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Abstract

Fault detection and classification in photovoltaic (PV) systems through real-time

monitoring is a fundamental task that ensures quality of operation and significantly

improves the performance and reliability of operating systems. Different statistical

and comparative approaches have already been proposed in the literature for fault

detection; however, accurate classification of fault and loss incidents based on PV

performance time series remains a key challenge. Failure diagnosis and trend-based

performance loss routines were developed in this work for detecting PV

underperformance and accurately identifying the different fault types and loss mech-

anisms. The proposed routines focus mainly on the differentiation of failures

(e.g., inverter faults) from irreversible (e.g., degradation) and reversible (e.g., snow and

soiling) performance loss factors based on statistical analysis. The proposed routines

were benchmarked using historical inverter data obtained from a 1.8 MWp PV power

plant. The results demonstrated the effectiveness of the routines for detecting fail-

ures and loss mechanisms and the capability of the pipeline for distinguishing

underperformance issues using anomaly detection and change-point (CP) models.

Finally, a CP model was used to extract significant changes in time series data, to

detect soiling and cleaning events and to estimate both the performance loss and

degradation rates of fielded PV systems.
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1 | INTRODUCTION

As photovoltaic (PV) systems are rapidly becoming an important part

of the energy mix, it is important to ensure their reliability and

maximize their energy output to reduce the levelized cost of electric-

ity (LCoE). This can be achieved through advanced data analytics.1

To reliably generate electricity during an extended lifetime,

cutting-edge software and data-driven algorithms can be employed to
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monitor the PV plant health state and detect real-time failures, thus

minimizing downtimes. This will increase the energy yield and the

profitability of the system.2

Currently, most of the utility-scale PV power plants around the

world are monitored 24/7, generating high volumes of data.

Depending on the level of monitoring, the analysis of field data can

indicate different failures and/or loss mechanisms and it can provide

insights on corrective, preventive, and predictive maintenance.3 How-

ever, to optimize the operation and maintenance (O&M) strategies

and maximize revenues, PV plant owners and asset managers must

rely on efficient ways for analyzing and interpreting the data streams.

By doing this, fault incidents can be detected early and classified into

different fault categories, thus enabling operators to take appropriate

actions to mitigate the losses.2,4

Typical automated failure detection can be categorized as: model-

based, image and data-driven methods.5–19 Such implementations

mainly utilize electrical and meteorological measurements, signals, or

images to capture the behavior of PV systems, uncover patterns, and

identify failures. Most of the failure detection methods define thresh-

old levels (TLs), which are used to compare a PV performance model

against measurements in order to identify fault conditions.20–24 Other

methodologies perform residual analysis and statistical tests to detect

faults in PV systems.22–29 Even though some commonly occurring PV

failures can be detected by the proposed algorithms, the categoriza-

tion of incidents into different failure types and loss mechanisms

remains a challenging task.30

Although several machine learning-based models have been

reported in the literature,10,13,31–39 it is unknown if any are indeed

used (or even applicable) for real-time or post-processing monitor-

ing applications, at the moment. On the other hand, the industry

has been applying numerous statistical, empirical, and physics-based

approaches to analyze the health state or performance losses of

PV power plants. For example, python libraries have been devel-

oped to simulate PV performance (e.g., pvlib-python40) or to evalu-

ate PV performance based on statistical time series analysis

(e.g., RdTools41,42). In pvlib-python, it is possible to estimate the

fraction of DC power lost due to snow coverage, soiling and shad-

ing. However, besides the site's meteorological measurements,

other assumptions and parameters are required, which might not

be readily available (e.g., particulate matter data, number of strings

per module, and tilt). Similarly, the RdTools open-source library has

the capability of statistically obtaining rates of performance degra-

dation and soiling loss, which are useful for overall health state

assessment. However, RdTools does not differentiate the perfor-

mance loss rate (PLR) from the degradation rate (RD). Though, a

new capability was added for extracting simultaneously soiling losses

and PLR.43 Other existing methods rely on I–V curves and weather

data and require train and test datasets for failure classification based

on the exhibited profiles and fault patterns.33,36 I–V data, PV module/

string level measurements, and labeled datasets are not usually

available in real PV installations making most of the proposed failure

classification methodologies not universally applicable in large-scale

PV systems.

Current best practices lack a methodology for the accurate differ-

entiation of failures and reversible/irreversible performance losses.

Reversible and irreversible performance losses are referred to as

“trend-based” performance losses as their effect is either gradual or

seasonal rather than failure-based losses that occur in an instant, and

therefore, can be detected and quantified based on time series analy-

sis. Differentiating and quantifying individual trend-based performance

losses in real field data is a challenging task due to the complex interac-

tions of PV behavior with changing environmental conditions as well

as measurement noise, erroneous data, and uncertainties. To address

this gap, failure diagnosis routines (FDRs) and trend-based perfor-

mance loss routines (TLRs) were developed based on statistical resid-

ual25,44 and change-point (CP)45 techniques. The proposed routines

operate on PV operational data and meteorological measurements and

complement the previously developed data quality routines (DQRs).4

All routines were combined to derive a complete diagnostic pipeline

for differentiating common PV failures and performance losses (such

as zero and reduced power production, degradation, soiling and snow

losses) from a single performance metric. The diagnostic pipeline can

be used for batch time series analyses of large fleets and real-time

monitoring given that the technical specifications of the PV systems

are available (e.g., system characteristics and meteorological data). The

pipeline was benchmarked experimentally using historical inverter level

measurements from a PV power plant in Larissa, Greece.

2 | METHODOLOGY

The proposed routines operate on time series of meteorological and

electrical measurements. DQRs are initially applied for data validation

and filtering of outliers, while power simulation models are used for

predicting the performance of the system in the absence of any fail-

ures or degradation. FDRs are then used for detecting and classifying

failures, while TLRs are utilized for detecting performance losses. Sta-

tistical analysis is then performed to distinguish faults from reversible

and irreversible mechanisms. The proposed methodology, illustrated

in Figure 1, was validated using the maintenance logs.

2.1 | DQRs

Initially, the methodology for data processing and quality verification

was applied to the PV dataset to identify and remove invalid data

points before simulating the plant performance. This can also provide

insights and information about possible failures/performance losses

and their type (e.g., near zero power production incidents).2 More

details about the DQR process are available in Livera et al.4

2.2 | PV system performance models

The Huld et al.46 model was used to predict the DC power of the test

PV system. The model requires the in-plane irradiance and module
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temperature measurements. It was selected due to its high accuracy

for c-Si PV modules under different sky conditions (e.g., clear-sky, clo-

udy, and partly cloudy conditions).47 For the DC current and voltage

measurements predictions, the empirical parametric models described

by Livera et al.33 were used.

The simulation models for predicting the power, current, and volt-

age measurements were trained based on a 10%:90% train and test

set approach. The train set contained fault-free data over a 6-month

period, and it was used for the model's training process—deriving the

model's coefficients. The rest of the dataset, 54 months of data con-

taining both faulted and fault-free periods, was used for the testing

process. The goodness of the models' fit was evaluated using the cor-

relation coefficient (R), the coefficient of determination (R2), the mean

absolute percentage error (MAPE), and the root mean square error

(RMSE).48 The Huld et al. model46 was then used as a reference model

in the failure diagnostic procedure by performing comparisons

between the actual/measured and predicted/simulated power.

The performance ratio (PR), power, current, and voltage residuals,

defined as the difference between the predicted and measured values,

were also calculated.

2.3 | FDRs

The developed FDRs include a failure detection and a classification

stage. The detection stage is based on a comparative assessment

between the predicted and measured DC energy yield. A failure is

detected when the absolute error (AE), defined as the absolute differ-

ence between the predicted and measured DC power, exceeds a

specified TL. The TL is calculated by multiplying the power of the

array at Standard Test Conditions (STC) with the combined yield

uncertainty of the performance model. The combined uncertainty is

calculated by deriving the partial derivatives of the model's inputs.49

Residual analysis was performed to verify the fault occurrences.

In this context, the power, current, and voltage residuals from the sea-

sonal naive method were analyzed using Shewhart charts (also known

as control charts).26,50 In a Shewhart chart, a sequence of samples is

plotted against time and upper and lower control limits (UCL and LCL)

are calculated based on the three-sigma rule; that is, UCL,

LCL = μ0 ± 3σ0, where μ0 is the process mean and σ0 is the standard

deviation.25 The UCL and LCL were calculated over weekly sliding

windows using data under normal operation.25 Under normal opera-

tion, the residuals are close to zero, have constant variance, and are

normally distributed and within the estimated limits. During fault con-

ditions, the residuals significantly deviate from zero and exceed the

estimated control limits.

Once fault conditions are identified, classification algorithms

based on logic tree structures33 are used to categorize the detected

incidents into (a) near zero power production (0% to 15% of predicted

power due to inverter shutdown failures, grid problems, ground faults,

etc.) and (b) nonzero production (due to snow coverage, degradation,

soiling, etc.).51 Nonzero production incidents due to failures were fur-

ther categorized into three groups: (a) reduced current production

class, (b) reduced voltage production class, and (c) reduced current–

voltage production class. More details are given in Section 2.5 and

Table 1.

2.4 | TLRs

Trend-based performance losses refer to linear and nonlinear drops in

performance time series and profiles that may reduce the produced

power of a PV system by up to 20%.56 However, in some cases such

as heavy snowfall or sandstorm, this range can be exceeded.54 Such

phenomena are categorized as nonzero production incidents and they

can result in reversible and irreversible performance losses based on

F IGURE 1 Flowchart of the proposed
methodology describing the five consecutive steps
for differentiating failures and trend-based
performance losses
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the caused damage.57 Most of the irreversible losses can be classified

as material/component degradation of the PV module and balance of

system.57

In this study, degradation, soiling, and snow coverage were

investigated by applying a statistical method on a single PV perfor-

mance metric. A statistical CP algorithm was utilized to identify the

number and location(s) of CP(s) in a given profile by capturing lin-

ear and complex trends as well as abrupt profile changes.58–60 A

change- or switch- or break-point refers to a change in a time

series or trend's statistical properties (e.g., mean, variance, and

slope).58 A time series with m CPs splits the data into m + 1 seg-

ments. The detected changes can be continuous or discontinuous.

In the case of performance losses, continuous CPs indicate a varia-

tion in the rate at which soiling accumulates or a nonlinear

degradation pattern.60 In case of nonlinear degradation, changes in

the variability of PR time series are detected with the different

segments exhibiting different slopes.61 On the other hand, discon-

tinuous CPs can either indicate soiling cleaning events, snow shed-

ding, or corrective maintenance actions.60

The TLRs consist of the Facebook Prophet (FBP)59 CP algorithm

for estimating either the linear or nonlinear PLR from the PR time

series. FBP is an open-source library, available in Python and R,

used to forecast time series based on an additive decomposition

model, which combines trend, seasonality, and holidays (neglected in

this paper).62 A piecewise linear model is applied by default for the

trend, whereas the seasonal model is similar to the exponential

smoothing in the Holt–Winters63 technique. The FBP model was

selected due to its ability to decompose the signal, perform CP

TABLE 1 Summary of the different fault and loss profiles that were investigated in this study

Fault/loss type

Power reduction (%)

compared with
predicted power

Required electrical

and weather
parameters

Anomalies and

change-point (CP)
detection

Residual pattern and rate
changes

Exhibited
profile

Near zero production 85–100 GI , Tmod
a/Tamb, PDC ,

IDC

Data anomalies High deviation from zero Reduced

PDC

Nonzero production due

to faults (current–
voltage class)

20–85 GI , Tmod
a/Tamb, PDC ,

IDc , VDC

Data anomalies High deviation from zero

with sudden changes

(anomalies) in power,

current, and voltage

residuals

Reduced

PDC , IDc ,

VDC

Nonzero production due

to faults (current class)

20–85 GI , Tmod
a/Tamb, PDC ,

IDC

Data anomalies High deviation from zero

with sudden changes

(anomalies) in power and

current residuals

Reduced

PDC , IDC

Nonzero production due

to faults (voltage class)

20–85 GI , Tmod
a/Tamb, PDC ,

VDC

Data anomalies High deviation from zero

with sudden changes

(anomalies) in power and

voltage residuals

Reduced

PDC , VDC

Nonzero production due

to loss incidents -

Soiling

Up to 20b GI , Tmod
a/Tamb,

rainfall and wind

data, PDC , IDc

CP anomalies

Continuous CPs

Low deviation from zero

during time periods with

no rainfall and between

cleaning events

(discontinuous CPs—
positive shifts). Negative

rate changes

Reduced

PDC , IDC

Nonzero production due

to loss incidents -

Snow coverage

Up to 20b GI , Tmod
a/Tamb,

snowfall data,

PDC , IDC , VDC

CP anomalies

Continuous CPs

Low deviation from zero

during snowfall time

periods. Negative rate

changes

Reduced

PDC , IDC ,

VDC

“Low” Tamb

Nonzero production due

to loss incidents -

Degradation

Up to 20b GI , Tmod
a/Tamb, PDC ,

IDC

CP anomalies

Continuous CPs

Decreasing trend over

years—progressive power

drop

Reduced

PDC and

IDC
(VDC may

also be

affected)

Abbreviations: GI , in-plane irradiance; IDC , DC current; PDC , DC power; Tamb, ambient air temperature; Tmod , module temperature; VDC , DC voltage.
aModule temperature measurements can be simulated using an empirical model (i.e., using the Sandia module temperature model,52 the Ross thermal

model,53 or the open-source Faiman module temperature available in pvlib-python library40).
bIn some specific cases (e.g., heavy snowfall or sandstorm, severe potential-induced degradation), trend-based performance losses can cause power

reductions greater than 20%.54,55
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analysis, and adjust the trend flexibility and its additional functionali-

ties (e.g., forecasting).58 This model was also applied to PV

performance time series and exhibited low prediction error under

different conditions (e.g., two- and three-step degradation profiles,

range of PV module technologies seasonality in different climate

zones, and different aggregation).64

The FBP algorithm detects the number and location(s) of CPs by

capturing statistical changes in the slopes of predefined segments. It

initially distributes “potential” CPs uniformly along the selected range

of the time series' trend, and it then compares the slopes in order to

extract the most significant CPs by performing comparisons against a

set TL.58,59 The FBP algorithm calibration procedure was performed

as reported by Theristis et al.58

In this work, 100 “potential” CPs were distributed on the PR time

series (n_changepoints = 100) and the changepoint_range argument

was set to 1 because the analysis does not project trends into the

future. The flexibility (changepoint_prior_scale argument), however,

needs to be adjusted depending on the application and the utilized

performance metric. Initially, the changepoint_prior_scale was set to

2.565 to extract PLR, which includes both reversible and irreversible

performance losses. The changepoint_prior_scale argument can then

be adjusted to control the fluctuations. For example, if the value is

decreased (e.g., 0.04),64 an almost linear trend will be forced, which

avoids fluctuations due to outliers (e.g., faults), or other temporary

effects such as snow and soiling. In this case, the FBP model will be

extracting rates of irreversible effects caused by linear/nonlinear deg-

radation. On the other hand, if the changepoint_prior_scale value is

increased, it will result in a fluctuating trend that will be able to cap-

ture temporary phenomena. However, this needs to be calibrated

according to Theristis et al.58 because if the changepoint_prior_scale is

set too high, it will result in a highly fluctuating trend, which might

even capture unavoidable seasonality effects caused by irradiance,

temperature, spectrum, and so on. Therefore, based on the change-

point_prior_scale setting, the different CPs and their sequence

(i.e., continuous or discontinuous) will represent different events and

types of performance loss.

For the case of soiling, the PR residuals were examined for con-

tinuous and discontinuous CPs in the time series by setting the

changepoint_prior_scale argument to 1.4.60 Continuous CPs indicate a

change in the daily variation of the soiling loss, in %/year, also called

soiling rate. The soiling rate can be estimated during the deposition

periods as the slope of the PR between the cleaning events, by apply-

ing linear regression.66 Discontinuous CPs indicate cleaning events

caused by either artificial or natural cleaning. Artificial and natural

cleaning events cause positive shifts in the running median of the

investigated time series and the time between two consecutive

cleanings is called the “deposition period.” The scope of the devised

CP model is to determine when the soiling deposition trend changes

and consequently estimate the soiling loss.

Snow exhibits similar time series patterns as soiling, and there-

fore, additional information from meteorological data is required to

automatically differentiate these loss mechanisms (more details in

Section 2.5).

2.5 | Categorization

Categorization of nonzero power production incidents was performed

using a single PV performance metric.

The Seasonal Hybrid Extreme Studentized Deviates (S-H-ESD)

was initially applied to detect data anomalies in the PR time

series.67,68 Data anomalies cause sudden increase or decrease in time

series data and indicate fault occurrences and data issues. The S-H-

ESD anomaly detection algorithm is an extension of the generalized

Extreme Studentized Deviates (ESD).69 In the ESD algorithm, sample

mean and standard deviation are used for identifying anomalies in a

given time series, while the S-H-ESD model uses the median for mini-

mizing the number of false positives (FPs) detected by the model. The

S-H-ESD model was selected due to its ability to detect both global

and local anomalies by applying Seasonal and Trend decomposition

using Loess27 and robust statistics (i.e., statistical test hypothesis,

median based estimation, and piecewise approximation) together with

ESD.69

The FBP algorithm was used to detect CPs, differentiate revers-

ible from irreversible mechanisms and to estimate the PLR and RD.
59

Initially, PLR is extracted with a changepoint_prior_scale setting of 2.5

to assess the overall health state of the plant. The rates of change for

each slope are then compared against a set TL to verify the CPs and

detect reversible mechanisms. These loss mechanisms are then differ-

entiated based on the magnitudes of the rates of change and the dis-

tance between these CPs. However, both soiling and snow might

exhibit similar behavior in weather-agnostic PR time series. For exam-

ple, a negative rate of change switching to positive within a week can

indicate weather dependent phenomena such as snow accumulation

and shedding or a sandstorm followed by rain. In this case, the catego-

rization procedure uses information from weather parameters to

enable differentiation of snow and soiling. During snowfall periods,

the PV system power production is reduced, while the module and

ambient temperature measurements are lower than the typical oper-

ating temperature ranges. It is worth noting here that this is a season-

ally repeated performance loss that affects all three electrical

parameters (current, voltage and hence power).70 Additionally, when

snow sheds, an increase in the recorded voltage measurements is ini-

tially observed followed by a stepwise reduction.70

The changepoint_prior_scale setting of FBP is then readjusted to

estimate RD and to detect soiling and cleaning events. All quantitative

metrics, specifications, and models used for differentiating fault types

from loss mechanisms in PV systems are summarized in Figure 2 and

Table 1 (presented in Section 2.3).

2.6 | Benchmarking and validation

The diagnostic architecture was benchmarked using time series data

from a 1.8 MWp PV power plant in Larissa, Greece (Köppen–Geiger–

Photovoltaic climate classification DH; temperate with high irradia-

tion).71 The crystalline silicon (c-Si) PV modules are facing south,

fixed-tilted at 25�, and they are connected in series to form 326 strings

LIVERA ET AL. 5



at the inputs of four grid-connected inverters (82 strings are con-

nected to Inverters 1 and 3, while 81 strings are connected to

Inverters 2 and 4) and four transformers.

The PV plant is connected to a data acquisition (DAQ) system,

which is used for the monitoring and storage of meteorological and

inverter data according to the requirements set by the IEC 61724-1.72

The DAQ records values of in-plane irradiance (GI), ambient air tem-

perature (Tamb), wind speed, and direction. The PV operational data

include the back-surface module temperature (Tmod), the inverter DC

current (IDC), voltage (VDC ) and power (PDC), and AC output power

PACð ) at a resolution of 1 s and accumulation steps of 15-min aver-

ages. Yields and performance parameters such as the PV array energy

yield YAð Þ, the final PV system yield Yfð Þ, the reference yield Yrð Þ, and
the DC PR were also calculated.73 Lastly, weather data that were

unavailable at the power plant (e.g., snowfall and rainfall measure-

ments) were sourced from Modern-Era Retrospective analysis for

Research and Applications, Version 2 (MERRA-2).74 These were

downloaded at hourly intervals through the soda-pro web interface.

The outdoor field measurements and the calculated performance

metrics were used to create a PV dataset of 15-min average measure-

ments from the four grid-connected inverters from June 1, 2013, to

December 31, 2018. Over the evaluation period, the PV plant experi-

enced different underperformance issues (i.e., plant was down due to

grid failures, scheduled maintenance, inverter and ground faults, low

power production and/or low performance due to snowfall, equip-

ment malfunctions, and soiling). Information about the outage periods,

failure types, loss mechanisms, and corrective actions were kept in a

maintenance log, which was then used for validating the performance

of the diagnostic algorithms.

In order to evaluate the detection and classification accuracy

of the FDRs, a 2 � 2 confusion matrix (see Table 2) was used.75

F IGURE 2 Investigation of the performance ratio (PR) time series for differentiating fault types from loss mechanisms using statistical
analysis. Data anomalies and change-points (CPs) are detected using the Seasonal Hybrid Extreme Studentized Deviates (S-H-ESD) and Facebook
Prophet (FBP) models, respectively. Data anomalies indicate data issues and fault occurrences, while CP anomalies indicate performance losses
and cleaning/repair actions, captured by adjusting the FBP's flexibility (changepoint_prior_scale hyperparameter)

TABLE 2 2 � 2 confusion matrix for evaluating the performance
of the failure diagnosis routines

Predicted normal

operation data points

Predicted fault

data points

Actual normal

operation data

points

TP FN

Actual fault data

points

FP TN

6 LIVERA ET AL.



The four outcomes of the confusion matrix are defined as true pos-

itive (TP), true negative (TN), FP, and false negative (FN). The TN

represents the fault data points that were correctly detected/

classified, while the FN represents the normal operation data

points that were incorrectly detected/classified as fault conditions.

The TP represents the normal operation data points that were cor-

rectly detected/classified, while the FP represents the actual fault

data points that were incorrectly detected/classified as normal

operation points.76 In this context, the accuracy metric is defined

as the ratio of the number of correct predictions (TP + TN) to the

number of total predictions (TP + TN + FP + FN).75 The mainte-

nance log of the system was used to verify actual normal and fault

operation.

3 | RESULTS

The results correspond to data from one of the subsystems (Inverter 1)

of the 1.8 MW plant.

3.1 | Data processing and quality verification
application

The DQRs were applied to the PV dataset to filter out nighttime data

points (i.e., GI < 20 W/m2). The power measurements were then nor-

malized to the system's nominal capacity. The DQR process did not

include data imputation nor correction to fully capture the exhibited

profiles during fault conditions and loss events.

The DQRs methodology was also used to detect invalid mea-

surements (that may indicate equipment malfunctions and/or faulty

operation of the PV system) and to provide insights and information

about possible failures/losses.2 This was achieved by visually

inspecting diagnostic plots, applying physical limits, statistical and

comparative tests on the acquired measurements, and calculated PV

performance parameters. Visual inspection of the Inverter 1 power

data (see Figure 3) was deemed sufficient for observing PV opera-

tional problems (e.g., reduced power production) and data issues

(e.g., gaps).77

3.2 | Normal PV system operation

Normal operation describes the expected operation of a well per-

forming PV system without any fault conditions. During normal oper-

ating conditions, the PV system is affected only by environmental

conditions and the measured power should be in good agreement

with the predicted power (with a linear correlation coefficient higher

than 0.9).78 In such cases, no violations of the TL are detected, and

the AE is below the set TL.

The measured and predicted DC power measurements of Inverter

1 over a 1-week period in August are depicted in Figure 4, demon-

strating normal operation. Over the 1-week period in August, the DC

power predictions of the Huld et al. model exhibited an R2 of 0.99,

while a MAPE of 8.6% and RMSE of 0.13 was obtained during the

testing phase of the power predictive model. Although lower MAPE

values have been reported in the literature for DC power

predictions,48 the model's validation process in such cases was per-

formed either under normal operating conditions or on simulated

data. In this paper, the model's performance was assessed using the

54 months test set, which contained both normal and fault conditions,

and hence, higher MAPE values were obtained.

After evaluating the goodness of fit, a Shewhart chart26,50 was

constructed to verify the system's normal operation. As shown in

Figure 5A, the power residuals were distributed within the estimated

UCL and LCL during normal operation, while their mean was approxi-

mately zero. The residuals variance can be treated as a constant as

shown in the histogram of the residuals (see Figure 5B). The histogram

suggests that the residuals formulate approximately a normal distribu-

tion. Though, significant correlation in the residuals series was

observed at different lags by the auto-correlation function (ACF) plot

(Figure 5C), signifying the need for better seasonal adjustment.

3.3 | PV operation under fault and loss conditions

3.3.1 | Near zero power production incidents

During fault conditions, the measured DC power was significantly

lower than the predicted and the comparative FDRs algorithm

F IGURE 3 Profile of daily mean normalized
DC power for inverter during a 1-year period.
Examples of detected PV operational and data
quality issues are circled in red
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detected several power discrepancies as the AE exceeded the set

TL. During the test period, the failure detection stage detected 2229

data points (or 75 different days, during which fault incidents

occurred) of near zero DC power production during daylight hours.

The FDR detection stage achieved a detection accuracy of 97.3%,

because from the 2229 detected data points, 1602, 567, 45, and

15 were classified as TP, TN, FN, and FP data points. The detected

fault data points may be attributed to inverter shutdown failures, grid

F IGURE 4 Normalized measured and
predicted DC power of Inverter 1 for a 1-week
period in August under normal operation. The
absolute error (AE), defined as the absolute
difference between the predicted and measured
DC power, is represented by a red solid line. The
set threshold level (TL) is indicated by a red
dotted line

F IGURE 5 Normal operating conditions (A) normalized power residuals plot and imposed control limits by the three-sigma rule, (B) histogram
of the normalized power residuals from the seasonal naïve method and normal curve colored in orange, and (C) auto-correlation function
(ACF) plot

F IGURE 6 Normalized measured and
predicted DC power of Inverter 1 for a 1-week
period in October under normal operation and
zero power production conditions. The absolute
error (AE), defined as the absolute difference
between the predicted and measured DC power,
is colored in red solid line. The set threshold level
(TL) is indicated by a red dotted line
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failures, ground faults, and/or maintenance events. Communication

and storage faults were excluded from this analysis. An example of a

detected inverter failure (due to a ground fault) is shown in Figure 6

(see October 23 and 24). Information extracted from the maintenance

log of the test PV plant indicated a failure incident that occurred on

October 23 at 14:30 and was resolved on October 24 at 12:30.

Subsequently, the power residuals were analyzed using weekly

sliding windows. As shown in Figure 7A, two data anomalies in the

residuals pattern were detected in October indicating two fault occur-

rences. During the fault conditions, the residuals were not distributed

within the estimated control limits and the mean of the residuals sig-

nificantly deviated from zero for two specific cases (see October

20, 23, and 24). Furthermore, the residuals still formulate a normal dis-

tribution during the 2-week period as shown in Figure 7B, but they

are spread out due to the larger standard deviation.

During near zero power production conditions, the affected

parameters were mainly the DC power and current (reductions from

85% to 100%). The AC output power was also affected, and it was

nearly zero. Such faults can affect either a part/subsystem or the

whole PV system. Finally, the classification algorithm that considers

the amount of power reduction, the affected electrical parameters,

and the results of the statistical analysis achieved an accuracy of

97.3%. It is worth noting here that the classification stage achieved

the same accuracy as the detection stage because this is a binary clas-

sification problem that involves classifying the data points into two

groups: normal operation and fault data points.

3.3.2 | Nonzero power production due to fault
occurrences – Reduced current class

The DC power time series of the test PV plant was subsequently

examined for nonzero fault production incidents. An example of a

detected nonzero fault production incident is shown in Figure 8. It

can be seen that during the fault incident on October 20, the current

(and hence the power) production was reduced by 49.3%. During that

F IGURE 7 (A) Normalized power residuals plot and imposed control limits by the three-sigma rule and (B) histogram of the normalized power
residuals from the seasonal naïve method during faulty operating conditions

F IGURE 8 Normalized measured and
predicted DC Current of Inverter 1 for a
1-week period under normal operation and
nonzero power production conditions due to a
fault occurrence (reduced current category).
The absolute error (AE) is colored in red solid
line. The set threshold level (TL) is indicated
by a red dotted line
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day, the voltage production remained within acceptable operating

ranges, while the maintenance log of the test PV plant did not report

any fault incidents.

As previously indicated in Figure 7A, a sudden change in the

residual profile was detected on October 20, indicating a fault event.

During that day, the current and power residuals exceeded the esti-

mated control limits. Thus, the incident was classified as nonzero

power production (reduction between 20% and 85%) due to “fault
occurrences–reduced current class.” Finally, the algorithm's classifica-

tion accuracy could not be assessed because the maintenance log

reported only fault issues at the inverter level.

3.3.3 | Nonzero power production incidents and
categorization

The weekly PR time series (see Figure 9) was constructed using the

recorded measurements of Inverter 1 over the period from June 2013

to December 2018. Visual inspection of PR in Figure 9 revealed a sea-

sonal profile of the test subsystem, with higher PR values in the win-

ter and lower in the summer. Additionally, low PR values were

observed in December 2014–January 2015, January 2017, and June–

August 2018. The S-H-ESD algorithm was initially applied to the PR

time series and detected five data anomalies (circled in purple in

Figure 9).

By correlating the PV system performance with the site's weather

conditions, snowfall periods with low ambient temperature (<5�C)

were detected during winter months, while heavy snowfall was

reported by the data from MERRA-274 for the period covering

December 2016–February 2017.

The FBP model was iteratively used to extract PLR and RD. For

PLR estimation, the FBP flexibility was set to 2.5 to capture a signal

with all performance losses. Assuming linearity, no CP detection was

performed, and linear regression with ordinary least squares (OLS)

was directly applied on the FBP trend resulting in a PLR of �0.99%/

year. The model's flexibility was then readjusted to 0.04 to extract the

RD by avoiding the influence of faults and temporary effects. The test

subsystem demonstrated a linear power decline (see Figure 10), and

by applying the OLS method to the linear extracted FBP trend (red

color), a degradation rate of �0.49%/year was obtained. Even though

PV degradation contributes to the PLR, the majority of the exhibited

performance losses was found to be due to reversible and temporary

phenomena.

The TLR methodology was then used for extracting soiling losses.

Over the evaluation period, the FBP model detected 24 discontinuous

CPs (i.e., cleaning events; indicated by red vertical lines in Figure 11)

F IGURE 9 Weekly performance ratio
(PR) time series of Inverter 1 over the evaluation
period. Data anomalies detected by the Seasonal
Hybrid Extreme Studentized Deviates (S-H-ESD)
algorithm are circled in purple

F IGURE 10 Weekly performance ratio
(PR) time series (black dots) of the test PV system
along with the extracted trend colored in red. The
blue solid line is the Facebook Prophet (FBP) fit,
while the blue shaded area indicates the
uncertainty
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in the residuals of the PR time series. Five of the cleaning events were

reported in the maintenance log as periodic manual cleanings. Low to

intermediate soiling losses were observed, with the soiling rates rang-

ing from 0%/day to �0.69%/day.

Because there were indications of reversible (e.g., data anomalies

in the PR time series, soiling) and irreversible (e.g., degradation) mech-

anisms, time series investigation for CPs detection was performed.

The FBP algorithm was used to detect changes in the variability of the

weekly PR time series and to differentiate the loss factors based on

the CPs sequence and the corresponding rate of change. Initially, the

FBP algorithm distributed 100 “potential” CPs uniformly along the PR

time series trend (see Figure 12).

In order to derive the optimal number of CPs, the small sample

hypothesis t test79 was used. Based on the results of the statistical

significance test, the critical threshold value for CPs was set to 0.0001

resulting in 39 CPs (see Figure 13). The FBP model also captured the

data anomalies detected by S-H-ESD.

Different trend-based performance losses will exhibit different

sequences (e.g., continuous or discontinuous CPs) and rates of

change. For example, a heavy snowfall or a sandstorm will exhibit

F IGURE 11 Weekly performance ratio
(PR) time series (black line) and PR residuals
(orange dots) of the test PV system. The
predicted performance (blue line) of the
system was simulated using the Huld et al.46

model. The detected discontinuous change-
points (CPs) by Facebook Prophet (FBP) are
indicated with vertical lines. Green line:
weekly rainfall, downloaded from

MERRA-2. 74

F IGURE 12 Weekly performance ratio
(PR) time series (black dots) of the test PV system
along with the distributed 100 potential change-
points (CPs) colored in red dashed lines. The red
solid line indicates the extracted trend, the blue
solid line indicates the Facebook Prophet (FBP) fit,
while the blue shaded area is the uncertainty

F IGURE 13 Weekly performance ratio
(PR) time series (black dots) of the test PV system
along with the 39 change-points (CPs) derived by
the t test colored in red dashed lines. The red solid
line indicates the extracted trend, the blue solid
line indicates the Facebook Prophet (FBP) fit,
while the blue shaded area is the uncertainty
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steeper and faster rates of change compared with a change in degra-

dation rate. In addition, because there are many locations in the time

series where the rate can possibly change, most of the CPs remain

unused due to the strength of the sparse prior defined by the change-

point_prior_scale hyperparameter of FBP. Therefore, the rates of

change were examined to determine the most significant CPs and

their causes. Positive rate changes (≥0) are due to artificial/manual

cleaning events, snow shedding and PV system repairs. On the con-

trary, negative rates of change are due to fault occurrences and/or

performance loss mechanisms.

In Figure 14, it can be seen that out of 39 CPs, 33 had nonzero

rate of change. From those CPs, 12 had a positive rate of change,

while 21 had a negative rate change. The FBP model then extracted

the most significant CPs by considering the magnitude of the rate

changes and at least 14 days between two consecutive CPs.60 It is

apparent from Figure 14 that 14 out of the 33 CPs had a minimal

magnitude of rate change (i.e., below 0.2 in absolute values). From

the remaining CPs, the two positive CPs detected in June 2016 and

the two negative CPs in January 2018 occurred within a 2-week

period.

F IGURE 14 Rate of change for the
39 change-points (CPs) detected by the Facebook
Prophet (FBP) in the performance ratio (PR) time
series. The rates of change represent differences
in the slopes of the uniformly distributed CPs. CPs
occur gradually; therefore, the peaks were
selected to represent nonzero rate of change.
From the 39 potential CPs, 33 had nonzero rate of
change. Blue color indicates a positive rate
change, while red color indicates a negative one

F IGURE 15 Exemplary flowchart depicting
the procedure for extracting the significant
change-points (CPs). The derived CPs at each step
are also indicated
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As such, FBP extracted 17 significant CPs (see Figure 15); 12 due

to loss mechanisms and cleanings and 5 due to fault occurrences

whereas 10 of them were negative (see Figure 16).

The rates of change were then coupled to weather data (e.g., see

snowfall measurements indicated by green points in Figure 16) to

determine the CP root cause. One significant CP was misclassified

(the CP detected in December 2018), while the remaining 11 CPs

were correctly distinguished as reversible loss mechanisms and differ-

entiated from the five CPs due to faults (circled in purple in

Figure 16). The TLR classification was verified against the mainte-

nance log resulting in an accuracy of 91.66%. The CPs detected in

December–January months (six detected in total, one misclassified)

were attributed to snow coverage that caused gradual decrease of PV

performance. From the remaining CPs due to loss and cleaning events,

five were attributed to cleaning events, while one CP was due to

soiling.

In cases of reversible trend-based performance losses, negative

rate changes (<�0.2) are detected, while sharp positive changes (>0.2)

are caused either by cleaning or snow shedding. Snow occurs during

winter months with snowfall indications, and when the ambient tem-

perature is “low” (<5�C [site/location-dependent value]). The PV per-

formance is expected to increase when snow sheds. Similarly, soiling

occurs during time periods with not enough rainfall, while the ambient

temperature is >10�C (site/location-dependent value). After a cleaning

event, an increase in PV performance is expected, while during soiling

periods gradual reduction of PV performance is observed.

4 | EXHIBITED FAILURES AND
PERFORMANCE LOSSES OF THE TEST PV
PLANT

Over the evaluation period, the test subsystem produced 4068 MWh.

The energy loss was then approximated as the difference between

the predicted and measured DC energy yield resulting in 73.39 MWh

(1.80%). The translation of the detected incidents into energy loss

provides an indication of the magnitude of the economic loss for the

PV plant owner. Because the test PV plant is currently monitored by

an O&M company, the detected incidents were resolved based on the

agreed response time, as stated in the contract made between the

plant owner and the O&M company.80 Therefore, the estimated

energy loss represents the amount of lost energy generation during

the period starting from the acknowledgment until the resolution

time.80

Each category of energy loss is illustrated as a pie chart in

Figure 17. Most of the energy loss was attributed to near zero power

production incidents by 43.40% (e.g., inverter faults), while nonzero

production incidents accounted for 42.87% (e.g., reduced current

F IGURE 16 Weekly performance ratio
(PR) time series (black dots) of the test PV system
along with the detected significant change-points
(CPs) indicated by dashed lines. The red dashed
lines indicate snow events, the blue dashed lines
indicate cleaning events, and the orange line
indicates soiling. Data anomalies detected by the
Seasonal Hybrid Extreme Studentized Deviates
(S-H-ESD) algorithm are circled in purple including
heavy snowfalls. Weekly snowfall measurements
are indicated by green points

F IGURE 17 Pie chart depicting the faction of
the total energy lost in the test subsystem due to
different fault and loss incidents
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production), from which 33.47% was due to performance losses

(soiling, degradation, and snow). Finally, a 13.73% was attributed to

other incidents and the power model's error.

The proposed diagnostic architecture suffers from the following

limitations: (a) the CP model's flexibility needs to be recalibrated

depending on the application and when using different performance

metrics and (b) the methodology for extracting the significant number

of CPs is not fully automated. Furthermore, given the available field

data, the “actual” loss of energy generation for the test subsystem

could not be estimated; only the energy lost during the period starting

from the acknowledgment time until the resolution time was esti-

mated. Despite the limitations of the proposed methodology, this is

the first attempt in differentiating faults from reversible and irrevers-

ible performance losses using a statistical approach and a single per-

formance metric. Based on the results from the analysis of such field

data, O&M teams can be informed about the underperformance

issues and act accordingly in order to recover some of the perfor-

mance and financial losses.

5 | CONCLUSIONS

An analytical architecture capable of detecting underperformance

issues in PV systems due to failures and loss mechanisms was pres-

ented in this work. The proposed architecture operates entirely on

acquired raw field measurements. It mainly focuses on differentiating

commonly exhibited failures from trend-based performance losses

using a single performance metric.

The developed pipeline was experimentally validated using histor-

ical inverter data obtained from a large-scale PV system installed in

Greece. The results demonstrated the effectiveness of the routines

for detecting failures and loss mechanisms and the capability of the

pipeline for distinguishing underperformance issues using residual,

anomaly detection, and CP techniques. A CP model, namely, the FBP,

was also used to extract significant changes in time series data, to

detect soiling cleaning events and to estimate both reversible and irre-

versible performance losses in PV systems.

Finally, only inverter data were available in this study, and differ-

entiation of faults from loss factors was performed at the inverter

level. Future work will be extending the fault and loss categories and

include more root causes such as partial shading, vegetation, and PV

module-level failures which, in turn, require string/module-level moni-

toring. The results from the application of the proposed diagnostic

pipeline can be used for monitoring applications and for optimizing

O&M activities.
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