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Abstract. We study of the existence of saddle points of the functional J defined in
(1.1) both in the regular case, i.e., if E belongs to (LN (Ω))N , and in the singular one,
i.e., if E belongs to (L2(Ω))N .

Carlo: weak minima – strong friend

1. Introduction

The objective of a suitable definition of minima of integral functionals, if the data are
not regular, is the aim of the papers [6], by Carlo Sbordone and Tadeusz Iwaniec, where
the definition of weak minima is introduced (see also [5]), and [1], where the definition
of T-minima is introduced.

In this paper we follow [6], in order to prove the existence of a saddle point of the
functional J below, if the vectorial field E is very singular.

Let Ω be a bounded, open subset of RN , with N > 2. Let us define, for (v, ψ) in
(W 1,2

0 (Ω),W 1,2
0 (Ω)),

(1.1) J(v, ψ) =
1

2

∫
Ω

A(x)∇v∇v − 1

2

∫
Ω

M(x)∇ψ∇ψ +

∫
Ω

v E(x)∇ψ −
∫

Ω

f(x) v .

where A(x), M(x) are symmetric measurable matrices such that

(1.2)

{
A(x) ξ ξ ≥ α|ξ|2 , |A(x)| ≤ β ,

M(x) ξ ξ ≥ α|ξ|2 , |M(x)| ≤ β ,

for almost every x in Ω, for every ξ in RN , with 0 < α ≤ β, and

(1.3) f ∈ Lm(Ω) , m ≥ 2∗ =
2N

N + 2
,

(1.4) E ∈ (LN(Ω))N .

It is easy to see, thanks to the assumptions on A(x), M(x), E(x) and f(x), that for
every v and ψ in W 1,2

0 (Ω) both Iψ(·) = J(·, ψ) and Iv(·) = −J(v, ·) are coercive and

weakly lower semicontinuous on W 1,2
0 (Ω); hence, by standard result of the Calculus of

Variations, for every ψ in W 1,2
0 (Ω) there exists a (unique) minimum uψ of Iψ(·), and for
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every v in W 1,2
0 (Ω) there exists a (unique) minimum ϕv of Iv(·). Both uψ and ϕv are

weak solutions of the corresponding Euler-Lagrange equations, that is
∫

Ω

A(x)∇uψ∇w +

∫
Ω

E(x)∇ψ w =

∫
Ω

f(x)w , ∀ w ∈ W 1,2
0 (Ω) ,∫

Ω

M(x)∇ϕv∇η =

∫
Ω

v E(x)∇η , ∀ η ∈ W 1,2
0 (Ω) .

Therefore, and thanks to uniqueness of minima, one can build a map v 7→ uϕv ; if such a

map has a fixed point, that is if there exists u in W 1,2
0 (Ω) such that u = uϕu , then the

couple (u, ϕ), with ϕ = ϕu, is a saddle point of the functional J , in the sense that

J(u, ψ) ≤ J(u, ϕ) ≤ J(v, ϕ) , ∀ v , ψ ∈ W 1,2
0 (Ω) .

Furthermore, standard techniques of the Calculus of Variations imply that (u, ϕ) is a
weak solution of the system
(1.5)

u ∈ W 1,2
0 (Ω) :

∫
Ω

A(x)∇u∇v +

∫
Ω

E(x)∇ϕv =

∫
Ω

f(x) v , ∀ v ∈ W 1,2
0 (Ω) ,

ϕ ∈ W 1,2
0 (Ω) :

∫
Ω

M(x)∇ϕ∇ψ =

∫
Ω

uE(x)∇ψ , ∀ ψ ∈ W 1,2
0 (Ω) .

However, it is not possible to prove that the map v 7→ uϕv has a fixed point; this is due to
the fact that the map does not have an invariant ball, unless the norm of E in (LN(Ω))N

is small. Thus, our approach is to pass from the Ptolemaic theory to the Copernican
one: first we prove the existence of a solution (u, ϕ) of the system (1.5) and then we
prove that (u, ϕ) is a saddle point of the functional J . This will be done in Section 2 of
this paper, where uniqueness of solutions for (1.5) will be also proved.

The second part of the paper is devoted to the study the existence a weak solution
(u, ϕ) in (W 1,2

0 (Ω),W 1,2
0 (Ω)) of the system (1.5) even if we only assume

(1.6) E ∈ (L2(Ω))N .

In this singular case, the summability of the functions is poor, so that the standard
formulation of minimum (maximum) is meaningless: as we said before, a way to give a
meaning is to use the concept of “weak minima” introduced in [6]: see Section 3.

One final remark: even though the vector field E is not regular, we are nevertheless able
to prove existence of solutions (or of weak saddle points) in the “energy space” W 1,2

0 (Ω).
This fact, which is false if one considers the equations separately, is a consequence of
the fact that we are dealing with a system of equations. For further results in which the
“system structure” of the problem improves the regularity of the solutions with respect
to the single equation, see [3], where the link between equations is given by a term of
the form ∫

Ω

ψ |v|r , r > 1 ,
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and [2], where the link is of the form ∫
Ω

ψ |∇v|2 .

2. E belongs to (LN(Ω))N

As stated in the Introduction, even though the functional J has good geometric prop-
erties, it is not possible to use fixed points theorems since it is not possible to find
an invariant ball. Therefore, we need to approximate either J , or the corresponding
Euler-Lagrange equations; this latter is the path we have chosen.

We recall the definition of the truncation Tk : R→ R: if k ≥ 0 we define

Tk(s) = max(−k,min(s, k)) .

Let n in N, and let v in L2(Ω); then there exists a unique function ψ in W 1,2
0 (Ω), weak

solution of the Dirichlet problem

ψ ∈ W 1,2
0 (Ω) : −div(M(x)∇ψ) = −div(Tn(v)E(x)) ,

that is ∫
Ω

M(x)∇ψ∇η =

∫
Ω

Tn(v)E(x)∇η , ∀ η ∈ W 1,2
0 (Ω) .

Furthermore, choosing η = ψ, and using (1.2), we have

α

∫
Ω

|∇ψ|2 ≤
∫

Ω

M(x)∇ψ∇ψ =

∫
Ω

Tn(v)E(x)∇ψ ≤ n ‖E‖
L2(Ω)

‖∇ψ‖
L2(Ω)

,

so that

(2.1) ‖∇ψ‖
L2(Ω)

≤
‖E‖

L2(Ω)

α
n = C1 n .

Once ψ is given, there exists a unique weak solution u in W 1,2
0 (Ω) of

u ∈ W 1,2
0 (Ω) : −div(A(x)∇u) + E(x)∇ψ = f(x) ,

that is ∫
Ω

A(x)∇u∇w +

∫
Ω

E(x)∇ψ w =

∫
Ω

f(x)w , ∀ w ∈ W 1,2
0 (Ω) .

Furthermore, choosing w = u and using both (1.2) and the Sobolev embedding, we have

α

∫
Ω

|∇u|2 ≤
∫

Ω

A(x)∇u∇u =

∫
Ω

f(x)u−
∫

Ω

E(x)∇ψ u

≤ C2

(
‖f‖

L2∗ (Ω)
‖u‖

W 1,2
0 (Ω)

+ ‖E‖
LN (Ω)

‖∇ψ‖
L2(Ω)

‖u‖
W 1,2

0 (Ω)

)
,
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which implies that

(2.2) ‖u‖
W 1,2

0 (Ω)
≤ C3

α

[
‖f‖

L2∗ (Ω)
+ ‖E‖

LN (Ω)
‖∇ψ‖

L2(Ω)

]
.

Recalling (2.1) we then obtain

(2.3) ‖u‖
W 1,2

0 (Ω)
≤ C4

(
‖f‖

L2∗ (Ω)
+ n ‖E‖

LN (Ω)

)
.

Recalling Poincaré inequality, we thus have that

‖u‖
L2(Ω)

≤ C5 (1 + n) = R .

Therefore, the ball in L2(Ω) of center the origin and radius R is invariant for the map
v 7→ u. Furthermore, from (2.3) and Rellich theorem it follows that the map v 7→ u is
compact between L2(Ω) and L2(Ω), while the fact that the map v → ∇ψ is continuous
from L2(Ω) to (L2(Ω))N , and the map ∇ψ 7→ u is continuous as well between (L2(Ω))N

and L2(Ω) yields that the map v 7→ u is continuous between L2(Ω) and L2(Ω). By
Schauder fixed point theorem, there exists a couple (un, ϕn) of weak solutions of

(2.4)

{
un ∈ W 1,2

0 (Ω) : −div(A(x)∇un) + E(x)∇ϕn = f(x) ,

ϕn ∈ W 1,2
0 (Ω) : −div(M(x)∇ϕn) = −div

(
Tn(un)E(x)

)
.

In the next theorem, we prove that the sequence (un, ϕn) converges to a solution of
(1.5).

Theorem 2.1. Assume (1.2), (1.3), (1.4). Then there exists a weak solution (u, ϕ),
belonging to (W 1,2

0 (Ω),W 1,2
0 (Ω)), of the system (1.5).

Proof. Let (un, ϕn) be the solutions of (2.4). Using (Tn(un), ϕn) as test functions in the
weak formulation of (2.4), we obtain

∫
Ω

A(x)∇un∇Tn(un) +

∫
Ω

En(x)∇ϕn Tn(un) =

∫
Ω

f(x)Tn(un),∫
Ω

M(x)∇ϕn∇ϕn =

∫
Ω

Tn(un)En(x)∇ϕn ,

which then yields, substituting the second identity in the first one,∫
Ω

A(x)∇Tn(un)∇Tn(un) +

∫
Ω

M(x)∇ϕn∇ϕn =

∫
Ω

f(x)Tn(un) .

Recalling (1.2) and Sobolev embedding, we thus have

α

∫
Ω

|∇Tn(un)|2 + α

∫
Ω

|∇ϕn|2 ≤
∫

Ω

|f(x)| |Tn(un)| ≤ C6‖f‖L2∗ (Ω)
‖Tn(un)‖

W 1,2
0 (Ω)

.
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From this inequality it follows that both {Tn(un)} and {ϕn} are bounded sequences in
W 1,2

0 (Ω). Using (2.2), with ψ = ϕn, we have

‖un‖W 1,2
0 (Ω)

≤ C7

α

[
‖f‖

L2∗ (Ω)
+ ‖E‖

LN (Ω)
‖∇ϕn‖L2(Ω)

]
≤ C8 ,

so that also {un}, and not only {Tn(un)}, is a bounded sequence in W 1,2
0 (Ω). Using the

boundedness of both un and ϕn we have that, up to subsequences, there exist u and ϕ
in W 1,2

0 (Ω) such that

un ⇀ u , ϕn ⇀ ϕ , in W 1,2
0 (Ω).

These convergences, and Sobolev embedding theorem, imply that

E(x)∇ϕn ⇀ E(x)∇ϕ , in L2∗(Ω), Tn(un)E(x) ⇀ uE(x) , in L2(Ω).

Thus, it is possible to pass to the limit in the weak form of (2.4):
∫

Ω

A(x)∇un∇v +

∫
Ω

E(x)∇ϕn v =

∫
Ω

f(x) v , ∀ v ∈ W 1,2
0 (Ω) ,∫

Ω

M(x)∇ϕn∇ψ =

∫
Ω

Tn(un)E(x)∇ψ , ∀ ψ ∈ W 1,2
0 (Ω) ,

to obtain that (u, ϕ) is a solution of (1.5). �

We now turn to uniqueness of solutions.

Theorem 2.2. The solution of (1.5) given by Theorem 2.1 is unique.

Proof. If (u1, ϕ1) and (u2, ϕ2) are two solutions of (1.5), then their differences u = u1−u2

and ϕ = ϕ1 − ϕ2 are such that
∫

Ω

A(x)∇u∇w +

∫
Ω

E(x)∇ϕw = 0 , ∀ w ∈ W 1,2
0 (Ω) ,∫

Ω

M(x)∇ϕ∇η =

∫
Ω

uE(x)∇η , ∀ η ∈ W 1,2
0 (Ω) .

Choosing u as test function in the first equation, and ϕ as test function in the second,
we obtain 

∫
Ω

A(x)∇u∇u+

∫
Ω

E(x)∇ϕu = 0 ,∫
Ω

M(x)∇ϕ∇ϕ =

∫
Ω

uE(x)∇ϕ ,

which then implies ∫
Ω

A(x)∇u∇u+

∫
Ω

M(x)∇ϕ∇ϕ = 0 .

Using (1.2) one then has u = 0 = ϕ, so that u1 = u2 and ϕ1 = ϕ2. �

As stated in the Introduction, the solution of (1.5) is a saddle point of J .
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Theorem 2.3. The solution of (1.5) given by Theorem 2.1 is a saddle point of the
functional J , that is

(2.5) J(u, ψ) ≤ J(u, ϕ) ≤ J(v, ϕ) , ∀ v , ψ ∈ W 1,2
0 (Ω) .

Proof. A straightforward consequence of the theory of quadratic functionals in Hilbert
spaces is that the first equation of (1.5) implies that

1

2

∫
Ω

A(x)∇u∇u−
∫

Ω

f u+

∫
Ω

uE(x)∇ϕ ≤ 1

2

∫
Ω

A(x)∇v∇v −
∫

Ω

f v +

∫
Ω

v E(x)∇ϕ ,

for every v in W 1,2
0 (Ω). Hence, adding a constant term, we have

1

2

∫
Ω

A(x)∇u∇u− 1

2

∫
Ω

M(x)∇ϕ∇ϕ−
∫

Ω

f u+

∫
Ω

uE(x)∇ϕ

≤ 1

2

∫
Ω

A(x)∇v∇v − 1

2

∫
Ω

M(x)∇ϕ∇ϕ−
∫

Ω

f v +

∫
Ω

v E(x)∇ϕ .

The last inequality can be rewritten as

(2.6) J(u, ϕ) ≤ J(v, ϕ) , ∀ v ∈ W 1,2
0 (Ω) .

On the other hand, the fact that ϕ solves the second equation of (1.5) implies that

−1

2

∫
Ω

M(x)∇ψ∇ψ +

∫
Ω

uE(x)∇ψ ≤ −1

2

∫
Ω

M(x)∇ϕ∇ϕ+

∫
Ω

uE(x)∇ϕ ,

for every ψ in W 1,2
0 (Ω), so that (adding two constant terms)

1

2

∫
Ω

A(x)∇u∇u−
∫

Ω

f u− 1

2

∫
Ω

M(x)∇ψ∇ψ +

∫
Ω

uE(x)∇ψ

≤ 1

2

∫
Ω

A(x)∇u∇u−
∫

Ω

f u− 1

2

∫
Ω

M(x)∇ϕ∇ϕ+

∫
Ω

uE(x)∇ϕ .

This second inequality can be rewritten as

(2.7) J(u, ψ) ≤ J(u, ϕ) , ∀ ψ ∈ W 1,2
0 (Ω) .

Putting together (2.6) and (2.7), we get (2.5). �

3. E belongs to (L2(Ω))N

In this section, we assume (1.6), so that the functional J is not well defined due to the
presence of the term ∫

Ω

v E∇ψ .

Nevertheless, we will be able to prove results similar to those of Theorem 2.1 and Theorem
2.3 (this latter thanks to the definition of weak minimum), but not uniqueness results
as that of Theorem 2.2.
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Due to the fact that J is not well defined on (W 1,2
0 (Ω),W 1,2

0 (Ω)), we need to approx-
imate it by regularizing the vector field E. Indeed, let {En} be a sequence of functions

in (LN(Ω))N strongly convergent to E in (L2(Ω))N (for example En(x) = E(x)

1+ 1
n
|E(x)|), and

let

(3.1) Jn(v, ψ) =
1

2

∫
Ω

A(x)∇v∇v − 1

2

∫
Ω

M(x)∇ψ∇ψ +

∫
Ω

v En(x)∇ψ −
∫

Ω

f(x) v ,

for every v and ψ in W 1,2
0 (Ω).

Applying the results of Section 2, there exists a unique couple (un, ϕn) of weak solutions
of

(3.2)

{
un ∈ W 1,2

0 (Ω) : −div(A(x)∇un) + En(x)∇ϕn = f(x) ,

ϕn ∈ W 1,2
0 (Ω) : −div(M(x)∇ϕn) = −div

(
unEn(x)

)
,

with (un, ϕn) also being a saddle point of Jn.
We are now going to prove that (un, ϕn) converges to a (weaker) solution of (1.5).

Theorem 3.1. Assume (1.2), (1.3), (1.6). Then there exists a solution (u, ϕ), belonging
to (W 1,2

0 (Ω),W 1,2
0 (Ω)), of the system

(3.3)
∫

Ω

A(x)∇u∇w +

∫
Ω

E(x)∇ϕw =

∫
Ω

f(x)w , ∀ w ∈ W 1,2
0 (Ω) ∩ L∞(Ω)∫

Ω

M(x)∇ϕ∇η =

∫
Ω

uE(x)∇η , ∀ η ∈ C1
0(Ω) .

Proof. Choosing un and ϕn as test functions in the weak formulation of (3.2) one gets,
after substituting the second equation in the first,

(3.4)

∫
Ω

A(x)∇un∇un +

∫
Ω

M(x)∇ϕn∇ϕn =

∫
Ω

f(x)un ,

which then yields (using (1.2)) that both the sequences {un} and {ϕn} are bounded in
W 1,2

0 (Ω). Thus, if u and ϕ are the weak limits (up to subsequences) of {un} and {ϕn}
respectively, we have that (u, ϕ) is a solution of the system (3.3), since one has that

Enw → E w in (L2(Ω))N , ∇ϕn ⇀ ∇ϕ in (L2(Ω))N , ∀ w ∈ W 1,2
0 (Ω)∩L∞(Ω) ,

and (by Rellich theorem)

En → E in (L2(Ω))N , un∇η → u∇η in (L2(Ω))N , ∀ η ∈ C1
0(Ω) .

�

Note that since the term uE belongs to (L
N

N−1 (Ω))N , one can choose test functions η

belonging to W 1,N
0 (Ω) in the weak formulation of the second equation of (3.3).

Remark 3.2. We point out a double regularizing effect on the solution (u, ϕ) of (3.3):
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A) the solution u of the first equation belongs to W 1,2
0 (Ω), even if the “right hand

side” f(x)− E(x)∇ϕ only belongs to L1(Ω);
B) the solution ϕ of the second equation belongs to W 1,2

0 (Ω), even if the “right hand

side” −div(uE(x)) only belongs to W−1, N
N−1 (Ω).

We recall now, and we have used it in the previous section, that in a “regular data”
framework minima of variational integrals are solutions of the corresponding Euler-
Lagrange equations and viceversa; however, if the data are not regular enough for the
functional to be defined, the link between functionals and equations is lost. For example,
there exist distributional solutions of elliptic equations with (say) L1(Ω) data, but the
corresponding functional has no minimum: neither on the energy space, nor on a suitable
subspace of it.

For this reason, in order to restore the link between functionals and equations, the con-
cept of “weak minimum” has been introduced in [6]: the idea is to rewrite the definition of
minimum I(u) ≤ I(v) in another form. More precisely, to write it as I(u)−I(u−w) ≤ 0,
with w smooth enough, and use the assumptions on I to remark that, even though nei-
ther I(u) nor I(u− w) are finite, their difference is thanks to cancelations. To be more
precise, we have the following defintion.

Definition 3.3. Let I be defined as

I(v) =
1

2

∫
Ω

B(x)∇v∇v −
∫

Ω

g(x) v ,

with B a symmetric matrix satisfying (1.2), and g a function in L1(Ω). A function u in
W 1,1

0 (Ω) is a weak minimum of I if

(3.5)

∫
Ω

B(x)∇u∇w ≤ 1

2

∫
Ω

B(x)∇w∇w +

∫
Ω

g(x)w , ∀ w ∈ C1
0(Ω) .

Note that if one formally writes I(u) ≤ I(u− w), one has (expanding the right hand
side)

1

2

∫
Ω

B(x)∇u∇u−
∫

Ω

g(x)u

≤ 1

2

∫
Ω

B(x)∇u∇u−
∫

Ω

B(x)∇u∇w +
1

2

∫
Ω

B(x)∇w∇w −
∫

Ω

g(x) (u− w) ,

which yields (3.5) after canceling equal terms. Also note that all terms in (3.5) are finite
due to the assumptions on u and w.

Theorem 3.4. If (u, ϕ) is the solution of (3.3) given by Theorem 3.1, then u is a weak
minimum of J(·, ϕ), and ϕ is a weak minimum of −J(u, ·).
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Proof. Let {En}, un and ϕn be as in the proof of Theorem 3.1; then, by Theorem 2.3,
one has

Jn(un, ϕ) ≤ Jn(z, ϕ) , ∀ z ∈ W 1,2
0 (Ω) ,

where Jn has been defined in (3.1). Simplifying equal terms only depending on ϕn, one
has that J(un, ϕ) ≤ J(z, ϕ) is equivalent to

1

2

∫
Ω

A(x)∇un∇un +

∫
Ω

unEn(x)∇ϕn −
∫

Ω

f(x)un

≤ 1

2

∫
Ω

A(x)∇z∇z +

∫
Ω

z En(x)∇ϕn −
∫

Ω

f(x) z .

Choosing z = un − w, with w in C1
0(Ω), and simplifying equal terms, one has∫

Ω

A(x)∇un∇w ≤
1

2

∫
Ω

A(x)∇w∇w −
∫

Ω

wEn(x)∇ϕn +

∫
Ω

f w .

The boundedness of both un and ϕn in W 1,2
0 (Ω) (proved in Theorem 3.1), allows to pass

to the limit in the above inequality, to prove that∫
Ω

A(x)∇u∇w ≤ 1

2

∫
Ω

A(x)∇w∇w −
∫

Ω

wE(x)∇ϕ+

∫
Ω

f w , ∀ w ∈ C1
0(Ω) ,

so that u is a weak minimum of J(·, ϕ). An analogous calculation proves that ϕ is a
weak minimum of −J(u, ·). �

Differently from the case E in (LN(Ω))N , we are not able to prove that (u, ϕ) is unique,
neither “directly” from the formulation, nor using alternate definitions as, for example,
the one of Solution Obtained as Limit of Approximations (see [4]).
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