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Abstract: The present investigation evaluated the effect of the combination of different dental filling
materials in Class I cavities under occlusal loading using three-dimensional finite elements analysis
(FEA). Six computer-generated and restored models of a lower molar were created in the CAD
software and compared according to the biomechanical response during chewing load condition.
Two adhesively bonded bulk restorative materials [bulk-fill resin composite (BF) or Alkasite (Alk)]
were evaluated with or without the presence of a base material below (flowable resin composite or
glass ionomer cement). A food bolus was placed on the occlusal surface mimicking the compressive
occlusal load (600 N) during the static linear analysis. The maximum principal stress (tensile) was
calculated as stress criteria in enamel, dentin and restoration. All models showed high stresses
along the enamel/restoration margin with a similar stress trend for models restored with the same
upper-layer material. Stress values up to 12.04 MPa (Alk) or up to 11.12 MPa (BF) were recorded at
the enamel margins. The use of flexible polymeric or ionic base material in combination with bulk-fill
resin composite or Alk did not reduce the stress magnitude in dentine and enamel. Class I cavities
adhesively restored with bulk-fill resin composite showed lighter stress concentration as well as Alk.
Therefore, adhesively bonded Alk restoration showed a promising mechanical behavior when used
with different base materials or as a bulk restoration for posterior Class I cavity.

Keywords: dental restoration failure; resin composite; finite element analysis; dental materials

1. Introduction

Composite resin-based dental fillings are assumed to be advanced polymeric materials
in adhesive dentistry due to their optimal properties that mechanically and aesthetically
replace missing dental tissues [1,2]. These materials are used in daily dentistry as direct
fillings when an effective restoration of weakened or fractured teeth is required [3]. Despite
that, the organic matrix, residual monomers and the potential cytotoxic risk of the resin
composites components are still investigated in the literature [4,5].

A greater clinical application of new and modified resin monomers as low stressing
bulk dental materials is advocated to restore deep posterior cavities [6]. Leakage effects
associated with the stressing and shrinking of resin composites in adhesively bonded
posterior restorations are consequently reduced [7]. In this way, the residual polymerization
shrinkage stress following the photo-polymerization kinetic is more deeply linked to the
polymer reaction characteristics and the C-factor influence can be severely reduced [8].
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In addition, upon investigating the stress distribution in large posterior restorations, a
more favorable behavior has been observed when glass ionomer cement is layered in
combination with a resin filling composite in comparison to a bulk-fill resin composite
filling [9].

Another alternative to restore large cavities in molars has been advocated to be the use
of a modified resin composite with alkaline filling [10]. Cention N (Ivoclar, Lichtenstein)
has been developed with the main purpose to replace amalgam material. It is a bulk-
fill material available for both dual- and self-cure modes with promising chemical and
physical properties as a direct dental material. Previous results for microleakage [11,12],
flexural strength [13,14], shear bond strength [14,15], compressive strength [12,14], and
microhardness [12–15] indicate that direct filling restorative material is promising. Based
on its mechanical [12,13] and optical properties added to its bioactive properties of ion
release (calcium, hydroxyl, and fluoride), it is indicated to stabilize oral pH and form
apatite [16] by reducing demineralization and inducing dental remineralization. Cention
N has also been directly compared to glass ionomer cements [13,14,16]. Differently from
these materials, it can be indicated for long-term restorations due to its wear resistance.
Based on its indications and due to its use as bulk material for large cavities, it has been
compared to bulk-fill dental filling polymeric materials.

Cention N is an Alkasite [Alk] in a new category of filling material with setting
reaction of four minutes, starting after the mixing of powder and liquid. Cention N
contains Ivocerin as a photoinitiator and an acyl phosphine oxide initiator [14], as well
as calcium fluorosilicate glass [16]. Therefore, this restorative material is self-curing with
optional additional light-curing, indicated for the basic filling combining bulk placement,
ion release, durability, and esthetics [13]. After curing, the pH value during acid attacks
is regulated by increased hydroxide ion release from the alkaline filler [12]. Cention N
satisfies the minimum ISO 4049 value without difference for self-cured and light-cured
modes, thus making it a promising material in stress-bearing areas [15].

However, the mechanical behavior of bulk-fill restorations in resin composites or in
Alk for molar cavities has not been investigated yet. Thus, is there any mechanical benefit
that can result in the material clinical choice for Class I cavities in molars? In addition,
what is the mechanical effect in the restoration when different base materials are used in
combination with Alk?

Finite element analysis has been widely used to investigate bulk-fill restorations
behavior [9] and more recently Alk performance for Class V cavities [9,17,18]. Therefore,
by means of 3D FEA, this study aims to investigate the mechanical behavior of different
bulk-fill materials with and without the presence of a polymeric or a ionic base material
in molar Class I restorations. The null hypothesis was that the different filling restorative
materials would not influence the restoration mechanical behavior.

2. Materials and Methods

The present study applied the computer-aided design and finite element method
(CAD-FEM) as a bioengineering tool to calculate the stress distribution in molar Class
I restorations. This method has been extensively applied to investigate the mechanical
behavior in different dental fields [2,6,9,17–20], including operative dentistry [2], dental
materials evaluation [6], restoration concepts in molars [9,19] and premolars [17], and
implant therapy [20]. The three-dimensional (3D) model definition is presented in Figure 1.

The previously created 3D CAD model of a sound molar [2,9,21] was considered to
design a model with Class I cavity (Figure 1A). The lower molar was digitalized with a
high resolution micro-CT scanner system (Bruker microCT), and dentin and enamel tissue
volumes were obtained. The data sets were processed with InVesalius 3.1.1 software and
3D tessellated surfaces were generated with cross-section curves. Then, the parametric
3D model was created using loft surfaces, and the subtractive Boolean was used to ensure
the juxtaposition of contacting surfaces between dentin and enamel. In sequence, the
obtained tooth model was sectioned 2.5 mm below the cervical area and placed in a special
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coordinate system (X-axis and Y-axis were used for the bucco-lingual direction, while
the Z-axis was oriented upwards) [2]. The final dimensions of the tooth were 10.60 mm
bucco-lingually and 12.36 mm mesio-distally. The model was prepared with a Class I cavity
which presents the cavity floor and axial walls with rounded angles. Finally, the model
was replicated in 6 different conditions according to the restorative materials [21]. The
mechanical responses of the adhesively bonded materials as bulk restoration [bulk-fill resin
composite (BF) or Alkasite (Alk)] or combined with other base materials (flowable resin
composite or glass ionomer cement) were evaluated. Therefore, six different models of
restoration were considered, as presented in Figure 2.
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To simulate the masticatory loads variability that is affected by the contact between
tooth and food bolus, a solid volumetric model of food on the occlusal surface was also
designed (Figure 1D). This loading approach has been previously applied in studies that
evaluated similar conditions [2,9,19–22]. The restored models description was summarized
in Table 1, and the geometrical features of the restoration conditions are shown in Figure 3.

Table 1. Mechanical properties considered in the present simulation.

Material/Structure Elastic Modulus (GPa) Poisson Ratio

Enamel [18] 84.1 0.33

Dentin [18] 18 0.30

Bulk-fill resin composite [22] 12.0 0.25

Flowable resin composite [22] 8.0 0.25

Glass ionomer cement [17] 10.8 0.30

Alkasite [19] 13.0 0.3
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Figure 3. Boundary conditions applied in the present simulation. (A) meshing model, (B) compressive
axial (red arrow) loading applied through the simulated food bolus (red) on the occlusal surface, and
(C) fixation support (purple surface).

The response of the six restored models was assessed by the computer-aided engineer-
ing software (ANSYS 19.2, ANSYS Inc., Houston, TX, USA). All models were discretized
using 4-node tetrahedral elements with a total size extending from 0.08 mm to 0.18 mm.
To minimalize the mesh effect in the stress results, caused by the small curvature radius
and notch effects, mesh improvement techniques were used with a mesh convergence test
considering von-Mises stress maximum values. The analyses were based on the loading
during the maximum bite force at the chewing cycle [8,9]. The food bolus was positioned
on the occlusal surface and a slide-type contact was used. The total number of elements
and nodes for the bulk model was 445,242 with 97,364 nodes, respectively, while the model
with two different restorative materials presented 438,092 elements with 97,412 nodes.

The present simulation did not consider the polymerization shrinkage stresses in the
resin based materials due to the lack of data for Alk. Therefore, as a limitation, the kinetic
stress relaxation was considered insignificant and only the elastic modulus and Poisson
ratio were applied as the constant elastic properties for the stress calculation. The chemical
formula for the monomers presented in the experimental material (Alk) are summarized in
Figure 4 [23].
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Figure 4. Structural formulae of monomers present in the evaluated Alk. Adapted from the manufac-
turer’s scientific documentation (Cention N, Ivoclar, Lichtenstein) [23].

The physiological masticatory load (600N) was simulated during the occlusal static
load applied to the food bolus. The lower surface of the models was constrained in
all directions (Figure 3). Statistical and linear analyses were carried out and performed
considering a non-failure condition in the elastic limit of each material.

The calculated stress magnitude for the models were qualitatively and quantitatively
compared. Assuming that these materials exhibit brittle mechanical behavior [9], the first
principal stress was calculated for enamel, dentine, restoration and cavity margin.

3. Results

Regardless of the restorative material combination, the models exhibited a similar
stress trend along the evaluated structures. For both enamel (Figure 5) and dentin (Figure 6),
the stress color maps showed similar mechanical behavior for all models. The quantitative
analysis of tensile stress peaks (Table 2) showed that the lowest stress magnitude was
calculated for the bulk restoration in bulk-fill resin composite (11.12 MPa in enamel and
4.15 MPa in dentine). Bulk restoration in Alk presented a stress peak that was 7.6% higher
for both enamel and dentin (12.04 MPa and 4.49 MPa, respectively). Regardless of the base
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material below, both upper-layer restorative materials were able to promote lower stress
peak values.
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Figure 5. Tensile stress maps in enamel according to the restorative material(s): bulk restoration
in (A) bulk-fill resin composite or (B) Alkasite; flowable resin composite below (C) bulk-fill resin
composite or (D) Alkasite; glass ionomer cement below (E) bulk-fill resin composite or (F) Alkasite.

For the restoration (Figures 7 and 8), color maps suggest similarity between the
models, except in the loading point (Figure 7) and margin (Figure 8), which had better
stress distribution for bulk-fill resin composite. Considering the stress peaks (Table 2), an
inverse mechanical behavior was noticed. All conditions with the highest stress magnitude
in enamel showed lower stress magnitude in the restoration. Thus, the lowest stress
peak in the restoration was observed for the bulk restauration in Alk. Moreover, for the
restoration, regardless the base material below, the lowest stress peaks were observed when
Alk was used.
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Table 2. Tensile stress peaks (MPa) in enamel, dentin, and restoration, according to the restorative
material(s).

Model Region Stress (MPa)

Bulk restoration in bulk-fill
resin composite

Enamel 11.12

Dentin 4.15

Restoration 5.93

Flowable resin composite below the
bulk-fill resin composite restoration

Enamel 11.27

Dentin 4.26

Restoration 5.98

Glass ionomer cement below the
bulk-fill resin composite restoration

Enamel 11.25

Dentin 4.26

Restoration 5.99
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Table 2. Cont.

Model Region Stress (MPa)

Bulk restoration in Alkasite

Enamel 12.04

Dentin 4.49

Restoration 4.73

Flowable resin composite below the
Alkasite restoration

Enamel 12.41

Dentin 4.50

Restoration 4.76

Glass ionomer cement below the
Alkasite restoration

Enamel 12.23

Dentin 4.51

Restoration 4.74
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(F) Alkasite.

4. Discussion

This study aimed to evaluate the mechanical behavior of different bulk-fill materials
with and without the presence of a base material to restore a posterior Class I. Results
showed differences between the materials behavior, rejecting the null hypothesis.

When a single-increment restoration was simulated in the present study, similar biome-
chanical behavior was observed between the BF and the Alk groups, with a numerical
difference of 0.92 MPa, not appreciated in Figures 5 and 6 in terms of tensile stress map
distribution. Therefore, both polymeric- and ionic-based materials showed an equivalent
behavior when used as bulk dental fillings in adhesive conditions. In practice, the mechani-
cal resistance and esthetics (limited for Alk) influence the material selection by the dentist,
as well as the possibility of using a bioactive material. According to the manufacturer, Alk
filling can be used as self-adhesive bulk material in retentive cavities or in association with
an adhesive layer. A previous study has compared the Alk with several bulk materials
and it observed the highest shear bond strength value (33.8 MPa) for the Alk in adhesively
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bonded condition. When Alkasite was applied without adhesive, it critically showed only
3 MPa as a bond strength [15]. Therefore, the present study considered the condition with a
proper adhesion between the restoration and cavity walls, and a non-retentive preparation
design was simulated. It is important to reinforce that the manufacturer recommends the
self-adhesive mode only for retentive cavities, e.g., replacing an old amalgam restoration.

Another study a found similar and higher bond strength, after 14 days, for Alk
(14.38 MPa) and nano-hybrid composites compared to glass ionomer cement (5.96 MPa) [14].
In addition, the immediate and aged bond strength to dentin was evaluated for a self-
adhesive bulk-fill resin composite, a resin-modified glass ionomer, and an adhesively
bonded dual-cure Alk. The authors detected that Alk showed the highest mean values
for flat or Class I cavity [24]. However, no data which compare adhesively bonded bulk-
fill resin composite and Alk bond strength are available. Results presented in this study
suggest that Alk presents a similar stress distribution all along the cavity margins when
compared to bulk resin composites. These data suggest that further in vitro bond strength
studies with Alk in posterior restorations should be performed to help clinicians choose
between both materials.

In terms of flexural strength, self-cured and dual-cured Alk have also been compared
to four conventional resin composites and two bulk-fill resin composites. Authors found
lower and similar flexural strength for Tetric N-Ceram bulk-fill (103.7 MPa) and dual-
cured Alk (96.4 MPa), i.e., higher than self-cured Alk (82.1 MPa). However, the strength
significantly decreased after 12 months (71.9 MPa; 53.9 MPa) [25]. Other authors reported
no difference in flexural strength according to the cure mode [15,26], even under bleaching
regimens [27]. The present study confirms that, in adhesive simulated conditions, there
is a similar stress trend between both materials (BF or Alk), regardless of the use of more
flexible base material, which did not contribute to better stress relief inside the restoration.

In addition to the colorimetric graphics, a quantitative analysis was carried out in order
to compare the restorations by several authors [28–30]. Lower tensile stress peaks caused
by the loading for enamel and dentin tissues were observed in bulk restorations; however,
a low difference (≈7.6%) between the materials peaks was detected. In addition, regardless
the presence of a base material, lower stress peaks were observed for both enamel and
dentin when the bulk-fill resin composite was used. Considering the small peaks difference
between models, results suggest that for both enamel and dentin, the clinicians should also
consider other properties in their choice, e.g., the need for ion release in high-caries-risk
patients. Many studies have reported the ability for Alk to inhibit caries at restorations
margin [31]. In addition, less microleakage was reported for bonded Alk [32]. In this study,
it was confirmed that bonded Alk restoration presents an adequate load stress distribution
deeply associated with the bonding condition.

Previous investigations with a similar methodology have applied the maximum princi-
pal stress as the analysis criteria for the failure of dental materials [2,19,22]. This is indicated
based on the failure mode of brittle materials, caused by high tensile stress concentration in
regions that are prone to initiate crack propagation or interfacial debonding [28,29]. In the
present study, a small amount of stress magnitude does not indicate any significant effect
compared to both restorative materials; however, an evaluation of their long-term behavior
is still required [30].

This study also simulated conditions with flexible base materials at the bottom of
the cavity. The clinician often opts to keep it as part of the restorative treatment when
cavities are large and deep. When the flowable composite was simulated, higher stress
levels compared to glass ionomer cement at the enamel tissue were reported, as reported in
Table 2. At dentin margins, when the bulk-fill resin composite was layered up, the peaks
were similar, and when Alk was layered up, the model showed smaller stress peaks.Bulk
restorations have stimulated interest in clinicians due to its easier material placement and
reduced clinical steps compared to conventional resin composites. Reduced volumetric
shrinkage and lower polymerization shrinkage stress are described in literature. The
insertion of newer polymerization modulators and monomers can relieve stress when
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incorporated inside bulk polymeric materials. In addition, their translucency and photo
initiators allow their use in increments higher than 2 mm [33]. However, there are clinical
situations when the tooth already presents flowable composite or glass ionomer cement
inside the cavity [34]. Thus, the bulk material will behave in contact with a substrate
different from dental tissue. This study supports that the evaluated Alk can be clinically
proposed since lower stress peaks were observed in the restoration [35,36]. However,
other studies are still necessary to investigate the immediate and long-term bond strength
between the Alk and different materials and to assess any corroboration with this study’s
findings [37].

With the limitations of a 3D finite element analysis, this study did not consider all the
factors present in the oral medium [38], such as pH and temperature variations, possible
incorporated defects in the adhesive layer or restorative material, and different chewing
loads. In addition, all the materials were considered adhesively bonded with ideal bond
strength and misfit. The food bolus was represented by just one volumetric body and does
not represent the entire possibilities of patient’s diet and loading application.

5. Conclusions

With the limitations of the present study, the adhesively bonded Alkasite restorations
showed a promising mechanical behavior with reduced stress magnitude when used above
different base materials or as a bulk restoration for Class I posterior restorations.
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