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Abstract

Computer-aided stylometry is a powerful tool in authorship attribution. Recent
models can point the author of an anonymous text among thousands or distinguish
different contributors to one text. However, most methods are quite complex and
depend on the language. We propose a new Authorship Attribution method based on
inference using a stochastic process. Every author is associated with the process that
is most likely to reproduce their known corpus. We assign a text to the author whose
process gives the highest probability of producing the text. We find high attribution
rates independent of the language of the text or the tokenisation. Inference using
stochastic processes offers exciting opportunities for stylometry and information
retrieval.
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Introduction

Finding the author of anonymous texts has been a challenge for centuries. Since the
beginning of the modern era [151], scholars have studied texts of debated attribution.
However, for many centuries this was based on qualitative analysis. Scholars had to
evaluate whether an author would use some word or a piece of text is in their style.
This approach led to exciting and revolutionary discoveries but could not quantify
its findings.

Stylometry brought a revolution into the field. Around the beginning of the
twentieth-century [93, 105], scholars started to analyse the frequency of the words in
texts. These frequencies could indicate whether an author would use some specific
words. It became possible to describe and measure an author’s style through a
consistent analysis of their known corpus. This allowed for the first time to measure
the internal differences in an author’s production or select the most likely author of
a text out of a set of candidates.

The introduction of computers brought a new significant improvement. In the
sixties [106] analysing big corpora became a matter of minutes. Scholars could spend
more time designing refined techniques instead of counting words. The methods
became more effective and grew in number and complexity. Some techniques are
general and applicable to any text. Some are specific for a genre or a language. The
analysis may consider groups of characters, words, syntactic relations, and the very
meaning of words.

Many techniques look for an author’s fingerprint in commonly repeated words [129].
They often rely on lists of most used words, ranging from the tens [129] to the thou-
sands [142]. Words in these lists are the only to be considered [129, 142, 139] or
removed [7] from the texts. Other techniques rely on large databases to bring words
to their base form (e.g. infinitive form of verbs and singular of nouns) or to tag their
grammatical function [7, 86].

All these techniques have a degree of subjectivity in creating lists and databases
and are useful only for a specific language. A different class of methods is language
independent and uses character N -grams [80], word frequencies or N -grams [142],
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topic models [129, 135] or even – following an information theory approach – looks
at the authors as information sources [89, 15, 69, 67].

In contrast, we follow a different approach. We model the sequence of words or
characters in a text as a stochastic process. Our approach applies inference using
Poisson-Dirichlet processes to determine the author of an anonymous text. Given
a Poisson-Dirichlet process, we map the sequence of words or strings in a text to
samples from the process.

A Poisson-Dirichlet process is a stochastic process whose realisations are discrete
probability distributions. Every sample from the process may repropose already
seen elements or introduce a new element drawn from a base probability distribution.
Every innovation fosters the introduction of more innovations.

We model the text itself as a sequence whose tokens are samples from a PD
process. We determine the probability of having the sequence of an unknown text
being the following output of the same process that generated all the texts of a
known author.

Our approach requires a minimal training phase and depends only on a small
set of hyperparameters. These parameters influence the variables used, the base
probability distribution of the Poisson-Dirichlet processes, and how we compare each
text to each author.

Besides being simple and straightforward, this technique offers state of the art
results. We were able to reliably find the author of a book among tens to tens of
thousands of alternatives. Moreover, this result is substantially independent of the
language of the text. The PD process proves to be a good model for inference on
texts.
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Chapter 1

Generative Models, Stochastic
Processes and Inference

This thesis will apply inference using generative models to tackle a common stylometry
task. Before entering the details of stylometry (see chapter 2) and our specific
approach (see chapter 3), we will describe generative models. In particular, we will
focus on processes featuring innovation and show how it is possible to apply them
to inference.

1.1 Generative Models

In a few words, a generative model is a statistical model for some joint probability
distribution. It is possible to generate, i.e. draw, samples from this distribution,
hence the name. If the distribution adapts well to mimic some population, the
generated samples seem to come from the population itself.

Famous examples of generative models are the recent breakthrough in Generative
Adversarial Networks (GAN). These networks can produce fake pictures of nonex-
istent people who seem perfectly real at first, and often also second, look1. These
models do not output a probability explicitly. However, they encode information like
that a person usually has only one mouth but two eyes or that, if they are wearing
an earring, they are probably wearing two.

We will set aside GAN, and Artificial Neural Networks (ANN) in general. These
models are widely used and find applications also in stylometry (see section 2.1.5).
However, we prefer proper statistical generative models that output well-defined
probabilities through transparent procedures. This preference is not a whim: in

1Try, for example: https://this-person-does-not-exist.com/en, last checked January 12,
2022.

https://this-person-does-not-exist.com/en
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many applications, from humanities to court trials, explaining the reason for the
output is fundamental.

We will focus our study on statistical models. In particular, we will focus on
generative models where the probability of the next element does not depend on future
elements. However, we are not assuming that every text is a stream of consciousness.
Humans conceive texts having in mind their future elements. For example, the
content of these paragraphs depends on the following chapters. Choosing these
models requires that the order of the elements in a text allows understanding without
future information.

When working with natural language processing (NLP), the most common class
of generative models are token N -gram models. The principle of these models is
straightforward: the probability of a token depends on its context, but we assume
that the last N − 1 tokens are enough to determine the probability of the next one.
In formulas:

P (wn, wn−1, . . . , w1) = P (wn | wn−1, . . . , w1)P (wn−1, . . . , w1) ∼

∼ P (wn | wn−1, . . . , wn−(N−1))P (wn−1, . . . , w1) (1.1)

By the chain rule, we can then express every token’s conditional probability as a
function of the former N − 1.

This approach looks fine, but what is the origin of the conditional probabilities?
We estimate the probabilities with the N -gram frequency in the training corpus.
This estimate creates a problem when a new N -gram appears. A new N -gram has
past frequency precisely zero, and this would imply zero probability to the generated
sequence.

Usual approaches use interpolation or a back-off estimator to avoid zero probability
N -grams. They resort to shorter N -grams. Indeed, it is more likely to observe the
shorter sequence wn−(N−2), . . . , wn than wn−(N−1), . . . , wn, and its frequency can be
the base for the desired probability. Then, probabilities must be normalised, and
many smoothing approaches exist. If the shorter N -gram is also missing, we need to
repeat this procedure until we get an estimate of the probability.

Except for a few examples2, these approaches do not include a probability for
novel elements from first principles. This lack is a limitation because the smoothing
or interpolation are approximate procedures, and the model often has to rely on
them. Indeed, because of the fat-tailed distribution of words, the fraction of tokens
appearing only once (hapax legomena) in a text can be pretty high, up to 40% [129]

2It is possible [148] to interpret Interpolated Kneser-Ney [79] as an approximate inference method
in a Bayesian model using a Poisson-Dirichlet process (see section 1.2). This interpretation, however,
came eleven years after the proposal of the method.
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and above. There are good chances that a new document will include many unseen
tokens, let alone unseen N -grams.

A different approach would be to use text models explicitly designed to model
the occurrence of new elements.

Some Useful Scaling Laws

Before entering into the detail of the different models, we need some tools to evaluate
them. We will compare their ability to reproduce observable features from systems
like, in this case, texts. We will focus on three different scaling laws observed in
texts that also enjoy a certain degree of universality. These laws are known as the
Zipf’s, Heaps’ and Taylor’s laws.

Zipf’s Law This law describes a power-law relation between the frequency f

and the rank R of words. The words are ordered in a list with the most frequent
first. J.-B. Estoup [48] observed it for the first time in texts, and later, Zipf [163]
rediscovered it. Frequencies following a Zipfian law obey the rule:

f ∝ R−α (1.2)

In the original work, Zipf found α ' 1. This exponent is usually observed (in texts)
for relatively low ranks, roughly up to the thousands or tens of thousands. For
higher ranks – less frequent tokens – the value of α is greater than 2. Over the years,
researchers found many similar power-law behaviours with various exponent values.
All these laws are collectively called Zipf’s laws.

The use of the Zipf’s law is widespread as it is possible to appreciate it on a
simple log-log plot of the frequency versus the rank. Zipf’s law is a consequence
of the power-law distribution of the frequencies. Zipf’s law holds if the number of
elements with a given frequency is a random variable with power-law distribution:

P (f) ∝ f−1− 1
α (1.3)

Any model should be able to reproduce the Zipf’s law relation and to adjust the
exponent α.

Heaps’ Law This law relates the number k of different elements (or types) in a
sequence with the number n of elements. Observed by Herdan [60] and later by
Heaps [59] respectively in linguistics and information retrieval, it takes the form:

k ∝ nβ (1.4)

with exponent β ∈ (0, 1]. Usually, for short sequences β ' 1 while, for higher values
of n, it decreases to values β ≈ 0.5.
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Heaps’ law is an essential requirement for any model too. It encodes the continued
appearance of new elements (no saturation) but at a decreasing pace (β < 1 in many
systems).

A renowned relation between these two laws states that the exponents are related
as: 

β = 1
α α > 1

β ' 1 α = 1

β = 1 α < 1

(1.5)

To obtain this relation, consider the moment a new element enters the system.
It will have frequency 1

n , and its rank will be equal to the maximum rank, i.e. the
number of different elements k. In the case of α > 1, the correct normalisation of
Zipf’s law for large k is independent of the maximum rank k. Thus we have:

1
n ∝ k

−α from Zipf’s law

k ∝ nβ from Heaps’ law
(1.6)

From which the first relation in Eq. (1.5) follows. In the case of α ≤ 1, the
normalisation of Zipf’s law depends on the maximum rank k, and the result follows
from a similar reasoning3.

This simple relationship holds only in the limit for n→∞. Because of finite size
effects [92], the measured Heaps’ exponent tends to be smaller than expected, and
the relationship in Eq. (1.5) appears only on the tails of the data.

Taylor’s Law Taylor observed this third law reviewing studies about animal
populations [147] as a relation between different system realisations. He noticed that
by sampling the population of very different species of animals (from plankton to
insects, from worms to fishes), the variance in the number of counts had a strong
dependence on the mean. He observed a relation of the form:

σ ∝ µγ (1.7)

and found values ranging from 0.35 to 1.544. In this relation, values of γ > 1
2 mean

a tendency of the population to aggregate, γ = 1
2 imply a random distribution and

γ < 1
2 is characteristic of species with repulsion interactions and a near-regular

spatial distribution.
Researchers found several systems that follow this law in fields as diverse as

epidemiology, urbanism, and linguistics, see figure 1.1. On the other hand, as already
3In the case α = 1, Zipf’s law gives n = k log k thus is not a pure power-law behaviour. However,

in practice, the curve is almost linear.
4In the original paper, Taylor introduced the relation for σ2, and all the numbers are doubled.
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in books
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Partners in AIDS
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3.2

Figure 1.1. Taylor’s law in real systems. Green crosses are the variance in reported
numbers of different sexual partners versus the mean, from AIDS epidemiology [8].
Orange dots are the variance versus the mean in the number of houses in the Tonami
Plain in Japan using squares 100× 100 m2 to 700× 700 m2 from [73]. The blue line is
referred to the number of different words in texts as in [149]. The black dashed lines are
intended as a guide for the eye.

observed by Taylor, random samples from a distribution give an exponent γ = 1
2 .

Gerlach and Altmann [56] show that if an independent Poisson process governs the
appearance of each element w with a given power-law distributed probability P (w),
it produces Heaps’ and Zipf’s laws with the expected exponents. However, it leads
to Taylor’s law with exponent 1

2 , i.e. σ ∝ √µ as in a central-limit-theorem-like
convergence.

Taylor’s law is a stronger requirement for a model for texts. Obeying (on average
and asymptotically) to Zipf’s and Heaps’ laws is not enough. The relative fluctuations
of the vocabulary size around its mean do not decrease in longer samples. It is a
non-self-averaging quantity: deviation from the mean has to grow fast also in models.

The following sections present a review of the models proposed to represent
the emergence of the new. Not all the models described can reproduce observed
behaviours. However, they all contributed to the field with new concepts or the
originality of the approach.

1.1.1 Yule-Simon-like Models

Yule and Simon introduced their model for innovation in 1955 [138]. The observation
that the frequency distribution of words in texts written in a given language follows a
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fat-tailed distribution has been puzzling the scientific community since the beginning
of the 20th century [48, 163] and continues to be debated [51].

Yule-Simon’s model cannot generate a sequence of tokens obeying a sub-linear
Heaps’ law. The token frequency distribution is represented by a power-law with an
exponent smaller than 2, see Eq. (1.3). Consequently, the Zipf’s exponent α < 1 and
the associated Heaps’ law is linear. The model proposed by Zanette and Montemurro
overcomes this limitation, even if the sub-linear Heaps’ exponent has to be recovered
by data and inserted by hand without a first principle explanation.

Plain Yule-Simon Model The Yule-Simon model generates a stream of tokens
according to the following two prescriptions. At the beginning, i.e. at time t = 1,
only one token is present in the stream. At a generic time t, a new token is added
to the stream with probability p, while with complementary probability (1− p) we
choose a token randomly extracting it from the stream. In this way, the tokens that
appear more frequently in the stream are more likely to be extracted.

Because of its sequential nature, the Yule-Simon model is particularly suitable
for describing linguistics phenomena. However, when used for the generation of
texts, some key aspects still cannot be reproduced. Above all, it is evident that the
rate of addition of new tokens is constant in time (p), thus resulting in linear growth
of the number of different tokens k = pt. In contrast, in actual texts, such growth
asymptotically follows a sub-linear Heaps’ law.

The mechanism of favouring those elements that occur more frequently in the
stream is called “rich-gets-richer”. It is now a paradigm for generating tokens
with a power-law frequency distribution. Notably, the preferential attachment rule
introduced in the Barabási-Albert model [14] is a form of rich-gets-richer.

However, the power-law in the frequency rank is not satisfying. Solving the
model for the distribution of elements appearing n times in the sequence qn, we find
a power-law behaviour with qn ∝ n−1− 1

1−p . A power-law distribution of frequencies
with exponent 1 + 1

1−p corresponds to a frequency-rank exponent α = (1− p) always
smaller than one.

Yule-Simon’s Model with Time Dependent Sub-Linear Invention Proba-
bility The Yule-Simon model is a good starting point but bears two main issues.
First, with p in the range between 0 and 1, it is impossible to recover frequency-rank
exponents α larger than 1 although lots of idioms display them. Second, the dictio-
nary, i.e. the number of different tokens, grows linearly in time and not sub-linearly,
thus faster than reality.
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To correct both issues, Zanette and Montemurro introduced in [159] a time-
dependent and decreasing probability pt = p1t

β−1 with 0 < β < 1. This decay assures
that the dictionary k(t) will grow as tβ since, by definition, k(t) =

∫ t
1 p1s

β−1 ds.
This model fixes in a somewhat artificial way the inability of the plain Yule-Simon

model to reproduce exponents β < 1. Due to the link between Heaps’ and Zipf’s
laws, it also shows frequency-rank distribution decreasing as a power-law of exponent
α = 1

β > 1 as observed in actual processes.

1.1.2 The Sample-Space Reducing Model

An interesting attempt to explain fat-tailed distributions is the Sampling Space
Reducing (SSR) model proposed in [33]. Notably, it tries to reproduce power-law
frequency distributions without explicitly resorting to a rich-gets-richer mechanism.

The model catches the idea that the space of possibilities often locally reduces
when the process goes on. The first word is almost free when composing a sentence,
while the subsequent ones are more and more constrained. The space of the available
options reduces while we approach the teapot5.

This simple process works as follows: (i) the process starts with an N -faced
dice; (ii) at time t, we trow a j-faced dice resulting from the evolution of the initial
N -faced dice, and let i be the face value obtained; (iii) at time t+ 1 an i− 1-faced
dice is then thrown, and the process goes on until we roll a 1. Independently of N ,
the visiting probability for the site i, defined as the probability that a particular
process visits the site i before ending at 1, is

PN (i) = 1
i

(1.8)

If we consider a cyclic process, the process starts again from an N -faced dice
when we roll a one. Then, the visiting probability is also proportional to the
occupation probability and thus to the frequency rank, reproducing an exact Zipf
law f(R) ∝ R−1.

The authors also study the case in which a probability λ exists to come back
at the N -faced dice at each step. By relaxing the constraint of the sample space
constant reduction, the model, named “noisy” in [33], behaves as a superposition of
the pure sample-space reducing process (with probability 1− λ) and of a random
process where a number is drawn uniformly in the interval [1, N ] (with probability
λ). The authors show that one obtains in this case a generalised Zipf law with
frequency-rank distribution f(R) ∝ R−λ.

5The surprise in finding ‘teapot’ instead of ‘end’ is a possible sign that, in this context, the space
shrunk to include one word but not the other.



8 1. Generative Models, Stochastic Processes and Inference

In [34], the authors proposed further variant that modifies step (iii). Instead of
throwing each time a single dice, now µ dice are thrown. For non-integer µ, it is
enough to throw µ dice at each step on average. For µ = 1 the original definition is
recovered, with µ < 1 there is, at each step, a probability of stopping the process,
i.e. no more dice to throw, and starting again with an N -faced dice. This case is
equivalent to the noisy model with λ = µ. With µ > 1, the visiting probability of
sites with small i increases. While the number on the faces decreases, the number of
dice thrown increases. In this case, the probability that a particular process visits
the site i before ending at one is

PN (i) = 1
iµ

(1.9)

This model can thus reproduce the full spectrum of exponents in the frequency-
rank distribution.

However, the SSR model model cannot reproduce a proper Heaps’ law. The
number of sites is fixed, and the number of different elements observed saturates to
N instead of following a sub-linear power-law behaviour. When the system is far
from saturation, i.e. when k � N , as demonstrated in [97], the growth of k follows
a power law with exponent γ = 1

µ for µ > 1 and γ = 1 otherwise. The same paper
also shows how this model can reproduce the statistics of shared components [98]
observed in natural systems. Having natural labelling for the states independent from
the order of appearance is a property regarded as necessary for this to happen [97].

1.1.3 Hoppe Urn Model

Fred M. Hoppe introduced this model in 1984 [62] in genetics. It is an urn model like
the renowned Pólya urn but, for the first time, introduces the concept of novelties.
It describes the allelic partition of a random sampling of n genes from an infinite
population at equilibrium. Under some specific hypotheses6, the probability of
sampling the (j + 1)-th gene with an allele already sampled is j/(j + θ), where
θ = 4Nµ (Ewens’ sampling formula).

Pólya Urn In the classical version of the Pólya urn model, an urn contains balls
of various colours. A ball is drawn at random, inspected, and placed back in the urn
along with a certain number of new balls of the same colour, thereby increasing that
colour’s likelihood of being drawn again in later rounds. The resulting rich-gets-richer
dynamics leads to skewed distributions and has been used to model the emergence

6The population evolves according to a discrete-time neutral Wright-Fisher process with a
constant mutation rate µ per gene. We take the infinite population limit N →∞ and µ→ 0, with
Nµ constant, and sample j genes from the population at equilibrium.
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of power laws and related heavy-tailed phenomena in fields ranging from genetics
and epidemiology to linguistics and computer science.

Hoppe Urn Hoppe considered a Pólya urn with balls of two different qualities:
black balls of mass θ and coloured balls with mass one. The dynamical process works
as follows: it starts with only a black ball in the urn, then balls are randomly chosen
from the urn proportionally to their mass. At each time step t, (i) if the extracted
ball is black, a ball with a brand new colour is added to the urn together with the
black ball, (ii) if the extracted ball is coloured, it returns to the urn along with an
additional copy of it. It is easy to see that the probability of extracting an already
existing colour from the urn at each step t+ 1 is exactly Pexisting(t+ 1) = t/(t+ θ),
reproducing the result from Ewens.

The expected number of different colours in the urn at step n can be computed
explicitly and reads

k(t) = θ

θ
+ θ

θ + 1 + θ

θ + 2 + · · ·+ θ

θ + t− 1 (1.10)

This expression can be approximated as k(t) = θ log(θ + t), from which we can
obtain an estimate:

f(R) ' t

θ
exp

(
−R− 1

θ

)
(1.11)

The results for k and f show that also Hoppe’s model is not satisfying. The
number of different elements has a sublinear growth but is too slow for any power
law. The decay in the frequency-rank distribution is too fast.

1.1.4 Comparison of the Models

None of the models introduced in the previous sections proves to be fully satisfying.
Except for the Zanette-Montemurro, where the variation seems too ad hoc, Yule-
Simon like models fail to reproduce a sublinear growth of the number of different
elements and suffer from limitations in the choice of α. The Sample Space Reducing
model, even if extended to reproduce every value of α, is limited by the fixed number
of possible different elements, and the Heaps law holds only for a limited time.
Hoppe’s urn model has the sublinear growth missing from Yule-Simon-like models
but is too slow for natural systems.

In Table 1.1, we present a scheme summarising the features of the models. Then,
numerical simulations of the models of the last sections are presented in Fig. 1.2,
showing the power law behaviour (if present) of the different models. Finally, as
none is satisfying, we introduce in the next section the Pólya Urn with Triggering.
This model offers a way to independently derive Heaps’ and Zipf’s laws from the
idea of the adjacent possible.
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Table 1.1. Comparison of the behaviours of the models proposed. YS stands for Yule-
Simon’s; ZM for Zanette-Montemurro; SSR for Sample Space Reducing model; PUT for
Polya Urn with Triggering.

Model Notes
Zipf’s

exponent α
Heaps’

exponent γ

YS Constant invention rate p 1− p 1

ZM
Variable invention rate p =
ctγ−1 with 0 < γ < 1

1
γ

γ

SSR

µ > 1 dices thrown at each
step

µ
1
µ
†

µ < 1 dices thrown at each
step

µ 1 †

Hoppe No power-law behaviour
f(R) '

t
θ exp

(
−R−1

θ

) k(t) =
θ log(θ + t)

PUT
ρ > ν

ρ

ν

ν

ρ

ρ < ν
ρ

ν
1

† Valid only for k � N .

1.1.5 Urn Model with Triggering

This section presents the Pólya Urn with Triggering (PUT), a generalisation of the
urn models seen in the preceding section, presented in [150]. This model incorporates
the notion of the adjacent possible so that one novelty can trigger further novelties.

Adjacent Possible Stuart Kauffman introduced the concept of adjacent possible
for biological systems [72]. The adjacent possible includes all those elements (bacteria,
texts, cellphones) that are just one step (mutation, edit, feature) away from known
elements. A central characteristic of the adjacent possible is that – when one of
its elements becomes actual – it enlarges instead of simply losing one element and
shrinking. Indeed, any new element observed introduces a whole new set of elements
in the adjacent possible that are one step away from it.

The PUT model thus builds on that of Hoppe and other researchers, who introduced
novelties within the framework of Pólya’s urn. However their models did not posit
that novelties could trigger subsequent ones. Hoppe’s urn scheme is non-cooperative
in the sense that there is no account for the conditional appearance of new colours; in
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Figure 1.2. Heaps’ law (left) and Zipf’s law (right) for the models presented. YS
stands for Yule-Simon with p = 1/3; ZM stands for Zanette-Montemurro with c = 1 and
γ = 1/2; SSR stands for Sample Space Reducing model with N = 104 and µ = 2/3;
H stands for the Hoppe model with θ = 7. The black dashed line is a power law
with exponent γ = 1 in the Heaps plot and with α = 2/3 in the Zipf plot. The black
dot-dashed line is a power law with exponent γ = 1/2 in the Heaps plot and with α = 2
in the Zipf plot. The black dotted line are functions of the kind of those reported in
Table 1.1 for the Hoppe model.

particular, one novelty does nothing to facilitate another. In contrast, the cooperative
triggering of novelties is essential to the PUT model.

Model Definition

Consider an urn U initially containing N0 distinct elements, represented by balls
of different colours. We can think of these elements as songs we have listened to,
inventions, ideas, words in a text. A series of words (songs, inventions) is idealised in
this framework as a sequence S of elements generated through successive extractions
from the urn.

As the adjacent possible expands when something novel occurs, the urn’s contents
enlarge whenever we draw a novel element. When a horse appears for the first time
in a novel, we suddenly expect that at some point also riders, saddles, horseshoes,
rides and falls will come in. These concepts are related and now accessible since we
are on the topic7.

7This kind of relatedness is strong. Finding a spaceship in the middle of the eighteen century
would be surprising. Authors such as Douglas Adams value these kinds of odd juxtapositions for
their humorous effect:

[Vogon spaceships] hung in the air in much the same way that bricks don’t.

from The Hitchhiker’s Guide to the Galaxy [2].
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Mathematically we consider an ordered sequence S, constructed by picking
elements (or balls) from a reservoir (or urn) U , initially containing N0 distinct
elements. According to the following procedure, both the reservoir and the sequence
increase their size. At each time step:

1. an element is randomly extracted from U with uniform probability, its identity
recorded in S;

2. the extracted element is put back into U together with ρ copies of it;
3. if the extracted element has never appeared before in S (it is a new element in

this respect), then ν + 1 different brand new distinct elements are added to U .

Note that the number of elements n of S, i.e. the length |S| of the sequence, equals
the number of times t we repeated the above procedure. If we let k denote the
number of distinct elements that appear in S, then the total number of elements in
the reservoir after t steps is |U|t = N0 + (ν + 1)k + ρt.

In this model, a novelty sets the stage for other novelties by triggering new
elements in the urn, hence its name Pólya Urn with Triggering.

The generalised Zipf’s law, computed for large values of t andR, i.e. low-frequency
elements, reads:

f(R) ∝ R−
ρ
ν (1.12)

it is then possible to recover the full spectrum of values for α.
The choice of the ratio ρ/ν influences the Heaps’ exponent. When ν > ρ the

number of new, never extracted elements in the urn grows faster than known elements.
The probability of finding a new element is not decreasing over time, as in the Yule-
Simon model, and the Heaps’ exponent is β = 1. When ν < ρ, the number of known
elements grows faster, and the probability of getting a new one decreases over time.
This slows down the growth of the number of different elements in the sequence to

k ∼ (ρ− ν)
ν
ρ t

ν
ρ (1.13)

In this expression, we find that the relation β = 1/α is not a trivial consequence,
as in the case of sequences obtained sampling a power-law distribution. Here the
relationship holds only in the limit of large t and R and is a consequence of the
expanding space of possibilities (see Fig. 1.3).

The authors analyse four data sets in [150], each consisting of a sequence of
elements ordered in time: (1) Texts: the elements are words. A novelty is defined as
the first occurrence of a word in the text; (2) Online music catalogues: the elements
are songs. A novelty occurs whenever a user listens to a track that they have not
listened to before; (3) Wikipedia: the elements are individual wiki pages. A novelty
corresponds to a contributor’s first edit action of a wiki page; (4) Social annotation
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Figure 1.3. Heaps’ law (a, c) and Zipf’s law (b, d) in the real dataset Last.fm
(a) and (b) and in the urn model with triggering (c, d). Straight lines in the
Heaps’ law plots show functions of the form f(x) = axβ , with the exponent β = 0.68
(Last.fm lyrics) and β = 0.56 (Last.fm artist), and to the ratio ν/ρ in the urn model
with triggering, showing that the exponents for the Heaps’ law of the model predicted
by the analytic results are confirmed in the simulations. Straight lines in Zipf’s law
plots show functions of the form f(x) = ax−α, where the exponent α is equal to β−1

for the different β’s considered above. Note that the frequency-rank plots in real data
deviate from a pure power-law behaviour and the correspondence between the β and α
exponents is valid only asymptotically. Figure from [150].

systems: in the so-called tagging sites, the elements are tags (descriptive words
assigned to photographs, files, or other pieces of information). A novelty corresponds
either to the introduction of a brand new tag (a true innovation), or to its adoption
by a given user.

The growth of the number k(n) of distinct elements (words, songs, wiki pages,
tags) in a temporally ordered sequence of data of length n quantifies the rate at which
novelties occur. Here we report the results only for the Last.fm dataset referring to
the original papers for the others. Figure 1.3 (a, c) shows a sub-linear power-law
growth of k(n) with exponent β < 1. This sub-linear growth is the signature of
Heaps’ law. It implies that the rate at which novelties occur decreases over time as
tβ−1.

We look for Zipf’s law in the frequency-rank distribution of the elements inside
each sequence of data. In all cases (Fig. 1.3 b, d), the tail of the frequency-rank
plot also follows an approximate power law (Zipf’s law). Moreover, its exponent α is
compatible with the measured exponent β of Heaps’ law for the same data set, via
the relation β = 1/α.

It is essential to observe that the frequency-rank plots are far from featuring a
pure power-law behaviour. In particular, the relation β = 1/α between the exponent
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β of Heaps’ law and the exponent α of Zipf’s law is expected to hold only in the tail
of the Zipf plot.

Another interesting feature of the PUT model presented in [149] is its ability to
reproduce the Taylor law. From numerical simulations, we obtain an exponent 1

2 with
the Yule-Simon and its derived models (like Zanette-Montemurro) and probably with
the Hoppe model (the slow logarithmic growth of k over time makes it impossible to
verify the exponent for large k). The SSR has an exponent ≈ 1

2 when k � n and
then, due to the saturation effect, has σ decreasing for large k. PUT model instead
reproduces the correct exponent when ν < ρ.

Figure 1.4. Taylor’s law for in models.. The grey curves with exponent 1
2 are for

Zanette-Montemurro, Yule-Simon and random sampling from a power-law distribution.
PUT curves are for the PUT model and the PD curve is for the Poisson-Dirichlet process,
see section 1.2. Figure from [149], the authors call D the number of different elements k.

Extensions to the PUT Model

This simple PUT model can account simultaneously for the emergence of Heaps’,
Zipf’s and Taylor’s laws. This is an interesting result per se because it offers a possible
solution to the longstanding problem of explaining the origin of Heaps’ and Zipf’s
laws through a single microscopic mechanism, without the need of hypothesising
one of them to deduce the other.

Despite the interest of this result, this is not yet enough to account for the
adjacent possible mechanism revealed in actual data. In its present form, the model
accounts for the opening of new perspectives triggered by a novelty but does not
contain any bias towards realising these new possibilities. To account for this,
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in [150] the authors infuse the notion of semantics into the model. They endow each
element with a label, representing its semantic group, and allow for the emergence
of dynamical correlations between semantically related elements.

This extended model, called semantic PUT (sPUT), captures some of the main
qualitative features of clustering seen in actual data (see section Methods of [150]).
The choice of new elements is weighted according to the labels, favouring elements
with a semantic relationship with the last extracted. The strength of the weight is
tunable via a parameter η. For η = 1, this model reduces to the simple PUT model.

In natural systems, the frequency-rank plots feature a variety of system-specific
behaviours. The sPUT again reproduces both Heaps’ and Zipf’s laws, but reproducing
other features in detail would require a more detailed modelling scheme than sPUT.
For instance, a model could include the distinctions between articles, prepositions,
and nouns. Nevertheless, it is interesting that the sPUT model predicts a double
slope for Zipf’s law as due to the correlations induced by the parameter η (see
Supplementary Information of [150] for further details).

One of the main limitations of PUT and sPUT models is that elements introduced
earlier will always capture most of the attention. The (s)PUT model does not
explain new elements capable of overcoming older ones. Despite the “rich-get-
richer” mechanism characterising the dynamics of many natural systems, sometimes
new elements become even more successful than the already established ones. To
understand how new elements can emerge and diffuse in a population, in [104] is
presented a further generalisation of the original PUT model: the Generalised Urn
Model with Triggering (GUMT).

The GUMT variant introduces two new key ingredients meant to control the
expansion of the adjacent possible: (i) an adjustable bias between the choices of
retracing the past or looking at the future; (ii) a collective effect on the shape of the
space of possibilities. These two ingredients can explain the emergence and evolution
of waves of novelties.

The most relevant element is the second. The idea is that not all the elements
are equally known to all the individuals exploring the space8. When a widespread
element occurs, likely all the explorers know it, and there is little bias on the semantic
field of the next element. When a niche element appears, the exploration is likely to
be confined for a while.

The introduction of these new elements translates into different weights assigned
to the elements in the urn. The weights depend on the semantic label κ of the

8Here an ‘individual’ may refer to any constituent of the system that carries its own exploration,
being a user of a social network, a collaborator to Wikipedia and so on. In a book, ‘individuals’
could be scenes or subplots that, having different settings, reinforce and explore different elements.
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last element observed and on the element in the urn being known (A) or novel (B).
Table 1.2 describes the new weights.

Table 1.2. Weights for the elements in the GUMT model. During the last step was
extracted an element with semantic label κ. Nκ is the total number of elements in the
urn with the label κ. Nκ̄ is the total number of elements with a different label. These
weights are equivalent to those of the sPUT model when f = g = 1 and η = γ.

κ κ̄

A 1 γ f (Nκ, Nκ̄)
B g (Nκ, Nκ̄) η g (Nκ, Nκ̄)

γ, η, g, f ∈ (0, 1]

In real systems at any time can appear an element that reaches an overall
frequency close to the maximum (Fig. 1.5 a). In many time intervals, the most
frequent element has appeared for the first time recently (Fig. 1.5 b). The sPUT
model cannot reproduce this behaviour (Fig. 1.5 c, d) as elements that appeared
early are always favourite. By contrast, the weights introduced in the GUMT model
to favour novel items allow obtaining results following real cases, Fig. 1.5 (e, f). At
any time, newly appeared elements can become the most popular and ultimately
reach a significant fraction of the total elements.

1.2 Poisson-Dirichlet Process

We now introduce the two-parameter Poisson-Dirichlet (PD) process, also known
as the Pitman-Yor process [114]. This is a well-known stochastic process widely
studied in the framework of non-parametric Bayesian inference as an extension of
the Dirichlet Process. Moreover, the PD process has a marginalisation called the
Chinese Restaurant Process, the most used form in inference. For its universality
and the links with the PUT model described above, this is the model we will use in
the following chapters for the stylometry task.

Non-parametric hierarchical Bayesian models are often based on the Dirichlet
or the Poisson-Dirichlet process because their distributions are conjugate with
distributions of the multinomial family. In these models, the number of latent
variables grows as necessary to fit the data. However, individual variables still follow
parametric distributions, and even the process controlling the rate of growth of latent
variables follows a parametric distribution.

The rationale of this approach is clear thinking of a clustering problem. In
parametric inference, the model would include a parameter for the number of clusters
k. We then infer the cluster of each point, e.g. depending on the distance from
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its centroid. In cases where we do not know a priori the number of clusters (how
many literary genres, ethnic groups, hair colours are there?), we have to resort to
some criterion like the silhouette score [124] to determine the best value of k. A
possible non-parametric approach allows the number of clusters to vary following a
PD process. However, the probability of a point belonging to a specific cluster will
still be parametric (same dependence on the distance from the centroid), and so will
be the probability of k via the parameters of the process.

A PD process is a stochastic process whose realisations are probability distribu-
tions. Given a metric space (X,M) and a base distribution P0 on X, a realisation of
the PD process gives a probability distribution P on X:

P ∼ PD(α, θ, P0)

P (·) =
∞∑
i=1

piδyi,·
(1.14)

where the yi are elements of X drawn from P0, and the pi follow a Poisson-Dirichlet
Distribution. The distribution P will be atomic, i.e. discrete, almost surely indepen-
dent from the nature of P0. For the moment, we assume P0 continuous. We will
discuss the differences when using a discrete base probability in section 1.2.3.

The probability distribution in equation (1.14) is an Impulse mixture model, a
class of models that, given a probability distribution P0 on the measurable space X,
yield a distribution over a countable subset of X. The distribution is a weighted sum
of δ distributions over points of X. For equation (1.14) to represent a PD process,
the yi points are independently and identically distributed samples from P0, and the
pi are PD distributed.

Sampling from a PD process (or any Impulse mixture model) provides a partition
of the samples.

Definition 1.2.1 (Partition). A partition P of a countable set S is a set of subsets
Pi such that Pi ∩Pj = ∅ ∀i, j and

⋃k
i=1 Pi = S. The partition size |P | is the number

of subsets.

In the following, we will call k := |P | and ni := |Pi|.
Let us take a sequence of samples x1, . . . , xn from P ∼ PD(α, θ, P0). The

sampling associates them to k different elements in X (x∗1, . . . , x∗n) with
∑n
i=1 δx∗i ,yj =

nj , j = 1, . . . , k.
To obtain an infinite-dimensional probability vector ~p with PD distributed

components it is possible to follow two steps:

1. build the infinite-dimensional probability vector p̃ following a two-parameters
Griffiths-Engen-McCloskey (GEM) distribution;
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2. sort the elements in p̃ so that p1 ≥ p2 ≥ . . . and define ~p := (p1, p2, . . . ).

To build the vector p̃ ∼ GEM(α, θ) we follow a stick-breaking model:

• take a stick of length 1;
• draw V1 ∼ Beta(1− α, θ + α);
• break the stick in two parts of length V1 and (1− V1);
• call p̃1 := V1 and consider the remainder;
• for every i ≥ 2:

– draw Vi ∼ Beta(1− α, θ + i · α);
– break the remainder of the stick into two sections of lengths Vi and (1−Vi);
– call p̃i = (1− V1) . . . (1− Vi−1)Vi and continue with the remainder.

A formal definition of the GEM distribution is:

Definition 1.2.2 (GEM distribution). Given parameters 0 ≤ α < 1 and θ > −α,
the Vi are independent random variables distributed as Beta(1− α, θ + i · α) with
i ≥ 1.

The Griffiths-Engen-McCloskey distribution with parameters α and θ, or GEM(α, θ),
is the distribution of (p1, p2, . . . ) where:pi = Vi, i = 1

pi = (1− V1) . . . (1− Vi−1)Vi, i ≥ 2

The parameters α and θ are usually termed discount and concentration parameters
respectively. It is a custom to call “concentration” a parameter that behaves like
the inverse of a variance.

1.2.1 Predictive Probability

The PD process is also called a discrete-time discrete-space stochastic process because
it can be defined as a sequence of elements x1, x2, . . . from X. As a stochastic process,
the PD process can provide probabilities for future events. The task is the following:
given the first n events in a sequence x1, . . . , xn corresponding to kn different elements
yj ∈ X, what is the probability that the next event will be xn+1|x∗n+1 = y where y
can be one of the already seen events yj or a new one y ∼ P0?

The conditional distribution with ~p marginalised out is:

P (x∗n+1 = ·|x1, . . . , xn, α, θ, P0) = θ + knα

θ + n
P0(·) +

kn∑
j=1

δyj ,·
nj − α
θ + n

(1.15)
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Where:

1. kn is the number of distinct elements in the first n of the sequence,
2. nj is the number of elements xi|x∗i = yj , with x∗i the identity of element xi,

and yi, i ∈ [1, kn] element in X with base probability P0(yi). The sum of the
multiplicities

∑k
j=1 nj = n the number of elements.

3. α and θ are the discount and concentration parameters of the process, taking
values α ∈ [0, 1), θ > −α.

4. P0 is the base distribution defined over the space of the tokens X.

From this sequential sampling of the partitions derives the Chinese Restaurant
analogy. In this analogy, there is an infinite line of customers (the samples from the
PD process) entering a restaurant with infinite tables, each serving a different menu
(the samples from P0). The sampling proceeds as follows:

• the first customer enters and seats at an empty table;
• after n customers have entered, the n + 1-th customer enters and sees kn

occupied tables with ni others eating the menu yi;
• the new customer may sit at an empty table with probability θ+knα

θ+n picking a
new menu yk+1 from P0;

• Alternatively, he can choose one of the already occupied tables i with probability
nj−α
θ+n and eat menu yi.

It is possible to use the CR process as an alternative sampler for the PD process
where the vector ~p is not known beforehand. In our case, we will be interested in
sampling the unknown test using the vector ~p specific to each author. Therefore, we
will sample from the correct PD distribution knowing the previous production of the
author representing the first n customers seated in the restaurant. This is useful in
inference as often one is not interested in the ~p itself. Instead, the ~p is marginalised
out, and equation (1.15) requires only the parameters α and θ, the base distribution
P0 and the association between the elements xi and the classes yj . This last piece of
information is usually one of the goals of the inference.

In the following, when referring to the number and size of the partitions of n
independent samples from a PD process, we will use Eq. (1.15) instead of Eq. (1.14)
for the ease of mathematical treatment.

It is interesting to note some key behaviours of the probability in Eq. (1.15).
First, we note the rich-gets-richer effect induced by the second term of (1.15). The
first token comes from P0, with probability 1. The following ones will have a push
towards the elements with a higher number of occurrences nj . Here we understand
the reason for the name concentration parameter for θ: the higher the value of θ,
the smaller the reinforcement term, the more peaked the distribution of the nj . The
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magnitude of the rich-gets-richer effect depends α. Introducing a new, unobserved
token in the sequence increases the value of k. When α > 0, this increases the
probability of introducing even more new elements. However, a large α also reduces
the chances that any single element is reinforced. The reinforced elements quickly
become favoured for further reinforcement, giving a skewed distribution9.

The second behaviour regards the expansion in the adjacent possible. Indeed,
the first term on the right-hand side of Eq. (1.15) refers to the probability that xn+1

takes a value that has never appeared before, i.e. a novel element. A novel element
appears with probability θ+knα

θ+n , depending on the total number n of elements seen
until time n and the total kn distinct elements seen until time n. In this way,
in the PD process, the concept that the more novelties are actualised, the higher
the probability of encountering further novelties is implicit. The second term in
Eq. (1.15) weights the probability that xn+1 equals one of the previously occurred
events and differs from a bare proportionality rule when α > 0.

When α = 0, there is no expansion in the adjacent possible, no triggering of
innovations. Such process is called Dirichlet Process, is widely used in inference too
and is equivalent to the Hoppe Urn model.

The ubiquity of the PD process is due to its ability to mimic actual data and
to the ease of its mathematical manipulation. The PD process is a good model for
many systems. It is useful in many contexts as it produces sequences that exhibit
all three laws considered in the previous sections. At the same time, it is useful
in inference because of the fundamental property of exchangeability. We will now
briefly show these features.

Power Law Behaviours

In Eq.(1.15), we observed two key aspects. First, a reinforcement in a rich-gets-richer
style, second, positive feedback of introducing a new element on the probability of
introducing more novelties.

Heaps’ law Let us start with this second aspect looking at how it introduces
Heaps’ law. To verify that the PD process produces a sub-linear power-law growing
number of different elements, we start considering the probability of increasing the
number of different elements:

Prob(kn+1 = kn + 1) = θ + kα

θ + n
(1.16)

9With α = 0.8, an element reinforced once (nj = 2) has a six times higher probability to be
selected again than an element with nj′ = 1. The skewness induced by α is evident in the emergence
of power-law tails (see page 22, ‘Zipf’s law’).
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If we use a continuous approximation, it becomes
∂k

∂n
= θ + kα

θ + n
(1.17)

With the boundary condition k(0) = 0. This can easily be solved by separation of
variables, leading to:

k(n) ∼ θ1−α(θ + n)α

α
− θ

α
(1.18)

The limit exponent in the growth of the number of different tokens, the Heaps’
exponent, is exactly α. When α = 0, the power-law fails, the growth is only
logarithmic and, instead of a Poisson–Dirichlet Process, we recover the simple
Dirichlet Process. Note that the Poisson-Dirichlet process is only defined for α < 1.
It predicts a sub-linear power-law behaviour for k(n) but cannot reproduce a linear
growth.

The exact expression for the expected value of k(n), without the continuous
approximation, can be found in [23]:

Eα,θ,n [k] = θ

α

(θ + α)n
(θ)n

− θ

α
(1.19)

In the limit of n� θ � α, this expression approximates to

Eα,θ,n [k] ∼ θ1−α(θ + n)α

α
e
α
2θ − θ

α
(1.20)

Taylor’s law As a second power-law, we show Taylor’s law for the fluctuations.
To evaluate the amplitude of the fluctuations in the continuous approximation, we
will consider the evolution of a group of processes. At step n0 every process has
k(n0) = k0 + δk different elements, with 〈δk〉 = 0 and 〈δk2〉 = σ0. Eq. (1.17) with
boundary condition k(n0) = k0 has the solution:

k(n) ∼
(
k0 + θ

α

)(
θ + n

θ + n0

)α
− θ

α
(1.21)

Taking the derivative in k0 we get:
∂k

∂k0
=
(
θ + n

θ + n0

)α
(1.22)

And thus the variance of the group of processes at step n will be〈
δk2

(
∂k

∂k0

)2〉
∝ σ2

0(θ + n)2α (1.23)

Due to the stochastic nature of the process, at any time, two processes may differ
in k. This difference is then amplified through the systems’ evolution. In the same
limit n� θ � α, the exact expression for the variance [23] is

Varα,θ,n [k] ∼ θ1−2α(θ + n)2α

α
e
α
θ (1.24)
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Thus the variance grows with a power-law of exponent 2α, and we recover σ ∝
Eα,θ,n [k], i.e. Taylor’s law.

Zipf’s law To derive the Zipf’s exponent, we will use the continuum approximation
following a master equation approach similar to the one for the PUT model in [149],
Appendix B. Let us call Ni the number of elements that occurred exactly i times
in the sequence {x}n1 . The variation of Ni during the next step will depend on
the probability that any of the elements that occurred i− 1 times is selected again
(increasing Ni by 1) and the probability of selecting again an element occurred i
times (reducing Ni by 1). In formulas:

∂Ni

∂n
= Ni−1

i− 1− α
θ + n

−Ni
i− α
θ + n

= Ni−1(i− 1− α)−Ni(i− α)
θ + n

(1.25)

We can look at the last numerator as (minus) the variation over i of the quantity
(i− α)Ni, thus writing:

∂Ni

∂n
≈ − 1

θ + n

∂(i− α)Ni

∂i
(1.26)

Our goal is to find a law for the fraction fi of tokens appearing i times in the sequence.
We can safely assume that, in the long run, the fi will tend to some stationary
distribution. We can thus write Ni as the product of a fraction fi independent from
time and the total number of different tokens k.

fi
∂k

∂n
= − 1

θ + n

∂(i− α)fi
∂i

k (1.27)

Introducing Eq. (1.17) in the first term, we can simplify the θ + n and obtain:

fi = − k

θ + kα

∂(i− α)fi
∂i

≈ − 1
α

∂(i− α)fi
∂i

(1.28)

Where the last step assumes kα� θ. This can be solved by separation of variables
and yields:

fi ∝ (i− α)−1−α (1.29)

We obtain the desired power-law behaviour and an exponent for Zipf’s law 1
α , i.e.

the inverse of the Heaps’ exponent.
As noted in previous sections, this relationship holds only on the tails of the

data. Asking for kα� θ is about asking αnα � θ, if α is small, it might be difficult
to observe it on data. Note also that α introduces a bias toward small values of i.
When α → 1, it is difficult for an element to get reinforced, and there are many
elements occurring only once.
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Exchangeability

The PD process enjoys the important property of exchangeability. Consider an
infinite sequence X(∞) defined in a probability space (Ω,F ,P). The elements of
X(∞) take values in the metric space (X,M). A sub-sequence of X(∞) will be
{xn}n≥1 ∈ X. The sequence is exchangeable if it enjoys the following property:

Definition 1.2.3 (Exchangeability). A sequence X(∞) is said to be exchangeable
if, for any finite sub-sequence of length n ≥ 1 and any permutation π of the indices
1, 2, . . . , n, the probability distribution of the random vector (x1, . . . , xn) coincides
with the distribution of (xπ(1), . . . , xπ(n)).

This property is remarkable in inference because of de Finetti’s theorem. It
states that the only infinite exchangeable sequences are convex combinations (i.e.
mixtures) of laws of independent identically-distributed random variables.

To appreciate its relevance for inference, we will state it differently. Consider
the probability space (PX,W, Q) of all the measures over X. This means that
for every P ∼ Q, we have a probability space (X,M, P ). Consider now a set
A = A1 × . . .× An × X∞ where the Ai are elements ofM and X∞ = X× . . .× X.
The sequence X(∞) ∈ A when xi ∈ Ai for i ≤ n, with no restrictions on the elements
xi for i > n.

De Finetti’s theorem states that sequence X(∞) is exchangeable if, and only if,
satisfies the following relation:

P
[
X(∞) ∈ A

]
=
∫
PX

n∏
i=1

P (Ai)Q(dP ) (1.30)

Where the independence is evident from the use of the product, and Q is the de
Finetti measure of the sequence X(∞). The de Finetti measure weights all the P
participating in the mixture. In other words: conditional on a random probability
measure P from Q, X(∞) is a sequence of independent and identically distributed
random elements with a common probability distribution P 10.

Often in inference, we encounter hierarchical mixture models, for example, in
the mentioned case of clustering. We can thus reformulate the problem we posed
at the beginning of section 1.2. For every data point yi assigned to a cluster xi, we
need the probability of the point given the cluster f(· | ·) but also the probability
of the cluster itself. We can consistently draw the probability distribution of the

10This is easy to see thinking of an exchangeable sequence X(∞) whose elements take values in
{0, 1}, and a probability distribution Q over the parameter p of a Bernoulli distribution P .
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clusters from the de Finetti measure that acts as a prior.

yi | xi
iid∼ f(· | xi)

xi | P
iid∼ P

P ∼ Q

(1.31)

To do so, use a PD process for the probabilities of the xi.
Exchangeability is a powerful property that simplifies the sampling procedure,

making it independent of the input order11. However, it is also a strong and sometimes
unrealistic assumption about the data’s lack of correlations and causality.

1.2.2 Conditional Probability

The property of exchangeability may not be evident from Eq. (1.15). However,
it stands out when explicitly computing the conditional probability of the whole
sequence given the parameters:

P (w1, . . . , wn | α, θ, P0) = P (wn | w1, . . . , wn−1, α, θ, Po) . . . P (w1 | α, θ, P0) (1.32)

For the moment, we consider, as in Eq. (1.15), the case of a continuous base
distribution P0. In this case, each yj has zero probability of being extracted from
P0 twice. All the elements xi | x∗i = yj appeared by reinforcing the first such term
appeared. In the case of an atomic P0, we should consider the number of extractions
from P0 of the same element, see section 1.2.3.

Looking at Eq. (1.15), we notice that the denominator is independent of the
identity of xi and from it being reinforced or drawn from P0. In the product of
Eq. (1.32), we can refactor the contribution of the denominators as a term

∏n
i=1

1
θ+i .

Let us consider now an element that entered the sequence at step n′ and appeared
nj times, i.e. an element yj |

∑n
i=1 δyj ,x∗i = nj . The weight of this element in the nj

extractions has two contributes:

• a term (θ + αkn′)P0(yj) for the first extraction from the base probability;
• a term

∏nj−1
i=1 (i− α) for the nj − 1 times the element has been reinforced.

The second term does not depend on whatever happened in the sequence. No
matter how many steps the process has been running or the number of elements
x∗i 6= yj appeared.

The first term depends on the sequence through the number of different elements
kn′ already appeared before yj . Looking again at Eq. (1.32), we notice that all the kn
different elements in the sequence will bring a term of the same form where kn′ will

11In the clustering example, considering independent data points, we do not want the result
(number and size of the clusters) to depend on the order of the points.
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assume all the values in [0, kn). We can refactor this term as
∏kn−1
k=0 (θ+αk)

∏kn
j=1 P (yj)

and the conditional probability finally reads:

P (n1, . . . , nk | α, θ, P0) = (θ | α)k
(θ)n

k∏
j=1

[
P0(yj) (1− α)nj−1

]
(1.33)

where (x)N is the Pochhammer symbol: x(x+1) . . . (x+N−1) = Γ(x+N)/Γ(x) and
(x | K)N is the Pochhammer symbol with increment K: x(x+K) . . . (x+ (N − 1)K).
The latter is known also as the Pochhammer k-symbol and expands as [39]

(x | K)N = KN ×
(
x

K

)
N

= KN Γ
(
x
K +N

)
Γ
(
x
K

) (1.34)

reducing to the Pochhammer symbol when K = 1.
The probability of Eq. (1.33) is composed of two parts. One is the probability

given by the PD process to the partition of n elements in k classes with ni elements
per class

( (θ|α)k
(θ)n

∏k
j=1 (1− α)nj−1

)
. The other is the probability of selecting the

associations between each class and the elements of X, i.e.
(∏k

j=1 P0(yj)
)
.

The exchangeability of the process is now evident. The probability of the
sequence, given the parameters, does not depend on the order of the sequence. The
only dependence is through the identity and the multiplicity of its elements.

1.2.3 Discrete Base Distribution

In section 1.2.1, we left behind the discrete case for P0. This might be more suitable
to work on words that take values in a discrete space. The main difference with the
continuous case lies in the number of times we can extract a particular element yj
from the base probability.

If P0 is continuous, then (almost surely) two samples drawn from it have distinct
values. We used this property above deriving the conditional probability of a sequence.
If P0 is discrete, on the other hand, then P0(y) > 0 ∀y ∈ X, i.e. there is a finite
probability of repeating the same extraction. This implies that the partition induced
by the process is partially hidden, and Eq. (1.33) does not hold anymore.

An example can clarify what is hidden. Consider the following sequence:

you should better stop and think before you think think

This short sequence gives the partition:

think you and before better should stop
3 2 1 1 1 1 1

Since the base distribution is atomic, we cannot tell how many of the occurrences of
‘think’ and ‘you’ came from distinct draws from P0. Likewise, we have no means to
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distinguish which element got reinforced. So the correct version of Eq. (1.33) in this
case would be

P (x∗n+1 = ·|x1, . . . , xn, α, θ, P0) = θ + k̃nα

θ + n
P0(·) +

k̃n∑
j=1

δyj ,·
ñj − α
θ + n

(1.35)

Where, with k̃, we mean the total number of extractions from P0 and by ñj the
number of steps that reinforced the j-th element from P0. All the copies of y extracted
from P0 are identical, so we can group all the elements xi | x∗i = yj , keeping track of
the number of extractions of yj with a new variable tj . The conditional probability
becomes [148]:

P (x∗n+1 = ·|x1, . . . , xn, α, θ, P0) =
θ + α

∑k
j=1 tj

θ + n
P0(·) +

kn∑
j=1

δyj ,·
nj − αtj
θ + n

(1.36)

The values of nj are available from the sequence while the tj and k̃ =
∑k
j=1 tj

are not. The tj are a new latent variable in the model. In the case of continuous
P0, things simplify as tj = 1 ∀j almost surely. In the discrete case, these are new
variables to infer.

Although the discrete P0 would be the natural choice to work on texts, the
presence of latent variables implies that the probability of any sequence with some
nj > 1 has to be estimated through sampling. Please refer to [23] for a description of
how to sample the tj . We will conduct the stylometry task under the assumption of
a continuous base distribution P0. We will show that, even in this assumption, the
expressiveness of the PD process allows us to model the texts under exam closely.

For a complete and in-depth dissertation of the PD process, we refer to excellent
reviews in [114, 23, 37].

1.2.4 Equivalence to the PUT Model

The PUT model produces sequences that are not exchangeable. However, it recovers
exchangeability in a particular case, corresponding to a slightly different rule (2)
definition from page 12. The drawn element st is put back in the urn along with ρ
additional copies of it iff st is not new; in the other case (i.e. when we apply rule (3)),
st is put back in the urn along with ρ̃ additional copies of it, with ρ̃ = ρ− (ν + 1).

In this particular case, the PUT model corresponds exactly to the Poisson-
Dirichlet process, with θ = N0

ρ and α = ν
ρ . The urn acquires the same number of

balls at each step, regardless of whether a novelty occurs. This variant makes the
generated sequences exchangeable but imposes the constraint ρ ≥ (ν + 1), and thus,
in this case, as for the PD process, we cannot recover the linear growth of k(n).

The PUT model is thus a generalisation of the PD process. It allows for a
straightforward extension that explicitly considers correlations. In addition, it can
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be easily rephrased in terms of walks in a complex space (for instance, a graph),
allowing to consider more complex underlying structures for the space of possibilities.
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a) Last.fm b) Last.fm

c) sPUT d) sPUT

e) GUMT f) GUMT

Figure 1.5. Beyond rich-gets-richer. (Left-Panels) Normalised frequency of occurrence
ni of each element in i ∈ S as a function of its first appearance time ti. (Right-Panels)
For each interval of length ∆τ the first appearance time of the most popular element
within the interval. Data are shown for the Last.fm dataset (a, b), for the PUT model
(c, d) and the GUMT model (e, f). Panels (c, d) are results coming from a simulation of
the PUT model with parameters ρ = 2, ν = 2 and η = 0.4 for the model. Panels (e, f)
correspond to simulations of the GUMT model with ρ = 2, ν = 15, η = 0.001, γ = 0.004
and the choice II of the function f and g described in the Materials and Methods section
of [104]. Colour is coding for the fraction of time the successful element has appeared
within the corresponding interval. The length of the interval is ∆τ = 10000. Figure
from [104].
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Chapter 2

Stylometry

This work is part of the large field of stylometry applied, in this case, to authorship
attribution. Since its very origins, the techniques of authorship attribution have
played an academic and civic role.

The first examples of stylometry appeared with humanism when Lorenzo Valla
examined the ‘Donation of Constantine’ [151]. He based part of his argument on
the word choice of the document that was not compatible with other authentic 4th

century official texts. In the mid-XIX century, Augustus de Morgan proposed to
use word lengths to solve attribution disputes and – by the end of the century –
Mendenhall tried to use the statistics of word lengths [102] to distinguish the works
of Bacon, Marlowe, and Shakespeare.

In 1954 there was the first known attempt to use stylometry in a trial. Dick
Helander, bishop of Strängnäs – Sweden, was convicted for a series of defamatory
letters that helped him gain his position two years earlier [71]. Among other evidence,
a comparison of frequency lists from the disputed letters with those from his sermons
and other documents led to his conviction [6]. However, the expert witness did not
use sound statistical analysis, and the case remained dubious.

A few years later, the work of Mosteller and Wallace on the Federalist Papers [106]
marked the birth of modern stylometry. The Federalist Papers are a collection of
eighty-five essays published in 1787 – 1788 by three different authors (A. Hamilton,
J. Madison and J. Jay) to support the ratification of the federalist constitution
of the United States. Mosteller and Wallace applied linear discriminant analysis
and Bayesian inference to the twelve essays of debated attribution. They attributed
eleven papers to Madison, with the last being probably by Madison too.

This chapter is a general overview of the research in stylometry. The reader will
find some sections more related to the primary subject of this thesis. In particular,
the specific subtask is described in section 2.1.3, and the kind of features used are
introduced in section 2.2.2 (‘Lexical’). Some related methods we used as a comparison
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are presented in sections 2.3.3 and 2.3.4. Our approach belongs to the broad class of
profile-based approaches. A description of their features is in section 2.4.2.

2.1 Stylometry and its Subtasks

Challenges in stylometry evolved in the nearly sixty years since its birth. Different
subtasks in stylometry require different approaches and techniques. However, even
if tools and procedures may differ completely, all the main subtasks defined in the
past years can be placed on a single scale depending on the number of candidate
authors, see fig.2.1 and [80].

With no candidate author at all, we cannot even think of attribution. The best
we can do in this case is to attempt author profiling. In this case, we try to infer as
much information as possible from the given anonymous text. This information may
be about the demography, the psychology, or the author’s interests.

When there is only one candidate author, we are asked to verify its authorship.
The author verification task is tricky as we have to tell if the style of the unknown
author is close ‘enough’ to the candidate author. Varying the setting, defining how
much is enough may not be easy.

With few candidate authors, we are in the classical setting of authorship attribu-
tion. In this case, the set of candidate authors is closed and (relatively) small. We
have examples of the writing from all the candidates, and we know one of them is
the actual author. This is the setting for many literary disputes as to the mentioned
case of the Federalist Papers.

With many candidate authors, in the order of the thousands or tens of thousands,
we face the needle-in-a-haystack problem. Nevertheless, it is still a case of proper
authorship attribution as we know (or hypothesise) that the actual author is among the
candidates. However, the number of candidates makes many authorship attribution
approaches useless in this setting.

Other interesting subtasks of stylometry are stylochronometry and adversarial
stylometry. In the first case, we are interested in the time ordering of texts. We must
place a text with no date in the correct order among others, with or without authorship
information. The second case is strongly connected to authorship attribution as is

Many0 1 Few

Figure 2.1. Number of candidate authors. This number defines the kind of stylome-
try subtask involved. For a growing number of candidate authors, we have profiling,
verification, classical authorship attribution, needle-in-a-haystack problem.
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the active attempt to avoid the correct attribution. To this end, typical options are
obfuscation of the author’s style or imitation of someone else’s style.

All these tasks tackle different sides of the same problem. They seek to unveil
the unique style of each author to describe it (profiling), to use it for identification
(verification and attribution), to conceal or mimic it (adversarial stylometry) or
to capture its changes over time (stylochronometry). This fundamental similarity
implies that the approaches used to address each task share many features. We will
briefly outline the main specificities.

2.1.1 Author Profiling

In author profiling, also called author characterisation, the intent is to describe
the potential author [122]. This description may include demographic aspects
as age and gender [112, 118], or a psychological characterisation of sentiment or
personality [152, 154].

This subtask has several possible applications ranging from forensic to marketing.
In forensic analysis, author profiling may help assemble a set of suspects for further
investigation. In marketing, author profiling helps uncover the demographics of
customers reviewing products [116]. These reviews often do not disclose data about
the author, and author profiling can inform business experts for decisions about
marketing and business strategy.

The 2019 edition of the PAN workshop [119] presented another application
of author profiling. In that edition, participants had to extract some particular
information: if the poster of a tweet is a bot or a human and, in this case, if it is
male or female. This kind of analysis may have a significant impact as Twitter bots
had a role in major political events such as the U.S. presidential elections [17] or
the referendum for the independence of Catalunya [145]. Moreover, bots may alter
a product’s public perception by artificially inflating or undermining its popularity.

2.1.2 Authorship Verification

The task of authorship verification, also in the forms of similarity or plagiarism
detection, aims to determine if a text has the same author as other texts written by
the same pen. Depending on which (alleged) authors’ identities are known, this task
changes the flavour. If the author of the reference corpus is known and is supposed
to be the same author of the anonymous text, it is authorship verification. When a
different author claims paternity over the anonymous text, it is plagiarism detection.
When the author of the reference corpus is not known, we are just trying to establish
common authorship through similarity detection.
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This problem is challenging as we usually have samples only from the candidate
author. There are two main approaches in this case: using information only from
the candidate author [4, 109] or the artificial inclusion of other candidats [83].

When using samples only from the candidate author, the approach requires a
threshold to determine if the text is close enough to the candidate author. If using a
distance or similarity measure, this threshold is explicitly set. The threshold may
also be implicit in a single class classifier trained only with positive samples. The
boundaries of the class may be more (less) tight, allowing similar (diverse) samples
in the same-author class.

The artificial inclusion of other authors, or impostors, transforms this problem
into a common authorship attribution task. This method, however, has its flaws
too. First, there is the problem of the selection of the impostors. The impostors
must be chosen to be as similar as possible to the candidate author to present a
true challenge. This similarity may include every possible aspect: demographics,
favourite topics and of course “style”. To gather the perfect set of impostors, we
should know how to characterise the author so well that the problem becomes trivial.

As a consequence, we have that the outputs are intrinsically unreliable. When
the text is classified as other-author, we can trust that it is indeed far from the style
of our candidate. When the text is classified as same-author, we can only say that
none of the impostors was closer than the candidate. There is no general way to
determine if this is due to our fault in selecting the impostors, or if the text is indeed
from the same author.

A particularly challenging version of this subtask is the author identification
across different genres [68, 142]. For example, is the author of these blog posts the
same as this harassing letter? Is the author of these business letters the same as
this suicide note? Solving similar problems may have a great practical impact.

2.1.3 Authorship Attribution

The authorship attribution subtask is the earliest and most investigated in stylome-
try. The first modern attempt in computer-assisted stylometry is the authorship
attribution work by Mosteller and Wallace on the Federalists papers [106].

The classical setting of this task includes a few authors [19, 69, 76, 80, 106],
usually with many examples of each author’s style. In this approach, the best corpus
for testing is composed of texts on the same topic written by authors with similar
demographics and backgrounds. The idea is to get texts whose main difference is the
author itself. The rationale behind this approach is that we cannot rely on gender,
age, topic or social differences between the actual author and the alternatives in
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any hypothetical use case. The idea behind this kind of corpora is of creating a
worst-case scenario where no other hints are available but the very style.

This classical setting ignores many challenges offered by more realistic use cases.
In many applications, we have to face imbalances in the available size of the training
corpus for the different candidate authors. The topic of the training texts may vary
from author to author, within the same author and, ultimately, be different from the
topic of the anonymous documents. Moreover, texts may be coauthored and cite or
copy other authors’ texts. Finding and segregating can be tedious for quotations
and challenging for coauthored text.

Recent studies focus on more extensive and less balanced corpora. Since the
beginning of the century, corpora grew to hundreds of authors and hundreds of
thousands of texts [78] then tens of thousands of authors [131, 81]. Often classical,
balanced corpora are still used for benchmark, but no method can call itself state of
the art without good performance on larger large imbalanced corpora [135].

A different nuance of authorship attribution is author change detection. This
kind of analysis is performed on (supposed) multi-authored texts. In this case, every
part of the text, usually a paragraph, must be assigned to the proper author. This
kind of challenge has been one of the PAN tasks of the past five editions [160].

2.1.4 Stylochronometry

Ordering texts using stylistic markers date as back as the 19th century. The first
recorded attempt [144] is the work of Campbell on the Platonic dialogues [26] of
1867. However, a subjective choice of features characterised the early studies and
led to dubious results. More systematic computer-based approaches arrived in
the eighties [20, 66] while the term stylochronometry was coined only in the late
nineties [52].

From an individual [27], a collective [28, 67] point of view, or both [77], language
changes over time. This change can include variations on many levels: choices in the
vocabulary [66] (i.e. the use of words of Celtic origin as opposed to words coming
from Latin), trends in the average word length [28] or more complex dependencies
from many predictors [77].

Some works tackle this problem using topic models to track the evolution of the
authors’ interests [156]. For example, this technique allowed the author to track
the interests of scientists over the different editions of the NIPS Conference and
Workshop on Neural Information Processing Systems.
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2.1.5 Adversarial Stylometry

The purpose of adversarial stylometry is to deceive stylometry techniques. Deceiving
is possible by masking the true identity of an author or making the style of some text
resemble some other author’s. This branch emerged in early 2000 as a reaction to the
progress in other subtasks of stylometry [121]. Narayanan and collaborators [107]
showed the “feasibility of internet-scale author identification” only a decade later.
Scholars and IT security experts recognise that the new techniques allow connecting
the user behind different pseudonyms solely from the content of their messages even
in a space crowded as the web.

The approaches to adversarial stylometry vary in technique and degree of automa-
tion. They range from the almost manual edit of texts [70] to automatic machine
translation [21], from neural network approaches [47] to automatic synonym substitu-
tion [123] and genetic algorithms [94]. This varied development also led to a number
of tools for public use like Anonimouth [99], AuthorCAAT-I [36]/-II [35]/-III [49]
and Mutant-X [94].

Despite the developments, one big problem seems to be still far from the solution.
Existing automated authorship obfuscation approaches find it challenging to success-
fully evade machine-learning-based authorship attribution classifiers while preserving
the semantics of the text [94]. As a result, the text is (possibly) obfuscated, but it
loses its meaning. Sometimes it is completely subverted.

Texts for which the author may seek anonymity are usually meaningful. The
challenges in ‘preserving semantics’ that often seems to be a secondary problem
behind obfuscation itself are central. Unfortunately, studies about the effect on
obfuscation of the re-establishing of the correct meaning are still lacking.

In the past two decades, the field of adversarial stylometry has been active in
many directions. For example, there are now methods to deanonimise executable
code of computer programmes [53, 25] and studies to obfuscate their style [25]. Other
studies again investigated the possibility to discover if a text has been obfuscated [3].

Ethical Implications

The interest in adversarial stylometry is at least twofold. On one side, learning to
fake an author’s style requires a better understanding of what determines the style
itself. On the other side, it can help to mitigate stylometry inherent treats.

Authorship attribution techniques should be indeed regarded as potentially dan-
gerous technologies. Imagine the police of an authoritarian state adopting stylometric
methods. Imagine an activist advocating for the rights of their people on a blog or
social network, carefully obfuscating their identity, IP address and so on. Imagine
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they also write (or wrote) elsewhere innocent posts using their real name. The police
could quickly get their name or at least a shortlist of people to investigate further.

As an example of the current concerns about stylometry, consider recent results
presented at the NeurIPS-2021 conference. McIlroy-Young and collaborators [100]
applied stylometry to chess plays and identified a player among thousands with 86%
accuracy. Notably, the paper contains an “Ethical considerations” section introduced
as the NeurIPS organisers accepted the paper ‘on the condition that the researchers
elaborate on the privacy risks’ [63]. In the ‘Privacy concerns’ paragraph, the authors
note the similarity with authorship attribution in texts and propose approaches to
obfuscate the playing style.

A technique devised to help solve academic controversies or help fight unlawful
behaviours on the web (stalking, hate speech) may become a threat to the freedom
of speech. At the same time, style obfuscation techniques that may help activists
may also be used in blackmail, as once done cutting letters from newspapers.

Some stylometry works tackle security issues but doing so pose serious privacy
concerns. In their 2015 paper [109], Nirmal and collaborators state:

If there exists an email server (or an additional security interface) that
has sufficient knowledge on the author’s writing style; it could easily
detect a discrepancy in the email style and could prevent impersonation.

Indeed, this might be an effective security measure against the malicious use of
infected email accounts.

Aren’t then adversarial stylometry techniques allowing criminals to do bad things?
Useful approaches, similar to the one investigated in [109], in the wrong hands, may
lead to privacy nightmares when used in mass surveillance. Quoting the ‘Abuse
FAQs’ from the Tor Browser [41] support pages1:

Criminals can already do bad things. Since they’re willing to break laws,
they already have lots of options available that provide better privacy
than Tor provides. They can steal cell phones, use them, and throw
them in a ditch; they can crack into computers in Korea or Brazil and
use them to launch abusive activities [...] Normal people, on the other
hand, don’t have the time or money to spend figuring out how to get
privacy online.

With the adequate changes, this reasoning also applies to privacy and anonymity
protected via stylometry techniques. For malicious individuals or organisations is
easy to infect many email addresses and try until one of the forged messages passes

1https://support.torproject.org/abuse/#what-about-criminals, URL checked on Decem-
ber 30, 2021.

https://support.torproject.org/abuse/#what-about-criminals
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through the filter. Even a single tracked email might be fatal for the anonymous
source of some exposed mail to a journalist. The role of whistleblowers in recent
years, and the often harsh reaction from governments and organisations, make this
topic relevant for researchers and the general public.

In Chapter 9, we investigate the potential threats posed by the method described
in this thesis. We conclude that obfuscation tools should be readily available and
effective as other privacy tools.

2.2 Data Preparation and Feature Extraction

The texts collected for analysis need preparation before being fed to a stylometric
algorithm. Except for very few cases where data are generated specifically for
experimental purposes, data used in stylometry come from sources with very different
aims. This variety implies that they contain elements as page numbers or HTML
tags. After removing or normalising all the superfluous or spurious information, the
stream of characters needs further processing to become useful for the analysis. This
phase is called feature extraction and is strongly dependent on the specific approach.

2.2.1 Preprocessing

The first phase of cleaning depends on the origin of the texts. Books and essays
usually come from digital publications or the digitisation of older editions. These
include metadata, information about the publisher or the print shop, page and chapter
numbers, and any other addition to the text (images, editor’s notes, highlights, ...)
included to meet the readers’ needs or tastes.

More informal kinds of texts are usually a product of digital interactions. Email,
weblog, SMS are all valuable material for stylometric analysis. These texts are
usually scraped from the web or retrieved from databases. Even in this case, there
is plenty of metadata, and the texts contain URLs, tags, escaped sequences (e.g.
“&amp;” in HTML documents to represent “&”) and so on.

After this first cleanup, there is a second cleaning phase more dependent on the
approach. In many cases all letters in the texts are lower-cased. Some approaches
need the removal of all the punctuation and other non-alphabetical characters.
Finally, in some cases is useful to normalise some kinds of characters either for
the needs of the algorithm or because bearing confusing information, not from the
author. This step may include unifying the quotes style (changing from “smart” to
"plain"), normalising white space (space, non-breaking space, tabulation) and other
context or language-dependent passages.
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2.2.2 Feature Extraction

After preprocessing the texts, another crucial step is missing before beginning to work
on the specific stylometry task. The text is still a continuous stream of characters
at this step with no distinction of its constituents. The feature extraction process
elaborates the texts to produce a set of measurable features that allow comparison.

The features considered in stylometry works span all the possible levels. At the
lowermost level, we have lexical features that look at the words or even at the bare
characters of the text without any additional information. At a higher level, we find
syntactic features. Here the role of each part of the text is analysed at a syntactical
level identifying nouns, complements, verbs and so on. Then, growing in abstraction,
we find semantic features. Here the very meaning is considered, for example, the
use or availability of synonyms. Finally, at the topmost level, structural features
consider the whole document identifying the different sections and their role. A
last class of features – commonly referred ad domain- or application-specific – may
belong to any of these classes depending on the context.

Lexical

Lexical features look at the symbols in the text without trying to infer any addi-
tional information. This is convenient as it makes these features largely language-
independent.

The most basic lexical features are character N -grams, i.e. groups of N consecu-
tive characters from the text stream. Character N -grams are convenient as they find
application to most languages, from alphabetic writings as English to logographic as
Chinese. Usually, all possible N -grams are considered processing the text with a
sliding window of width N .

The second class of lexical features are word tokens. These are not language-
independent as the language must have word boundaries. In agglutinative languages,
a whole, complex sentence may consist of one or a few words. In some cases,
punctuation marks are considered tokens on their own.

Misspelling can affect the use of lexical features. For example, the word (or
trigram) ‘rwd’, as a misspelling for ‘red’, introduces a new, different word token
(or trigram, since this sequence of letters is absent in regular English). In some
cases, this can be useful for analysing the author’s most common mistakes. However,
typos introduce noise when not analysing mistakes and must be removed using
some language-dependent orthographic corrector. Furthermore, the corrector may
itself introduce noise: in the example before – without knowing the context – ‘red’,
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‘rod’ and ‘rad’ are all possible corrections2. Similar problems are more relevant in
an informal context with the use of slang or web jargon as “31337 5p34k” [eleet
speak, for ‘elite speak’, the language of the elite, most skilled users] that modifies
the spelling, often substituting letters with numbers with a similar shape.

From these features, it is possible to extract relevant measures. Word length
distributions or vocabulary richness measures were mostly used in the early phases
of stylometry. Vocabulary richness measures date as back as the forties with Yule’s
K measure [158]. Modern approaches prefer to use the so-called bag-of-words. All
lexical features are considered without account for their order in the text and context,
focusing on their frequency.

Syntactic

Syntactic features look at patterns in sentence elements. A good set of tools is needed
to extract this information: tokenisers, parsers and part-of-speech (PoS) taggers.
These are not available or equally proficient for every language. The result of the
analysis is limited to their quality. When the performance is insufficient, these tools
add noise to the extracted features3.

The tagged text allows the syntactic analysis of the style. This analysis is
possible by analysing the tags’ frequency or the rewrite rules representing how an
author structures sentences. Sidorov and collaborators [137] obtained consistent
improvements using dependency trees to build ‘syntactic N -grams’. They derived
token N -grams measuring token adjacency on dependency trees, i.e. the next token
is syntactically dependent on the former.

Semantic

The semantic features exploit the very meaning of the words in the text. While
approaches like topic modelling 2.3.4 try to infer the relations between the word
from their use4, extracting semantic features relies on specific tools. One of the most
commonly used is the WordNet®5 database of synonyms [103]. Only a few languages
have this kind of tool readily available.

An example of use comes from [31], where the authors weighted the word choices
with the number of synonyms available on WordNet®. An author sharing many
words with the unknown text will receive a lower score if those words have few
synonyms. This is because there are few options to express the same concepts using

2Also, on English keyboards, ‘a’ and ‘e’ are both neighbours to ‘w’.
3Consider a rough PoS tagger failing to distinguish the verb ‘to book’ from the object made of

paper.
4For example, they learn to distinguish the uses of ‘bank’ next to ‘river’ or ‘loan’.
5https://wordnet.princeton.edu/, last checked January 22, 2022.

https://wordnet.princeton.edu/
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different terms: it is difficult to avoid using the word ‘computer’ when writing about
computers. On the other end, an author that shares fewer words may get a higher
score if they pick those words from many synonyms. For example, few people would
use ‘verdant’ to describe a green area or landscape, which might be a clue.

Structural

Structural features are pertinent to the organisation and the layout of the text. The
use of indentation, blank lines to separate paragraphs, greetings and signatures are
all examples of structural features that characterise an author’s style.

Some of these features are generic and apply from essays to blog posts to mail.
Others – like the use of a closing signature in emails – are more specific to some
domains. In some domains the use of structural features is limited. For example,
the layout of published books or articles does not depend on the author but the
publisher.

Domain-specific

Among domain-specific features, all sorts of the former are possible. Due to the
specific knowledge of the task, domain-specific features may include some lexical
features that would be excluded in the standard analysis. Some specific syntactic
structures may reveal non-native writers, and some keywords may receive additional
weight in semantic analysis. Even if using an approach that requires removing
stop words, words as ‘the’, ‘who’, ‘take’, ‘that’ may require a special treatment if
studying music reviews.

Hashtags and mentions in Twitter posts are an example of domain-specific lexical
features. Their use and content may reveal a lot about the author but are not
applicable or relevant in other contexts.

2.2.3 Feature Selection

With such a wide offer of features, even approaches that rely only on a few categories
often need feature selection. Selecting means retaining only part of them and
discarding the others. Despite being so relevant for the outcome of the task, the
researcher’s experience is often the sole guidance in this step.

In stylometry, feature selection indicates a form of dimensionality reduction in
data. Often, every different token, N -gram, rewrite rule is a dimension. Documents
take place in this space depending on the frequency of each token. A common
approach is to ignore the dimensions where many documents have a zero or all
documents have similar values.
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Every classification approach hints at a general order of magnitude, and some
also suggest a rule for the selection. However, over the years, any number of features
has been suggested, from the few tens to the many thousands. Also, the rules
for selecting the features vary wildly, from corpus dependent inferred relevance to
precompiled lists of words specific for language and application.

When inferring the most relevant feature from the corpus, varying the stylometry
approach, all sorts of rules have been proposed. For example, the suggestion may be
to select only the most common features (appearing in all texts, top N), the least
common, those whose frequency varies a lot or a little, or the most informative, only
to name a few.

Studies on the best feature sets [42], as well as on the composition of training and
test sets [44] or the length of the samples [43], are ongoing as every new approach
changes the rules and moves the thresholds.

2.3 Classification Approaches

Over the years, researchers proposed many different approaches to stylometry and
its subtasks. Some approaches are very context-specific, others more general. At
the same time, given the same task and the same corpus, many different approaches
may prove valid.

The following sections offer an overview of the different options following a
classification derived mainly from [46, 108].

2.3.1 Machine-Learning

This class of methods reaches extremely high performance through the careful selec-
tion of many components. The texts are described as vectors in a multidimensional
space. Vectors are then classified or grouped into categories. Here too, the choice of
classifiers or clustering algorithms and their parameters is almost unlimited.

Machine-learning classifiers optimise boundaries between predetermined classes.
Good boundaries minimise some loss function specific for the algorithm or task. The
general purpose of loss functions is to introduce a penalty for misclassified samples
in the training set. Loss functions may include penalties for samples too close to the
boundaries or different weights for different classes6.

Machine-learning algorithms are widely used in all stylometry subtasks. For
example, during the 2013 edition of the PAN Competition [120], all participants

6This tuning can account for the different effects of misclassification or compensate for the class
imbalance. For the first case, think of the different weights of a false negative or a false positive in a
court trial.
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used a machine-learning algorithm for classification, including decision trees, support
vector machines, logistic regression, and random forests.

Clustering algorithms are an option when the interest is in discovering rela-
tionships within the corpus. For example, a clustering algorithm can find stylistic
similarities or reduce the search space for authorship attribution problems [64].
Clustering is an unsupervised machine-learning procedure. The algorithm derives
a natural separation of the feature space that may or may not correlate with the
class labels. While in classification, class labels are known and incorporated in the
classification process, in clustering, they might be absent altogether, and there is no
guarantee – nor specific aim – that all the texts from the same class (author, gender,
age) will fall in the same cluster.

Support vector machines (SVMs) have been a common classifier choice in use
since early 2000 [40] and included in stylometry software as Stylo [45]. SVMs can
handle large and sparse datasets with large combinations of features of different
nature. The examples of SVM classifiers, often compared to other machine-learning
approaches, are countless. As an example, in [1], an SVM is compared to decision
trees while, in [58], the comparison is with Naïve Bayes, K-Nearest-Neighbours
(KNN) and decision trees. SVMs are usually among the best but performance
varies wildly across studies. An interesting case is [109], where the authors train a
single-class classifier to recognise an individual’s email style.

Artificial Neural Networks (ANN) have been used in stylometry since the
nineties [76] and reached very high performance. For example, the approach in [13]
obtained the best overall result in the Author Identification task at PAN2015 [143].
However, ANNs require lots of training data [54], and the limits to explainability
in their results [117] may limit their range of application. On the other hand, it
is relatively easy to build good language models using ANN and to use them to
generate obfuscated text in adversarial stylometry as in [136].

2.3.2 Similarity

Similarity approaches measure the similarity and differences between two texts to
determine if the same person wrote them. Similarity approaches are also often
referred to as inter-textual distances even if their output is not always a distance in
the sense of a mathematical function, i.e. being positive semi-definite, symmetric
and obeying triangle inequality. These methods often rely on the vocabulary used
in the two texts, measuring some (weighted) degree of overlap.

The main idea of similarity approaches is that if the elements used in two texts
are similar, the texts are close and may be written by the same person. The result
“these two texts are closer” is obtained with specifically crafted distance measures.
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KNN classification algorithms use a similarity approach when K=1. We do not
include similarity approaches in the machine learning group as generally denoted by
the simplicity of their attribution rule (i.e. first nearest neighbour), their general
inability to deal with sparse data and the care in selecting the distance function
rather than Euclidean distance in Rn.

Several distance metrics have been created or adopted for this purpose, including
Burrows’ Delta [24], Chi-Square [130], Kullback-Leibler Divergence [12, 130, 161],
Stamatatos distances [140], Argamon’s Delta [10], Eder’s Delta [125] and others.
The Burrows’ Delta is simply the difference in z-scores of the relative frequencies of
the most frequent words in texts. Its alternative versions include weights depending
on the word rank (Eder), the square of the relative frequencies (Argamon) and so
on.

Compression-based methods [16, 86] represent a different approach to similarity
measures. These methods also minimise some distance between train and test samples.
First, all texts from an author are joined to produce a file A. A compression algorithm
produces the compressed file C(A). Next, the unknown text B is added to A and
compressed to obtain C(A+B). Finally, the difference in bits between C(A) and
C(A+B) measures the similarity (actually a function of the crossentropy).

A known [96] drawback to compression-based approaches is slow running time:
the corpus of every author has to be compressed again for each unknown text. The
authors of [96] also note that compression models are easy to apply and require
little to no preprocessing. These methods continue to yield state-of-the results for
authorship attribution [110, 108].

2.3.3 Probabilistic

Probabilistic approaches apply the Bayes rule to get an estimate of the probability
that some author A7 produced some text B:

P (A | B) = P (B | A)P (A)
P (B) (2.1)

Then an author A∗ is proposed following a maximum a posteriori (MAP) principle
A∗ = arg maxA(P (A | B)). Being P (B) a normalisation constant, key elements to
determine the probability are P (A) and P (B | A).

The prior probability is usually taken uniform or derived from the data. In the
first case, we may ignore some relevant information but might be a safer assumption
in case of imbalanced training data. The results with uniform priors will be the
same as through maximum likelihood estimation (MLE).

7Here, by A, we mean an individual’s identity or a label corresponding to some profile.
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Most of the researchers’ effort is usually in determining the conditional probability
P (B | A) (at least since Mosteller and Wallace [106]). In a Naïve Bayes approach,
all the features are assumed to be independent. We are not interested in the
exact probabilities but only in the identity of the most probable author. Even if
independence may seem a rough assumption, this approach often leads to good
results [58]. Researchers proposed several options to overcome the limitations of
the assumed independence. In [76], the authors introduce the covariance matrix,
but this is feasible only with non-sparse data. A different approach is to include a
language model that assigns probabilities to sequences of words. This is the case
of [113], where the authors develop a ‘Chain Augmented Naive Bayes’ using a token
N -gram model similar to those used in automatic speech recognition [79].

2.3.4 Topic Modelling

Topic modelling techniques were developed in the late nineties for dimensionality
reduction in information retrieval. Topic models assign every word in a document to a
topic trying to resolve polysemy issues. The document is first represented as a vector
of word frequencies. After assigning words to topics, the document representation is
a mixture of topics. This achieves the result of projecting the document from the
N -dimensional space of the words, N in the thousands or hundreds of thousands, to
an M -dimensional space of topics, M usually in the hundreds.

Topic models have found their application in authorship attribution for at least ten
years [134, 157]. Their fortune is due to the possibility to specialise their generative
model to capture the relevant information.

In [108], topic models are considered a kind of feature. Indeed, these approaches
try to extract semantic information from lexical features. However, there is a relevant
difference that suggests a different classification. Methods using syntactic or semantic
features usually rely on external tools for their extraction and then use these features
for further processing using any of the approaches described. In topic modelling,
the characterisation of the relations between tokens is central to the analysis. The
output then undergoes little other processing, with the last stage being probabilistic
or similarity-based.

One of the most relevant and influential topic model implementations is the
Latent Dirichlet Allocation (LDA) [18]. LDA is a three-level Bayesian technique
for modelling a collection over a set of topics. In its base definition, LDA models
documents as a mixture of topics where each topic is represented by a multinomial
distribution over words. The mixture weights of the topics for each document and
of the words for each topic are drawn from a Dirichlet distribution. The relevant
information is in the estimate of the mixture weights. The weights in each topic’s
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word distribution give an idea of its semantic field. At the same time, the weights in
the topic distribution point out the most relevant topics for each document.

LDA will not give direct information on authorship. However it is possible to
compare the topic distribution of known authors with the one estimated on the
unknown text. For example, Hellinger distance [134] between the topic distributions,
even in this simple approach, offers interesting results close to those obtained using
SVMs.

Seroussi and collaborators introduced [133] the Disjoint Author-Document Topic
(DADT) Model. This model aims to “separate document words from author words
by generating them from two disjoint topic sets”. This approach incorporates the
intuition that the document itself dictates some words while others are introduced
as specific to the author’s style. Thus, there are two kinds of topics in the DADT
model: document and author topics8. At the word level, the generation follows the
following rules: (i) choose to draw a word from document or author topics with a
document-specific probability; (ii) if document topics are selected, choose a topic from
the document’s document topic distribution; (iii) if author topics are selected, choose
from the author topic distribution of one of the document’s authors; (iv) choose
a word from the selected topic. In this case – given the model’s parameters, the
test text words, and the inferred author/document topic ratio and document topic
distribution – the probability of each author is determined directly.

For the subject of this thesis, it is relevant to mention an extension of the DADT
model that the authors presented as “Probabilistic DADT” or DADT-P [135]. This
model gave the best result on almost all the corpora the authors applied it to. Only
in a few cases it was slightly (< 2%) outperformed by an SVM. In the DADT-P
model, every candidate author A, in turn, is considered to be the actual author of
the unknown text B. The candidate authors have their topic distributions fixed after
the training phase. Each topic’s distribution over words is fixed too. The authors
infer the text’s document topic distribution and the author/document topic ratio and
compute the probability of obtaining the unknown text from the candidate author
P (B | A). In [135], the authors infer the distribution of documents over authors,
thus obtaining a proper P (A | B) via the Bayes rule. This choice is delicate as it
might be strongly affected by class imbalance if the test set is instead balanced, as
suggested in [142] for authorship attribution tasks.

8Please note that the term ‘topic’ in ‘topic model’ does not match exactly its usual meaning.
Some topics in topic modelling may include mostly stop words and be mainly topic-independent (in
the ordinary meaning of this expression).
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2.3.5 Complex Networks

Stylometry did not escape the attention of scholars in complex network theory. A
common approach to building a network from a document is removing the stop
words and then considering the remaining words as nodes. Then (directed) links
are added from every word to the following in the text. Links can be weighted by
the number of times a pair appears in the text. Several studies were devoted to the
study of the properties of such networks and their application to stylometry [88, 101],
with some interesting findings as a power-law scaling in the number of observed links
(word bigrams) as a function of the number of different words [101].

When using the networks for stylometry, the approaches are pretty diverse.
The authors of [9] based their analysis on global properties of the network, such
as clustering coefficient or degree correlation. They treated these as features for
classification of the texts. In [109], when building the network, words are connected
if appearing within a distance n and stop words are not removed. The links
of highest weight and the nodes of highest total degree are fed to an SVM as
features. Amancio [7] obtained some results from the network variation over a
book’s development. The author applied machine learning techniques to the Fourier
coefficients of the series of values for clustering, average shortest path, betweenness
and accessibility.

De Arruda and collaborators showed in [50] a different approach that they defined
‘mesoscopic’. In their approach, the nodes are groups of paragraphs, and the weight
of the link between two nodes depends on the overlap of the most relevant terms for
the two extracts. This network representation was later [95] applied to authorship
attribution feeding some network statistics (degree, assortativity, centrality) to
machine learning classifiers. This mesoscopic approach distinguishes natural and
synthetic texts better than the co-occurrence networks. However, it is not so
proficient in finding the author of a text despite many text samples used. However,
the representations of the evolution of the books [95, 8] are truly picturesque.

2.3.6 Meta-Learning

The last class of approaches includes meta-learning models. Here one or more of
the approaches mentioned above are used not to get an immediate result but some
new feature for further analysis. For example, in [84], a semi-supervised method is
presented. First, texts are classified using an SVM. Then, if a Common N -gram
classifier confirms its prediction, the documents are added to the training set to
improve the results on the remaining documents.

Koppel proposed in [82] an interesting authorship verification approach based
on the performance of an SVM. First, the classifier is trained to distinguish the
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chunks of the text under exam from other texts of a single author. Then, the k
most relevant features are removed and the classifier trained again. The procedure
continues observing the degrading performance of the classifier. If the author is
the actual author, the style will be similar, and only a few features will allow the
distinction of the text. After only a few iterations, the classifier will lose most of its
power.

Kusakci proposed [87] a ‘committee’ of neural networks. Since every network may
vary in authorship attribution power, the confidence on every machine is evaluated
from its accuracy over training samples similar to the test sample in consideration.
Hence, all the machines cast their votes weighted with their accuracy.

2.4 Instance- and Profile-Based Approaches

The above classification offers an overview of the available options. However, some
essential features that characterise every approach may have passed unnoticed.

Here we recover the distinction between instance-based and profile-based ap-
proaches. This distinction was considered one of the most fundamental properties
of the attribution methods by Stamatatos in his seminal 2009 review [142]. This
relevance is undoubted for the philosophy behind each method and may limit the
fields of application of each approach.

With instance-based, we identify those approaches where every text from the
training corpus is considered individually. Each is treated as bearing a piece of
information about its author. Each text is an instance of its style, and unknown
texts are classified based on their relationship with this constellation of style samples.

In profile-based approaches, instead, all the available data from every author is
grouped in a single file. This file is then used to extract a comprehensive represen-
tation of the author’s style. This representation is the author’s profile, and every
unknown text is compared with it.

We will briefly outline the main strengths and weaknesses of the two approaches.

2.4.1 Instance-Based Approaches

In instance-based approaches, every text is considered individually, containing a
sample of the author’s style. This approach allows observing some aspects not
accessible to profile-based approaches.

First, instance-based approaches can capture internal differences in the authors’
style. For example, the anonymous text may be similar to part of the production
of its author but quite far from the average sample. These inhomogeneities are
expected when the corpus contains documents of different genres. In a corpus of
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emails containing both personal and work messages, personal mail of authors with
mostly work samples in the training corpus (or vice versa) may be far from the mean.
Having all the samples from each author separated may help in such circumstances.

A second benefit is the opportunity to better take into account structural features.
Since every text is independent, it is possible to better account for its macroscopic
constituents. These features can be helpful in short texts where other features may
be underrepresented. In the previous example, the consideration of greetings and
farewell clauses in the messages [162] may help identify the author’s style across
different contexts.

A third important feature of instance-based approaches is the ability to leverage
the capabilities of modern classifiers. The many samples per author are immersed in
a high dimensional space where tools like ANN [55, 117] or SVM [40, 109] can work
efficiently. These classifiers are also good at working with sparse and noisy data.
This ability, in turn, means that it is possible to avoid or reduce the need for feature
selection that is always arbitrary.

The use of classifiers like ANN or SVM makes fast the attribution of each text
in the test set. The time spent to assign all the texts in the test set is mainly
proportional to their number. On the other hand, the training phase of these
classifiers may be lengthy for the many parameters that need to be optimised.

Another limitation of instance-based approaches is due to imbalances in the
training corpus. Imbalances in the number and total length of the training samples
may affect the classification output. If some texts are much longer than the others,
they must be split to avoid biases. Splitting the training samples is also the primary
option for authors with few texts. For the classifier to work, every class must be
represented by several samples not too small. Split texts may however pose another
kind of problem, e.g. with structural features.

When some authors have only a few short samples (even only one), finding a
representation using instance-based approaches might be difficult. In these cases,
an option is to use the training data more than once through text resampling [141].
These approaches indeed suffer when learning on short samples. Many studies are
devoted to analysing the effect of short texts or chunks [61, 128]. The approaches’
performance decreases with the training chunks’ size, especially for sizes about the
hundreds of words or below.

2.4.2 Profile-Based Approaches

Profile-based approaches offer partially complementary features. These methods
were the first to be developed as they do not require the powerful classifier that
became available only in recent years.
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Each author’s training material contributes to getting a single profile. Often this
is obtained by simply joining all the training texts in a single large file per author.
Then stylometric features are extracted, disregarding the original differences between
the training texts. Even if this approach accounts well only for an author’s style
that is constant over the samples, a relevant benefit is the simplicity of the training
phase.

The training phase for this group of approaches often consists of the sole profile
extraction, often reduced to the feature extraction from the author file. Using a
single profile reduces the noise over the extracted features as all the information
is used at once. For attribution, very simple classifiers are used, often some first
nearest neighbour, requiring little or no training.

The use of simpler classifiers often means the inability to treat many sparse
features. Thus some feature selection is needed to reduce the feature set to a
suitable size. Also, simple classifiers like first nearest neighbour, having no training
phase, require comparing the anonymous text with all authors’ profiles during
attribution. This comparison may be pretty expensive, and the computational cost
of the attribution grows like the number of texts in the test set times the number of
authors.

Another feature of profile-based approaches is their relative resistance to imbal-
ances in the training corpus. First, the text lengths in the training corpus have
no effect. Long and short texts of an author are joined together without splitting
nor the presence of short, noisy chunks. However, imbalances in the author length
distribution may introduce strong biases. This is the case, for example, of the Com-
mon N-gram approach [75]. In this approach, only the L most frequent N -grams are
considered.If at least one author has a short profile containing less than L different
N -grams, the attribution strongly favours it [140]. This bias correction is not trivial
as it is easy to go for the other excess [53] and favour authors with longer profiles.
Due to the widespread use of balanced corpora in authorship attribution tasks,
problems linked to class imbalance went substantially unnoticed for many decades.

This strength against imbalances is amplified when working on corpora with
many authors (thousands to hundreds of thousands). Koppel et al. [81] observed in
2011 how similarity-based approaches work better than classifiers when the number
of classes is large. Narayanan [107] pointed out one of the reasons as the difficulty
of configuring complex classifier models with more parameters given a small number
of training examples in each class.
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Chapter 3

The Continuous
Poisson-Dirichlet – Discrete
Probability Approach

The approach we present in this thesis tackles the task of authorship attribution
using a Maximum Likelihood principle. We derive the likelihood of an author given
a text from a PD process introduced in chapter 1.

We represent each author A as a Poisson-Dirichlet (PD) process emitting tokens.
Given an author’s PD process, we can determine the conditional probability of any
sequence to be its subsequent output. Then, the conditional probability that some
anonymous text Bj is the output of the process of a known author is the likelihood
L(Bj | Ai).

The categories introduced in chapter 2 can help frame our approach in the
stylometry tradition. We will use a probability profile-based approach relying only
on lexical tokens. The result is a language-independent approach, both in capabilities
and outcomes, that offers state of the art results on small balanced datasets and
large imbalanced corpora.

For every author, we create a profile containing the tokens they used and the pa-
rameters of their PD process. We use the complete corpus of their known production
at once to determine the probability of an anonymous text.

One of the advantages of our method is its simplicity compared to many alter-
natives. It relies on lexical token unigrams without PoS tagging or classifiers. Our
model is closer to topic modelling; however, it requires no statistical sampling due
to the absence of latent variables. Thus, the attribution is fast and deterministic.

At first sight, our approach may seem an extreme simplification of approaches like
the DADT-P, see section 2.3.4. We remove document topics and place every author
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in one-to-one correspondence with a topic. Instead, we will show how, thanks to the
superior expressiveness of the PD process, we obtain better results than DADT-P
and related approaches on the most challenging corpora, see chapter 7.

The key to the simplicity of our approach and its success lies in a fundamental
assumption. We will use the form of the PD process with a continuous base probability
distribution from Eq. (1.33) (Continuous Poisson-Dirichlet, CP). However, we will
use a discrete base probability for the tokens (Discrete Probability, DP). For this
reason, we call our approach ‘CP-DP’.

We will discuss the theoretical implications of this assumption in chapter 5.
Furthermore, its effect will be evident in chapter 7 from the comparison with other
approaches. Finally, we will comment on the general feasibility of avoiding this
assumption while discussing some technical aspects of our approach in chapter 8.

We breakdown our approach into three main phases:

1. feature extraction, where we normalise and tokenise all input documents;
2. likelihood estimate, where we compare the unknown texts with the profile of

the authors;
3. attribution, where we propose the most likely author.

In the feature extraction phase, we measure the documents. Starting with a
stream of characters, we project the text in the space of tokens. However, this
projection is not unique. Even considering only lexical features, there are many
available options.

In this work, we will consider three groups of features: word tokens, N -grams,
and LZ77 sequences. We will present these three projections in chapter 4 as the first
hyperparameter of our model. We will note how different corpora require different
variables for a fruitful representation.

In section 3.1, we will discuss the estimate of the likelihood. This procedure
is straightforward but requires estimating discount and concentration parameters
for every author’s profile and evaluating the base probability. The choice of the
base probability normalisation introduces our second and third hyperparameters
discussed in chapter 5.

Here, we introduce an essential step for completing our task. We will split the
documents into fragments and compute a separate conditional probability for each
one. This step will make our approach more resilient against corpus imbalances. It
is possible to apply the slicing only to the unknown texts or also to the authors’
corpora. The fragments’ size is our fourth hyperparameter. We will discuss the
effects of slicing in chapter 6.

The last phase is the proper attribution presented in section 3.4. It is not trivial
when we must merge the information from different fragments. In this case, we will
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discuss two different views on attribution. In the first, we assume the fragments
are independent, multiply their probabilities, and choose the author via Maximum
Likelihood (ML attribution). In the second, we attribute each fragment via Maximum
Likelihood. We assume every text is single-authored. Hence, we adopt a Majority
Rule choosing the most likely author of the most fragments (MR attribution).

We will check the performance of our approach on four different corpora described
in section 3.2. First, we will use them to evaluate the different choices in the
attribution technique. Then, we will use the same corpora to compare our approach
with others in chapter 7.

Figure 3.1 presents a schematic view of our approach with its different phases.

3.1 Estimating the Likelihood

We estimate the likelihood that some reference author wrote a text through a
PD process that, at each step, outputs a token. The likelihood is the conditional
probability that the tokens in the anonymous text come from the same process that
already produced the corpus of the reference author.

We are interested in the conditional probability of a text B given the whole
production of an author A. We represent B as a sequence f of tokens and A by
their profile. The profile contains the sequence A, the union of all their texts, and
parameters αA and θA. We can write the product of the probability in (1.15) for
every token in f as:

P (f | A,αA, θA, P0) =
∏k′+k−1
j=k′ (θA + jαA)∏n′+n

j=n′ (θA + j)

k′+k∏
j=1

Qj =

= (θA + k′αA | αA)k
(θA + n′)n

k′+k∏
j=1

Qj (3.1)

Where we are using primed variables to refer to the reference author and the
Pochhammer symbols introduced in section 1.2.2 Please note that when we consider
unique tokens, they are unique to the whole sequence. The k unique tokens in f counts
only those absent in A. In other terms, k is the cardinality of {yj ∈ f} \ {yj ∈ A}.

The parameters αA and θA are specific to the author’s process and have to be
estimated. We present the way to estimate the parameters in section 3.3. The term
Qj depends on whether token yj is present in A or not:

Qj =

(1− α)nj−1P0(yj)δ if yj /∈ A⇔ j > k′

(n′j − α)nj otherwise.
(3.2)
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Figure 3.1. Schematic view of the CP–DP approach. A — the unknown text is
preprocessed following one of the techniques described in chapter 4. B — the stream
of tokens is divided into fragments of length F according to the considerations from
chapter 6. C — a copy of the fragment is attached to the end of each author’s production,
and its conditional probability is computed; see sections 3.1 and 3.3. D — The PD
processes of the authors are equipped with a suitable P0 presented in chapter 5. E —
the conditional probabilities of all the fragments are combined to propose the most likely
author as described in section 3.4.
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In the first case of Eq. (3.2), we introduced the hyperparameter δ. We pose δ > 0,
and equal for all authors and documents. The reason for its introduction will be
discussed in section 5.2.

For computational purposes, we can rewrite Equations (3.1) and (3.2) using
Gamma functions. This is the form that, in logarithmic space, we used in the code:

P (f |A, P0) =
αkΓ

(
θA
αA

+ k + k′
)

Γ (θA +N)

Γ
(
θA
αA

+ k′
)

Γ (θA +N ′ +N)

k′+k∏
j=1

Qj (3.1 bis)

Qj =


P0(yj)Γ(nj−α)

Γ(1−α) if yj /∈ A⇔ j > k′

Γ(n′j+nj−α)
Γ(n′j−α) otherwise.

(3.2 bis)

In eq.(3.1 bis) we grouped all the conditions over A,αA and θA as a condition over
A to lighten the notation. This probability P (f | A) of the sequence f to be the
next output of the process that produced the sequence A, is thus the likelihood,
what we called L(B | A).

3.2 Corpora

In this study, we considered different corpora to answer different questions. We
chose literary corpora to investigate the effect of different languages while using long
texts from a few tens of authors. On the other hand, we used two English corpora
of informal texts: one of email, the other of blog posts. We use the informal corpora
to evaluate the ability of our method in more challenging cases with thousands or
hundreds of thousands of short texts.

The Literary Corpora. Our first question was: does our method work on different
languages? For example, changing language, a word may have a single form or many,
depending on its semantic role. Adjectives have one form in English (red), four
in Italian (rosso, rossa, rossi, rosse), ten in Polish (czerwony, czerwona, czerwone,
czerwonego, czerwonej, czerwonemu, czerwoną, czerwonym, czerwonych, czerwonymi).
This may introduce differences in favour of one or another language as investigated in
the works of Eder and collaborators [42, 125, 44, 43]. Our model is a good candidate
as we designed it based on token frequencies and relies on no semantic tagging.

To investigate this, we considered three corpora of literary texts: 1. English,
2. Italian, 3. Polish. From every corpus, we excluded authors that had only one
book.

The English corpus consists of 439 books from 44 authors active in the UK
around the end of the 19th century. It is derived from the one used in [88] selecting
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only native British English speakers from the UK alive in 1894 to ensure a relative
linguistic uniformity. We removed some books more to avoid a strong unbalance
between authors with only a couple of texts and authors with dozens. When using
relatively few texts, this unbalance may mask biases in the attribution if prolific
authors are preferred no matter what is in the text. We decided to take all the
books for authors with less than ten books while, for those with ten books or more,
we kept the nine books closest to the author’s average length plus one every ten at
random to maintain the overall ranking in the number of texts.

The Italian corpus contains 171 books from 39 contemporary Italian authors. It
is derived from the one used during the workshop “Drawing Elena Ferrante’s Profile”
held in Padova, Italy in September 2017 extended as in [89] but without the writings
from Elena Ferrante. The author behind this nom de plume was never officially
identified, and the inclusion of her books would have added a significant source of
noise.

The last of the literary corpora contains 100 books from 34 Polish authors. It is
derived from a benchmark corpus of 100 Polish novels, covering the 19th and the
beginning of the 20th century. We removed one book that is the only example from
Magdalena Samozwaniec. Thus, we used 99 novels by 33 authors (1/3 female writers,
2/3 male writers). The Computational Stylistics Group at the Institute of Polish
Language1 prepared the corpus for stylometric analysis.

The Informal Corpora. The second question was: is our approach practical also
on unbalanced datasets, possibly large and full of short texts? To test under these
circumstances, we included two corpora of informal writing: the Email and Blog
corpora. The choice fell on these two corpora with partly complementary features
and already used as tests for other approaches.

The Email corpus is one of the corpora used during the PAN’11 contest [11]. The
corpus was developed based on the Enron Email corpus2 and divided into sections
to account for different common attribution and verification scenarios. We selected
only one pair of the twelve separate training and test collections – of which six
are dedicated to author verification. We use the “Large” training sets provided for
authorship attribution containing 9337 documents by 72 different authors. As a test
set, we chose the one containing texts written only by the authors in the training
set while leaving the other one (also containing texts written by around 20 other
“new” authors) for future analysis.

The tasks at PAN’11 intended to reflect a natural task environment, so the
curators included texts in languages different from English or automatically gen-

1https://github.com/computationalstylistics/100_polish_novels
2http://www.cs.cmu.edu/enron/

https://github.com/computationalstylistics/100_polish_novels
http://www.cs.cmu.edu/enron/
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erated. The curators automatically replaced personal names and email addresses
with <NAME/> and <EMAIL/> tags, respectively. We decided to put ourselves in
the same conditions as the PAN competition and did not look for the elements that
eluded this cleaning operation. We replaced the XML tags with “ANAME” and
“EMAIL” strings. Under any other respect, the texts are guaranteed to be identical
to the original. The original curators of the corpus had determined authorship based
on the “From” email headers. The curators tried to match all the addresses belonging
to the same individual; however, they acknowledged some errors.

The last and largest dataset we considered is the Blog corpus. This is a collection
of 678,161 blog posts by 19,320 authors took from [131]3. This corpus is valued for
its size and, even if it has been around for quite a long time, it is still in use to test
novel stylometric approaches [126]. Before focusing on the whole corpus, we devoted
our analysis to a subset of the 1000 most prolific authors. This is the subset used
in [134, 133] containing the top 1,000 authors by the number of blog posts.

It is, however, not easy to find references in performance on this corpus. The
corpus is quite large and contains texts of very different lengths. For many authorship
attribution approaches this requires the corpus to be reduced [65, 111, 126]. This
necessity is due to limitations in handling many authors/texts, to the need for texts
of a certain minimum length or many examples from every author.

We found some oddities in the corpus, like having the same blog appearing twice
under different authors ids. However, we considered this part of the challenges of
working with a natural environment and decided not to fix such issues. Likewise, we
kept all the posts even if around 0.5% have at most ten characters, and about 11.5%
have no more than 100.

Every text is encoded using a single-byte encoding ISO 8859-1 for Italian and
English texts, ISO 8859-2 for the Polish ones. While this forces transliterating some
rare off-encoding characters (e.g. a Greek quotation in an English book), it also
ensures the correct behaviour during feature extraction.

The length of the texts and the production of the authors vary widely across the
different corpora. In figure 3.2 we show, in the top panel, the size-rank plot for texts.
The difference between literary and informal corpora is evident. Informal texts are
not only shorter (blog posts) or much shorter (email) than books, their size varies a
lot more. For literary corpora, the standard deviation of book sizes is about 60% of
the average book size. In the case of informal corpora, the fluctuations are about
twice the mean for blog posts and thirteen times the mean in the case of email.

3Available for download from u.cs.biu.ac.il/~koppel

u.cs.biu.ac.il/~koppel
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Figure 3.2. Size of the texts and production of the authors in bytes. We measured
the length after reducing all texts at a single-byte encoding.
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Looking at the authors’ production in the bottom panel of figure 3.2 we still
notice large fluctuations in size. The deviations range from 0.6 to 2.5 times the
mean in the case of the Polish and the complete Blog corpus respectively. Moreover,
for every corpus, we notice that there is at least some text longer than the whole
production of some author. These wide variations suggest that using fragments of
texts and slices of authors might reduce biases and bring all texts and authors to a
common ground.

3.3 Estimating the Discount and Concentration Param-
eters

To compute the probability from Eq. 3.1, we need the discount and concentration
parameters. We estimated them based on the author’s sequence only. The simple
form of the probability of a sequence in Equation (1.33) suggests an easy way to
evaluate the parameters αA and θA given the sequence A of an author. Given
the n1, . . . , nk multiplicities of the k different tokens in A, we can find αA and θA
following a maximum likelihood principle. In practice, as done for example, in [90],
we chose αA and θA that maximise the probability of the sequence.

The discount and concentration parameters estimate is independent of the base
probability distribution. Indeed, looking at Eq. (1.14), α and θ determine the pi, the
P0 determines the yi that appear as arguments of the δ. The P0(yi) are fixed and
contribute with a factor independent from αA and θA. Thus, our task reduces to
the search for the pair of parameters that maximises the probability of the partition
of n elements in k classes:

(αA, θA) = arg max
(α,θ)

(θ | α)k
(θ)n

k∏
j=1

(1− α)nj−1 (3.3)

We search for the maximum using the steepest gradient ascent. To find the
values of α and θ that ensure the maximum probability, we iterate the following
system until convergence:α(t+ 1) = α(t) + Iαaα(t)

θ(t+ 1) = θ(t) + Iθ + aθ(t)
(3.4)

For the gradient we need the derivatives of Eq. (3.3) with respect to α and θ.
The gradient assumes a nice formulation in terms of the Gamma function logarithm
derivative: the Digamma function ψ0. We are searching for the maximum, i.e. when
both derivatives are null. Thus, we do not need the exact form of the derivative,
and a quantity proportional to it is enough.
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For the derivative in θ we have:

∂P

∂θ
∝ ∂

∂θ

αkΓ
(
θ
α + k

)
Γ
(
θ
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) Γ (θ)
Γ (θ + n)

 =

= ak ×

 1
α
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(
θ
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)
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(
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) − 1
α

Γ′
(
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)
Γ
(
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α
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Γ (θ) −
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Γ (θ + n)

× Γ
(
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)
Γ
(
θ
α

) Γ (θ)
Γ (θ + n) ∝

∝ 1
α

[
ψ0
(
θ

α
+ k

)
− ψ0

(
θ

α

)]
+ ψ0 (θ)− ψ0 (θ + n) = aθ(α, θ | n, k) (3.5)

where the last line is the only thing we need to find the maximum. Similarly for the
α derivative we find:

∂P

∂α
∝ θ

α2

[
ψ0
(
θ

α

)
− ψ0

(
θ

α
+ k

)]
+ k

α
+

+
∑
i

ri
[
ψ0 (i− α)− ψ0 (1− α)

]
= aα(α, θ | k, r) (3.6)

where ri is the number of tokens with multiplicity i, that is, the number of partitions
of size i, with

∑
i ri = k and

∑
i iri = n. These formulas allow a fast and accurate

derivative computation for a precise search for the maximum.
In practice, we find that the plain gradient ascent is slow due to regions of little

variation of the probability. Therefore, we chose to use the gradient ascent with
momentum to improve the performance.

We treat α and θ as the coordinates of a unit mass point moving in a damping
medium. Now aα and aθ become the components of the acceleration. A damping
force proportional to the speed opposes the movement.

The new set of equations becomes:α(t+1) = α(t)+Iαvα(t+1)

vα(t+1) = vα(t)−ηvα(t)+aα(t)

θ(t+1) = θ(t)+Iθvθ(t+1)

vθ(t+1) = vθ(t)−ηvθ(t)+aθ(t)
(3.7)

where the I are scaling factors, a is an acceleration, and η is a dissipation term. The
dissipation avoids the build-up of excessive momentum and undesired oscillations
around the maximum.

We added momentum to improve the algorithm’s efficiency over regions with
small gradient values. We also added a second feature to speed up convergence in
cases when the derivative changes sign from one step to the other, i.e. we passed
the maximum. We switch to a bisection method that quickly narrows the search
area. This allows for larger scaling factors and avoids passing by the maximum at
full speed.

When the optimisation process leads out of the acceptable range of values
(α ∈ [0, 1) and θ > −α), it is continued from a value close to the border (0.01 and
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0.99 for α and −α+ 0.1 for θ). We allow this to happen a limited number of times.
Most of the time, we reach unacceptable values due to the high absolute value of
the derivatives and high increments next to the domain’s borders. We reduce the
momentum by increasing η and reducing the scaling factor to mitigate this effect.

In figure 3.3, we show a contour plot of the tokens’ partition probability for a
specific author changing α and θ. For example, we show here the case of George
Alfred Henty (1832-1902), the author in the literary English corpus with the most
significant amount of tokens using Dictionary words: n = 4.44× 105 tokens of which
k = 3.20 × 104 different. We find the maximum probability for α = 0.3343 and
θ = 740.3 where log10 P

max = −5459939.
The optimisation using the steepest gradient ascent with momentum requires

setting some parameters. We chose the starting values for α and θ to be respectively
0.3 and k, the number of different tokens. We take the base scaling factors over
α and θ to be 10−4 and 1 roughly reflecting their relative magnitude. We halve
the scaling factor every time the value proposed for one of the parameters exits the
acceptable range. Finally, we set the initial damping to 0.1 and increase it only when
failing on θ. We chose this rule because, when θ fails in the proximity of θ = −α,
the probability is very steep.

The maximisation may not always converge. In that case, we use the closest
acceptable value. This, in practice, happens only with α where we used the values
0.001 and 0.999. Even if a value of 0 would be acceptable, we force it to be slightly
greater to avoid the degeneration to a Dirichlet Process.

In chapter 4, we present an overview of the results of the parameters optimisation
changing variables. We present separate results for the different kinds of features. The
three approaches produce different sets of tokens with different statistical properties
and well-defined trends in the concentration and discount parameters.

3.4 Attribution

Once we estimate the likelihood for every text (or fragment) compared with every
author (or slice), we must assign the text to a single author.

In case neither the text nor the author are divided into parts, the task is trivial.
We assign each text f to an author A following a maximum likelihood principle, i.e.
to the author such that A = arg max

A
P (f |A).

A different point of view is to consider every author’s process as a language
model. The perplexity of a model on the test data is defined as an Equation.

PP (f) = a−
1
n

∑n

i=1 loga P (xi) = a−
1
n

∑n

i=1 loga P (xi|A,{x}i−1
1 ) = a−

1
n

loga P (f |A) (3.8)
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Figure 3.3. Typical shape for the probability of the partition varying α and θ.
This contour plot shows the logarithm values of the probability of the partition in k
classes of the n tokens of George Alfred Henty. The values in the plot are relative to the
maximum where log10 P

max = −5459939. Points on the innermost contour line denote
choices of parameters leading to probabilities one-hundredth of the maximum.
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The process that gives the maximum probability is the one that better models the
sequence. Thus, we are selecting the model with the lowest perplexity.

When we split the text into fragments of size F , we can still resort to a maximum
likelihood principle or follow a majority rule.

Maximum Likelihood If we choose a maximum likelihood approach, we assume
independent fragments. In this case, we approximate the likelihood as:

L(A|f) ≈
n
F∏
i=1

P (fi|A) (3.9)

From the point of view of the author-as-a-language-model, using fragments, we do
not assume independence. We are just forcing our model to reset every F steps. As
discussed when considering short fragments and authors, this cuts the adaptation
of the process of the reference author to the unknown text due to the previous
fragments.

In case the reference author is also sliced in s parts, we need to find a way to
estimate the likelihood for the author as a whole. After this, we can proceed as
in (3.9). For the fragments’ likelihood estimation, we considered three different
options. We can consider only the slice that offers the highest likelihood for every
fragment. Possibly prone to noise, this option represents the idea that an author
may exhibit different styles, and only a part of their production will match the
anonymous text. We can instead take, for every fragment, the geometric mean of
the likelihoods for every slice. Given the relative magnitude of the probabilities,
taking the arithmetic mean would be the same as taking the maximum. Doing all
the computation in logspace is natural to consider the geometric mean. This solution
is not proportional to the case of the full author. The process is not linear, and the
token distribution within the author corpus is uneven.

We can consider an intermediate weighted profile approach. This approach
exploits further information than the maximum value of the likelihood between the
fragments fi and author slices Aj . In particular, we wish to use the information
coming from all the slices of a given author in the corpus, trying at the same time
to reduce noise. We rank all the sj slices of a given author in descending order
according to the probability P (fi|Aj) of fi. We then construct a weighted average
for each author that we use as a measure of the likelihood:

P (fi|A) =
∑s
j=1

1
jP (fi|Aj)∑s
j=1

1
j

(3.10)

Majority Rule In this frame, we consider each fragment as carrying part of the
information about the authorship of the entire text. Let the text f be composed of
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n fragments. We first attribute each fragment to an author, then (assuming we do
not have any a priori information about the higher reliability of one fragment or
one other), we attribute the whole text f to the author to which the majority of the
fragments fi point.

As done before with whole texts, we attribute each fragment via maximum
likelihood. The probability of each fragment is given if author corpora are not sliced
or estimated in the ways proposed above.

It should be noted that in a majority rule approach, a situation of parity can
occur, especially in the case of texts divided into few fragments. We attribute the
same maximum number of fragments to different authors. In a case of parity, we
consider the attribution failed. Even if one of the top authors is correct, we failed to
point out the right author. In practice, this happens almost only when the document
is divided into a few tens of fragments. For the literary English corpus, using 9-grams
and with 1000 characters fragments, we have a 1.1% of ties. We excluded counting
half successes to avoid artificial favourable conditions.

Our approach does not need training. Instead of tuning or sampling parameters,
we only need to optimise and set four hyperparameters. The four hyperparameters
are:

• the choice of variables for feature extraction;
• two for the normalisation of P0 (update rule for the denominator and δ coeffi-

cient);
• the use and size of the fragments.

The following three chapters will address the effects of the different choices and offer
some guidelines.

To keep the exposition fluent, we report only a part of the graphs illustrating the
results in the main text instead of presenting all corpora for every section. We selected
the most relevant or insightful ones gathering the others in Appendix C. Moreover,
to keep the graphs clean, we focus on the section’s topic. When commenting on
the effects of some hyperparameter, e.g. a specific form for the base probability
distribution, we report only the best results under different choices of the other
hyperparameters, e.g. the kind of variables.

When evaluating the effect of the hyperparameters, we will consider a single figure
of merit to evaluate or results. We will focus on the overall fraction of documents
assigned to their author, calling this fraction ‘score’. We evaluate the score using a
leave-one-out scheme on the entire corpus. Every document in the corpus, in turn, is
considered the only unknown. We will use more detailed measures when comparing
our approach with others.
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Chapter 4

Choosing the Variables

In the preprocessing phase, we manipulate texts to produce sequences of tokens
suitable to be treated as the outputs of a PD process. We are looking for the best
variables to project our texts. There could be many different feature extraction
approaches, but we focus mainly on three: 1. Dictionary Words, 2. Overlapping
Space-Free N-grams and 3. LZ77 Sequences. Each one of these methods has an
associated normalisation.

Two steps are common to the three methods. First, we replace all the newlines
with spaces. Second, we replace all the Unicode punctuation with its ASCII equivalent.
This normalisation derives from not relying on white space or possibly spurious
features. The shape of punctuation may depend more on the editor’s taste (in the
case of literary texts) or the software used (in informal texts). For example, using
"plain" or “smart” quotes often depends on the software or OS used. Identifying an
author because of their consistency in using the same software is of no interest in
this context.

Dictionary Words. This approach gives as result tokens similar to everyday
words found in dictionaries. We replace all non-alphabetical characters with spaces
and split the sequence in tokens using spaces. This allows the presence of tokens like
“doesen” that, even if it is not a regular English word, is the expected behaviour also
of other tokenisation techniques, e.g. [161].

Overlapping Space-Free N -grams. In the second case we consider space-free
character N-grams as defined in [81]. These are strings of length N that may include
spaces only as first or last characters. We consider all the overlapping N -grams and
keep all the punctuation as in [81]. This choice discards words shorter than N − 2
and gives more weight to longer ones.
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LZ77 Sequences. The last tokenisation technique uses a derivation of the LZ77
algorithm [164] to extract repeated sub-sequences from the processed sequence. Every
sub-sequence is a token. Tokens extracted this way lose their direct correspondence
to natural words, as they can be parts of words or entire sentences. In this case,
the length is free to vary according to the repetitions in the text, and we include
spaces and punctuation. The idea is to capture stylistic markers as idiosyncratic
expressions or a preferred way to organise thoughts.

4.1 Dictionary Words

Using Dictionary words, we keep all the alphabetical characters and remove punctu-
ation and numbers. In table 4.1 we report the fraction of characters in the original
text that appears in the tokenised sequence. We hand-checked some of the texts
with a suspicious low fraction of characters preserved. These texts mainly contained
large tables with numbers, dashes used for tabulation, other typographical elements
rendered as non-alphabetical characters in digitisation. We found even ASCII art
reproducing greyscale images as text in blog posts.

Table 4.1. Characters in the tokenised sequence for every character in the orig-
inal text and median length of the tokens. The micro average is computed on
the whole corpus at once, the macro average is the average over the per text fraction
of characters preserved. We report the median word length and the Median Absolute
Deviation.

Corpus
Average Word

Micro Macro length

Literary
Polish 0.946 0.947 5±2
Italian 0.968 0.968 4±2
English 0.963 0.961 4±1

Email 0.847 0.917 4±2

Blog
all authors 0.944 0.929 4±1
prolific 0.944 0.931 4±1

The frequency rank of the tokens in the corpus shows the expected power-law tail
– i.e. Zipf’s law, see Fig. 4.1a – usually observed in texts (e.g. see [150]). The same
is true also for the number of different tokens after reading n tokens, i.e. Heaps’ law,
see Fig. 4.1b. In this case, we refer to a sequence obtained by random concatenation
of all the texts in a corpus.
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(b) Heaps’ law

Figure 4.1. Zipf’s law and Heaps’ law for the different corpora using Dictionary
words. Straight lines in the Heaps’ law plots show functions of the form f(x) = axβ ,
with the highest and lowest fitted exponents β equal respectively to β = 0.572 (Blog
– all authors) and β = 0.458 (literary English). Other values are β = 0.517 (literary
Italian), β = 0.528 (Blog – prolific), β = 0.537 (literary Polish), and β = 0.545 (Email).
Straight lines in the Zipf’s law plots show functions of the form f(x) = ax−α , where the
exponent α is equal to β−1 for the highest and lowest βs considered above. Note that the
frequency-rank plots deviate from a pure power-law behaviour and the correspondence
between the β and α exponents is valid only asymptotically. The points closer to this
limit are shown in the inset.
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All corpora exhibit Taylor’s law, the deviation σk from the mean number of
different tokens per document k grows following the expected power-law. We report
in figure 4.2 the curves for all corpora.

For later comparison with other features we report in table 4.2 the average
fraction of hapax and dis legomena, tokens appearing only once or twice, over the
number of different tokens. If a text has many words appearing only once, the number
of words used by the reference author and entirely new ones strongly influence its
probability. We notice the difference between literary and informal texts and how
this increases considering the macro average. The many short texts in informal
corpora are less likely to contain the same token twice. In this corpora, the use of
author or text-specific tokens will have a more substantial effect.

Finally, we show in Fig. 4.3 the fluctuations of the tokens’ frequency across
different authors. This may help us understand the tokenisation techniques’ different
behaviours when using long fragments. We notice that as the fluctuations decrease
with the frequency, higher ranks, their relative amplitude grows roughly as a power-
law of the rank. This growth is a marker that rare words are unevenly distributed
among authors and may carry helpful hints on authorship.

In figure 4.4 we show a KDE plot for the joint distribution of α and θ over the
different corpora when using Dictionary words. A negative correlation between the
two parameters is evident in literary corpora: a high value of α or θ conjures many
different tokens. On the other hand, given the number of different tokens, if the
distribution of tokens among classes requires a high α (see Eq. (3.6)), this implies
a small θ and vice versa. Correlation coefficients span from -0.391 for the English
corpus to -0.625 for the Polish one.

In the case of informal corpora, this is less evident due to the wider variety of
authors’ production. Authors with a smaller production allow for wider distribution.
This correlation is evident when Considering only the prolific authors in the Blog
corpus. Correlation coefficients span from -0.200 for the Email corpus to -0.412 for
the prolific bloggers.

When considering the whole production of every author, using Dictionary words,
the parameters optimisation converge for all the authors in all corpora. We report
the best scores for every corpus in table C.1.

We present the attribution scores using Dictionary words in figure 4.5. We
excluded the complete Blog corpus due to its size.
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Figure 4.2. Taylor’s law using Dictionary words. The dotted line is a power law with
exponent one provided as a guide for the eye. The decreasing tract at the end of some
curves is due to the reduced number of texts reaching very high values of k.

Table 4.2. Fraction of hapax and dis legomena using Dictionary words. The micro
average is computed on the whole corpus at once, the macro average is the average over
the per text fraction of hapax or dis legomena.

Corpus
Hapax legomena Dis legomena
Micro Macro Micro Macro

Literary
Polish 0.636 0.651 0.150 0.147
Italian 0.584 0.593 0.154 0.152
English 0.489 0.499 0.163 0.163

Email 0.806 0.867 0.119 0.093

Blog
all authors 0.736 0.799 0.136 0.118
prolific 0.738 0.807 0.134 0.112
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Figure 4.3. Fluctuations in token frequency across authors using Dictionary
words. The main graph shows the standard deviation across authors of token frequencies,
ordered by global frequency. The inset shows the growth with the rank of the relative
amplitude of the deviation. Most common tokens have low relative fluctuations suggesting
similar use across all authors, while the less common are more author-specific. Linear
fits on the plot suggest exponents in the range [0.3, 0.6].

4.2 Overlapping Space-Free N -grams

The second kind of variables we considered are the Overlapping Space-Free N-grams.
The choice of OSF N-grams may require a bit of discussion. Compared to Dictionary
words, OSF N-grams we discard all the words shorter than N−2 (or N−3 if followed
by punctuation). Longer words, instead, may contribute with more than one N -gram.
They will appear without their prefix or suffix, thus recovering something similar
to the words’ root. Choosing to retain only Space-Free N-grams, where a space
can be only the first or last character, dramatically reduces the number of available
N -grams.

We discard all the N -grams that bridge two or more words. Preliminary results
showed that retaining all the N -grams negatively affects the results. Usual N -grams
– for N not too small – are dominated by representations of word pairs that occur in
a greater variety of forms. To capture this kind of information, we will use LZ77
sequences. Space-Free N-grams capture information at the word and sub-word levels.

This can be clarified with an example. Let’s consider the two following texs:

1. I love my penguin.

2. Look at the penguins!

Using OSF 8-grams both texts are reduced to a few tokens:
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Figure 4.4. KDE plot for the join distribution of α and θ using Dictionary words.
The distribution seems to continue beyond the borders of the domain due to the gaussian
kernel.
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Figure 4.5. Text attribution using Dictionary words varying the fragment size.
For the informal corpora, a fragment size of 104 is already almost equivalent to the use
of full texts.
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1. " penguin" and "penguin."

2. " penguin", "penguins" and "enguins!"

Notice the leading space in " penguin". Here, even if the two texts do not share
any word, the use of 8-grams (or shorter ones) allows identifying both texts as
involving penguins. This is obtained without an actual stemming phase and is thus
less dependent on the language. This selection of longer words corresponds to a
culling of the most frequent words in most languages. On the other hand, characters
in longer, less common words may appear more than once. If less common words
are more concentrated on a few authors, see figure 4.3, we are weighting more the
words that may better distinguish the author. In our example, we still had a single
shared token if we retained all the N -grams.

The choice of N, however, demands some care. With small values of N, we soon
observe all the possible – or admissible for a specific language – N -grams. This
does not imply saturation as a large number of N -grams like "!=." or ".,:", in the
case of 3 -grams, continue to appear. The origin of these N -grams may vary, from
typographic conventions in literary corpora to emphatic symbols in informal corpora
(e.g. sequences of random symbols used to replace profanity).

Using large values of N presents a different set of problems. The first is in terms
of information loss. In the example above, using 8-grams, the words I, love, my,
Look, at and the simply disappear from the corpus leaving no trace. The second
problem is that while the total observed N -grams drop, the number of possible ones
grows exponentially1. This leads to an expanding set of tokens that grows almost
linearly scanning the corpus. The token frequencies tend to be those of a degenerate
PD process. Indeed, the number of possible N -grams snowballs but the total number
of tokens decreases. For N high enough, the number of tokens is so depressed that
we observe fewer different tokens. Most tokens appear only once or very few times
leading to unstable probabilities.

Figure 4.6 shows this initial growth followed by a reduction. We shall call N∗ the
value of N that gives the maximum number of different tokens in each corpus. This
value will be a reference when analysing the characteristics of the extracted tokens.

1The number of N -grams allowed in any language grows at a much slower pace, and at some point
even decrease, most European languages have very few 20-letters words. However, the tendency
of many languages to agglutination (e.g. in Turkish as in “Çekoslovakyalılaştıramadıklarımızdan-
mışsınız”, i.e. “You are one of those that we were not able to convert into Czechoslovakians”,
said of someone who does not change and sticks out in a group) or the use of compound words
(e.g. the “Cattle marking and beef labelling supervision duties delegation law” approved in 1999
in Mecklenburg-Vorpommern was titled “Rinderkennzeichnungs- und Rindfleischetikettierungs-
überwachungsaufgabenübertragungsgesetz”) clearly show how this limit can often be pushed quite
far so that a general rule is unfeasible.
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The average number of tokens’ occurrences drops from about 103 to less than 10 for
N ∈ [3, 12]. In informal corpora, we also have a significant fraction of empty texts.

In this varied landscape, we risk losing relevant information but we can draw
some helpful insight from the role of punctuation. In this case, we call the complete
set of non-alphanumeric characters by the name punctuation. The presence of
non-alphabetical symbols is higher than in the raw texts, as words surrounded by
punctuation are longer. We may be interested in limiting its impact on our analyses
if it does not contain valuable information on authorship for our model. In figure 4.7
we present the percentage of symbols that are not letters or numbers over the total
characters of extracted tokens. The higher fractions for the corpora in English,
both literary and informal, are probably due to shorter words compared to Italian
and Polish. With fewer N -letters words, there is a more significant contribution of
(N − l)-letters words followed (or preceded) by l punctuation symbols.

As already noted, short N -grams contain much punctuation. We thus have
to take punctuation under consideration. Punctuation and other non-alphabetical
characters follow less strict rules than usual orthography. For example, a misplaced
comma is considered a slight error, and often also experts disagree on where is the
right place to put one. This freedom of use is even more evident in informal texts.
Many symbols at the end of a word or standing alone may introduce many different
tokens. This mechanism leads to many tokens containing a lot of punctuation.

A third quantity we can observe is the number of hapax and dis legomena. These
are tokens appearing respectively once and twice in a text. The analysis of these
classes of tokens may provide interesting information. Our approach can extract
information from the occurrence of repeated tokens. A text or a fragment whose
tokens appear only once would change the nature of our approach, possibly limiting
its functionality.

If we look at the fraction of dis and hapax legomena in texts, see figure 4.8, we
notice a different behaviour for literary and informal corpora. The number of hapaxes
increases quickly with N . The fraction becomes greater than the one observed with
Dictionary words already for N ≈ 5 for informal corpora and N ≈ 8 for literary
corpora. The fraction of dis legomena in literary and informal corpora is slightly
larger than with Dictionary words, for N = 8 and 5. However, this increase is at
the expense of tokens recurring more often. Having repeated tokens is useful for
attribution2. This is another hint suggesting to keep N small when working on
informal corpora. These trends imply a more decisive role of author- and text-specific
tokens using this method compared to Dictionary words.

2Of course, we need repeated tokens in the same fragment. This is likely when working with
short texts or long fragments, as in the case of the informal corpora. For literary texts, we can
make no assumptions without knowing the clustering of N -grams.
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Figure 4.6. Number of tokens and of unique tokens in the various corpora vary-
ing the length of the N -grams. The top panel depicts the literary corpora, the
bottom panel the informal corpora. Some texts are very short in the informal corpora
and may contain no tokens if N is too large. On the right of the bottom panel is reported
the scale with the fraction of texts with no tokens (dotted lines).
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Figure 4.7. Fraction of punctuation characters varying N . In raw texts the percent-
age of symbols is always smaller. It is 3.72% for the literary English corpus, 3.18% for
literary Italian, 4.05% for literary Polish, 3.21% for the Email corpus, 3.99% and 3.81%
for the Blog corpus considering all authors and the prolific ones respectively. For the
informal corpora the share of punctuation has a minimum for N ≤ N∗.
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Figure 4.8. Fraction of dis legomena using OSF N-grams. Shaded in the background
the fraction of hapaxes.
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When using N -grams, the set of tokens of every author changes with N . In
figure 4.9 we report the average value of the parameters for all the authors of each
corpus. Literary and informal corpora are well separated for both parameters for
most of the values of N . However, a global trend is evident: The average value of α
tends to grow for every corpus while θ shows a maximum and then tends to decrease
again. Also for N -grams, for values of N not too high, the optimisation converges
for all authors and corpora. Only in a few cases, the optimisation fails for large N .

Without other factors pushing towards different choices of N (e.g. uneven
distribution of word lengths leading to almost empty texts), we systematically look
for the value that maximises the results on the training corpus. For the moment, we
consider all the options for P0 and present only the best result. Regarding fragment
lengths instead, we present curves for fragment from 10 to 200K tokens spaced
roughly a third of decade, i.e. F = c× 10l with c ∈ [1, 2, 5] and l = 1, 2, . . . . This
allows showing the effect of the parameter δ introduced in Eq. (3.2). For each corpus,
we present the results without the parameter δ, i.e. fixing δ = 1, and the maximum
obtained varying δ.

In figures 4.10 and 4.11 we report the attribution scores for the literary English
and Italian corpora. Results for the Email and Blog – prolific authors corpora are
in figures 4.12 and 4.13. Results for the literary Polish corpus are in Appendix C,
figure C.3. We present the results using attribution computed with Maximum
Likelihood estimation and Majority Rule to compare their power. We report the
best scores for every corpus in table C.2.

The first observation from fig. 4.10 is that the curves in the right panels seem
to collapse on the maximum value. The use of δ levels out the differences between
fragments’ lengths. There is still a noticeable difference despite δ only when using
full texts (no fragments at all) or short fragments and MR attribution.

A second observation is that the N coordinate of the maximum increases when
using shorter fragments. As the δ parameter compensates well this effect, we may
suppose that it is due to the growth with N of the possible words3.

In the case of the Email corpus, we immediately notice the dramatic drop in
attribution between N = 8 and N = 9. This drop is not reduced by any means by

3We get good results with many different tokens and short fragments. In this case, we expect
relatively small multiplicities for the tokens. One may object that we are not taking advantage of
the PD process. In that case, our method would be just counting how many of the tokens in the
book were already present in the author’s corpus. Trying to reduce our method to this trivial idea,
even considering P0, did not give results better than 20% of attributions on literary corpora. If we
add back the information about the token frequency in the reference author but assuming a simpler
Yule-Simon model 1.1.1, we obtain 10 to 50% worse results.
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Figure 4.9. Average and 95% confidence interval of α and θ using N -grams and
varying N . For every corpus there’s a (relative) maximum in θ for N = N∗ ± 1. Points
where the optimisation did not converge, only for high Ns were excluded as their value is
arbitrary. In the Email corpus, for N ≥ 9, there are seven cases (out of 288) of authors
with one or zero tokens. In the complete Blog corpus, for N ≥ 7, there are six cases of
authors with no tokens and sixty-five where α did not converge out of 116× 103.
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Figure 4.10. Text attribution in the literary English corpus varying N . In the left
panels, we notice how the length of the fragments is related to the N -gram size that
determines the best score. In the left panels, tuning δ almost completely suppresses the
differences between fragment lengths. The maximum attribution scores without δ are
93.4% using Maximum Likelihood and 92.9% using Majority Rule. The use of δ brings
the attributions to 93.6% both using ML and MR.
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Figure 4.11. Text attribution in the literary Italian corpus varying N . The maxi-
mum attribution scores using ML are 93.6% with or without the tuning of δ. The use of
MR attribution brings the score to 95.9% both with or without the tuning of δ.
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Figure 4.12. Text attribution in the Email corpus varying N . The fragment size
was limited to 1000 tokens as already almost equivalent to the use of full texts. The
best results with ML and MR attribution are 51.2% and 50.2% with δ = 1, and 53.2%
and 53.0% tuning δ.

0.3

0.4

0.5

M
L 

At
tri

bu
tio

n

= 1 max

3 5 7 9
N

0.3

0.4

0.5

M
R 

At
tri

bu
tio

n

3 5 7 9
N

Fragment
Length

50
500
5000
Full
text

Figure 4.13. Text attribution in the Blog corpus – prolific authors – varying N .
Due to the corpus size, we limited our analysis to three sizes of fragments plus full texts.
The effect of the tuning of δ is almost unnoticeable. The size of the fragments strongly
affects the MR attribution up to fragments size beyond the median post size. With δ = 1
the correctly identified authors are 49.3% using ML and MR attribution. Tuning δ the
results improve by 0.1%.
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tuning δ but is made smoother by the MR attribution. Also in this case, the tuning
of δ cancels the differences between fragment lengths when using ML attribution.

Looking at figures 4.10 and 4.11, we notice that for literary corpora4, the best
scores are for N within N∗ ± 1. That is that value that allows a great variety
of N -grams whose observation is not yet depressed by the falling number of total
N -grams. In these conditions, the set of possible N -grams behave as effectively
infinite, and the number of counts for common and rare N -grams still differs.

For informal corpora, figures 4.12 and 4.13, we find the best results for values
of N smaller than N∗. For the Email corpus, the best results are for N = 4 while
N∗ = 6. For the prolific authors’ subset of the Blog corpus, the best results are for
N = 5 while N∗ = 8. Indeed, we notice that, for the informal corpora, maximising
the number of different N -grams takes us in a region where the fraction of hapaxes
is ∼ 0.8, and we have a non-negligible fraction of empty documents.

Interestingly, the best scores are for values of N close to the minimum fraction
of punctuation. This could be a guidance for these kinds of corpora. Notice that
literary corpora have no global minimum in the interval of values considered.

Possibly, an even better indicator of the region of N that gives the best scores is
θ. For all corpora, the best results seem to be in the immediate neighbourhood of
the first maximum of the average value of the concentration parameter.

These kinds of observations can guide the search for the optimal value of N in
cases where – due to the size of the corpus or limited resources – a full search is not
feasible. Note that the trend of the score varying N is smooth, and other standard
procedures for finding the maximum should work well. In the following, we will
present the results for each corpus only for the N that maximises attribution. Graphs
for all the values of N in consideration can be found in Appendix C, figures C.1
and C.2.

In table 4.3 we report the fraction of characters in the original text that is
included in the tokenised sequence. Any character may appear more than one time,
if it finds itself in the overlap of multiple N -grams. The fraction reported refers to
the characters appearing at least once in the tokenised sequence. We notice that
for corpora with a smaller optimal N , informal corpora, the fraction of characters
retained after tokenisation is higher than in the literary ones. Therefore, we suggest
that – choosing N – we select the subset best represented by a PD process even if
we lose some information.

Also in the case of OSF N-grams, the frequency rank of the tokens in the corpus
shows a power-law tail, see Fig. 4.14a. The same is true also for Heaps’ law, see
Fig. 4.14b. Again we refer to a sequence obtained by random concatenation of all

4Similar results in figure C.3 for the Polish corpus.
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Table 4.3. Characters appearing at least once in the tokenised sequence for
every character in the original text. Values for the N that maximises attribution.
The micro average is computed on the whole corpus at once, the macro average is the
average over the per text fraction of characters preserved.

Corpus
Average

Micro Macro

Literary
Polish 0.416 0.421
Italian 0.470 0.468
English 0.458 0.456

Email 0.752 0.732

Blog
all authors 0.730 0.737
prolific 0.733 0.738

the texts in a corpus. We notice that the curves for the different corpora, given the
different N , show similar behaviours. The heaps’ exponents are higher than in the
Dictionary words case but more dispersed.

Also, in the case of N -grams, all corpora exhibit Taylor’s law. In figure 4.15,
we observe that the curves for all corpora grow paired for a first tract. For higher
values of k, the curves for informal corpora detach and grow slightly faster.

Finally, we show in Fig. 4.16 the fluctuations of the tokens’ frequency across
different authors. As in the case ofDictionary words, we notice that as the fluctuations
decrease with the frequency (higher ranks), their relative amplitude grows.

4.3 LZ77 Sequences

The last kind of variables considered are LZ77 sequences obtained from a compression
algorithm to capture repeated strings from word to sentence level. We used an
implementation of the LZ77 algorithm derived from the one in the gzip software [38].
The algorithm records only repeated sequences of at least 3 bytes, and the tokens
may include punctuation and spaces in any number.

The LZ77 algorithm searches backwards on the sequence for an earlier occurrence
of the following characters. This behaviour is needed to compress a file in a single pass
as there is no dependency on future characters. If a stationary ergodic source produces
the sequence we are compressing, the asymptotic compression rate approaches the
entropy rate of the source [155]. However, the algorithm limits how far back to look
for an earlier occurrence. To optimise space and time, there is a sliding window
on the sequence where to look for repetitions. Even on a very long text, usual
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Figure 4.14. Zipf’s law and Heaps’ law for the different corpora using OSF N-
grams. Straight lines in the Heaps’ law plots show functions of the form f(x) = axβ ,
with the highest and lowest fitted exponents β equal respectively to β = 0.682 (literary
English) and β = 0.535 (literary Polish). Other values are β = 0.573 (literary Italian),
β = 0.592 (Blog – prolific), β = 0.620 (Blog – all authors), and β = 0.627 (Email).
Straight lines in the Zipf’s law plots show functions of the form f(x) = ax−α , where the
exponent α is equal to β−1 for the highest and lowest βs considered above. The inset
shows the points closer to the asymptotic limit.
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Figure 4.15. Taylor’s law using OSF N-grams. The dotted line is a power law with
exponent one provided as a guide for the eye. The decreasing tract at the end of some
curves is due to the reduced number of texts reaching very high values of k.
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Figure 4.16. Fluctuations in token frequency across authors using OSF N-grams.
The main graph shows the standard deviation across authors of the frequency of tokens,
ordered by global frequency. The inset shows the growth with the rank of the relative
amplitude of the deviation.

implementations of the algorithm will not search more than 215 characters back,
roughly 4KB.

More in detail let x = x1, . . . , xN be the sequence to compress, where xi represents
a character in the alphabet, in our case a byte. The LZ77 algorithm replaces the
second occurrence of a string with a reference to the previous string defined by the
distance, how far back into the window the sequence starts, and the length of the
repeated string, see Fig. 4.17a. As the algorithm scans the sequence, when the first
n characters have been codified, it looks for the largest integer m such that the
string xn+1, . . . , xn+m already appeared in x1, . . . , xn. Then it replaces the next m
characters with two numbers: the distance between the two strings and the length
m of the match. If the algorithm does not find any match, then it codifies the next
character, xn+1, as itself. Most of the unmatched text happens when codifying the
first characters of the sequence, leaving some characters uncompressed, but becomes
very infrequent as the procedure goes on.

We can easily adapt this algorithm to our needs. First, one wants to avoid biases
in sampling the head of the sequence. The original algorithm searches a very short
sequence during the first steps and finds a few matches. This produces a few tokens
for the first part. In our case, since we are not interested in the compression itself,
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we can accept a match in the “future” of the sequence. We treat the sequence as a
loop, so – in the first steps – we search for matches in the last part of the sequence5.

We can illustrate the different behaviours with an example, see Fig. 4.17b. In the
right panel, the last characters of the sequence appear again before the beginning.
This allows matching the first occurrence of asdQW with the second. Of the 17
characters of the string, the original version in the left panel matches only 8 towards
the end. In the adapted version, we match 13 characters with no bias.

The second edit to the algorithm is in the size of the window. The choice of the
window presents problems similar to those observed with the different values of N
in the OSF N-grams tokenisation. The use of long windows allows finding matches
for most of the sequence. However, these matches can be very long and specific to
the text itself. In this case, they will recur a few other times in the corpus: few, rare
tokens. On the other hand, a small window reduces the chances of a long match –
or a match tout court – so that there are fewer different tokens, relatively short and
leaving out large portions of the sequence. Also in this case, it is fundamental to
find the right balance.

When using LZ77 sequences, we again consider all the non-alphabetical characters.
However, this time we keep only sequences of characters that appear at least two
times in the sliding window.

We shall decide the length of the compressor window. In figure 4.18 we show
how the number of total tokens and the number of different tokens varies with the
window length. As the window length grows, the probability of a match increases,
as does the average length of the matched sequences, see figure 4.19. Long matches
imply fewer tokens overall but more different ones.

In this case, the number of different tokens is not a helpful indicator, and other
problems arise. Some short texts have no repeated sequences. This is not observed
in texts longer than 157 characters, but they can represent a relevant fraction in
specific corpora. For the Blog corpus, both with all the authors or only the most
prolific thousand, the fraction of empty texts is significant but not above 4%. In
the case of the Email corpus, 9% of the texts have no repeated sequences. These
fractions are constant across the different window lengths as all the texts with no
repetitions have less than 158 characters, and about 80% of them has less than
50. This difference is mainly due to the conciseness typical to the email medium
compared to the more narrative style of blog posts. More than 92% of the texts in
the Email corpus are shorter than the median blog post.

5Of course, if the sequence is shorter than the window, we take care to avoid matches with the
same section.
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(a) Original version of the algorithm

Original sequence

asdQWEjlasdQWkasd

Compressed sequence

asdQWEjl(8,5)k(15,3)

Repeated strings found

asdQW asd

(b) Adapted version of the algorithm

Original sequence

...jlasdQWkasdasdQWEjlasdQWkasd

Compressed sequence

(9,5)Ejl(8,5)j(15,3)

Repeated strings found

asdQW asdQW asd

Figure 4.17. Demonstration of the LZ77 algorithm.
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Figure 4.18. Number of tokens and unique tokens in the various corpora varying
the length of the window. The top panel depicts the literary corpora, the bottom
panel the Email and the Blog corpora. The window sizes considered here are in the range
[180, 32000] characters for the informal corpora and [180, 560000] for the literary ones.
Points are spanned a quarter of decade, i.e. for L = w× 10l with w ∈ [10, 18, 32, 56] and
l = 1, 2, . . . .
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These considerations on the lengths of the texts take us to another consideration.
The length of the text limits the size of the LZ77 window. When some texts are
shorter than the window, the preprocessed corpus contains a mixture of different
effective window sizes. These are unwanted differences as the tokens extracted for
different sizes of the window have different properties – for example, the token length
distribution, see figure 4.19 – and cannot be compared directly. In the case of literary
corpora, books are hundreds of thousands of characters long, and this problem arises
only with window lengths approaching the millions of characters. In the case of
informal texts, this plays an important role. For example, one-fifth of the texts in
the Blog corpus and more than one half in the Email corpus are shorter than the
shortest window considered, 180 characters. This is the cause of the flatness of the
curves for the informal corpora in figures 4.18 and 4.20: the effective window size
ceases to increase.

We conclude that the LZ77 sequences tokenisation is not suitable for corpora
with concise texts. Therefore, in the following, we consider only literary corpora
when dealing with LZ77 sequences.

In figure 4.20, we report the fraction of characters in the original text that
appears in the tokenised sequence. The differences between the micro and macro
averages in the informal corpora tell that most of the preserved characters are in
long texts. Short texts lose most of their content. As the length of the window grows,
the algorithm preserves more and more characters as it is easier to find a match
anywhere else in the window. This is obtained at the price of more specific tokens
where the frequency of the most common ones drops two orders of magnitude, see
Fig. 4.21a.

Also in this case, the tail of the frequency rank of the tokens in the corpus is in
agreement with a power-law, see Fig. 4.21a. The same is true also for Heaps’ law,
see Fig. 4.21b. Again we refer to a sequence obtained by random concatenation of
all the texts in a corpus. The limit exponent changes slowly, varying the window
size, less than 0.1 over four decades of window length.

The fraction of dis and hapax legomena, see figure 4.22 has an interesting
behaviour. Because of the definition of LZ77 sequences, each text containing at least
one token usually contains two equal tokens. This is true unless one of the two
repetitions falls outside the window. Remind here that we treat our texts as rings,
and – to have this phenomenon – we need two repetitions close to each other and
a text longer than the window. One may thus expect a greater amount of hapax
legomena when using short windows. Many of the repetitions will fall outside. With
longer windows, the number of dis legomena and tokens appearing more times should
increase.
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Figure 4.19. Token length distribution in the various corpora varying the length
of the window. The top panels depict the literary corpora, and the bottom the informal.
Increasing the size of the window, the distribution of the token lengths shifts to the
right. In the informal corpora, the presence of short texts limits the effective increase of
the window. Because of this, the number of short tokens does not decrease significantly,
increasing the window size.
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Figure 4.20. Fraction of characters of the original text preserved through tokeni-
sation varying the length of the window. With the literary corpora – increasing
the window size – more and more sequences are found to have a replica. In informal
texts, the effective window length is limited by text length. When the window is longer
than the great majority of texts, increasing its size will have no effect.
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Figure 4.21. Zipf’s law and Heaps’ law for the three literary corpora using
LZ77 sequences. Straight lines in the Heaps’ law plots show functions of the form
f(x) = axβ for window lengths of 180 and 560000 characters. The fitted exponent
β equals to β180 = 0.677 and β560000 = 0.730 (literary English), β180 = 0.692 and
β560000 = 0.775 (literary Italian), β180 = 0.684 and β560000 = 0.773 (literary Polish).
Straight lines in the Zipf’s law plots show functions of the form f(x) = ax−α , where the
exponent α is equal to β−1 for the different βs considered above. Increasing the window
size, the frequency of low-rank tokens decrease in favour of high-rank ones. This growth
causes a longer tract with exponent ∼ 1 in the Heaps law graph. The above graphs for
the informal corpora are in figures C.4a and C.4b.
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Indeed the number of dis legomena grows while the hapaxes follow a more complex
pattern. As the window size grows, it is easy to find substrings of other matches,
and – as the average match length increases – there are more possible substrings,
possibly appearing only once. The number of hapaxes depends on the ease of finding
such substrings. This property is corpus dependent, and the Polish corpus has the
highest fraction of hapaxes.

For windows shorter than 104 the fraction of hapaxes decreases without a signif-
icant increase in dis legomena. Many tokens occur more than twice. With longer
windows the number of hapaxes and dis legomena increases. This behaviour is in
line with the observed flattening of the frequency-rank plot as the window length
increases. The variety of tokens increases as their mean occurrences decreases. If
these tokens are specific to the text, we will have poor results dominated by the
casual identity of tokens across books. If these tokens are specific to the author, we
extract only the most relevant information.

Finally, we show in Fig. 4.23 the fluctuations of the tokens’ frequency across
different authors. The growth with the rank of the fluctuations’ relative amplitude
strongly depends on the window size. For short windows, we observe a behaviour
similar to other features. The relative fluctuations grow roughly by two orders of
magnitude from low to high ranks. On the other hand, the relative fluctuation
changes only about one order of magnitude using long windows. As a result, low-rank
tokens are less frequent and become more author-specific, while high-rank tokens
become more widespread.

Values of σνν >
√
# authors are allowed if a token is used only by a short author.

We computed σν on the macro averaged frequency (average per author frequencies).
The author frequency of a token is related to the reinforcement term in the PD
process, and we will use it in chapter 6. On the other hand, we divided by the micro
average ν (overall frequency) as this is the value used for P0 in chapter 5. A strongly
author-specific token with a lower overall frequency will substantially impact the
likelihood of a different author and is reflected by higher values in figure 4.23.

We observe in figure 4.24 very similar behaviours across the languages for the
parameters of the PD process for literary corpora. Only the English corpus shows
a broader variance. Looking at the parameters, as looking at dictionaries, we see
no tipping point. The parameters evolve smoothly for small window sizes L and
become more irregular and dispersed for larger windows. Parameters stop changing
when the window is longer than most texts. Also for LZ77 sequences, considering
the authors with all their books, the optimisation converges for every author in the
literary corpora.
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Figure 4.22. Fraction of dis legomena using LZ77 sequences. Shaded in the back-
ground the fraction of hapaxes.
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Figure 4.23. Fluctuations in token frequency across authors using LZ77 se-
quences for the literary corpora. The top panels show the standard deviation
of tokens’ frequency across authors, ordered by global frequency. In the bottom ones,
we show the relative variation.
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Figure 4.24. Average and 95% confidence interval of α and θ using LZ77 se-
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small windows.
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As we did for the Overlapping Space Free N-grams, we now present the results
changing the free parameter introduced by the tokenisation. In this case, we change
the length of the sliding window of the compressor. Using LZ77 sequences, the
number of different tokens is constantly growing with the window length and it is
not a valuable indicator for the best window length.

We have no clear hint on which could be the right size of the window. We
observe a general growth of the different tokens number together with the window
size. Having many different tokens has proved successful when looking for the
correct value of N . However, we also know that we cannot let the window size grow
indefinitely. We expect the attribution to improve with the growing different tokens
number ut po a window size where texts start to fall short. When texts are shorter
than the window, their dictionaries cease to change. Therefore, the dictionaries
extracted from short texts will not be directly comparable to those extracted from
longer texts.

Looking at the results in figures 4.25 and 4.26 we notice precisely this kind of
behaviour. The results for the Polish literary corpus are very similar and presented
in figure C.6. We report the best scores for every corpus in table C.3. The number
of correctly identified texts grows with the window size L up to large values before
the results worsen. In general, there is not a single value of L but a region more or
less wide where different fragment lengths show their maximum. We notice that
the maximum values for all three corpora occur in the large window regime, in the
range where θ is still growing, and the mean α parameter becomes erratic.

Looking at the window sizes that correspond to the maximum values of the
attribution, we get another hint on why this features method would not be effective
on informal corpora. The best window lengths are not always shorter than the smallest
book. We get some of the best results using windows longer than the shortest 20,
29, and 44% of the Italian, Polish, and English corpora books, respectively. In any
case, the window is never longer than about ten times the shortest text.

If we were to apply this requirement to the informal corpora, we would be using
extremely short windows. Even disregarding the shortest texts, always one or two
bytes long, we should not use windows longer than a few hundred characters. As
seen above, using shorter windows worsen the results as the compressor finds few
repetitions, and most of the text is lost in the processing.

Also for LZ77 sequences, the tuning of δ improves the results. The more substan-
tial effect is for longer window sizes. The dramatic fall observed in the left panels
almost vanishes when tuning this single parameter.

Figure 4.27 reports Taylor’s law curves for the literary corpora. In this case, we
used a single window size value from table 4.4.
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Figure 4.25. Text attribution in the literary English corpus varying the window
size. The maximum values are for window lengths ranging from 5.6×104 (MR attribution,
tuning δ, 90.9% success) to 105 (MR attribution, tuning δ, 89.7% success). Using ML
attribution the maximum is for L = 5.6× 104, 88.8% success with δ = 1, 89.1% with
tuning.
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Figure 4.26. Text attribution in the literary Italian corpus varying the window
size. The maximum values are for window lengths ranging from 3.2×104 (ML attribution,
87.7% success) to 1.8×105 (MR attribution, 90.6% success). In both cases the maximum
values tuning δ or not are the same.
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Figure 4.27. Taylor’s law using LZ77 sequences. The dotted line is a power law with
exponent one provided as a guide for the eye. The decreasing tract at the end of some
curves is due to the reduced number of texts reaching very high values of k.

4.4 Variable Comparison

It is now time to compare the different preprocessing methods to evaluate if one
proves better than others. Since we are now interested in the preprocessing method
itself, we will consider the maximum value over all the other parameters. We will
keep the fragment length as an independent variable as it will be a central element
of the following analyses. Therefore, the definition of P0, the free parameter of the
tokenisation (if present) and δ will all be maxed out.

In figures 4.28 and 4.29 we present the best results for the English and Polish
literary corpora while, in figure 4.30, the results for the Email corpus. Results for
the literary Italian and Blog–prolific authors corpora are displayed in Appendix C,
figures C.7 and C.8 respectively.

Again, we notice that δ reduces the differences due to the length F of the fragments
for the literary corpora. In the Email corpus, we observe a general improvement too.
However, from these graphs is easier to notice that – even if reduced – a dependency
from F remains. For all corpora and attribution methods, except the Email corpora
using MR, we have a maximum in the attribution rate for F . 100. This maximum
may not be unique as in the case of the Polish literary corpus. Here we obtain the
same maximum value using LZ77 sequences with fragments of any length, from 10
to 2× 104 tokens.

This valuable information restricts the range of possible values of F to look for
the best attribution.
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Figure 4.28. Text attribution in the literary English corpus with the three dif-
ferent tokenisation techniques. The minimum value of F considered here is 10, the
maximum is 5.6× 105. The maximum values of attribution are 93.6% when tuning δ
both using MR and ML attribution. With δ = 1 the correct attributions are 93.4% and
92.9% using ML and MR respectively.
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Figure 4.29. Text attribution in the literary Polish corpus with the three differ-
ent tokenisation techniques The maximum values of attribution are 96.0% using
MR and 94.9% using ML. The maximum values are independent from the tuning of δ.
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Figure 4.30. Text attribution in the Email corpus with the two different tokeni-
sation techniques. The maximum values of attribution are 53.2% using ML and 53.0%
using MR. The maximum values tuning δ, in this case, are ≈ 3% higher than having
it fixed to 1. This is a case where we have some very short author sequences. The
fifth smallest author has 96 Dictionary words, one-fourth of the next bigger one. The
fourth-smallest using 4 -grams has 275, again one-fourth of the next one. These are the
orders of the fragment length for which the MR attribution keeps up with the ML.
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Another interesting result is about the dependency on the language. We designed
this method to be language-independent, and indeed we reached 93% to 96% of
attribution with all the three languages we considered.

Concerning the best features, for all corpora but literary Polish, the Overlapping
Space Free N-grams represent the best option. In the case of the Polish corpus, we
obtain the best scores using LZ77 sequences.

In table 4.4 I summarise the results obtained from the analysis of the different
preprocessing methods. In the following, we will use the values reported here, except
when differently stated.

Table 4.4. Best features configuration for all corpora. Best values of the free param-
eter for each corpus and preprocessing method. The values in bold mark the best overall
configuration for each corpus. Due to its size the full Blog corpus was excluded from
this analysis.The values for the maxima are repeated in tables C.1 to C.3

Corpus OSF N-grams LZ77 sequences

Literary
Polish 10 3.2 × 105

Italian 10 3.2× 104

English 9 5.6× 104

Email 4 —
Blog prolific 5 —
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Chapter 5

Choosing the Base Probability
Distribution

We will now discuss the possible choices for the base probability distribution P0.
Every choice leads to a different interpretation of the P0 and the probability of texts
themselves.

The choice is not immediate as our approach lives on an edge. On the one
side, the conditional probability uses the form for the continuous base probability
distribution. On the other side, the space of the tokens is discrete.

We are committed to keeping the approach simple and functional. However,
choosing one of the sides without substantial changes in the approach would compro-
mise the simplicity. Therefore, we decided to take a middle way. We kept the base
probability distribution discrete but then posed tj = 1 ∀j in equation (1.36). In this
way, we recover the straightforward form of the PD process with a continuous base
probability distribution.

Projecting the tokens in a continuous space – possible with tools like LDA
or Word2Vec – would be impractical. First, we must estimate the P0 in a some-
hundred-dimensional space. Even the coarsest estimate from data would require wild
assumptions. Then, we have the problem of connecting the processes representing
different authors. Indeed, using a non-atomic base distribution, the probability that
two processes draw the same token would be zero. The most sensible choice would
be to resort to a hierarchical model with a discrete PD process to sample on and at
least one layer of hierarchy that requires optimisation.

Using a PD process with atomic base probability distribution requires to sample
the number of extractions from P0. Preliminary results on a subset of the Italian
literary corpus showed worse results than the CP-DP. We considered all books
from the authors with up to four books and used full books (no fragments) and
Dictionary words. We applied a correction to the probability obtained with the
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discrete probability to compensate for the different lengths of the author1. The final
score is 0.81 compared to 0.94 of the CP-DP with the same hyperparameters. Fixing
δ = 1, we still get a score of 0.91.

Even if the discrete form results are not encouraging, they are useful to estimate
the magnitude of our approximation. On a sample book, about 80% of the tokens
have an estimated 〈tj〉 < 2. However, the remaining 20% accounts for about 75%
of the total extractions from P0. These are common tokens and have values of tj
reaching the hundreds.

The values of tj are also an interesting byproduct of the probability estimate. In
general, the tj grow with a power-law like tj ∝ nαj with α < 1. However, for some
tokens, we find an estimate of tj significantly smaller than expected from the above
relationship. For example, in Ogni promessa by Andrea Balzani, the words that
most differ from the expected values are the main characters’ names and Russian
places, relatives, and objects that have a key role in the plot.

Once we choose the form of probability, we have to evaluate it for every token in
the corpus. We decide to weigh every token with its overall abundance in the corpus.
This is the most immediate choice thinking of words’ probability. We comment on
other ways to count tokens in the Appendix B.3.

5.1 Normalisation

Given the weight, we have to find the correct normalisation. When normalising the
weights to estimate P0, we must balance two factors. On the one side, we use a
continuous probability in the process. On the other is the exchangeability of the
sequence. If it is impossible to extract the same token from P0 twice, removing
the weight of already observed tokens from the normalisation term is natural. The
next extracted token must be chosen only among those not seen yet. This approach,
however, constantly changes the P0 and, most of all, makes it dependent on the
order of the extractions.

Consider a P0 including only the following terms and related weights: ("the",
1000), ("golden", 10), ("megalodon", 1). The sentence:

the golden megalodon

will have probability:

(θ | α)3
(θ)3

1000
1011

10
11

1
1 ≈

(θ | α)3
(θ)3

· 0.899

The sentence:
1A similar problem as in section 6.2.
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megalodon golden the

instead, will have probability:

(θ | α)3
(θ)3

1
1011

10
1010

1000
1000 ≈

(θ | α)3
(θ)3

· 9.79× 10−6

The alternative that maintains exchangeability would be to keep the normalisation
constant and assume that “by chance” we never get the same token twice. As this
solution may seem odd, we considered a third one that reconciles the goat and the
cabbage. We only change the normalisation constant between the author’s process
and the text. This way, we preserve exchangeability for both the author and the
anonymous text separately and keep the normalisation value closer to its value by
continuously updating it. The numerical results are close to the continuous update.

We will present comparisons of these three options. To better understand the
differences, we will look at the probability and its effects on attribution. To evidentiate
the differences between the different methods, we considered a single author and
a single book for each corpus. We will look at the P0 values of the tokens in the
book that are missing in the author corpus. These are the only values from P0 we
will use during attribution. Common tokens that have already appeared will always
reinforce previous occurrences due to our continuous approximation.

We compared the longest text in each corpus with the author that has the largest
number of tokens. The choice of the author guarantees many different tokens. This
choice implies a significant difference between the case with fixed normalisation and
the other two options. The use of the longest text gives us many tokens that are
absent in the reference author. This choice amplifies the difference between the
continuous update of the normalisation constant and its single update, only removing
the multiplicities of words appearing in the reference author.

We consider as an example the literary English corpus, and we compare Magnum
Bonum, written in 1879 by Charlotte Mary Yonge (1823-1901), with the corpus of
George Alfred Henty using Dictionary words. In figure 5.1 we present the value of the
effective P eff

0 for the tokens in Magnum Bonum that were never used by Henty. We
first notice a factor 20 parting the P eff

0 estimated through fixed normalisation and
the other two methods. We then notice that the difference between the continuous
and the single update is not constant, as expected, but neither shows a clear trend.

The continuous update normalisation introduces a bias in favour of words in-
troduced later, see fig 5.2. As shown above, the difference can be quite dramatic
depending on the order of the tokens. The maximum relative increase observed
across corpora and tokenisation techniques is usually around 10% and only with the
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Figure 5.1. Example of effective P
eff

0 with different normalisation procedures.
The factor dividing the fixed normalisation from the single update is 19.81. No word in
the 2000 most common is observed in Magnum Bonum but absent in Henty’s corpus.

Email corpus greater than 30%. These are figures taken from the longest texts in
the corpus. With shorter ones, the effect will be even smaller.

Since we are working in logspace is useful to look at the differences in

k′+k∑
i=k′+1

log10 P0(yi)

This difference is maximum when the tokens appear rank-ordered in the text. In this
case, we would have differences usually within 2% and never above 5%. However, the
tokens are introduced in an order only slightly influenced by the rank. Spearman’s
correlation coefficient shows a positive correlation that, even if it has minimal p-
values, is extremely weak: usually smaller than 0.1, tops at 0.232 with the prolific
authors of the Blog corpus. As a result, the difference in the sum of logarithms is,
in most cases, smaller than 1%. This difference is often as little as the contribution
of ten of the least probable tokens, comparable with the number of typos one may
expect to find2.

We can thus consider the single and continuous update normalisation as almost
equivalent. Thus, we will mainly use the single update as more straightforward
and exchangeable. We will focus on the difference between this and the fixed
normalisation.

2In the hypothesis that a misspelt word will introduce a new token with multiplicity one.
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Figure 5.2. The relative difference between single and continuous update nor-
malisation. Using continuous update normalisation, the later a token appears, the
smaller is the normalisation term. The relative difference with the single update increases
monotonically.

Let us now consider the effects on attribution. In figures 5.3 and 5.4 I present
the best results for the English and Italian literary corpora. Results for the literary
Polish and Email corpora are displayed in Appendix C, figures C.9 and C.10.

When comparing choices for the normalisation, there is no consensus on the best
option. As anticipated, the single and continuous update of the normalisation give
identical results when using short fragments. Only with fragments lengths F & 2×104,
already the length of a short novel, the two normalisations are noticeably different.
For all corpora, the continuous update gives worse results.

We decided to keep only the fixed and single update normalisations. We keep
the choice of the normalisation as a hyperparameter. We discard the continuous
normalisation for several reasons. First, from a theoretical point of view, it destroys
the exchangeability of the sequence we are interested in. Second, there is little
difference in the results for practical sizes of the fragments and, when there is a
difference, the continuous update is worse. Third, the continuous update is also
expensive from a computational point of view, requiring updating the denominator
hundreds of times for long sequences.



102 5. Choosing the Base Probability Distribution

0.80

0.85

0.90

M
L 

At
tri

bu
tio

n
= 1 max

102 104

F

0.80

0.85

0.90

M
R 

At
tri

bu
tio

n

102 104

F

Normalisation
Fixed
Single
update
Continuous
update

Figure 5.3. Text attribution in the literary English corpus with the different
choices of P0. We report the best scores using the different choices of P0 in table C.4.

0.7

0.8

0.9

M
L 

At
tri

bu
tio

n

= 1 max

102 104

F

0.7

0.8

0.9

M
R 

At
tri

bu
tio

n

102 104

F

Normalisation
Fixed
Single
update
Continuous
update

Figure 5.4. Text attribution in the literary Italian corpus with the different
choices of P0. We report the best scores using the different choices of P0 in table C.4.
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5.2 Compensating the Unknown

Despite the normalisation choice, the methods proposed to estimate the P0 may
overestimate or underestimate the probabilities we are most interested in. This is
due to a combination of the finite size of the corpus and some intrinsic characteristics
the task.

To understand why the specific circumstances of the task may have an impact,
we have to consider which are the elements of P0 we are interested in. As we use
only conditional probabilities, only new tokens participate in the probability. The
tokens with high P0 occur often, and their probability is less affected by discrete
counts. If the corpus is not intrinsically biased, the relative error in the probability
estimate is typically small.

These well-estimated probabilities do not participate in the conditional probability
of texts. Most of the high probability tokens are present in every author corpus and
are never new in the text, so the strongest contribution from the P0 will come from
the less frequent tokens, which will be more affected by discrete effects. A couple of
counts more or less makes a noticeable difference for a thirty-count token.

The error we commit estimating the probability of the many mid- and low-
frequency tokens is not necessarily zero on average. We might be systematically
overestimating the probabilities of the tokens. One of the effects of the finite size
corpus is that we do not know how many other tokens are possible. Using a larger
corpus, we may discover that the tokens observed until now are but a drop in an
ocean of rare tokens. This is not unlikely due to the fat-tailed distribution of token
probabilities.

However, we might be underestimating the interesting probabilities. A relatively
small bias favouring some of the very frequent tokens may reduce the probability of
the whole class of mid- and low-frequency ones. The corpus or the selected features
may cause this underestimate.

Finding a way to compensate a priori for this effect is, however, problematic.
This would require extrapolation of word frequencies over a hypothetical larger corpus
while considering the genre, the tokenisation technique and the chosen definition of
P0. To avoid this, we chose to correct the P0 a posteriori.

For this reason, in Eq. (3.2), we introduced a new parameter δ that multiplies
the value of P0. A value of δ > 1 increases the probabilities and implies a reduced
probability for the very common tokens whose probabilities we never use. A value
of δ < 1 reduces the probabilities, including the effect of tokens we do not observe.

The hyperparameter δ corrects our estimate of P0, and we evaluate it a posteriori
by choosing the value that maximises the attribution on the training corpus. This
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same factor may correct some biases introduced by the corpus under exam or the
choices made on the fragmentation of texts discussed in the next chapter.

Please note that the value of δ and the normalisation choice in the previous
section are not interchangeable. For example, choosing a single update normalisation
is fundamentally different from choosing a large δ value. This is because the
normalisation acts on the author level. With a single (or continuous) update
normalisation, the probability conditioned to different authors will depend on different
P0 normalisations. The δ parameter compensates for a global over or underestimation
of the tokens weights.

In figure 5.5, we show the effect of the δ on attribution for the literary English
corpus. We notice that the curve’s steepness grows as the number of different tokens
in the corpus. This is because, with more different tokens, δ has more opportunities
to affect the probability.
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Figure 5.5. Text attribution in the literary English corpus with the different
choices of variables varying δ.
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Chapter 6

Choosing the Fragments’ Size

We already introduced the opportunity of dividing the unknown text into fragments.
This is a practical need. The token’s occurrences in the text may dominate over
the frequencies in the author. This happens when the text is long comparing to the
author’s corpus. The risk is we end up comparing the output of the unknown author
with themselves.

Instead of using whole texts, we can split them into fragments. The choice to
split the texts and the length of the fragments play an essential role. With very
short fragments, we limit the possibility for the PD process to model the balance
between retracing the past and the emergence of the new. Longer fragments exploit
the specificities of the PD process at a deeper level. On the other hand, fragments
too long feature the risks of long texts again.

Let us now discuss the effect of using short or long fragments. To keep the
math simple, we will consider only the ML attribution in the following sections.
This allows writing the probability of the sequence as the product of fragments
probabilities without fragment-level assumptions.

6.1 Short Fragments

We start considering the limit of short fragments containing only tokens that have
multiplicity one. To get an idea of the validity of this approximation, if we take
fragments of 100 tokens, in the literary English corpus, about 60% of the tokens
has multiplicity 1 when using Dictionary words and about 89% when using OSF
9-grams. In the case of LZ77 sequences, even if the LZ77 algorithm looks for repeated
sequences, using long windows, most of the repetitions will fall in different fragments.
For fragments of 100 tokens and 5.6× 104 bytes long windows, 98% of the tokens
has multiplicity 1. Predictions in this limit will continue to be guidance also for
relatively longer fragments.
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Let us start with the simple case where every fragment contains a single token.
Using the notation from equations (3.1) and (3.2) and dividing the text f in n

fragments fi we have that:

P (fi, f∗i = yj |A, P0) =


n′j−αA
θA+n′ , yj ∈ A
θA+αAk′
θA+n′ P0(yj), yj /∈ A

(6.1)

for every fragment, i.e. token. Indeed, since every fragment contains a single token,
it does not alter the values k′ and n′j . No token gets reinforced by subsequent
recurrences in the fragment. Every token absent in A has the probability associated
with its extraction from the base distribution, even if it is ubiquitous in the unknown
text. The author’s process cannot adapt to fragments so short. Equation (6.1) is
true for every fi ∈ f , no matter what is the value of nj with i | f∗i = yj .

We now multiply the probabilities for all the fragments and group together all
the elements fi | f∗i = yj . Taking the logarithm we obtain:

log2 P (f |A, P0) =
k′∑
j=1

nj ×
[
log2(n′j − αA)− log2(θA + n′)

]
+

+
k′+k∑
j=k′+1

nj ×
[
log2

((
θa + αAk

′)P0(yj)
)
− log2(θA + n′)

]
(6.2)

Where the first sum contains the contribution from the tokens already present in
A and the second from those missing, we can safely extend the first sum over all
the values of j ∈ [1, k′] as nj is null for tokens in A that do not appear in f . This
expression simplifies as:

log2 P (f |A, P0) =
k′∑
j=1

nj log2(n′j − αA) +
k′+k∑
j=k′+1

nj log2
(
θa + αAk

′)P0(yj)+

− n log2(θA + n′) (6.3)

We now divide and multiply the argument of the logarithms in the sums by n′, this
allows us to take out a term n log2 n

′. Dividing everything by n and calling νj = nj
n

and ν ′j = n′j
n′ we get:

log2 P (f |A, P0)
n

=
k′∑
j=1

νj log2(ν ′j −
αA
n′

) +
k′+k∑
j=k′+1

νj log2
(θA + αAk

′)P0(yj)
n′

+

+ log2
n′

θA + n′
(6.4)

The log probability per token takes the form of minus a crossentropy log2 P (f |A,P0)
n =

−H(f,A) between the token distributions of the author and the text. Indeed we
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have that, increasing the length of the reference author, the last term tends to vanish,
and the first one tends to (minus) the usual crossentropy term

∑
j νj log2 ν

′
j (see

Appendix A). The middle term is a penalty term that boosts the crossentropy when
the process encounters novel tokens. In the limit of an infinite reference sequence,
we expect the middle term to vanish as all tokens already appeared1 and k → 0.

For any finite reference author, we are still approximating the crossentropy with
a smoothing of the frequencies in the reference sequence plus a term accounting for
the finite size for any finite reference author. In other terms:

−H(f,A) = log2 P (f |A, P0)
n

=
k′+k∑
j=1

νj log2 ν̃
′
j +G(A) (6.5)

Were

G(A) = log2
n′

θA + n′
(6.6)

and ν̃ ′j is the smoothed frequency that depends only on A:

ν̃ ′j =

ν
′
j − α

n′ , yj ∈ A
(θA+αAk′)P0(yj)

n′ , yj /∈ A
(6.7)

This result is not far from some known approaches in authorship attribution. We
get the same attribution result of Eq. (6.5) by subtracting from H(f,A) a constant
term H(f) = −

∑k′+k
j=1 νj log2 νj that depends only on the unknown text. We are

now measuring an object with the form of a Kullback-Leibler divergence plus a
correction:

DKL(f ‖ A) =
k′+k∑
j=1

νj log2
νj
ν̃ ′j
−G(A) (6.8)

Approaches using KL divergence for authorship attribution have been around for
a while. Every approach proposes a suitable smoothing to give non-zero values of
ν̃ ′j to tokens absent in the reference corpus. For example, Zhao and Zobel in [161]
used a simpler Dirichlet smoothing2. We report in table 6.1 the attribution scores
using single-token fragments. To our knowledge, this is the first time that a Poisson-
Dirichlet smoothing has been used for this purpose.

1We assume that Heaps’ law will continue to hold: when the length of the sequence goes to
infinity, so do the number of different observed tokens and the interval between new tokens. The
probability of finding a new token in the finite length text f goes to zero. This also requires the base
distribution P0 to be discrete. See section 5 for more considerations about the base distribution.

2The paper is focused on Authorship Search and the authors refer to the candidate author as a
‘query’.
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Table 6.1. Attribution scores using single-token fragments. dict stands for Dictio-
nary words, osfng for Overlapping Space Free N-grams, and lz77 for LZ77 sequences.
The best score for each corpus is highlighted in boldface.

Corpus
Score

dict osfng lz77

Literary
Polish 0.727 0.869 0.939
Italian 0.702 0.936 0.754
English 0.879 0.929 0.874

Email 0.494 0.510 –

Fragments with more than one token. If the fragments considered have more
than one token, but every token has a multiplicity one, and no more than one token
is missing in A, this result still holds with minor adjustments. Indeed if we look at
Equation (6.1) we notice that with more than one token, the only difference is in
the denominator, which is θA + n′ + 1 for the second token, θA + n′ + 2 for the third
and so on.

We can change the definition of G in a way that depends on f only through the
size of the fragments and not their content. We call sj the number of fragments
with at least j tokens so that

∑
j sj = n and write:

G(A, s) = 1
n

∑
j≥1

sj log2
n′

θA + n′ + j − 1 (6.9)

When all the fragments contain one token (i.e. when s1 = n and sj = 0 ∀ j > 1)
we recover the form of G in Equation (6.6). Note that we are not including any
knowledge about f since the sj depend only on how we manipulate the fragment
and may be decided arbitrarily.

If more than one of the tokens in the fragment is missing in A, things get a bit
more complicated. The second missing token has, for the numerator in the second
case of Equation (6.1), θA + αA(k′ + 1)P0(yj) that is a small alteration of ν̃ ′j . In
many cases, this effect is small (e.g. when αA is small, when θA � αAk

′, or when n′

is large) and is convenient to show how Equation (6.5) changes.

We can still change G to incorporate a term depending on the number of
fragments containing a certain amount of tokens missing in A. We call tj the number
of fragments with at least j tokens missing in A, where

∑
j tj =

∑
j>k′ nj . We do

not need to know the identity of the tokens, and it is thus possible to estimate their
values to get a first-order correction without including knowledge from f . We can
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rewrite the term G(A, s, t) to include the terms θA + αA(k′ + j − 1):

G(A, s, t) = 1
n

∑
j

sj log2
n′

θA + n′ + j − 1+

+ 1
n

∑
j>1

tj log2
θA + αA(k′ + j − 1)

θA + αAk′
(6.10)

If every fragment has at most one token that is missing in A, then tj = 0 ∀ j > 1
and the second term vanishes.

Allowing the tokens to have multiplicities other than one would require major
changes to Eq. (6.7). We must introduce a correction O(njn′ ) to both cases. This
correction may be relatively small in the first case of Eq. (6.7) but is usually quite
big in the second. P0(yj) is typically small for tokens that are so rare to have zero
occurrences in the whole production of the reference author.

Even if the smoothing is not constant anymore, the numerical results can remain
close to those obtained in our first version of Eq. (6.5). When there are few tokens
yj /∈ A or a few of them have multiplicity higher than 1 in f . We still have an object
related to a crossentropy.

We also notice that using fragments with more than one token corresponds
to a step forward beyond the assumption of independence when computing the
joint probability. From this point of view, the choice of the fragments’ size is an
assumption on the sequence’s correlation length.

In figure 6.1 we present the general behaviour of all three literary corpora and
the Email corpus when dealing with short fragments, in the case of Dictionary words.
Results for the OSF N-grams and LZ77 sequences are displayed in Appendix C,
figures C.12 and C.13.

While using Maximum Likelihood attribution, the results are largely independent
of the fragment size. The Majority Rule method performs poorly with short fragments.
The tuning of δ cannot fix the poor results with MR. For the literary corpora, MR’s
results improve quickly and reach values close to the maximum already for F ≈ 10.
When the fragments are extremely short, the authors having the highest frequency
for high-frequency tokens will get many fragments. Even if they give very little
probability to all others, this will already guarantee the relative majority of the
fragments and the attribution of the text.

In the case of the Email corpus, the improvement is slower, and the attribution
reaches its highest values only when more than half of the texts are shorter than
one fragment. This is due to the short author effect introduced in section 6.2, see
also fig. 4.30 and its caption.

To better visualise the limits of validity of the short fragment approximation, we
report in figure 6.2 the average of the conditional probability per token varying the
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Figure 6.1. Text attribution using Dictionary words and short fragments. We
excluded from this analysis the Blog corpora due to their size. Fragment lengths in the
range [1, 1000] spaced one third of decade.

fragment size over the conditional probability with fragments of size one. Results
using Dictionary words and LZ77 sequences are in figures C.14 and C.15. In the
latter case, the short fragment approximation holds exactly. As expected, the process
“learns” from the fragment, and the conditional probability grows for growing fragment
size. To lighten the notation, we will call P (fF | A) the probability P (f | A) when
estimated using fragments of size F .

The 1
n log2 P (f1 | A) is of order ten for all corpora using single token fragments.

The probability conditional to the best non-correct author (dashed lines) grows
more than the true one. If the trend also continues for larger values of F , this can
affect the attribution. However 1

n log2
P (f1|A∗)

maxA 6=A∗ P (f1|A) is usually in the range of 10−1,
larger than the differences observed here.

The decrease in probability for F = 2 is not surprising. Less than one fragment
every 200 contains two equal tokens. We are still in the limits considered above
where we can correct the G factor to take into account longer fragments. In the
expression for the corrected factor G in eq. (6.9) we have s1 = s2 = n

2 and the factor
becomes:

G = 1
2

(
log n′

θ + n′
+ log n′

θ + n′ + 1

)
θ+n′�1→ log n′

θ + n′
− 1

2(θ + n′) (6.11)

That is the factor G for single token fragments minus a term depending on the
reference author. As the author lengths and the θs are roughly one order of magnitude
smaller for the Email corpus compared to the literary corpora, this negative correction
is about one order bigger.
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Figure 6.2. Ratio of the average conditional probability per token varying frag-
ment size over average probability using single token fragments. Results using
OSF N-grams. Due to outliers, the average includes only the central 95% of the values.
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n log2
P (fF |A∗)
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The shaded dashed lines show the probability of the most probable of the other authors
maxA6=A∗ 1

n log2
P (fF |A)
P (f1|A) .

For longer fragments3, we have – if all the fragments contain the same number of
new tokens – that the assumption of having all tokens with multiplicity one would
give a probability evolving as:

log2 P (fF | A)
n

∼ log2 P (f1 | A)
n

− F − 1
2(θ + n′) + αk(k − 1)

2F (θ + αk′) (6.12)

This form decreases with F unless f contains many tokens missing in A4. The
last term will favour authors with many missing tokens. Authors different from the
actual one will get only the penalty for the missing tokens for short fragments. This
term is the root of the faster growth of the best wrong author in figure 6.2.

For all corpora and feature extraction approaches, the relative difference between
1
n log2(fF | A) and 1

n log2(f1 | A) remain smaller than 1% at least up to fragment
lengths in the order of the few hundreds. See also figures C.14 and C.15. The best
wrong author in the Email corpus using Dictionary words is the only exception.

To explain the rising curves in figure 6.2, we must drop our approximation and
consider the presence of repeated tokens.

3This approximation holds when we can approximate log(θ + n′ + F − 1) ∼ log(θ + n′) + F−1
θ+n′ .

4For n′ & 4k′ + ( 4
α
− 1)θ, there is no possible value of k ≤ F such that Eq. (6.12) is increasing.
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6.2 Long Fragments

A second necessary limit is when the length of the fragment ceases to be negligible
relative to the reference author’s sequence. In this case, the process of the reference
author learns from the fragment and adapts, giving a high probability for the sequence
almost regardless of the sequence of the author.

We will focus on the probability for them+1-th token in the fragment. This allows
understanding the effect of the growing size better than looking at the conditional
probability of the whole sequence at once. The conditional probability will then
include terms for small and large m with different biases towards the shorter author.
The author with the maximum likelihood depends on the balance of these terms.

To show this behaviour we consider Equation (6.1) after m tokens from fragment
fi of length F have been evaluated.

P (fj,m+1, f
∗
j,m+1 = yj |A ∪ {fi}m1 ) =

n′j+nj(m)−αA
θA+n′+m , yj ∈ A ∪ {fi}m1

θA+αA(k′+k(m))
θA+n′+m P0(yj), yj /∈ A ∪ {fi}m1

(6.13)

Here nj(m) represents the number of tokens corresponding to yj in the first m and
k(m) the number of different tokens missing in A.

The second case refers only to the tokens missing in A and the first m tokens of
fi. This is the mark of a first physiological form of learning: when reading a new
text, we are surprised the first time we find a new word but not the following.

To understand what happens with long fragments, we shall adopt a classification
for the incoming tokens. Any new token must belong to one of the following three
categories:

(i) common tokens – tokens with mid-high probability widespread in the language;
(ii) author tokens – rare tokens, used by the author but unlikely to appear in other

authors’ corpora;
(iii) document tokens – rare tokens appearing in the document that any author

unlikely uses, including the actual one.

The category of a token will influence its effect when appearing in long fragments.
Let us now consider we are comparing the fragment with the actual author A∗

and another A with a much shorter corpus. Every new token will fall in one of the
following cases:

1. the token is new to both authors;
2. the token is known only to the short author;
3. the token is known only to the actual author;
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4. both authors know the token.

Tokens from category (i) will fall mainly in the fourth case. However, some may
fall in cases two or three and only a few in the first.

Tokens from category (ii) will fall in cases 3 or 4, the latter mainly if already
appeared in the first m tokens of the sequence.

Tokens from category (iii) will fall mainly in the first case or case 4 if they already
appeared in the first m. We can expect the larger actual author process to have
k′∗ > k′. Therefore, elements from this category are more likely to fall in case 3 than
2. After scanning m tokens in the sequence, we expect many document tokens to be
known and fall in case 4.

Of the tokens appearing for the first time, we cannot say how many will be
author tokens and how many document tokens. This balance will change from text
to text and is one of the factors determining the ease of attribution.

We will now show how short authors are favoured in most of the four cases when
the fragment is long but shorter than the author corpus. Many of the incoming
tokens will fall in the fourth case in this setting. The shorter author will suffer less
for the penalties associated with the extraction from P0. If using longer fragments,
being short ceases to be an advantage.

In the following, we will get an idea of the trends at play. Every author and every
text will have their specificities. Even the shortest author will not gain a fragment
that uses tokens only known to its author. Even the longest fragment cannot help
the actual author if the fragment uses a different style.

Let us now analyse one by one the four cases:

Case 1. The shorter author is favoured when

θA + αA(k′ + k(m))
θA + n′ +m

P0(yj) >
θA∗ + αA∗(k′∗ + k(m))

θA∗ + n′∗ +m
P0(yj) (6.14)

We note that when n′ > m, n′ is the leading term in the denominator of the left
member5. Assuming k ∝ n′α as the leading term of the numerator, we have that the
short author is favoured if:

A

n′1−α
>

B

n′∗ 1−α (6.15)

The constants A and B depend on θ, α and the proportionality between k′ and n.
This relation shows a general trend where the shorter author, the bigger the

advantage over the actual one. However, the factors hidden in the two constants,
A and B, prevent us from knowing a priori the direction of the inequality for any
specific A∗.

5From Eq. (3.5), we have ∂P
∂θ

∣∣
θ=n

< 0 thus n′ > θ.
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When m becomes larger than n′, it becomes the leading term in the left denomi-
nator, roughly substituting n′. So now, as m increases, the advantage of the short
author decreases.

Case 2. The left member of equation (6.14) becomes

n′j + nj(m)− αA
θa + n′ +m

(6.16)

This is likely to be one to four orders of magnitude larger, and the favour for the
shorter author is sharp.

Case 3. In this case, the parts of case 2 are switched, and the actual author is
favoured. However, the same mechanism of case 1 might reduce this favour.

Case 4. The last case requires some care in the estimate of the advantage. There-
fore, we focus on the first case of Equation (6.13): tokens that already appeared in
A or in the first m tokens of fi. First we identify

nj(m) = νjm

considering homogeneous the spatial distribution of tokens in f with νjthe frequency
of yj in fi. This is not a big assumption since we already consider f exchangeable
which implies that the homogeneous and the non homogeneous sequences have the
same probability. Second, we write

n′j = ν ′jn
′ = (νj + ∆ν ′j)n′

focusing on the difference between the frequency of tokens in f and A.
We can now write the first case of Equation (6.13) as:

n′j + nj(m)− αA
θA + n′ +m

=
(νj + ∆ν ′j)n′ + νjm− αA

θA + n′ +m
=
νj(n′ +m) + ∆ν ′jn′ − αA

θA + n′ +m
(6.17)

This allows us to write the probability of fi,m+1, up to a factor θA+n′+m
n′+m independent

from j, as:

P (fi,m+1, f
∗
i,m+1 = yj |A ∪ {fi}m1 ) ∝ νj +

n′∆ν ′j − αA
n′ +m

(6.18)

The probability is thus defined as proportional to the token frequency in the
fragment itself plus a correction. This correction depends on the frequency difference
with the reference author, the length n′ of its sequence A, and the number of
fragment’s tokens already observed.
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In this case, we are far from the clean crossentropy case of the previous section,
but the general idea behind this formula is similar. We can see that if the second
term is always zero (∆ν ′j = αA

n′ ∀ i | yj ∈ f) or in the limit m → ∞, we would be
measuring exactly the entropy of f . This is not possible as there are values of j for
which ν ′j is null and ∆ν ′j must be negative, and some yj /∈ f have positive ν ′j and
∆ν ′j > 0 but do not enter in the calculation. This means that∑

j|yj∈{fi}m1

∆ν ′j < 0

.
The best strategy to obtain a higher probability is to keep all the ∆νj as close

as possible to 0. This is because the penalty paid for a negative factor is greater
than the benefit obtained from a positive one of equal absolute value6.

However, keeping the ∆νj small is not enough for long fragments and short
authors. To understand why, we assume that the frequencies of the tokens used by
A∗ are usually closer to those found in the text so that

|∆ν ′∗j | < |∆ν ′j |

for many yj . We cannot make any assumption on their sign. However, we assume
that the fragment and the actual author produce tokens according to a common
ideal frequency. Thus the differences are due to discretisation and

| ∆ν ′∗j |∼
1
F
∀j

For the short author we make no assumptions and rewrite the frequency difference
as:

| ∆ν ′∗j |=
∣∣∣∣∣n
′
j

n′
− nj
F

∣∣∣∣∣ = 1
F

∣∣∣∣∣n
′
jF − njn′

n′

∣∣∣∣∣ = C

F
(6.19)

If the winning strategy is to keep the absolute value of the fraction in Eq. (6.18) as
small as possible, the shorter author will be favoured if

|
n′CF − αA
n′ +m

| < |
n′∗ 1

F − αA∗
n′∗ +m

| (6.20)

When n′∗ � n′ > F > m, we can ignore the α in the numerators and m in the
denominator of the right term. The condition becomes

| C |
1 + m

n′
< 1

and it is true for some m̄ when | C |< 2 or for less ideal hypotheses for ∆ν ′∗j .
6This is straightforward considering that log(1−x) < − log(1 +x) and the bigger is x, the bigger

is the difference.
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The effective frequency appearing in (6.18) will be closer to νj for the short
author A than for the true one A∗. The positive and negative displacements cancel
out better for the shorter author leaving the longer with a negative bias. The term
n′+m

θA+n′+m we left back in Equation (6.18) is smaller than one and tends to reduce the
probability more for smaller n′. However, since its dependency from θA, if θA∗ > θA

there is no guarantee that this term will favour the actual author instead of the short
one. In any case, this term cannot cancel this effect but only increase the threshold
m̄.

As the fragment length grows, more and more yj may favour the short author
instead of the right one up to a point where the correct author loses compared with
a much shorter one. This effect is quite noticeable as more and more fragments –
and then texts – are assigned to the shorter author, growing the fragment’s size.

This mechanism is very effective in the case of text-specific tokens where ∆ν ′j =
∆ν ′∗j = νj . In this case, the previous condition approximates to

1
1 + m

n′j

< 1

and is always true.
The bias can also affect author tokens. Those we defined as author tokens are

fairly uncommon tokens. Except for extreme cases this is required if we want only a
few authors using them7. Consider an author token appearing twice in {fi}m1 . The
frequency of this token in the fragment is not smaller than 2

F and may be much
higher than the frequency in the author. The true author avoids the second case of
equation (6.13) and the small P0 associated with the first occurrence. Nevertheless,
∆ν∗j ≈ −νj and the second occurrence may favour the shorter author.

Things change when the frequency is small, and the fragment has size F > n′.
Therefore, we continue to focus on the following occurrences of tokens missing in
the short author corpus. For these tokens the frequency will have values νj = nj

F

with nj = 2, 3, . . . but small. The numerator in Equation 6.18 is now dominated by
αA. Longer authors will benefit from higher m and more fine-grained νj . For the
shortest author the effective frequency won’t grow more than ≈ νj − αA

F . The longer
the fragment, the higher the values of nj that stop favouring the shortest author.

When fragments become long enough, the short author no longer benefits from
its fast learning. At the same time, it continues to be penalised by the presence of
author tokens. If the number of author-specific tokens is large enough, the actual
author will be preferred again.

7This is true at least for Dictionary words and OSF N-grams, see figures 4.3 and 4.16. The
relative amplitude of the fluctuations in token frequency between authors increases as the frequency
decreases. Less common tokens are unevenly distributed across authors.
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To summarise, we identify three regions. First, we have the region for small m.
The missing author-tokens, the small k′, and the different frequencies penalise the
short author. Then, in the 1� m . n′ region the short author is favoured. Finally,
a region for m & n′ where the bias changes direction. The results will depend on
the number of tokens from the different regions.

We will now show how the presence of short authors affects the results and how
it is related to the chosen tokenisation. To amplify the effect of short authors, we
chose to consider only the literary corpora. Here authors are, in general, large. None
has less than 1.2× 105 tokens with any preprocessing method.

We want to isolate the effect of the author length from the characteristics of
the author itself. To obtain this, we need many short authors of the same size. We
removed the five shortest authors from each corpus. We tokenised the books of these
five authors, and we joined them to get five author sequences. Then, we divided the
sequence of each author into parts. Each one of them will play the part of a synthetic
author. The size of the synthetic authors depends on the shortest author left in the
corpus. We took synthetic authors with lengths 1

3 ,
1
6 and 1

12 of the shortest author
left in the corpus. We extract up to 4 synthetic authors from each author sequence.
We take disjoint sections of the author sequence to reduce correlation and sample the
whole author. Sometimes this is not possible, especially with long synthetic authors.
In this case, we took equal size disjoint sections shorter than we needed and then fill
with randomly sampled tokens from the sequence. In the case of very short authors,
we derived less than four synthetic authors avoiding using many sampled tokens.

We attributed each book left in the corpus, comparing it to all the authors left
in the corpus plus one of the synthetic authors at the time acting as a distractor.
For every fragment size, we present the average fraction of correct attributions for
the three lengths of synthetic authors.

In figure 6.3 we report the attribution scores for the literary English corpus
using OSF N-grams. Without optimisation over δ, the performance decreases when
using longer fragments. When the shortest author is shorter, this effect is more
substantial and visible for even smaller values of F . This behaviour is in line with
the expectations.

The impact of the short author effect depends both on the corpus and on the
chosen preprocessing. Using Dictionary words, fig. 6.4, we get differences up to 30%
while using OSF N-grams, fig. 6.5, these are much smaller, 5% with the literary
English corpus, non noticeable with the others. In the case of LZ77 sequences,
fig. 6.6, the differences are even stronger as the effect is very slight (2%) for the
literary English corpus and large with the other two. If the shortest one is short
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Figure 6.3. Attribution using long fragments and short authors using OSF
N-grams for the literary English corpus. Despite the strong effect of the maximi-
sation over δ, the losses due to the shortest author are not fully compensated.
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Figure 6.4. Attribution using long fragments and short authors using Dictionary
words for the three literary corpora. The dots on the x-axis of each panel mark the
length of the shortest author for the curve of the corresponding colour. Texts attributed
using Majority Rule without tuning of δ.
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N-grams for the three literary corpora. The dots on the x-axis of each panel
mark the shortest author’s length for the curve of the corresponding colour. Texts
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attributed using Majority Rule without tuning of δ.
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enough, even zero books are attributed to the right author in the Polish literary
corpus.

In table 6.2, we present a summary of the difference induced by the varying
length of the shortest author. We compare the results with the longest synthetic
authors to those obtained with the two shorter lengths.

Table 6.2. Effect of the synthetic author length. The columns “Fragment length”
report the minimum fragment length so that the results with the short or intermediate
synthetic authors are significantly worse than with the long synthetic authors. The
columns “Maximum difference” report the maximum over F of the difference between
the average score with the long synthetic authors and the average with the shorter ones.
When there is a difference in the results using synthetic authors of different lengths, the
intermediate length allows agreement with the long one up to larger values of F and
a (usually at least two times) smaller difference in score. Values derived from the MR
attribution without tuning δ except for the last two columns.

Variable Corpus
Fragment length Max difference minδ(Max diff.)
Short Interm. Short Interm. Short Interm.

DICT
English 2000 1× 104 0.124 0.062 0.004 0.002
Italian 1× 104 5× 104 0.110 0.040 0.053 0.025
Polish 2000 1× 104 0.242 0.084 0.094 0.055

OSFNG
English 20 100 0.099 0.023 0.014 0.003
Italian 200 — 0.028 0.001 0.013 0.001
Polish — — 0.001 0.001 0.017 0.004

LZ77
English 100 5000 0.025 0.009 0.026 0.014
Italian 20 — 0.239 0.012 0.169 0.077
Polish 20 20 0.751 0.709 0.375 0.284

We relate these behaviours to the properties of the extracted tokens. Using
Dictionary words tokens are usually repeated (few hapax and dis legomena) and the
effects from case 4 are strong. Using OSF N-grams, fewer tokens repeat, and author
tokens get more weight. Low-frequency tokens – those belonging to classes (ii) and
(iii) – have higher fluctuations in frequency across authors. This means that they are
used quite a bit by a few authors and very little or not by the others. In this case,
the effect of short authors is minimal. Using LZ77 sequences, due to their nature,
the number of repetitions is more significant, and missing words get a smaller weight.
Soon, many tokens will be already seen and fall in case 4. Therefore, these tokens
will likely favour the shortest author.

We expect things to change when the length F of the fragment surpasses the
length of the shortest author. As discussed above, this change will be bigger in cases
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where the attribution is influenced more by low frequency (or new) tokens. In all
cases where the effect of the different short author sizes is evident, the score stops
decreasing or even increases when the size of the fragment is about the order of
magnitude of the shortest author. As expected, this is particularly evident when
using LZ77 sequences in all three corpora, fig. 6.6.

Another point of view on this phenomenon is the number of tokens that falls
in fragment whose most likely author is the shortest one. While for some corpora
the attribution procedure may mask the role of the shortest author, in figure 6.7 we
can observe the clear dependence both from the fragment and the shortest author
length.

The effect for the literary Italian and Polish corpora using OSF N-grams was
small or invisible, looking only at the attributions (fig. 6.5). We see clearly how
the difference in the number of tokens assigned to the shortest author follows the
expected behaviour. With shorter synthetic authors, more fragments are assigned
to the shortest one, even if this does not affect the attribution. The graphs for
Dictionary words and LZ77 sequences are available in Appendix C, figures C.16
and C.17 respectively.

6.3 Authors’ Slicing

Given the above considerations, there are different ways to mitigate the adverse
effects of short authors. One is to use short fragments to ensure that, in the vast
majority of the cases, they are shorter than m̄. A second might be to use fragments
so long to surpass the shortest authors. Finally, a third way to mitigate the effect of
the short authors is to reduce the length differences between authors. In this way,
none is much shorter than the others, the terms n′ and n′∗ are similar, and m̄ is
increased.

Short or long fragments have a few drawbacks that make the third option
attractive. As we saw in an earlier section, with very short fragments, the process
has no time to learn from the new text, and we are effectively using the PD process
as a smoothing. Imagine a blogger usually writing about fishes and shrimps who
post about dolphins. With short fragments, every time we find the word “dolphin”,
we consider it a new word with associated low probability. This continuous surprise
introduces a bias favouring authors with higher αA and θA. At the same time, if
the shortest author is short enough, there might not be a reasonable fragment size
smaller than most m̄.
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Figure 6.7. Averages for the number of tokens in fragments attributed to the
shortest author using OSF N-grams. The weight of the lines is proportional to the
length of the shortest author.

Using very long fragments may not be practical either. It may favour other
authors with a small production still longer than the fragment. This is probably the
mechanism at play for the informal corpora.

The results obtained in chapter 7 seem to point in this direction. We obtain the
best results for the Italian literary corpus for fragments lengths in the order of the
tens, up to one hundred. Given the use of 10-grams, these lengths correspond to a
few sentences up to a few paragraphs. For the other literary corpora, the fragments
correspond to a few pages of the original texts. In the cases of informal corpora, the
best results are for fragment lengths above the length of 95% of the documents.

These results are in line with the above considerations. The Italian literary
corpus and the informal corpora feature some authors much shorter than the others.
In the case of the Italian corpus, it is only one author, Parrella, and the length of
any of his two documents is in the order of the hundreds of thousands of characters.
In this case, using short fragments may help avoid spurious attributions to Parrella.
For the informal corpora, the shortest authors have a total corpus in the hundreds
or the few thousands of tokens. In this case, the only effective strategy is to use
fragments as long as possible. For short texts, this length may not be enough.

Slicing the authors is an interesting alternative. Dividing the most extended
authors into parts may be enough to contain the difference between the n′, avoiding
the need to reduce the size of all the fragments.

This can also have a second positive effect. We compare each fragment, or text,
with different slices of an author. If their production is vast and diversified, the
text may show a good agreement with a part of it but not so much with the whole.
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Obtaining more than one measure of the likelihood for the same author may allow,
during attribution, to combine these values in a way that maximises the attribution.

To test this hypothesis, we selected a length of the fragments F that emphasises
the differences in attribution varying the length of the shortest author. When
evaluating the likelihood of each text, we sliced the reference author into chunks
of different lengths. We used the length of the shortest author not excluded (three
times the largest synthetic authors), two-thirds of its length, one-third (the largest
synthetic authors) and one-sixth (the intermediate synthetic authors). We then
combine the information from all the slices (see section 3.4 for ways to do that) to
attribute each text.

Using Dictionary words the results are encouraging. In figure 6.8 I report the
results for the literary Polish corpus. In this case, using shorter slices reduces the
differences induced by the presence of short authors. With the shorter size of the
slices, the most significant differences in the attribution are due to the attribution
procedure itself. The more weight is assigned to the slice that gives the highest
conditional probability, the better is the attribution.

In this case, the tuning of the δ parameter could not fully compensate for the
differences induced by the presence of short authors. The tuning of δ has little effect
(if any) when using sliced authors. The use of slices improves the results even more
and reduces these differences. These results are promising to obtain even better
performance without suffering from imbalances in the corpus.

Using different tokenisation procedures the picture is less clear. In figures 6.9
and 6.10 I report the results for the literary Italian corpus using OSF N-grams and
LZ77 sequences respectively. When using OSF N-grams, we observe for all corpora a
decrease in performance when using shorter slices. Not every combination of corpus
and shortest author length has a slice size that improves the results (see the literary
English corpus in fig. C.18). Similar considerations also work for LZ77 sequences
where the best results are not always for shorter author slices. The slicing does not
fix the extremely poor results with short comparison authors8.

To understand the reason for these different effects, we look again at the tokens
we are using and what makes the attribution effective. If many tokens are repeated,
we expect improvements from the slicing of authors. Splitting the reference author
should reduce the author length effect. On the other hand, the splitting increases
the chances of missing a token in the reference slice. The first case of Eq. (3.2) –
the one introducing δ – introduces a penalty for tokens missing in the reference
author. If many tokens are missing and the difference in missing tokens between the

8In the case of the literary English corpus results using LZ77 sequences are more similar to those
with Dictionary words, see C.19. In this case, however, the results with different synthetic author
lengths were already similar.
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Figure 6.8. Attribution in the literary Polish corpus varying the size of the
author slices using Dictionary words. The fragment length is fixed at F = 104. We
do not report the results using MR attribution for conciseness as very close to those
using Maximum Likelihood.
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Figure 6.9. Attribution in the Italian literary corpus varying the size of the
author slices using OSF N-grams. The fragment length is fixed at F = 104. We do
not report the results using MR attribution for conciseness as very close to those using
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Figure 6.10. Attribution in the Italian literary corpus varying the size of the
author slices using LZ77 sequences. The fragment length is fixed at F = 5× 102.
We do not report the results using MR attribution for conciseness as very close to those
using Maximum Likelihood.

actual author and the others is significant, we expect a strong effect from case 3 in
section 6.2 and δ favouring the actual author.

In figure 6.11 I show the fraction of tokens missing in the reference authors for
the Italian literary corpus under different tokenisations. In all three cases, the slicing
of the reference author corpus increases the fraction of missing tokens and reduces
the difference between the actual author and the others. This reduces the power to
discriminate the authors.

We notice again a difference between features. Looking at the fractions of tokens
missing in the reference slice with different tokenisations, we notice that there is
roughly a factor five between the fractions using Dictionary words and the other two
methods. Using Dictionary words, as already discussed, we observe more repeated
tokens and some of the effects of the presence of short authors are more pronounced.
However, these same effects can be reduced with the slicing, which leads to a more
significant improvement in the results.

The Blog corpus – prolific authors is an interesting candidate for author slicing.
Selecting only prolific authors, none is so short to require very small slices. However,
there is a fraction 7% of texts that are one-fortieth or longer than the shortest
authors in this corpus. These texts may suffer from the short author effect (see
fig. 6.4) and thus benefit from the slicing. We tested this hypothesis by comparing
the results using full authors or authors sliced to the size of the shortest one. We
tested Dictionary words as this kind of feature is more affected by the short author
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Figure 6.11. Tokens missing in the reference author slices varying their size.
Results using the literary Italian corpus. Fraction of missing tokens averaged over all the
slices of the author. Fragment lengths are F = 2× 104 using Dictionary words, F = 104

using OSF N-grams and F = 5× 102 for LZ77 sequences

effect and OSF N-grams as providing the best scores. The best score using Dictionary
words is 0.475 using ML attribution and taking the likelihood of each fragment as
the maximum over the different author slices. However, this result is worse than the
0.483 we obtained keeping whole authors. For the OSF N-grams, we get the best
score of 0.483 , even in this case worse than the best score of 0.495 without slicing.

Slicing the authors is thus not a valuable alternative to choosing the correct
fragments’ size.
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Chapter 7

Comparisons

To test our technique in a realistic setting, we will look at our corpora without taking
advantage of the specific knowledge we got. We will ignore the best variables or
the best normalisation of P0 we found in chapters 4 to 6 and keep only the general
guidelines we obtained. Thus, we will search for the best set of parameters in every
attribution task.

As shown in sections 4.4 and 5.1, the results with different variables or choices
of P0 are pretty stable around the maxima. This stability simplifies the search. We
will divide the corpora in training and test sets. For every preprocessing, we will
search on a range of free parameter values and fragments lengths using the single
update normalisation of P0. Next, we search for the maximum over the δ parameter
for every set of hyperparameters. We then select the best results on the training set
and check if we can improve them using the fixed normalisation P0 and optimising δ.
Finally, we search the neighbourhood of the maxima for the best set of parameters,
using the selected P0 normalisation and finding the value of δ that maximises the
results.

We compared the results of our technique with the results published in the
literature. We selected comparable techniques and two different methods proposed
in the past years. We need an active comparison with different methods, mainly
for the literary corpora. We assembled the English corpus for this specific task and
used the Polish corpus differently than its design goal. Only the Italian corpus was
designed and used for authorship attribution. However, the original focus was on
the figure of Elena Ferrante (whose books we excluded), and few comparable results
are available.

The first method we used is the Crossentropy method proposed in [15] as improved
in [89]. The second is, with minor edits, the Latent Dirichlet Allocation plus Hellinger
distance (LDA-H) method proposed in [134]. For the sake of clarity, we will briefly
describe the two methods and the eventual deviations from the original formulations.
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Crossentropy The method is based on the LZ77 compression algorithm [164]
described in 4.3. The authors use the compression algorithm to measure the remote-
ness between two texts exploiting the link between its output and the crossentropy
of information sources (see Appendix A).

Given two texts A and B emitted by two different “sources” (i.e. two different
authors), one can use an LZ77-like compression scheme to encode B given the best
code of A. The authors in [89] achieve so scanning the B text and looking for matches
only in the A text. They estimate the crossentropy H(B,A) of B with respect to A.
If the two texts are similar, H(B,A) will be small. On the other hand, if B and A
are very different, the knowledge of A will not help to encode B, and H(B,A) will
be correspondingly large. While H(B,A) is not a distance from the mathematical
point of view1, is used as a measure of remoteness between A and B.

The authors of [89] describe an Authorship Attribution procedure based on
remoteness between two texts. Take an anonymous textX and a corpus of documents
of known authorship. We will denote the texts in the corpus as Yi, where Y is
the author. The index i is relative to the list of texts from Y . Instead of going
directly to the measure of H(X,Yi) for all the Yi, the authors split long texts into
fragments. This division avoids having an interesting signal masked when measuring
the anonymous text’s average extra bits per character.

The authors compute the crossentropies H(Xj , Yik) of all the pairs of fragments
of the anonymous text Xj and all the fragments of the texts in the corpus Yik. They
then propose different ways to weigh and average the crossentropies to get the best
candidate Y to be the author of the text X. The different attribution procedures
used are similar to those described in section 3.4 with particular reference to the
Weighted Profile and Majority Rule.

This method is a derivation of the one described in [16], and recently the authors
in [108] recognised it as one of the algorithms giving the best performances out of
the fourteen the authors surveyed. This method – interesting for its effectiveness
and from a theoretical point of view – bears two significant shortcomings. The first
is intrinsic: the LZ77 algorithm is asymptotically optimal but approaches this limit
slowly. This means that the texts or fragments compared have to be quite long to
achieve a reliable estimate of the crossentropy. The gzip algorithm uses a window
about 4 kB long as it already offers a good compress ratio. This length is acceptable
when working with literature where usual texts are tens or hundreds of times longer.
Using windows 4 kB long, even if the entropy limit is still far, the measures are
already stable, and the authors’ rank is not likely to change. However, applying this
method to other genres, such as poetry or informal texts, is challenging. In these

1In [15] the authors describe how to transform it in a distance practically.
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contexts, texts are often a few lines to a few words long. The second limit of this
method is in the computational complexity and execution time that scales with the
total length of the corpus documents times the length of the anonymous text. In
case of a leave one out attribution of the whole corpus, it may quickly reach the
order of the days.

For these two reasons, we refrained to use this comparison on the Blog and Email
corpora (see section 3.2) as large or made of short texts.

LDA-H The Latent Dirichlet Allocation plus Hellinger distance [134] achieved
state-of-the-art results in 2011. Although it may look a bit outdated, and indeed
many more complicated methods have surpassed it over the years, we chose it for
comparison as its model is not too complex compared to ours.

The main idea behind the LDA-H approach is to use the Hellinger distance
between document topic distributions to find the most likely author of a document.
The Hellinger distance of two topic distributions is defined as:

D(θ1, θ2) =

√√√√1
2

T∑
t=1

(√
θ1,t −

√
θ2,t
)2

(7.1)

where θi is a T -dimensional multinomial topic distribution, and θi,t is the probability
of the t-th topic.

The authors propose two variants of the model:

1. Multi-document (LDAH-M). In this instance-based version, distances are
computed between the topic distribution of the anonymous text and all the
known texts. The author whose texts are on average closer to the anonymous
one is returned as the most likely author of the test document.

2. Single-document (LDAH-S). All the documents from each author are chained
together in a profile document. The proposed author for the anonymous text
is the one whose profile document has the closest topic distribution to the
anonymous text.

Of the two methods, we chose the second as the authors of [134] show it performs
better when the number of authors is in the tens or above.

The model learns the word distribution for each topic and each document’s topic
distribution (i.e. the author) from the corpus through collapsed Gibbs sampling. The
Dirichlet distributions, priors over the categorical distributions of words and topics,
are “collapsed out”. The parameters of the Dirichlet distributions are of no practical
interest, and are marginalised out. The sampling reduces to that of a Dirichlet-
multinomial distribution. This final form is simpler and faster in convergence than
the full Gibbs sampling. The sampling takes O(WT ) for each sample where W is
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the number of tokens, and T is the number of topics. For the LDA parameters the
authors followed [57] and the recommendations in the software’s documentation:
α = min(0.1, 50/T ) and β = 0.01. Here α is the concentration parameter of the
T -dimensional symmetric Dirichlet distribution over the T different topics, β is the
concentration parameter of the symmetric Dirichlet distribution over the words for
each topic.

Regarding the number of samples, we found that taking the document represen-
tation on more than one sample gave better results (as indeed expected, see [146]).
Thus, instead of [134], we followed the procedure the authors used in [133]. We run 4
chains with a burn-in of 1,000 iterations. After the burn-in, we took 8 samples spaced
100 iterations. The authors used the LDA implementation from LingPipe [5] that
looks discontinued since 2011. In our implementation we adapted the lda module for
Python [32] which in turn cites [18, 57, 115] for its implementation. The distributed
version of the lda module does not allow for further training after the first iterations
and the first sampling. We had to adapt the module to allow new training steps
after the burn-in. To estimate the topic distribution of the anonymous text, instead
of the procedure described in [133], we used the built-in method provided by the
lda module that cites [22, 153].

When comparing with the other methods, we used ten-fold stratified cross-
validation except for the Email corpus, see section 3.2, that provides already train,
validation and test sets. In k-fold stratified cross-validation, the dataset is divided
into k parts, trying to keep the share of each class (in our case, the number of
documents from each author) constant across the parts. The subdivision in folds
was the same with the different methods.

For a better perspective on the results, we present six different performance
measures. These measures are three standard figures of merit:

• precision, P;
• recall, R;
• F1 score, F1,

in their micro and macro averages.
The precision is the fraction of an author’s document in the total number of

documents they get assigned. In other terms, the true positives over the total, true
and false, positive for the author class.

The recall is the fraction of the author’s production assigned to him, i.e. the
true positives over the total author documents, true positives and false negatives.
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The F1 score is the harmonic mean of the former two quantities. It is regarded
as a better overall indicator as it weighs more the smallest between precision and
recall.

For each of these measures, we can take the arithmetic average over all the
authors (macro average) or weigh the average with the number of documents by
each author (micro average). These two averages capture two different pieces of
information. The macro average tells the quality of the attribution on any author
(supposing no bias of the method on authors’ productivity). The micro average tells
the quality on any book. Comparing the two averages, we quickly estimate the bias
towards more (less) prolific authors.

When computing the score – the fraction of correctly assigned documents – in
previous sections, we measured the micro averaged recall. This way, we approach
the problem from an “academic” point of view. We focus on questions like “is this
book from Plato?” trying to avoid false negatives. On the other end, using precision
would have imposed a more “judicial” point of view. In that case, the question would
sound like “did John write this letter?” trying to avoid false positives.

Using a micro averaged measure as guidance maximises the total number of
attributions tolerating if some less prolific authors are not well represented. No
surprise then if the micro averaged figures in the results are consistently better than
the macro averaged.

In figures 7.1, 7.2, and 7.3 we present a box plot of the values of precision, recall
and F1 for the literary English, Italian, and Polish corpora respectively.

In table 7.1 we report the average scores for all three corpora and methods. The
results using our method are, in general, better than using the other two. There is
a 21.7% fraction on all the folds where the crossentropy performs better than our
approach. Latent Dirichlet Attribution plus Hellinger distance performs better than
our approach only in a 5.5% fraction of the cases. The authors of [89] report an
overall 89% score with CE using leave-one-out validation. This score agrees with our
reimplementation of the method and the ten-fold cross-validation. Our approach
proves the best on all measures and all corpora.

When applying our method to the Email corpus, we can compare our results
with those obtained by other authors since its deployment in 2011 for the PAN
Authorship Attribution contest (during the CLEF 2011 Conference on Multilingual
and Multimodal Information Access Evaluation). On the other hand, given the
shortness of texts in this corpus, we cannot apply the crossentropy method. This
method is based on compression, we excluded it from the comparison on the Email
and the Blog corpora as we excluded the use of LZ77 sequences.
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Figure 7.1. Comparisons of the different attribution procedures on the literary
English corpus. Precision (P), recall (R) and F1 scores both micro and macro averaged,
using the method detailed in this thesis (CP-DP), the Cross Entropy (CE) and the
Latent Dirichlet Allocation plus Hellinger distance (LDAH).
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Figure 7.2. Comparisons of the different attribution procedures on the literary
Italian corpus. Precision (P), recall (R) and F1 scores both micro and macro averaged,
using the method detailed in this thesis (CP-DP), the Cross Entropy (CE) and the
Latent Dirichlet Attribution plus Hellinger distance (LDAH).
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Figure 7.3. Comparisons of the different attribution procedures on the literary
Polish corpus. Precision (P), recall (R) and F1 scores both micro and macro averaged,
using the method detailed in this thesis (CP-DP), the Cross Entropy (CE) and the
Latent Dirichlet Attribution plus Hellinger distance (LDAH). In this case, due to the
reduced corpus size, each fold has only 10 (or even 9) unknown texts. It is of course
easier to get all the attributions right on a single fold.

Table 7.1. Comparisons of the different attribution procedures on the literary
corpora. The superscripts indicate the interquartile range (IQR) over the different folds:
* IQR < 5%, no superscript IQR ∈ 5− 10%, † IQR ∈ 10− 15%, ‡ IQR > 15%. With a
decreasing number of documents, the variation across de folds increases from the English
to the Polish corpus.

Corpus Method Micro average Macro average
Precision Recall F1 Precision Recall F1

English
CP-DP 0.901 0.913∗ 0.898 0.887 0.908 0.890
CE 0.848† 0.853 0.840† 0.830† 0.850 0.830†

LDAH 0.857† 0.877 0.856 0.845 0.879 0.852

Italian
CP-DP 0.928† 0.935 0.929† 0.920† 0.935† 0.928†

CE 0.888‡ 0.900† 0.890† 0.882‡ 0.897† 0.886‡

LDAH 0.814† 0.830† 0.815 0.808† 0.829† 0.813†

Polish
CP-DP 0.899‡ 0.919† 0.906† 0.899‡ 0.919† 0.900†

CE 0.840 0.870† 0.843† 0.840† 0.850† 0.843†

LDAH 0.748‡ 0.769‡ 0.755‡ 0.748‡ 0.769‡ 0.755‡
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The comparison for the Email corpus has the second role – validating our
implementation of the Latent Dirichlet Attribution plus Hellinger distance method.
Indeed, this approach was used on this corpus for the first time by Seroussi [133])
and later by Yang [157]. The difference between our results and those obtained by
Seroussi and collaborators in 2012 is only 0.8%. The implementation of LDAH used
by Yang yields even better results (Accuracy 0.48, 5.4% higher than the result from
Seroussi). The results following this approach seem to depend on the implementation.
Thus, we consider the discrepancy between the original implementation and ours
acceptable.

The curators of the PAN workshop 2011 defined the test set for the Email corpus.
To compare with other methods, in this case, we do not cross-validate our results
and rely on the test set. Kourtis and Stamataos’s approach is consistently the best
on all measures, followed by DADT-P. We present our results and comparison with
other methods in table 7.2.

The approaches reported in table 7.2 are related to ours as they use lexical
features, N -grams [84] or word tokens [133, 135, 157]. Moreover, the last three
are all members of the family of Topic Models. The approach of Kourtis and
Stamatatos [84] obtained the best overall performance during the PAN’11 contest
that introduced the corpus. We presented this approach in section 2.3.6 as the
cooperation of two ML algorithms. We do not exclude the possibility of improving
our results by joining forces with another classifier. The results obtained by Seroussi
and collaborators in 2012 and 2014 use their implementation of LDAH from [134]
and the evolution of the approach, the Disjoint Author-Document Topic Model [133],
in the probabilistic version introduced in [135], see section 2.3.4. TDM is the Topic
Drift Model introduced in [156].

The ranking of the best three approaches that emerged from the Email corpus test
is inverted when applied to the larger Blog corpus. In table 7.3, DADT-P shows a
worse capability to scale despite the authors considering the a priori probability of an
author (it is χa, the corpus author distribution). In this case, the test set has the same
imbalance as the training set. Using the probability of the authors is an advantage.
We do not include any distribution on the authors. The four hyperparameters of
our model must mediate any possible advantage from the imbalance of the corpus.
TDM uses similarity and, unless there are hidden biases, it gets no advantage from
the corpus imbalance.

Our approach proves to be considerably better than the others on these larger
corpora with a relative difference of almost 20% from TDM. Moreover, our approach
has the best ability to scale. It has the smallest relative and absolute loss in recall
among the three methods tested on both versions of the corpus.
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Table 7.2. Comparisons of the different attribution procedures on the Email
corpus. The results obtained by Seroussi and collaborators in 2012 and 2014 use their
implementation of LDAH from [134] and DADT-P [135]. Yang and collaborators obtained
their result in 2017 using TDM [157]. The results of the PAN’11 workshop included all
the six measures we are considering. The authors of the other three methods report
only the percentage of test texts correctly attributed to their author, i.e. micro averaged
recall.

Method Micro average Macro average
Prec. Recall F1 Prec. Recall F1

CP-DP 0.597 0.556 0.545 0.509 0.413 0.420
LDAH 0.594 0.418 0.469 0.436 0.347 0.362

Kourtis 2011 [84] 0.658 0.658 0.658 0.549 0.532 0.520
Seroussi 2012 LDAH [133] – 0.426 – – – –

Seroussi 2014 DADT-P [135] – 0.594 – – – –
Yang 2017 TDM [157] – 0.542 – – – –

Table 7.3. Comparisons of the different attribution procedures on the Blog
corpus. The results obtained by Seroussi and collaborators in 2012 and 2014 use their
implementation of LDAH from [134] and DADT-P [135]. Yang and collaborators obtained
their result in 2017 using TDM [157]. The authors report only the percentage of test
texts correctly attributed to their author, i.e. micro averaged recall.

Method
Prolific All authors
Recall Recall

CP-DP 0.495 0.375
Seroussi 2012 LDAH [133] 0.216 0.079

Seroussi 2014 DADT-P [135] 0.437 0.286
Yang 2017 TDM [157] – 0.308
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Table 7.4. Comparisons of the different attribution procedures on the informal
corpora. The superscripts indicate the interquartile range (IQR) over the different folds:
no superscript IQR < 1%, † IQR ∈ 1− 2%. The Email corpus has train and test corpus
already separated and we got no statistics on the validation folds.

Corpus Method
Micro average Macro average

Precision Recall F1 Precision Recall F1

Email
CP-DP 0.597 0.556 0.545 0.509 0.413 0.420
LDAH 0.594 0.418 0.469 0.436 0.347 0.362

Blog
Prolific CP-DP 0.529† 0.495 0.493† 0.525† 0.567† 0.523†

All CP-DP 0.442 0.374 0.375 0.333 0.300 0.313
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Chapter 8

Computational Challenges

The implementation of this approach requires some care for the technical details.
As mentioned in section 2.4.2, one of the drawbacks of a profile-based approach
is its slowness in attribution. In our case, the training phase is extremely fast as
it includes only the feature extraction end the optimisation of concentration and
discount parameters. Then, we need to compare each document with every author’s
profile during attribution.

This comparison can be expensive. Following the approach described in chap-
ter 3.1, for every fragment in the test corpus, we need to:

1. find the tokens already present in the reference author’s profile;
2. compute the term from Eq. (3.2) for the tokens already present;
3. retrieve the base probability for the missing tokens;
4. compute the term from Eq. (3.2) for the missing tokens.

These four steps are repeated 13× 109 times for the complete Blog corpus1. In
this corpus, we must check about 1013 times if a token is in the author’s process. In
3× 1012 cases, we need the base probability. Without the appropriate precautions,
all four passages can slow down the computation.

To save time on passages (1) and (3), we need to quickly retrieve the tokens’
frequencies. The most efficient way to store and retrieve the tokens is by directly
storing their hash. In this representation, we store every fragment as a collection of
hashes with their multiplicities. This format allows using time-efficient hash maps
saving the time of repeated hashing. The common representation of hashes as 8-byte
integers is also memory efficient when using N -grams with N ≥ 9 or variable width
tokens.

1This is using the fragment size that yields the best results. We use almost all the posts (99.5%)
at once. We split only those with more than 2800 tokens.
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To speed up passages (2) and (4), we used the expression for the Pochham-
mer (k-)symbol from section 1.2.2. This allows to leverage on the available fast
implementations of the Gamma function.

We found two other aspects to impact the running time substantially. First,
the estimate of the concentration and discount parameters. Second, the size of the
output files with the probabilities of every fragment against every author.

The estimate of the parameters is needed only once per author. However, a
cross-validated experiment with many authors means 104 optimisations in the prolific
authors’ subset of the Blog corpus and 2× 105 for the complete one. We already
introduced the solution to this problem in section 3.3. The careful choice of the
algorithm allows for fast convergence, and we used a fast sixth-order expansion of
the Digamma function.

The second problem is tricky, affecting the running time at different levels.
Indeed, large files are a problem of disk space and speed due to the hierarchical
structure of modern computers’ memory. Big objects are stored in slow memory
far from the processors. We minimised the inconvenience by avoiding duplicate
information, storing data in byte format and using tight-packed data structures.
These precautions still imply about 250 GB of results for the complete Blog corpus.
However, we decided to exclude data compression due to the considerable time to
save about 15% of the size.

We parallelised most sections of the code to take advantage of our machine. We
used 64 bits Dell cluster with two sockets. Each socket has ten 2.5 GHz multithreading
cores. The system has 191 GB of memory.

The core part of the code is in C++, leaving only high-level operations to Python.
For example, we used Python for text normalisation and punctuation removal due
to the ease of string manipulation. On the other hand, the N -grams splitting and
the LZ77-like tokenisations are in C++.

All this effort in optimisation was essential to keep the running time within
reasonable limits. Given a set of hyperparameters (choice of variables, fragments
size, P0 normalisation), a typical cross-validated experiment on the literary corpora
takes less than half minute, including optimising δ. For the complete Blog corpus,
this time scales to about 40 hours.

To evaluate how the running time scales, we fix all hyperparameters except
δ and measure the running time across corpora without splitting texts (infinite
fragments size, single normalisation P0, 5-grams). Our running time growth is in
good agreement with a power-law of the total number of comparisons, see Figure 8.1,
as expected for profile-based approaches. We observe an approximate linear growth
if considering only informal corpora. Including also the literary corpora would imply
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an exponent ∼ 0.6 that has no explanation. For the literary corpora we observe an
inflated running time due to overheads and longer texts.

The above relationship is true when using full documents. However, when using
fragments, the time dependence is less straightforward. In figure 8.2, we present the
running time for the English literary corpus with the sizes of fragments varying from
the entire book to only three tokens. A power-law relationship of the running time
with the number of fragments 2 holds only for small fragments, from ten to three
tokens. When using fewer, bigger fragments, this growth is masked by a significant
overhead that grows as the logarithm of the number of fragments. We ascribe this
overhead to operations different from the comparison (preprocessing, attribution,
store and load) that have a less direct dependency on the number of fragments. For
example, the first time we compare a fragment with an author, the author’s corpus is
loaded in fast memory. This can take a long time compared with a single evaluation
of the probability.

Is the discrete version practical? The scaling law in figure 8.1 clarifies the
stress we put on keeping the approach simple and avoiding the need to sample the tj .
The total number of comparisons represents the leading term for the computing time
growth. Indeed, the single comparison is quite fast in its optimised form. The leading
term in the single comparison depends on the number of different tokens. This is the
number of checks needed to know which tokens are missing in the reference author
and the number of pairs of Gamma functions required for the probability of the
sequence.

If we were to use the form for the PD process with discrete base probability,
we would have sampled, for each token and not for every different one, if it was
drawn from the P0 or not3. Evaluating the marginal probability that the token
was extracted from P0 has a complexity O(nj). Even ignoring the time spent
sampling the tj in the author corpus, every Montecarlo step of an unknown text
will take O

(∑k
j=1 n

2
j

)
. Multiply this for the number of MC steps, and the 40 hours

needed for the attribution of the Blog corpus become weeks. To use different, faster
sampling schemes, we would have needed to part from the intuition behind the
CP-DP approach.

Text encoding We encoded all text with single-byte encodings. Using a single
byte encoding for the texts simplifies working with the LZ77 compressor. This choice
ensures that the compression algorithm does not split any letter over different tokens.

2The number of fragments is proportional to the number of comparisons and the inverse fragment
size.

3More detail on the sampling using ‘table indicators’ in [23].
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Figure 8.1. Running time in seconds as a function of the total number of compar-
isons using full documents. The number of comparisons is #authors×#documents.
The point marked with a blue star is from the 100 most prolific authors in the Blog
corpus. The point marked with a green star is from 100 random selected authors among
the 1000 most prolific in the Blog corpus. The dotted line is a power-law function with
exponent 1 as a guide for the eye.

102 103 104 105 106

#fragments

102

3 × 101
4 × 101

6 × 101

2 × 102

ru
nn

in
g 

tim
e 

(s
)

Figure 8.2. Running time in seconds as a function of the number of fragments.
The dotted line is a logarithmic law. The dashed line is a power law with exponent 0.4.
The lines are provided as guides for the eye.
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At the same time, it maintains its simplicity in working with byte variables. Future
versions of the code will include workarounds with variable size encodings such
as UTF-8. Using a single-byte encoding is not required in any other code section.
However, we used texts mainly written in languages using alphabets derived from
the Latin that already have handy single-byte encodings: ISO 8859-1 (Latin-1) for
English and Italian texts, ISO 8859-2 (Latin-2) for Polish texts.

Of course, the texts may contain quotes from other languages using different
writing systems (from ancient Greek to Korean). However, these are rare enough,
and we decided to transliterate those bits to their closest Latin representation.
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Chapter 9

Possible Threats to Privacy

The analysis presented in this chapter stem from the ethical remarks in section 2.1.5.
In recent years, we saw companies selling services to governments to spy on their
citizens and people abroad. The last and most frightening example is the Pegasus
scandal1.

In this context, would a company like NSO be interested in offering software
incorporating our algorithm to its clients? Would an authoritarian government ask for
this kind of service? Similar reasoning is not new as Narayanan and collaborators [107]
already in 2012 applied authorship attribution to a vast pool of authors with the
idea of a deanonimisation attack. We will now try to present the setting where our
algorithm may come in handy.

Setting We consider the case where a government finds some blog post dangerous
and seeks to identify its author. We are not allowed any assumption on the topic,
which might be anything from mentioning a more than thirty-year-old riot to some
specific accusation against government members. We only assume that the post
should be at least 50 characters long to be relevant. This is about the length of an
average sentence. We ignore shorter posts or posts containing only the URL to some
other website.

The stylometric analysis might be an option in this setting if the investigators
established that the author is not among those already under strict surveillance
whose actions are known. Also, the author effectively concealed the IP, and no
useful information came from the OS/browser used or the post’s metadata. Someone
reminds a company offering stylometric analysis specifically for this purpose. If
the author has ever posted anything under their real name, it might be possible to
establish a link to the new evidence. Is it worth it?

1https://www.theguardian.com/world/2021/jul/18/revealed-leak-uncovers-global-
abuse-of-cyber-surveillance-weapon-nso-group-pegasus, last checked January 12, 2022.

https://www.theguardian.com/world/2021/jul/18/revealed-leak-uncovers-global-abuse-of-cyber-surveillance-weapon-nso-group-pegasus
https://www.theguardian.com/world/2021/jul/18/revealed-leak-uncovers-global-abuse-of-cyber-surveillance-weapon-nso-group-pegasus
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Methods We considered the complete Blog corpus as the one assembled likely to
contain the author of the post. We considered all the posts for training and only
posts at least 50 characters long for the test. In this case, we do not require that
the actual author appears as the most probable. We only require that the actual
author appears among the first k candidates. Then the police will put them under
strict surveillance, waiting for the author to post again, or maybe they will abduct
all the candidates on the list. We used ten-fold stratified cross-validation – and the
hyperparameters set – that gave the best results in chapter 7.

This analysis takes inspiration from the work of Narayanan and collaborators
“On the Feasibility of Internet-Scale Author Identification” [107]. We want to remark
on a few differences in the methods. First, the number of candidate authors used
in [107] is more than five times the number of authors in the Blog corpus. This
difference is a clear advantage for us. However, all the blogs considered in [107]
contained at least 7500 characters. A similar condition would force us to discard
almost 40% of the blogs. Therefore, we kept all blogs, and the presence of the smaller
ones is a penalty. Second, they removed non-English language blogs. Third, in [107],
they used three posts for each blog. In this case, instead, we attempt to identify the
author with a single sample.

Results We report in figure 9.1 the results varying the size k of the shortlist. We
get the actual author among the first 20 for 62.5% of the posts without any further
processing of the results. Narayanan and collaborators obtained 20% of the posts to
have their author in the top 20. By introducing confidence estimation, they further
improved the results, reaching 80% of posts with shortlisted authors halving the
recall. We leave the study of the improvements with confidence estimation to future
work.

These results share many of the limitations already pointed out in [107]. We did
not consider active obfuscation or attempted cross-domain identification (e.g., finding
the blog post’s author having only email samples). However, given the current state
of authorship obfuscation, these results suggest risk in at least one domain.
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Figure 9.1. Fraction of post whose author is correctly shortlisted. An author is
correctly shortlisted if their id appears in the first k most likely.
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Conclusions

The method we proposed in this thesis is relevant for its outstanding results and the
simplicity of its approach. First of all, we reached the best performance on record
on the most extensive and challenging corpus. One of the greatest challenges for
most approaches is scalability. In our case, even increasing the number of documents
and candidates by three orders of magnitude we retain two-fifths of the correct
attributions. Second, we successfully overcame the strong imbalances in the informal
corpora. The style samples for every author were highly varied in number and size.
This kind of corpora can disrupt many other approaches. Third, we proved that it
is possible to apply this approach to different languages without losing performance.

At the core of our approach lies the intuition of modelling each author as a
stochastic process. Therefore, we chose a PD process for its superior ability in repre-
senting natural systems. Furthermore, this choice provides us with a straightforward
way to estimate the likelihood of every author. We used the probability of the
unknown text conditioned to the PD process and the author’s production.

Besides the practical results, we showed the role and meaning of the constituents
of the model. We introduced three possible kinds of variables for the representation
of the documents. We discussed their specific characteristics and the conditions
where they perform well or are unusable.

We discussed the effects of our assumption of a discrete base probability distri-
bution. This assumption is equivalent to fixing the number of extractions of each
element from the base probability to one. This imposition required some considera-
tions about the form of the base probability and the introduction of a parameter
compensating the missing information.

We discussed the opportunity of dividing texts and authors into smaller chunks.
This step is needed to cope with unbalances in the corpora. In particular, we showed
that, taking the limit of single token fragments, our approach reduces to a variant
of methods based on Kullback-Leibler divergence. Furthermore, in the opposite
limit of long fragments, we identified a bias towards authors with a small corpus.
We discussed the origin of this bias and how it changes direction, varying the ratio
between the fragment and author lengths.
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Given the limitations of our setting, we showed how our approach already presents
privacy concerns as it is, without any optimisation towards this specific task. More-
over, with the lowering cost of surveillance, reducing the set of candidates by three
orders of magnitude represents a concrete menace to maintaining anonymity online.

This kind of software should be regulated as it is already happening with facial
recognition algorithms. However, this may not be enough if we parallel with facial
recognition. For example, a company like the US-based Clearview – reporting the
collaboration with police forces across the USA on its homepage2 – has not changed
its business model after many condemnations received in at least five countries and
three continents3.

The need for effective authorship obfuscation software may quickly become a
matter of preserving democracy and human rights. Therefore, authorship obfuscation
software should become as available and usable as typical spell checkers, overcome
the present problems with “preserving semantics”, and undergo systematic tests
against all the latest authorship attribution techniques.

The future of this approach is manifold. For example, we may apply it to different
tasks like author profiling in stylometry. Alternatively, we could test its effectiveness
on challenging genres such as poetry or text in non-Indoeuropean languages. Indeed,
we applied our approach to three European branches of the Indoeuropean family
(Romance, Germanic and Slavic), all with alphabetic writing. On the other hand, its
effectiveness on texts in languages like Amharic, Arab, or Chinese is not proven yet.

Our approach may find application in biology too. There has been a technical and
conceptual exchange between linguistics and genetics in the last decades. Concepts
like Authorship Attribution were introduced in biology, for example, to find the
origin of “genome segments thought to arise by horizontal transmission between
species” [132]. At the same time, the modelling of nucleotide sequences as the output
of stochastic processes has been investigated since the nineties to characterise the
type of RNA (messenger, ribosomal, transfer) [85], and compression approaches
similar to the cross-entropy method have been proposed [30, 74].

We can envision applications of our technique in this field. For example, we
may tackle RNA classification problems by leveraging the ease of deriving grammar
trees, e.g. from RNA sequences, representing both the primary and the secondary
structure [127, 91]. These representations are unambiguous, and RNA, unlike texts,

2https://www.clearview.ai/, last checked April 14, 2022.
3See for example https://www.theguardian.com/world/2021/nov/03/facial-recognition-

firm-cleaview-ai-to-appeal-order-to-stop-collecting-images-of-australians or https:
//www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9751323#english for Aus-
tralia and Italy respectively, last checked April 14, 2022.

https://www.clearview.ai/
https://www.theguardian.com/world/2021/nov/03/facial-recognition-firm-cleaview-ai-to-appeal-order-to-stop-collecting-images-of-australians
https://www.theguardian.com/world/2021/nov/03/facial-recognition-firm-cleaview-ai-to-appeal-order-to-stop-collecting-images-of-australians
https://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9751323#english
https://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9751323#english
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does not require PoS tagging. Using a linear representation of the grammar tree as
the input sequence may encode more information for our approach to exploit.

We also envision possible evolutions of the approach itself. For example, rein-
troduction of a proper discrete base probability exploring other ways to make this
version faster and better in performance. Also, introducing a hierarchy could open
interesting perspectives, provided that the slowdown is made sustainable.

A different path is changing the model itself. For example, we could use models
like the PUT model and its extensions. They share some features with the PD
process. However, these models allow going beyond exchangeability. Introducing
semantic and temporal correlation in our model would help represent textual data
closely with possible performance improvements.

To extend the possibilities of our approach beyond our imagination, we plan to
release the CP-DP soon as open-source software.
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Appendix A

Crossentropy

The concept of crossentropy came in multiple times in the main text. Crossentropy
may be defined as the extra effort needed to transmit a message from a source using
a coding system optimised on a different source. Here, a source is intended in the
information theory sense as any process that generates successive messages. All
sources are stochastic and, for simplicity of mathematical treatment, two classes
often considered are zero-memory and stationary ergodic sources. The first emit
i.i.d. random variables while the second impose less restrictive constraints.

We clarify this with a historical example: the Morse code. In Morse code any
message is transmitted as series of dots and dashes (three times the length of a dot)
interleaved with breaks of different length. The message can be transmitted through
the flashes of a light, the sound of a buzzer, a pen writing on a running strip of
paper, in any case the number of dots and dashes determines the duration (and the
cost) of the message.

Samuel Morse devised the code that goes under his name1 so that the most
common English letter ‘e’ is coded with a single dot while the less common ‘j’
requires one dot and three dashes. Transmitting an Italian text with the Morse code
optimised for English will result in a longer message than using a coding optimised
for Italian. For example the five most common letters in English are “e t a o n”
while the most common letters in Italian are “a e i o n”. This would lead to some
loss in performance for the extra time spent for ‘a’ and ‘i’ while reserving a fast
code for the ‘t’ that is only the seventh most common2. The crossentropy between
Italian and English in this case would be given by the average extra time (i.e. bits)

1The idea behind the code we know is due to his assistant Alfred Vail. Morse’s idea was to code
entire words. This could achieve higher performance on specific texts (e.g. commercial, military, ...)
but is impractical for humans (see Egyptian hieroglyphs).

2In the International Morse Code the shortest letters are “e t i a n” while ‘o’ has one of the
longest codes with three dashes. This is because it was created as Continental Morse Code in a
European conference and tends to accommodate different needs.
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per character needed to code a message in Italian using the Morse code optimised
for English.

In a more formal way, let us consider two stationary zero-memory sources A
and B emitting sequences of 0 and 1. A emits a 0 with probability p and 1 with
probability 1− p while B emits 0 with probability q and 1 with probability 1− q.
The Shannon entropy of source A is defined as:

H(A) = −p log2 p− (1− p) log2(1− p) (A.1)

An ideal compression algorithm3, applied to a sequence emitted by A will, encode
the sequence [155], using on average a number of bits per character equal to the
Shannon entropy H(A) of the source.

The adopted coding optimal for source A, will have a worse performance on the
sequence emitted by B. For example, if p > q we will use few bits (− log p < − log q)
to encode the 0s, but this happens only a fraction q < p of the time. The relatively
more common 1s will take − log(1− p) > − log(1− q) bits. The number of bits per
character needed to encode the sequence emitted by B in the coding optimal for A
will be

H(q, p) = −q log2 p− (1− q) log2(1− p) (A.2)

while the entropy per character of the sequence emitted by B in its own optimal
coding is H(q, q) = H(B) = −q log2 q − (1− q) log2(1− q). Notice H(q, p) is always
greater than H(q, q) and H(q, p) approaches H(q, q) from above when q approaches
p.

The two sources may emit sequences of symbols from alphabets X of any size.
As in the example, the crossentropy still measures the number of bits needed to
encode messages from one of the sources when using the optimal code for the other.
The general formula for two sources represented by their probability distributions P
and Q over the symbols x ∈ X will be:

H(P,Q) = −
∑
x∈X

P (x) logQ(x) (A.3)

Notably the crossentropy is related to Kullback–Lebler divergence as:

H(P,Q) = H(P ) +DKL(P ‖ Q) (A.4)

which is defined as DKL(P ‖ Q) =
∑
x∈X P (x) log P (x)

Q(x) and is a common measure of
the difference of P with respect to Q used also in stylometry.

3Or an asymptotically optimal compression algorithm, like LZ77, in the limit of an infinite
sequence.
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As noted in the main text, the crossentropy4 is not a measure of distance from
a mathematical point of view. While it’s positive semidefinite (being zero only
when P = Q and H(P ) = 0), in general is not symmetric (H(P,Q) 6= H(Q,P ))
nor satisfies the triangular inequality (H(P,Q) ≶ H(P,R) +H(R,Q)). Even if it is
possible to enforce, in a particular setting, see [15, 12], its behaviour as a distance
this is not of general interest or usefulness.

4As the Kullback–Leibler divergence.
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Appendix B

Alternative Definitions

For completeness, we present in this appendix a selection of alternate definitions
we considered for some aspects of our model. We excluded these alternatives for
performance or consistency reasons. The following sections may answer why we did
not follow some other approach.

B.1 Alternatives in Preprocessing

In section 2.2.1 we mentioned how often a step in the preprocessing phase is case uni-
fication. This means converting all the letters to lower- (or equivalently, upper-)case
to avoid the creation of spurious tokens. The same word appearing at the beginning
or in the middle of a sentence will then define a single token.

In our approach, we do not unify the case of letters as we observed a reduced
performance for informal corpora and mixed results for the literary.

We report in table B.1 the final results of the cross-validation on blogs using
OSF N-grams obtained with and without case unification. In the case of Dictionary
words, we decreased performance too. For the Blog corpus – prolific authors, the
score decreases from 0.483 to 0.471.

In table B.2, we present a comparison of the results with and without case
unification for the literary corpora. In this case, the picture is less clear. Changing
corpus and kind of features the results may benefit from case unification. However,
in general, the results are worse or unchanged.

B.2 Alternative Fragments

In the main text, we always considered extracting the features from full texts and
only later split the sequences of tokens into fragments. A different approach is to
split the original texts before tokenisation. We chose a suitable length, and then we
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Table B.1. Effect of case unification on the best hyperparameters’ choice for
the Blog corpora. The superscripts indicate the interquartile range (IQR) over the
different folds: no superscript IQR < 1%, † IQR ∈ 1− 2%.

Corpus Unified Micro average Macro average
case Precision Recall F1 Precision Recall F1

Blog
Prolific

No 0.529† 0.495 0.493† 0.525† 0.567† 0.523†

Yes 0.515 0.478 0.480 0.509† 0.507 0.553†

All
No 0.442 0.374 0.375 0.333 0.300 0.312
Yes 0.424 0.358 0.361 0.319 0.287 0.300

Table B.2. Scores using MR attribution for the literary corpora. For each kind of
feature we used an average of the hyperparameters that offered the best results in the
attribution task.

Corpus
Unify case
No Yes

IT
A

DICT 0.901 0.895
OSFG 0.906 0.918
LZ77 0.857 0.842

EN
G

DICT 0.900 0.907
OSFG 0.929 0.932
LZ77 0.887 0.886

PO
L

DICT 0.869 0.848
OSFG 0.899 0.899
LZ77 0.929 0.909
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split the text into fragments that number of characters long. Each fragment then
goes through feature extraction. To avoid the creation of spurious tokens is better to
split at the closest space. However, the effect of the different sizes of the fragments
is quickly negligible if the lengths are not too small1. This choice retains all the
information about the different fragments. Some may be closer or further from
their author’s style; different attribution techniques may exploit these differences
to improve the results. When using LZ77 sequences, this choice suggests looking
for repeated sequences on a copy of the fragment itself instead of using a sliding
window. We split the text into fragments of the same size as the LZ77 window and
look for repeated sequences on a copy of the fragment. Since the sequences at the
beginning of a fragment can always find matches with the end, this solution gives
slightly different dictionaries. This is the version used in the crossentropy method
we use to compare. Searching this way also avoids the bias towards the sequence’s
end of the gzip version.

Another approach is to tokenise the text and then split it into fragments, all
with the same amount of tokens but this time sampling them at random. In this
case, we assume the complete exchangeability of the words in the text. This choice
is in line with the use of the PD process however is not valid in general, and a
long text may exhibit style changes that the sampling would cancel. Furthermore,
as we noted in chapter fragments, the size of the fragments may capture some
correlation length. This implies accounting for medium-scale correlations in the text
beyond exchangeability. We tested this second option briefly and observed worse
performance.

Instead, we devoted some study to the first option during preliminary analysis.
Looking at the curves in figure B.1, it seems that some features allow working
with shorter fragments. For example, for fragments one hundred characters long,
the attribution using LZ77 gives scores under 0.5. The other approaches seem yet
unaffected. We noticed that the curves in the figure are more aligned when plotted as
a function of the average number of tokens per fragment, see figure B.2. In this case,
for fragments with a few tokens, the performance of all features drops as already
observed, e.g. in the bottom panels of figures 6.1, C.12, and C.13.

We chose to keep the feature extraction separated from the division into fragments.
We conclude that, due to the varied number of tokens per fragment, splitting before
the feature extraction adds more noise than information.

1The median length of words in texts of the three languages considered (English, Italian and
Polish) is below six characters. Therefore, most fragments would have a length within three
characters from the designed size.
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Figure B.1. Attribution varying the fragments’ byte length.
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Figure B.2. Attribution varying the average fragments’ length in tokens.
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B.3 Alternatives for the Base Probability

In chapter 5 we decided to weight the tokens using their occurrences in the whole
corpus. This is a quite straightforward choice but not the only one possible. Using
the token frequency as a proxy for its probability does not take into account the
reinforcement process in action in the PD process. On the other hand, it offers a fine
grained distinction of weights that may span several orders of magnitude. Increasing
the corpus size results in a better description of the distribution with more tokens
included and a better estimate of the frequency for the most common ones.

A simpler, agnostic choice would be to assume all tokens having equal a priori
probability. The different counts observed would derive only by the reinforcement
active in the process. However, this perspective ignores the fact that the most
common elements are shared across different texts and authors.

An different approach moves from the process itself. We assume that each author
is associated to a single process, and each process can extract each token from the
base distribution P0 only once. Thus, we may get a proxy of the weight per token
as the fraction of authors that uses it. This is practically equivalent to the trivial
sampling from a sparse Dirichlet-Multinomial distribution as the identity and the
number of extractions is fixed.

This approach gives an extremely coarse estimate limited by the number of
authors. In all but one the corpora we considered the difference between the
most and least probable tokens would be less than two orders of magnitude. This
compression might be more noticeable on frequent tokens: every token appearing
in (almost) every author, even if only once, would have the same probability as the
most common ones. However, for this same reason, in most of the cases those would
be tokens known to the author and their base probability would never be used.

In this case, increasing the corpus size with more examples from the same authors
would give little improvement. This is the case when the set of possible authors is
closed and we try to obtain a better estimate of the likelihoods. In many kinds of
corpus the estimate will remain coarse grained with more words pushed to the upper
limit of the weight while new ones enter.

An intermediate approach would be counting the number of texts in which every
token is present. The number of texts is not smaller than that of the authors allowing
for a finer distinction between different tokens even if forcing the definition of the
process.

This option is strongly influenced by the kind of corpus. With literary texts
might be very close to the author count, every author has (relatively) few long texts.
With less formal writing like messages of few lines each, the estimate gets closer
to the global occurrence count. In this method, like in the first one but unlike the
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author count, the P0 is independent from the attribution of texts. This is useful in
practical situations when one wants to use the largest amount of texts and the P0 to
be independent from the validation fold.

In principle one could object that the right thing to do is to count the number of
authors using every token. However, this is in contrast with the assumption of a
continuous probability distribution and leads to very rough estimates, due to the
often limited number of authors. It also poses problems on how to count the tokens
of the books of unknown authorship, especially those that are unique to these books.

Counting the global number of occurrences or just the number of texts with at
least one occurrence leads to smaller differences than one may expect. Fist of all it
affects only tokens that appear more than once per text. If texts are short, as in
the informal corpora, very few very common tokens appear more than once in most
of the texts. All but the most common tokens are affected lightly by this choice2.
Second, the tokens that are relevant when computing the conditional probabilities
are in general low probability and high rank. Even in longer texts, as in the literary
corpora, these tokens appear a few times per text. For all but the most frequent the
effect is again small.

Looking at figure B.3 is easy to note how, for an informal corpus – bottom panel,
the difference is mainly in the sum of the counts. This in turn affects the fixed
normalisation but not the updated as the counts of higher rank tokens are affected
slightly. For a literary corpus there is a reduction of the probability for low rank
tokens but the less probable ones are less affected. For the Polish corpus in figure,
the most frequent tokens have their probability depressed as the counts saturates
for the most frequent tokens. As the corpus contains one hundred novels, no token
may have more than one hundred counts, no matter how frequent. Even for ranks in
the thousands, where we find tokens appearing in about 50 texts, we clearly notice
effects of saturation.

The difference is limited to a specific class of tokens and almost only for literary
corpora. It affects tokens with a rank in the order of the thousands for Dictionary
words and LZ77 sequences with small windows, in the order of the tens of thousands
for OSF N-grams and LZ77 sequences with large windows. In figures B.4 and B.5
I report the comparison of the results obtained with the P0 used in the main text.
The difference is often small and, in correspondence of the best values, in favour of
the global count approach. For literary and informal corpora, the best results under
different choices of P0 are in tables C.4 and C.5.

2If working with N -grams many of the most common words are discarded as too short and the
effect is even smaller.
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Appendix C

Additional Graphs and Tables

This appendix includes graphs and tables useful for a deeper understanding of the
subject of this theses that were excluded from the main text.

Table C.1. Best results using Dictionary words. In case of multiple choices of the
hyperparameters giving the same results, we report the value of δ closest to 1 and the
larger fragment size. In most cases, the best scores are obtained using fixed normalisation
for the P0. We report the best score in boldface if Maximum Likelihood and Majority
Rule attribution give different results for the same corpus. “PRO” is the prolific authors
subset of the Blog corpus.

Corpus attr.
δ = 1 maxδ

F Score F δ Score

Li
te
ra
ry

ENG ML 104 0.897 104 0.40 0.902
MR 103 0.893 103 0.32 0.902

ITA ML 104 0.860 103 2.00 0.889
MR 100 0.877† 100 3.50 0.918

POL ML 105 0.879 104 2.50 0.899
MR full 0.869 10 4.00 0.899

In
fo
rm

al

Email ML 10 0.501 10 0.25 0.519†

MR 103 0.492 104 0.22 0.518†

PRO ML full 0.485 500 1.80 0.487
MR full 0.485 full 1.80 0.487

† single update normalisation gives the best results.
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Table C.2. Best results using OSF N-grams. In case of multiple choices of the hyper-
parameters giving the same results, we report the value of δ closest to 1 and the larger
fragment size. In most cases, the best scores are obtained using fixed normalisation
for the P0. We report the best score in boldface if Maximum Likelihood and Majority
Rule attribution give different results for the same corpus. “PRO” is the prolific authors
subset of the Blog corpus.

Corpus attr.
δ = 1 maxδ

F N Score F N δ Score

Li
te
ra
ry

ENG ML 500 8 0.934 2000 8 0.79 0.936
MR 50 9 0.929† 100 10 0.20 0.936

ITA ML 10 9 0.936† 10 9 1.00 0.936†

MR 50 10 0.959† 50 10 1.00 0.959†

POL ML 1000 9 0.909 200 10 0.79 0.919
MR 500 10 0.919 100 10 1.30 0.929

In
fo
rm

al

Email ML 10 3 0.512 20 4 0.25 0.532
MR full 3 0.502 full 4 0.13 0.530†

PRO ML 5000 5 0.493 5000 5 1.30 0.494
MR full 5 0.493 full 5 1.30 0.494

† single update normalisation gives the best results.

Table C.3. Best results using LZ77 on literary corpora. In case of multiple choices
of the hyperparameters giving the same results, we report the value of δ closest to 1
and the larger fragment size. In most cases, the best scores are obtained using fixed
normalisation for the P0. Using this kind of feature the MR attribution is consistently
better and requires fragments about one thousand times smaller.

Corpus attr.
δ = 1 maxδ

F L Score F L δ Score

ENG ML 5× 104 5.6× 104 0.888 2× 103 5.6× 104 1.1 0.891
MR 20 1.0× 105 0.897‡ 20 5.6× 104 1.4 0.909

ITA ML 2× 104 5.6× 104 0.854† 1× 104 3.2× 104 1.1 0.871†

MR 10 1.8× 105 0.906†‡ 10 1.8× 105 1.0 0.906†‡

POL ML 5× 103 3.2× 105 0.949†‡ 1× 103 5.6× 104 1.1 0.949
MR 20 3.2× 105 0.960† 20 3.2× 105 1.0 0.960†

† single update normalisation gives the best results.

‡ same best results also with shorter windows and longer fragments.
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Table C.4. Best results with the different P0 normalisations. The text-based (TB
introduced in section B.3) weights or the continuous update normalisation often offer the
best results. However, in every such case, the fixed normalisation or the single update
also offers the same score.

Corpus attr. P0
δ = 1 maxδ

F N/L score F N/L δ score

ENG

FNN

Fixed 500 8 0.934 2.0× 103 8 0.79 0.936
Fixed TB 500 8 0.934 500 8 0.89 0.936
Single 50 8 0.925 100 9 0.63 0.932
Single TB 50 10 0.923 1.0× 103 10 0.63 0.932
Continuous 50 8 0.925 100 9 0.63 0.932

MR

Fixed 200 8 0.927 100 10 0.20 0.936
Fixed TB 200 8 0.923 100 10 0.32 0.936
Single 50 9 0.929 50 9 0.79 0.932
Single TB 100 10 0.923 500 8 0.63 0.927
Continuous 50 9 0.929 50 9 0.79 0.932

ITA

FNN

Fixed 20 8 0.918 20 9 0.79 0.924
Fixed TB 20 9 0.912 20 11 0.63 0.936
Single 10 9 0.936 10 9 1.00 0.936
Single TB 20 10 0.930 20 10 1.00 0.930
Continuous 10 9 0.936 10 9 1.00 0.936

MR

Fixed 100 8 0.924 20 10 0.71 0.942
Fixed TB 100 8 0.930 50 9 0.71 0.942
Single 50 10 0.959 50 10 1.00 0.959
Single TB 50 10 0.942 50 10 1.00 0.942
Continuous 50 10 0.959 50 10 1.00 0.959

POL

FNN

Fixed 2.0× 104 1.0× 105 0.939 1.0× 103 5.6× 104 1.10 0.949
Fixed TB 2.0× 104 1.0× 105 0.939 1.0× 105 1.0× 105 0.89 0.949
Single 5.0× 103 3.2× 105 0.949 5.0× 103 3.2× 105 1.00 0.949
Single TB 5.0× 103 3.2× 105 0.949 5.0× 103 3.2× 105 1.00 0.949
Continuous 5.0× 103 3.2× 105 0.949 5.0× 103 3.2× 105 1.00 0.949

MR

Fixed 20 1.8× 105 0.939 20 1.8× 105 0.89 0.949
Fixed TB 20 1.8× 105 0.949 10 1.8× 105 0.79 0.960
Single 20 3.2× 105 0.960 20 3.2× 105 1.00 0.960
Single TB 1.0× 104 3.2× 105 0.949 1.0× 104 3.2× 105 1.00 0.949
Continuous 20 3.2× 105 0.960 20 3.2× 105 1.00 0.960
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Table C.5. Best results with the different P0 normalisations. The text-based (TB
introduced in section B.3) weights or the continuous update normalisation often offer the
best results. However, in every such case, the fixed normalisation or the single update
also offers the same score. PRO is the prolific authors subset of the Blog corpus.

Corpus attr. P0
δ = 1 maxδ
F N score F N δ score

Email

FNN

Fixed 10 3 0.512 20 4 0.25 0.532
Fixed TB 10 3 0.504 10 4 0.20 0.531
Single 10 4 0.508 10 4 0.20 0.531
Single TB 10 4 0.487 10 4 0.14 0.530
Continuous 10 4 0.508 10 4 0.20 0.531

MR

Fixed full 3 0.502 full 4 0.16 0.529
Fixed TB 1.0× 103 3 0.491 full 4 0.11 0.529
Single 2.0× 103 4 0.491 full 4 0.13 0.530
Single TB 5.0× 103 4 0.467 full 4 0.14 0.530
Continuous 2.0× 103 4 0.485 1.0× 104 4 0.14 0.530

PRO
FNN

Fixed 5.0× 103 5 0.493 5.0× 103 5 1.30 0.494
Single 50 5 0.485 50 5 0.71 0.487

MR
Fixed full 5 0.493 full 5 1.30 0.494
Single full 4 0.479 full 4 0.45 0.485

Table C.6. Fitted values of the β exponent for the Heaps’s law plot using OSF N-
grams. N best is the value that gives the best scores.

Corpus N = 3 N = N best N = 12

Literary
Polish 0.373 0.694 0.714
Italian 0.394 0.572 0.645
English 0.270 0.684 0.807

Email 0.451 0.515 0.719

Blog
all authors 0.388 0.563 0.846
prolific 0.350 0.531 0.856
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Figure C.1. Heaps and Zipf laws for the literary corpora varying N. The green
curve corresponds to the the chosen value of N∗. The fitted values of β are in table C.6.
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Figure C.2. Heaps and Zipf laws for the informal corpora varying N. The green
curve corresponds to the the chosen value of N . The fitted values of β are in table C.6.
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Figure C.3. Text attribution in the literary Polish corpus varying N. The maxi-
mum attribution scores with δ = 1 are 90.9% using ML and 91.9% using MR. The use
tuning of δ allows to attribute one book more, +1% with both ML and MR.
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Figure C.4. Zipf’s law and Heaps’ law for the three informal corpora using LZ77
sequences. Straight lines in the Heaps’ law plots show functions of the form f(x) = axβ

for window lengths of 180 and 32000 characters. The exponent β equals to β180 = 0.730
and β32000 = 0.774 (Email), β180 = 0.714 and β32000 = 0.721 (Blog – prolific authors),
β180 = 0.730 and β32000 = 0.739 (Blog – all authors). Straight lines in the Zipf’s law
plots show functions of the form f(x) = ax−α , where the exponent α is equal to β−1 for
the different βs considered above. The differences between the different window lengths
are less prominent than with the literary corpora.
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Figure C.5. Fluctuations in token frequency across authors using LZ77 sequences
for the informal corpora. We show the standard deviation of token frequencies across
authors. Tokens ordered by global frequency.
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Figure C.9. Text attribution in the literary Polish corpus with the different
choices of P0. The normalisation curves marked as “TB” are Text Based, obtained
counting the number of texts each token appears in. See section B.3 for a discussion of
different token weighting. We report the best scores using the different choices of P0 in
table C.4.
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Figure C.10. Text attribution in the Email corpus with the different choices of
P0. The normalisation curves marked as “TB” are Text Based, obtained counting the
number of texts each token appears in. See section B.3 for a discussion of different token
weighting. We report the best scores using the different choices of P0 in table C.5.
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Figure C.12. Text attribution using Overlapping Space Free N-grams and short
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ment lengths in the range [1, 1000] spaced one third of decade.
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fragment size over average probability using single token fragments. Results
using LZ77 sequences. Due to the presence of outliers the average includes only the
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Figure C.17. Averages of the number of tokens in fragment attributed to the
shortest author using LZ77 sequences. The weight of the lines is proportional to
the length of the shortest author.
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