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Abstract A challenging task in nonlocal continuum mechanics consists in formulating constitutive relations
leading to well-posed structural problems. Several strategies have been adopted to overcome issues inherent
applicability of Eringen’s pure nonlocal theory to nanostructures, such as local/nonlocal mixtures of elasticity
and integral models involvingmodified averaging kernels. These strategies can be applied to the ill-posed prob-
lem of flexure of a beam onWieghardt nonlocal foundation without considering any fictitious boundary forces
of constitutive type. A consistent formulation of nonlocal elastic foundation underlying a Bernoulli–Euler
beam is thus conceived in the present paper by requiring that transverse displacements are convex combi-
nation of reaction-driven local and nonlocal phases governed by Winkler and Wieghardt laws, respectively.
The proposed integral mixture is proven to be equivalent to a more convenient differential problem, equipped
with nonlocal boundary conditions, which can be effectively exploited to solve nonlocal problems of beams
resting on mixture reaction-driven continuous foundation. Effectiveness of the developed nonlocal approach
is illustrated by analytically solving simple elasto-static problems of structural mechanics.
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1 Introduction

Interaction of beams with surrounding elastic continuous media is an engineering problem of current interest
both in theoretical and applied mechanics. The theoretical interest lays in detecting suitable mathematical
models for such interactions which can be exploited to formulate well-posed structural problems. From an
applicative point of view, such a problem can be technically relevant in transportation, civil and geotechnical
engineering if surrounding elasticmedia are characterized by soils or foundations. Inmechanical and aerospace
engineering, the role of surrounding elasticmedium can be played by a part of texture of a structured continuum.
For instance, a cylindrical shell of revolution might be seen as an ordered arrangement of woven beams along
meridian and parallel lines. Ideal beams along parallels act as a linear elastic soil with respect to ideal beams
along meridians.

An elastic beam subjected to transversally distributed loading proportional to its deflection was first con-
sidered by Winkler [1] and, then, it was exploited to represent railway tracks on continuous linear elastic
foundation [2]. Winkler and Zimmermann’s methodology quickly had followers, due to its simplicity and
easy mathematical treatment since the soil is modeled as continuous bed of independent linear elastic one-
dimensional springs with uniform stiffness.

In the framework of soil models described by two material parameters, the one proposed by Filonenko-
Borodich [3] assumed that a membrane under tension is interposed between beam and springs while the one
conceived by Pasternak [4] supposed a shear interaction among springs modeling the soil. Then, a foundation
model consisting of two spring layers interconnected by a shear layer was proposed by Kerr [5]. By virtue of
their convenient mathematical formulation, Pasternak and Kerr foundation models have been recently adopted
in [6,7] for buckling and vibration problems of nanobeams lying on elastic foundation. Moreover, Pasternak
foundation model has been also exploited to simulate microtubules embedded in cell cytoplasm [8] adopting
nonlocal integral formulations of internal elasticity with mixed-type normalized kernel [9,10].

A discussion on formulation of beam-soil and plate-soil interaction can be found in the review by Wang et
al. [11], but one will be surprised not to find any reference to Wieghardt there. On the other hand, Wieghardt
[12] remarked that Winkler’s soil reactions are not physically reliable since they predict sharp discontinuities
in the beam-soil profile at beam ends which are not actually present in real phenomena. Then, Wieghardt
proposed a strategy in which the deflection at each point of the beam depends on the response of the entire
contact region through an integral of soil reactions weighted by a suitable averaging kernel. The mathematical
model thus depends on a stiffness factor and on an additional nonlocal parameter entering the kernel. This
problem was reconsidered later by Prager [13] and Neményi [14] for two-dimensional foundations.

Actually, the difference between one- and two-parameter soilmodels andWieghardt’smodel is that the latter
is of nonlocal nature. This aspect makes it different from all the others models which are local, viz. the response
at a point depends only on the strain at that point. As a consequence, the differential equation for the nonlocal
problem is of higher order than the classical (local) elastic model. Thus, additional boundary conditions have
to be prescribed to close the relevant elastic problem. Such an issue was highlighted by Wieghardt himself
and analysed in contributions by Van Langendonck [15], Sollazzo [16], Ylinen and Mikkola [17]. In these
models, fictitious reactive concentrated forces exerted by the soil are introduced at the beam end points and
additional boundary conditions are used to evaluate such reactive forces. Many problems have been addressed
using the Wieghardt elastic foundation in order to get outcomes of technical interest. The contribution of a soil
modeled by Wieghardt’s elastic foundation was then considered also in some problems of static instability by
compression for the beam, for instance in papers by Smith [18], in its extension [19] and in the contribution
by Anderson [20].

Wieghardt’s foundation was considered also in problems of dynamics and of dynamic instability, see,
e.g. the paper by Celep [21]. In order to extend previous standard investigations to the case of fluid-structure
interaction, such as beams representing a pipe conveying fluid, we may quote the paper by De Bellis et al.
[22,23] where, however, Winkler model has been considered.

Starting from pioneering contributions by Eringen [24–26], a worldwide interest on nonlocal elasticity
has grown in the scientific community [27–42]. Two-phase local/nonlocal theories of elasticity have been
efficiently exploited to overcome issues emerged from the application of Eringen’s pure nonlocal model to
nanostructures [43–45]. An alternative approach based on the kernel normalization can be found in [46,47].
Therefore, it appears of great importance to consider some further investigations on the theory of Wieghardt
nonlocal elastic foundation.

Motivation of the present paper is in conceiving a well-posed nonlocal integral elastic model by enhancing
the classicalWieghardt formulationwithout introducing anyfictitious reactive forces at end points ofBernoulli–
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Fig. 1 Bernoulli–Euler beam on Wieghardt foundation

Euler beams to solve the relevant nonlocal structural problem. Specifically, a two-phase integral mixture of
elastic foundation is formulated by convexly combining Winkler local and Wieghardt nonlocal contributions.

The constitutive equivalence theorem proved in [48] for strain-driven models and in [49] for modified
nonlocal gradient methods is applied to Wieghardt integral formulation of elastic foundation in order to obtain
a simpler (but equivalent) differential problem, equipped with nonlocal foundation boundary conditions, which
can be effectively implemented to solve soil-beam interaction problems of engineering interest.

The plan is the following. The nonlocal model of Wieghardt elastic foundation is recalled in Sect. 2. The
elastic equilibrium problem of a Bernoulli–Euler beam on Wieghardt foundation is formulated in Sect. 3.
Then, the modified model of Wieghardt foundation with introduction of fictitious reactive forces for the
solution of the nonlocal model is presented in Sect. 4. The proposed integral elasticity mixture considering a
convex combination of Winkler (local) and Wieghardt (nonlocal) laws is illustrated in Sect. 5. The developed
mixture model is validated in Sect. 6 by investigating nonlocal effects in case-problems of technical interest.
In particular, fully clamped and free beams on Wieghardt foundation under uniform transverse loading are
analysed. Closing remarks are outlined in Sect. 7.

2 Nonlocal reaction-driven model of Wieghardt elastic foundation

Let us consider a beam of length L laying on the surface of a Wieghardt elastic foundation. The x − y − z
coordinates are, respectively, taken along the length, thickness (height) and width of the beam originating at
the cross-sectional elastic centre C (see Fig. 1). The pair {y, z} are principal axes of geometric inertia of the
two-dimensional cross section �.

The classical Winkler theory of a continuous elastic soil supporting a beam, see, e.g. [1,2], considers the
foundation composed by a sequence of linear elastic springs unconnected with each other and, at each point,
the reaction per unit length is directly proportional to the deflection of the foundation. The elastic medium
is characterized by a volumetric density of force β representing the pressure to be orthogonally applied to
the surface to get a unit vertical displacement of the foundation. Denoting by b the width of the beam cross
section in contact with the foundation, the stiffness of the elastic foundation is given by k = βb. Hence, the
transverse displacement v of the surface of the Winkler foundation is linked to the reaction per unit length r
by the classical relation [1]

v (x) = 1

k
r (x) . (1)

We assume that the beam remains in contact with the foundation so that the transverse displacement of the
beam coincides with the transverse displacement v of the surface of the foundation.

The refinement proposed by Wieghardt [12], afterwards analysed in [15–17], consists in assuming that
the displacement v of foundation is obtained by integral convolution between reaction field r and a suitable
averaging kernel φ :

v (x, Lc) =
L∫

0

φ (x − t, Lc)
r (t)

k
dt. (2)

For simplicity, in the sequel, the explicit dependence of v on the characteristic length Lc will be dropped.
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The smoothing kernel φ depends on the characteristic length of Eringen nonlocal elasticity Lc, having the
physical dimension of a length, and is given by the bi-exponential averaging function

φ(x, Lc) = 1

2Lc
exp

(
−|x |
Lc

)
. (3)

The bi-exponential function fulfils the following properties, see, e.g. [50,51]:

– Maximum value of φ (x, Lc) attained at x = 0 for any Lc and decaying to zero at large distances;
– Normalization

+∞∫

−∞
φ (x, Lc) dx = 1; (4)

– Symmetry and limit impulsivity conditions, that is

φ (x, Lc) = φ (−x, Lc) and lim
Lc→0+ φ (x, Lc) = δ(x) (5)

where δ(x) is the Dirac unit impulse at point x .

The symmetry conditionEq. (5)1 of the bi-exponential kernelφ Eq. (3) expresses themechanical assumption
that symmetrically placed points of the foundationwith respect to the considered point x have the same influence
on the displacement v of the surface of the foundation at x . Moreover, the characteristic parameter Lc is a
measure of how rapidly the influence of the displacement v at a point t decreases with the distance from the
considered point x .

Remark 1 Setting Lc → 0+, impulsivity conditions ensures that Eq. (2) yields v (x) = 1

k
r (x) and the classical

Winkler model of elastic foundation, see Eq. (1), is recovered at the internal points of the structural interval.

3 Bernoulli–Euler beam on Wieghardt elastic foundation

Let us consider a straight planar Bernoulli–Euler beam whose displacement components are expressed by

sx (x, y) = −∂xv (x) y, sy (x, y) = v (x) , sz (x, y) = 0 (6)

with v cross-sectional transverse displacement. Symbol ∂x• is the derivative of the function • along the beam
axis x .

The rotation ϕ of the beam cross section is ϕ (x) = ∂xv (x) so that the non-vanishing kinematically
compatible deformation is given by the axial strain

εx (x, y) = −∂2x v (x) y = −χ(x)y (7)

whereχ(x) = ∂2x v (x) is the kinematically compatible flexural curvature of the beam. In the absence of thermal
distortions, the kinematically compatible flexural curvature χ coincides with the elastic flexural curvature.
Equilibrium is expressed by the following differential condition

∂2x M(x) = qy(x) − r (x) , x ∈ [0, L] (8)

withM bendingmoment, q transverse distributed loading and r foundation reaction per unit length. Differential
equation of equilibrium (8) is equipped with static boundary conditions T (0) = −F0, M(0) = −M0 and
T (L) = FL , M(L) = ML , where T := −∂x M stands for shear force and {Fi ,Mi } are concentrated forces
and couples at beam ends, with i ∈ {0, L} .

Bending moment M is expressed by

M(x) = −
∫

A

E(y)εx (x, y) ydA = IE∂2x v (x) (9)
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where the second moment of elastic area IE about the z axis is evaluated by considering the distribution of
Euler–Young moduli E(y) as

IE =
∫

�

E (y) y2dA. (10)

Using the differential condition of equilibrium in addition to the definition of flexural curvature χ , we get
the beam differential equation in the form

IE∂4x v (x) = qy (x) − r (x) . (11)

The nonlocal elasto-static problem of a beam on Reaction Driven (RD) Wieghardt foundation can be
formulated by considering the beam elastic equilibrium Eq. (11) and the constitutive convolution ofWieghardt
foundation Eq. (2) as reported in the next Box 1.

BOX 1. Elasto-static integro-differential problem of a beam on RD Wieghardt foundation.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

IE∂4x v (x) = qy (x) − r (x) Beam elastic equilibrium
{v (x) , ∂xv (x) ,

M (x) , T (x)}x={0,L}
Kinematic and static BCs

v (x) =
L∫
0

φ (x − t, Lc)
r (t)

k
dt

RD model
of Wieghardt foundation

(12)

The integral law Eq. (12)3 of the nonlocal RD model of Wieghardt foundation can be replaced with an
equivalent differential problem with foundation boundary conditions according to the next Proposition proved
in “Appendix A”. Such a result is a consequence of the choice of the special bi-exponential kernel Eq. (3) and
is based on contributions provided in [48].

Proposition 1 Equivalence property for the reaction-driven (RD) model of Wieghardt foundation. The
transversal displacement v obtained from the reaction-driven integral Eq. (2) with the special kernel Eq. (3)
provides the unique solution of the differential equation of elastic foundation

1

L2
c
v(x) − ∂2x v(x) = 1

kL2
c
r(x), (13)

with x ∈ [0, L], subject to the two homogeneous foundation boundary conditions (FBCs)
⎧⎪⎨
⎪⎩

∂xv (x)|x=0 − 1

Lc
v (0) = 0,

∂xv (x)|x=L + 1

Lc
v (L) = 0.

(14)

Hence, the RD convolution Eq. (12)3 can be substituted with the differential equation (13) and the FBCs
Eq. (14).

Remark 2 Constitutive equation (13) has the same mathematical form of the differential law of elastic founda-
tion proposed by Pasternak in [4]. Equation (13) equipped with the foundation boundary conditions in Eq. (14)
is equivalent to the Wieghardt integral law as stated in Proposition 1 and it is coincident with the Pasternak
model if and only if the FBCs are satisfied.

However, Pasternak differential law in Eq. (13) (setting the shear stiffness as ks := k L2
c) may not be able to

capture long-range interactions, in general, foundation problems, with exhibition of paradoxical results as those
occurring in constitutive differential equations relating stress and elastic strain fields [48]. An exemplar case
is provided by a free beam on Pasternak foundation under uniformly or linearly distributed transverse loading;
indeed, solution of the relevant elasto-static problem is a uniform or linear displacement field independent of
the shear stiffness and coincident with that of a free beam on Winkler foundation.

As will be shown in Sect. 6, the mixture reaction-driven nonlocal model of foundation proposed in the
present paper provides stiffening structural responses for increasing characteristic length Lc, in agreement with
the outcomes recently contributed in [10] where elasto-statics of nanobeams lying on Pasternak foundation
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is examined. Indeed, increase of characteristic length Lc corresponds to an increase of shear stiffness ks of
Pasternak foundation (for a fixed Winkler parameter k) to which is associated a stiffening structural response,
as shown in [10] in the limiting case of nonlocal internal elasticity tending to the local one. The global softening
response exhibited in [10] is only due to the predominant softening small-scale effect of nanobeam, modeled
by strain-driven integral internal elasticity with modified averaging kernel, with respect to the stiffening effect
of the foundation modeled by Pasternak external elasticity theory.

To solve the nonlocal elasto-static problemof a beamonRDmodel ofWieghardt foundation, we can replace
the reaction r , obtained byEq. (13), into Eq. (12)1. The differential equation governing the elasto-static problem
in terms of transverse displacement v is reported in the next Box 2.

BOX 2. Elasto-static differential problem of a beam on RD Wieghardt foundation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IE∂4x v (x) − kL2
c∂

2
x v(x)

+kv(x) = qy (x)
Beam elastic equilibrium

{v (x) , ∂xv (x) ,

IE∂2x v (x) ,−IE∂3x v (x)
}
x={0,L}

Kinematic and static BCs

∂xv (x)|x=0 − 1

Lc
v (0) = 0

∂xv (x)|x=L + 1

Lc
v (L) = 0.

⎫⎪⎬
⎪⎭ FBCs

(15)

The reaction r follows from Eq. (13) in terms of transverse displacement v as

r(x) = kv (x) − kL2
c∂

2
x v (x) , (16)

the bending moment is given by M(x) = IE∂2x v (x) and the shear force is T (x) = −IE∂3x v (x).
The FBCs Eq. (15)3−4 put into evidence that the nonlocal RD model of Wieghardt foundation imposes

stringent requirements to admissible transverse displacements v(x) and rotations ϕ (x) = ∂xv (x) of beam
cross sections.

In fact, compatibility between FBCs and kinematic boundary conditions of a beam laying on Wieghardt
foundation is a necessary requirement for existence of a displacement solution of the elasto-static nonlocal
problem. It is apparent that FBCs as Eq. (15) 3−4 impose a peculiar relationship between transverse displace-
ments and rotations of beam cross sections involving also the characteristic length Lc. Hence, in general, a
displacement v fulfilling the beam kinematic boundary conditions cannot meet the FBCs Eq. (15)3−4.

As a consequence, the four integration constants following from the solutionofEq. (15)1 cannot be evaluated
by solving the linear system of equations obtained by imposing the four classical constraint conditions coming
from Eq. (15)2 and the two FBCs as Eq. (15)3−4. Hence, no solution of a beam laying on Wieghardt elastic
foundation does, in general, exist.

Remark 3 As an example of applicative interest in which a beam on RDWieghardt foundation can be success-
fully solved is provided by the fully clamped beam since the FBCs are compatible with kinematic boundary
conditions of the beam as shown in Sect. 6.

To solve the nonlocal elasto-static problem of a beam laying onWieghardt foundation, a modified nonlocal
model of Wieghardt elastic foundation has been contributed in the literature, see, e.g. [16]. Such a model is
briefly formulated in the next Sect. 4.

4 Modified reaction-driven model of beam on Wieghardt foundation

The modified reaction-driven (MRD) nonlocal model defines the transverse displacement v of the surface of
Wieghardt elastic foundation by postulating existence of two fictitious forces R1 and R2 at end points x = 0
and x = L . Accordingly, the RD convolution Eq. (2) is modified in the following form [16]

v (x) =
L∫

0

φ (x − t, Lc)
r (t)

k
dt + R1

2Lck
exp

(
− x

Lc

)
+ R2

2Lck
exp

(
x − L

Lc

)
. (17)
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The integral formulationEq. (17) of theMRDnonlocalmodel can be replacedwith an equivalent differential
problem and modified foundation boundary conditions (MFBCs) according to the next Proposition 2 proved
in “Appendix B”.

Proposition 2 Equivalence property for theMRDmodel ofWieghardt foundation. The constitutive transversal
displacement v obtained from the MRD integral Eq. (17) with the special kernel Eq. (3) provides the unique
solution of the differential equation of elastic foundation

1

L2
c
v(x) − ∂2x v(x) = 1

kL2
c
r(x), (18)

with x ∈ [0, L], subject to the two homogeneous modified foundation boundary conditions (MFBCs)⎧⎪⎪⎨
⎪⎪⎩

∂xv (x)|x=0 − 1

Lc
v (0) + R1

L2
ck

= 0,

∂xv (x)|x=L + 1

Lc
v (L) − R2

L2
ck

= 0.
(19)

The nonlocal elasto-static problem of a beam onMRDWieghardt foundation can be solved by considering
the beam elastic equilibrium Eq. (11) with kinematic and static boundary conditions {v (x) , ∂xv (x) , M (x) ,
T (x)} at x = {0, L} and theMRDmodel ofWieghardt foundation Eq. (17). The nonlocal elasto-static problem
is formulated in the next Box 3.

BOX 3. Elasto-static integro-differential problem of a beam on MRD Wieghardt foundation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

IE∂4x v (x) = qy (x) − r (x) Beam elastic equilibrium
{v (x) , ∂xv (x) , M (x)}x={0,L} ,

T (0) − R1, T (1) + R2
Kinematic and static BCs

v (x) =
L∫
0

φ (x − t, Lc)
r (t)

k
dt

+ R1

2Lck
exp

(
− x

Lc

)
+ R2

2Lck
exp

(
x − L

Lc

) MRD model
of Wieghardt foundation

(20)

The constitutive convolution law Eq. (20)3 can be equivalently replaced, according to Proposition 2, with
the differential equation Eq. (18) and the MFBCs as Eq. (19). Therefore, to solve the nonlocal elasto-static
problem of a beam on MRD Wieghardt foundation reported in Box 3, we substitute the reactions r , obtained
from Eq. (18), into Eq. (20)1. The governing nonlocal differential problem is thus reported in the next Box 4.

BOX 4. Elasto-static differential problem of a beam on MRD Wieghardt foundation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IE∂4x v (x) − kL2
c∂

2
x v(x)

+kv(x) = qy (x)
Beam elastic equilibrium{

v (x) , ∂xv (x) , IE∂2x v (x)
}
x={0,L} ,

−IE ∂3x v (x)
∣∣
x=0 − R1,−IE ∂3x v (x)

∣∣
x=1 + R2

Kinematic and static BCs

∂xv (x)|x=0 − 1

Lc
v (0) + R1

L2
ck

= 0

∂xv (x)|x=L + 1

Lc
v (L) − R2

L2
ck

= 0.

⎫⎪⎪⎬
⎪⎪⎭

MFBCs

(21)

The four unknown integration constants following from the solution of the fourth-order differential equation
Eq. (21)1 and the two fictitious forces can be evaluated by imposing the four BCs coming from kinematic and
static BCs in Eq. (21)2 and the twoMFBC Eq. (21)3−4. Then, bending moment is given by M(x) = IE∂2x v (x)
and shear force is T (x) = −IE∂3x v (x). Finally, the reactions r follow from Eq. (18) in terms of transverse
displacement v as

r(x) = kv (x) − kL2
c∂

2
x v (x) . (22)
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If the foundation extends outside the beam interval [0, L], the transverse displacement field of the surface
of Wieghardt foundation v1MRD for x ≤ 0 and v2MRD for x ≥ L can be evaluated by [16]⎧⎪⎪⎨

⎪⎪⎩
v1MRD (x) = vM (0) exp

(
−|x |
Lc

)
for x ≤ 0,

v2MRD (x) = vM (L) exp

(
− x − L

Lc

)
for x ≥ L .

(23)

It is shown that the elasto-static problem of a beam on MRD Wieghardt foundation subject to applied
loads postulates the existence of fictitious forces acting on the beam end points in order to solve the structural
nonlocal problem. Such fictitious forces enter in the static boundary conditions of the beam.

Based on this observation, a different nonlocal model of beam on Wieghardt foundation that does not
postulate the existence of forces at beam end points is provided in Sect. 5. The proposed model is cast in
the framework of mixture nonlocal models which are nowadays widely adopted for small-scale structural
problems, see, e.g. [52–55].

5 Mixture reaction-driven model of beam on Wieghardt foundation

An interaction model between the foundation springs can be obtained by resorting to a nonlocal theory where
the transverse displacement v is linked to the reactions r by a nonlocal mixture reaction-driven integral (XRD)
model. The XRD model provides the transverse displacement v of the surface of the foundation in terms of
the following two-phase model defined by convex combination of local and nonlocal phases

v (x) = α
r (x)

k
+ (1 − α)

L∫

0

φ (x − t, Lc)
r (t)

k
dt. (24)

The phase parameter α belongs to the interval (0, 1] so that the classical (local)Winkler model corresponds
to α = 1 and the nonlocal RDmodel is recovered for α = 0. Hence, a vanishing parameter α cannot be adopted
in the XRD model Eq. (24) due to the previous discussion on the nonlocal RD model.

The nonlocal XRD model Eq. (24) can be replaced with an equivalent differential formulation and foun-
dation boundary conditions according to the next Proposition proved in “Appendix A”.

Proposition 3 Equivalence property for the XRD model of Wieghardt foundation. The transversal displace-
ment v obtained from themixture reaction-driven integral equation (24)with the special kernel Eq. (3) provides
the unique solution of the constitutive differential equation of the elastic foundation

1

L2
c
v(x) − ∂2x v(x) = 1

kL2
c
r(x) − α

k
∂2x r(x), (25)

with x ∈ [0, L], subject to the two homogeneous mixture foundation boundary conditions (XFBCs)⎧⎪⎨
⎪⎩

∂xv(x)|x=0 − 1

Lc
v(0) = α

k
∂xr(x)|x=0 − α

kLc
r(0),

∂xv(L)|x=L + 1

Lc
v(L) = α

k
∂xr(x)|x=L + α

kLc
r(L).

(26)

The nonlocal elasto-static problem of a beam on a XRD Wieghardt elastic foundation can be solved by
considering the beam elastic equilibrium Eq. (11) and the XRD integral of the Wieghardt foundation Eq. (24)
as reported in the next Box 5.

BOX 5. Elasto-static integro-differential problem of a beam on XRD Wieghardt foundation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

IE∂4x v (x) = qy (x) − r (x) Beam elastic equilibrium
{v (x) , ∂xv (x) ,

M (x) , T (x)}x={0,L}
Kinematic and static BCs

v (x) = α
r (x)

k

+ (1 − α)
L∫
0

φ (x − t, Lc)
r (t)

k
dt

XRD model
of Wieghardt foundation

(27)
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To solve the nonlocal elasto-static problem of a beam on a XRDWieghardt foundation reported in Box 5,
we consider the equivalent nonlocal differential formulation Eqs. (25)–(26) of the XRD integral law Eq. (27)3.
Substituting the reactions r and its second derivative obtained from Eq. (27)1 into Eq. (25), we provide the
nonlocal differential problem reported in the next Box 6.

BOX 6. Elasto-static differential problem of a beam on XRD Wieghardt foundation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−α IE∂6x v (x) + IE
L2
c
∂4x v (x) − k∂2x v (x) + k

L2
c
v (x)

= 1

L2
c
qy (x) − α∂2x qy (x)

Beam elastic equilibrium

{v (x) , ∂xv (x) ,

IE∂2x (x) , −IE∂3x v (x)
}
x={0,L}

Kinematic and static BCs

∂xv(x)|x=0 + α IE
k

∂5x v(x)
∣∣
x=0 − α IE

kLc
∂4x v(x)

∣∣
x=0

− 1

Lc
v(0) = α

k
∂xqy(x)

∣∣
x=0 − α

kLc
qy(0)

∂xv(x)|x=L + α IE
k

∂5x v(x)
∣∣
x=L + α IE

kLc
∂4x v(x)

∣∣
x=L

+ 1

Lc
v(L) = α

k
∂xqy(x)

∣∣
x=L + α

kLc
qy(L).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

XFBCs

(28)

The sixth-order differential equation Eq. (28)1, equipped with four BCs following from the kinematic and
static BCs in Eq. (28)2 and the two XFBCs in Eq. (28)3−4, can be solved and the transverse displacement v is
obtained. Then the bendingmoment is given by M(x) = IE∂2x v (x) and the shear force is T (x) = −IE∂3x v (x).

Finally, the reactions r are obtained from Eq. (27)1 in terms of the transverse displacement v as

r(x) = qy (x) − IE∂4x v (x) . (29)

5.1 Transverse displacements of XRD Wieghardt foundation outside the beam interval

If theXRDWieghardt elastic foundation extends outside the beam interval [0, L],we can evaluate the transverse
displacement field of the surface of the Wieghardt elastic foundation v1X RD , for x ≤ 0, and v2X RD , for x ≥ L
according to the XRD model as

v1X RD (x) = α
r (0)

k
exp

(
x

Lc

)
+ (1 − α)

L∫

0

1

2Lck
exp

(
x − t

Lc

)
r (t) dt for x ≤ 0

v2X RD (x) = α
r (L)

k
exp

(
− x − L

Lc

)
+ (1 − α)

L∫

0

1

2Lck
exp

(
− x − t

Lc

)
r (t) dt for x ≥ L (30)

where the reactions r are the solution of the model reported in Box 6.
Note that using Eq. (27)3 and (30), it turns out to be

{
v1X RD (0) = v (0) ,
v2X RD (L) = v (L) .

(31)

Therefore, continuity of the displacement field at the beam end points x = 0 and x = L is fulfilled.

Remark 4 The nonlocal elasto-static problem of a beam onXRDWieghardt elastic foundation does not require
to postulate the existence of fictitious forces at the beam end points, as in the MRD model, in order to obtain
a well-posed nonlocal model.
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6 Numerical applications

In this section, we will show some numerical results of technical interest to illustrate the effectiveness of the
proposed XRD model for the analysis of Bernoulli–Euler beams on Wieghardt foundation. Hence, free-beam,
fully clamped beam and simply supported beam under uniform load are considered. The results are presented
in tabular and graphical forms.

The solution of the nonlocal elasto-static problem for a beam on Wieghardt foundation can be obtained
using the nonlocal RD differential problem reported in Box 2, the nonlocal MRD differential problem reported
in Box 4 and the nonlocal XRD differential problem reported in Box 6.

For illustration purpose, we consider the nonlocal elasto-static problem expressed in a non-dimensional
form by introducing the following non-dimensional variables

ξ = x

L
, λ = Lc

L
, v∗ = v

L
, q∗

y = qyL3

IE
, k∗ = kL4

IE
,

r∗ = r L3

IE
, M∗ = ML

IE
, T ∗ = T L2

IE
, R∗

i = Ri L2

IE
(32)

with i ∈ {1, 2}. We assume that the non-dimensional length scale parameter is λ ∈ {0, 0.10, 0.20, 0.30, 0.40,
0.50} and the non-dimensional Winkler modulus is k∗ ∈ {0, 0.4, 2, 10, 20}.

6.1 Fully clamped beam on Wieghardt foundation under uniformly distributed load

Let us consider a fully clamped beam on aWieghardt elastic foundation subjected to non-dimensional uniform
transverse load q∗

y = −1.

6.1.1 Solution of the fully clamped beam using the RD model

The solution of the fully clamped beam on RD Wieghardt foundation using the differential approach can be
got by solving Eq. (15)1 of Box 2 rewritten in the non-dimensional form

∂4ξ v∗ (ξ) − k∗λ2∂2ξ v∗(ξ) + k∗v∗(ξ) = −1 (33)

subject to the non-dimensional classical kinematic boundary conditions fromEq. (15)2, i.e. v∗(0) = 0,ϕ∗(0) =
0, v∗(1) = 0, ϕ∗(1) = 0, and the FBCs as Eq. (15)3−4 given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v∗(0) = 0
∂ξ v

∗ (ξ)
∣∣
ξ=0 = 0

v∗(1) = 0
∂ξ v

∗ (ξ)
∣∣
ξ=1 = 0

∂ξ v
∗ (ξ)

∣∣
ξ=0 − 1

λ
v∗ (0) = 0

∂ξ v
∗ (ξ)

∣∣
ξ=1 + 1

λ
v∗ (1) = 0.

(34)

Considering the kinematic boundary conditions Eq. (34)1,2, at ξ = 0, and Eq. (34)3,4, at ξ = 1, it is
immediate to prove that the FBCs as Eq. (34)5,6 hold true.

Accordingly, the fourth-order non-dimensional differential equation (33) and the non-dimensional classical
kinematic boundary conditions Eq. (34)1÷4 provide the solution of the fully clamped beam on RD Wieghardt
foundation.

The non-dimensional reactions r∗ follow from Eq. (16) in terms of transverse displacement v∗ as

r∗(ξ) = k∗v∗ (ξ) − k∗λ2∂2ξ v∗ (ξ) . (35)

Non-dimensional bending moment and shear force are given by M∗(x) = ∂2ξ v∗ (ξ) and T (x) = −∂3ξ v∗ (ξ).
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Remark 5 The solution of the fully clamped beam on MRDWieghardt foundation is got by solving Eq. (21)1
of Box 4 that, in the non-dimensional form, coincides to Eq. (33). Moreover, the non-dimensional classical
kinematic boundary conditions at beam end points ξ = {0, 1} Eq. (21)2 and FBCs as Eq. (21) 3−4 are given
by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v∗(0) = 0
∂ξ v

∗ (ξ)
∣∣
ξ=0 = 0

v∗(1) = 0
∂ξ v

∗ (ξ)
∣∣
ξ=1 = 0

∂ξ v
∗ (ξ)

∣∣
ξ=0 − 1

λ
v∗ (0) + R∗

1

λ2k∗ = 0

∂ξ v
∗ (ξ)

∣∣
ξ=1 + 1

λ
v∗ (1) − R∗

2

λ2k∗ = 0.

(36)

Considering the kinematic boundary conditions Eq. (36)1÷4, at ξ = 0 and ξ = 1, it is immediate to prove that
the FBCs as Eq. (36)5,6 yield the vanishing of the fictitious forces, i.e. R∗

1 = R∗
2 = 0. As a consequence, the

MRD model reduces to the RD model previously reported.

6.1.2 Solution of the fully clamped beam using the XRD model

The solution of the fully clamped beam on XRDWieghardt foundation using the differential approach can be
got by solving Eq. (28)1 of Box 6 rewritten in the non-dimensional form

−α∂6ξ v∗ (ξ) + 1

λ2
∂4ξ v∗ (ξ) − k∗∂2ξ v∗ (ξ) + k∗

λ2
v∗ (ξ) = − 1

λ2
(37)

equipped with the classical kinematic boundary conditions at the beam end points ξ = {0, 1} following from
Eq. (28)2 and the XFBCs following from Eq. (28)3−4 of Box 6 in the non-dimensional form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v∗(0) = 0
∂ξ v

∗ (ξ)
∣∣
ξ=0 = 0

v∗(1) = 0
∂ξ v

∗ (ξ)
∣∣
ξ=1 = 0

∂ξ v
∗(ξ)

∣∣
ξ=0 + α

k∗ ∂5ξ v∗(ξ)

∣∣∣
x=0

− α

k∗λ
∂4ξ v∗(ξ)

∣∣∣
x=0

− 1

λ
v∗(0)

= − α

k∗λ
q∗
y

∂ξ v
∗(ξ)

∣∣
ξ=1 + α

k∗ ∂5ξ v∗(ξ)

∣∣∣
ξ=1

+ α

k∗λ
∂4ξ v∗(ξ)

∣∣∣
ξ=1

+ 1

λ
v∗(1)

= α

k∗λ
q∗
y .

(38)

The non-dimensional reactions r∗ follow from Eq. (22) in terms of non-dimensional transverse dis-
placement v∗. Non-dimensional bending moment and shear force are given by M∗(x) = ∂2ξ v∗ (ξ) and

T (x) = −∂3ξ v∗ (ξ).
The solution of a beam onWinkler foundation is recovered by letting λ → 0+ and the classical Bernoulli–

Euler beam with no elastic foundation (NEF) is obtained for k∗ → 0+. The maximum non-dimensional

displacement for NEF beam is v∗
L(1/2) = 1

384
= 0.00260417. The non-dimensional midpoint bending

moment for NEF beam is M∗
L(1/2) = 1

24
= 0.04167 and the maximum non-dimensional shear force for NEF

beam is T ∗
L(1) = 0.5.

The maximum non-dimensional transverse deflection v∗, reaction r∗ and bending moment M∗ at the
midpoint ξ = 1/2 of the fully clamped beam subject to uniform transverse load are presented in Tables 1,
2 and 3 using the RD and XRD models for several values of non-dimensional Winkler parameter k∗ and
non-dimensional length scale parameter λ. The mixture parameter in the XRD model is α = 0.3 .

A stiffening response is exhibited by the RD and XRD methods for increasing the nonlocal parameter λ
or for increasing values of the non-dimensional Winkler parameter k∗, see Table 1.
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Table 1 Fully clamped beam under non-dimensional uniform load q∗
y = −1

v∗(1/2)
RD XRD

λ k∗= 0.4 k∗= 2 k∗= 10 k∗= 20 k∗= 0.4 k∗= 2 k∗= 10 k∗= 20

0 −0.00260206 −0.00259368 −0.00255256 −0.00250294 −0.00260206 −0.00259368 −0.00255256 −0.00250294
0.1 −0.0026018 −0.00259239 −0.00254632 −0.00249095 −0.0026019 −0.00259286 −0.00254861 −0.00249534
0.2 −0.00260102 −0.00258852 −0.00252777 −0.0024557 −0.00260154 −0.00259108 −0.00254002 −0.00247892
0.3 −0.00259972 −0.00258211 −0.00249747 −0.00239913 −0.00260116 −0.00258921 −0.00253102 −0.00246183
0.4 −0.00259791 −0.00257318 −0.00245625 −0.00232422 −0.00260083 −0.00258756 −0.00252318 −0.00244702
0.5 −0.00259558 −0.00256179 −0.00240525 −0.00223461 −0.00260055 −0.00258618 −0.00251663 −0.00243472

Non-dimensional maximum displacement v∗ (1/2) versus non-dimensional length scale parameter λ evaluated by the non-
dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the RD model and XRD model with α = 0.3

(a)

(b)

Fig. 2 Non-dimensional transverse deflection v∗ for increasing nonlocal parameter λ with k∗ = 10 by a the RD method and b
the XRD method

The non-dimensional transverse deflection v∗ for increasing the nonlocal parameter λ is plotted in Fig. 2a
for the RD method and Fig. 2b for the XRD method with k∗ = 10.

The midpoint non-dimensional displacement v∗(1/2) is plotted in terms of the nonlocal parameter λ for
increasing values of the non-dimensional Winkler parameter k∗ in Fig. 3a for the RD method and in Fig. 3b
for the XRD method.

These results show that the XRD method is softer than the RD method for a given value of the nonlocal
parameter λ or for a given value of the non-dimensional Winkler parameter k∗.
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(a)

(b)

Fig. 3 Non-dimensional displacementv∗(1/2) as functionof the nonlocal parameterλ for increasingvalues of the non-dimensional
Winkler parameter k∗ by a the RD method and b the XRD method

Table 2 Fully clamped beam under non-dimensional uniform load q∗
y = −1

r∗(1/2)
RD XRD

λ k∗= 0.4 k∗ =2 k∗= 10 k∗= 20 k∗= 0.4 k∗= 2 k∗= 10 k∗= 20

0 −0.00104083 −0.00518736 −0.0255256 −0.0500587 −0.00104083 −0.00518736 −0.0255256 −0.0500587
0.1 −0.00120722 −0.00601405 −0.02953 −0.0577618 −0.00114808 −0.00572471 −0.0281322 −0.0550815
0.2 −0.00170619 −0.00848835 −0.0414066 −0.0803577 −0.00138864 −0.00691496 −0.0338849 −0.0661188
0.3 −0.00253703 −0.0125931 −0.0607557 −0.116381 −0.00163097 −0.00811682 −0.0396587 −0.0771164
0.4 −0.00369857 −0.0182999 −0.0869442 −0.163622 −0.00183109 −0.00910807 −0.0443906 −0.0860614
0.5 −0.0051892 −0.0255698 −0.119151 −0.219411 −0.00198956 −0.00989206 −0.0481118 −0.0930476

Non-dimensional midpoint foundation reaction r∗ (1/2) versus non-dimensional length scale parameter λ evaluated by non-
dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in RD and XRD model with α = 0.3

The non-dimensional reactions r∗ by the RD and XRD methods increase for increasing the nonlocal
parameter λ or for increasing values of the non-dimensional Winkler parameter k∗, see Table 2.

The plot of the non-dimensional reactions r∗ for increasing the nonlocal parameter λ is reported in Fig. 4a
for the RDmethod with k∗ = 10 and in Fig. 4b for the XRDmethod with k∗ = 10. The inversion of the sign of
the reactions r near the end points of the beam, in both models, is acceptable by remembering the hypothesis
of bilaterality of the continuous constraints.
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(a)

(b)

Fig. 4 Non-dimensional reactions r∗ for increasing nonlocal parameter λ with k∗ = 10 by a the RD method and b the XRD
method

The midpoint non-dimensional reactions r∗(1/2) are plotted in terms of the nonlocal parameter λ for
increasing values of the non-dimensional Winkler parameter k∗ in Fig. 5a for the RD method and in Fig. 5b
for the XRD method.

The non-dimensional bending moment M∗ by the RD and XRD methods decreases for increasing the
nonlocal parameter λ for a given k∗ or for increasing values of the non-dimensional Winkler parameter k∗, see
Table 3.

The plot of the non-dimensional bending moment M∗ for increasing the nonlocal parameter λ is reported
in Fig. 6a for the RD method with k∗ = 10 and in Fig. 6b for the XRD method with k∗ = 10.

The midpoint non-dimensional bending moment M∗(1/2) is plotted in terms of the nonlocal parameter λ
for increasing values of the non-dimensional Winkler parameter k∗ in Fig. 7a for the RDmethod and in Fig. 7b
for the XRD method. The non-dimensional bending moment M∗(1/2) by the XRD method is greater than the
corresponding value of the RD method.

It is worth noting that the XRD model provides stiffening transverse displacements v∗ for increasing
nonlocal parameter λ. This result is related to the Wieghardt integral convolution (i.e. second term of the
constitutive law in Eq. (24)) since increasing λ lowers the peak of the averaging kernel and extends its support.
The predominant effect of the peak reduction leads to a decrease of the foundation elastic compliance 1/k∗ that
motivates the stiffening mechanical behavior. Accordingly, bending moment M∗ and shear force T ∗ decrease
for increasing nonlocal parameter λ. Moreover, it is apparent from the parametric plots that increasing k∗
provides a reduction of beam structural responses and an increase of reactions r∗ due to the increase of the
foundation elastic stiffness.
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(a)

(b)

Fig. 5 Midpoint non-dimensional reactions r∗(1/2) as function of the nonlocal parameter λ for increasing values of the non-
dimensional Winkler parameter k∗ by a the RD method and b the XRD method

Table 3 Fully clamped beam under non-dimensional uniform load q∗
y = −1

M∗(1/2)
RD XRD

λ k∗= 0.4 k∗= 2 k∗= 10 k∗= 20 k∗= 0.4 k∗= 2 k∗= 10 k∗= 20

0 0.0416307 0.0414876 0.0407853 0.0399378 0.0416307 0.0414876 0.0407853 0.0399378
0.1 0.0416259 0.0414635 0.0406686 0.0397137 0.0416277 0.0414722 0.0407109 0.0397947
0.2 0.0416113 0.0413913 0.0403222 0.0390547 0.0416209 0.0414387 0.0405493 0.0394854
0.3 0.0415871 0.0412715 0.0397567 0.0379992 0.0416139 0.0414041 0.040383 0.0391692
0.4 0.0415532 0.0411049 0.0389885 0.0366054 0.0416079 0.0413743 0.040241 0.0389009
0.5 0.0415097 0.0408924 0.0380395 0.0349437 0.0416029 0.0413498 0.0401246 0.0386823

Non-dimensional midpoint bending moment M∗ (1/2) versus non-dimensional length scale parameter λ evaluated by non-
dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in RD and XRD models with α = 0.3

6.2 Free beam on Wieghardt foundation under uniformly distributed load

Let us consider a free beam on Wieghardt elastic foundation under non-dimensional uniform transverse load
q∗
y = −1.
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(a)

(b)

Fig. 6 Non-dimensional bending moment M∗ for increasing nonlocal parameter λ with k∗ = 10 by a the RD method and b the
XRD method

6.2.1 Solution of the free beam using the RD model

The solution of the free beam on RD Wieghardt foundation using the differential approach follows from
Eq. (15)1 of Box 2 rewritten in non-dimensional form

∂4ξ v∗ (ξ) − k∗λ2∂2ξ v∗(ξ) + k∗v∗(ξ) = −1 (39)

subject to the non-dimensional classical static boundary conditions from Eq. (15)2 and the FBCs Eq. (15)3−4
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ξ v∗ (ξ)

∣∣∣
ξ=0

= 0

∂3ξ v∗ (ξ)

∣∣∣
ξ=0

= 0

∂2ξ v∗ (ξ)

∣∣∣
ξ=1

= 0

∂3ξ v∗ (ξ)

∣∣∣
ξ=1

= 0

∂ξ v
∗ (ξ)

∣∣
ξ=0 = 1

λ
v∗ (0)

∂ξ v
∗ (ξ)

∣∣
ξ=1 = −1

λ
v∗ (1) .

(40)
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(a)

(b)

Fig. 7 Midpoint non-dimensional bending moment M∗(1/2) as function of the nonlocal parameter λ for increasing values of the
non-dimensional Winkler parameter k∗ by a the RD method and b the XRD method

The RD model has no solution since the FBCs Eq. (40)5−6 are incompatible with the fact that transverse
displacements and rotations of beam end points at ξ ∈ {0, 1} are free. Hence, the fourth-order differential
equation Eq. (39), equipped with six boundary conditions Eq. (40), cannot be solved.

6.2.2 Solution of the free beam using the MRD model

The solution of the free beam on MRD Wieghardt foundation using the differential approach can be got by
solving Eq. (21)1 of Box 4, rewritten in the non-dimensional form

∂4ξ v∗ (ξ) − k∗λ2∂2ξ v∗(ξ) + k∗v∗(ξ) = −1. (41)

Recalling the assumption of existence of two fictitious forces R∗
1 and R∗

2 at the points ξ = {0, 1} of the
surface ofWieghardt foundation, the non-dimensional static boundary conditions Eq. (21)2 at beam end points
are M∗(0) = 0, T ∗(0) = R∗

1 , M
∗(1) = 0, T ∗(1) = −R∗

2 and the MFBCs are given by Eq. (21)3−4. Hence,
we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ξ v∗ (ξ)

∣∣∣
ξ=0

= 0

∂3ξ v∗ (ξ)

∣∣∣
ξ=0

= −R∗
1

∂2ξ v∗ (ξ)

∣∣∣
ξ=1

= 0

∂3ξ v∗ (ξ)

∣∣∣
ξ=1

= R∗
2

∂xv
∗ (ξ)|ξ=0 − 1

Lc
v∗ (0) + R∗

1

L2
ck

= 0

∂xv
∗ (ξ)|ξ=1 + 1

Lc
v∗ (1) − R∗

2

L2
ck

= 0.

(42)

The four integration constants associated with the differential equation (41) and the two fictitious forces(
R∗
1 , R

∗
2

)
can be obtained by solving the MFBCs as Eq. (42). Hence, the non-dimensional transverse displace-

ment v∗ is obtained.
The non-dimensional reactions r∗ follow from Eq. (22) in terms of non-dimensional transverse displace-

ment v∗ as
r∗(ξ) = k∗v∗ (ξ) − k∗λ2∂2ξ v∗ (ξ) . (43)

Non-dimensional bending moment and shear force are M∗(x) = ∂2ξ v∗ (ξ) and T (x) = −∂3ξ v∗ (ξ).
The transverse displacement fields of the surface of Wieghardt foundation outside the beam interval [0, 1]

are v∗
1MRD, for ξ ≤ 0, and v∗

2MRD, for ξ ≥ 1 , and can be directly evaluated using Eq. (23) in the following
non-dimensional form ⎧⎪⎪⎨

⎪⎪⎩
v∗
1MRD (ξ) = v∗ (0) exp

(
−|ξ |
Lc

)
for ξ ≤ 0

v∗
2MRD (ξ) = v∗ (1) exp

(
−ξ − 1

λ

)
for ξ ≥ 1.

(44)

6.2.3 Solution of the free beam using the XRD model

The solution of the free beam on XRD Wieghardt foundation using the differential approach can be provided
by solving Eq. (28)1 of Box 6 rewritten in the non-dimensional form

−α∂6ξ v∗ (ξ) + 1

λ2
∂4ξ v∗ (ξ) − k∗∂2ξ v∗ (ξ) + k∗

λ2
v∗ (ξ) = − 1

λ2
(45)

equipped with the classical static boundary conditions at beam end points ξ = {0, 1} following from Eq. (28)2,
i.e. M∗(0) = 0, T ∗(0) = 0, M∗(1) = 0, T ∗(1) = 0, and the XFBCs following from Eq. (28)3−4 in non-
dimensional form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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− α

k∗λ
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− 1

λ
v∗(0)

= − α

k∗λ
q∗
y

∂ξ v
∗(ξ)

∣∣
ξ=1 + α

k∗ ∂5ξ v∗(ξ)

∣∣∣
ξ=1

+ α

k∗λ
∂4ξ v∗(ξ)

∣∣∣
ξ=1

+ 1

λ
v∗(1)

= α

k∗λ
q∗
y .

(46)

The non-dimensional reactions r∗ are given by Eq. (22) in terms of transverse displacement v∗. Non-
dimensional bending moment and shear force are M∗(x) = ∂2ξ v∗ (ξ) and T (x) = −∂3ξ v∗ (ξ).
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Table 4 Free beam under non-dimensional uniform load q∗
y = −1

v∗(1/2)
MRD XRD

λ k∗= 0.4 k∗= 2 k∗= 10 k∗= 20 k∗= 0.4 k∗= 2 k∗= 10 k∗= 20

0 −2.5 −0.5 −0.1 −0.05 −2.5 −0.5 −0.1 −0.05
0.1 −2.08434 −0.41767 −0.0843029 −0.0425966 −2.29295 −0.458848 −0.0920216 −0.0461603
0.2 −1.78773 −0.359129 −0.0732901 −0.0374405 −2.11747 −0.423845 −0.0851057 −0.0427495
0.3 −1.56541 −0.315348 −0.0650625 −0.0335266 −1.96749 −0.393834 −0.0790887 −0.0397299
0.4 −1.39259 −0.28135 −0.0586113 −0.030365 −1.83976 −0.368241 −0.0739239 −0.0371196
0.5 −1.25437 −0.254164 −0.0533617 −0.0277079 −1.73172 −0.346585 −0.0695454 −0.0349025

Non-dimensional maximum displacement v∗ (1/2) versus non-dimensional length scale parameter λ evaluated by non-
dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in MRD and XRD models with α = 0.3

Table 5 Free beam under non-dimensional uniform load q∗
y = −1

r∗(1/2)
MRD XRD

λ k∗= 0.4 k∗= 2 k∗= 10 k∗= 20 k∗= 0.4 k∗= 2 k∗= 10 k∗= 20

0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0
0.1 −0.833821 −0.835754 −0.845019 −0.85574 −0.917365 −0.91797 −0.920912 −0.924404
0.2 −0.71566 −0.721065 −0.746027 −0.773076 −0.861657 −0.862747 −0.867997 −0.874127
0.3 −0.627843 −0.638892 −0.687364 −0.735528 −0.849176 −0.850489 −0.856767 −0.864004
0.4 −0.560558 −0.579707 −0.658509 −0.729175 −0.860479 −0.861788 −0.868019 −0.87514
0.5 −0.507919 −0.537668 −0.651312 −0.742323 −0.878535 −0.879734 −0.885423 −0.891886

Non-dimensional midpoint foundation reaction r∗ (1/2) versus the non-dimensional length scale parameter λ evaluated by the
non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in MRD and XRD models with α = 0.3

Remark 6 The proposed XRD model does not require introduction of fictitious forces at end points of the
beam as it is necessary in the MRD model to obtain a well-posed nonlocal problem.

The transverse displacement fields of the surface of Wieghardt foundation outside the beam interval [0, 1]
of the XRD model are v∗

1X RD , for ξ ≤ 0, and v∗
2X RD , for ξ ≥ 1 and follow from the non-dimensional form of

Eq. (30)

v∗
1X RD (ξ) = α

r∗ (0)

k∗ exp

(
ξ

λ

)
+ (1 − α)

1∫

0

1

2λk∗ exp

(
ξ − t

λ

)
r∗ (t) dt for ξ ≤ 0

v∗
2X RD (ξ) = α

r∗ (1)

k∗ exp

(
−ξ − 1

λ

)
+ (1 − α)

1∫

0

1

2λk∗ exp

(
−ξ − t

λ

)
r∗ (t) dt for ξ ≥ 1 (47)

being r∗ the reactions obtained by the XRD model.
The maximum non-dimensional transverse displacements v∗, reactions r∗ and bending moments M∗ at

the midpoint ξ = 1/2 of the free beam subject to uniform transverse load q∗
y = −1 are presented in Tables

4, 5 and 6 using the MRD and XRD models for several values of non-dimensional Winkler parameter k∗ and
length scale parameter λ. The mixture parameter in the XRD model is α = 0.3 .

The MRD and XRD methods yield the classical solution of a beam on a Winkler foundation by letting
λ → 0+.

The non-dimensional fictitious forces R∗
1 and R∗

2 of the MRD method are coincident, i.e. R∗
1 = R∗

2 , and
are reported in Table 7 in terms of non-dimensional Winkler parameter k∗ and length scale parameter λ. The
fictitious forces increase for increasing the length scale parameter λ and decrease for increasing the Winkler
parameter k∗.

The non-dimensional transverse displacement v∗ of the beam in the interval [0.5, 1] and of the surface of
Wieghardt foundation outside the beam in the interval [1, 3] are reported in Table 8 for MRD and XRDmodels
for increasing Winkler parameter k∗ and of the length scale parameter λ = 0.5.
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Table 6 Free beam under non-dimensional uniform load q∗
y = −1

M∗(1/2)
MRD XRD

λ k∗= 0.4 k∗= 2 k∗= 10 k∗= 20 k∗= 0.4 k∗= 2 k∗= 10 k∗= 20

0 0 0 0 0 0 0 0 0
0.1 0.0207943 0.0206397 0.0198977 0.0190375 0.00808771 0.00804776 0.00785343 0.0076226
0.2 0.0355889 0.0350958 0.0328139 0.0303315 0.0109133 0.0108432 0.0105058 0.0101115
0.3 0.0465999 0.0455298 0.0408201 0.0361086 0.0107068 0.0106254 0.0102357 0.00978628
0.4 0.0550571 0.0531471 0.0452469 0.038086 0.00942538 0.00934582 0.00896703 0.00853395
0.5 0.0616985 0.0586827 0.0470779 0.037633 0.00799556 0.00792354 0.00758179 0.00719336

Non-dimensional midpoint bending moment M∗ (1/2) versus the non-dimensional length scale parameter λ evaluated by the
non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in MRD and XRD models with α = 0.3

Table 7 Free beam under non-dimensional uniform load q∗
y = −1

R∗
1 = R∗

2

MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20

0.1 −0.0832594 −0.0829661 −0.0815572 −0.0799202
0.2 −0.142532 −0.141251 −0.135315 −0.128836
0.3 −0.186708 −0.183624 −0.170018 −0.156337
0.4 −0.220721 −0.214963 −0.191062 −0.169231
0.5 −0.247531 −0.23823 −0.202257 −0.172651

Non-dimensional parameters R∗
1 = R∗

2 versus non-dimensional length scale parameter λ evaluated by the non-dimensional
Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the MRD model

Table 8 Free beam subjected to non-dimensional uniform load q∗
y = −1, with non-dimensional length scale parameter λ = 0.5

v∗(ξ) wi th λ = 0.5

MRD XRD

ξ k∗= 0.4 k∗= 2 k∗= 10 k∗= 20 k∗= 0.4 k∗= 2 k∗= 10 k∗= 20

0.5 −1.25437 −0.254164 −0.0533617 −0.0277079 −1.73172 −0.346585 −0.0695454 −0.0349025
0.6 −1.25407 −0.253872 −0.0531278 −0.0275208 −1.73168 −0.346545 −0.069508 −0.034867
0.7 −1.25317 −0.253021 −0.0524435 −0.0269726 −1.73157 −0.346434 −0.0694012 −0.0347657
0.8 −1.25176 −0.251679 −0.0513622 −0.0261034 −1.7314 −0.346266 −0.0692406 −0.0346131
0.9 −1.24996 −0.249964 −0.049975 −0.0249838 −1.73119 −0.346065 −0.0690476 −0.0344298
1.0 −1.24794 −0.24804 −0.0484141 −0.0237196 −1.73098 −0.345851 −0.0688431 −0.0342356
1.2 −0.836521 −0.166266 −0.032453 −0.0158997 −1.16031 −0.231831 −0.0461469 −0.0229488
1.4 −0.560737 −0.111451 −0.0217539 −0.0106579 −0.777779 −0.155401 −0.0309332 −0.015383
1.6 −0.375873 −0.0747081 −0.0145821 −0.0071442 −0.521361 −0.104168 −0.0207351 −0.0103115
1.8 −0.251955 −0.0500784 −0.00977464 −0.0047889 −0.349479 −0.0698261 −0.0138992 −0.00691204
2.0 −0.168891 −0.0335685 −0.00655214 −0.00321009 −0.234263 −0.0468059 −0.0093169 −0.00463328
2.2 −0.113211 −0.0225017 −0.00439203 −0.00215179 −0.157031 −0.0313749 −0.0062453 −0.00310578
2.4 −0.0758875 −0.0150833 −0.00294407 −0.00144239 −0.105261 −0.0210312 −0.00418635 −0.00208187
2.6 −0.0508689 −0.0101106 −0.00197347 −0.000966862 −0.0705585 −0.0140977 −0.0028062 −0.00139552
2.8 −0.0340984 −0.00677737 −0.00132285 −0.000648107 −0.0472968 −0.00944994 −0.00188105 −0.000935443
3.0 −0.0228569 −0.00454301 −0.000886735 −0.000434439 −0.031704 −0.00633448 −0.00126091 −0.000627046

Non-dimensional displacement v∗ (ξ) evaluated by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in MRD and
XRD models with α = 0.3

A stiffening response is exhibited byMRD andXRDmethods for increasing length scale parameter λ or the
non-dimensional Winkler parameter k∗, see Table 1. Note that the displacements of the surface of Wieghardt
foundation obtained by the XRDmethod are greater than the corresponding ones provided by theMRDmethod
for a given λ and k∗, see Table 8.

The non-dimensional transverse displacement v∗ obtained by the MRD method is plotted in Fig. 8a for
increasing the length scale parameter λ with k∗ = 10. The function v∗ presents a slope discontinuity at the
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(a)

(b)

Fig. 8 Non-dimensional transverse displacement v∗ for increasing length scale parameter λ with k∗ = 10 by a MRD and b XRD
methods

beam end points ξ = 0 and ξ = 1. The non-dimensional transverse displacement v∗ obtained by the XRD
method is reported in Fig. 8b for increasing the length scale parameter λ with k∗ = 10 where a zoom of the
beam deflection is reported.

The midpoint non-dimensional displacement v∗(1/2) is plotted in terms of the length scale parameter λ
for increasing values of the non-dimensional Winkler parameter k∗ in Fig. 9a for the MRD method and in
Fig. 9b for the XRD method. The plot of v∗(1/2) in terms of the non-dimensional Winkler parameter k∗ for
increasing values of the length scale parameter λ is reported in Fig. 9c for the MRD method and in Fig. 9d for
the XRD method.

The plot of r∗ by the MRD and XRD methods is reported in terms of the length scale parameter λ in
Fig. 10a, b with k∗ = 10 . The resultant of the reactions r∗ for the XRD method is equal to the resultant of the
applied load for any value of λ and k∗ . On the contrary, the resultant of the reactions r∗ for theMRD method
is equal to the resultant of the applied load plus the fictitious forces applied to the beam.

The midpoint non-dimensional reactions r∗(1/2) are plotted in terms of length scale parameter λ for
increasing non-dimensional Winkler parameter k∗ in Fig. 11a, b for the MRD and XRD method respectively.
The non-dimensional reactions r∗(1/2) by the XRDmethod decrease for increasing the length scale parameter
λ ∈ {

0+, 0.1, 0.2, 0.3
}
and then increase for λ ∈ {0.4, 0.5} for any value of k∗. Moreover, the non-dimensional

reactions r∗(1/2) by the XRD method increase for increasing the non-dimensional Winkler parameter k∗, see
Table 5.

The non-dimensional bending moment M∗ and shear force T ∗ by the MRDmethod are plotted in Fig. 12a,
b with k∗ = 10. The fictitious forces at the beam end points yield a non-vanishing value of the shear force
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(a)

(c)

Fig. 9 Midpoint non-dimensional displacement v∗(1/2) as function of the length scale parameter λ for increasing values of the
non-dimensional Winkler parameter k∗ by a the MRD method and b the XRD method. Midpoint non-dimensional displacement
v∗(1/2) as function of the non-dimensional Winkler parameter k∗ for increasing length scale parameter λ by c the MRD method
and d the XRD method
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(d)

Fig. 9 continued

(a)

(b)

Fig. 10 Non-dimensional reactions r∗ for increasing nonlocal parameter λ with k∗ = 10 by a the RD method and b the XRD
method
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(a)

(b)

Fig. 11 Midpoint non-dimensional reactions r∗(1/2) as function of the nonlocal parameter λ for increasing values of the non-
dimensional Winkler parameter k∗ by a the RD method and b the XRD method

at ξ = 0 and ξ = 1. The non-dimensional bending moment M∗ and shear force T ∗ by the XRD method are
plotted in Fig. 13a, b with k∗ = 10 and vanishing values of T ∗ at the beam end points are provided. The
maximum value of T ∗ is attained at an interior point of the beam depending on λ.

As shown by the obtained results, stiffening transverse displacements v∗ are got by the XRD model for
increasing nonlocal parameter λ. This result is due to the special properties fulfilled by the kernel that lead
to a decrease of the foundation elastic compliance 1/k∗ in the integral convolution of the constitutive law
Eq. (24). Bending moment M∗ and shear force T ∗ consequently decrease for increasing nonlocal parameter
λ. Moreover, it has been shown that increasing the foundation elastic stiffness k∗ provides a reduction of the
beam displacements, bending moments and shear forces and an increase of reactions r∗.

7 Concluding remarks

The main results of the present paper may be summarized as follows.

1. Wieghardt’s nonlocal theory of elasticity has been extended by developing a well-posed local/nonlocal
mixture able to model effectively reaction-driven foundations underlying Bernoulli–Euler beams. Unlike
classical reaction-driven strategies, such as [16], no fictitious boundary reactive forces have been formulated
in the proposed model to ensure mathematical consistency.

2. The mixture local/nonlocal integral model of Wieghardt theory has been proven in Prop. 3 to be equivalent
to a simpler differential formulation, equipped with non-classical foundation constitutive boundary condi-
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(a)

(b)

Fig. 12 Non-dimensional bending moment M∗ (a) and shear force T ∗ (b) obtained by the MRD method with k∗ = 10

tions, which can be conveniently exploited to analytically solve applicative problems of beams resting on
elastic foundation.

3. The elasto-static problem of a fully clamped Bernoulli–Euler beam resting on classicalWieghardt nonlocal
foundation has been shown to bewell-posed, detecting thus an exception regarding applicability of classical
Wieghardt theory to structural mechanics. This result, implication of Proposition 3, is due to the special
kinematic boundary conditions of fully clamped beams that do not conflict with the foundation constitutive
boundary conditions as Eq. (14).

4. The proposed nonlocal methodology has been applied to evaluate parametric solutions of exemplar case
problems of soil-beam interaction.
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(a)

(b)

Fig. 13 Non-dimensional bending moment M∗ (a) and shear force T ∗ (b) obtained by the XRD method with k∗ = 10
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Appendix A

For conciseness of treatment, let us prove Proposition 3 extending the special result in ([56], Eqs. (4), (5)). It
is worth noting that Proposition 1 pertaining to the nonlocal RD model is recovered by setting α = 0.
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Proposition Equivalence property for the XRD model of Wieghardt foundation. The following nonlocal con-
stitutive law Eq. (24) equipped with the bi-exponential kernel

v (x) = α
r (x)

k
+ (1 − α)

L∫

0

φ (x − t, Lc)
r (t)

k
dt, (48)

with x ∈ [0, L] , is equivalent to the differential relation

1

L2
c
v(x) − ∂2x v(x) = 1

kL2
c
r(x) − α

k
∂2x r(x) (49)

subject to the following two foundation boundary conditions (XFBCs)

⎧⎪⎨
⎪⎩

∂xv(x)|x=0 − 1

Lc
v(0) = α

k
∂xr(x)|x=0 − α

kLc
r(0)

∂xv(L)|x=L + 1

Lc
v(L) = α

k
∂xr(x)|x=L + α

kLc
r(L).

(50)

Proof Since the bi-exponential averaging function is given by

φ(x, Lc) = 1

2Lc
exp

(
−|x |
Lc

)
, (51)

and the integral convolution Eq. (48) can be explicitly rewritten in the form

v (x) = α
r (x)

k
+ (1 − α)

⎡
⎣

x∫

0

1

2Lc
exp

(
− x − t

Lc

)
r (t)

k
dt

+
L∫

x

1

2Lc
exp

(
x − t

Lc

)
r (t)

k
dt

⎤
⎦ , (52)

a direct evaluation provides the first derivative of the transverse displacement v

∂xv (x) = α

k
∂xr (x) + 1 − α

2Lck
r(x) − 1 − α

Lc

x∫

0

φ (x − t, Lc)
r (t)

k
dt

−1 − α

2Lck
r(x) + 1 − α

Lc

L∫

x

φ (x − t, Lc)
r (t)

k
dt

= α

k
∂xr (x) − 1 − α

Lc

x∫

0

φ (x − t, Lc)
r (t)

k
dt

+1 − α

Lc

L∫

x

φ (x − t, Lc)
r (t)

k
dt. (53)
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Analogously, the second derivative of the convolutions Eq. (48) follows from Eq. (53) to get

∂2x v (x) = α

k
∂2x r (x) − 1 − α

2L2
ck

r(x) + 1 − α

L2
c

x∫

0

φ (x − t, Lc)
r (t)

k
dt

−1 − α

2L2
ck

r(x) + 1 − α

L2
c

L∫

x

φ (x − t, Lc)
r (t)

k
dt

= α

k
∂2x r (x) − 1 − α

L2
ck

r (x) + 1 − α

L2
c

L∫

0

φ (x − t, Lc)
r (t)

k
dt. (54)

Recalling Eq. (48) and rearranging the terms in Eq. (54), the equivalent differential equation (49) is recovered.
The XFBCs Eq. (50) of the nonlocal model followed by evaluating Eq. (53) at beam boundary points x = 0
and x = L . In fact, recalling Eq. (48), we have at x = 0

∂xv (x)|x=0 = α

k
∂xr (x)|x=0 + 1 − α

Lc

⎡
⎣

L∫

0

φ (−t, Lc)
r (t)

k
dt

⎤
⎦

= α

k
∂xr (x)|x=0 − α

kLc
r (0) + 1

Lc
v (0) (55)

and the XFBC in Eq. (50)1 is recovered.
Analogously, setting x = L in Eq. (53) we get

∂xv (x)|x=L = α

k
∂xr (x)|x=L − 1 − α

Lc

⎡
⎣

L∫

0

φ (L − t, Lc)
r (t)

k
dt

⎤
⎦

= α

k
∂xr (x)|x=L + α

kLc
r (L) − 1

Lc
v (L) (56)

and the XFBC in Eq. (50)2 is recovered.
The uniqueness of the solution of Eq. (49) is consequent to the fact that the homogeneous differential problem
(r(x) = 0), with the FBCs, admits only the trivial solution.

Appendix B

Let us prove that the integral formulation Eq. (17) of the MRD nonlocal model can be replaced with an
equivalent differential formulation and foundation boundary conditions, involving the fictitious forces R1 and
R2, according to the next Proposition.

Proposition Equivalence property for the model ofWieghardt foundation. The following nonlocal constitutive
law Eq. (17) equipped with the bi-exponential kernel

v (x) =
L∫

0

φ (x − t, Lc)
r (t)

k
dt + R1

2Lck
exp

(
− x

Lc

)
+ R2

2Lck
exp

(
x − L

Lc

)
, (57)

with x ∈ [0, L] , is equivalent to the differential relation

1

L2
c
v (x) − ∂2x v (x) = 1

kL2
c
r(x) (58)
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subject to the following two modified foundation boundary conditions (MFBCs)⎧⎪⎪⎨
⎪⎪⎩

∂xv (x)|x=0 − 1

Lc
v (0) + R1

L2
ck

= 0

∂xv (x)|x=L + 1

Lc
v (L) − R2

L2
ck

= 0.
(59)

Proof Recalling that the expression of the bi-exponential averaging function is given by

φ(x, Lc) = 1

2Lc
exp

(
−|x |
Lc

)
, (60)

and the integral convolution Eq. (57) can be rewritten in the form

v (x) =
x∫

0

φ (x − t, Lc)
r (t)

k
dt +

L∫

x

φ (x − t, Lc)
r (t)

k
dt

+ R1

2Lck
exp

(
− x

Lc

)
+ R2

2Lck
exp

(
x − L

Lc

)
, (61)

a direct evaluation provides the first derivative of the transverse displacement v

∂xv (x) = 1

2Lck
r(x) − 1

Lc

x∫

0

φ (x − t, Lc)
r (t)

k
dt

− 1

2Lck
r(x) + 1

Lc

L∫

x

φ (x − t, Lc)
r (t)

k
dt

− R1

2L2
ck

exp

(
− x

Lc

)
+ R2

2L2
ck

exp

(
x − L

Lc

)

= − 1

Lc

x∫

0

φ (x − t, Lc)
r (t)

k
dt

+ 1

Lc

L∫

x

φ (x − t, Lc)
r (t)

k
dt − R1

2L2
ck

exp

(
− x

Lc

)

+ R2

2L2
ck

exp

(
x − L

Lc

)
. (62)

Analogously, the second derivative of Eq. (57) follows from Eq. (62) to get

∂2x v (x) = − 1

2L2
ck

r(x) + 1

L2
c

x∫

0

φ (x − t, Lc)
r (t)

k
dt

− 1

2L2
ck

r(x) + 1

L2
c

L∫

x

φ (x − t, Lc)
r (t)

k
dt

+ R1

2L3
ck

exp

(
− x

Lc

)
+ R2

2L3
ck

exp

(
x − L

Lc

)

= − 1

L2
ck

r (x) + 1

L2
c

L∫

0

φ (x − t, Lc)
r (t)

k
dt

+ R1

2L3
ck

exp

(
− x

Lc

)
+ R2

2L3
ck

exp

(
x − L

Lc

)
. (63)
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Recalling Eq. (57) and rearranging the terms in Eq. (63), the equivalent differential equation (58) is recovered.
The MFBCs Eq. (59) of the nonlocal model follow by evaluating Eq. (62) at beam boundary points x = 0 and
x = L . In fact we have at x = 0

∂xv (x)|x=0 = 1

Lc

L∫

0

φ (−t, Lc)
r (t)

k
dt − R1

2L2
ck

+ R2

2L2
ck

exp

(−L

Lc

)

= 1

Lc
v (0) − R1

L2
ck

(64)

and the MFBC in Eq. (59)1 is recovered.
Analogously, setting x = L in Eq. (62) we get

∂xv (x)|x=L = − 1

Lc

L∫

0

φ (L − t, Lc)
r (t)

k
dt − R1

2L2
ck

exp

(−L

Lc

)
+ R2

2L2
ck

= − 1

Lc
v (L) + R2

L2
ck

(65)

and the MFBC in Eq. (59)2 is recovered. Uniqueness of the solution of Eq. (58) is consequent to the fact that
the homogeneous differential problem, with the MFBCs, admits only the trivial solution. �	
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7. Jankowski, P., Żur, K.K., Kim, J., Lim, C.W., Reddy, J.N.: On the bifurcation buckling and vibration of porous nanobeams.

Compos. Struct. 250, 112632 (2020)
8. Eptaimeros, K.G., Koutsoumaris, C.C., Karyofyllis, I.G.: Eigenfrequencies of microtubules embedded in the cytoplasm by

means of the nonlocal integral elasticity. Acta Mech. 231, 1669–1684 (2020)
9. Eptaimeros, K.G., Koutsoumaris, C.C., Dernikas, I.T., Zisis, T.: Dynamical response of an embedded nanobeam by using

nonlocal integral stress models. Compos. B Eng. 150, 255–26 (2018)
10. Koutsoumaris, CCh., Eptaimeros, K.G.: Nonlocal integral static problems of nanobeams resting on an elastic foundation.

Eur. J. Mech. A Solids 89, 104295 (2021)
11. Wang, Y.H., Tham, L.G., Cheung, Y.K.: Beams and plates on elastic foundations: a review. Prog. Struct. Eng. Mater. 7,

174–182 (2005)
12. Wieghardt, K.: Uber den Balken auf nachgiebiger Unterlage. ZAMM 2(3), 165–184 (1922)
13. Prager, W.: Zur Theorie elastisch gelagerter Konstruktionen. ZAMM 7(5), 354–360 (1931)
14. Neményi, P.: Tragwerke auf elastisch nachgiebiger Unterlage. ZAMM 11(6), 450–463 (1931)
15. van Langendonck, T.: Beams on deformable foundation. Memoires AIPC 22, 113–128 (1962)
16. Sollazzo, A.: Equilibrio della trave su suolo di Wieghardt. Tec. Ital. 31(4), 187–206 (1966)
17. Ylinen, A., Mikkola, M.: A beam on a Wieghardt-type elastic foundation. Int. J. Solids Struct. 3, 617–633 (1967)
18. Smith, T.E.: Buckling of a beam on a Wieghardt-type elastic foundation. ZAMM 49(11), 641–645 (1969)
19. Ruta, G., Elishakoff, I.: Buckling of a column on a Wieghardt foundation. ZAMM 86(8), 617–627 (2006)
20. Anderson, G.L.: The influence of a Wieghardt-type elastic foundation on the stability of some beams subjected to distributed

tangential forces. J. Sound Vib. 44(1), 103–118 (1976)
21. Celep, Z.: Dynamic response of a circular beam on a Wieghardt-type elastic foundation. ZAMM 64(7), 279–286 (1984)
22. De Bellis, M.L., Ruta, G., Elishakoff, I.: Influence of a Wieghardt foundation on the dynamic stability of a fluid conveying

pipe. Arch. Appl. Mech. 80(7), 785–801 (2010)
23. De Bellis, M.L., Ruta, G., Elishakoff, I.: A contribution to the stability of an overhanging pipe conveying fluid. Cont. Mech.

Thermodyn. 27(4–5), 685–701 (2015)
24. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)
25. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)
26. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)



Elasticity problems of beams on reaction-driven nonlocal foundation

27. Di Paola, M., Failla, G., Pirrotta, A., Sofi, A., Zingales, M.: The mechanically based non-local elasticity: an overview of
main results and future challenges. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 371, 20120433 (2013)

28. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave
propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

29. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27
(2017)

30. Rafii-Tabar, H., Ghavanloo, E., Fazelzadeh, S.A.: Nonlocal continuum-based modeling of mechanical characteristics of
nanoscopic structures. Phys. Rep. 638, 1–97 (2016)

31. Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A.: Computational ContinuumMechanics of Nanoscopic Structures, Nonlocal
Elasticity Approaches. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-11650-7

32. Maneshi, M.A., Ghavanloo, E., Fazelzadeh, S.A.: Well-posed nonlocal elasticity model for finite domains and its application
to the mechanical behavior of nanorods. Acta Mech. 231, 4019–4033 (2020)

33. Sedighi, H., Malikan, M.: Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride
hetero-nanotube subject to magneto-thermal environment. Phys. Scr. 95, 055218 (2020)

34. Farajpour, A., Howard, C.Q., Robertson, W.S.: On size-dependent mechanics of nanoplates. Int. J. Eng. Sci. 156, 103368
(2020)
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