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Abstract
The dynamic stability of out-of-plane masonry walls can be assessed through
non-linear dynamic analysis (rocking analysis), accounting for transverse walls,
horizontal diaphragms and tie-rods. Steel tie-rods are widely spread in historical
constructions to prevent dangerous overturning mechanisms and can be simu-
lated by proper elasto-plastic models. Conventionally, design guidelines suggest
intensity-based assessment methods, where the seismic demand distribution
directly depends upon the selected intensity measure level. Fragility analysis
could also be employed as a more advanced procedure able to assess the seismic
vulnerability in a probabilistic manner. The boundedness of this approach is
herein overcome by applying a robust stochastic seismic performance assess-
ment to obtain seismic demand hazard curves. A sensitivity study is carried out
to account for the influence of wall geometry, the minimum number of seismic
inputs, and the mechanical parameters of tie-rods. Fragility analysis, prior to
seismic demand hazard analysis is applied on over 6000 analyses, revealing that
intensity measures are poorly correlated both for 1-D and 2-D correlation, hardly
leading to the selection of the optimal intensity measure. The tie-rod ductility,
followed by its axial strength and wall size, is the mechanical parameter mostly
influencing the results, whereas the wall slenderness does not play a significant
role in the probabilistic response.
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1 INTRODUCTION

The seismic vulnerability of out-of-plane masonry walls can be investigated through the rocking analysis, allowing for
dynamic nonlinear time-history analysis of rigid blocks tilting on their base.[1–4] Such a methodology requires the mech-
anism to be defined a priori and is aligned with the kinematic approach[5] widely spread among the research community
and practitioners. The rocking analysis can be seen, in fact, as the natural improvement of the pseudo-static methodology
as allows to account for complex dynamic effects, even when the maximum static capacity is attained. In the pioneering
Housner’s work,[6] rocking analysis was first systematized; in it, sliding and bouncing are neglected for sufficiently slender
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F IGURE 1 (a) Free-standing (b) restrained rocking blocks. (c) Elasto-plastic constitutive model assumed for the steel tie-rod

blocks (i.e., 𝜆 ≥ 5).[7] Moreover, the energy is dissipated through a coefficient of restitution, solely function of the block
geometry, 𝑒𝐻 = 1 −

3

2
𝑠𝑖𝑛2(𝛼), where 𝛼 = tan−1 𝑠∕𝐻, being 𝑠 and𝐻 the wall thickness and height, respectively (Figure 1a),

valid for slender blocks. The velocity reduction factor was experimentally calibrated to be about 95% 𝑒𝐻 for unreinforced
masonry walls in one-sided motion.[8]
Recently, the equation of motion was improved in order to account for different restraints and boundary conditions,

such as the presence of horizontal diaphragms,[9] transverse walls, roof thrusts,[10] steel tie-rods,[11] or tendons[12] and dis-
sipative devices.[13] The influence of the tie-rods on the rocking motion mainly depends on their ultimate elongation and
strength. Moreover, if one deals with historical tie-rods, themechanical properties can be scattered, as shown by Calderini
et al.[15] The tie-rods strongly reduce the mean values of maxima amplitude rotations, as demonstrated by Casapulla and
Argiento[16] also for non-linear static analyses. The effect of the change of aspect ratio of two walls of the same size was
shown to be negligible for tied walls.[17] The same occurred for walls restrained by tie-rods at different heights; the overall
effect of tie-rod length (normalized to thewall thickness and variable between 4 and 20) aswell as the normalized prestress
(between 0 and 0.6) is limited. As for the influence of mechanical properties, the role of the elastic modulus and of the
axial stiffness appeared to be negligible. The yield strength is the most relevant parameter that influences the response,
besides the brittle or ductile behavior of the tie-rod. Unfortunately, all these conclusions are drawn from the results of
deterministic analyses, performed for a specific seismic scenario, and for a single level of intensity. The results are sel-
dom computed in terms of percentile or simply mean value, resulting not fully reliable. For these reasons, the seismic
vulnerability of restrained rocking blocks is made in this paper through a more sophisticated probabilistic procedure.
As well known, the seismic vulnerability can be computed as the probability for a certain component or a global struc-

ture of exceeding a certain limit state, defined in terms of a representative engineering demand parameter (EDP), and
can be shown through the construction of fragility curves (FC) conditional to the selected intensity measure (IM).[18] By
definition, this approach is conditional to the IM, meaning that the capacity obtained for one IM differs from another
calculated for a different IM. The latter intensity-based method is however conditional to the selected IM and does not
account for the annual likelihood that a certain level of the seismic demand will be exceeded.
A more robust procedure is the methodology recommended by Bradley,[19] which provides the rate of exceedance of

various seismic demand values in the form of the so-called seismic demand hazard curve (SDHC). The latter is obtained by
integrating the distribution of the demand overmultiple intensity levels based on the site seismic hazard, thus quantifying
the likelihood that a certain limit state will be exceeded over the structure lifetime. To the authors’ knowledge, this is the
first time that such a procedure is applied to the vulnerability of free or restrained rocking blocks and particularly of
masonry walls.
In this perspective, this paper examines the influence of tie-rod resistance and ductility on the dynamic stability of

restrained rocking blocks simulating rigid-like out-of-plane mechanisms frequently observed in historical masonry con-
structions. Based on the distribution of seismic response analysis data, a sensitivity analysis is carried out for different
geometric and mechanical parameters, discretely defined within reasonable ranges. The equation of motion is firstly
introduced in Section 2, while in Section 3 the reference sample geometry is presented, followed by the definition of
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the probabilistic models. The main parametric analysis results are shown in Section 5 and relevant outcomes are finally
discussed in Section 6.

2 DYNAMICS OF RESTRAINED ROCKING BLOCKS

Based on the leading formulation originally suggested by Housner,[6] the equation of motion of laterally restrained rigid
block tilting around the base corners reads (Figure 1b):

𝐼0𝜃̈ + 𝑠𝑔𝑛(𝜃)𝑚𝑔𝑅 sin𝐴𝜃 + 𝑇𝑡 + 𝑇𝐿 = 𝑚𝑢̈𝑔𝑅 cos𝐴𝜃 (1)

The term in the right hand side refers to the seismic excitation: 𝑚𝑢̈𝑔 is the seismic effective force applied to the block of
size 𝑅 and slenderness 𝛼 (tan−1(𝑠∕𝐻)). The argument of the cosine is:

𝐴𝜃 = 𝛼 − 𝑠𝑔𝑛(𝜃) 𝜃 (2)

The first term in the left-hand side of Equation (1) refers to the inertia force (𝐼0 = 4∕3𝑚𝑅2, polar inertia moment around
the pivot point O), the second one relates to the self-weight 𝑚𝑔 which acts as stabilizing term as long as the projection
of the gravitational force falls into the wall thickness. The term 𝑇𝑡 of Equation (1) refers to the contribution given by the
tie-rod, whose role is modeled as individual elasto-plastic horizontal restraint only acting for outward rotations (𝜃 ≥ 0):

𝑇𝑡 = 𝑠𝑔𝑛(𝜃)𝐾𝛽2𝑅2 cos𝐴𝑡,𝜃[sin 𝛼𝑡 − sin𝐴𝑡,𝜃] (3)

in which 𝐾 is the spring stiffness, 𝐴𝑡,𝜃 = 𝛼𝑡 − 𝑠𝑔𝑛(𝜃) 𝜃, where 𝛼𝑡 is a position angle dependent on the position coefficient
𝛽 = 𝑅𝑡∕𝑅. The elongation strain 𝜖 of the tie-rod of length 𝐿𝑡 due to its elasticity is equal to

𝐹

𝐸𝐴
, where 𝐹 is the axial force

in the tie-rod and 𝐸𝐴∕𝐿𝑡 its axial stiffness. The tie displacement depends on the rotation:

𝑢𝑡 = 𝑅𝑡[sin 𝛼𝑡 − sin𝐴𝑡,𝜃] (4)

When a pre-stress force𝐹0 is applied to the tie-rod, the latter endures an additional elongation 𝜖0 =
𝐹0

𝐾𝐿
=

𝐹0𝐿𝑡

𝐸𝐴𝐿
. Considering

Equation (4), the potential energy 𝑉 stored by the tie-rod is:

𝑉 =
1

2
𝐾(𝑢𝑡 + 𝜖0𝐿)

2 =
1

2
𝐾

[
𝑅𝑡(sin 𝛼𝑡 − sin𝐴𝑡,𝜃) +

𝐹0
𝐾

]2
(5)

The derivation of the potential energy with respect to the variable 𝜃 gives the elastic term 𝑇𝑡 of Equation (3):

𝑇𝑡,𝑒 =
𝜕𝑉

𝜕𝜃
=
[
𝑠𝑔𝑛(𝜃)𝐾𝑅𝑡(sin 𝛼𝑡 − sin𝐴𝑡,𝜃) + 𝐹0

]
𝑅𝑡 cos𝐴𝑡,𝜃 (6)

The modeling of elasto-plastic phases of the tie-rod depends on the tie-rod elongation history or, equivalently, on its dis-
placement froma reference value, 𝛿𝑡. Five cases are distinguished as shown inFigure 1c: (1) from inactive to elastic, 𝛿𝑡 > 𝛿𝑟;
(2) from elastic to inactive, 𝛿𝑡 < 𝛿𝑟; (3) from elastic to plastic, 𝛿𝑡 > 𝛿𝑚𝑎𝑥; (4) from plastic to elastic, 𝛿𝑡 < 𝛿𝑚𝑎𝑥; and (5) rup-
ture, 𝛿𝑡 > 𝛿𝑢. Once yielding is attained, the spring exerts the constant force 𝐹𝑦 . The term related to the tie contribution is
then:

𝑇𝑡,𝑝 = 𝑠𝑔𝑛(𝜃)𝐹𝑦𝑅𝑡 cos𝐴𝑡,𝜃 (7)

In summary, the complete equation of motion is given in Equation (1), where the 𝑇𝑡 term assumes either the value
expressed in Equation (6) or that of Equation (7). Alternatively, one of the two terms 𝑇𝑡,𝑒 and 𝑇𝑡,𝑝 is recalled by the MAT-
LAB code through a specific subroutine depending on the actual value of the tie-rod displacement 𝛿𝑡.
The tie-rod influence can be controlled through the following parameters: stiffness, yielding, ductility and strength

associated to it. 𝑇𝐿 has a similar meaning but refers to the lateral walls modeled as elastic spring bed. Its contribution is
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TABLE 1 Reference sample geometry and seismic parameters

Description Symbol Value Unit Description Symbol Value Unit
Wall slenderness H/s 10 - Normalized pretension force 𝑓0∕𝑓𝑦 50 %
Wall thickness s 0.60 m Soil factor S 1.1461 -
Wall length L 1.00 m Period of the first mode shape 𝑇1 0.32 s
Masonry specific weight 𝛾 19 kN/m3 Modal mass participation factor 𝑒∗ 1 -
Coefficient of restitution e 0.985 - Confidence factor CF 1 -
Masonry Young’s modulus 𝐸𝑚 690 MPa Behavior factor q 1 -
Effective lateral wall length 𝐿𝑒𝑓𝑓 1.20 m Peak ground acceleration (ULS) 𝑎𝑔,𝑈𝐿𝑆 0.278 g
Steel Young’s modulus 𝐸𝑠 210 GPa Equivalent viscous damping ratio 𝜉1 5 %
Yield stiffness 𝑓𝑦 235 MPa Modal participation factor 𝛾1 1.5 -
Ultimate elongation 𝜖𝑢 10 % Mode shape 𝜓1 0.5 -
Tie position 𝐻𝑡 6 (= 𝐻) m Maximum floor acceleration 𝑎𝑧,1 0.44 g
Tie length 𝐿𝑡 10 𝑠 m Design load multiplier 𝛼0 0.44 -

different from zero only for inward rotations (spring bed in compression, Figure 1b). 𝑇𝐿 is function of the rotation angle
𝜃, the stiffness of the spring bed 𝐾𝐿, the effective height of the spring bed ℎ̄ and the block thickness 𝑠[9]:

𝑇𝐿 = 𝑠𝑔𝑛(𝜃)𝐾𝐿ℎ̄

(
𝐴 +

𝐵ℎ̄

2
+
𝐶ℎ̄2

3

)
(8)

where:

𝐴 = 𝑠𝑔𝑛(𝜃)𝑠2 sin 𝜃 cos 𝜃(1 − cos 𝜃)

𝐵 = 𝑠
(
sin

2
𝜃 cos 𝜃 − cos3 𝜃 + cos2 𝜃

)
(9)

𝐶 = 𝑠𝑔𝑛(𝜃) sin 𝜃 cos𝜃

The stiffness of the spring bed 𝐾𝐿 can be calculated as function of the horizontal elastic modulus of masonry 𝐸𝐿, effective
transverse wall length 𝐿𝑒𝑓𝑓 and transverse wall thickness 𝑡𝑡 as illustrated in Giresini and Sassu.[9]

3 GEOMETRIES AND ASSUMPTIONS

3.1 Wall geometries and energy dissipation parameters

The reference sample employed for the parametric analysis performed herein is aimed at simulating an unreinforced
masonry wall portion at the top-level of historical constructions, usually highly vulnerable to seismic shakes. The wall
slenderness (𝐻∕𝑠) should also be consistent with the assumption of rigid out-of-planemechanism. Indeed, it was seen that
complex multi degree-of-freedommechanisms may arise for values of𝐻∕𝑠 > 12.[20] Let us define the reference geometry
as rectangular wall with unit length, slenderness 𝐻∕𝑠 = 10, and thickness 𝑠 = 0.6𝑚, adjacent to transverse walls and
restrained by 𝐿𝑡 = 10 𝑠 length elasto-plastic ties with diameter derived by Equation (10) (Table 1). Setting this geometry
and boundary conditions, it is possible to change the remaining influencing parameters. In order to study both the role
of block geometry (in terms of aspect ratio and scale effect), the ductility and the tie resistance, the influencing
parameters are selected as depicted in Table 2 within reasonable ranges.
The rectangular wall is assumed to have unitary width, specific weight of 𝛾= 19 kN/m3, and no openings. The block tilts

around the pivots placed at the corners,𝑂 and𝑂′ (Figure 1), neglecting possible eccentricity due tomasonry crushing. This
hypothesis is supported by high uncertainty onmaterialmechanical characteristics, in fact leading to uncertain position of
the real hinge. The energy is assumed to be solely dissipated at the impacts through the analytical coefficient of restitution
(COR) proposed byHousner, unless otherwise specified.More details about the COR values adopted for one-sided rocking
are given in Section 5.1. The presence of orthogonalwalls is taken into account adopting a bed of springs equally distributed
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TABLE 2 Definition of influencing parameters and corresponding parameter values

Aspect under study Description Symbol

Assumed
parameter
valuesa Unit

Aspect ratio Block slenderness 𝐻∕𝑠 8 ÷ 𝟏𝟎 ÷ 12 [-]
Scale effect Block thickness 𝑠 0.30 ÷ 𝟎.𝟔𝟎 ÷ 0.90 [m]
Tie ductility Ultimate steel strain 𝜖𝑢 0 ÷ 𝜖𝑦 ÷ 2 ÷ 𝟏𝟎 ÷ 20 [%]
Tie resistance Steel yielding stress 𝑓𝑦 142 ÷ 𝟐𝟑𝟓 ÷ 294 [MPa]

aIn bold values correspond to the reference geometry.
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F IGURE 2 (a) Seismic hazard curve of the selected site (Carlentini - Sicily); (b) Reduced strong motion duration

along thewhole height of thewall, hence simulating an elastic impact. The lateral stiffness (Equation 8) can be assumed as
𝐾𝐿 = 𝐸𝐿 𝑠∕𝐿𝑒𝑓𝑓 ,[9] function of the masonry Young’s modulus, 𝐸𝐿 = 690MPa valid for rubble stone masonry (Tab C8.5.I,
NTC2018[21]), transverse wall thickness, 𝑠 and effective length, 𝐿𝑒𝑓𝑓 = 1.2m.
An elastic-perfectly plastic constitutive model is assumed for the steel tie placed on top of the wall (𝐻𝑡 = 𝐻, Figure 1b).

Thematerialmodel assumes elastic unloading and residual strain, hence defining five possible eventswithin the nonlinear
stress state of the tie (Figure 1c, see also Section 2). A modern steel S235 class is considered having yielding stiffness
𝑓𝑦 = 235MPa, ultimate elongation 𝜖𝑢 = 10%, and elastic modulus, 𝐸𝑠 = 210 GPa (Table 1).

3.2 Steel tie-rod design

The minimum tie-rod diameter is designed for the serviceability limit state, SLS, according to the simplified force-based
approach suggested by the commentary to the Italian standard.[21] The mechanism is assumed not to take place at the
foundation level, hence including an amplification factor accounting for unfavorable dynamic effects, and setting a unitary
behavior factor. The building is supposed located at the most seismically vulnerable site in Italy (Carlentini, Sicily) for
which the seismic hazard curve is shown in Figure 2a. The minimum design value of steel tie area reads:

𝐴𝑠,𝑚𝑖𝑛 =
𝐹𝑡,𝑚𝑖𝑛

50%𝑓𝑦
(10)

assuming the pre-tensional state equal to 50%𝑓𝑦 , as suggested by Tomaževič[23] in order to better exploit the whole ductile
capacity of the anti-seismic device. Despite the actual tie-rod area should be rounded compatible with available standard
diameters, for the purpose of thiswork, theminimumvalue of tie-rod area is set in order to keep the geometrical correlation
with the geometry and to be on the safe side. The tie force 𝐹𝑡,𝑚𝑖𝑛 at the numerator of Equation (10) refers to the minimum
horizontal force applied at the level of the tie in order to guarantee the equilibrium of the block subject to the equivalent
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TABLE 3 Definition of the selected limit states LS

Definition EDP (LS) Damage level
LS0 Rocking initiation 𝜃∕𝛼 = 10−4 Uplift
LS1 Limited rocking 𝜃∕𝛼 = 0.1 Negligible damage
LS2 Moderate rocking 𝜃∕𝛼 = 0.4 Minor damage
LS3 Severe rocking 𝜃∕𝛼 = 1.0 Severe damage
LS4 Near collapse 𝜃∕𝛼 = 1.5 Possible overturning

horizontal seismic force (acting at the center of gravity) given by the load multiplier 𝛼0,

𝐹𝑡,𝑚𝑖𝑛 =
𝑊

2𝐻𝑡
(𝛼0 𝐻 − 𝑠); 𝛼0 =

𝑎𝑍,1 𝑒
∗ 𝐶𝐹

𝑞 𝑔
(11)

where𝑊 is the block self weight, 𝑎𝑍,𝑘 is the maximum floor acceleration at height, 𝑍, 𝑒∗ = 1 is the modal mass partici-
pating factor, 𝐶𝐹 = 1 is the confidence factor, 𝑞 = 1 is the behavior factor and 𝑔 is the gravity acceleration. The amplified
acceleration reads[24]:

𝑎𝑧,1 = 𝑆𝑒(𝑇1, 𝜉1)|𝛾1𝜓1(𝑍)|√1 + 0.0004𝜉21 (12)

where, 𝑆𝑒(𝑇1, 𝜉1) is the elastic base spectral acceleration function of the characteristic of the soil and dynamic parameters
of the building, assumed to have 𝜉 = 5% equivalent viscous damping and the first period of vibration simply assumed as
𝑇1 = 0.05𝐻

3∕4

𝑏
, according to equation C7.3.2 of the same guidelines. 𝛾1 = 3𝑛∕2𝑛 + 1 is the modal participation factor of

the building with 𝑛 floors, and 𝜓1 = 𝑍∕𝐻𝑏 is the value of the modal shape at height 𝑍. The main geometrical and seismic
parameters of the reference sample are summarized in Table 1.

4 DEFINITION OF THE ASSESSMENT PROCEDURES

Two seismic assessment procedures are adopted herein with the common aim of studying the influence of elasto-plastic
restraints in the seismic vulnerability ofmasonrywalls rocking out-of-plane: (i) fragility analysis[25,26]; (ii) seismic demand
hazard analysis.[19] Both procedures are based on a lognormal distribution of response data, which is a common but not
unique assumption, widely used by several authors.[26–29] The first one can be denoted as probabilistic model able to
produce univariate and multivariate FC in the form of probability level (from 0 to 1) of occurrence of a given event. The
second one can be considered as the step forward with respect to the previous and is referred to as a stochastic procedure
in the sense that it allows for evaluation over the time of a random variable. Indeed, the output of such a procedure is the
annual exceedance rate of a certain LS in terms of EDP. It is worth noting that geometrical and mechanical parameters
are changed discretely (Table 2) to carry out a sensitivity analysis, whereas only the seismic response analysis results
are treated statistically. This section firstly presents the definition of EDP and the loading protocol, common to both
procedures, then the latter are briefly summarized, referring to cited literature for a detailed description.

4.1 Engineering demand parameter and limit states

The definition of the EDP is requested for any statistical procedure, therefore themaximumnormalized rotation, (𝜃𝑚𝑎𝑥∕𝛼)

is adopted here, as the best seismic performance parameter. Five LS are defined in terms of EDP, aligned with Giresini
et al.[18] and Dimitrakopoulos and Paraskeva[25] (Table 3). The rocking initiation 𝐿𝑆0 could also be defined by the min-
imum horizontal load multiplier necessary to disturb the static equilibrium, 𝛼0, as defined in Section 3, Equation (11),
meaning that for free blocks only accelerograms with PGA > 𝑎𝑚𝑖𝑛 = 𝑠∕𝐻 g could in principle cause uplift. However,
numerical evidences show that several restrained samples have zero rotations even for higher values of PGA, because
of the positive effect of tie pretension and of the lateral wall support. Conversely, one single threshold parameter can be
defined in terms of normalized rotation, 𝜃∕𝛼 = 10−4, since lower values result in negligible movements.
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TABLE 4 Amplified accelerations (in g) of the seismic ground motion hazard considered for the response analyses of 6 IM levels

Return period [years] RP 101 140 201 475 975 2475
Peak ground acceleration PGA 0.11 0.14 0.18 0.28 0.40 0.62
Amplified floor acceleration PGAZ 0.18 0.22 0.28 0.44 0.63 0.98

TABLE 5 Strong motion waveform retrieved from ESM database[30]

Date Time Station code Direction Site M𝐋 PGA PGV
ID [yyyy/mm/dd] [hh:mm] [SSS] [DDa] - [-] [g] [cm/s]
1 2016/08/24 01:36 AMT WE Accumoli 6.0 0.87 43.55
2 2016/08/24 01:36 NRC NS Accumoli 6.0 0.37 29.75
3 2016/08/24 02:33 FOC WE Norcia 5.4 0.18 2.79
4 2016/08/24 02:33 NRC NS Norcia 5.4 0.19 9.80
5 2016/08/26 04:28 AMT NS Amatrice 4.7 0.34 11.00
6 2016/08/26 04:28 PCB NS Amatrice 4.7 0.31 5.50
7 2016/10/26 17:10 CMI WE C.S.A. sul Nera 5.4 0.72 55.70
8 2016/10/26 17:10 CNE WE C.S.A. sul Nera 5.4 0.56 17.34
9 2016/10/26 19:18 CMI WE Visso 5.9 0.65 43.76
10 2016/10/26 19:18 FOC WE Visso 5.9 0.62 20.00
11 2016/10/30 06:40 MZ24 WE Norcia 6.1 1.02 73.60
12 2016/10/30 06:40 MZ51 NS Norcia 6.1 0.96 74.98
13 2016/11/01 07:56 MMO NS Visso 4.7 0.19 7.58
14 2016/11/01 07:56 RQT WE Visso 4.7 0.13 2.80
15 2016/11/03 00:35 PBN NS P. Torina 4.8 0.31 8.47
16 2016/11/03 00:35 T1219 WE P. Torina 4.8 0.34 7.88
17 2017/01/18 09:25 AMT NS Capitignano 5.4 0.35 13.15
18 2017/01/18 09:25 PCB NS Capitignano 5.4 0.18 3.79
19 2017/01/18 10:14 AMT NS Capitignano 5.4 0.32 16.10
20 2017/01/18 10:14 PCB NS Capitignano 5.4 0.60 21.02
21 2017/01/18 10:25 MSCT NS Montereale 5.3 0.28 17.03
22 2017/01/18 10:25 PCB NS Montereale 5.3 0.56 19.35
23 2017/01/18 13:33 MSCT NS C. Amiterno 5.1 0.16 6.27
24 2017/01/18 13:33 PCB NS C. Amiterno 5.1 0.29 5.55
25 - 48 records [51 - 74], Table 5 in Giresini et al. 2018[18] > 5.5 var > 45

aDD: earthquake direction: North-South, NS; West-East, WE.

4.2 Loading protocol

A selection of 48 natural waveforms is performed from the Engineering Strong Motion Database,[30] 24 of which belong
to seismic events that stroke Central Italy between 2016 and 2017, while additional 24 seismic records are selected as char-
acterized by high PGV value (> 45 cm/s). The list of accelerograms is shown in Table 5 along with corresponding seismic
parameters. Each set of the 48 natural ground motions is then scaled to 6 IM levels (see Table 4) and used in both positive
and negative direction, given the asymmetry of the problem, thus leading to 48 × 2 × 6 = 576 NLTH analyses performed
for each block sample. That number, multiplied by 11 samples lead to more than 6000 analyses in total. Within the aim of
thiswork, PGA levels are selectedwithin a return period range of 101<RP< 2475 years corresponding to the sitewith high-
est seismic hazard in Italy (Carlentini, Sicily), whose hazard curve is shown in Figure 2a. The accelerations are amplified
to consider the mechanism to occur at the second floor of a residential building through the factor 𝑎𝑍,1∕(𝑞 𝑎𝑔,𝑆𝐿𝑉) = 1.57,
leading to the amplified hazard curve whose values are schematically summarized in Table 4.
Giving the high computational effort, a reduced strong motion duration is considered for the analysis as the period

between 0.05% and 99% of the total Arias intensity Ia (Figure 2b). This is defined as the cumulative energy per unit weight
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F IGURE 3 Rocking probability tree
highlighting the computation of the final
probability of exceeding a given capacity
(adapted from [25])

absorbed by an infinite set of undamped single-degree-of-freedom oscillators at the end of an earthquake,

𝐼𝑎 =
𝜋

2𝑔 ∫
𝑇𝑓

0

𝑎2𝑥(𝑡)𝑑𝑡 (13)

Although Trifunac and Brady[31] suggest 5% and 95% values as thresholds defining the period of interest (significant
duration, 𝑡𝐷), a wider domain is considered herein in order not to neglect relevant portions of the strong motion. Fifteen
total IMs are evaluated for each waveform related to acceleration, velocity and integral spectral, whose expressions can be
found in Giresini et al.[18]

4.3 Fragility analysis and rocking probability tree

The following procedure, thoroughly described in Dimitrakopoulos and Paraskeva,[25] Psycharis et al.,[32] and Baker,[26]
aims at calculating the conditional probability, 𝑃𝑓,𝐶 that the rocking block exceeds a certain capacity limit (𝐸𝐷𝑃 > 𝐶),
for a given IM and gives an estimation of the most efficient IM, starting from dynamic structural analysis results. Indeed,
the selection of the optimal IM is not trivial but fundamental for the effectiveness of the final curves.[33] Actually, it is
of paramount relevance to adequately handle both non-rocking (NR, i.e., 𝜃∕𝛼 < 10−4) and overturning (RO) cases, since
results may be strongly affected by them. Potentially, both NR and RO can simply be excluded from fragility analysis
neglecting part of result data. There are mainly two drawbacks after such a strong assumption: (i) in case many samples
do not even uplift (or in case they overturn), the dataset is strongly reduced; (ii) if an earthquake leads to RO or NR of one
sample, the same ground motion should be excluded for any other sample, thus possibly eliminating several meaningful
data. In order to properly handle both NR and RO, an accurate methodology, described in Baker[26] is combined to the
one suggested byDimitrakopoulos and Paraskeva,[25] involving the separate computation of the probability of non-rocking
PNR , and probability of overturning, in case the block uplifts PRO. These categorical probabilities are later merged with
the probability of exceeding a given intermediate capacity, given that the block uplift and given that it does not overturn,
Pex . Denoting the probability of uplift, 𝑃𝑈𝑃 = 1 − 𝑃𝑁𝑅, the rocking probability tree of Figure 3 graphically guides to the
calculus of the final probability, Pf ,C as:

𝑃𝑓,𝐶 = 𝑃𝑈𝑃[𝑃𝑅𝑂 + (1 − 𝑃𝑅𝑂)𝑃𝑒𝑥] (14)

Assuming a log-normal distribution for the “safe rocking” response data, SR (i.e., 10−4 < 𝜃∕𝛼 ≤ 1.5), it is possible to
estimate the probability that the rocking block exceeds a certain capacity, 𝐶, conditioned to a given IM, given that the
block uplifts but does not overturn Pex as:

𝑃𝑒𝑥(𝐸𝐷𝑃 ≥ 𝐶|𝐼𝑀) = 1 − Φ

(
ln(𝐶∕𝑆𝐷)

𝛽𝐷|𝐼𝑀
)

(15)

whereΦ(⋅) is the standard normal cumulative distribution function (CDF), and 𝛽𝐷|𝐼𝑀 is the standard deviation (or disper-
sion) of the logarithm of the demand conditioned on the IM. Assuming an exponential relationship between the median
seismic demand, 𝑆𝐷 and the 𝐼𝑀, 𝑆𝐷 = 𝑎 𝐼𝑀𝑏; 𝑎 and 𝑏 are regression coefficients that can be obtained after linear regres-
sion of the logarithms of the IM considering SR response data.
Overturning and uplift probabilities differ from the probability of exceedance for the categorical characteristic of the

observations: the block can, in fact, overturn or not and, similarly, it can uplift or not, thus implying different methods
for fragility function fitting (Figure 3). The method adopted herein refers to the multiple stripes analysis approach (MSA)
described in Baker[26] aimed at providing an estimation of fragility function parameters based on the maximization of the
likelihood function, 𝐿, assuming a log-normal cumulative distribution function to define the probability that a ground
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motion with 𝐼𝑀 = 𝑥 will cause the block to collapse (uplift):

𝑃𝑅𝑂(𝑈𝑃)(𝐸𝐷𝑃 ≥ 𝐶|𝐼𝑀 = 𝑥) = Φ

(
ln(𝑥∕𝜇)

𝛽

)
(16)

where 𝜇 is the median of the fragility function and 𝛽 is the logarithmic standard deviation of 𝐼𝑀. These can be computed
after maximization of the likelihood function. Equation (16) differs from Equation (15) from the nature of the data used
to compute the CDF, which are in terms of 𝐼𝑀 here, whereas 𝑃𝑒𝑥 are function of 𝐸𝐷𝑃.
Similarly, it is possible to create bivariate FC in the three dimensional space 𝑃𝑓,𝐶 - IM1 - IM2,[18] assuming a bivariate

exponential correlation between IMs and the structural demand.

4.4 Seismic demand hazard model

Comparing it to the previous procedure, the seismic demand hazard model is a more robust metric unconditional to the
given IM. Indeed, this model also considers the likelihood that a certain LS will be exceeded over the life of the structure,
starting from the ground motion hazard curve. The output of the methodology is the seismic demand hazard, 𝜆𝐸𝐷𝑃, that
provides the exceedance rate of a specific LS in terms of EDP, and can be computed with the following:

𝜆𝐸𝐷𝑃(𝑒𝑑𝑝) = ∫
∞

0

𝑃𝐸𝐷𝑃|𝐼𝑀(𝑒𝑑𝑝|𝑖𝑚)
||||d𝜆𝐼𝑀(𝑖𝑚)

d𝐼𝑀

||||d𝐼𝑀 (17)

The whole process, suggested by Bradley[19] is updated here to properly consider non-rocking and overturning events,
and can be summarized in the following steps: (i) definition of groundmotion hazard (commonly available from standards
in terms of PGA, see Figure 2a); (ii) seismic response analysis for several ground motions, scaled at multiple intensity
levels previously defined by the ground motion hazard, that is multiple stripes analysis (MSA); (iii) computation of the
distribution of each set of SR results for each IM level; (iv) maximization of the likelihood functions for NR and RO
observations; (v) integration within the derivative of the seismic hazard curve, 𝜆𝐼𝑀 to finally obtain the seismic demand
hazard, 𝜆𝐸𝐷𝑃. Being the ground motion hazard discretely defined only for 𝑚 intensity measure levels (such as 9 PGA
values for 30< RP< 2475 (Figure 2a)), Equation 17 simply becomes the sum over the𝑚 stripes of the product between the
𝑖−𝑡ℎ probability of exceeding the 𝑘−𝑡ℎ LS, 𝑃(𝐸𝐷𝑃 ≥ 𝑒𝑑𝑝𝑘|𝐼𝑀 = 𝑖𝑚𝑖), and the 𝑖−𝑡ℎ seismic hazard difference, Δ𝜆𝑖:

𝜆𝐸𝐷𝑃(𝑒𝑑𝑝𝑘) =

𝑚∑
𝑖=1

𝑃(𝐸𝐷𝑃 > 𝑒𝑑𝑝𝑘|𝐼𝑀 = 𝑖𝑚𝑖)|Δ𝜆𝑖| (18)

Because of this discretization, two extreme values of the ground motion hazard curve are lost during the numerical
derivative computation, thus only internal values of intensity levels can be devoted for the NLTH analyses. Nevertheless,
one additional point can be appended on the seismic ground motion hazard curve of Table 4, assuming a logarithmic
linearization around the reference RP, as suggested by Bradley.[19]
The full process is graphically represented in Figure 4 for the extrapolated data from reference sample analysis. The

amplified site-related hazard curve is shown in Figure 4a. The probability of exeedance is computed as the complementary
cumulative lognormal-type distribution obtained for each group of SR responses 𝑃𝑘,𝑖 = 1 − 𝑐𝑑𝑓(𝑒𝑑𝑝𝑘|𝑖𝑚𝑖) (Figure 4b,d).
These are combined with corresponding probabilities of overturning and uplift, 𝑃𝑅𝑂 and 𝑃𝑈𝑃 according to Equation 14
(see Figure 4f). The seismic demand hazard curve (Figure 4c) is finally constructed with the sum over the 𝑚 levels of
the product between each 𝑃𝑘,𝑖 and the corresponding Δ𝜆𝑖 leading to evaluating the annual exceedance rate in function
of a given EDP . The lognormal probability density function, pdf(𝑒𝑑𝑝) is also shown in Figure 4d , while the likelihood
function for RO cases is shown in Figure 4e.
It is worth noting that the probability of exceeding a given limit state 𝑃𝑘,𝑖 , is equivalent to the conditional probability

𝑃𝑒𝑥 already defined in Equation 15 necessary to draw FC. However, in this approach, mean and standard deviation are
directly obtained by the hypothesis of lognormal distribution of ith group of SR response data, while fragility analysis is
developed assuming median demand after linear regression analysis of the logarithms (Section 4.3).
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F IGURE 4 Seismic demand hazard analysis process: (a) amplified ground motion hazard curve (selected IM levels in red dots);
(b) lognormal distributions of results data; (c) seismic demand hazard curve (SDHC); (d) lognormal probability density function for one set
of NLTH analyses; (e) RO Likelihood function; (f) “categorical” probabilities

F IGURE 5 Results of a single realization related to𝐻∕𝑠 = 10, 𝑠 = 0.60m, 𝜖𝑢 = 2%, 𝑓𝑦 = 235MPa and +20120429_MIR02, record:
(a) normalized rotation time-history; (b) normalized tie-rod force time-history; (c) normalized tie-rod hysteresis

5 RESULTS AND DISCUSSION

The time-history response of one-sided restrained masonry wall in terms of normalized rotation and normalized tie force
are shown in Figure 5 for a single simulation (record: +20120429_MIR02 𝜖𝑢 = 2 %), together with the normalized tie
force hysteresis. These graphs are useful to correctly interpret the seismic behavior of each case, also evaluating possible
anomalies in the response. Each phase transition is depicted with a colored circle according to different phases defined in
the constitutive law (Section 2 and Figure 1c).

5.1 IM performance

The fragility model effectiveness relies upon the IM performance, since its assumption conditions the uncertainties of the
computed fragility curves. The best IM can be selected according to different criteria and parameters. The efficiency can be
evaluated through 𝛽𝐷|𝐼𝑀 [25] related to the variation of the estimated demand for a given IM, thus a lower value of 𝛽𝐷|𝐼𝑀
implies a more efficient IM; commonly, the coefficient of determination, 𝑅2 = 1 − [

∑
(ln𝐷 − ln 𝑆𝐷)

2]∕[
∑
(ln𝐷 − ln𝐷)2]

is used to evaluate the dispersion of data, too. The regression parameter, 𝑏, the slope of the estimated demand, is ameasure
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TABLE 6 IM correlation coefficients for masonry walls in one-sided motion and in free or restrained configuration

Unrestrained sample
Univariate Bivariate
IM 𝒃 𝜷𝑫|𝑰𝑴 𝜻 𝑹𝟐 IM𝟏 IM𝟐 𝜷𝑫|𝑰𝑴 𝑹𝟐 𝝆

Ia 1.119 0.988 0.883 0.574 SIH Ia 0.926 0.626 0.743
RMSA 1.863 1.125 0.604 0.447 PGV Ia 0.929 0.623 0.827
CAV 1.460 1.131 0.774 0.442 Ia Lm 0.934 0.619 0.631
PGV 1.374 1.157 0.842 0.416 PGV RMSA 0.986 0.576 0.744
IF 1.194 1.188 0.995 0.384 PGV IF 1.154 0.419 0.987
Restrained reference sample
Univariate Bivariate
PGA 6.952 1.332 0.192 0.570 PGA I𝐚 1.194 0.654 0.866
Ia 1.648 1.587 0.963 0.389 PGA CAV 1.221 0.638 0.642
RMSA 3.378 1.658 0.491 0.333 PGA IF 1.265 0.612 0.559
CAV 1.210 1.837 1.518 0.182 PGV RMSA 1.654 0.336 0.744
PGV 0.946 1.891 1.998 0.133 PGV IF 1.886 0.137 0.987

Note: In bold the most practical, efficient and proficient IM.

of practicality, that is, a lower value of 𝑏 implies a less practical IM; finally, 𝜁 = 𝛽𝐷|𝐼𝑀∕𝑏 quantifies the proficiency, that
is an indication of the uncertainty introduced into the analysis by the use of a particular IM.[33] The IM performance for
bivariate FC can simply be computed with dispersion parameters 𝑅2 or 𝛽𝐷|𝐼𝑀 as the calculus of 𝑏 and 𝜁 can bemisleading.
Moreover, an estimation of the quality of correlation between two IM (x = value depending on IM1, y = value depending
on IM2) can be given by the Pearson’s linear correlation coefficient,

𝜌 =

∑
𝑖

(
𝑥𝑖 − 𝑥

)(
𝑦𝑖 − 𝑦

)
√∑

𝑖

(
𝑥𝑖 − 𝑥

)2∑
𝑖

(
𝑦𝑖 − 𝑦

)2 (19)

Dimitrakopoulos and Paraskeva[25] stated that the best IM for univariate FC for free-standing rocking structures under
near-fault excitations are PGA and PGV, which are also conventional earthquake parameters, while the pair PGA and
PGV/PGA forms a powerful combination for a reliable prediction through bivariate FC.
The fragility analysis is performed firstly considering the analytical coefficient of restitution (COR) (Housner[6]) and

then taking into account the experimental value of one-sided rocking according to Sorrentino et al.[8]. In case of analytical
COR, the sensitivity analysis reveals that poor correlation coefficients are found for any IM, being 𝑅2 < 0.6. The correla-
tion is even poorer for restrained walls (Table 1), if compared to those unrestrained, thus it is hard to select an optimal
IM. Among the IM considered for restrained walls, PGA ranks the first in terms of practicality, efficiency and proficiency,
followed by Arias intensity Ia, root mean square acceleration RMSA, cumulative absolute velocity CAV, and peak ground
velocity PGV (Table 6) if sorted by 𝑅2, whereas in case of unrestrained block samples (i.e., absence of tie-rod) the most
efficient IM is Ia and the most practical and proficient is RMSA (Table 6). As visible in Table 6, acceleration-related IM
prevail to the velocity-related IM for both unrestrained and restrained blocks. Similar values are obtained for the bivari-
ate correlation analysis. A bi-planar regression performed for bivariate FC also reveals a differentiated response if one
compares restrained to unrestrained samples. Indeed, the most efficient (less dispersion) IM couple for the restrained
geometry are PGA and Ia, whereas for unrestrained blocks one has Housner intensity SIH and Ia (Table 6), confirming
the superiority of acceleration-based IM over velocity-based IM. However, if one considers their correlation through the
Pearson’s correlation coefficient, the best couple results to be PGV and IF for both unrestrained and restrained reference
sample. Apparently, there is a negligible increase in performance of bivariate FC over univariate FC as both share similar
dispersion parameters 𝛽𝐷|𝐼𝑀 .
It is important to point out that optimal IM are here selected through correlation analysis between dynamic analyses

response data and IM values that are calculated from scaled waveforms (according to the PGA values of the seismic hazard
curve). The amplitude scaling is a conventionally accepted procedure by the research community.[34] Moreover, the linear
regression analysis is only performed over SR data, possibly neglecting many responses and leading to not-sufficiently
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reliable results. This issue is highlighted in cases of IM = PGA for restrained samples, where only for PGA ≥ 0.63 g the
blocks uplifts, thus neglecting four entire set of PGA levels.
Additional analyses are also performed for unrestrained wall in order to study the influence of a different COR. Amore

realistic value is assumed to consider the one-sided rocking.[8] In particular, two different values of COR are assumed
depending on the direction of rotation[8]:

𝑒𝑒𝑥𝑝,𝑖𝑛𝑤𝑎𝑟𝑑 = −1.05 ⋅ 𝑒𝑎𝑛,2𝑠 ⋅ 𝑒𝑎𝑛,𝑡𝑟 = −1.05

(
1 −

2

3
sin

2
𝛼

)(
1 −

3

2
cos2 𝛼

)
, (20)

where 𝑒𝑒𝑥𝑝,𝑖𝑛𝑤𝑎𝑟𝑑 is assumed for the inward rotations and accounts for energy dissipated through the impact with base
corners and transversal walls. The coefficient of 1.05 has been used as experimental correction recommended in Sorrentino
et al.[8] valid if damping remains constant with amplitude and if the whole time-history is considered. The results are
displayed in Figure 7 and discussed later.
Whereas, for outward rotations it is assumed as the following:

𝑒𝑒𝑥𝑝,𝑜𝑢𝑡𝑤𝑎𝑟𝑑 = 0.95 ⋅ 𝑒𝐻 (21)

The results for this latter case show that the IMare better correlated. They are not reported for the sake of brevity but briefly
discussed in the following. Both PGA and Ia show higher value of 𝑅2 (up to 0.664) and 𝛽𝐷|𝐼𝑀 . These aspects further justify
the assumption of the analytical restitution coefficient. However, PGV ranks second when the experimental restitution
coefficient is assumed, while it was in the forth position in the previous case.Moreover, PGV has the third best practicality,
coherently with the previous case. The RMSA, which was second in the previous case, has the lower 𝜁 (best proficiency)
and is the second most practical. Analogously, bivariate IM are better correlated having higher values of 𝑅2 with respect
to the analytical coefficient of restitution. The best correlated couples are PGA and PGV, followed by PGA and PGV/PGA
both having the same value of 𝑅2 = 0.803.
Fragility analysis for both univariate (Ia) and bivariate (PGV and RMSA) FC is shown in Figure 6 in case of unrestrained

and restrained reference geometry. Fragility curves obtained for the restrained reference wall clearly show a flatter trend
and a lower probability of exceedance for both uni- and bi-variate cases (Figures 6f,k) if compared to the unrestrained
wall. As expected, the presence of elasto-plastic tie rods highly mitigates the seismic vulnerability of rocking blocks, effect
remarkable for LSi, with 𝑖 ≥ 1.
A straightforward graph to assess the effectiveness of the ties is given by the reduction percentage of conditional proba-

bility expressed as Δ𝑃𝑓,𝐶 = (𝑃𝑓,𝐶,𝑟𝑒𝑠𝑡𝑟 − 𝑃𝑓,𝐶,𝑢𝑛𝑟𝑒𝑠𝑡𝑟) × 100 (as defined in Equation 14). From such a graph, it is possible to
state the earthquake intensity level for which the anti-seismic device is more effective. For instance, for LS4 the maximum
reduction of 𝑃𝑓,𝐶 is obtained for high intensity earthquakes whereas for LS0 for low-intensity shocks (Figure 6i). Similarly,
Figure 6l shows the reduction percentage’s trand of 𝑃𝑓,𝐶 in case of multivariate FC.
The influence of different coefficient of restitution is shown in Figure 7 in terms of regression analysis and probability

of exceedance for IM = Ia. As previously anticipated, the IM is better correlated and results in a lower estimation of EDP,
leading to flatter probability of exceedance (Pex is about 30% less for Ia = 1000 cm/s). Such a result further justify the
assumption of conservative results when using the analytical coefficient of restitution.

5.2 Influence of the number of seismic inputs on SDHC

The reliability of probabilisticmodels (Sections 4.3 and 4.4) strictly depends upon the number of considered seismic inputs.
When the number of analyses performed for each IM level is doubled from 24 to 48 (leading to a total of 6 × 48 = 288

analyses for each sample), and then from48 to 96, the seismic demandhazard curve (SDHC) undergoes noticeable changes
(Figure 8), especially for higher values of normalized rotations. This is valid for both unrestrained block and reference
geometry (Table 1). The relatively small difference obtained for 𝜃∕𝛼 = 10−4, and reference geometry (Figure 8(b)) can be
due to the high variability of results around non-rocking responses. Given the importance of accounting for a sufficient
number of data for reliable results, it is decided to perform 96 analyses for each IM level. Indeed, the difference between
SDHC computed with 48 or 96 IM levels appears negligible. Such a sensitivity analysis is recommended as simple but
effective tool to state the minimum number of IM levels to consider to qualify the computational process as reliable.
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(f) univariate final FC - reference sample

(g) bilinear regression - unrestrained sample (h) bivariate final FC - unrestrained sample
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F IGURE 6 Univariate (IM = Ia) and bivariate (IM1 = PGV and IM2 = RMSA) fragility analyses: (a), (b), (c), (g) and (h) unrestrained
sample; (d), (e), (f), (j) and (k) reference sample; (i) and (l) reduction percentage of conditional probabilities: unrestrained versus restrained
reference samples

5.3 Influence of the geometry

Literature studies about unrestrained rocking blocks demonstrate that, among blocks with the same aspect ratio, stock-
ier blocks are more stable, while blocks with smaller size (smaller thickness) are more vulnerable to earthquake-type
actions.[35] AlShawa et al.[17] also confirmed this statement for restrained walls: they showed that the influence of
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F IGURE 7 Influence of coefficient of restitution for univariate (IM = Ia) for unrestrained sample: (a) linear regression; (b) probability of
exceeding LS1, LS2 and LS3

F IGURE 8 Variation of SDHC by changing the number of IM levels assumed in the probabilistic analysis: (a) unrestrained sample; (b)
restrained reference sample with EP tie

the aspect ratio is negligible, whereas blocks with different size tend to behave differently (i.e., blocks with smaller
thickness are more vulnerable from a seismic point of view). In order to better understand the influence of slender-
ness and to study the scale effect, three different aspect ratios (𝐻∕𝑠 = [8, 10, 12], 𝑠 = 0.6 m) and three thickness values
(𝑠 = [0.30, 0.60, 0.90] m, 𝐻∕𝑠 = 10) are considered, totally defining five geometries (Table 2). The negligible influence of
slenderness in case of restrained blocks is confirmed here in terms of FC (Figure 9d) and SDHC (Figure 9e). In Figure 9d,
the only FC for limit states LS1 ≤ LS ≤ LS3 are shown for the sake of readability; they are flatter and demonstrate a very
low influence of the aspect ratio (Figure 9a-c). Recalling that 𝜆𝐸𝐷𝑃 provides the annual exceedance rate of a specific LS,
the maximum difference is obtained when passing from H/s = 8 (equal to that of H/s = 10) (𝜆𝐸𝐷𝑃 ≃ 1/35,000) to H/s =
12 (𝜆𝐸𝐷𝑃 ≃ 1/30,000), for LS4. Although the difference in terms of return period is about 5000 years, one has a negligible
difference in terms of probability, which has absolute values of about 3−5, thus very low.
If the aspect ratio is fixed to𝐻∕𝑠 = 10, the scale effect can be studied by changing the block size, for instance by varying

the thickness 𝑠 (Figure 10). In this case, both FC and SDHC are affected by the difference of thickness: in particular,
for LS1, LS2, and LS3 the FC exhibit a monotonic trend (Figure 10d): indeed, the smaller walls have higher probability
of exceedance, for a given IM = PGA. This is evident for high intensity earthquakes (PGA ≥ 0.9 g). It is interesting to
note that the size of the block also influences the response in terms of SDHC as shown in Figure 10e. Here, although the
bigger wall has an intermediate behavior for LS0, a monotonic trend is again observed for the remaining LS (i.e., lower
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F IGURE 9 Influence of aspect ratio𝐻∕𝑠 in terms of (a-c) FC for all LS; (d) FC for LS1,2,3 for PGA > 0.6 g (dashed lines: LS1;
dashed-dotted lines: LS2; dotted lines: LS3) and (e) SDHC

exceedance rate for higher size). The differences observed for the FC are flattened out for the SDHC, for which the hazard
parameter comes into play. Therefore, in a seismic vulnerability assessment it is necessary to preliminarily analyze the
FC which could reveal behaviors worth of further investigations. In other words, to read solely SDHC could be limiting to
study the scale effect.

5.4 Influence of the ductility

Despite the well known ductile properties of modern steel, it is a matter of fact that historic tie-rods, frequently found
in seismically vulnerable masonry buildings, may be characterized by rather brittle behavior, with quite low values of
ultimate strain 𝜖𝑢 ≪ 10%.[15] The influence of tie-rod ductility is studied herein considering five values of ultimate defor-
mation, 0 < 𝜖𝑢 < 20% (Table 2). Thewhole set of simulations is shown in Figure 11a, and the beneficial aspect of increasing
ductility (from 𝜖𝑢 = 2% to 10%) is demonstrated for the same geometry in Figure 11b. When a more ductile tie is adopted,
this is able to re-center the block stabilizing the response, whereas a weaker tie-rod undergoes failure increasing the oscil-
lation amplitude up to collapse and wall overturning. The influence of ductility is also studied in terms of FC, which are
shown here for all limit states in Figure 12. From the analysis of the results condensed in Figure 13a, it can be stated that
a brittle behavior of the tie-rod strongly increases the seismic risk, passing for instance from a probability of exceeding
a limited rocking limit state of 30% (brittle tie-rod) to 8% (low-ductility or 𝜖𝑢 = 2%) for a given 𝑃𝐺𝐴 = 0.8𝑔. This aspect
demonstrates the extremely beneficial effect of ensuring an even low ductility of the tie-rod to remarkably reduce the
seismic risk of the out-of-plane mode. The beneficial effect of assuming medium and high ductility values emerges when
ultimate rocking LS are considered, as their behavior differs for higher normalized rotations of the wall.
From the comparison of the results in terms of 𝜆𝐸𝐷𝑃 (Figure 13b) , it is self-evident that restrainedwalls are characterized

by a safer response, if compared to unrestrained blocks. Moreover, there is a clear divergence between the SDHC of brittle
(blue curve) and ductile tie-rod, especially for increasing EDP values. Up to a limited rocking LS (𝜃∕𝛼 = 0.4), there is
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F IGURE 10 Influence of size with variable block thickness 𝑠, for restrained block with a reference slenderness,𝐻∕𝑠 = 10 in terms of
(a-c) FC for all LS; (d) FC for LS1,2,3 (dashed lines: LS1; dashed-dotted lines: LS2; dotted lines: LS3) and (e) SDHC

F IGURE 11 Influence of ductility in terms of (a) total results (stars for NR cases; empty circles for SR cases; full circles for RO cases);
(b) normalized rotations time-histories for two simulation under Norcia 2016/08/24 ID 4, Table 5

not substantial difference between the curves associated to a tie-rod of whatever ductility. Moreover, the probability of
exceeding LS2 is very low (≃ 1∕7000) for low ductile tie. This aspect again confirms that an excessive ductility is useless
in terms of reduction of seismic risk, unless very high rotational demands are considered or very low annual exceedance
rate is requested.
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F IGURE 1 2 Influence of ductility changing 𝜖𝑢 values

F IGURE 13 Influence of ductility changing 𝜖𝑢 values in terms of: (a) FC for LS1,2 (dashed lines: LS1; dashed-dotted lines: LS2) and (b)
SDHC
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F IGURE 14 Influence of tie-rod axial strength, 𝑓𝑦 : (a-c) Fc for all LS; (d) FC (LS1,2,3); (e) SDH curves

5.5 Influence of tie axial strength

This paragraph discusses the influence of the tie-rod strength on the seismic vulnerability of the walls under the set of
the selected 96 earthquakes. Looking at Figure 14e, it is evident the strong influence of this parameter in the probabilistic
response. Among the three strength values considered, low (142 MPa), medium (235 MPa) and high (294 MPa) resistance,
those medium and high do not exhibit any variation of annual exceedance rate for what concerns the uplift state. That
is to say that for a serviceability limit state, modern tie-rods (which have at least 235 MPa of strength) are not required
to have particularly high strength to avoid the exceedance of the uplift limit state (Figure 14). By contrast, considering
ultimate limit states, the gap is definitely increasing: for instance, for a near-collapse limit state the annual exceedance
rate is 1/200,000 for a high strength tie-rod and 1/9000 for a low strength tie-rod. This parameter is therefore much more
influencing the seismic risk of restrained walls rocking out-of-plane.

6 CONCLUSIONS

This paper analyzed the seismic behavior of unrestrained and restrained masonry walls in one-sided motion with proba-
bilistic methods. The horizontal restraints considered for the out-of-plane response of masonry walls were elasto-plastic
tie-rods with variable diameter, strength and ductility. A parametric analysis was performed with a specifically developed
MATLAB code, selecting walls with five typical geometries, five ultimate strains and three strength values for the steel
tie-rods under 96 seismic records scaled to 6 intensity measures (IM) levels. Two probabilistic models were employed, one
for obtaining univariate and bivariate fragility curves (FC), and the second one for computing the seismic demand hazard
curves (SDHC), capable of correlating the hazard site to the seismic vulnerability assessment of out-of-plane modes, sep-
arately computing the probability of overturning (categorical probability) and the probability of exceeding four specific
limit states. The following outcomes can be drawn from the analysis:
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∙ Fragility analysis effectiveness is quite low for restrained rocking blocks as no IM performed well. Indeed 𝑅2 values are
less then 0.6 for univariate correlation, and less then 0.65 for bivariate correlation. This is probably because regression
analysis is solely based upon safe rocking cases, and seismic inputs are scaled for discrete PGA levels. Thus, correlation
coefficients may be misleading in cases of too large PGA intervals, possibly requiring additional analyses with more
dense PGA intervals. Unfortunately, available site-related seismic hazard curves only offers discrete PGA intervals to
be used. Moreover, restrained samples behave quite stable with uplift cases only for PGA ≥ 0.62 g, yet reducing data for
correlation analysis.

∙ Although the correlation coefficients are not so relevantly high, the acceleration based IM seems better correlated, both
for restrained and unrestrained walls. More in detail, the peak ground acceleration PGA performed well in terms of
practicality, efficiency and proficiency, followed by Arias intensity Ia in terms of efficiency for restrained walls, and root
mean square acceleration RMSA (practical and proficient) for unrestrained walls. As for the bilinear regression, IM
pair performance is also quite low. The IM pair PGA and Ia shows well correlation for restrained walls, while Hous-
ner intensity SIH and Ia for those unrestrained. Nevertheless, when considering the correlation through the Pearson’s
coefficient, the velocity based IM (Fajfar index IF, and peak ground velocity PGV) show better performance for both
boundary conditions;
Additional analyses carried out for the unrestrained case using experimental (more realistic) coefficient of restitution
showed better performance of IM with respect to those with analytical value of coefficient of restitution. Results are
coherent and less conservative but further analyses are necessary for studying the energy dissipation in one-sided rock-
ing walls.

∙ The number of considered seismic input, and consequently the number of analyses carried out, has a great impact on
the SDHC, therefore it is recommended, as commonly made for finite element models, to increase its number up to
negligible differences in SDHC; through this novel procedure, 96 analysis are sufficient to reach stable results;

∙ The slenderness variation (height to thickness ratio = 8-10-12) does not play a significant role either in the change of
FC neither in that of SDHC for restrained rocking walls;

∙ By contrast, the variation of block size (thickness) influences more the FC rather than the SDHC for restrained walls.
In particular, the typical scale effect (between two blocks of same slenderness, the bigger is less seismically vulnerable)
is mainly observed for limited and moderate rocking limit states;

∙ A brittle behavior of the tie-rod strongly increases the seismic risk, passing for instance from a probability of exceeding a
limited rocking limit state of 30% (brittle tie-rod) to 8% (low-ductility tie-rod) for a given PGA= 0.8 g. This aspect demon-
strates the extremely beneficial effect of ensuring an even low ductility of the tie-rod to remarkably reduce the seismic
risk of the out-of-planemode. However, an excessive ductility (𝜖𝑢 ≥ 10%) is useless in terms of reduction of seismic risk,
unless very high rotational demands are considered (𝜃∕𝛼 ≥ 0.4) or very low annual exceedance rate (𝜆𝐸𝐷𝑃 ≤ 1∕10, 000)
is requested.

∙ For the limited, moderate and ultimate rocking limit states, the tie axial strength influence is not negligible. This param-
eter has a great impact on the annual exceedance rate passing from a high strength to a low strength (typical of historic
tie-rods found in existing masonry buildings) of the tie-rod.
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