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Abstract: The adverse effects of atmospheric particulate matter (PM) on health and ecosystems, as
well as on meteorology and climate change, are well known to the scientific community. It is therefore
undeniable that a good understanding of the sources of PM is crucial for effective control of emissions
and to protect public health. One of the major contributions to atmospheric PM is biomass burning, a
practice used both in agriculture and home heating, which can be traced and identified by analyzing
sugars emitted from the combustion of cellulose and hemicellulose that make up biomass. In this
review comparing almost 200 selected articles, we highlight the most recent studies that broaden such
category of tracers, covering research publications on residential wood combustions, open-fire or
combustion chamber burnings and ambient PM in different regions of Asia, America and Europe. The
purpose of the present work is to collect data in the literature that indicate a direct correspondence
between biomass burning and saccharides emitted into the atmosphere with regard to distinguishing
common sugars attributed to biomass burning from those that have co-causes of issue. In this paper,
we provide a list of 24 compounds, including those most commonly recognized as biomass burning
tracers (i.e., levoglucosan, mannosan and galactosan), from which it emerges that monosaccharide
anhydrides, sugar alcohols and primary sugars have been widely reported as organic tracers for
biomass combustion, although it has also been shown that emissions of these compounds depend
not only on combustion characteristics and equipment but also on fuel type, combustion quality and
weather conditions. Although it appears that it is currently not possible to define a single compound
as a universal indicator of biomass combustion, this review provides a valuable tool for the collection
of information in the literature and identifies analytes that can lead to the determination of patterns
for the distribution between PM generated by biomass combustion.

Keywords: biomass burning; saccharides; anhydrosugars; sugar alcohols; tracers; PM

1. Introduction

Any solid or liquid fuel combustion event generates airborne material that negatively
affects air quality and health. This is due to the fact that volatile and unburnt products are
inevitably generated by combustion processes that cannot in any way be ideal [1,2]. Such
combustion events are the major sources of aerosols and exert significance influence on
human health, air quality and global climate [3,4].

The term “aerosol” designates the complex of solid and liquid particles suspended
in the atmosphere that may vary in size from a few nanometers to tens of microns [5].
Depending on their origin, aerosols may be natural or anthropogenic and may consist
of mixtures of organic and inorganic compounds, primarily emitted or formed in the
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atmosphere from precursor gases (secondary aerosols), exhibiting a broad and complex
spectrum of physical and chemical properties, which actively contribute to their climate
and health-related effects [4,6]. Organic aerosols are the essential components of airborne
particulate matter (PM), globally recognized as one of the main environmental and health
risk factors contributing to the development or exacerbation of many diseases [7].

Epidemiological studies have found strong relationships between cardiovascular out-
comes, respiratory illnesses and asthma and the high level of organic aerosols in the atmo-
sphere [8]. Studies on pollution levels provided evidence concerning premature mortality
in Europe, which totals at least 40,000 premature deaths per year [9]. Several experimental
studies attribute the onset of adverse health effects, such as eye and throat irritation, to
wood smoke, and inhalation studies have demonstrated that wood smoke exposure may
induce systemic effects, providing a possible link to cardiovascular effects [9,10].

Evidence from a large number of studies shows that organic aerosols affect not only
human health but also influence climate. They have become a topic of great interest
because of their influence on radiative forcing, biogeochemical cycles and atmospheric
chemistry [11–13].

Jimenez et al., 2009 [14] stated that organic aerosol (OA) can modify the earth’s climate
through scattering and absorption of solar radiation, altering cloud properties and lifetime,
whereas Cao et al., 2012 [15] considered the ability of particles to reduce visibility by causing
uptake of water into the aerosol.

Accounting for 18–38% of the fine OA [16], biomass burning significantly contributes
to the emission of gases and toxic compounds in the atmosphere [17,18], and it has been
identified as a biofuel that may contribute to the worsening of both outdoor and indoor
air quality [19]. In central and northern Europe, biomass burning emissions have been
recognized as one of the major sources of organic aerosols during wintertime, contributing,
as domestic heating, to air quality degradation in many Mediterranean urban areas [20–22].
In addition to biomass burning for residential heating, burning of agricultural waste is a
common practice that emits relevant amounts of gaseous and particulate pollutants into
the atmosphere [23,24]. In developing countries, although environmentally unacceptable,
open burning is a widespread practice used as a rapid, cheap and easy method for disposing
of crop residues, releasing nutrients for the next growing cycle and clearing lands [25].

Nowadays, renewable energy sources in the form of solid biomass are becoming
increasingly important in order to replace fossil fuels and reduce greenhouse gas emis-
sions [26,27]. Solid waste biomass may be an alternative to conventional energy sources,
mostly in the form of compressed biofuels; briquettes or pellets have the advantages of
high density, lower moisture and better physical homogenization. There are many specific
papers focused on the characterization, production and energy evaluation of such biomass
materials as fuels [28,29], which represent an important opportunity in the renewable
energy field.

This study seeks to collect and define the information available in the literature on the
set of biomarkers that contribute to the PM produced both by natural phenomena and by
conversion processes of energy from biomass in order to be able to differentiate the PM
emitted by natural or anthropogenic activities (such as the use of fossil fuels).

In this review, biomass burning is observed in the form of open burning of agricultural
residues, grassland and forest fires, and residential combustion of biomass for cooking and
heating purposes. In this context, the most widespread biofuels include both crop waste,
such as rice straw, maize residue, wheat residues and bean straw [30]; and woody fuels,
such as branches and wood [31].

Although in the literature, there are several studies aimed at determining sugar com-
pounds present in PM emitted from anthropogenic or natural sources [32–36] and there are
also numerous studies based on the source apportionment of such aerosols [37–42], to the
best of our knowledge, there is a lack of studies related to determination and quantification
of such compounds as possible tracers useful for the discrimination of PM emitted by
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biomass combustion. The purpose of this review differs from that of the aforementioned
papers, bringing together multiple results concerning biomass-derived saccharides.

2. Methodology

A collection of data in the global scientific literature was conducted to determine
which saccharide compounds have been observed and quantified during atmospheric
monitoring in relation to biomass combustion phenomena and those attributed to natural
causes. This was achieved through an extensive literature research (Figure 1) performed
of the SCOPUS and the Google Scholar databases, using the keywords: biomass burning,
tracers, saccharides, anhydrosugars, sugar alcohols and PM. A total of 198 scientific pa-
pers published during the period of 1988–2022 were considered, and it was possible to
organize the review work into several sections. Section 3 deals with the characterization of
saccharides identified as tracers during environmental monitoring campaigns and summa-
rizes the major source apportionment studies aimed at the identification of such marker
compounds; Section 4 presents the results of such identification, and Section 5 provides a
summary and concluding remarks for future research directions. Reviewing the extensive
literature on aerosol emissions from biomass combustion, in this paper, we aim to provide
an overview of the contributions of sugar compounds to PM, synthesizing results from
published literature and summarizing the factors governing such emissions.
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3. Biomass Burning

Biomass is rich in saccharides in the form of oligosaccharides and polysaccharides,
such as cellulose, lignin and starch, which, upon combustion, produce significant amounts
of monosaccharides, disaccharides, sugar alcohols and anhydrosugars, in addition to other
simple molecules [43]. Such saccharide compounds are one of the major classes often uti-
lized as biological markers for atmospheric aerosols [44–46], and by virtue of their ubiquity
and size-resolved chemical composition, they have offered the opportunity to estimate the
atmospheric trajectory and sources of aerosol particles [47–49]. The anhydro saccharides
levoglucosan (L), mannosan (M) and galactosan (G) originate from the combustion of cellu-
lose and hemicellulose and are accordingly recognized as biomass-burning markers [50–52].
Primary saccharides such as glucose, sucrose and fructose are characteristic of material such
as pollen, fruit, and plant fragments [53], whereas sugar alcohols, such as mannitol and
arabitol are characteristic of fungal spores [54]. However, several studies have attributed
biomass burning as the source of these last two categories of saccharides, finding possible
causes of increased concentrations of such saccharide compounds in the atmosphere in
the volatilization from breakdown of polysaccharides and in hydrolysis in conditions of
atmospheric acidity during burning [55–58].
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Table S1 shows a list of such saccharide compounds monitored and emitted from
natural or anthropogenic sources, with their respective concentrations, locations, PM
fractions, technique, background and period of monitoring. Not all studies have as their
main objective the quantification of the identified compounds, so some studies, such as [59]
and [60], do not present the concentrations of the identified saccharides.

Characterizing compounds at a particle scale can thus improve our knowledge of the
composition of aerosols from combustion-related emission [36]. Studies have focused on
the seasonal and temporal variations of atmospheric sugars in several areas throughout the
world [61–64]. Research in this field is crucial because it provides useful data regarding the
sources and processing of aerosols released into the atmosphere from biomass burning, soil
dust and primary biological aerosols, such as fungal spores and pollen, all of which have a
considerable impact on the environment.

3.1. Tracers

As mentioned above, biomass burning is an important primary emitter of several trace
organic compounds that are reactive in the atmosphere, as well as of soot particles, which
decrease visibility and absorb incident radiation [65,66]. For this reason, the composition
of atmospheric aerosols has received increasing attention, aimed at determining the con-
tributions of the various emission sources to environmental PM. Khalil and Rasmussen,
2003 [67] argued that a tracer may be considered ideal when certain peculiar characteristics
are met: it has to be resistant to degradation, source specific and constant and allow for high-
precision measurement. However, some factors, such as the complex chemical combustion
conditions, the high inhomogeneity of the particles, the different types of biofuel used, the
operating conditions or the formation of ash, can make it difficult to find a tracer that meets
all of these characteristics at once [68–74]. Water-soluble potassium (K+) has been proposed
as a tracer for biomass burning in receptor models due to its ubiquity in the cytoplasm
of plants [75], and a strong positive correlation was observed among K+, organic carbon
(OC), elemental carbon (EC) and WSOCs (water-soluble organic compounds) that indicated
crop residues burning to carbonaceous aerosols [76]. Several studies in the literature have
also proposed the use of the levoglucosan to K+ ratio to distinguish the particular plant
species of BB activities in atmospheric aerosols [77]. However, fertilizers and soil dust
resuspension in rural areas [18,78,79], as well as meat cooking and refuse incineration in
urban areas [80–82], produce and release K+ in the atmosphere, leading to many limitations
in the use of this marker.

Factors such as varying temperature conditions, aeration, heating temperature, and
smoldering and flaming conditions contribute to determining the nature and amounts of
the combustion products [83]. Due to their source-specific origins, some thermally altered
molecules can therefore be used as chemical fingerprints and be useful in determining the
contributions of the burning of different biomasses to atmospheric particulate matter.

Research conducted in recent years indicates that anhydrosugars can be produced
and emitted into the atmosphere by the burning of coals, especially lignites [84,85]. This is
noteworthy, considering that in some countries, such as Poland and China, emissions of
carbonaceous PM are highly connected with coal burning [86–88], and this inevitably asso-
ciates the emission of a portion of detected anhydrosugars with such coal fuels. Admittedly,
this is not the issue that this work is concerned with, and deeper insights are provided in
the literature [51,89,90].

3.2. Source Apportionment Studies

Air quality is strongly affected by PM emissions generated by multiple sources, such
as industrial processes, vehicular traffic, power plants, combustion of agricultural and
food residues, and uncontrolled forest fires [91,92]. Accurate analysis of pollutant sources
and their components is a crucial step toward developing efficient control strategies and
reducing the harmful effects of particulate matter [93–95]. Among the developed methods,
the receptor model is a widely used tool for PM source apportionment (SA) studies. Such
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methods can be categorized into univariate models, e.g., chemical mass balance (CMB),
and multivariate models, such as positive matrix factorization (PMF), principal component
analysis (PCA) and the EPA’s Unmix model [96,97]. However, the CMB model has limited
application because it requires prior knowledge about source profiles and, in order to
achieve quantitative SA, needs to be associated to other methods. On the other hand, the
Unmix model does permit quantification of the source contribution, although it cannot
separate sources that have similar contributions to particle mass [98]. In contrast, PMF
is a multivariate chemical receptor model based on factor analysis developed by Paatero
at the University of Helsinki, Finland [99,100]. Briefly, this receptor model can estimate
the factor profiles and corresponding relative contributions during the sampling period
based on a large amounts of observation data, overcoming the aforementioned problems
using a least-square method to assess the source profiles and their contributions to particle
mass [101,102].

Further explanation of receptor models, their assumptions and applications can be
found in [103–106].

In the context of the literature studies we reviewed, many have used these SA methods
to identify and quantify the contribution of biomass burning to total atmospheric PM,
allowing for attribution of the presence of saccharides in the air to both biogenic and anthro-
pogenic factors, such as biomass burning. Table 1 shows the main source apportionment
studies that have attributed sugars to biomass burning and natural sources. As can be seen,
the most commonly used SA technique is PMF, followed by PCA.

Thus, levoglucosan and its isomers are used as specific chemical markers to identify
biomass-burning-derived emissions and help in source apportionment approaches. Such
compounds have been used in studies around the world: in Europe [84,107–110], North
and South America [111–113], as well as Asia [114–119].

Additionally, sugar alcohols such as inositol and arabitol have been proposed as
biomass-burning-derived tracers. Originated from the metabolism of fungi and found
on leaves of trees, such carbohydrates are also emitted from open-air combustion [120],
stoves [121] and combustion chambers [122]. Thus, concentrations of sugar alcohols, in
combination with high levels of levoglucosan, indicate that biomass combustion contributes
to the aerosol content, resulting in their classification as biomass burning markers.

Table 1. Source apportionment studies most used in the evaluation of saccharide compounds present
in airborne particulate matter.

Compound Source SA Study Reference

Anhydrosugars

Levoglucosan biomass burning PMF [43,123–125]
biomass burning PCA [60,126–128]

Mannosan biomass burning PMF [43]
biomass burning PCA [60,126–128]

Galactosan biomass burning PMF [43]
biomass burning PCA [60,126–128]

Sugar alcohols

Inositol biomass burning PCA [58]
fungal spores PMF

[129]plants PMF
soil dust [130]

Arabitol pollen PMF [131]
yeasts, fungal spores PMF [43,132]
fungal spores PCA [126]
biomass burning PCA [58,133]

Mannitol yeasts, fungal spores PMF [43,131,132]
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Table 1. Cont.

Compound Source SA Study Reference

fungal spores PCA [126,134]
biomass burning PCA [58,133]
plants, soil PCA [128]

Erythritol biomass burning PMF [43]
biomass burning PCA [58,134]
fungal spores PCA [134]
plants, biota PCA [129,133]

Glycerol biomass burning PMF [43,124]
soil PCA [60]
biomass burning PCA [58]

Xylitol biomass burning PCA [58]
plants, biota PCA [133]
biomass burning PMF [125]

Ribitol plants, biota PCA [128]
Threitol biomass burning PMF [132]

plants PMF [132]
Methyltretol plants PMF [132]

Monosaccharides

Glucose pollen, pollen, fruits, PMF [131]
fungal spores PCA [134]
biomass burning PCA [58,60,128,133]
soil, biota PMF [43,58]

Fructose pollen fruits, plants PMF [131]
fungal spores PCA [127,134]
soil PMF [43]
plants PCA [127]

Galactose biomass burning PMF [43]
biomass burning PCA [128]

Arabinose biomass burning PCA [128]
Mannopyranose soil, biota PCA [133]
Xylose biomass burning PCA [60]

plants PCA [129]

Disaccharides

Maltose biomass burning PCA [127]
plants PCA [127]

Sucrose plants, pollen, fruits PMF [131]
plants PCA [127]
pollen PCA [60,134]
fungal spores PCA [129]
soil, biota PMF [43]

Trehalose yeasts, fungal spores PCA [127]
soil biota PCA [58,133]
biomass burning PCA [133]
plants PMF [129]
soil dust PMF [129,131]
soil dust PCA [60]

4. Saccharides

Sugar compounds have been proposed both as tracers for determining the sources,
processes and paths of aerosols emitted by biomass burning and for elucidating the atmo-
spheric level of naturally emitted aerosols [131,135,136].

The organic matter in biomass is constituted of a large amount of biopolymers, such
as cellulose, hemicellulose and lignin. Cellulose, providing a supporting fibrous mesh
reinforced by lignin, is a long-chain linear polymer made up of 7000–12,000 D-glucose
monomers able to organize to form parallel fiber structures [137], whereas hemicellulose
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consists of only about 100–200 sugar monomers, such as glucose, mannose, galactose and
xylose, and a less intricate structure. Lignin is a coniferyl- and sinapyl-derived p-coumaryl
and contains tannins and terpenes, which makes it a complex substance [19,138]. The
biomass combustion process, which involves hydrolization, oxidation, dehydration and
pyrolization phases, leads to the formation and emission of important classes of sugars,
which are therefore source-specific [139,140] because, although they are also emitted from
other sources (e.g., lignite or low-grade coal), the contribution of such sources can be
considered negligible due to their extremely low emission rates [83,141] (Figure 2).
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The main class of sugar compounds emitted by biomass combustion is anhydrosugars;
in particular, levoglucosan, together with its mannosan and galactosan monomers, is the
most commonly used tracer for the assessment of PM from biomass burning. Moreover, the
ratio between levoglucosan and mannosan has been used to distinguish the contributions
of hard and softwood to wood-combustion-related PM [142].

Sugar alcohols, such as arabitol, mannitol and inositol, are another class of sug-
ars present in the atmosphere but emitted by biogenic sources, such as metabolism of
fungi [143,144]. Many studies have focused on the existing correlation of these compounds
with the anhydrosugars emitted by burning, showing that the presence of sugar alcohols,
in combination with high-levels of levoglucosan and its isomer, specifically indicates that
biomass burning has contributed to the aerosol content [61,145].

Mono- and disaccharides from soils and associated biota can be emitted in the at-
mosphere through resuspension, erosion and agricultural activities [35,146,147]. Glucose,
fructose and sucrose may derive from plant pollen and developing leaves [63,131]. In
light of the relevant presence of such compounds in airborne particulate matter, a compre-
hensive field study on the molecular and seasonal variation of atmospheric saccharides
may improve our understanding of the biogenic origins of aerosol particles besides the
anthropogenic sources [148].

With regard to the detection of saccharides in the monitoring campaigns that make
up this review paper, the particulate fraction most investigated and in which all the
categories of sugars are placed to a greater extent is PM2.5, followed by PM10 fraction and,
finally, the fraction that includes particles with an aerodynamic diameter lower than 1 µm
(PM1) [58,149].

As far as the improvement of our knowledge is concerned, increasing scientific efforts
have been demonstrated in the quantification of sugars. The most widespread analytical
method for analysis of such compounds in atmospheric samples is the gas chromatographic
technique coupled with mass spectrometry (GC-MS) [52,144,150,151], which guarantees



Int. J. Environ. Res. Public Health 2022, 19, 4387 8 of 20

high selectivity and specificity offered by the capillary columns and the m/z values in
the mass spectra, respectively [152]. Limitations to such a chromatographic approach
include the need for large sample mass and sample workup (e.g., solvent extraction, extract
concentration and derivatization). As an alternative, liquid chromatography techniques,
in the form of HPAEC-PAD (high-performance anion-exchange chromatography coupled
with pulsed amperometric detection), HPAEC-MS (high-performance anion-exchange chro-
matography coupled with mass spectrometry), IC-PAD (ion chromatography with pulsed
amperometric detection) and IC-MS (ion chromatography coupled with mass spectrometry)
have been widely used to directly analyze organic compounds in aqueous filter extracts,
allowing for simultaneous analysis of different sugar compounds [153,154]. An overview
of the most widely used techniques revealed in this work is shown in Figure 3.
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4.1. Anhydrosugars

Among the several categories of chemical compounds emitted by the combustion of
biomass, anhydrosugars are the most frequently identified.

Levoglucosan (1,6-anhydro-β-D-glucopyranose) and its isomers, mannosan (1,6-anhydro-
β-D-mannopyranose) and galactosan (1,6-anhydro-β-D-galactopyranose), are the most used
organic tracers to assess the contribution of biomass burning to atmospheric particulate
matter because, due to their low vapor pressure, they are easily found in the atmosphere as
a consequence of the pyrolysis and the thermal breakdown of cellulose [10,155–158]. The
presence of anhydrosugars in the ambient air has been demonstrated in emissions from
prescribed and agricultural fires [44,159,160], as well as from residential wood combustion
and wildfires [121,161,162].

The atmospheric concentrations of levoglucosan have shown a high variability de-
pending not only on the type of fuel and appliance utilized but also on meteorological
parameters. In a one-year PM monitoring study, Oduber et al., 2021 [161] stated that lower
autumn temperatures favored an increase in the concentrations of anhydrosugars due to
the increasing use of domestic heating devices. Moreover, mannosan was correlated not
only with OC, EC, Pb and other heavy metals, which are fossil fuel and traffic combus-
tion markers, but it was also correlated with As, a coal combustion marker. This result
led the authors to conclude that the selection of such anhydrosugars as biomass burning
tracers during the cold season may overestimate the contribution of that source because
of other anthropogenic emission factors. Thus, among the numerous studies present in
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the literature, some cast doubt on the possibility of using anhydrosugars, particularly
levoglucosan, as biomass burning tracers. Following controlled combustion experiments,
some authors [163,164] came to the conclusion that the levoglucosan fraction relative to
particle mass may be highly dependent on combustions parameters and that a variable
that strongly influences the yield of levoglucosan is the presence of inorganic ions in the
biomass [165,166], as the amount of mineral matter reduces the temperature of cellulose
pyrolysis [167]. Hence, qualitative and quantitative estimates of biomass burning emissions
to atmospheric PM using only levoglucosan as a marker may be unfounded.

As previously mentioned, galactosan and mannosan also contribute to biomass burn-
ing emissions, and their concentrations are strongly dependent on the biomass burned (e.g.,
hardwood or softwood). Based on the results available in the literature, in Table 2, the main
sugars detected in different matrices burned by means of different appliances are reported.

In light of this, the simultaneous quantification of anhydrosugars is desirable in order
to assess the contribution from distinct biomass burning emissions. Hence, the relative
proportions of levoglucosan to mannosan (L/M) have been used for source reconstruction
of combustion-derived byproducts in atmospheric aerosols. Differences in the L/M ratio
in smoke from softwood and hardwood grass combustion further support discrimination
between inputs from these combustion sources to the atmosphere [50]. Relatively high L/M
ratios in the range of 25 to 50 can be produced by herbaceous tissues [168]. Schmidl et al.
2011 [168] investigated two automatically and two manually fired appliances, as well as
eight biofuels. Detectable amounts of anhydrosugars are only emitted in the start-up phase
of automatically fired systems. L/M ratios of around 14–17 for hardwoods and of 2.5–3.5
for softwood combustion using manually fired appliances were found, whereas during
combustion in a biomass boiler, the authors reported L/M ratios of 2.3–2.9 for wood pellets,
1.7 for wood chips made of softwood and higher values for miscanthus and triticale pellets,
which behave similarly to hardwoods. Alves et al., 2017 [169] reported that anhydrosugars
represented 2.3–3.5 and 0.73–1.7 wt.% of the OC mass in emissions from the combustion of
pellets and agrofuels, respectively, in a pellet stove. The authors came to the conclusion
that the anhydrosugar mass fractions were 30 to 70 times lower than the amount reported
for manually fired systems.

As noted by numerous studies, the levoglucosan-to-OC ratio has been shown to be
highly variable in biomass burning emissions. Fine et al., 2001 [170] carried out tests to
determine the chemical composition of fine PM emissions from the fireplace combustion of
six species of wood grown in the northeastern United States. The authors found higher
levoglucosan concentrations from hardwood than softwood biomass. Levoglucosan yields
in the range of 0.109 to 0.168 g g−1 OC and 0.052 to 0.095 g g−1 OC were reported for
hardwood and softwood combustion, respectively. On the other hand, softwood combus-
tion usually produced higher mannosan emissions than those of hardwoods. Mannosan
emissions ranged between 0.0013 and 0.0047 and between 0.0090 and 0.025 g g−1 OC for
hardwood and softwood combustion, respectively. A later study [171–173] reported a
levoglucosan-to-OC mass ratio of 0.136 g g−1 for fireplace combustion of four hardwood
species grown in the southern US, which is consistent with the previous results. Fur-
thermore, the researchers also proved the importance of combustion conditions to the
anhydrosugars yield. After testing the same wood in a fireplace and in a woodstove, the
authors reported that in general, the levoglucosan content in emissions from woodstoves
were higher than those obtained from fireplaces. In addition to the L/M ratio, the relative
proportion of levoglucosan to galactosan has also been used; in order to evaluate whether
anhydrosugar ratios can provide information on the type of biofuel Caumo et al., 2016 [145],
studied the levoglucosan-to-galactosan ratio (L/G), considering that hemicelluloses from
sugarcane residue have a relatively high galactose (monosaccharide precursor of galac-
tosan) content [17]. Comparing the results obtained in Brazil from an urban site with those
obtained from a rural site characterized by sugarcane residue burning, it was found that a
ratio value lower than 30 may be attributed to sugarcane burning at a regional scale and
not to tropical forest fires affecting those areas.
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Table 2. Saccharide compounds detected in aerosols emitted from tree and herbaceous biomass by
means of different combustion appliances.

Biomass Saccharides Detected

Tree Biomass Anhydrosugars Sugar Alcohols Mono- and Disaccharides Units Appliance Ref.

Hardwood L M G I-ol A-ol M-ol E-ol S-ol G-ose F-ose M-ose S-ose

Blue gum,
Australian
blackwood

13.4 7.59 5.2 - - - - - - - - 74.6
(µg/g) mg/g Wildfire [55]

Blue gum,
Australian
blackwood

12.8 5.65 2.8 - - - - - - - - - mg/g Wildfire [55]

Acacia pellet 284 24.2 10.4 - 4.27 - - - - - - - µg/g Stove [173]
Apple tree
branch 3.44 0.22 0.18 <LOD 0.18 0.22 - - <LOD - - 0.08 mg/kg Stove [174]

Wood branch 5.46 0.36 0.29 <LOD 0.29 <LOD - - <LOD - - 0.13 mg/kg Stove [121]
Pear and
walnut wood
and leaves

2.12 0.412 1.45 - 0.138 <0.005 - 0.23 - <0.01 <0.01 <0.01
% of
total
mass

Open air
combustion [143]

Pear and
walnut wood
and leaves

2.14 0.36 1.93 - 0.14 0.008 - 0.27 - <0.01 0.017 <0.02
% of
total
mass

Open air
combustion [143]

Red maple 213.16 11.06 3.97 - - - - - - - - - mg/g Stove [131]
Sugar maple 210.07 12.88 2.55 - - - - - - - - - mg/g Stove [131]
White oak 125.14 5.51 6.55 - - - - - - - - - mg/g Stove [131]

Softwood

Douglas fir 408.8 117.65 24.17 - - - - - - - - - mg/g Stove [131]
Pine trees 13.9 8.4 6.21 - - - - - - - - - mg/g Wildfire [162]
Pine trees 9.65 5.65 4.23 - - - - - - - - - mg/g Wildfire [162]
Loblolly pine 253.11 46.33 11.45 - - - - - - - - - mg/g Stove [131]

Herbaceous
biomass

Brooms,
brambles 13.9 8.4 6.21 - - - - - - - - - mg/g wildfire [162]

Rice straw 112 3.14 - 2.23 2.79 1.84 0.8 - 2.59 - 5.76 - mg/kg combustion
chamber [175]

Maize residues 33.5 1.27 - 1.7 1.59 1.23 0.59 - 1.14 - 2.22 - mg/kg combustion
chamber [175]

Leaf litter (ddf) 196 11 - 2.65 5.14 1.97 1.41 - 1.72 - 16.4 - mg/kg combustion
chamber [175]

Wheat straw 96.4 2.12 1.97 <LOD 0.21 0.11 - - 0.56 - - <LOD mg/kg Stove [174]
Wheat straw,
corn straw 0.23 0.01 - - - - - - - - - - µg/m3 Stove [77]
Wheat straw,
corn straw 0.59 0.06 - - - - - - - - - - µg/m3 Stove [77]

Abbreviation used: “L” = levoglucosan; “M” = mannosan; “G” = galactosan; “I-ol” = inositol; “A-ol” = arabitol;
“M-ol” = mannitol; “E-ol” = erythritol; “S-ol” = sorbitol; “G-ose” = glucose; “F-ose” = fructose; “M-ose” = mannose;
“S-ose” = sucrose; “LOD” = limit of detection; “-” = not detected or not specified.

4.2. Sugar Alcohols

Sugar alcohols, also referred to as polyalcohols, polyols or sacharols, represent another
class of carbohydrate derivatives present in the atmospheric aerosol naturally produced
by fungi, lichens, soil biota and algae [176]. Several studies have been undertaken to
characterize sugar alcohols in different areas worldwide in order to use them as indicators
of biogenic aerosol sources [131,177–180].

The reason why these sugars constituents are primary products of combustion is
that they are formed either through direct volatilization from vegetation material or as
products of the breakdown of polysaccharides. Some of these saccharide derivatives may
also be formed by hydrolysis of the analogous anhydrosugars under the acidic atmospheric
conditions produced by biomass burning, as suggested by many authors [55–58,161].

Arabitol and mannitol are two typical sugar alcohols widely monitored, as they
make an important contribution to the mass of atmospheric aerosol particles derived
from microbially degraded material during the leaf senescence period and from fungal
spores [1,54,144,181–183]. In an atmospheric monitoring study in China, Kang et al.,
2017, [181] found higher levels of mannitol and arabitol in spring likely, due to the blos-
soming of vegetation, and higher glycerol, arabitol and erythritol levels during winter and
autumn, i.e., when vegetation decays and the fungal population increases. On the other
hand, higher wintertime concentrations may be attributed to intense open burning of crop
residues and indoor biofuel utilization for heating or cooking. Many other studies have
suggested combustion sources of these compounds [57,58,133].
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Zhang et al., 2013 [182] studied emissions from different types of biomass burning
and proposed arabitol and inositol as useful tracers for green foliage combustion due
to their higher concentrations of PM2.5 emitted from the combustion of leaves from a
broadleaf shrub.

Similarly, in a study aimed at determining the emission factors of PM2.5 emitted from
stoves by combustion of maize straw and wheat straw, Sun et al., 2019 [121] found different
amounts of mannitol and inositol in such biofuels.

Schmidl et al., 2008 [142] found sugar alcohols in notable concentrations in leaf burning
samples, suggesting the use of polyols to identify the contribution of leaf burning to high
organic matter levels in ambient air.

Besides mannitol, inositol and arabitol, glycerol, xylitol and erythritol are also found
in atmospheric monitoring studies (Table S1). In particular, erythritol, commonly present in
soil microbial metabolites, is produced when soil combustion occurs following the burning
of agricultural waste in fields [184]. It has also been widely detected during monitoring
analysis, in addition to xylitol and sorbitol [60,127,128,133,185,186].

4.3. Primary Sugars

In addition to the saccharide compounds mentioned above, several studies have
revealed that mono- and disaccharides are relatively abundant water-soluble organic com-
ponents of atmospheric aerosols [187]. For example, glucose has been used as a marker for
vegetable materials (such as leaves and pollen) and soil emissions in several studies [43,58],
and trehalose is commonly associated with microbial and fungal activity [188,189].

Hence, biogenic sources of monosaccharides mainly include microorganism, vascular
plants and animals [144], soil and associated biota [32].

Monosaccharides are thought to be relatively stable in the atmosphere [34], although
studies focused on their atmospheric lifetime and spatial distribution are still limited.
Nevertheless, atmospheric concentrations of monosaccharides have been quantified in
several studies on PM emissions in both rural and urban areas. For example, Nirmalkar
et al., 2015 [133], through an environmental monitoring study at a rural site in central India,
found high concentrations of trehalose in PM2.5, attributing it to the thermal splitting of
polysaccharides that occurs at high temperatures. Similarly, in a PM monitoring campaign
in downtown Shanghai, Ren et al., 2020 [127] attributed the fraction composed of primary
sugars (e.g., xylose, mannose, fructose, glucose, sucrose, maltose and trehalose, among
others) to biomass burning. From this research emerged the possibility that anthropogenic
emissions of primary sugars in the ambient air may occur by thermal stripping of cellulose
during biomass burning events and be affected both by the type of fuel [190] and by the
type of the combustion plant [191,192].

5. Conclusions

Publications worldwide agree on the identification of biomass burning as a major
source of atmospheric particulate matter. The present work focused on literature findings
concerning biomass burning emissions in order to provide better knowledge of saccharides
tracers. As chemical and physical burning processes produce several compounds not
attributable to other sources (e.g., fossil fuels), the detection of such specific markers is
essential to evaluate the contribution of biomass burning to airborne particulate matter. A
number of relevant mostly laboratory-based studies have contributed to our knowledge
of the saccharide products of biomass combustion. Many of these studies have involved
controlled pyrolysis of individual components or the burning of actual vegetation samples.
Some characterization studies of smoke aerosols collected during field campaigns have also
been carried out. By providing a picture of sugar compounds naturally and anthropologi-
cally emitted around the world, it is found that monosaccharide anhydrides, sugar alcohols
and primary sugars have been widely reported as organic tracers for biomass burning. On
the other hand, it has been demonstrated that emissions of such compounds depend not
only on combustion characteristics and appliances but also on the type of biofuel and the
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atmospheric conditions. Hence, it is not currently possible to define a single compound as a
universal marker of biomass combustion. In this field, in order to help researchers to obtain
an accurate and realistic attribution of saccharide sources of ambient PM, future studies
might be oriented toward the monitoring of specific saccharides in source apportionment
studies and the integration of local emission information and dispersion models, as they
have not yet been sufficiently investigated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph19074387/s1, Table S1: Saccharide compounds identified in the research articles re-
viewed [193–197].
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