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Abstract: The fifth generation (5G) of mobile networks is designed to mark the beginning of the hyper-
connected society through a broad set of novel features and disruptive characteristics, delivering
massive connectivity, coverage and availability paired with unprecedented speed, throughput and
capacity. Such a highly capable networking paradigm, facilitated by its integrated segments and
available subsystems, will propel numerous cutting-edge, innovative and versatile services, spanning
every possible business vertical. Augmented, response-capable healthcare services have already
been identified as one of the prime objectives of both vendors and customers; therefore, addressing
controversies and shortcomings related to the specific field is considered a priority for all stakeholders.
The scope of this paper is to present the architectural elements of 5G which enable efficient, remote
healthcare services along with emergency health monitoring and response capability. In addition,
we propose a holistic scheme based on technical enablers such as Internet-of-Things (IoT) and Fog
Computing, for mitigating common issues and current limitations which may compromise the
proclaimed service delivery.

Keywords: Fog Computing; Internet of Things; B5G; cybersecurity; healthcare services

1. Introduction

Legacy telecommunication networks remain, to this day, the core for widely used
e-health monitoring and emergency response solutions, despite their inability to cope with
the agile, robust, highly-available infrastructure or the rich-media-content devices users
are currently relying on. On the other hand, smartphones and their inherent ability of
sharing multimodal information has led to a constant adoption increase by all consumers
which aim to augment their overall mobile quality of experience through a plethora of
diverse, yet fully functional voice, video, text messaging and social media networking
applications. This trend raised the total percentage of emergency calls made by mobile
devices to almost 70% out of the 300 million of such calls in the European Union annually [1],
a clear indication that mobile equipment, facilitated by the constant improvement of
the underlying infrastructure, will most likely eradicate all other types of emergency
communication appliances. Moreover, the new capabilities provided by these new devices,
spanning from conveying precise location information to real-time metrics and multimedia
content from the incident, significantly increase the chances of a successful emergency
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response or an accurate remote diagnosis, factors which can sometimes make the difference
between life and death.

The fifth generation (5G) of mobile networks is designed to mark the beginning of
the hyper-connected society, by delivering significant performance improvement paired
with an extraordinary set of new features and disruptive characteristics. The imminent
deployment of 5G networking infrastructure is expected to offer massive connectivity,
coverage and availability, extremely high data rate, less than 1 ms end-to-end over-the-air
latency, significantly larger capacity and throughput, real-time information processing and
data transmission along with native support for diverse verticals, services and applications,
each with different specification and requirements [2]. In regards to response-capable
healthcare solutions, improved device-to-device communication will expand the uplink
capacity and availability of communication channels, creating an always connected expe-
rience for patients, healthcare personnel and emergency workers, which will now have
improved awareness through access to high-quality multimedia content [3]. The novel
feature of network-slicing introduced by 5G, is expected to facilitate dynamic adaptation of
both transmission speed and network latency, thus ensuring high priority for emergency
communications as a whole.

However, in accordance to 5G, there are certain contemporary frameworks and net-
working paradigms that will act as technical enablers for further amplifying the capabilities
of existing e-health and emergency response platforms to a whole new level. The Internet-
of-Things (IoT), a highly capable ecosystem that will allow the deployment of networking
topologies of unprecedented scale, as well as Fog Computing [4], a multi-tier architecture
for delivering an efficient, highly virtualized platform that provides resources for com-
putational, networking and storage services on low-capability nodes located at the edge
of the network yet in close cooperation with traditional cloud servers at the network’s
backend infrastructure, will redefine healthcare service capabilities as well as the ability of
emergency response by all participating entities.

In this article, we discuss how response-capable healthcare services can benefit from
the upcoming telecommunication ecosystem disruption, and present a novel, cutting-
edge architecture which integrates new services on top of existing core functionality, thus
adding significant value through the use cases it supports. Delivering a holistic, end-to-end
framework for interconnecting all major health-case service stakeholders is the ultimate
goal, and building such a solution by taking advantage of key architectural elements of
the 5G ecosystem is as radical as it gets. Section 2 presents the technical enablers for
contemporary health monitoring services, while Section 3 lists certain principles and use
cases which the design of such services must follow or address. The proposed system
architecture blueprints are described in Section 4 and, finally, Section 5 summarizes results
and concludes the paper.

2. Technical Enablers for Contemporary Health-Monitoring Services
2.1. IoT and Fog Computing

The main concept of IoT revolves around the deployment of abundant network topolo-
gies of interconnected sensors and actuators. Equipped with unique identifiers and trans-
mission mechanisms, everyday objects will be capable of automatically utilizing affiliated
interfaces and gateways to upload vast amounts of diverse data. IoT extends internet
connectivity beyond traditional devices to a new range of nodes now able to connect,
interact and exchange information. The now-upgraded abilities of previously simplistic
sensing devices will accelerate the wider adoption of wearable low-power IoT medical
sensors for monitoring health-related data and will consequently lead to the development
of a digitized healthcare system, able to directly link patients with the available medical
resources and corresponding services. However, certain limitations due to existing in-
frastructure inefficiency do exist, and can only be tackled by harnessing the benefits of a
5G-based architecture, similar to the one proposed in Section 4 in terms of speed, capacity,
connectivity and efficiency.
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All contemporary IoT platforms appear to follow a specific four-stage data-handling
pattern. In the first stage, edge sensing devices collect real-world metrics and convert
continuous-time signals to discrete-time ones using efficient sampling techniques. The
second stage involves data accumulation and transfer to interconnected facilities in the
cloud for further processing. The third stage contains the actual data analysis conducted by
dedicated equipment while the fourth one incorporates processed information forwarding
back to the edge for triggering actuators. It becomes obvious that the specific data process-
ing pipeline consumes bandwidth and network resources in general, which become more
scarce as the overall topology size increases.

As stated in [5], minimal end-to-end latency together with network bandwidth preser-
vation as well as enhanced reliability are considered attributes of significant importance
for any IoT-related application. Moreover, healthcare applications also introduce a need
for robust data collection, storage and availability mechanisms, paired with a demand
for uninterrupted services even in cases of compromised cloud connectivity and resource
constrained devices [6,7]. When these restrictions are combined with the prerequisites for
near-real-time data processing [8] and enhanced data security and privacy [9–12], they
form an amalgam of challenges where only radical, end-to-end solutions [13] may stand
a chance.

Fog and edge computing in general is a rising, highly virtualized platform which
complements IoT by providing computational, networking and storage services in an
intermediate layer between end-user equipment and conventional cloud datacenters [4].
Fog infrastructure most of the time is deployed in physical proximity with the last-mile
sensors of IoT-related applications. These sensors may be resource-bound by design yet
the interaction of the two introduces significant reliability and security improvement, lim-
its bandwidth consumption and greatly decreases end-to-end latency. When deployed
in real-world use cases, the specific approach extends traditional distributed computing
paradigms by transferring data processing closer to the production sites, thus accelerat-
ing the frameworks’ responsiveness to triggering events along with its awareness, after
eliminating the necessity for data transfer to remote processing nodes [14,15]. Besides
improvements in network delay, Fog Computing has the potential for providing additional
services, including: (i) improved location awareness; (ii) seamless device mobility and
inter-domain roaming; (iii) enhanced device heterogeneity; and (iv) augmented scalability
in terms of concurrent interconnected nodes. As stated in [14], the specific solution tackles
the majority of the inherent limitations of the cloud and facilitates service deployment with
near-zero error tolerance, such as industrial and healthcare ones. Harnessing the benefits
of Fog infrastructure deployment is especially critical for healthcare-related use cases, since
timely response to a signal coming from a sensor connected to a patient can make the
difference between life and death.

2.2. 5G

The advent of 5G introduced a series of integral changes to already-deployed infras-
tructure, with the most important being the conversion of virtually every service into
software function [16]. This evolution will thrust telecommunications into a new era,
dominated by smart cities, factories and grids, autonomous vehicles and massive IoT
framework deployments delivering solutions spanning from healthcare to mechanized
agriculture. The vertical application range is so wide that can be only broadly classified
into three categories, namely: (i) enhanced mobile broadband (eMBB); (ii) ultra-reliable and
low-latency communications (URLLC); and (iii) massive machine-type communications
(mMTC). eMBB traffic is characterized by large payloads and considered to be an extension
of the existing 4G broadband service, but with improved performance and superior overall
user experience. Its objective is to maximize data rate while guaranteeing a certain degree
of connection reliability paired with low-pace mobility, coverage and seamless connectivity
on densely populated areas and hotspots. URLLC on the other hand has much stringent re-
liability, availability and latency requirements, therefore such transmissions should be kept
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localized and with a relatively low rate. When reliability becomes the top priority, resource
provisioning may become challenging, thus in need of a dynamic network readjustment
technique for avoiding idle or misused elements. mMTC traffic patterns are not yet fully
identified but will most likely consist of fixed, typically low, uplink transmission rates.
However, since mMTC deployments will incorporate a very large number of devices, even
transmitting volumes of non-delay-sensitive data may require random-access resource
management schemes, thus making the design objective of mMTC to maximize the ar-
rival rate in the available radio resources. The technical enablers of all aforementioned
application types are listed in the following paragraphs.

2.2.1. SDN/NFV

Software-Defined Networking is the dominant architectural framework for deploy-
ing highly intelligent, agile and easily programmable networking topologies. The main
novelty it introduces lies in the decoupling of all control and data-forwarding entities, an
approach which disrupts vertical integration and consequently separates the core network
control mechanism from all underlying routing and switching elements, with the latter
being deprived of any perplexed functionality left only to operate as packet forwarders.
The overall concept also involves the existence of a centralized software controller that
maintains a global network overview through integrated control functions, as well as being
responsible for generating or modifying the necessary forwarding policies before these
are being distributed to the edges of the network. This approach allows seamless and
more dynamic network topology adjustments by eliminating the need for independently
accessing and reconfiguring scattered devices, often located in different geographical points
of presence.

The second pillar of efficient network topology deployment is the Network Function
Virtualization (NFV) paradigm which intends to convert physical appliances into highly
adaptive software and replace proprietary hardware devices with commercial off-the-shelf
(COTS) general-purpose equipment. One of the most thorough architectural framework
propositions for NFV was introduced by the ETSI NFV Industry Specification Group
(ISG) containing the necessary building blocks, communication interfaces and generic
concepts for assembling and operating such a perplexed, interconnected and distributed
ecosystem. According to ETSI, any NFV architecture integrates three key elements: the
Virtual Network Functions (VNF), the Network Function Virtualization Infrastructure
(NFVI) and NFV Management and Orchestration (NFV MANO) [17]. VNFs are considered
to be the prime functional blocks of the networking infrastructure, NFVI resembles to the
underlying resources which generate the operating environment for the VNFs, while the
NFV MANO overlooks VNF provisioning and controls all operational tasks. Following
the NFV paradigm, any provided service will be divided into several VNFs whose nature,
amount and order will be determined by their functional and behavioral specifications,
thus playing the role of the service’s structural elements, accountable for every aspect of
its behavior in an end-to-end manner. The affinity of NFV and SDN now becomes more
obvious. Both solutions appear to advocate towards the replacement of existing networking
elements with open-source software operating on top of generic and universally deployed
hardware platforms. Moreover, they both heavily rely on virtualization to support their
seamless functionality and deliver an extensive feature set, leading many researchers
and practitioners to consider them complementary. This notion is also boosted by the
commonality of having an NFV deployment integrate an SDN controller in its value chain,
thus taking advantage the inherent reliability and elasticity features it incorporates [2].
The delivery of healthcare-related applications is not directly benefited by SDN and NFV;
however, these two revolutionary networking approaches create the bedrock on which all
modern 5G applications are built. It is therefore crucial to design and deploy a framework
that fully supports them, such as the one presented in Section 4, to inherently increase their
speed, resilience and scalability.
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2.2.2. Network Slicing

Network slicing relies on utilizing virtualization technology through paradigms such
as SDN or NFV to segregate communication and computational resources available on
restricted physical infrastructure towards generating multiple isolated logical networks,
each optimized to support a specific service delivery. Figure 1 illustrates the core concept
of network slicing with finite network resources partitioned into multiple virtual segments
(or slices) each with their own architecture, application provisioning, packet and signal-
processing capacity, targeting a specific number of end users [18,19].

Figure 1. Illustrating the core concept of Network Slicing.

Any network slicing deployment must support two distinct states: creation and
runtime [20]. During the slice-creation state, a valid service request issued by the end
user in accordance with a predefined network service inventory triggers the slice-creation
process which must be integrated to the network operator infrastructure. In the runtime
state, user requests are accommodated by already-allocated resources shaped into a slice.
Slicing renders operators capable of providing new services and applications only by
activating a fraction of their existing infrastructure instead of rolling out a new network, an
approach which reduces capital expenditure and deployment time while simplifying the
creation, configuration and operation of network services in general [21–25].

5G communication networks will support two slicing dimensions: (i) vertical, a seg-
mentation of the core mobile network domain based on predefined applications; and
(ii) horizontal, which is designed to accommodate new trends for scaling system capacity,
enable cloud computing cooperation and support computation offloading to the network
edge. Real-world healthcare applications are essentially handicapped without network
slicing, since the ability to divide network resources into isolated chunks ensures that
under no circumstances will a sensor transmitting patient-originating data lack the neces-
sary bandwidth, throughput, capacity and connectivity to successfully deliver life-critical
information to the correct recipient, namely a doctor, a medical facility or an incoming
ambulance. The proposed architecture presented in Section 4 is based on the assumption
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that resource scarcity is not an issue, and this exact assumption became a reality only after
the advent of 5G Networking and the abundance of features it introduced.

3. Designing Response-Capable Healthcare Application Frameworks
3.1. Next-Generation Emergency Services

Emergency response services as provided by operators need a radical transformation
to align with the next-generation networking blueprints currently defined by standard-
ization bodies [26]. Legacy systems based on Public Safety Answering Points (PSAPs)
already struggle to support contemporary service demands; therefore, all corresponding
regulatory authorities such as the National Emergency Number Association (NENA) and
the European Emergency Number Association (EENA) envision an all-IP based network
for emergency service forwarding, currently manifested by NG112 architecture. In this
framework, caller location is of paramount importance since it enables proper call routing
to the most convenient emergency agency. A dedicated entity, the Emergency Call Routing
Function (ECRF) using the Location-to-Service Translation Protocol (LoST) handles the
routing, facilitated by the Emergency Services Routing Proxy (ESRP). ESRP is also responsi-
ble for (i) evaluating a policy rule set for the queue a call arrives onto, (ii) determine the
most appropriate next hop URI via ECRF query and (iii) evaluate a policy rule set for the
aforementioned URI based on auxiliary information such as message content, time of day
or PSAP state [27–30].

Under the auspices of EMYNOS Project (https://www.emynos.eu/ accessed on 12 Febru-
ary 2022) extended end-to-end measurements were conducted over a carefully designed
testbed, which mimics the behaviour of a state-of-the-art emergency communication plat-
form. More specifically, we used a Linphone (https://www.linphone.org/ accessed on
12 February 2022) generic interface on the client side to initiate specific SIP message ex-
change with the PSAP, in an attempt to stress-test and validate the ability of the infrastruc-
ture to parse arriving sensor values. Such testing will reveal possible limitations of the
emergency communication platform SIP core (ECRF, ESRP) on handling inbound SIP traffic,
mostly containing SUBSCRIBE/NOTIFY messages, under load. In all testing cases, SIPp
(http://sipp.sourceforge.net/ accessed on 12 February 2022) , a free Open Source traffic
generator for the SIP protocol was used for stressing the SIP protocol’s behavior while
NetEm (https://wiki.linuxfoundation.org/networking/netem accessed on 12 February
2022) was used for emulating diverse networking behavior [3].

3.2. Experimental Evaluation Based on Next-Generation Emergency Services

During the structural testing preparatory phase, we heavily modified the Linphone
software bundle that was later deployed on the client side. Modifications included imple-
menting a generic SIP-based interface, able to transport SensorML-formatted data, thus
providing seamless communication with a large variety of sensor platforms. This newly
implemented interface uses the SIP MESSAGE method to allow information/data flow
across every sensor platform that is considered an emergency event actuator. Determining
the interface’s availability while attempting to receive/broadcast messages to multiple
interconnected platforms constitutes the main scenario of the proposed functional test.
SIPp played the role of the actuator, creating random amounts of SIP MESSAGES, while
Linphone primarily converted inbound SIP MESSAGES to corresponding SIP NOTIFY
ones. The testing sequence was executed for 10 times, creating a total of 100 SIP MESSAGES
in each run with a variable rate between 30 and 60 messages per second. As shown in
Table 1, when the rate was set to 30 SIP MESSAGES per second, the interface failed to
properly handle 57 out of 1000 SIP MESSAGES on average. Moreover, the average number
of unacknowledged SIP MESSAGES for the various rates together with the corresponding
retransmission number per case is also depicted. It must be stated that SIPp configuration
for the experiment, needs to be identical to the generic SIP retransmission mechanism,
mandating the retransmission time (T1) to be configured at 500 ms and the timeout timer
(TF) to 4 s.

https://www.emynos.eu/
https://www.linphone.org/
http://sipp.sourceforge.net/
https://wiki.linuxfoundation.org/networking/netem
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Table 1. Average number of ineffective sensor-stemmed SIP MESSAGE.

SIP MSG. Rate
(Messages/s) Transmitted Successful Unacknowledged Re-Transmitted

30 1000 943 57 1539
40 1000 763 237 2152
50 1000 664 336 2305
60 1000 548 452 2424

PSAP efficiency and robustness on parsing incoming SensorML formatted data was
evaluated through a separate functionality test, which identified the number of improperly
handled (unacknowledged) SIP NOTIFY messages on the corresponding SIP client. Similar
to the previous testing sequence, there was a total of 10 consecutive runs each with 1000
and 2000 SIP NOTIFY messages that were transmitted to the PSAP with various rates. It
is evident that there is no correlation to the behaviour of SIP NOTIFY messages with the
overall number of transmitted messages, while in the same time there is an almost linear
increase of the unacknowledged SIP NOTIFY messages number against the overall number
of exchanged messages [3].

Table 2 contains the average number of unacknowledged SIP NOTIFY messages for
the various rates of the specific sequence, paired with the corresponding retransmission
number. As previously, SIPp configuration for the experiment needs to be identical to
the generic SIP retransmission mechanism, mandating the retransmission time (T1) to be
configured at 500 ms and the timeout timer (TF) to 4 s.

Table 2. Average number of unacknowledged SIP NOTIFY messages.

Rate (Messages/s) Transmitted Successful Unacknowledged Re-Transmitted

30 1000 975 25 998
35 1000 762 238 1867
40 1000 763 237 2058
45 1000 616 384 2239
50 1000 666 334 2204
55 1000 511 489 2375
60 1000 539 461 2353

30 2000 1677 373 3615
35 2000 1417 583 4305
40 2000 1483 517 4375
45 2000 1173 827 4686
50 2000 1226 774 4649
55 2000 1005 995 4886
60 2000 1061 939 4834

For conducting a realistic functionality testing, we should take into consideration that
the EMYNOS Prototype utilizes sensor platforms as actuators for automatically triggered
emergency calls. The sensor data are delivered to the PSAP side as a mean to enhance the
overall awareness of the PSAP operator, meaning that (i) the SIP SUBSCRIBE/NOTIFY
framework has been fully integrated into the existing Linphone implementation and (ii) SIP
NOTIFY messages carrying sensor data in SensorML format are periodically delivered
to the PSAP in order to provide critical data in real-time. Thus, the scope of a realistic
functional testing procedure should be primarily to determine the impact that multiple SIP
SUBSCRIBE/NOTIFY messages have on behavior of the SIP Core, particularly due to the
stochastic creation time of NOTIFY messages, as well as the burstness and volume of the
sensor data traffic.

The testing sequence for measuring the number of unacknowledged SIP SUBSCRIBE
messages is based on utilizing the default SIP retransmission mechanism over a noisy
channel characterised imposing packet loss to the transmitted packets. Towards this end,
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NetEm was the software of choice as it is an enhancement of the Linux traffic control
facilities that allows to add delay, packet loss, duplication and other characteristics to
packets outgoing from a selected network interface. Moreover, NetEm is built using the
existing Quality Of Service (QoS) and Differentiated Services (diffserv) facilities in the
Linux kernel.

Table 3 presents the average number of unacknowledged SIP SUBSCRIBE messages for
all the different packet loss used in the test sequence, as well as the corresponding number
of retransmissions. For this particular case, the SIP retransmission mechanism was used
with the default configuration. Hence, without the loss of generality, the retransmission
time (T1) was set to 500 ms while the timeout timer (Timer F) was set at 4 s [3].

Table 3. Average number of ineffective PSAP side-stemmed SIP SUBSCRIBE messages.

Packet Loss (%) Transmitted Successful Unacknowledged Re-Transmitted

2 1000 986 14 2712
5 1000 985 15 2828
7 1000 984 16 3094
10 1000 970 30 4599

Deteriorating network conditions directly affect the number of unacknowledged SIP
SUBSCRIBES on the Client side. More specifically, when packet loss is set to 10%, there
is an average 3% loss of all SIP SUBSCRIBE messages traversing the infrastructure. In
addition, one can see a sharp increase to the retransmission number, reaching an average
rate of approximately 4.5.

Moving towards the 5G era, such emergency services architectures must evolve into
highly-available, reliable and ultra-low latency service delivery platforms, designed to pro-
vide real-time voice, video and real-time text services to PSAPs operators, thus supporting
a large variety of added-value services to the emergency agencies. This transformation will
also affect healthcare services, since they will be rendered capable of efficiently utilizing
emergency response mechanisms integrated in next-generation networks to trigger alerts,
notify emergency responders and safeguard high-risk population groups when equipped
with wearables and simple sensing equipment [27].

3.3. Dominant Healthcare Application Framework Use Cases

The efficient design of IoT-augmented health-monitoring frameworks poses signif-
icant challenges, mostly due to the large spectrum of the capabilities and attributes of
interconnected devices. Simply merging wireless sensor networks with smart gateways,
or replacing existing gateways with smartphones to deploy personal health-monitoring
systems are overly simplified solutions to a much more complicated problem. It is therefore
essential to take one step back and examine some more generic requirements of such plat-
forms. As mentioned in [14], any contemporary healthcare-monitoring platform must be
accessible by all stakeholders, offline or in real-time, regardless of potentially compromising
circumstances. Prospective fog-bound healthcare-monitoring solutions must allow patient
self-monitoring paired with physician off-line monitoring through seamless access to every
available dataset regardless its origin, as well as physician online monitoring and patient
monitoring within hospitals, daycare centers or generic healthcare infrastructures [31,32].
Any set of requirements can be consequently classified into one of the following four
use cases:

i. Patient self-monitoring, involving end-users willing to monitor their own medical
condition, for instance when recuperating from an incident or simply as part of a
preventive health monitoring routine with inherent support for early identification of
potentially alarming metrics.

ii. Physician off-line monitoring, targeting doctors using fog-enabled medical grade
wearables to monitor their patients. The patients must carry the wearable device



Sensors 2022, 22, 3375 9 of 14

at home and then, after a predefined period, return the device to their physician,
allowing the physician to acquire the traces and conduct the diagnosis.

iii. Physician on-line monitoring, which extends the previous use case and grants to the
physician the ability of remotely monitoring all accumulated vital traces through
secure and highly available cloud services

iv. Patient monitoring within healthcare infrastructure, in which the wearable devices are
operated by a personal health assistant or professional caregiver, inside an ambulance,
hospital or adult daycare center to instantly acquire patient vitals and carry out
real-time situation evaluation before storing the data to the cloud services for future
reference and analysis.

These use cases could be further benefit from the upcoming integration with 5G that
will allow instant notification of every affiliated/pre-authorized entity in case of emergency,
thus placing patients in a position of constant observation by medical professionals which
will be always aware of their status in real-time.

4. Proposed Architecture

To properly satisfy every use-case requirement and take advantage of the improved
connectivity and mobility characteristics delivered by 5G, a new, holistic architecture is
presented, meticulously designed to deliver ubiquitous next-generation healthcare services.
Our design, as shown in Figure 2, splits interconnected entities into three layers, namely:
(i) the Core Network Layer, containing cloud data centers and backed network infrastruc-
ture, as analyzed in the previous sections for the case of 5G; (ii) the Edge/Fog Layer, which
primarily hosts the basic nodes of the proposed architecture; and (iii) the Sensor/End-
device Layer, in which metrics from sensing devices are obtained. With regards to the
Edge/Fog Layer, it should be stated here that no distinction between the notions of Fog
and Edge computing was made, since from the application perspective and without the
loss of generality, the two architectural approaches behave in a similar manner. The main
components of our proposed solution along with a detailed functionality description are
given in the following paragraphs.

4.1. Fog Node

The main pillar of the proposed architecture is the Fog Node, a component responsible
for providing all functionality related to data handling, analytics, localization services and
user authentication. All critical services are handled by specialized, separate modules
as follows:

(i) Computation engine: The Fog Node incorporates a dedicated module for handling
all data-related tasks in real-time, which provides fast and reliable processing of an un-
bounded number of streams of data collected from IoT devices, smart phones and web
services. The computation engine is deliberately designed with emphasis on speed and
data resilience, being able to process a large amount of data collected from sensor nodes
within just seconds, while maintaining its operational efficiently regardless of the under-
lying hardware platform. Facilitated by a dedicated Message Broker, a bus responsible
for providing the overall inbound message handling functionality, it is possible to ingest
significant volumes of data streams considering the actual hardware it operates onto. The
demonstrated ability [33] to operate efficiently even over limited hardware resources is of
paramount importance for the overall context of Edge Computing, which dictates smaller
datacenter deployment closer to the network edge.



Sensors 2022, 22, 3375 10 of 14

Figure 2. High-level architecture of a generic Edge/Fog Computing node.

(ii) Analytics Engine: Datasets collected from the streams of data as well as the output
of the continuous processing taking place inside the Computation Engine are easily selected,
extracted and processed to support every possible business intelligence on demand. An
integrated, dedicated online Analytics Engine allows the organization of large volumes
of data and can visualize them from different points of view. It is possible for the service
operators to arbitrary define custom queries, visualization schemes and data manipulation
algorithms through an integrated API, thus retrieving every useful information fragment
identified inside the accumulated datasets.

(iii) Database Module: Data entering the Fog Node can be persisted in their original
format and associated with the output of the Computation Engine. This allows a constant
data correlation of all output with the original source regardless total number of iterations
it undergoes. Data streams can be forwarded later to different components for additional
processing, temporary or permanent storage; however, there is always a one-on-one anal-
ogy of the context they represent. Offline processing of data is facilitated for archiving
services or for benchmarking different versions of components, while the overall data
retrieval functionality is carried out through an intuitive API which allows all types of
command combinations.

(iv) Authorization/Authentication Module: A dedicated module is implemented
for handling user access to the Fog Node and the resources or data it contains. User
authorization as well as data access can be easily managed in real-time down to specific
user, device or time of day, thus limiting the overall visibility of users with limited clearance
level. Such a service is considered of paramount importance, especially for healthcare
applications, where datasets are deemed sensitive enough to be protected by special
legislation. Moreover, to further enhance security, communication interfaces throughout
the service infrastructure are designed to be compliant with the most updated standards
for internet security and message exchange is encrypted using data encryption standards
like AES and TLS/SSL technologies. This approach ensures full communication privacy
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between all platform entities, eliminating data leaks and eavesdropping or man-in-the-
middle attacks.

(v) Localization Service: Fog Node encompasses a specialized module for handling
Localization Services, since its deployment on the network edge involves a certain degree
of sensitivity towards roaming users, which may connect to unaffiliated gateways or move
outside their direct intervention zone. This entity keeps track of the user’s positioning and
notifies other functions which may need to also adopt their behaviour accordingly.

(vi) REST API: To further increase adoption and allow developers to use the overall
platform functionality to build applications and interact with its components, the Fog Node
exposes a REST API, handled by a dedicated module. Upon receiving proper authorization,
developers will be able to make requests to and obtain responses from the core components
of the Fog Node, thus initiating automated synergies between their application and the
overall system.

4.2. Gateway

The Gateway is designed to act a generic communication entity between the three
Layers of the architectural paradigm on which next-generation response-capable emer-
gency healthcare services will be deployed. It consists of two different internal nodes,
accommodating Fog-to-End-device and Fog-to-Core-Network-Layer packet forwarding;
the Fog/Endpoint Gateway and Fog/Cloud Gateway, respectively. These internal nodes
can interact with each other as well as communicate with the Fog Node through a cus-
tomized interface. Multiplexing and data encapsulation techniques, paired with advanced
cross-layer optimization methods must be integrated, into creating a sturdy and highly
expandable information transmission node, capable of seamlessly handling all types of
connections regardless of their origin or destination.

4.3. Delivering Response-Capable Emergency Healthcare Services over 5G Infrastructure

By deploying the proposed architecture for delivering response capable, emergency
healthcare services over 5G infrastructure, new features are introduced to the overall
ecosystem, which significantly boost its effectiveness.

All triggering events start from the end users, which are now equipped with inter-
connected devices such as Wearable ECG sensors, smartwatches and smartphones. These
devices create an intelligent sensing network that obtains metrics related to user vitals
and forwards them to the nearby Fog Node for further processing and temporary storage
through the affiliated Gateway (Figure 3, pointer 1). When receiving the necessary datasets,
the Fog Node can conduct a series of checks against historical or previously stored data
that may reveal anomalies, indicating perilous situations. An alert is then automatically
triggered by the Fog Node (Figure 3, pointer 2), that initiates an emergency call via the end
user’s smartphone (Figure 3, pointer 3). The call traverses the Edge/Fog Layer, and reaches
the Core Network Layer through the Network Service Provider infrastructure. It is then
further forwarded to the backend Cloud Data Centers (Figure 3, pointer 4), thus reaching
the Healthcare Service Providers that are engaged and issue the most appropriate response
according the severity of the situation (Figure 3, pointer 5). The response spectrum can be
significantly wide, ranging from dispatching an ambulance to simply reset the system to
its original state. Nevertheless, it is the proper authority that becomes aware of the actual
situation in real-time, and acts on the spot.

Moreover, unlike current emergency healthcare solutions, the proposed architecture
provides a much broader set of information such as real-time updates of the user’s condition,
accurate location of the emergency incident and recent patient records that greatly help
doctors and physicians to prepare in the most accurate way for the specific medical incident.
Delivering similar services in the pre-5G Era was simply impossible; however, to make it a
reality even with today’s networking features, we need to optimise the cooperation of the
network’s building blocks, which is exactly what the proposed architecture intends to do:
define a method of interoperability across services, entities, endpoints and key-stakeholders
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for delivering a seamless end-to-end experience and save lives through accurate and robust
data handling.

Figure 3. Delivering response-capable emergency healthcare services over 5G infrastructure.

5. Conclusions

As we dive into the 5G and B5G era, highly intelligent, agile and easily programmable
network topologies emerge, allowing the deployment of significantly improved services
and applications. Furthermore, the healthcare domain is augmented by the proliferation of
medical-grade, interconnected wearables that allow highly accurate, real-time monitoring
of vital traces and instant comparison of obtained data with vast medical records. The
combination of these two fields, through a meticulously designed framework capable of
triggering alerts, notifying healthcare service providers or dispatching emergency response
units to save lives, is without a doubt a significant upgrade to the quality of life of all
individuals. This paper shows how response-capable healthcare services can benefit from
the upcoming telecommunication ecosystem disruption, and present, validated and discuss
a novel, cutting-edge architecture which integrates new services on top of existing core
functionality thus adding significant value through the use cases it supports. Delivering
a holistic, end-to-end framework for interconnecting all major health-case service stake-
holders is the ultimate goal, and building such a solution by taking advantage of key
architectural elements of the 5G ecosystem is as radical as it gets. As future work, we
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propose the validation of the proof-of-concept in a real B5G testbed that will show that our
concept is valid in enabling, in near-zero time, a real emergency communication service.
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