion of the spacetime manifold.9 After gauge fixing, the residual symmetries of the action

are the temporal and angular diffeomorphisms. Therefore, besides the Riemann tensor,

the full metric gµν , covariant derivatives ∇µ and the epsilon-tensor εµνλρ, the most general

unitary gauge action contains as additional ingredients the contravariant component grr,

the extrinsic curvature Kµν associated with equal-r hypersurfaces and arbitrary functions

of r. Explicitly, it takes on the form

S =

∫
d4x
√
−gL

(
gµν , ε

µνλρ, Rµναβ , g
rr,Kµν ,∇µ, r

)
. (2.2)

Now, any bona fide effective theory for perturbations around the time-independent, spheri-

cally symmetric background metric (2.1) can be obtained by expanding each operator in the

action (2.2) in fluctuations up to some order in the number of fields and derivatives. In this

respect, it turns out that the symmetries of the background play a crucial role in dictating

9Notice that this requires a nontrivial background scalar profile, i.e. Φ̄′(r) 6= 0.
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the structure of the building blocks entering the final action for perturbations. In order to

make this fact manifest, it is worth reviewing briefly how the construction is implemented

in the context of FLRW backgrounds [38, 48]. This will also help clarifying the differences

arising in systems with spherical symmetry. Let us denote with O = {Rµναβ , g00,Kµν}
the building blocks of the EFT on time-foliated FLRW spacetimes [38]. Here Kµν is now

the extrinsic curvature associated with the constant-time hypersurface, not to be confused

with the analogue in (2.2). Since the hypersurface is maximally symmetric, a generic back-

ground quantity Ō can always be written just in terms of the background metric, the unit

normal vector nµ and functions of time [38]. For instance, K̄µν = H(t)h̄µν , where hµν is

the induced metric and H(t) is the Hubble function. This remarkable fact allows to define

the perturbation δO associated with a generic operator O as follows: O = O(0) + δO,

where (i) O(0) contains the background value, i.e. O(0) ≡ Ō (where “¯” denotes setting the

perturbations to zero), while δO starts linearly in perturbations, and (ii) both O(0) and

δO transform covariantly. For instance, one can split Kµν = H(t)hµν + δKµν , where both

K
(0)
µν ≡ H(t)hµν and δKµν are covariant quantities [38]. As a result, all the operators in

the Lagrangian for perturbations of [38] are separately invariant under residual (spatial)

diffeomorphisms, and counting powers of δKµν is the same as counting the order of pertur-

bations. In the class of theories that non-linearly realize time translation invariance, this

turns out to be a distinctive feature of the FLRW subclass and crucially relies on the high

degree of symmetry of the background (i.e. homogeneity and isotropy) [38]. By contrast, in

the case of non-maximally symmetric backgrounds of the type in (2.1), one cannot define

for all the operators in (2.2) perturbations that transform covariantly under residual (tem-

poral and angular) diffeomorphisms. As an example, consider the extrinsic curvature Kµν

in (2.2). On the background, K̄ab = 1
2∂rh̄ab (see appendix A) and it is clear from (2.1) that

K̄ab��∝ h̄ab. As a byproduct, there is no way to define a K
(0)
µν in terms of the metric only in

such a way that it transforms covariantly.10 Thus, we define δKµν by Kµν − K̄µν , and it

is not a covariant tensor. The two main consequences of this fact are: i) new independent

operators are in principle allowed at any order in perturbations, including as we will see one

additional tadpole; ii) invariance under residual (temporal and angular) diffeomorphisms

in general will not be manifest in the Lagrangian at a given order in perturbations i.e. an

object like δKµνδK
µν is not invariant because δKµν is not a covariant tensor.

In the case of spherically symmetric backgrounds, the perturbation of a given operator

Oi that belongs to the building blocks {Rµναβ , grr,Kµν} or their derivatives can be defined

by subtracting the background value of the operator, δOi ≡ Oi − Ōi. Even if the δOi so

defined does not transform covariantly, at a given order n in the number of perturbations,

the most general action will be of the form:

S(n) =

∫
d4x
√
−g

∑
i1,...,in

C
(n)
i1,...,in

(r)δOi1 . . . δOin , (2.3)

where the indices im run on the operators up a to given order in derivatives. Now, for every

choice of the functions of the radial coordinate C
(n)
i1,...,in

(r) there is clearly a gauge invariant

10For instance, one might be tempted to define K
(0)
µν = 1

2
∂rhµν , but this is not a good tensor under r

dependent (t, θ, φ) diffeomorphisms.
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Lagrangian (with respect to temporal and angular diffs.) of the form (2.2) such that its

expansion in perturbations up to order n gives the desired coefficients. On the other hand,

in general, at fixed order n a specific Lagrangian (2.2) in two different gauges will give

rise to an action for perturbations with different values for the coefficients C
(n)
i1,...,in

(r), so a

Lagrangian of the form (2.3) is well defined only once the gauge choice for perturbations is

made. This aspect, as we will see in the next sections, does not turn out to be a limitation

in any practical application of the EFT for perturbations that we are constructing.

As we prove in appendix A, the most general action for perturbations in unitary gauge

up to quadratic order and with no more than two derivatives can be written as

S =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− Λ(r)− f(r)grr − α(r)K̄µνK
µν

+M4
2 (r)(δgrr)2 +M3

3 (r)δgrrδK +M2
4 (r)K̄µνδg

rrδKµν

+M2
5 (r)(∂rδg

rr)2 +M2
6 (r)(∂rδg

rr)δK +M7(r)K̄µν(∂rδg
rr)δKµν +M2

8 (r)(∂aδg
rr)2

+M2
9 (r)(δK)2 +M2

10(r)δKµνδK
µν +M11(r)K̄µνδKδK

µν +M12(r)K̄µνδK
µρδKν

ρ

+ λ(r)K̄µρK̄
ρ
ν δKδK

µν +M2
13(r)δgrrδR̂+M14(r)K̄µνδg

rrδR̂µν + . . .

]
, (2.4)

where R̂µν is the Ricci tensor built out of the induced metric hµν .

A few comments are in order at this point. As anticipated above, one has formally a

larger number of operators for perturbations with respect to [38]. In particular, there is

in principle an additional tadpole parametrized by the function α(r), which, together with

Λ(r) and f(r), will be determined by the Einstein equations.11

Furthermore, notice that in general the r-dependence of the coefficient M2
1 (r) can

be re-absorbed by a conformal transformation that brings us back to the Einstein frame.

This will generically affect the coupling to additional matter fields, which have been left

unexpressed in (2.4). We will have more to say about this in section 7.

A remarkable feature of the quadratic action above is that it does not depend on

the epsilon tensor. In the covariant action for the underlying scalar-tensor theory, epsilon

tensors will appear if either (1) the action is not invariant under parity, or (2) the scalar

field is odd under parity, i.e. it is a pseudo-scalar. In the first case parity is explicitly

broken, in the second case it is spontaneously broken by the scalar hair. Both types of

breaking would lead to a mixing between even and odd perturbations. However, the fact

that an epsilon tensor cannot appear at second order in derivatives in perturbations means

that mixing is always a higher derivative effect. In other words, at lowest order parity is

an accidental symmetry of our action for perturbations.12

11The analog of the additional tadpole term in the case of the EFT for inflation would be K
(0)
µν K

µν , and

this can be shown to be rewritable in terms of the other tadpole terms, for an FLRW background (see

appendix of [38]).
12A concrete example is provided by Chern-Simons gravity [49, 50]. In this case, the non-minimal

coupling ΦRµνλρR̃
µνλρ requires Φ to be a pseudoscalar. The expansion of this term up to quadratic order

in perturbations contains several terms. Some of these terms contain two derivatives acting on perturbations

and therefore yield a contribution to the action in eq. (2.4). However, the only term in which derivatives and

metric perturbations are actually contracted with each other through an epsilon tensor is Φ̄δRµνλρδR̃
µνλρ.
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It is worth also commenting on the fact that some of the combinations among the op-

erators in (2.4) may secretly propagate an extra unwanted ghost-like degree of freedom.13

The absence of this kind of pathology can be guaranteed by enforcing degeneracy condi-

tions, which determine specific relations among some of the coefficients in (2.4) therefore

reducing the number of independent operators in the EFT. This study requires in general a

detailed classification of the Hamiltonian constraints associated with (2.4). However, since

in the rest of the paper we will mainly focus on the leading order terms in the derivative

expansion, these complications will never affect our discussion and hence can be safely

disregarded in the following.

Finally, we conclude this section stressing again that the form of the unitary gauge

action (2.4) is dictated only by the spontaneous breaking pattern of the Poincaré group

down to spatial rotation and time translation invariance. In other words, there is no

input from additional internal or spacetime symmetries, which would further constrain the

couplings in the effective action (2.4). We will not discuss this possibility here, leaving it

for future work.14

2.1 Tadpole conditions

In this section we focus on the tadpole operators in the EFT (2.4),

Stadpole =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− f(r)grr − Λ(r)− α(r)K̄µνK
µν

]
. (2.5)

In particular, we shall see that the Einstein equations can be used to fix Λ and f in terms of

the background metric (2.1), M2
1 and α. In addition, they provide a first order differential

equation which can be used to relate M2
1 and α. In this respect, we start writing the

most general energy momentum tensor compatible with the symmetries of the system as

Tµν = diag(−ρ, pr, pΩ, pΩ), being pΩ and pr the tangential and radial pressures respectively.

Plugging into the Einstein equations

(
Rµν −

1

2
Rgµν −∇ν∇µ + gµν�

)
M2

1 − Tµν = 0 , (2.6)

This term contains two derivatives acting on each metric perturbation, and thus it is a higher derivative

correction to the action (2.4).
13This well-known fact has already been discussed in the unitary gauge language in the context of the

EFT for FLRW spacetimes in [51].
14For a discussion on how to impose additional internal symmetries, e.g. a shift symmetry of the type

Φ → Φ + c, in the unitary gauge action, we refer the interested reader to [34], where this is explained in

details in the context of FLRW cosmologies.
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one can solve for the fluid variables and find

T 0
0 = −ρ = b2

(
2c′′

c
+
c′2

c2
+

2b′c′

bc
− 1

b2c2

)
M2

1 + b2
(
b′

b
+

2c′

c

)
(M2

1 )′ + b2(M2
1 )′′ , (2.7)

T rr = pr = b2
(

2a′c′

ac
+
c′2

c2
− 1

b2c2

)
M2

1 + b2
(
a′

a
+

2c′

c

)
(M2

1 )′ , (2.8)

T ij = δij pΩ = δij b
2

[(
a′′

a
+
c′′

c
+
a′b′

ab
+
a′c′

ac
+
b′c′

bc

)
M2

1

+

(
a′

a
+
b′

b
+
c′

c

)
(M2

1 )′ + (M2
1 )′′
]
. (2.9)

For our purpose, Tµν comes from the terms in eq. (2.5) beyond the Einstein Hilbert term.

Using eq. (B.9) for the variation of the extrinsic curvature, the background energy momen-

tum tensor Tµν associated with the tadpole action (2.5) reads

Tµν = −(fgrr + Λ + αKαβK
αβ)gµν + 2fδrµδ

r
ν

− αKαβK
αβnµnν −∇λ(αKλ

µnν)−∇λ(αKλ
ν nµ) +∇λ(αKµνn

λ) , (2.10)

where we dropped the bar everywhere for simplicity. Substituting in (2.7)–(2.8), one can

solve for Λ(r) and f(r):

f(r) =

(
a′c′

ac
− b′c′

bc
− c′′

c

)
M2

1 +
1

2

(
a′

a
− b′

b

)
(M2

1 )′ − 1

2
(M2

1 )′′

−
(

3a′2

2a2
− a′b′

2ab
− a′c′

ac
+
c′2

c2
− a′′

2a

)
α+

a′

2a
α′ , (2.11)

Λ(r) = −b2
(
c′′

c
+
a′c′

ac
+
b′c′

bc
+
c′2

c2
− 1

b2c2

)
M2

1 − b2
(
a′

2a
+
b′

2b
+

2c′

c

)
(M2

1 )′ − b2

2
(M2

1 )′′

− b2
(

3a′2

2a2
− a′b′

2ab
− a′c′

ac
+
c′2

c2
− a′′

2a

)
α+

b2a′

2a
α′ . (2.12)

Eq. (2.9) provides a differential equation for the combination M2
1 + α:(

a′

a
− c′

c

)
(M2

1 + α)′ +

(
a′′

a
− c′′

c
+
a′b′

ab
+
a′c′

ac
− b′c′

bc
− c′2

c2
+

1

b2c2

)
(M2

1 + α) (2.13)

+2α

(
c′2

c2
− a′2

a2
− 1

2b2c2

)
= 0 .

After introducing M̃2
1 ≡ M2

1 + α, one can solve this equation algebraically for α and then

plug the solution back into eqs. (2.11) and (2.12), thus obtaining three expressions for f,Λ

and α in terms M̃2
1 and its derivatives. In other words, of the 4 free functions of radius in

the tadpole action (2.5), only one combination (i.e. M̃2
1 ) is truly free, the others are fixed

once M̃2
1 and the background metric are specified.

It is worth noticing that, while the first three terms in (2.5) are generically expected

in every genuine theory describing the dynamics of a scalar degree of freedom coupled to

the two graviton helicities, the tadpole α(r)K̄µνK
µν is present only in higher derivative

theories involving powers of the extrinsic curvature Kµν ∼ ∇µ∇νΦ. For instance, in the
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context of theories with second order equations of motion, this is the case of the quartic

and quintic Horndeski operators [52–54]. Otherwise, in theories involving at most the

cubic Horndeski [52–54], i.e. with a Lagrangian of the form P (X,Φ) + G(X,Φ)�Φ where

X ≡ ∇µΦ∇µΦ, the α-tadpole is not generated. Then, the background equations are given

by (2.11)–(2.13) with α = 0. Forgetting for a moment possible couplings to additional

matter fields and setting M1 ≡ MPl, it is clear that for theories belonging to the second

case (i.e. with α = 0) eq. (2.13) reduces to a consistency equation for the scale factors of

the background metric:

a′′

a
− c′′

c
+
a′b′

ab
+
a′c′

ac
− b′c′

bc
− c′2

c2
+

1

b2c2
= 0 , (2.14)

corresponding to pΩ + ρ = 0 in the fluid language.

Having discussed so far the tadpole Lagrangian (2.5) and the conditions induced by the

background Einstein equations, the next step is to consider operators that are quadratic in

perturbations. The goal is to derive the linearized equations governing the dynamics of the

2 + 1 physical degrees of freedom, which carry the information about the spectrum of the

QNMs. To this end, one should first choose a parametrization for the metric perturbations

δgµν . Given the symmetries of the background, it turns out to be convenient to decompose

them into tensor harmonics [47] and distinguish between “even” and “odd” (sometimes

called respectively “polar” and “axial”, e.g. [37]) perturbations, depending on how they

transform under parity. Indeed, the spherically symmetric geometry of the background

guarantees that the corresponding linearized equations of motion do not couple. However,

before deriving them explicitly for a theory in the form (2.4), we find it useful to present

some general properties of QNMs.

3 Quasi-normal modes: general considerations

We are interested in a metric of the form gµν = ḡµν + δgµν , where ḡµν is the static and

spherically symmetric given by eq. (2.1), and δgµν represents the metric perturbations. In

addition, we have a scalar degree of freedom Φ = Φ̄(r) + δΦ, where the background scalar

profile Φ̄ is also static and spherically symmetric. The unitary gauge refers to the special

choice of equal-r surfaces such that δΦ = 0.

Under (θ, φ) diffeomorphisms or rotations, δgµν can be provisionally classified into

scalar (δgtt, δgrr, δgtr) , vector (δgti, δgri) and tensor (δgij) parts, where i, j = θ, φ.15

Following Regge and Wheeler [47], the scalars are called:

δgtt = a2H0 , δgtr = H1 , δgrr = H2/b
2 . (3.1)

Each vector can be further decomposed into a scalar and a pseudo-scalar:

δgti = ∇iH0 + εj i∇jh0 , δgri = ∇iH1 + εj i∇jh1 , (3.2)

15Note that we are abusing the terms scalar, vector and tensor slightly. What really transform as scalar,

vector and tensor are the full metric components gtt, grr, etc. The non-vanishing background ḡµν means the

fluctuations δgµν would transform nonlinearly (or more accurately, sublinearly i.e. variation of δgµν under a

small diffeomorphism would have terms independent of the metric fluctuations, in addition to the expected

terms linear in the metric fluctuations).
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where H0 and H1 are scalars, and h0 and h1 are pseudo-scalars. A pseudo-scalar flips sign

under a parity transformation (θ, φ) → (π − θ, φ + π), whereas a scalar does not.16 Here,

∇i is the covariant derivative defined with respect to the two-dimensional metric:

ds2
2−sphere = γijdx

idxj = dθ2 + sin2 θ dφ2 , (3.3)

and εji, ε
j
i, εj

i, εji are the corresponding Levi-Civita tensors:(
εθθ εθφ
εφθ εφφ

)
= sin θ

(
0 1

−1 0

)
,

(
εθθ ε

θ
φ

εφθ ε
φ
φ

)
=

(
0 sin θ

−1/sin θ 0

)
(
εθ
θ εθ

φ

εφ
θ εφ

φ

)
=

(
0 1/sin θ

−sin θ 0

)
,

(
εθθ εθφ

εφθ εφφ

)
=

1

sin θ

(
0 1

−1 0

)
. (3.4)

Just as in the case of the vectors, the tensor δgij can be further decomposed: into a

trace and a traceless part, which in turn can be decomposed into a scalar and a pseudo-

scalar:

δgij = c2(K +
1

2
G)γij + c2

(
∇i∇j −

1

2
γij

)
G+

1

2
(εi

k∇k∇j + εj
k∇k∇i)h2 , (3.5)

where c2(K+G/2) is the trace, and c2G and h2 represent the analogs of the E and B modes

on the 2-sphere (our notation follows that of Regge and Wheeler [47]). Here c2 is part of

the background metric as defined in eq. (2.1), not to be confused with the speed of light

squared which is always set to unity. It is also useful to note that the second covariant

derivatives (in the 2-sphere sense) on a scalar function act as follows:

∇θ∇θ = ∂2
θ , ∇φ∇φ = ∂2

φ + sinθ cosθ∂θ ,

∇2 = ∂2
θ +

1

sin2θ
∂2
φ +

cosθ

sinθ
∂θ , ∇θ∇φ = ∇φ∇θ = ∂θ∂φ −

cosθ

sinθ
∂φ .

(3.6)

To summarize, before gauge fixing, the parity even fluctuations, expressible in terms

of 7 scalars, are17

δgeven
µν =

 a2H0 H1 ∇jH0

H1 H2/b
2 ∇jH1

∇iH0 ∇iH1 c2Kγij + c2∇i∇jG

 (3.7)

The parity odd fluctuations, expressible in terms of 3 pseudo-scalars, are:

δgodd
µν =

 0 0 εkj∇kh0

0 0 εkj∇kh1

εki∇kh0 εki∇kh1
1
2(εi

k∇k∇j + εj
k∇k∇i)h2

 (3.8)

16For instance, δgtθ should flip sign under parity, and ∇θH0 indeed flips sign as desired provided H0 is a

scalar, whereas εφθ∇θh0 also flips sign under parity provided h0 is a pseudoscalar.
17Notice that we are departing slightly from the notation of Regge and Wheeler [47] by denoting some of

the perturbations with H0,H1 and K rather than h0, h1 and K respectively. This is done in order to avoid

any potential confusion with the induced metric, the perturbations in the odd sector, and the extrinsic

curvature of surfaces of constant r.
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In addition to the metric fluctuations, we have in a general gauge the scalar fluctuation

δΦ as well.

The background (metric and scalar) enjoys invariance under time translations and

spatial rotations. Therefore, if we expand δgµν and δΦ in terms of the plane wave e−iωt

and the spherical harmonics Y`m(θ, φ), modes with different ω, `,m will not mix at linear

level (in the equations of motion). This is similar to what happens around backgrounds

invariant under spatial translations, where a Fourier expansion in the spatial coordinates

proves to be useful because different Fourier modes do not mix at linear level.

In order to avoid introducing too many symbols, we will henceforth abuse the notation

a bit by occasionally doing the following replacements for each scalar or pseudoscalar, e.g.:

H0(t, r, θ, φ)→ H0(t, r, `,m)Y`m(θ, φ) , (3.9)

or

H0(t, r, θ, φ)→ H0(ω, r, `,m)e−iωtY`m(θ, φ) . (3.10)

To compound the possible confusion, we will often leave out the arguments of H0 alto-

gether! However, in most cases, the context should be sufficient to tell apart the different

meanings — of H0 in different spaces. In cases where confusion could arise, we will make

the meaning explicit. At the level of the spherical harmonic transformed quantities, be-

cause Y`m(π−θ, φ+π) = (−1)`Y`m(θ, φ), we see that a scalar such as H0(t, r, `,m) picks up

a factor of (−1)` under parity while a pseudo-scalar such as h0(t, r, `,m) picks up a factor

of (−1)`+1 under parity. As discussed around eq. (2.4), the quadratic action with at most

two derivatives respects parity. Thus, the parity even and odd modes do not mix.

Without loss of generality, it is customary to set m = 0. In a spherically symmetric

background, the radial and time dependence of the perturbations is sensitive to ` but not m.

This is because there is no preferred z-axis around which azimuthal rotations are defined,

and m 6= 0 modes can be obtained from an m = 0 mode by simply rotating the z-axis.

For m = 0 (i.e. ∂φ = 0), and a gravitational wave that propagates in the radial

direction, one can see that

δgGW
ij =

1

2

(
(∂2
θ −

cosθ
sinθ ∂θ)c

2G ( cosθ∂θ − sinθ∂2
θ ) h2

( cosθ∂θ − sinθ∂2
θ ) h2 − sin2θ(∂2

θ −
cosθ
sinθ ∂θ)c

2G

)
. (3.11)

Thus, G and h2 play the roles of the two planar polarizations of the graviton (in the large

r limit such that a spherical wave is locally well approximated by a plane wave). Note that

in the even sector, the angular components of the metric take the form c2Kγij +∇i∇jc2G

which is better rewritten as c2(K+∇2G/2)γij+(∇i∇j−[γij/2]∇2)c2G, and we have ignored

the trace part when focusing on gravitational waves.

Summarizing the discussion above, we have the metric fluctuations δgµν labeled ac-

cording to eqs. (3.7) and (3.8), and the scalar fluctuation δΦ, in a general gauge. The

next step is to choose a gauge. As will be detailed below, the gauge we adopt is the

Regge-Wheeler-unitary gauge, meaning:

δΦ = h2 = H0 = G = 0 . (3.12)
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Regge and Wheeler [47] also set H1 to zero, but our unitary gauge choice of δΦ = 0 makes

that impossible in general.

Once this is done, a Schrödinger-like equation can typically be obtained (after quite a

bit of algebra!) separately for the odd and the even sectors:

∂2
r̃Q+WQ = 0 , (3.13)

where r̃ is some redefined radial coordinate chosen in such a way that the speed of propa-

gation equals one (see appendix E for more details); the variable Q may have one or more

components, obtained by combining perturbations and their derivatives; W is a function

of r̃ as well as ω and ` (or a matrix of functions, if Q has more than one component). An

example is the Regge-Wheeler equation given in eq. (G.8) for odd perturbations in GR.

The spectrum of QNMs is usually calculated by solving equation (3.13) numerically,

imposing the appropriate boundary conditions at the horizon and at spatial infinity. How-

ever, very useful insights can be obtained by combining the EFT we introduced in section 2

with approximate analytic methods.

4 WKB approximation and light ring expansion

There are in principle three possible ways in which eq. (3.13) could differ from the standard

GR result: (1) the coordinate r̃ could differ from the tortoise coordinate defined in GR —

see eq. (G.7); (2) the variable Q could be modified (for instance, in the even sector of scalar

tensor theories Q would have two components, in which case W would be a matrix); (3)

the QNM potential −W could have a different shape. Ultimately, the spectrum of QNM

is completely determined by the shape of W (r̃). In the following, we will focus on the

simplest case where W is just a single function rather than a matrix of functions.

Schutz and Will [39] showed that the quasi-normal spectrum associated with the equa-

tion (3.13) can be approximated analytically using the WKB method. Their main result

is the relation
W

(2∂2
r̃W )1/2

∣∣∣
r̃=r̃∗

= −i
(
n+

1

2

)
, (4.1)

where n = 0, 1, 2, . . . and r̃∗ is the position of the maximum of −W .18 Since W depends

on the frequency ω, this expression defines implicitly the complex quasi-normal frequen-

cies. This is the lowest order WKB result (accurate at the few percent level), and can be

improved upon if desired [40] (see discussion below). A side remark on conventions: the

sign on the r.h.s. of eq. (4.1) is consistent with the fact that the time dependence of our

solution is of the form e−iωt — see e.g. eq. (3.10). Thus, we are following the convention

used in [40], and our equation differs by a sign compared to the one in [39], where the

solutions were proportional to eiωt.

18With a certain abuse of terminology, we shall use sometimes the notion of “light ring” to refer to r̃∗.

Even if, strictly speaking, the two positions tend to coincide only in the eikonal limit `→∞, for a generic

` ∼ few they differ by an amount that is within the WKB accuracy. This makes the abuse consistent for

practical purposes and justifies the definition “light ring expansion” to denote the procedure outlined below.
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The WKB result (4.1) shows that the quasi-normal frequencies are actually sensitive

to a small region of the potential around the light ring.19 Thus, in principle one only needs

to know the values of the EFT coefficients and their derivatives at the light ring. The catch

however is that r̃∗ is the light ring of W , whose calculation would in principle require full

knowledge of the EFT coefficients. This problem can be bypassed by assuming that our

background is “quasi-Schwarzschild” — an assumption that is certainly well supported by

present observations.

To make this statement more precise, it is convenient to work with a radial coordinate

such that c(r) = r, i.e. such that 4πr2 is the surface area of a sphere with radius r.

Notice that the coordinate r usually differs from the coordinate r̃ introduced above. The

position of the light ring is unique, but will be denoted with r∗ or r̃∗ depending on which

coordinate system we are using. Then, our quasi-Schwarzschild approximation amounts

to assuming that the location of the light ring r∗ doesn’t differ much from the GR value,

i.e. r∗ = r∗,GR + δr∗ with δr∗/r∗,GR � 1. Under this assumption, we can approximate the

r.h.s. of eq. (4.1) by turning the derivatives with respect to r̃ into derivatives with respect

to r and expanding up to first order in δr∗ to get

(1 + δr∗∂r)

{
W

[
∂r

∂r̃

∂

∂r

(
∂r

∂r̃

∂W

∂r

)]−1/2
}
r=r∗,GR

= −i
(
n+

1

2

)
. (4.2)

The shift δr∗ can also be calculated at the GR light ring by expanding its defining property

∂rW |r=r∗,GR+δr∗ = 0 up to first order in δr∗ to obtain

δr∗ = −∂rW
∂2
rW

∣∣∣
r=r∗,GR

. (4.3)

There is one further subtlety that we need to address, and that is the fact that the

position of the light ring depends on the angular momentum number `. Thus, at this stage

we still need to know the values of the EFT coefficients, the background metric components,

and their derivatives at different points for different values of `. Fortunately, the position of

the light ring in GR depends only mildly on `. We can therefore choose a fiducial value of `

— for instance, ` = 3 — and expand eq. (4.2) up to first order in ∆`,3 ≡ r∗,GR(`)−r∗,GR(3)

and δr∗ to find

[1 + (δr∗ + ∆`,3)∂r]

{
W

[
∂r

∂r̃

∂

∂r

(
∂r

∂r̃

∂W

∂r

)]−1/2
}
r=r∗,GR(`=3)

= −i
(
n+

1

2

)
. (4.4)

Figure 1 shows that the accuracy of this approximation is comparable if not better than

the accuracy of the lowest order WKB expansion, to be discussed in a moment.

The l.h.s. of eq. (4.4) now depends on EFT coefficients, the metric components, and

their derivatives evaluated at the same point for all values of `. This allows us to express

19This is true under the assumption that the asymptotic behavior of W allows us to impose standard

boundary conditions. Notice that such an approach is supported by explicit examples [55, 56] where the

QNM spectrum is studied perturbatively in the coupling constant between the scalar field and the Gauss-

Bonnet term. Conversely, we refer e.g. to [57, 58] for a discussion about non-perturbative effects like echoes

and resonances.
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Figure 1. Plot of the fractional change in position of the GR light ring r∗,GR(`) corresponding to

a change in angular momentum `. We are considering the change with respect to the fiducial value

r∗,GR(3), i.e. we have defined ∆`,3 = r∗,GR(`)− r∗,GR(3). This shows that the location r∗,GR of the

light ring in GR depends weakly on the angular momentum number `.

the QNM spectrum in terms of a finite number of free parameters (whose precise number

depends on the number of operators included in the effective action). In going from the

lowest order WKB result (4.1) to the eq. (4.4) we have assumed that background is quasi-

Schwarzschild (meaning that the position of the light ring is close to its Schwarzschild value)

and we have performed an expansion analogous to the slow-roll expansion in inflation. We

will call this expansion the light ring expansion.

Our discussion so far was based on the lowest order WKB approximation, but can

be easily extended to higher order. The next-to-leading order WKB corrections were

calculated by Iyer and Will [40], and contribute the following term to the righthand side

of eq. (4.1):

i

(2∂2
r̃W )1/2

{
1 + 4α2

32

∂4
r̃W

∂2
r̃W
− 7 + 60α2

288

[
∂3
r̃W

∂2
r̃W

]2
}
r̃=r̃∗

, (4.5)

with α ≡ n + 1/2. We can estimate the size of these corrections using the fact that the

lowest order WKB result implies Wr̃2
∗ ∼ O(1). For the lowest overtone number, n = 0,

the terms in (4.5) provide a correction ∼ 5%. Hence, the lowest order result in eq. (4.4) is

applicable when the corrections to the QNM spectrum due to modifications of GR are small,

but large enough that the higher order WKB corrections need not be taken into account.

The impact of next-to-leading and next-to-next-to-leading order WKB corrections in

GR was calculated explicitly in [59]. There, it was shown that the accuracy of the WKB

approximation decreases for larger n, but actually increases for larger `. Assuming that

the same holds true in scalar tensor theories, this is quite encouraging because future

experiments will have access to higher values of ` but not of n [60].
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5 The odd sector

After the general discussion about QNMs and the light ring approximation in the last two

sections, we will now turn our attention to studying the odd sector. As we mentioned

earlier, the odd modes are easier to study than the even ones since, based on our assump-

tions, they amount to a single propagating degree of freedom. The most general odd-parity

metric perturbation, shown in eq. (3.8), can be rewritten more explicitly as follows [47]:

δgodd
µν =


0 0 −h0 csc θ∂φ h0 sin θ∂θ
0 0 −h1 csc θ∂φ h1 sin θ∂θ

−h0 csc θ∂φ −h1 csc θ∂φ
1
2h2 csc θX −1

2h2 sin θW
h0 sin θ∂θ h1 sin θ∂θ −1

2h2 sin θW −1
2h2 sin θX

Y`me
−iωt , (5.1)

where h0, h1, h2 are functions of r alone, and we have defined the differential operators

X = 2(∂θ∂φ − cot θ∂φ) ,

W = (∂θ∂θ − cot θ∂θ − csc2 θ∂φ∂φ) .
(5.2)

Under a gauge transformation of the form x̃µ = xµ + ξµ, with

ξµ =

(
0, 0, δ

1

sinθ
∂φ,−δ sinθ ∂θ

)
Y`me

−iωt , (5.3)

the metric perturbations transform as

h̃0 = h0 − iωδ , h̃1 = h1 + δ′ − 2c′

c
δ , h̃2 = h2 − 2δ , (5.4)

where ( )′ ≡ ∂r( ).

In the rest of this section we will adopt the Regge-Wheeler gauge, where h2(r) = 0.

Notice that this choice is perfectly compatible with the unitary gauge in the even sector,

and that, as expected, the physical conclusions we derive in this section are ultimately

independent of the choice of gauge.

Our starting point is the effective action for perturbations in unitary gauge in eq. (2.4).

Owing to the simplicity of the odd sector, only a subset of the operators shown there

actually affect the dynamics of odd perturbations. In fact, recall that the background

metric (2.1) is even by construction, and so is every tensor evaluated on the background.

The operators δgrr and δK are also even, and thus one can safely disregard any term that

contains them. The resulting action reads:

Sodd =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− Λ(r)− f(r)grr − α(r)K̄µνK
µν

+M2
10(r)δKµνδK

µν +M12(r)K̄µνδK
µρδKν

ρ + . . .

]
. (5.5)

As one can see, at quadratic level and up to second order in derivatives, the effective action

for the odd modes contains six functions {M2
1 (r),Λ(r), f(r), α(r),M2

10(r),M12(r)}, three

of which can be expressed in terms of a fourth one and the background metric components

by using the background equations of motion — see discussion in section 2.1.
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5.1 Leading order in derivatives

We will at first restrict our attention to the lowest-order terms in the derivative expansion,

which appear in the first line in eq. (5.5). Here, by lowest-order in derivatives, we refer to

expanding the non-Einstein-Hilbert terms in number of derivatives and keeping the leading

order. In this case in particular, the surviving terms are
√
−gΛ(r) and

√
−gf(r)grr which

carry no derivatives on metric fluctuations. These are the terms that break the radial-

diffeomorphism invariance. We will also perform a conformal transformation of the metric

to set M2
1 (r) = M2

Pl. As we already pointed out, this transformation would affect the

coupling with other matter fields (for instance, those that make up the detector). At this

stage, however, we will not concern ourselves with that, and therefore we will work with

the effective action

S =

∫
d4x
√
−g
[
M2

Pl

2
R− Λ(r)− f(r)grr

]
. (5.6)

The functions Λ(r) and f(r) are given in terms of the background metric coefficients by

eqs. (2.12) and (2.11) with α = 0 and M1 = MPl. By varying our action with respect to

the inverse metric, we find that the (θ, φ) component yields

h0 =
ia2b2

ω

[
h1

(
a′

a
+
b′

b

)
+ h′1

]
. (5.7)

This constraint can be combined with the (r, φ) component to derive a second order equa-

tion of motion for h1. By following the procedure outlined in appendix E, this equation

can be cast in a Schrödinger-like form, i.e.

d2

dr̃2 Ψ(r̃) +W (r̃)Ψ(r̃) = 0 (5.8)

where the potential is given by

W (r̃(r)) = ω2 + a2b2
[
c′′

c
− 2

c′2

c2
+
a′c′

ac
+
b′c′

bc
− (`+ 2)(`− 1)

b2c2

]
, (5.9)

the radial coordinate r̃ is defined as

r̃(r) =

∫ r

rc

dl

a(l)b(l)
(5.10)

for some fiducial rc, and the variable Ψ is related to h1 by an overall rescaling:

h1(r)→ Ψ(r̃(r)) = exp

[∫ r

rc

(
a′(l)

a(l)
+
b′(l)

b(l)
− c′(l)

c(l)

)
dl

]
h1(r) . (5.11)

These results are consistent with what was found in [61]. Furthermore, in the limit where

the background solution is exactly Schwarzschild, i.e. a(r) = b(r) = (1 − 2GM/r)1/2

and c(r) = r, the coordinate r̃ reduces to the usual tortoise coordinate in GR (see

eq. (G.7)), (5.11) matches the field redefinition in [47], and V (r̃) reduces to the Regge-

Wheeler potential.
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A few additional comments are in order. First, we should stress that without loss of

generality one can always choose a radial coordinate such that c(r) = r, in which case the

potential (5.9) is completely determined by the two functions a(r) and b(r). Moreover, in

the Einstein frame and at the order in derivatives we are considering, these two functions are

in turn constrained by the differential equation (2.14). Finally, remembering that `(`+ 1)

is the eigenvalue of the angular part of the Laplacian, from (5.8) and (5.9), it is easy to see

that the squared propagation speeds in the radial and angular directions are c2
r = c2

Ω = 1.

5.2 Worked examples

Before discussing the higher derivative corrections appearing in the second line of (5.5),

we will pause for a moment to illustrate the usefulness of our EFT approach in a couple of

different scenarios. First, we will consider a particular scalar tensor theory which admits an

analytic black hole solution with scalar hair. In this case, we will show how, by matching

the action of this particular model onto our effective action (5.6), one can bypass the entire

derivation of the Schrödinger equation for QNMs and obtain the effective potential directly

from eq. (5.9). Although in this section we are focusing on the odd modes, this strategy

becomes particularly convenient in the case of even modes. The second idealized scenario

we will consider is one in which the spectrum of QNMs is known from observations. We

will then show how this information can be used to constrain the arbitrary functions that

appear in our effective action. At the lowest order in the derivative expansion (and only at

this order), this procedure is equivalent to constraining the background metric coefficients

a(r) and b(r).

5.2.1 From the background solution to the QNM spectrum

In this section, we will consider the black hole solutions with scalar hair found in [15] for

a scalar-tensor theory which can be described using the leading order action (5.6). In this

section only, we decide to set G = (8π)−1 for simplicity (MPl = 1). The action for such

theory is of the form

S =

∫
d4x
√
−g
[
R

2
+

1

2
gµν∂µΦ∂νΦ− V(Φ)

]
, (5.12)

with a potential given by

V(Φ) =
3(q + 2M)

|q|3
[(

3 + Φ2
)
· sinh |Φ| − 3|Φ| · cosh Φ

]
. (5.13)

We should emphasize that such an action is not very well-motivated from an effective

field theory viewpoint, due to the ad hoc form of the potential, and especially due to the

ghost-like kinetic term. However, this theory will serve our purposes as an interesting toy-

model, since it admits an analytic black hole solution with scalar hair. Such a solution is

parametrized by two numbers, the asymptotic mass 8πM of the black hole and its scalar
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charge q, and it is such that [15]

Φ̄(r) =
q

r
(5.14a)

a2(r) = b2(r) =
r2(6M+3q)e−

q
r

4q3
−e

q
r

[
r2(6M+3q)

4q3
− r(6M+3q)

2q2
+

6M+q

2q

]
, (5.14b)

c2(r) = r2e−
q
r . (5.14c)

Notice that the existence of a horizon requires q > −2M, and that in the limit q → 0 this

solution reduces to the usual Schwarzschild solution. However, for non-vanishing q can in

principle deviate significantly from the Schwarzschild solution, and therefore so can the

corresponding spectrum of QNMs.

By working in unitary gauge, it is easy to see that the action (5.12) is precisely of the

form (5.6) with Λ(r) = V(Φ̄(r)) and f(r) = Φ̄′(r)2/2. Thus, we can immediately plug the

expressions for a(r), b(r) and c(r) given in eqs. (5.14) into the QNM effective potential (5.9)

to obtain

W (r̃(r))=ω2+
e−

2q
r

64q4r4

{
e

2q
r
[
2q2(6M+q)+3r2(2M+q)−6qr(2M+q)

]
−3r2(2M+q)

}
×
{
e

2q
r
[
−r2((4`+1)(4`+3)q+6M)+6q2(6M+q)+6qr(18M+q)

]
+3r2(2M+q)

}
. (5.15)

As expected, this expression reduces to the Regge-Wheeler effective potential [47] in the

limit q → 0. It is also important to point out that, for any value of q, the potential

V (r) ≡ ω2 − W (r) vanishes exactly at the horizon, and V (r) > 0 for r > rhor. This

condition by itself is sufficient to ensure the stability of the odd sector.

Various plots of V (r̃(r)) for ` = 2, 3, 4 and different values of q are shown in the right

panels of figure 2. The corresponding left panels show the values of real and imaginary

parts of the QNM frequencies with n = 0. For simplicity, these values were derived using

the WKB result (4.1), but of course they could also be calculated numerically using the

exact potential (5.15).

5.2.2 From the QNM spectrum to the effective potential: the inverse problem

Let us now consider scenario where the QNM spectrum is known empirically, and discuss

to what extent this information can be used to constrain the coefficients appearing in our

effective action. This procedure goes under the name of “inverse problem” — see for exam-

ple [62, 63]. In our analysis, we will resort to a WKB approximation, and restrict ourselves

to the case where the background metric is a “small” deviation from Schwarzschild. This,

in turn, can be reasonably expected to lead to a “small” displacement of the light ring.

As shown in section 4, in this limit one can perform a light-ring expansion to the express

the QNM spectrum in terms of a finite number of parameters, which are the values of the

EFT coefficients, the background metric components and a few of their derivatives at the

GR light ring.

The advantage of this approach is that one could in principle use observation to place

model-independent constraints on these parameters. This should be reminiscent of what
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Figure 2. Left panel: odd spectrum of QNM for n = 0 and some representative values of q. Right

panel: the plot of the corresponding potential V (r̃(r)) . From top to bottom: ` = 2, ` = 3, ` = 4.
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happens in slow-roll inflation. There, all the complexities of the inflaton action are reduced

to a handful of slow-roll parameters, which in turn determine observable quantities such as

spectral indices and scalar-tensor ratio. There are however also a couple of downsides to

our approach. First, small deviations from the Regge-Wheeler potential likely correspond

to small deviations from the QNM spectrum predicted by GR, making their detection

in principle more difficult. Second, because we are essentially placing constraints on the

effective potential and its first few derivatives at a single point, there will be in general a

degenerate set of background solutions compatible with any given QNM spectrum.

Our result (4.4), valid at first order in the light ring expansion and for a radial coor-

dinate such that c(r) = r, implies that the tower of complex frequencies ωn,` is completely

determined by the values of W,∂rW,∂
2
rW,∂

3
rW,∂r/∂r̃, ∂r(∂r/∂r̃) and ∂2

r (∂r/∂r̃) at the GR

light ring. According to the results (5.9) and (5.10) (which we derived from the effective ac-

tion (5.6), valid at lowest order in the derivative expansion) these quantities depend only on

a(r), b(r) and their derivatives at the GR light ring. To be more precise, second and higher

derivatives of a(r) can always be removed by using the constraint (2.14) recursively. Thus,

using eq. (4.4) we can calculate the QNM frequencies in terms of the following 7 parameters:

{a(r), a′(r), b(r), b′(r), b′′(r), b(3)(r), b(4)(r)}
∣∣
r=r∗,GR(`=3)

. (5.16)

Since the QNM frequencies ωn` are complex, in principle one has two real measurements

for each mode that is observed. In practice, though, it is challenging to observe overtones

with n > 0 for a single event, though a stacking of multiple events might prove helpful.

One is also limited to the frequencies ω0,` for a finite range of values of `. However, a

space-based experiment like LISA could be sensitive to modes with angular momentum as

large as ` = 7 (see [60] for a discussion), and these modes would be sufficient to estimate

the 7 parameters in (5.16).

Finally, notice that by using eqs. (2.11), (2.12) and (2.14) we could translate these

results into direct constraints on the values of the EFT coefficients f(r), Λ(r), and their

first few derivatives at r∗,GR(3).

5.3 Next-to-leading order

In the previous section we worked at leading order in derivatives and derived the equation

of motion governing the single physical degree of freedom in the odd sector. At this order,

we showed that the QNM spectrum is completely determined by the background metric co-

efficients. We will now turn our attention to the higher derivative corrections appearing in

the effective action (5.5). These introduce three additional parameters — α(r),M2
10(r), and

M12(r) — the last two of which cannot be expressed in terms of the background metric coef-

ficients. This kind of behavior is of course commonplace in effective theories: the next order

in the derivative expansion always introduces new free parameters (functions, in our case).

Once again, we choose to work in the Regge-Wheeler gauge. At higher order, it

becomes more convenient to work directly at the level of the action. To this end, we

expand (5.5) up to quadratic order in the odd-type metric perturbations. We focus on the

modes with m = 0, since all the others with m 6= 0 satisfy the same equations of motion
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due to the spherical symmetry of the background. After series of integration by parts, find

the following result:

S
(2)
odd,m=0 =

∞∑
`=0

∫
dtdr

[
u1h2

0 + u2h2
1 + u3

(
ḣ2

1 − 2ḣ1h′0 + h′20 + 2vḣ1h0

)]
, (5.17)

where ui(r) and v(r) are defined as follows:

u1(r) =
`(`+1)

4a4bc3

{
a2c
[
2abcb′c′+2ab2∂r

(
cc′
)

+a(`−1)(`+2)−2b2ca′c′
]
M2

Pl

−2a2b2c2∂r(ac)(M
2
10)′−2ab3c(∂r(ac))

2M ′12

+2abc
[
abca′c′+4bc2a′2 +a2cb′c′+a2bcc′′+3a2bc′2

]
α+2a3b2c2c′α′ (5.18a)

−2abc
[
acb′∂r(ac)+abc

(
ac′′−a′c′

)
+bc2

(
aa′′−2a′2

)
−a2bc′2

]
M2

10

+2b2c∂r(ac)
[
−2ab′∂r(ac)+bc(a′2−2aa′′)−ab(3a′c′+2ac′′)

]
M12

}
,

u2(r) =
`(`+1)(`−1)(`+2)ab

4c3

[
2bc′M12−c

(
M2

Pl−2M2
10

)]
, (5.18b)

u3(r) =−`(`+1)b

4a2c

[
∂r(ac)bM12−ac

(
M2

Pl−2M2
10

)]
, (5.18c)

v(r) =
`(`+1)b

2a3c2u3

[
a2cc′(M2

Pl +α)−ac∂r(ac)M2
10−b(∂r(ac))

2M12

]
. (5.18d)

Fixing the gauge at the level of the action might rightfully be a source of apprehension for

some readers. In this case, though, we have checked explicitly that the equation of motion

one “misses” by doing so becomes redundant with this gauge choice. Hence, this particular

gauge can be fixed at the level of the action.

The modes with ` = 0, 1 must be treated separately. For simplicity, we will therefore

focus our attention on the modes with ` > 2. Following the same procedure used in [64],

we introduce an auxiliary field q(t, r) and rewrite the action above as follows:

S
(2)
odd,m=0,`>2 =

∫
dtdr

{(
u1 − ∂r(u3v)− u3v

2
)

h2
0 + u2h2

1

+ u3

[
2q
(

ḣ1 − h′0 + vh0

)
− q2

]}
. (5.19)

It is easy to show that by solving for q one recovers the action in (5.17). Varying instead

the action with respect to h0 and h1 yields the algebraic constraints

h0 =
∂r (u3q) + u3vq

∂r (u3v) + v2u3 − u1
, h1 =

u3

u2
q̇ , (5.20)

which can be used to find the effective action for the master variable q:

S
(2)
odd,m=0,`>2 =

∫
dtdr

[
G00q̇2 + Grrq′2 + Gqqq2

]
. (5.21)
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with

G00(r) = −u
2
3

u2
, (5.22a)

Grr(r) =
u2

3

−u1 + vu′3 + u3 (v′ + v2)
, (5.22b)

Gqq(r) =
(Grr)2

u3
3

[
u′3
(
2u′3v

′ − u′1
)

+ u3

(
−vu′1 − u′′3v′ + u′3v

′′ + vu′3v
′)+ u1u

′′
3 (5.22c)

+2vu1u
′
3 + u1u3

(
3v′ + v2

)
− u2

1 + u2
3

(
vv′′ − 2v′2

)]
.

By varying the action above one finds a second order equation of motion for q, which

can be again cast in a Schrödinger-like form by following the procedure discussed in ap-

pendix E. Since the final result is not particularly illuminating, we will not report it here.

6 The even sector

We now turn our attention to the even sector. Unlike what happens for the odd sector,

now all the operators in the EFT (2.4) in principle contribute to the quadratic action for

the even perturbations. Following the most general parity-even perturbation of the metric

in eq. (3.7) can be written more explicitly as follows:

δgµν =


a2H0 H1 H0∂θ H0∂φ
H1 H2/b

2 H1∂θ H1∂φ
H0∂θ H1∂θ c2[K +G∇θ∇θ] c2G∇θ∇φ
H0∂φ H1∂φ c2G∇φ∇θ c2[sin2 θK +G∇φ∇φ]

Y`m , (6.1)

where H0, H1, H2,H0,H1,K and G are functions of (t, r), and ∇θ,φ are covariant derivatives

on the 2-sphere of radius one. Explicit expressions for the second derivatives are given in

eq. (3.6).

In appendix G we show explicitly how one of the odd perturbations can always be

set to zero by an appropriate choice of coordinates. Something similar holds true for even

metric perturbations. In fact, any infinitesimal “even diffeomorphism” xµ → xµ + ξµ can

be parametrized as

ξµ =

(
α(t, r), β(t, r), γ(t, r)∂θ,

γ(t, r)∂φ

sin2 θ

)
Y`m(θ, φ). (6.2)
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Under this coordinate change, the metric perturbations in eq. (6.1) transform as follows:

H̃0 = H0 + 2α̇+ 2
a′

a
β (6.3a)

H̃1 = H1 + a2α′ − β̇/b2 (6.3b)

H̃2 = H2 + 2
b′

b
β − 2β′ (6.3c)

H̃0 = H0 + a2α− c2γ̇ (6.3d)

H̃1 = H1 − β/b2 − c2γ′ (6.3e)

G̃ = G− 2γ (6.3f)

K̃ = K − 2
c′

c
β. (6.3g)

By choosing to work in unitary gauge, we are choosing the function β(r) in such a

way as to ensure that the scalar perturbation vanishes. We can then use the remaining

coordinate freedom and fix the gauge completely by demanding that

H0 = G = 0. (6.4)

We refer to this gauge choice of δΦ = H0 = G = 0 as Regge-Wheeler-unitary gauge. Once

again, in what follows we will fix this gauge at the level of the action. We have checked

explicitly that this is allowed, in that the equations of motion for δΦ, H0 and G become

redundant once these variables are set to zero.

Two other popular gauge choices for the even sector are H0 = H1 = G = 0 (this is the

original Regge-Wheeler gauge; see e.g. [43, 47, 65]) and H0 = K = G = 0 (e.g. [66]). The

perturbations in these gauges can be easily obtained from ours by using eqs. (6.3) with

α = γ = 0 and β = b2H1 in the first case, β = c
2c′K in the latter. The scalar perturbation

then is given by δ̃Φ = −βΦ̄′, where Φ̄(r) is the background configuration of the scalar field.

6.1 Leading order in derivatives

At lowest order in the derivative expansion, the effective action (2.4) reduces to

S =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− Λ(r)− f(r)grr +M4
2 (r)(δgrr)2

]
. (6.5)

Unlike in the odd sector, here there are three operators that can in principle modify the

linear behavior of even quasi-normal modes. For simplicity, in this section we will work

with a radial coordinate such that c2(r) = r2, and we will perform once again a conformal

transformation of the metric to set M2
1 (r) = M2

Pl. Also, due to the spherical symmetry of

the background, modes with different values of m satisfy the same equations of motion. For

this reason, we can choose to focus on the modes with m = 0, in which case the functions

H0, H1, . . . are all real.
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Upon judicious and repeated use of the background equations, we find the following

quadratic action for the modes with m = 0:

S
(2)
even,m=0 =

∞∑
`=0

∫
dtdr

ar2

2b
M2

Pl

{
H0

[
−Jb

2

r3

(
1+r

b′

b

)
H1−

1

2r2

(
J+2b2

(
1+r

a′

a
+r

b′

b

))
H2

+
(2−J)

2r2
K− b

2

r
H ′2+

Jb2

r2
H′1+

b2

r

(
3+r

b′

b

)
K′+b2K′′

]
+
Jb2

r2a2

(
1

2
H2

1 +
a2

r2
H2

1

)
+
b2

2r2

(
1+r

a′

a
+r

b′

b
+

4b2r2M4
2

M2
Pl

)
H2

2 +
(J−4)a−2r2bb′a′

2r2a
H2K (6.6)

+
b2

a2
H1

[
2

r
Ḣ2−

J

r2
Ḣ1−2rK̇′− 2

r

(
1−ra

′

a

)
K̇
]

+
Jb2

r2
H1(Ḣ2+K̇)

+
b2

r
H2

[
− J

r2

(
1−r b

′

b

)
H1+

1

rb2

(
1+

r2bb′a′

a

)
K−

(
1+r

a′

a

)
K′

+
J

r
H′1+

r

a2
b2K̈

]
− 1

2a2
K̇2+

b2

2
K′2+

Jb2

2r2a2
Ḣ2

1

}
,

where we have defined J ≡ `(` + 1) for notational convenience. Despite its complicated

appearance, this Lagrangian propagates only two physical degrees of freedom, which we

can loosely think of the scalar mode plus one of the graviton polarizations. We will now

show explicitly how to obtain a Lagrangian that contains only these two degrees of freedom.

The modes with ` = 0, 1 require once again special treatment — see e.g. [66]. Hence, for

simplicity we will restrict our attention to the modes with ` > 2 in what follows.

The form of the Lagrangian (6.6) makes it clear that H0 is just a Lagrange multiplier

enforcing a “Hamiltonian” constraint among the remaining variables. We can render such

constraint algebraic in H1 by trading H2 for a new variable ψ defined as follows,

ψ = −rab
2

(
H2 − rK′ −

JH1

r

)
, (6.7)

Notice that this field redefinition is such that the term K′′ also disappears from the con-

straint equation. A similar change of variable was performed in a different gauge in [66].

Then, this constraint can be easily solved for H1 to express it in terms of ψ,K and their ra-

dial derivatives. Using the background equations of motion, the solution can be expressed as

H1 =
4b2rψ′ + 2Jψ + (2− J)rabK
Jb [a(J − 2b2) + 2rb2a′]

− r2

J
K′. (6.8)

Moreover, the only term quadratic in H1 that appears in the Lagrangian (6.6) does

not contain any derivatives. This means that the equation of motion for H1 can be solved

immediately, and using the field redefinition (6.7) we find

H1 = −Ḣ1 +
4ψ̇

Jab
+

2r

J

(
1− ra

′

a

)
K̇. (6.9)

By plugging the solution (6.8) into this result, one can express H1 just in terms of ψ,K,

and their derivatives. Notice that such an expression contains mixed second derivatives
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of the form ψ̇′ and K̇′, and therefore one might fear that the quadratic Lagrangian (6.6)

contains terms with four derivatives when expressed in terms of ψ and K alone. However,

because the coefficients in front of the H2
1 and Ḣ2

1 terms are identical, these higher derivative

terms cancel out. After some integrations by parts, terms with three derivatives cancel out

as well,20 and we are left with a Lagrangian of the form

S
(2)
even,m=0,`>2 =

∫
dtdr

1

2
M2

Pl

(
Aijχ̇iχ̇j − Bijχ′iχ′j − Cijχiχ′j −Dijχiχj

)
, (6.10)

where χi ≡ (ψ,K) and

Aij =

8[Jr(ba′−ab′)+ab(J−2)]

Ja2[2rb2a′+a(J−2b2)]2
− 2(J−2)r
Ja[2rb2a′+a(J−2b2)]

− 2(J−2)r
Ja[2rb2a′+a(J−2b2)]

(J−2)r2

2Jab

, (6.11a)

Bij =a2b2Aij+

( −32r2ab5M4
2 /M

2
Pl

[2rb2a′+a(J−2b2)]2
0

0 0

)
, (6.11b)

Cij =

 0 0

−4(J−2)ab[Jr(ba′−ab′)+ab(J−2)−4Jr2ab3M4
2 /M

2
Pl]

J [2rb2a′+a(J−2b2)]2
0

, (6.11c)

D11 =− 8

r2a2 [2rb2a′+a(J−2b2)]3

{
4r2ab3[−r2ab2a′2(−4rbb′+2b2+J)+2ra2ba′(2Jrb′−4rb2b′−b3+b)

+2r3b4a′3+a3(−4Jrbb′+4rb3b′+(J−2)b2+2b4−J)]M4
2 /M

2
Pl

−4r3a2b5(a−ra′)[2rb2a′+a(J−2b2)](M4
2 )′/M2

Pl+r
2a2b2(ra′−a)b′′[2rb2a′+a(J−2b2)] (6.11d)

+r2a2b(a−ra′)b′2[2rb2a′−a(J+2b2)]+rab′
[
−r2ab2a′2(4b2+3J)+ra2b2a′(2b2+J+4)+2r3b4a′3

+(J−2)a3(2b2+J)
]
+b
[
r3ab2a′3(3J−4b2)−(J+2)r2a2b2a′2−ra3a′(3Jb2−4b4+(J−3)J)+2r4b4a′4

+a4((J+2)b2−2b4−J2+3J−4)
]}
,

D12 =D21 =−
2(J−2)

[
a2(J−2)+2rb(a′r−a)(ab′−ba′+2rab3M4

2 /M
2
Pl)
]

r [2rb2a′+a(J−2b2)]2
, (6.11e)

D22 =
(J−2)2a

[
2Jrab(ba′−ab′)+4b2(a2r2a′2)−2(J+2)a2b2+a2J2−4Jr2a2b4M4

2 /M
2
Pl

]
2Jb[2rb2a′+a(J−2b2)]2

.

(6.11f)

Starting from a Lagrangian of the form (6.10), we can obtain the radial speeds of

propagation for the two even modes by diagonalizing the matrix

c2
r ≡

1

a2b2
A−1B . (6.12)

Notice the extra factor of 1/(a2b2), which is needed because the (t, t) and (r, r) components

of the background metric are non-trivial. Using the particular form of the kinetic coeffi-

cients in eqs. (6.11a) and (6.11b), we find that the two eigenvalues of the matrix (6.12) are

c2
r,1 = 1 , c2

r,2 =
f − 4M4

2

f
, (6.13)

20This is not surprising given that the action (5.6) simply corresponds to a P (X,Φ) theory in the covariant

formulation, which clearly has second order equations of motion.
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where f(r) is the tadpole coefficient (2.11) with M1 ≡MPl, α ≡ 0 and c(r) = r. Thus, we

see that the last operator in (6.5) breaks the degeneracy between the two sound speeds.

Absence of superluminality as well as gradient instabilities in the radial direction then im-

plies 0 < 4M4
2 /f < 1. At this order in the derivative expansion, the sound speeds in (6.13)

can also be recovered by working in the decoupling limit, as we will show in the next sec-

tion. This is no longer true when higher derivative operators such as δgrrδK are included

in the action.

By varying the action (6.10) with respect to ψ and K one finds a system of two coupled,

linear differential equations, which can be further simplified with an appropriate rescaling

of the coordinate r and a redefinition of the field ψ and K. A discussion along this line will

be presented elsewhere, while in the following we will focus only on a very specific limit

such that the dynamics of the scalar degree of freedom decouples from the gravity sector.

6.2 Goldstone mode and decoupling limit

In constructing the unitary gauge action (2.4) we have chosen a specific foliation of the

spacetime by fixing radial diffeomorphisms in such a way to set to zero the perturbations

of the scalar field. In turn, they have shown up in the metric tensor (6.1). An alternative

but equivalent choice, which turns out to be particularly convenient to decouple scalar and

metric perturbations, can be made by restoring the full diffeomorphism invariance using the

so-called Stückelberg trick. This amounts to performing a broken radial diffeomorphism of

the form r → r + π(r, xa) in the action (2.4), and promoting the gauge parameter π to a

full-fledged field. The field π then admits a natural interpretation as the Goldstone boson

that realizes non-linearly the spontaneously broken r-translations. After restoring full diff-

invariance, one can then fix the gauge by imposing conditions on the metric perturbations

alone, as discussed below eq. (6.4).

The explicit transformation laws of the various geometric ingredients appearing in (2.4)

under a broken radial diffeomorphism are summarized in appendix C. For the purposes of

the present discussion, it is sufficient to remind the reader of the following result:

grr → grr(1 + 2π′ + π′
2
) + 2gar∂aπ + 2garπ′∂aπ + (∂aπ)(∂bπ)gab , (6.14)

Without loss of generality, in the remaining of this section we will work with a radial

coordinate such that b ≡ 1 in the background metric (2.1).

For simplicity we will restrict our attention to the leading order action (6.5). The

inclusion of higher derivative operators is discussed in appendix C.1. The tadpole coeffi-

cients (2.11) and (2.12) then reduce to

Λ(r) = −
(
c′′

c
+
a′c′

ac
+
c′2

c2
− 1

c2

)
M2

Pl f(r) =

(
a′c′

ac
− c′′

c

)
M2

Pl . (6.15)

– 30 –



J
H
E
P
0
2
(
2
0
1
9
)
1
2
7

After performing the Stückelberg transformation (6.14), the action (6.5) takes on the form

S=

∫
d4x
√
−g
[
M2

Pl

2
R−Λ(r+π)

−f(r+π)
(
grr(1+2π′+π′

2
)+2gar∂aπ+2garπ′∂aπ+(∂aπ)(∂bπ)gab

)
+M4

2 (r+π)
(
δgrr+grr(2π′+π′

2
)+2gar∂aπ+2garπ′∂aπ+(∂aπ)(∂bπ)gab

)2
]
.

(6.16)

Despite this action’s complicated appearance, one can usually find a regime — known

as decoupling limit — where the kinetic mixing between the scalar mode and the graviton

helicities becomes negligible compared to their kinetic terms. For instance, let’s consider

the mixing term 2f(r)δgrrπ′ in eq. (6.16). After introducing the canonically normalized

fields πc ≡ π
√

2f and δgrrc ≡ δgrrMPl, this terms reads
√

2f
MPl

δgrrc π
′
c. Thus, for energies above

Emix ≡
√

2f
MPl

it can be safely neglected compared to the kinetic terms for δgµνc and πc.
21 As

a result, in this regime one study the perturbations δgµν and π separately. Focusing on

the latter, we set the metric to its background value (2.1) to obtain the following quadratic

action for π:

S(2)
π =

∫
dtdrdΩ ac2

{[
∂r
(
ac2f ′

)
ac2

− (Λ′′ + f ′′)

2

]
π2 −

(
f − 4M4

2

)
π′

2 − f(∂aπ)(∂aπ)

}
.

(6.17)

The sound speeds of π in the angular and radial directions can be immediately read off

from (6.17):

c2
π,r =

f − 4M4
2

f
, c2

π,Ω = 1 . (6.18)

As anticipated, c2
π,r coincides with one of the two eigenvalues found in (6.13).

In the usual covariant language, the theory described by the action (6.5) corresponds

to a P (X,Φ)-theory. It is a straightforward exercise to show that the action (6.17) can also

be obtained from the Lagrangian L = P (X,Φ) by expanding Φ = Φ̄ + δΦ. The relation

between the Stückelberg field π and the scalar fluctuation δΦ is given by the equation

Φ̄(r + π) = Φ̄(r) + δΦ(r, xa). In particular, the tadpole conditions (6.15) reduce to

Λ ≡ −P +XPX , f ≡ −XPX , M4
2 ≡

1

2
X2PXX . (6.19)

After expanding the action (6.16) in powers of π, the linear term vanishes because it is

proportional to the background equation of motion for Φ, which in light of the results (6.19)

reads:
2

ac2
∂r
(
ac2f

)
− 2fΦ̄′′

Φ̄′
+ P,ΦΦ̄′ = 0 . (6.20)

Quite remarkably, if the theory is shift symmetric (i.e. P,Φ = 0), the equation (6.20)

can be solved analytically irrespective of the functional form of P (X). Indeed, integrating

21For simplicity we do not distinguish between energy and momentum scales. Since, strictly speaking,

this is truly legitimate only for luminal propagation, we will tacitly assume here that the speed of sound is

not too small.
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twice eq. (6.20) with respect to r, one finds

Φ̄(r) = Φ0 + Φ1

∫ r

dr̃ a(r̃)c2(r̃)f(r̃) , (6.21)

where Φ0 and Φ1 are arbitrary integration constants, and f is given by eq. (6.15).22 This

occurs because, for shift symmetric theories, the background values of P and all its deriva-

tives can be unambiguously fixed in terms of the background metric only [34].

7 Outlook

The breakthrough detection of gravitational waves from binary black hole or neutron star

mergers presents us with the opportunity to test gravity in a new regime. Although GR

with a cosmological constant (CC) seems so far to provide the correct description of grav-

itational interactions at long distances, the lack of a plausible field theory mechanism for

the smallness of the CC could be an indication of additional degrees of freedom in the

gravitational sector. It has even been recently conjectured that, if string theory is the

correct UV completion of gravity, the present accelerated expansion of the universe cannot

be the result of a positive cosmological constant [67], thus suggesting that additional dark

energy fields must be present.

The new observational window opened up by gravitational waves could potentially

uncover, or at the very least constrain, the existence of this additional sector. A promising

observable is the spectrum of the QNMs emitted by the BH remnant during the ringdown

phase of a coalescence. The presence of additional degrees of freedom can in fact modify the

frequencies compared to the predictions of GR, depending on the additional interactions.

In the absence of a ‘best motivated’ proposal for the dynamics of the new sector, however,

the best way to characterize how different models affect the QNMs is to follow an EFT

approach.

In this paper we have made a first step towards constraining in a model-independent

way modifications of GR. We focused our attention on alternative theories of gravity that

satisfy two main assumptions: i) include one additional light scalar degree of freedom be-

sides the graviton, and ii) admit BH solutions with a scalar hair. The second assumption

is crucial to generate a significant (and hopefully testable) departure from the QNM spec-

trum predicted by GR. In fact, without a scalar hair it can be shown that, at second order

in derivatives, the GR frequencies are always a subset of the QNM spectrum of black hole

solutions in scalar-tensor theories [43].

Based on these assumptions, we derived the most general EFT up to quadratic order

in perturbations around static and spherically symmetric backgrounds with a scalar hair.

To constrain the coefficients in the effective Lagrangian it is necessary to measure the fre-

quencies of at least two QNMs. Such a result is presently not achievable at LIGO/Virgo,

22We remind that the analogue for FLRW backgrounds is (see e.g. [34])

Φ̄(t) = Φ0 + Φ1

∫ t

dt̃ a3(t̃)Ḣ(t̃) .
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but should be within reach when the upgraded detectors will reach design sensitivity, and

certainly with third-generation or space-based detectors (for a review on BH spectroscopy

prospects see [7] and references therein). Such experiments will be able to probe quasi-

normal modes with higher `, for which the WKB approximation employed in this paper is

expected to perform even better. In principle, there exist other ways, which do not rely on

the ringdown phase, to obtain independent bounds on the EFT parameters, e.g. the one

given by the study of dissipative effects in the form of dipole radiation during the inspiral

stage [68]. However, this would deserve a separate discussion, beyond the purposes of the

present work, and is left for the future.

To make contact with actual observations there are still a few steps missing. An

important issue that should be addressed in full generality is the coupling to matter fields.

Our calculations for both even and odd sectors are done in the frame where the M1(r) =

MPl (the so called Einstein frame). The question is whether/how matter fields, for instance

the LIGO mirrors, are coupled to the scalar field Φ in addition to the expected coupling to

the Einstein frame metric. The observational implications fall into two classes depending

on this coupling:

• If the scalar-matter coupling is absent or very weak, only the tensor quasi-normal

modes would be observed. The scalar could still indirectly affected the observational

signals through the deviation in the tensor spectrum from GR, and through the

breaking of isospectrality between even and odd modes.

• If the scalar-matter coupling is at gravitational strength or larger, the most prominent

observational signal would be the scalar mode itself — this is the extra mode in

the even sector. It is distinguished from the tensor modes not only in terms of its

spectrum, but also in terms of how it affects the detectors. Interferometric detectors

with different orientations can be combined to tell apart scalar from tensor modes.

Of course, the scalar could also make its presence known through a deviation of the

tensor spectrum from GR, and through the breaking of isospectrality.

Another important issue to address is that the EFT for perturbations must be gener-

alized from static backgrounds to spinning ones. The reduced number of isometries of the

background will translate into a larger number of operators in the action and, therefore, of

free parameters to be constrained by observations.

The number of independent operators can be reduced, even in the case of static back-

grounds, if one is willing to make additional assumptions about the underlying scalar-tensor

theory. In the present paper, we have included in the effective action all operators com-

patible with the symmetries that contribute at quadratic order and contain at most two

derivatives. Some of these operators are actually generated by terms in the covariant

scalar-tensor theory that depends on second derivative of the scalar field. This can lead

to a much richer phenomenology, but at the same time it is potentially dangerous because

it can propagate an additional degree of freedom giving rise to instabilities. Additional

relations on the coefficients can be enforced to prevent its appearance, extending what is

already known in the case of time dependent backgrounds [51]. Further conditions can be
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derived by imposing additional symmetries (e.g. shift symmetry on the scalar [34]), or by

considering positivity constraints that follow from unitarity and analyticity of scattering

amplitudes (as was done for instance in the case of inflation in [69]). All these topics will

be discussed elsewhere.

To conclude, we should mention that the formalism developed in this paper lends itself

also to a few more formal applications. First, because our effective Lagrangian is solely de-

termined by the background isometries, it can also be used to describe perturbations around

metrics other than black holes, provided they are static and spherically symmetric. For in-

stance, our approach can be used to investigate the stability of wormholes in theories with

a scalar field [70]. It can also offer a different perspective on the (long) list of no-hair the-

orems, allowing to characterize the conditions for hairy BHs in a more model independent

way. The formal applications of this approach will be discussed in a companion paper [71].
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A Construction of the unitary gauge action

In this appendix we present the construction of the effective theory for perturbations in

the unitary gauge, defined by δΦ ≡ 0. The breaking of radial diffeomorphism invariance

induced by δΦ ≡ 0 makes a radial foliation more natural with respect to the standard time-

foliation of the ADM decomposition: in the following, we will introduce the corresponding

geometric ingredients and derive analogue equations to the standard ADM case.

A.1 Notation and radial foliation

We start introducing a foliation of the spacetime manifold defined by the family of hyper-

surfaces that satisfy Φ = constant. The orthogonal unit vector is defined by

nµ ≡ ∇µΦ(x)√
∇µΦ∇µΦ

, (A.1)

satisfying nµn
µ = 1. In analogy with the ADM decomposition, the metric can be written as

ds2 = N2dr2 + hab(dx
a +Nadr)(dxb +N bdr) , (A.2)

where hµν ≡ gµν −nµnν is the induced metric, while N and Na are the lapse and the shift

respectively. In this notation, the metric tensor and its inverse read

gµν =

(
hab Na

Nb N
2 +N cNc

)
, gµν =

(
hab +N−2NaN b −N−2Na

−N−2N b N−2

)
, (A.3)
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where the Latin indices a, b, c . . . are used for temporal and angular coordinates:

{a, b, c . . .} = {t, θ, φ}. The unitary gauge is fixed by requiring that constant-r hypersur-

faces coincide with the uniform scalar field hypersurfaces, i.e. δΦ(xa, r) ≡ 0. With this

choice, nr = N and na = 0. Therefore, gra = hra = Na and hrr = NaNa. By construction,

the following orthogonality conditions hold:

hµνn
ν = 0 , nµ∇νnµ = 0 . (A.4)

Covariant derivatives acting on the (2 + 1)-dimensional hypersurface can be defined in the

standard way as

DaVb = hµah
ν
b∇µVν , (A.5)

for some generic vector Vµ. Moreover, the extrinsic curvature can be constructed by

projecting on the hypersurface as

Kµν = hαµh
β
ν∇αnβ = hαµ∇αnν = ∇µnν − nαnµ∇αnν . (A.6)

In particular, the covariant temporal and angular components of the extrinsic curvature

can be conveniently written also as

Kab = ∇anb = −NΓrab =
1

2N
(∂rhab −DaNb −DaNb) . (A.7)

A.2 Gauss-Codazzi equation

The (2 + 1)-dimensional Riemann tensor is defined in the standard way as

− R̂αβµνV α = DµDνVβ −DνDµVβ . (A.8)

After some lengthy computation, one can derive the Gauss-Codazzi equation

hτµh
ρ
νh

σ
βRαστρ = R̂αβµν +KµβKνα −KνβKµα . (A.9)

Contracting both sides of (A.9) with the full metric gµαgνβ and after some manipulations,

one finds

R = R̂−KµνK
µν +K2 − 2∇µ(Knµ − nν∇νnµ) , (A.10)

which relates the full Ricci scalar R to the intrinsic curvature R̂. As expected, formally the

only difference with respect to the standard ADM decomposition based on a time foliation

consists in some signs.

A.3 Effective theory in unitary gauge

In parallel with [38], one can write the most general Lagrangian in unitary gauge by requir-

ing invariance only under the residual (temporal and angular) diffeomorphisms. Therefore,

besides the standard Riemann tensor, covariant derivatives and contractions thereof, one

can make use of additional building blocks consisting in: explicit functions of r; operators

with free r-upper indices, such as grr and Rrr; the extrinsic curvature Kµν . Notice that,

because of the Gauss-Codazzi relation (A.9), (3 + 1)-dimensional objects and their pro-

jected versions are not independent. Therefore, one can forget about the induced Riemann
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R̂µναβ and contractions thereof in the Lagrangian. Moreover, for the same reason, one can

also avoid the use of the induced metric and (3 + 1)-dimensional covariant derivatives.

As a result, the most general action in the unitary gauge δΦ ≡ 0 takes on the form

S =

∫
d4x
√
−gL

(
gµν , ε

µναβ , Rµναβ , g
rr,Kµν ,∇µ; r

)
. (A.11)

A.3.1 Effective action for perturbations

The result (A.11) represents the most general theory that is compatible with the residual

symmetries after fixing the gauge δΦ ≡ 0. The logic underlying the construction of the

effective theory for perturbations closely follows the one of [38, 48], but the result turns

out to differ considerably in a few aspects, as already discussed in section 2. Indeed, the

different degree of symmetry of the background (2.1) with respect to the case of FLRW

cosmologies crucially affects both the number of independent operators in the EFT for

perturbations and their transformation properties under residual (temporal and angular)

diffeomorphisms. In the following, we will explicitly construct the EFT (2.4) and make

such differences manifest. Let us start with the tadpole Lagrangian.

In full generality, up to linear order in perturbations, the effective theory contains the

following tadpoles:

Stadpole =

∫
d4x
√
−g
[
−Λ(r)− f(r)grr + κµν(r)Kµν + ξµναβ(r)Rµναβ

]
, (A.12)

one for each building block in (A.11). Λ(r), f(r), κµν(r) and ξµναβ(r) are arbitrary func-

tions of the background metric and its derivatives.23 If κµν(r) and ξµναβ(r) were propor-

tional the background metric only, then the last two tadpoles in (A.12) would simply be

κ(r)K and ξ(r)R and, getting rid of K = ∇µnµ by an integration by parts, one would con-

clude that (A.12) contains only 3 free functions. By contrast, since in general ∂rḡab��∝ ḡab,
the matrices κµν(r) and ξµναβ(r) have in principle many more independent entries corre-

sponding to additional free functions in the theory (A.12). In the following, we are going to

make this statement more quantitative, in particular we are going to show that eventually

only 4 are actually independent (i.e. κµν(r) and ξµναβ(r) contain only 2 free functions, the

other 2 being Λ(r) and f(r)).

Let us start recalling that the orthogonality condition Kµνnµ = 0 allows to use the

induced metric to raise and lower indices in the tadpole κµν(r)Kµν , to be read therefore

as κab(r)Kab. Since the matrix κab(r) is a function of background quantities, it must carry

the same symmetries of h̄ab, meaning that it has to be a diagonal matrix with only two

independent entries: κab ≡ diag(κtt, κθθ, κθθ sin2 θ). As a result, the tadpole κab(r)Kab can

be explicitly written as

κab(r)Kab = κtt(r)Ktt + κθθ(r)

(
Kθθ +

Kφφ

sin2 θ

)
, (A.13)

where κtt(r) and κθθ(r) are the two free functions of r. Furthermore, since the trace of

the extrinsic curvature can always be recast in terms of Λ(r) and f(r)grr up to a total

23The Einstein Hilbert term simply corresponds to taking
M2

Pl
2
ḡµαḡνβ in ξµναβ(r).
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derivative by an integration by parts (K = ∇µnµ), we are free to add a term of the type

−κθθ(r)c2(r)habKab to the Lagrangian (A.12) in order to cancel the last term in (A.13).

This means that κab(r)Kab contains actually only one free independent function.

Let us now focus on the last tadpole ξµναβ(r)Rµναβ . Again, since ξµναβ(r) is a back-

ground tensor, because of rotational invariance, the angular components are not indepen-

dent from each other. In addition, taking into account the symmetry structure of the

Riemann tensor, one infers that it contains in principle 8 arbitrary functions. Let us start

analyzing those corresponding to the coefficients of

Rrtrt , (Rθrθr +Rφrφr) , (Rθtθt +Rφtφt) , Rθφθφ . (A.14)

First of all, notice that the term involving Rrtrt can be always eliminated in favor of the

other tadpoles. Indeed, consider the operator KµνR
αµβνnαnβ , which in unitary gauge reads

(grr)−1KµνR
rµrν . Using the definition of Riemann tensor and eq. (A.6),

KµνR
αµβνnαnβ = −Kµνnβ

(
∇β∇νnµ −∇ν∇βnµ

)
(A.15)

= −Kµνnβ [∇βKνµ +∇β (nαnν∇αnµ)−∇νKβµ −∇ν (nαnβ∇αnµ)]

= −Kµν
[
nβ∇βKνµ + nαnβ∇αnµ∇βnν − nβ∇νKβµ −∇ν (nα∇αnµ)

]
.

Therefore, up to integrations by parts, it can be re-written in terms of the tadpoles f(r)grr,

Λ(r) and κµν(r)Kµν . This means that we can forget about the first term in (A.14) in our

counting of independent functions. Moreover, taking the trace, the last three combinations

in (A.14) can be all eliminated in favor of the Ricci tensor as,24

Rrr = Rtrtr + (Rθrθr +Rφrφr) , (A.16)

Rtt = Rrtrt + (Rθtθt +Rφtφt) , (A.17)

Rθθ +
Rφφ

sin2 θ
= − c

2

a2
(Rθtθt +Rφtφt) + c2(Rθrθr +Rφrφr) + 2Rφθφθ . (A.18)

Therefore, in full generality the tadpole ξµναβ(r)Rµναβ can be always thought of as being

a sum of the four remaining building blocks

R , Rrr , Rtt ,

(
Rθθ +

Rφφ

sin2 θ

)
, (A.19)

with some arbitrary coefficients. Whether these are all independent or not is what we are

going to show now.

First, it is clear that the trace condition R = Rtt+R
r
r+(Rθθ+R

φ
φ) allows immediately

to eliminate one of the last three terms in (A.19), say Rtt, with the only effect of redefining

the coefficients of the others. Second, consider the identity

RµνK
µν = Rµν∇µnν −

1

2
Rµνnα∇α(nµnν) . (A.20)

24Since we are interested in terms that are linear in perturbations, we shall use the background metric

to raise and lower indices.
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After simple integrations by parts, up to linear order in perturbations RµνK
µν ⊇ grr, R,

Rrr, K only. Thus, one is always free to add to the Lagrangian the operator RµνK
µν with

some proper coefficient in such a way to get rid of also (Rθθ + Rφφ) in (A.19), in analogy

with the discussion around (A.15). Finally, the identity

(grr)−1Rrr = Rµνn
µnν = K2 −KµνK

µν +∇µ (nν∇νnµ − nµK) , (A.21)

which simply follows from the definition of the (3 + 1)-dimensional Riemann tensor, allows

to re-express also Rrr as a function of the other tadpole operators.

In conclusion, the action (A.12) contains in general 4 independent tadpoles:

Stadpole =

∫
d4x
√
−g
[

1

2
M2

1 (r)R− Λ(r)− f(r)grr − α(r)K̄µνK
µν

]
, (A.22)

where M2
1 (r), Λ(r), f(r) and α(r) are the corresponding coefficients, some of which are to

be fixed by Einstein equations.

A.3.2 Quadratic action for perturbations

In the previous section, we have shown that the only independent operators that enter up

to linear order in perturbations are those in (A.22). The next step is all possible operators

at quadratic order that are compatible with the symmetries of the system. In the spirit of

an effective description, we will classify the operators in terms of the number of derivatives.

Zero-th order in derivatives. At the zero-th order in derivatives, the only quadratic

operator in perturbations is given by M4
2 (r)(δgrr)2, where the coefficient M4

2 (r) is in prin-

ciple an arbitrary function of r of dimensions 4 in energy to be fixed experimentally.

First order in derivatives. At the first order in derivatives, the only non-trivial oper-

ators we can add are of the form

fab(r)δg
rrδKab , (A.23)

where fab is an r-dependent matrix which must have the same symmetries of the back-

ground metric (2.1). In other words, it is diagonal and with only two free entries:

fab(r) ≡

(
f1(r)

f2(r)γij

)
, γij ≡

(
1

sin2 θ

)
, {i, j} = {θ, φ} , (A.24)

for some arbitrary f1(r) and f2(r). As a result, at first order in derivatives there are only

two independent operators in the effective theories, that we choose to write as

M3
3 (r)δgrrδK , M2

4 (r)K̄abδg
rrδKab . (A.25)
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Second order in derivatives. At the second order in the number of derivatives, we

have in principle many more independent operators allowed by symmetries. Let us start

with those involving the extrinsic curvature only, which schematically read

fabcd(r)δK
abδKcd , (A.26)

where again fabcd(r) has the same isometries of the background. Therefore, it is clear that

the only independent free functions in fabcd(r) are the coefficients of the operators

(δKtt)2, γijδK
ttδKij , (γijδK

ij)2, γijδK
tiδKtj , γijδK

jkγklδK
li . (A.27)

Let us now consider operators that involve the Riemann tensor. Analogous considerations

to eq. (A.15) suggest that we can disregard operators of the type Rrµrν . Then, we can

focus only on those where the Riemann is projected onto the (2 + 1)-hypersurface, which

can be written as

fabcd(r)δR̂
abcdδgrr . (A.28)

Because of the background isometries, only 2 are independent:

γijδR̂
titj , γijγklδR̂

ikjl . (A.29)

Finally, one could also think of adding operators involving derivatives of δgrr: the combina-

tions allowed by the residual symmetries in the EFT are (∂µδg
rr)2, (∂rδg

rr)2, (∂rδg
rr)δK

and (∂rδg
rr)K̄abδK

ab. In general these will be associated with higher order equations of

motion. Whether this fact is related to the presence of pathologies is beyond the scope of

our work and will be discussed elsewhere.

In conclusion, at second order in perturbations there are 14 independent operators

admitted by symmetries, that we write as follows:

S(2) =

∫
d4x
√
−g
[
M4

2 (r)(δgrr)2 +M3
3 (r)δgrrδK +M2

4 (r)K̄µνδg
rrδKµν

+M2
5 (r)(∂rδg

rr)2 +M2
6 (r)(∂rδg

rr)δK +M7(r)K̄µν(∂rδg
rr)δKµν +M2

8 (r)(∂aδg
rr)2

+M2
9 (r)(δK)2 +M2

10(r)δKµνδK
µν +M11(r)K̄µνδKδK

µν +M12(r)K̄µνδK
µρδKν

ρ

+ λ(r)K̄µρK̄
ρ
ν δKδK

µν +M2
13(r)δgrrδR̂+M14(r)K̄µνδg

rrδR̂µν
]
. (A.30)

B Infinitesimal variations

In this section we derive the variations of the geometric ingredients of the radially foliated

manifold, collecting the results that have been used in the main text.

To begin with, the variation of the normal vector nµ (A.1) under an infinitesimal

transformation of the metric of the type gµν → gµν + δgµν takes on the form

δnµ = −1

2
nµnαnβδg

αβ , (B.1)

leading also to

δnµ = nνδg
µν − 1

2
nµnαnβδg

αβ . (B.2)
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Together with the orthogonality condition hµνnµ = 0, eq. (B.1) can be used to derive the

following identity:

nµδh
µν = −hµνδnµ = 0 . (B.3)

The variation δK of the trace of the extrinsic curvature can be easily computed using the

identity
1√
−g

∂µ
(√
−g Xµ

)
= ∇µXµ (B.4)

(Xµ is a generic four-vector), which follows from the relation δ
√
−g = 1

2

√
−ggµνδgµν .

Using (B.4), we can write

K = ∇µnµ =
1√
−g

∂µ
(√
−g nµ

)
. (B.5)

Then, the variation δK is easily computed as

δK =
1

2
gµνδg

µνK +∇µ
[
nνδg

µν − 1

2
nµ(nαnβ + gαβ)δgαβ

]
, (B.6)

where we have used the result (B.2).

Let us now focus on δKµν . From the definition (A.6), the variation of the extrinsic

curvature reads

δKµν = ∇µδnν − δΓρµνnρ − δnρnµ∇ρnν
− nρδnµ∇ρnν − nρnµ∇ρδnν + nρnµδΓ

σ
ρνnσ .

(B.7)

Plugging in the variation of the Christoffel symbol,

δΓρµν =
1

2
gρσ (∇µδgνσ +∇νδgµσ −∇σδgµν)

= −1

2
gρσ (gανgβσ∇µ + gαµgβσ∇ν − gαµgβν∇σ) δgαβ ,

(B.8)

it takes on the form

δKµν = −1

2
∇µ
(
nνnαnβδg

αβ
)

+
1

2
(gανnβ∇µ + gαµnβ∇ν − gαµgβνnρ∇ρ) δgαβ

− nβnµ(∇αnν)δgαβ + nαnβnµn
ρ(∇ρnν)δgαβ

+
1

2
nµn

ρ∇ρ
(
nνnαnβδg

αβ
)
− 1

2
nαnβnµ∇νδgαβ ,

(B.9)

and one can easily check that taking the trace the result (B.6) is recovered.

Finally, we calculate δR̂. Taking the variation of the trace of eq. (A.9),

δR̂ = 2hµνRµρνσδh
ρσ + hµνhρσδRµρνσ + 2KδK − 2KµνδKµν , (B.10)

where

δhµν = δgµν − nλ
(
nµδgνλ + nνδgµλ

)
+ nµnνnαnβδg

αβ (B.11)
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and

δRµρνσ = −Rβρνσgαµδgαβ + gµλ

(
∇νδΓλρσ −∇σδΓλρν

)
, (B.12)

where δΓλµν is written in eq. (B.8). Therefore, after straightforward manipulations,

δR̂ = (Rαβ − nµnνRµανβ − 3Rραnβn
ρ + 2Rµνn

µnνnαnβ) δgαβ

+ hνµh
ρσ
(
∇νδΓµρσ −∇σδΓµρν

)
+ 2KδK − 2KµνδKµν .

(B.13)

C Stückelberg trick and decoupling limit

In this appendix we collect the Stückelberg transformations that can be used to restore full

gauge invariance in the theory (A.30). Without affecting the generality of the discussion,

we will set here b ≡ 1 in the background metric (2.1).

Under a general transformation of coordinates, x→ x̃(x), the metric changes as

g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x) , g̃µν(x̃) =

∂x̃µ

∂xα
∂x̃ν

∂xβ
gαβ(x) . (C.1)

Focusing in particular on transformations that leave time and angular coordinates invariant,{
r → r̃ = r + π(xa, r) ,

xa → x̃a = xa ,
(C.2)

or, equivalently,

x̃µ(x) = xµ + π(x)δµr . (C.3)

A generic scalar function of r transforms as

F (r)→ F (r + π) = F (r) + F ′(r)π +
1

2
F ′′(r)π2 + . . . (C.4)

while

∂r → (1− π′ + π′
2
)∂r , (C.5)

∂a → (−∂aπ + π′∂aπ)∂r + ∂a . (C.6)

The transformation laws of the contravariant components of the metric take on the form

grr → grr(1 + 2π′ + π′
2
) + 2gar∂aπ + 2garπ′∂aπ + (∂aπ)(∂bπ)gab , (C.7)

gra → (1 + π′)gra + (∂bπ)gab , (C.8)

gab → gab . (C.9)

On the other hand, the Stückelberg transformations for the covariant metric can be easily

calculated by solving perturbatively in r(x̃) the equation r̃(x) = r + π(xa, r), from which

one finds r(x̃a, r̃) = r̃ − π(x̃a, r̃ − π) = r̃ − π(x̃a, r̃) + π′π(x̃a, r̃) + . . . and therefore

gra → grr
[
−∂aπ + 2π′∂aπ + . . .

]
(xa, r) + gra

[
1− π′ + π′

2
+ . . .

]
(xa, r) , (C.10)

gab → grr [∂aπ∂bπ + . . .] (xa, r) + grb
[
−∂aπ + π′∂aπ + . . .

]
(xa, r)+

+ gra
[
−∂bπ + π′∂bπ + . . .

]
(xa, r) + gab , (C.11)

grr → grr

[
1− 2π′ + 3π′

2
+ . . .

]
(xa, r) . (C.12)
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These expressions highly simplify in the decoupling limit regime. Setting the metric to its

background value (2.1), they can be assembled as

gµν →

(
ḡab (∂cπ)ḡac

(∂cπ)ḡcb ḡrr(1 + 2π′ + π′2) + (∂cπ)(∂dπ)ḡcd

)
, (C.13)

gµν →

(
ḡab + ḡrr∂aπ∂bπ ḡrr(−∂aπ + 2π′∂aπ)

ḡrr(−∂bπ + 2π′∂bπ) ḡrr(1− 2π′ + 3π′2)

)
. (C.14)

Moreover, some useful equations are:

Na = gra → −∂aπ + 2π′∂aπ +O(π3) , (C.15)

N =
1√
grr
→ 1− π′ + π′

2 − 1

2
(∂aπ)(∂bπ)ḡab +O(π3) , (C.16)

Na = −N2gra → −(1− 2π′)(∂bπ)ḡab +O(π3) , (C.17)

hab = gab − NaN b

N2
→ ḡab − (∂cπ)(∂dπ)ḡacḡbd +O(π3) , (C.18)

up to quadratic order in π. Furthermore, the (2 + 1)-dimensional Christoffel symbol

Γ̂cab =
1

2
hcd (∂ahbd + ∂bhad − ∂dhab) (C.19)

transforms as (up to first order)

Γ̂cab → Γ̄cab +
1

2
ḡcd
(
−ḡ′bd∂aπ − ḡ′ad∂bπ + ḡ′ab∂dπ

)
+O(π2) , (C.20)

where Γ̄cab is defined as the background value of Γcab,

Γ̄cab ≡
1

2
ḡcd (∂aḡbd + ∂bḡad − ∂dḡab) . (C.21)

Together with (C.15)–(C.18), eq. (C.20) can be used to compute the transformation law of

the extrinsic curvature, which up to linear order in π reads

Kab → K̄ab + D̄aD̄bπ +O(π2) , (C.22)

where D̄a is the projected covariant derivative computed on the background metric, while

taking the trace

K → K̄ + D̄aD̄
aπ +O(π2) . (C.23)

Therefore, the transformation laws for the perturbed quantities read

δKab → −K̄ ′abπ + D̄aD̄bπ +O(π2) , δK → −K̄ ′π + D̄aD̄
aπ +O(π2) . (C.24)

As already emphasized in the main text the perturbation δKab for the extrinsic curvature

does not transform as a tensor, as it is clear from the term K̄ ′ab in (C.24).
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C.1 An explicit example: the cubic Galileon

In this appendix we extend the discussion of section 6.2 of the decoupling limit in the

EFT (2.4) by including operators with one extra derivative, i.e. operators of the form

(δgrr)nδK. Up to quadratic order in the number of fields, this yields

S =

∫
d4x
√
−g
[
M2

Pl

2
R− Λ(r)− f(r)grr − α(r)K̄µνK

µν

+M4
2 (r)(δgrr)2 +M3

3 (r)δgrrδK +M2
4 (r)K̄µνδg

rrδKµν + . . .

]
. (C.25)

Let us focus for simplicity on the case of theories with α = M2
4 = 0, of which cubic

Horndeski operators are genuine examples (see appendix D.1). Using (C.24) yields the

following quadratic action for the scalar mode in the decoupling limit:

S(2)
π =

∫
d4x ac2 sin θ

{[
1

ac2
∂r
(
ac2f ′ + ac2M3

3 K̄
′)− 1

2

(
Λ′′ + f ′′

)]
π2

+

[
f − a

c2
∂r

(
c2

a
M3

3

)]
π̇2

a2
(C.26)

−
[
f − 1

a
∂r
(
aM3

3

)] [(∂θπ)2

c2
+

(∂φπ)2

c2 sin2 θ

]
−
(
f − 4M4

2

)
π′

2
}
,

where the speeds of propagation are now modified according to

c2
π,r =

f − 4M4
2

f − a
c2
∂r

(
c2

aM
3
3

) , c2
π,Ω =

f − 1
a∂r

(
aM3

3

)
f − a

c2
∂r

(
c2

aM
3
3

) . (C.27)

Notice that the operator δgrrδK is responsible for making the velocity along the angular

direction non-unitary. Furthermore, it is now instructive to consider the flat spacetime

limit of (C.26) and compare the result for instance with [72]. To this end, it is convenient

to make the field redefinition π = δΦ/Φ̄′ + . . ., which holds at the leading order. Then, in

the limit a→ 1, c→ r, K̄ → 2
r , the action (C.26) takes on the form

S(2)
ϕ =

∫
d4xac2sinθ

{[
1

r2
∂r
(
r2f ′+r2M3

3 K̄
′)− 1

2

(
Λ′′+f ′′

)
− Φ̄′2

r2
∂r

[
r2Φ̄′′

Φ̄′3
(
f−4M4

)]
−
(
f−4M4

) Φ̄′′2

Φ̄′2

]
δΦ2

Φ̄′2
(C.28)

+

[
f− 1

r2
∂r
(
r2M3

3

)] ˙δΦ
2

Φ̄′2
−
[
f−∂r

(
M3

3

)] (∂ΩδΦ)2

Φ̄′2
−
(
f−4M4

) δΦ′2
Φ̄′2

}
.

In order to make a comparison with [72], we take the cubic galileon Lagrangian [52] (see

also appendix D.1)

L = g2(∂Φ)2 + g3(∂Φ)2�Φ = g2X +
2g3

3
X3/2K , (C.29)
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where g2 and g3 are generic coupling constants. Therefore, expanding the metric in fluc-

tuations in the unitary gauge δΦ = 0 and comparing with (C.26) yields

M4(r) =
g3Φ̄′2

4

(
Φ̄′′ + Φ̄′K̄

)
, M3

3 (r) = g3Φ̄′3 , (C.30)

f = −g2Φ̄′2 + g3Φ̄′2
(
Φ̄′′ − Φ̄′K̄

)
, Λ = g3Φ̄′2

(
Φ̄′′ + Φ̄′K̄

)
. (C.31)

Using the expressions (C.30)–(C.31) and setting g2 = −3, g3 = −1, it is straightforward

to check that (C.28) coincides with the quadratic action of [72]. In particular, one can show

that the mass of δΦ in (C.28) is zero on the background equations of motion, as it should

be since the theory (C.29) we started with is shift invariant.

D Cubic and quartic Horndeski in unitary gauge

The construction of the effective theory (2.4) is based only on the breaking pattern of

Poincaré down to time translations and spatial rotations. Additional symmetries (e.g. [34])

or the requirement of not having any unwanted ghost like degree of freedom on top of the

scalar and tensor modes (see e.g. [51] for a discussion in the context of FLRW backgrounds),

will further constrain the r-dependent coefficients in (2.4). In addition, one could also ex-

pect more constraints coming from causality and analyticity [69]. Postponing the study of

all these points to future work, in this appendix we confine ourselves to show which kinds of

operators are generated in the specific class of Horndeski theories [53], which besides of hav-

ing second order equations of motion [54] are known to be protected against large quantum

corrections [73, 74]. As an example, we will focus on the cubic Horndeski and, as a prototype

of theory that yields the additional α-tadpole in (2.4), we will discuss the quartic Horndeski.

Let us start from the definition (A.1) of the unit vector perpendicular to the hyper-

surface. Then, differentiating and using eq. (A.6),

∇µ∇νΦ =
√
X∇µnν +

nν∇µX
2
√
X

=
√
X (Kµν + nαnµ∇αnν) +

nν∇µX
2
√
X

, (D.1)

where X ≡ ∇µΦ∇µΦ. On the other hand,

√
Xnνn

α∇αnµ +
1

2X
∇αΦ∇αXnµnν

= − 1

2X
nνn

α∇αX∇µΦ + nνn
α∇α∇µΦ +

1

2X
∇αΦ∇αXnµnν

=
1

2
√
X
nν∇µ (∇αΦ∇αΦ) . (D.2)

Eq. (D.2) can be used to re-write eq. (D.1) as [75, 76]

∇µ∇νΦ =
√
X (Kµν + nαnµ∇αnν + nαnν∇αnµ) +

1

2X
∇αΦ∇αXnµnν . (D.3)

D.1 Cubic Horndeski

Let us focus on the cubic Horndeski Lagrangian

LH3 = G3(Φ, X)�Φ , (D.4)
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where G3 is an arbitrary function of X ≡ ∇µΦ∇µΦ and Φ. Taking the trace of eq. (D.1),

or equivalently eq. (D.3),

�Φ =
√
XK +

∇µΦ∇µX
2X

, (D.5)

and defining F3 such that [75]

G3 = F3 + 2XF3X , (D.6)

after an integration by parts, the cubic Horndeski Lagrangian (D.4) can be written as

follows:

LH3 = −F3X∇µX∇µΦ−XF3Φ + 2XF3X

(√
XK +

∇µΦ∇µX
2X

)
= 2X3/2F3XK −XF3Φ .

(D.7)

Solving the differential equation (D.6) yields

F3(X) =
1√
X

∫
dX

G3(X)

2
√
X

(D.8)

and

2X3/2F3X =
√
XG3(X)−

∫
dX

G3(X)

2
√
X

=

∫
dX
√
X G3X(X) . (D.9)

D.2 Quartic Horndeski

Now we are going to rewrite the quartic Horndeski Lagrangian

LH4 = G4(Φ, X)R− 2G4X(Φ, X)
[
(�Φ)2 − (∇µ∇νΦ)2

]
(D.10)

in terms of the geometric quantities of the radially foliated spacetime. Using the second

identity in (A.4) and the orthogonality condition Kµνn
ν = 0, we can write

∇µ∇νΦ∇µ∇νΦ = X
(
KµνK

µν + 2nαnβ∇αnµ∇βnµ
)

+
1

4X2
(∇αΦ∇αX)2 . (D.11)

Then, following [75], the Lagrangian (D.10) takes on the form

LH4 = G4R− 2G4X

[(√
XK +

∇µΦ∇µX
2X

)2

−X
(
KµνK

µν + 2nαnβ∇αnµ∇βnµ
)
− 1

4X2
(∇αΦ∇αX)2

]
. (D.12)

Now, using that

nα∇αnµ =
∇αΦ√
X
∇α
∇µΦ√
X

=
∇αΦ∇µ∇αΦ

X
− ∇

αΦ∇µΦ∇αX
2X2

=
∇µX
2X

− nαnµ∇αX
2X

=
1

2X

(
gαµ − nαnµ

)
∇αX (D.13)

and that nµ∇βnµ = 0, eq. (D.12) becomes

LH4 = G4R− 2XG4X

(
K2 −KµνK

µν
)
− 2G4X∇µX

(
Knµ − nβ∇βnµ

)
. (D.14)
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Furthermore, after some final straightforward manipulations,

−2G4X∇µX
(
Knµ − nβ∇βnµ

)
= −2

(
∇µG4 −

√
XG4Φnµ

)(
Knµ − nβ∇βnµ

)
= 2G4∇µ

(
Knµ − nβ∇βnµ

)
+ 2
√
XG4ΦK

= G4

(
R̂−KαβK

αβ +K2 −R
)

+ 2
√
XG4ΦK , (D.15)

where we have integrated by parts and used the Gauss-Codazzi (A.10), and substituting

in (D.14), we find

LH4 = G4R̂+ (G4 − 2XG4X)
(
K2 −KµνK

µν
)

+ 2
√
XG4ΦK . (D.16)

E Transformation to Schrödinger-like form

In this section we summarise the procedure which can be systematically followed in order

to transform a second order differential equation

c1(r)Q′′(r) + 2c2(r)Q′(r) +
[
c3(r)ω2 + c4(r)

]
Q(r) = 0 (E.1)

into a Schrödinger-like equation of the form

Q′′(r̃) +
[
ω2 + V (r̃)

]
Q(r̃) = 0 . (E.2)

Without violating the generality of the argument, we are going to set c3(r) = 1. This can

be always achieved multiplying (E.2) by an overall factor c−1
3 (r) which effectively coincide

with redefining ci(r)→ ci(r)/c3(r). Then, by the following coordinate redefinition

r → r̃(r) =

∫ r

rc

dl√
c1(l)

s.t.
d

dr̃
=
√

c1(r)
d

dr
(E.3)

and variable redefinition

Q(r)→ Q(r̃(r)) = exp

[∫ r

rc

(
c2(l)

c1(l)
− c′1(l)

4c1(l)

)
dl

]
Q(r) (E.4)

one obtains (E.2) with the potential:

V (r̃(r)) =
c′′1(r)

4
+

c2(r)c′1(r)

c1(r)
− 3

16

c′1(r)2

c1(r)
− c2(r)2

c1(r)
− c′2(r) + c4(r) . (E.5)

F The Regge-Wheeler equations

The Regge-Wheeler equations, in the form given by Zerilli [77], are:

h0
′′ − ḣ1

′ − 2

r
ḣ1 +

(
4GM
r2

− `(`+ 1)

r

)
h0

r − 2GM
= 0 (F.1)

ḧ1 − ḣ0
′
+

2

r
ḣ0 + (`− 1)(`+ 2)(r − 2GM)

h1

r3
= 0 (F.2)(

1− 2GM
r

)
h1
′ −
(

1− 2GM
r

)−1

ḣ0 +
2GM
r2

h1 = 0 (F.3)

They describe the GR dynamics of small perturbations around a Schwarzschild background.

Note that the Regge-Wheeler gauge has been chosen.

– 46 –



J
H
E
P
0
2
(
2
0
1
9
)
1
2
7

G Isolating the gravitational waves — the large radius limit

The GR equations governing the evolution of perturbations around a Schwarzschild black

hole were derived by [47, 65]. In this appendix, we wish to describe how the equations can

be understood in a heuristic way. For simplicity, we focus on the odd perturbations.

In the odd sector, the only gauge transformation takes the form x̃µ = xµ + ξµ, with

ξµ = (0, 0, εi
j∂jδ) , (G.1)

under which

h̃0 = h0 + δ̇ , h̃1 = h1 + δ′ − 2c′

c
δ , h̃2 = h2 − 2δ , (G.2)

where ˙( ) ≡ ∂t( ) and ( )′ ≡ ∂r( ). The Regge-Wheeler gauge corresponds to choosing

h̃2 = 0:

h0
RW = h0 + δ̇ , h1

RW = h1 + δ′ − 2c′

c
δ , 0 = h2

RW = h2 − 2δ , (G.3)

To isolate the gravitational waves, we find it more transparent to keep h2 around, i.e. to

set δ = h2/2 in the expressions for h0
RW and h1

RW. Further simplification is obtained by

taking the large r limit, which includes ∂r fluc. � fluc./r — with the understanding that

∂r pulls out a factor of the momentum, and likewise for ∂t. For instance δ′ � c′δ/c.

We substitute the above expressions for h0
RW and h1

RW in terms of h0, h1 and h2 into

the standard Regge-Wheeler equations [47, 77], which for completeness are summarized in

appendix F. After taking the large r limit, these equations reduce to

h0
′′ − ḣ1

′ ' 0 from eq. (F.1) (G.4a)

ḧ1 − ḣ0
′ ' 0 from eq. (F.2) (G.4b)

(−ḣ0 + h1
′) +

1

2
(−ḧ2 + h2

′′) ' 0 from eq. (F.3) . (G.4c)

These expressions make it manifest that h2 obeys a wave equation in the large r limit.

Interestingly, the wave equation lives in the Regge-Wheeler equation with the lowest num-

ber of derivatives (no more than one derivative on h1 or h0). This large r limit of the

Regge-Wheeler equations is useful for seeing where the gravitational waves live, but not

helpful for deducing the quasi-normal spectrum. The dynamics of the modes at small r is

important for determining the latter.

To make progress with the finite r form of the Regge-Wheeler equations, we need to

identify the variable that contains the gravitational wave degree of freedom. Both h0
RW

and h1
RW contains h2, which is what we are ultimately interested in. However, because h0

transforms by a time derivative of the gauge parameter (δ̇), it has no conjugate momentum.

Thus, h1 is the more promising quantity to focus on in terms of obtaining an equation with

the desired second derivative (in time and radius) structure. Our goal therefore reduces to

finding a second order equation of motion for h1
RW out of the Regge-Wheeler equations.
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This procedure can in turn be approached in two different ways, recalling that h1
RW =

h1 + h2
′/2 − h2c

′/c. Since h2 is the gravitational wave of interest, one could choose the

h1 = 0 gauge such that the equation for h1
RW becomes purely an equation for h2. A

more sophisticated viewpoint is to note that the combination h1 + h2
′/2− h2c

′/c is gauge

invariant (terms involving δ cancel under a gauge transformation). This is the gauge

invariant combination that contains the gravitational wave degree of freedom; obtaining

a single equation governing its evolution is precisely what we want. Contrast this with

the other gauge invariant combination involving h0 and h1: that removes the gravitational

wave degree of freedom and is therefore not what we want to focus on. (Another useful

combination is h0 + ḣ2/2.)

Now, there are three Regge-Wheeler equations. Because the gravitational wave of

interest lives in eq. (F.3), this provides a natural starting point which gives an expression

for ḣ0
RW

(adopting the standard Schwarzschild form for a, b, c in the background metric):

ḣ0
RW

= (1− 2GM/r)∂r([1− 2GM/r]h1
RW) . (G.5)

This then motivates the use of eq. (F.2) because it depends on ḣ0
RW

and its derivative,

but not h0
RW. Thus, substituting the above into eq. (F.2):

ḧ1
RW − ∂r

([
1− 2GM

r

]
∂r

([
1− 2GM

r

]
h1

RW

))
(G.6)

+
2

r

(
1− 2GM

r

)
∂r

([
1− 2GM

r

]
h1

RW

)
+

(`− 1)(`+ 2)

r2

(
1− 2GM

r

)
h1

RW = 0 .

Eq. (G.6) lends itself to further simplification: introducing the tortoise coordinate r̃ defined

by

∂r̃ ≡ (1− 2GM/r)∂r , (G.7)

and multiplying h1
RW by a suitable function of r to remove the first derivative term (see

appendix E). Thus one obtains the standard Schrödinger-like equation for determining the

spectrum of odd quasi-normal modes of a Schwarzschild black hole in GR (see e.g. [78]):[
d2

dr̃2
+ ω2 −

(
1− 2GM

r

)(
`(`+ 1)

r2
− 6GM

r3

)][(
1− 2GM

r

)
h1

r

]
= 0 . (G.8)

The even sector could be treated in a similar way, though it is considerably more

complex.

H Bianchi identities

The Bianchi identities tell us that not all equations of motion are independent. In manipu-

lating the equations that govern black hole perturbations which are often quite complicated,

it is useful to know how the equations of motion are related. We give the relations here.

Under a gauge transformation x̃µ = xµ − ξµ, the metric transforms according to

δgµν = ξγ∂γgµν + gγµ∂νξ
γ + gγν∂µξ

γ , (H.1)

– 48 –



J
H
E
P
0
2
(
2
0
1
9
)
1
2
7

and the scalar field transforms according to

δΦ = ξγ∂γΦ . (H.2)

Using the fact that ξµ is an arbitrary function of space and time, it can be shown,

using arguments along the lines of those for proving Noether’s second theorem, that the

equations of motion are related by:

0 =
δS

δΦ
∂γΦ +

δS

δgµν
∂γgµν − 2∂µ

(
δS

δgµν
gγν

)
, (H.3)

where γ = 0, 1, 2, 3 for four identities. The form of the identities are fully general. When

the metric and scalar are separated into background and fluctuations, and the background

equations of motion are enforced, the Bianchi identities yield the following relations to first

order in perturbations:

0 =
δS

δ(δΦ)
∂γΦ̄ +

δS

δ(δgµν)
∂γ ḡµν − 2∂µ

(
δS

δ(δgµν)
ḡγν

)
, (H.4)

Note that in the above formulation, it is important that gauge-fixing is performed after

the equations of motion are written down. For instance, suppose one chooses a gauge in

which the spatial part of the metric is diagonal; it is important the equations of motion

that followed from varying the off-diagonal parts of the spatial metric are also used.
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