
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358945299

Renewable Energy System Controlled by Open-Source Tools and Digital Twin

Model: Zero Energy Port Area in Italy

Article  in  Energies · March 2022

DOI: 10.3390/en15051817

CITATIONS

0
READS

43

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Historical and traditional buildings energy retrofitting View project

ENERSELVES Interreg Europe Horizon 2020 View project

Sofia Agostinelli

Sapienza University of Rome

27 PUBLICATIONS   20 CITATIONS   

SEE PROFILE

Fabrizio Cumo

Sapienza University of Rome

97 PUBLICATIONS   1,148 CITATIONS   

SEE PROFILE

Meysam Majidi Nezhad

Sapienza University of Rome

47 PUBLICATIONS   359 CITATIONS   

SEE PROFILE

Giuseppe Piras

Sapienza University of Rome

38 PUBLICATIONS   230 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Meysam Majidi Nezhad on 06 March 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/358945299_Renewable_Energy_System_Controlled_by_Open-Source_Tools_and_Digital_Twin_Model_Zero_Energy_Port_Area_in_Italy?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/358945299_Renewable_Energy_System_Controlled_by_Open-Source_Tools_and_Digital_Twin_Model_Zero_Energy_Port_Area_in_Italy?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Historical-and-traditional-buildings-energy-retrofitting?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ENERSELVES-Interreg-Europe-Horizon-2020?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sofia-Agostinelli?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sofia-Agostinelli?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sapienza-University-of-Rome?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sofia-Agostinelli?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio-Cumo?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio-Cumo?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sapienza-University-of-Rome?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio-Cumo?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Meysam-Majidi-Nezhad?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Meysam-Majidi-Nezhad?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sapienza-University-of-Rome?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Meysam-Majidi-Nezhad?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giuseppe-Piras?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giuseppe-Piras?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sapienza-University-of-Rome?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giuseppe-Piras?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Meysam-Majidi-Nezhad?enrichId=rgreq-713aa057ec531b9d278105a54ed8d268-XXX&enrichSource=Y292ZXJQYWdlOzM1ODk0NTI5OTtBUzoxMTMwNjU4MTc3MDA3NjE4QDE2NDY1ODEzMjQxMjY%3D&el=1_x_10&_esc=publicationCoverPdf


����������
�������

Citation: Agostinelli, S.; Cumo, F.;

Nezhad, M.M.; Orsini, G.; Piras, G.

Renewable Energy System

Controlled by Open-Source Tools and

Digital Twin Model: Zero Energy

Port Area in Italy. Energies 2022, 15,

1817. https://doi.org/10.3390/

en15051817

Academic Editors: Andrea Mauri,

Benedetto Nastasi and Gerardo

Maria Mauro

Received: 10 January 2022

Accepted: 25 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Renewable Energy System Controlled by Open-Source Tools
and Digital Twin Model: Zero Energy Port Area in Italy
Sofia Agostinelli 1 , Fabrizio Cumo 2,*, Meysam Majidi Nezhad 1, Giuseppe Orsini 1 and Giuseppe Piras 1

1 Department of Astronautics, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome,
00184 Roma, Italy; sofia.agostinelli@uniroma1.it (S.A.); meysam.majidinezhad@uniroma1.it (M.M.N.);
giuseppe.orsini@uniroma1.it (G.O.); giuseppe.piras@uniroma1.it (G.P.)

2 CITERA Research Centre, Sapienza University of Rome, 00197 Rome, Italy
* Correspondence: fabrizio.cumo@uniroma1.it

Abstract: The present paper deals with an infrastructure digitization policy to optimize maintenance
processes and energy efficiency to transform port areas to ZED (Zero Energy District). The Lazio
Region started the process for all its ports in 2020. The Anzio port started and developed as a pilot
project as it is a particularly representative sample for the Mediterranean Sea reality due to its geo-
morphological conformation. The study aimed to develop energy-saving procedures and strategies
and integrate production systems from Renewable Energy Systems (RESs) for sustainable mobility. In
the article, these strategies are described in detail and energy analysis is carried out, starting from the
current state and demonstrating the potential energy self-sufficiency of the infrastructure. Finally, the
investigation’s potential utilizing a Digital Twin (DT) of the area is highlighted. Furthermore, the BIM
(Building Information Modeling) and GIS (Geographic Information System) combining possibility to
maximize the energy efficiency measures beneficial impact are discussed.

Keywords: Renewable Energy Systems (RESs); Zero Energy District (ZED); Digital Twin (DT);
Building Information Modelling (BIM); Geographic Information System (GIS); Revit software’s

1. Introduction

Increasing energy demand due to human society’s population growth has led to rising
energy prices [1], pollution and Greenhouse Gas (GHG) emissions. In this case, energy
costs can be a significant overhead for ports [2]. Reducing GHG emissions and air pollution
directly contributes to ports sustainability and green landscape [3]. Energy efficiency in
ports is mainly related to providing the same services with less energy consumption and
Renewable Energy Sources (RESs) and environmentally friendly [4]. Energy efficiency has
a critical role for ports to reduce energy consumption and provide environmentally friendly
services. The weather conditions that can influence port policymakers, sustainability
and adaptation strategies are vital to helping create green ports [5]. Since many of the
ports are located near large cities, they play an essential role in air pollution [6–8]. Ports,
especially container ports, have three functional areas: quayside, yard, and landside [9,10].
Reducing GHG and pollutant emissions directly results from energy efficiency, equipment
electrification, alternative fuels [11] and RESs. Along with increasing operational efficiency,
these aspects can form a large part of the ports concept in the next generation [12].

There is a strong relationship between port operational efficiency and port energy
efficiency. The increased operational efficiency of sources reduces energy consumption and
significantly increases energy efficiency in ports [13]. Energy consumption in ports can be
either electricity or fossil fuel. In recent years, practical steps have been taken to electrify
equipment using electricity generated in ports through RESs, including the increasing
advances in electricity generation, storage, distribution, conversion, and consumption
technologies [14]. Furthermore, those technologies used in ports can significantly increase
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energy efficiency [15]. The significant increase in renewable energy technology, accompa-
nied by the control technologies development and the converter installation, has led to the
development efforts to develop energy in ports considering the existing potential [16].

Today, new technologies can increase energy efficiency and reduce GHG emissions in
ports as solutions. On the other hand, using boats and ships with electricity can prevent
severe marine pollution caused by oil spills. These solutions include the electricity use as
RESs for independent vehicles, energy storage devices, cooling technologies and clean fuels
such as cold-ironing [17], equipment [18,19], reefer containers [19], technologies in lighting.
This technological improvement can dramatically guarantee energy efficiency using the
Light-Emitting Diode (LED) lamps instead of high-pressure sodium lamps in port storage
facilities, management buildings, high lighting towers in the wind space terminal [20]. For
example, the Netherlands Delta terminal uses LED bulbs to save 922 MWh of annual power
consumption, equivalent to € 300,000 [21]. In addition to using LED technology, focusing
on lighting levels and designing armatures in ports can help save energy.

Renewable energies have been evaluated and identified as clean sources, such as
tidal [22] and wave energy [23], geothermal energy [24], wind [25], and solar energy [26,27]
are available due to the geographical location areas for ports. Many studies are addressing
port energy management such as the ports of Singapore [28], Hamburg [29], Rotterdam in
the Netherlands [30], Antwerp [31], Istanbul [32], Lübeck [8], Vancouver [33], La Spezia [34].
Sadek et al. [35] focused on RESs to replace fossil fuels of the Mediterranean ports. The
offshore wind turbines and fuel cell units have been used as two examples of energy sources
in ports. Their research shows that the combined system of wind turbines and fuel cells is
the best choice for the unit cost of electricity generation with 0.101 and 0.107 of Alexandria
port. Furthermore, they state that using fuel cells [36] and offshore wind turbines [37] as
a green power concept will reduce “CO2”, “NOx” and “CO” emissions per year. Finally,
they point to using a combination of renewable energy and green energy supply in the port
of Alexandria, possibly reducing 22.31% of annual electricity costs.

In this regard, maritime transport is under increasing pressure to reduce the harmful ef-
fects of climate and the environment. Maritime transport can be responsible for 10% to 15%
of the annual emissions of sulfur (SOx) and nitrogen oxides (NOx) and also approximately
3% of the global carbon dioxide (CO2) emissions [38]. In 2018, the International Maritime
Organization (IMO) member states set a 50% reduction in greenhouse gas emissions by
2050 compared to 2008, referred to as the “Paris Agreement on Shipping”. Achieving this
goal in 2050 requires the different sectors’ strenuous installation and development of new
technologies and other political measures by governments to adopt the maritime sector
to zero emissions [39]. Hence, five critical factors in reducing port pollution have been
identified by the World Port Climate Declaration at the international level: (1) reduce CO2
from ships that sail the long and deep sea to ports, (2) evaluate how CO2 is reduced from
port operations, (3) evaluate how CO2 is reduced from inland shipping, (4) study how to
use RESs as an alternative way, and (5) further develop methods for calculating CO2 in
ports [34].

The Digital Twin (DT) system can be proposed essentially based on integration of
softwares that has already been used, such as Building Information Modelling (BIM)
and Geographic Information System (GIS). In addition, sensors aimed at the database
implementing [40] and the functioning Artificial Intelligence (AI) systems optimizing [41]
can be inserted in a sharing platform and powered in real-time by a series of the Internet
of Things (IoT). The simulations can be carried out using specific, compatible tools that
will allow the use of the DT in multiple fields of study, from architecture to engineering
and economics [42]. Implementing a systemic, digital approach applied to industrial
areas and urban systems produces diversified digital city models [43] based on the scale of
analysis [44]. The DT methodology presents the traditional urban basis map’s evolution and
progressive technological transformation and is developed, managed [45], and constantly
monitored in three dimensions through models based on intelligent geo-databases [46].
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In buildings, energy-related parameters can be linked to the DT building portion of the
neighborhood to monitor energy consumption, related costs and optimization [47]. Open-
ing up renewed scenarios such as intelligent and evolutionary cities, and these monitoring
possibilities can find application in the management of individual infrastructures or more
extensive scale of entire commercial and industrial areas. Creating an information model
based on objects, specific properties and attributes to develop an accurate DT model [48],
means configuring a tool for analysing and evaluating possible scenarios supporting the
decision-making process. Information models are powered by a constant flow of data
generated [49] to update the DT model in real-time of the main digital model, i.e., sensors,
cameras and smart grids [50]. The DT model can progressively collect a large number
of data using sensors installed inside the buildings and port infrastructures, returning a
virtual mirror of reality at any time. In particular, the DT thus collects operational and
environmental information in the process components [51], later processed with analytical
techniques and algorithmic simulations.

This study aims to develop energy-saving and increase energy efficiency methods and
strategies using the RESs integration production systems in the energy ports. Firstly, energy-
saving strategies are described in energy analysis detail [52]. Furthermore, the research
potential of DT has been through the integration of BIM and GIS software. Secondly, several
open-source (online and free access) platform-tools have been used to evaluate the Anzio
port’s wind and solar energy potential. Finally, these open-source platform tools are used to
discover, extract, and process RESs data mapping, assessment and modelling to understand
better the port of Anzio with very high time resolution data.

This paper is organized as follows: Section 2 explains the materials and methods,
Section 3 describes the Anzio port as a case study, the results are provided in Section 4.
Section 5 presents research discussion and Section 6 presents conclusions.

2. Materials and Methods

The DT includes a physical model, a virtual model and a connection between the
physical and virtual models. In particular, several online open-platform data such as
“Renewables. Ninja”, “RSE Wind Atlas” platforms and MERRA-2 reanalysis data were
used as input data of three software types such as, BIM, GIS and Revit software were used
for analysis and integrating the model.

2.1. Efficient Strategies Development and DT Model

Firstly, the IoT data is collected through sensors and actuators sharing information to
the DT in the cloud. Furthermore, the DT simulates its operation based on the information
collected and uses these simulations either as a benchmark for comparison with the actual
performance or to modify the operation/setting of the duplicated physical object.

The realisation of the DT model related to the product, system, organisation or activity
process investigated. In the case of DT in the urban context, the idea of “Smart City” is
the focus of this study. The model can be created using BIM software, such as Graphisoft
ArchiCAD and Autodesk Revit (Figure 1).

Furthermore, the efficient strategies developed through the identification of individual
technologies able to reduce consumption (e.g., lighthouse towers equipped with Light-
Emitting Diode (LED) lighting) (Figure 2) and through energy diagnoses on buildings
performances using dedicated software such as MC4 and TerMus. Autodesk’s simulation
engine, Green Building Studio (GBS), has been utilized; it enables the energy analysis
functions in Revit and Insight, the web interface for interacting with the results produced
by GBS.

As an example, the use of the electric multi-scale digital BIM and GIS model allows the
detailed analysis of energy consumption, both through a punctual computation of all local
loads such as lighting fixtures and electric recharging columns for boats and through the
calculation of the actual consumption of public buildings [51] in the area (harbour master’s
office, ticket office, etc.).
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The inclusion of appropriate shared parameters in the BIM model has allowed a
detailed calculation [53], estimate and description of the energy consumption associated
with the various facilities in the port area. For example, the consumption of the lighting
terminals, which is about 67% of the total electrical consumption (see Table 1), is shown
below.
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Figure 2. The lighting structures under studies.

The consequent efficiency improvement hypothesis by replacing the old energy-
consuming floodlights of the light towers LED lighting structures is shown in Figure 2. The
total load, following the efficiency measures, is therefore equal to:

Cl + Ccr (1)

With CI the consumption of the new lighting system and Ccr that of the charging
stations. Therefore, after the interventions, the overall energy saved is equal to:

EAO − EPO = MWh per Year (2)

where EAO and EPO represent the pre- and post-construction consumption respectively.
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Table 1. Actual electrical load lighting system of the Anzio port.

Existing Phase—Consumption Estimate—Lighting

Data Sheet Description Family and
Type Quantity (n) Spotlight (n) Spotlight

Power (W) Type Power (W) Total Power
(W)

Hours of Use
(h) Days of Use (n)

Annual
Consumption

(Wh)

STF-A_004.1 Streetlight LMP_01: H_4m 3 1 60 60 180 10 365 657,000
STF-A_004.2 Streetlight LMP_02: H_6m 18 1 80 80 1440 10 365 5,256,000

STF-A_004.3 Streetlight LMP_03: H_6m -
3_Proiettori 4 3 100 300 1200 10 365 4,380,000

STF-A_004.4 Streetlight LMP_04: H_3m 2 1 80 80 160 10 365 584,000
STF-A_004.5 Streetlight LMP_05: H_3m 12 1 100 100 1200 10 365 4,380,000
STF-A_004.6 Streetlight LMP_06: H_6m 4 1 80 80 320 10 365 1,168,000

STF-A_004.7 Streetlight LMP_07: H_6m -
1_Proiettore 3 1 100 100 300 10 365 1,095,000

STF-A_004.8 Streetlight LMP_07: H_6m -
2_Proiettori 1 2 100 200 200 10 365 730,000

STF-A_005.1 Light tower
with platform

TRF_P_01:
H_12m -

7_Proiettori
1 7 850 5950 5950 10 365 21,717,500

STF-A_005.2 Light tower
with platform

TRF_P_02:
H_12m -

3_Proiettori
1 3 850 2550 2550 10 365 9,307,500

STF-A_005.3 Light tower
with platform

TRF_P_03:
H_12m -

3_Proiettori
1 3 850 2550 2550 10 365 9,307,500

STF-A_006.1 Light tower TRF_01: H_12m
- 3_Proiettori 7 3 850 2550 17,850 10 365 65,152,500

STF-A_006.2 Light tower TRF_01: H_12m
- 5_Proiettori 6 5 850 4250 25,500 10 365 93,075,000

STF-A_006.3 Light tower TRF_02: H_12m
- 2_Proiettori 1 2 850 1700 1700 10 365 6,205,000

STF-A_006.4 Light tower TRF_02: H_12m
- 3_Proiettori 1 3 850 2550 2550 10 365 9,307,500

STF-A_006.5 Light tower TRF_03: H_12m
- 3_Proiettori 2 3 850 2550 5100 10 365 18,615,000

STF-A_006.6 Light tower TRF_04: H_12m
- 3_Proiettori 1 3 850 2550 2550 10 365 9,307,500

STF-A_007.1 Signal light FRR: H_4m 1 1 100 100 100 10 365 365,000
STF-A_007.2 Signal light FRV: H_4m 1 1 100 100 100 10 365 365,000

71,500 260,975,000

260,975 kWh
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2.2. Wind Energy Potential Assessment

In this context, MERRA-2 reanalysis data has been used to wind speed potential
mapping and time series analysis of the areas of Anzio port over 41 years between 1980 to
2021. The wind speed time-series analysis and mapping can help in decision-making about
the RESs in the Anzio port areas.

Furthermore, the numerical analysis, the MATLAB software “Curve Fitting Toolbox”
tool used to obtain the value of the annual energy produced. With the turbine control, it is
possible to produce:

Nt × Et (kWh) per year (3)

With Nt the number of devices and Et the energy produced in a year by each of them.

2.3. Solar Energy Potential Assessment

MERRA-2 reanalysis data has been used for solar irradiation potential analysis of the
areas of Anzio port over 41 years between 1980 to 2021. The solar energy sources time-series
analysis and mapping can help decision-making and better understand the RESs in the
Anzio port areas.

In this step, two areas for installing solar panels have been investigated, (i) Photovoltaic
(PV) asphalt, (ii) the parking PV shelter.

Finally, the total area of the PV plant was calculated:

S =
Pp

η
= m2 (4)

where Pp is the peak power of the system and η the average yield of the modules. With the
same energy produced with solar asphalt:

Pp =
Eas

E1kw(p)
≈ kW p (5)

With Eas the electricity produced overall by the solar asphalt and E1kWp(pens) produced
by a 1 kWp system mounted on the shelters. Therefore, the number of shelters can be easily
calculated:

Pp

Ppp
= PV (6)

Since each shelter covers an area of 50 m2, the surface occupied by all the infrastructure
is equal to:

Sp × Np = m2 (7)

Corresponding exactly to that of the parking area identified.

2.4. Energy Produced Balance

The total energy produced by the two RESs, it means wind and solar is equal to:

E f + Ee = MWh per year (8)

The goal of transforming the area into a ZED has been achieved. The optimized annual
energy requirement of the port area is fully covered by the on-site production of wind and
photovoltaic systems.

EFER + C = +2.8 MWh per year (9)

With EFER the energy produced from RESs and C the consumption of the port.

2.5. CO2 Emissions Avoided

The energy upgrading of the port area can significantly contribute to the reduction of
CO2 emissions and the reduction of energy absorption from the national electricity grid.
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The calculation of avoided CO2 emissions consists of the electricity generated from RESs
by the average annual CO2 emission factor associated with the electricity grid.

The table with the emission factors, taken from the “Joint Research Center”, shows
the quantity in tons of CO2 emitted per MWh of energy produced by some energy carriers.
Therefore, first of all, it is possible to calculate the CO2 not emitted as a result of the area’s
consumption reduction interventions:

Ca−p × Fre = t Per CO2 (10)

where Ca−p is the difference in pre- and post-construction consumption, and Fre is the
considered emission factor. On the other hand, the share of CO2 emissions not emitted into
the environment following the installation of RESs, is equal to:

EFER × Fre = t Per CO2 (11)

With Ere, the energy produced by RESs. Therefore, the CO2 not released into the
environment compared to the starting situation is:

CO2e + CO2FER = t Per CO2 (12)

To this value, an additional quantity of CO2 not emitted into the environment should
be added, i.e., that of the boats that would use the recharging service through the columns
installed along the quays of the port (whose CO2 emission factors from the electricity
network are in any case lower than those of conventional fuels).

Unfortunately, the estimation of the “carbon footprint” applied to boats parked on
the quay or when approaching/leaving the port is a rather complex operation since the
data relating to the turnout of boats in the harbour are not available. Furthermore, the
environmental benefit of the measures adopted should be extended to the lack of emissions
of pollutants such as PM2.5 and NOx from boats.

3. Case Study

Ports can be considered one of the most well-known places where human activities and
environmental issues are indirect. Many important ports are focused on local and regional
development and have been able to preserve local traditions for a long time because they
are directly related to the development of their immediate city. Ports are therefore publicly
owned in most parts of the world, although they have been privatized in the operational
sector, which is usually required due to the nature, size, and long-term prospects of the
investments required [54]. Hence, energy management plans in ports are highly dependent
on energy management strategies in the nearby city [24]. Therefore, ports are directly
dependent on the national electricity grid as an energy source to meet the needs of domestic
electricity and ships stationed [35].

Anzio (41◦26′52.61” N–12◦37′44.59” E) is a city with 43.43 km2 (16.77 sq mi) and
commune on the coast of the Lazio region of Italy, about 51 km (32 mi) south of Rome, Lazio
(Latium) region, and located on a peninsula jutting into the Tyrrhenian Sea [55] (Figure 3).
Anzio is a fishing port and a departure point well known for its seaside harbour setting for
ferries and hydroplanes to the Pontine islands of Ponza, Palmarola, and Ventotene [56].
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4. Results

In this section, the research results are presented with a new integrated method using
digital and RES models. These results offer practical strategies for evaluating wind and
solar energy sources in ports to study the ZED.

4.1. Integration of DT Models and LEDs

The main objective of the DT framework is proposed to support decision-making
using integrated multi-scale digital data sources, BIM and GIS information containers for
simulation purposes about the implementation of strategies improving energy performance
in the entire port area.

Future developments will integrate multi-scale digital simulations into real-time data.
The digital models are structured to be interconnected to a cloud platform to acquire
valuable data from the models and IoT sensors, configuring the effective DT.

Through Revit software, a series of distinct digital models were created by discipline
(architectural, structural and MEP), each representing a specific “layer” within the overall
digital model of the port area (Figure 4). Each of these models was then populated with
three-dimensional families/objects, relative to the specific discipline under investigation,
used as information containers.

Using the Industry Foundation Classes (IFC) file format allows exchanging information
through a standard, open and non-proprietary format. As a result, it is possible to exploit
all the BIM functionalities, generating an energy model of the building/plant system.
Consequently, it is possible to analyse the actual state of different energy loads thanks to
a detailed analysis of heating, hot water and cooling requirements in natural conditions,
identifying and adjusting the most critical parts in the system’s annual energy balance [57].
Once the efficiency of the entire port has been achieved, potential areas for the insertion of
renewable energy production technologies are identified [58].

Similarly, with the interoperability between BIM and GIS, operated through Au-
todesk’s Infra works software, the DT information is enriched with geospatial information
describing the urban environment. This systems cooperation creates a reliable model
where geographic information and design data are integrated to understand different asset
interactions with the surrounding city.
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Among possible applications, GIS information can be exploited in a BIM process to
improve energy savings. In this sense, GIS informs BIM that by exploiting data such as
building heights and footprints, it is possible to identify areas with high energy loads or
those with the highest priority for energy retrofitting [59].

The inclusion of appropriate shared parameters in the BIM model has allowed a
detailed calculation, estimate and description of the energy consumption associated with
the various facilities in the port area. The lighting terminals’ consumption is about 67%
of the total electrical consumption. The consequent efficiency improvement hypothesis is
shown by replacing the old energy-consuming floodlights of the light towers with LED
lighting structures. The results can be summarized as a reduction of about 65% in energy
consumption for lighting than the current state as reported (Table 2).

In addition, some charging devices are installed in the Anzio port area for private
and public boats (Figure 5). These devices are located in different places and divided into
double charging stations and simple interlocked sockets.
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Table 2. Optimized electrical load of the port lightning system.

Project Phase—Consumption Estimate—Lighting

Data Sheet Description Family and
Type Quantity (n) Spotlight (n) Spotlight

Power (W) Type Power (W) Total Power
(W)

Hours of Use
(h) Days of Use (n)

Annual
Consumption

(Wh)

STF-A_004.1 Streetlight LMP_01: H_4m 3 1 60 60 180 10 365 657,000
STF-A_004.2 Streetlight LMP_02: H_6m 18 1 80 80 1440 10 365 5,256,000

STF-A_004.3 Streetlight LMP_03: H_6m -
3_Proiettori 4 3 100 300 1200 10 365 4,380,000

STF-A_004.4 Streetlight LMP_04: H_3m 2 1 80 80 160 10 365 584,000
STF-A_004.5 Streetlight LMP_05: H_3m 12 1 100 100 1200 10 365 4,380,000
STF-A_004.6 Streetlight LMP_06: H_6m 4 1 80 80 320 10 365 1,168,000

STF-A_004.7 Streetlight LMP_07: H_6m -
1_Proiettore 3 1 100 100 300 10 365 1,095,000

STF-A_004.8 Streetlight LMP_07: H_6m -
2_Proiettori 1 2 100 200 200 10 365 730,000

STF-A_005.1 Light tower
with platform

TRF_P_01:
H_12m -

7_Proiettori
1 7 250 1750 1750 10 365 6,387,500

STF-A_005.2 Light tower
with platform

TRF_P_02:
H_12m -

3_Proiettori
1 3 250 750 750 10 365 2,737,500

STF-A_005.3 Light tower
with platform

TRF_P_03:
H_12m -

3_Proiettori
1 3 250 750 750 10 365 2,737,500

STF-A_006.1 Light tower TRF_01: H_12m
- 3_Proiettori 7 3 250 750 5250 10 365 19,162,500

STF-A_006.2 Light tower TRF_01: H_12m
- 5_Proiettori 6 5 250 1250 7500 10 365 27,375,000

STF-A_006.3 Light tower TRF_02: H_12m
- 2_Proiettori 1 2 250 500 500 10 365 1,825,000

STF-A_006.4 Light tower TRF_02: H_12m
- 3_Proiettori 1 3 250 750 750 10 365 2,737,500

STF-A_006.5 Light tower TRF_03: H_12m
- 3_Proiettori 2 3 250 750 1500 10 365 5,475,000

STF-A_006.6 Light tower TRF_04: H_12m
- 3_Proiettori 1 3 250 750 750 10 365 2,737,500

STF-A_007.1 Signal light FRR: H_4m 1 1 100 100 100 10 365 365,000
STF-A_007.2 Signal light FRV: H_4m 1 1 100 100 100 10 365 365,000

24,700 90,155,000

kWh 90,155
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In Table 3 is reported the overall electrical consumption of all the devices.

Table 3. Electrical load for charging systems.

Consumption Estimate—Electrical Device

Data Sheet Description Family and Type Quantity (n) Power (W) Hours of Use (h) Days of Use (n)
Annual

Consumption
(Wh)

STF-A_003.1 Charging station CLL_01_QMC200B:
GW68832W 2 4 10 90 7200

STF-A_003.2 Charging station CLL, 02: 4P 5 4 10 90 18,000

STF-A_003.3 interlocked
socket PRI: 2P, 01 10 4 10 90 36,000

STF-A_003.4 interlocked
socket PRI: 2P, 02 15 4 10 90 54,000

STF-A_003.5 interlocked
socket PRI: 3P 2 4 10 90 7200

STF-A_003.6 interlocked
socket PRI: 4P 2 4 10 90 7200

129,600

The total amount of optimizing electrical loads of the Anzio port area is 90,155 +
129,600 = 219,755 kWh for a year. This is the target of implementing the RESs local grid
production in the same place to reach a ZED (Figure 6).
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4.2. Wind Energy Potential Assessment

More than 40 years of monthly data from the MERRA-2 reanalysis dataset have
been used to understand better the wind speed potential and mapping of port areas and
understand the wind speed (Figures 7 and 8) in the case of micro wind turbines’ installation.

Secondly, two sites have been located as ideal for the placement of the turbines [60].
The locations match the piers at the South and North ends of the harbour (Figure 9) for a
total amount of fifteen turbines.

Ten wind turbines will be located next to the previous breakwater points, and the
remaining five will follow the second breakwater lines.

The micro wind turbine DS3000 model (ETNEO Italia) was chosen to be installed at
Anzio Port. DS3000 model is a 3 kW vertical axis micro-generator, equipped with a Savonius
rotor mounted on the central axis of the turbine, valid for the starting of the rotation with
low winds, and three Darrieus blades to increase the production with medium/strong
winds. The Savonius blades, oriented on the four cardinal points to capture the wind from
any direction, do not require the orientation of the rotor (Figure 10).

The annual average wind speed was calculated using the “Renewables. ninja” plat-
form, which provides an hourly average wind speed [37]. For both Region of Interest (ROI),
the obtained value at the height of 10 m is around 4.75 m/s (data confirmed by the RSE
Wind Atlas platforms and MERRA-2 reanalysis dataset) [60–62]. Regarding calculating the
turbine’s annual energy production, a reference was made to the data estimated by the
supplier ETNEO Italia, as shown in Table 4.
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Figure 7. Surface wind speed (m/s) in the Rome City and Anzio port showed a blue point for 1980 to
2021.
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With the power curve in MATLAB the energy value produced by the calculating
turbine for a vehicle speed of 4.75 m/s is approximately 2420 kWh. Fifteen micro wind
turbines are located in external port areas, as shown in Figure 9 as an example. Therefore,
the obtained value is approximately 2420 kWh per year. Therefore, it is possible to produce
36,300 kWh per year with fifteen turbines located on the outer side of the pier (Figure 9).
Specifically, a spline has been selected as the appropriate interpolation function, as shown
in the curve in Figure 11.
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Table 4. Turbine’s Annual Energy Production (AEP).

Average Wind Speed (m/s) AEP (kWh)

5 2.851

5.5 3.819

6 4.877

6.5 5.975

7 7.061

7.5 8.088

8 8.945
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4.3. Solar Energy Assessment (PV System)

More than 40 years of monthly data from the MERRA-2 reanalysis dataset have been
used to map PV solar irradiation analysis mapping of port areas with exciting potential to
evaluate the solar irradiation potential (Figures 12 and 13) for PV installation.

Secondly, electric power production from a solar source should be performed by
positioning a dedicated PV panel directly on the ground in port areas without signifi-
cant cars. The technology of solar roads rapidly increases its penetration, especially on
infrastructures and installation characterized by wide spaces without buildings and people
presence [63–65].

For installing the photovoltaic modules, the area at the end of the southern pier was
chosen. It’s a large area, characterized by good exposure and without shading (there are no
buildings nearby), as shown in Figure 14, with indicated in the red zone with the arrow.
Let’s consider the latter solution: the parking area identified is shown in the figure. It is an
area of about 800 m2, with parking spaces oriented at 30◦ to the south.

Photovoltaic canopies are car park covers that have the dual purpose of covering
parked vehicles and generating clean energy. They are mainly made of galvanized steel, a
highly resistant material supporting the photovoltaic module system. The photovoltaic
system for electricity production is placed on the sloping roof, which can be connected
to the grid or even to the charging columns of parked electric cars (Figures 14 and 15).
These systems protect cars from prolonged exposure to the sun, transforming a potentially
harmful agent for the car into a source of clean energy.
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The structure also offers shelter from precipitation, hail and snow. From the data
collected in the literature, the modules used for solar asphalt have average yields of around
9%. The performance of this technology is lower than standard modules, but it is still worth
studying its application in the port also in the perspective of future technological advances.
To cover the remaining energy requirement, the peak power required to be available is
approximately 150 kWp.

The orientation and inclination have been set to 0◦, and also the “integrated in the
building” option has been chosen as the mounting position. From the calculation performed
with PVGIS, the energy produced is equal to 186,254.63 kWh per year. The results were
obtained from the simulation for the 150 kWp plant.

To estimate the energy production of the PV shelters, the azimuth angle of the car parks
has been inserted as the “tilt” angle of the wall unit’s design. The energy produced per kW
is much greater than in the previous case (1334.22 kWh/kW compared to 1241.69 kWh/kW
of the solar asphalt).

A single shelter with Ppp = 9k the PV system peak power. Taking into account the
rounding up, the shelters produce a total of 192.13 MWh per year, with a total peak power
of 144 kWp.
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4.4. Energy Produced Balance

As shown in the pie chart, the energy contribution of wind turbines is significantly
lower than that of solar asphalt (Figure 16 and Table 5). The goal of transforming the area
into a ZED has been achieved. The optimized annual energy requirement of the port area
is fully covered by the on-site production of wind and photovoltaic systems.
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Figure 16. Comparison of consumption - energy produced by RES (Left), Subdivision of energy
produced by RES (Right).

Table 5. Annual production of energy from RESs.

Annual Energy Production of FER-Anzio

FER Technology kwh/year

PV Asphalt PV 186,254.63

Wind wind turbine 36,300

222,554.63

4.5. CO2 Emissions

The energy upgrading of the port area can significantly contribute to the reduction of
CO2 emissions and the reduction of energy absorption from the national electricity grid.
The calculation of avoided CO2 emissions consists of the electricity generated from RESs
by the average annual CO2 emission factor associated with the electricity grid.

The table with the emission factors, taken from the guidelines of the “Joint Research
Center”, shows the quantity in tons of CO2 emitted per MWh of energy produced by some
energy carriers (Table 6):

Table 6. Emission factors.

CO2 Emission Amount

Gas 0.202

Diesel 0.267

Electric tariffs 0.276

An additional quantity of CO2 not emitted into the environment should be added, i.e.,
that of the boats that would use the recharging service through the columns installed along
the quays of the port (whose CO2 emission factors from the electricity network are in any
case lower than those of conventional fuels) (Figure 17).

Unfortunately, the estimation of the “carbon footprint” applied to boats parked on the
quay or when approaching/leaving the port is a rather complex operation since the data
relating to the turnout of boats in the harbour are not available. Nevertheless, the measures
adopted should be the environmental benefit to the lack of pollutants such as PM2.5 and
NOx from boats.
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4.6. Economic Evaluation

In this paragraph, we will limit ourselves to making an account of the investment
costs relating to installing wind and PV systems. As already explained above, there are
no reliable references in the literature concerning the costs of solar asphalt technology.
Therefore, for the economic analysis, reference will be made to the installation costs of the
photovoltaic shelters. For the latter, the 9 kW model from Kit. Solutions were chosen from
the quotes consulted online. The cost of each cover amounts to € 19,650. Regarding the
micro-wind plant, the price list was provided to us by the supplier company Etneo Italia
Srl. From the quotation of the bidding company (Table 7), it appears:

Table 7. Cost of turbine components.

RES Cost

DS3000 Turbine 9600 €/cad

On grid turbine 2350 €/cad

Huawei inverter 4 kW 1250 €/cad

Total 13,200 €/cad

The calculation of expenses is shown in the Table 8 below:

Table 8. RESs cost.

FER Pn
[kWp] Amount [n] Pp plant

[kWp]
Energy Produced

[kWh/Year]
Energy Produced
Plant [kWh/Year] Cost [€] Total Cost [€]

PV 9 16 144 12,008 192,128 19,650 314,400

Turbine 3 15 45 2420 36,300 13,200 198,000

The overall cost of the infrastructure installed is, therefore, equal to 512,400 euros. This
expense must be added to that relating to installation, which we assume equal to 45% of
the cost of the devices (Table 9):

Table 9. Total investment.

Cost [€] FPO [€] Total Investment [€]

PV Shelters 314,400 141,480 455,880

Turbine 198,000 89,100 287,100

742,980

For micro-wind turbines, there are state incentives that concern the production of
energy and not the installation of the system and are provided by the Energy Services
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Manager (GSE). This means that the return on investment is more significant the more
energy is produced (if the wind turbine is located in a windy area). The two methods of
incentive proposed are the all-inclusive rate and the “exchange on-site”. All-inclusive tariff
involves a gain of EUR0.30 for each kWh fed into the national grid and has a duration of
15 years, after which one can access the free market or the so-called “dedicated collection”.
The “exchange on-site” incentive is more suitable for small plants.

In this case, the gain amounts to EUR0.20 per kWh without time constraints. The
calculation mechanism consists of the difference between the energy produced and the
energy consumed: if the result is negative, it is charged to the bill. If positive, there is an
energy “credit” scalable on future billing. In addition to the GSE incentives just outlined,
for the installation of RES plants, such as wind power, the 2020 Budget Law allows a tax
deduction of 65% (micro-generators) up to a maximum expenditure of EUR100 thousand.
Photovoltaic systems on canopies are always a convenient solution, even without the
incentives of the energy bill. In fact, by exploiting the “Exchange on-site” and sizing the
system concerning actual consumption, thus aiming for self-consumption, it is possible to
reduce the electricity bill significantly.

5. Discussion

Energy efficiency is one of the hot research topics that advances in existing technology
directly affect future research prospects [66]. In this case, innovative approaches, economic
analysis [67], operations optimization, the new technological advances effects [68], and
management analysis will be the most important for future ports research. Economic
and environmental analysis for automated and electric ports are also necessary and in-
evitable [69]. Therefore, integrating independent and electrical equipment with energy
storage devices makes smart meters more potent and straightforward, making the signifi-
cant range possible for further analysis [70]. Next-generation ports will use automation,
electricity and intelligent energy management systems. To this aim, the role of independent
or electric vehicles in the smart grid is unavoidable, which should be further discussed for
future port operations.

Energy management can be considered one of the management tools prominent fea-
tures to move ports towards greater sustainability with the environment and reduce green-
house gases. That is why energy management in ports is more focused on Environmental
Management Systems (EMS). For example, the European Maritime Ports Organization
(ESPO) supports and encourages European ports to develop environmental management
programs [3], but EMS is only approved by half of the European ports. Therefore, interac-
tion with shareholders can be considered basic and essential to implement EMS in ports
better [33].

The ports’ main challenges in the EMS development can be identified in the following
cases; (1) balancing economic and environmental goals in ports and (2) sharing knowledge
and joint production and successful experiences in national and international ports [71]. In
this regard, several ports define specific programs for energy management, which can be
considered with the protection policies of the European Union, including projects for the
renewable energy use to reduce air and environmental pollution [27].

Managing sustainable energy development using RESs is an emerging issue for
ports [12]. In this regard, a conceptual framework for energy management systems, similar
to the model in their construction, can be very effective [72]. Unfortunately, there are no
studies analyzing barriers to energy efficiency in ports. These barriers to energy efficiency
in ports include most technical, economic and regulatory aspects. There are also barriers
to the supply of clean fuels and other technologies [1], so barrier analysis is invaluable to
industry and academia. In the port industry literature, most technical reports explain the
RESs use.

Researchers can focus on intelligent grid analysis and evaluate smart grids operational
and environmental performance using simulation tools. Balancing energy demand and
supply in the smart grid is a complex task [73]. Furthermore, more research in the initial
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step should have high data quality to perform a successful analysis. Assessing and evaluat-
ing aspects of monitoring has benefits for ports, (i) assessing the level of environmental
pollution in ports, (ii) improving the environmental and energy management impacts,
and (iii) helping to reform port strategies and policies, (v) the possibility of evaluating
energy consumption studies and environmental risk management in ports to estimate and
determine practical goals and measures in the future [74,75].

In this regard, to support decision-makers and port managers in selecting and imple-
menting sustainable technologies, the need for actual empirical research and accurate im-
plementation of the tools selection, technologies and operations [76]. Hence, there is a need
to transfer more practical information from the scientific community to decision-makers to
help port decision-makers. Furthermore, this knowledge transfer to port decision-makers
who have more experience in implementation decisions will help them make the final
decision [77].

Furthermore, conducting studies that act as a guide by considering the necessary stan-
dards can be very useful in developing a strategy to reduce GHG emissions in ports [78].
These studies can be used from a technical point of view, availability and cost analysis of
alternative energy technology study with new development, evaluation, and implementa-
tion that increase regulatory regulations in ports [35]. The proposed DT framework aims
to configure a digital integrated and multi-scale database for simulation purposes. It is
intended to be integrated into real-time data from sensors and improve data management.

6. Conclusions

The project proposed presents an Anzio port digital transformation process of the Lazio
Region, starting from their infrastructural centre. The implications of this transformation
directly concern the environmental, economic and social spheres, setting the port area
as the epicentre and extending to the city. The port has potential for public buildings,
water sports schools, boat workshops and association headquarters, not the subject of this
paper, which can be incorporated into the DT. Due to their geometric characteristics and
location, a maximum of two-level buildings is easily transformable into ZEB buildings. A
further implementation of the DT and extending the harbour representation can improve
its environmental and economic management.

The data can be entered into a BIM and GIS environment within a sharing platform
predictive scenario derived, and the urban fabric resilience with the creation and use of
appropriate tools can be estimated. This allows planning in a well conscious way, respecting
environmental sustainability and interventions aimed at economic, commercial and social
activities. Critical from a design and then construction point of view is the cost estimate
accuracy of interventions in such a critical area. Together with the costs, it is fundamental
to estimate and plan the risks related to the execution of works, which will change the
social impact during their implementation.

The “Port of Anzio” DT implementation digitalization area makes it possible to
start from the digital and ecological transformation epicentres and spread throughout the
territory. The exchange flows studying with the surrounding territories, linked to transport
by sea, land, road, and rail. It would also replace electricity production’s economic and
environmental costs for public lighting and electricity supply to moored boats by switching
from carbon to renewable energy sources.

With repercussions in all fields, this digital transformation will open new scenarios
and higher efficiency in managing public finances, especially in the green deal area. There
will be substantial energy and environmental benefits already in the construction phase of
the works. In the planning and design phase, it will be possible to accurately assess various
implications related to the implementation of the work and its territorial, environmental,
and social context. The other important factor is the possibility of minimising the project’s
costs by simulating different scenarios. This means monetary, environmental, and social
costs, not least those due to the construction times uncertainty. This factor scares off
potential private, national, and international investors. That can be predicted by adding
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more future factors such as horizontal transport infrastructure, roads and railways; the
parameters will significantly increase the analytical data volume under study. Therefore,
the data analysis with current methods will be very time consuming and complex. So,
given the data diversity, such studies require a rigorous data management method and
analysis to define a digital structure integration approach

Various ports appear to have attempted to install intelligent energy management sys-
tems. However, it should be borne in mind that the systems effectiveness in different ports
is directly related to the port’s geographical location. This relationship varies according
to the RESs availability and their type for efficiency in ports. On the other hand, various
studies show that evaluating new measures and technologies with a high potential for
intelligent energy management systems concerning sustainable and long-term goals is very
effective.

In this regard, it can be said that the lack of cooperation between stakeholders and
decision-makers is the main reason for stopping various projects in ports. In addition,
despite the increase in academic studies on port sustainability, the exploitation of real-world
research results in port infrastructure has not yet been well implemented. The main reason
for this can be the lack of case studies with regional diversity in small ports. The central gap
that should be considered in future studies is the energy efficiency report of a technology
or techniques studied in ports. This may indicate the need to combine existing and new
measures and technologies to promote the ZEDs concept design in leading studies.
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BIM Building Information Modelling
GIS Geographic Information System
RESs Renewable Energy Systems
CO2 Carbon Dioxide
MWh Mega Watt Hour
GBS Green Building Studio
ROI Region of Interest
EC European Community
IoT Internet of Things
DT Digital Twin
ZED Zero Energy District
DTM Digital Twin Model
PVs Photovoltaics
LED Light-Emitting Diode
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CFD Computational Fluid Dynamics
IFC International Foundation Class
AI Artificial Intelligence
GHG Greenhouse Gas
MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2
GSE Energy Services Manager
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