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Introduction

The language of Lie pseudoalgebras [BDK1], closely related to that of Lie∗ alge-
bras as in [BD], is useful in giving finite description of infinite-dimensional Lie algebras,
and has proved to be a valuable tool in algebra and representation theory. One of the
main applications of the theory of Lie pseudoalgebras is in the study of representations of
infinite-dimensional linearly compact Lie algebras, to which they are intimately connected
[BDK2, BDK3, BDK4, D].
Shortly after being introduced in [B], vertex algebras were realized as the axiomatization
of the algebraic properties of local families of quantum fields in the chiral sector of a Con-
formal Field Theory in dimension two. These algebraic properties are encoded by the
Operator Product Expansion (OPE), whose singular part can be translated into the notion
of a conformal algebra [K1].
Lie pseudoalgebras are a generalization of conformal algebras in higher dimensions. They
are defined as a Lie algebra in a certain pseudotensor category attached to a cocommutative
Hopf algebra H , whence their name. One of the main features of this theory is the fact that
one can associate to a Lie H-pseudoalgebra L a (usually infinite-dimensional) Lie algebra
A(L) called the annihilation algebra, which, when L is finite (i.e. finitely generated as
an H-module), can be endowed with a linearly compact topology. This connection can be
used in both ways: while the structure theory of infinite-dimensional linearly compact Lie
algebras led to the classification of simple finite Lie H-pseudoalgebras, the representation
theory of the latter can be used to simplify and obtain new insights in the study of repre-
sentations of the former.
The idea behind the research work for this thesis was to investigate the possibility of ex-
ploiting this deep connection in the Lie superalgebras setting. Basically speaking, the prob-
lem of classifying irreducible representations of a linearly compact Lie superalgebra can be
reduced (in many cases) to the description of the so-called generalized Verma modules and
in particular to the classification of singular vectors. In this thesis we apply pseudoalge-
braic techniques to the representation theory of the exceptional Lie superalgebra E(5, 10).
In Chapter 3 we manage to construct a Lie superpseudoalgebra associated to E(5, 10)
which allows us to obtain an estimate on the degree of singular vectors. Having proved to
be worthy of interest, we also classify in Chapter 4 all such pseudoalgebraic structures for
E(5, 10). This is meant to be a first "model" for suitable other interesting cases. We will
now give more details about the ideas and techniques involved in this work.

Our object of interest are representations of infinite-dimensional linearly compact Lie
superalgebras, i.e. Lie superalgebras whose underlying space is a linearly compact topo-
logical vector space and the bracket is continuous. Basically, a topological vector space is
linearly compact if it admits a filtration of linear subspaces of finite codimension that define
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a topology in respect to which it is complete.
Let us look at the "non super" setting first. The most important example of an infinite-
dimensional linearly compact Lie algebra is given by WN , the Lie algebra of continu-
ous derivations of ON = C[[t1, . . . , tN ]]. It consists of all formal vector fields D =∑

i fi∂/∂t
i, fi ∈ ON . Infinite-dimensional linearly compact Lie algebras have been stud-

ied, for example, in [G1, G2, GS] and the classification of simple ones goes back to Cartan
[C]. The list consists of WN and its subalgebras SN , HN (N even) and KN (N odd) of
divergence zero vector fields, vector fields annihilating a symplectic form and vector fields
multiplying a contact form by a function, respectively. These are called Lie algebras of
Cartan type.
Irreducible representations on discrete spaces (which are contragradient of linearly compact
ones) of Lie algebras of Cartan type were classified by Rudakov and Kostrikin [R1, R2, Ko].
Given a linearly compact Lie algebra L with canonical filtration {Lk}, Rudakov realized ir-
reducible representations as quotients of some induced modules from the finite-dimensional
Lie algebra L0/Ln, where n is called the height of the representation. For height n > 1,
these induced modules are all irreducible, while for height 1 a finite number of them con-
tains proper submodules. For instance, in the case of type W and S, Rudakov found out
that the degenerate (i.e. not irreducible) modules could be fitted in the De Rham complex
of formal differential forms and in this case the irreducible modules were obtained as the
images of the differential.
The pseudoalgebraic language provides a different strategy to the study of discrete repre-
sentations of a linearly compact Lie algebra L in the special case where L is the annihilation
algebra of a Lie pseudoalgebra. I take my chance to explain what this means. Given a co-
commutative Hopf algebra H , a Lie H-pseudoalgebra is a left H-module L together with
an H-bilinear map, called pseudobracket, [· ∗ ·] : L⊗ L → (H ⊗H) ⊗H L satisfying the
following analogues of the axioms of a Lie bracket:

Skew-commutativity [a ∗ b] = −(σ ⊗H id)[b ∗ a];

Jacobi identity [a ∗ [b ∗ c]] = [[a ∗ b] ∗ c] + ((σ ⊗ id) ⊗H id)[b ∗ [a ∗ c]],

for a, b, c ∈ L, where σ(h1 ⊗ h2) = (h2 ⊗ h1) and the expressions of the form [a ∗ [b ∗ c]]
have a certain interpretation in H⊗3. L is finite if it is finitely generate as an H-module.
We will always reduce to the case of H = U(d) being the universal enveloping algebra of
a finite-dimensional Lie algebra d. Let X = H∗ be the dual of H as a coalgebra. One can
associate to a Lie pseudoalgebra L a Lie H-differential algebra A(L) = X ⊗H L called
the annihilation algebra, with bracket induced by the pseudobracket of L. The semidirect
sum d ⋉ A(L) is called the extended annihilation algebra. When L is finite, one can use
the canonical filtration of U(d) to define a filtration of A(L) that makes the latter a linearly
compact Lie algebra. Similarly, one can associate to a finiteL-module V a linearly compact
A(L)-module A(V ), called annihilation module.
The most important example of a finite Lie pseudoalgebra is the pseudoalgebra of pseudo
vector fields, which is the free H-module W (d) = H ⊗ d, with pseudobracket of the form

[f ⊗ a ∗ g ⊗ b] = (fb⊗ g) ⊗ (1 ⊗ a) − (f ⊗ ga) ⊗ (1 ⊗ b) − (f ⊗ g) ⊗H (1 ⊗ [a, b]).

Its name its due to the fact that A(W (d)) is isomorphic, as a linearly compact Lie algebra,
to WN . The classification of finite Lie H-pseudoalgebras is achieved in [BDK1] using
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Cartan’s classification. The strategy, roughly speaking, is to detect the linearly compact
Lie algebras associated to simple Lie pseudoalgebras (i.e. their annihilation algebras), de-
termine all compatible H-actions and then applying the so-called reconstruction functor,
which recovers, under mild assumptions, the pseudoalgebraic structure. The list consists of
current pseudoalgebras over finite-dimensional Lie algebras and (current pseudoalgebras
over) W (d) and its subalgebras S(d, χ), H(d, χ, ω) and K(d, θ), whose annihilation alge-
bras are respectively SN , (an extension by a one-dimensional center of) HN and KN . The
classification depends on certain parameters χ, ω and θ due to inequivalent actions of d
on the annihilation algebras. The subalgebras of W (d) are called primitive Lie pseudoal-
gebras. The representation theory of a Lie H-pseudoalgebra L is essentially equivalent to
that of A(L)e. In [BDK2, BDK3, BDK4] all irreducible finite representations of primitive
pseudoalgebras were classified, thus obtaining again, in particular, the results of Rudakov.
The role of the induced modules is played here by the so-called tensor modules, which are
free H-modules T (V ) = H ⊗ V where V is a d ⊕ gl(d)-(resp. d ⊕ sl(d)-)module in the
type W (resp. S) case. The presence of proper submodules is detected by the existence
of singular vectors. This occurs only in a finite number of cases, which can be grouped
in exact complexes. In the case of type W and S, the singular vectors appear in degrees
respectively at most 1 and 2 (where the degree of v ∈ H ⊗ V is given by the canonical
grading of H = U(d)) and the corresponding tensor modules fit in a "pseudo version" of
the formal De Rham complex. It is important to stress that the pseudoalgebraic language
provides a rather precise and easy to prove upper bound to the degree of possible non con-
stant singular vectors. One would like to be able to apply the same technique in the context
of discrete representations of linearly compact Lie superalgebras, and this is exactly what
this thesis deals with.
Let us thus turn to the super setting. Simple infinite-dimensional linearly compact Lie su-
peralgebras were classified by Kac in [K2] and the list is far richer then the Cartan one.
It consists of ten families (of which four are W (m,n), S(m,n), H(m,n), K(m,n), "su-
per" analogues of the algebras of Cartan type) and five exceptional ones: E(1, 6), E(3, 6),
E(3, 8), E(4, 4) and E(5, 10). The Lie superalgebras E(3, 6), E(3, 8) and E(5, 10) are
of particular interest because of their possible relation with particle physics (see [KR2] for
more details). In [KR1, KR2, KR3] Kac and Rudakov applied the techniques developed
for the Lie algebras of Cartan type to the exceptional superalgebras E(3, 6) and E(3, 8)
classifying all degenerate induced modules, which in this framework are called generalized
Verma modules.
We focus now on the exceptional Lie superalgebra L = E(5, 10). In [CK2] is provided
a nice geometrical construction of L: the even part is L(0) = S5, the Lie algebra of zero-
divergence formal vector fields in five indeterminates, while the odd one L(1) = dΩ1

5 con-
sists of formal closed 2-forms. The bracket between an even and an odd element is given
by the Lie derivative, while between odd elements is defined by wedge product and conse-
quent identification dΩ3

5
∼= S5. L is equipped with a Z-grading of depth 2, consistent with

the parity, for which L0 ∼= sl5 and all Li are L0-modules. In particular, L−1 ∼= d := (C5)∗

and L−1 ∼= s :=
∧2 d. Minimal Verma modules (i.e. induced by an irreducible represen-

tation) for L take the form T(V ) = U(d ⊕ s) ⊗ V for an irreducible finite-dimensional
sl5 = sl(d)-module V and one can define a grading by setting deg ∂ = 2 for ∂ ∈ d and
deg ξ = 1 for ξ ∈ s. If λ is the highest weight of V , we denote T(λ) = T(V ). The
study of irreducible representations of E(5, 10) was carried out by Cantarini, Caselli, Kac
and Rudakov in [KR4, R1, CC], which produced, at the time we began our research, the
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following conjecture.

Conjecture 0.0.1. A minimal Verma module T(λ) contains non constant singular vectors
(i.e. of degree> 0) if and only if λ = [m,n, 0, 0], [0, 0,m, n] or [m, 0, 0, n] form,n ∈ Z≥0
and singular vectors have degree ≤ 5.

The first aim of the present thesis is to apply pseudoalgebraic constructions to determine
a bound on the degree of singular vectors. Our strategy starts by constructing a pseudoal-
gebraic structure for L = S5 ⊕ dΩ1

5, i.e. a Lie superpseudoalgebra e(5, 10) = L(0) ⊕ L(1)
such that A(L(0)) = S5 and A(L(1)) = dΩ1

5 as linearly compact algebras and modules.
The even part can be taken to be S(d, χ) (we assume for simplicity d abelian and χ = 0)
since we know that A(S(d)) ∼= S5. Regarding the odd part, one needs a pseudo version
of the formal De Rham complex, which is provided in [BDK1]: take a Lie algebra d of
dimension N and set Ωk

H(d) = Hom(
∧k d, H) ∼= H ⊗

∧k d∗. One can construct a pseudo
differential d∗ : Ωk

H(d) → Ωk+1
H (d) which defines an exact complex of representations of

W (d) (and in particular of S(d, χ))

0 → Ω0
H(d) d∗−→ Ω1

H(d) d∗−→ · · · d∗−→ ΩN
H(d)

whose cohomology is trivial but for the N one. Moreover, one can define a pseudowedge
product (1 ⊗ α) ∗∧ (1 ⊗ β) = (1 ⊗ 1) ⊗H α ∧ β that makes ΩH(d) =

⊕N
n=0 Ωn

H(d)
an associative H-pseudoalgebra. The pseudo De Rham complex induces, via the annihi-
lation functor, the formal one. Hence we set e(5, 10) = S(d) ⊕ d∗(Ω1

H(5)) and define
the pseudobracket between odd elements as the pseudowedge and consequent identifica-
tion of d∗Ω3

H(d) with S(d), verifying that this is well defined and gives a morphism of
S(d)-modules. It turns out that for a first bound on the degree of singular vectors, the even
part of e(5, 10) is already enough. In fact, we are able to define a finite filtration of S5-
submodules of a minimal Verma module T(V ) = U(d ⊕ s) = V by increasing odd degree
(i.e. degree in s) and realize the successive quotients as tensor modules for S(d) of the
form T (

∧i d∗ ⊗ V ) = U(d) ⊗ (
∧i d∗ ⊗ V ). Looking at the homogeneous components of

singular vectors through this filtration tells us that the even degree must be ≤ 4 (i.e. the
degree in d, which counts as double), which is enough to give a first estimate since the odd
degree is at most 10 by construction. We refine the bound by studying when fundamen-
tal irreducible representations of sl(d), whose corresponding tensor modules contain non
constant singular vectors, cannot occur in the decomposition of

∧i d∗ ⊗ V . Our results are
stated in Theorem 3.4.1.

Theorem 0.0.1 ([Br]). Let T(V ) be a minimal Verma module and let v be a singular vector.
Then v has degree ≤ 12. More precisely:

1. if V ≇ V ([0, 0, 1, 0]), singular vectors have degree strictly smaller than 12;

2. if V ≇ V (λ) where λ = [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 1, 0], or
[1, 0, 0, 1], singular vectors have degree strictly smaller than 11;

3. ifV ≇ V (µ) where µ =[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0],
[1, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [0, 0, 1, 1], [1, 0, 1, 0],
[0, 1, 0, 1], [1, 1, 0, 1], [0, 2, 0, 0], [2, 0, 0, 0], [1, 0, 2, 0],
or [3, 0, 0, 1], singular vectors have degree strictly smaller than 10.
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Shortly after we obtained this result, Cantarini, Caselli and Kac classified all singular
vectors (and hence degenerate Verma modules) for E(5, 10) in [CCK1]. However, our es-
timate is almost optimal: in fact, they found unexpected singular vectors in degrees 7 and
11, the latter in one of the cases our argument could not rule out.
In order to apply the pseudoalgebraic language to the study of representations of a linearly
compact Lie (super)algebra L it is essential to exhibit at least one Lie (super)pseudoalgebra
inducing L as annihilation algebra. However, there will typically be more than one such
structure, and the classification of all possible Lie (super)pseudoalgebra structures is an
interesting problem in itself. In Chapter 4 we approach this problem in the special case of
E(5, 10) and develop tools that are likely to serve for a general classification.
When we approached the task of classifying U(d)-pseudoalgebraic structures inducing a
certain linearly compact Lie (super)algebra, one of the most annoying technical steps is
that of describing all possible transitive actions of d on L. This is unavoidable in the non
super case, and was carried out in [BDK1, Section 12]. However, the pseudoalgebraic lan-
guage is more efficient in the description of representations than as an algebra-classifying
tools, and we take advantage of this fact. If L = L(0) ⊕ L(1) is the direct sum of L
into its even and odd part, and L(0) admits a pseudoalgebraic description, then we employ
a Grothendieck ring computation trick to provide very strict constrains on the structure of
L(1) as a module for the extended annihilation algebra corresponding to L(0). This severely
limits the possibilities for the odd part of a Lie superpseudoalgebra inducing L. In the case
of E(5, 10), this suffices for a classification.

Theorem 0.0.2. For any choice of a trace form χ ∈ d∗, there exists a unique Lie super
pseudoalgebra structure of the form L = S(d, χ) ⊕L(1) inducing E(5, 10) as annihilation
superalgebra. The Lie superpseudobracket identifies L(1) with dΠ(Ω1

H(d)) as a S(d, χ)-
module for a suitable choice of Π only depending on χ and the Lie superpseudobracket
L(1) ⊗ L(1) → (H ⊗ H)HL(0) coincides with the pseudo de Rham wedge operation as in
(3.11).

We are confident that this is but the first step towards a classification of all finite simple
Lie super pseudoalgebras.
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Chapter 1

Preliminaries about linearly compact
Lie (super)algebras

1.1 Linearly compact Lie algebras

Linearly compact Lie algebras arise in the context of transitive differential geometry.
Consider the following situation (for a much more detailed discussion, see [GS, SiSt, G1,
G2]).
Let M be a finite-dimensional complex manifold and let L be a Lie algebra of vector fields
onM acting transitively in a neighbourhood of a point p ∈ M . One can consider a filtration
{Lk}k≥0 in L, where Lk is the subalgebra of L consisting of vector fields vanishing at p at
least to order k + 1, which satisfies the relations

[Li, Lj ] ⊂ Li+j ∀i, j ≥ 0. (1.1)

Consider now the topology induced by taking this filtration as a fundamental system of
neighbourhoods of 0. The previous relations imply that the Lie bracket is continuous with
respect to this topology, so L is a topological Lie algebra .
One can take the formal completion L of L in this topology. Geometrically, L is a Lie
algebra of vector fields on a formal neighbourhood of p or, equivalently, a Lie algebra of
formal vector fields (i.e. vector fields with coefficients in a ring of formal power series).
L is a "linearly compact" Lie algebra.

Definition 1.1.1. A linearly compact vector space is a topological vector space that admits
a fundamental system of neighbourhoods of the origin consisting of finite-codimensional
linear subspaces with respect to which is complete.

The notion of a linearly compact space is "topologically dual" to the notion of a discrete
space. For instance, consider C as a topological field with discrete topology. Take a C-
vector space V and consider the discrete topology on it. We can consider on its topological
dual V ∗ = Homcont(V,C) = Hom(V,C) a topology defined by taking as a fundamental
system of neighbourhoods of 0 all the subspaces of the form U⊥ = {ϕ ∈ V ∗ | ϕ(U) = 0}
where U is a finite-dimensional subspace of V . The topological vector space V ∗ is then
linearly compact.
There are several equivalent conditions to the linear compactness of a topological vector
space. For a proof of next proposition, see [G1].
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Proposition 1.1.1. Let L be a topological vector space over the topological field C. The
following statements are equivalent:

1. L is the topological dual of a discrete space;

2. The topological dual L∗ = Homcont(L,C) of L is a discrete space;

3. L is the topological product of finite-dimensional discrete spaces;

4. L is the projective limit of finite-dimensional discrete spaces;

5. L has a collection of finite-codimensional open subspaces whose intersection is 0,
with respect to which is complete.

Example 1.1.1. A finite-dimensional space endowed with the discrete topology is linearly
compact. In fact, in the finite-dimensional setting being linearly compact is equivalent to
being a discrete space.

Definition 1.1.2. A topological Lie (or associative) algebra is linearly compact if its un-
derlying topological vector space is linearly compact.

Example 1.1.2. The basic example of a linearly compact associative algebra is given by
the algebra ON = C[[t1, . . . , tN ]] of formal power series in the indeterminates t1, . . . , tN ,
with the usual topology for which the ideals (t1, . . . , tN )k form a fundamental system of
neighbourhoods of 0. It can be seen as the topological dual of the polynomial algebra
C[y1, . . . , yN ] endowed with the discrete topology, where ti(yj) = δj

i .

The main example of a linearly compact Lie algebra is WN , the Lie algebra of formal
vector fields (see [F]). It consists of all elements of the form

D =
N∑

i=1
fi(t1, . . . , tN ) ∂

∂ti
, (1.2)

where fi(t1, . . . , tN ) are formal power series in ON . The Lie bracket of WN is the usual
one, defined by [∑

i

fi
∂

∂ti
,
∑

j

gj
∂

∂tj

]
=
∑
i,j

(
fj
∂gi

∂tj
− ∂fi

∂tj
gj

) ∂
∂ti

. (1.3)

WN clearly coincides with DerON , the Lie algebra of continuous derivations of ON .
The filtration of ON

{Fp ON = (t1, . . . , tN )p+1}p≥−1 (1.4)

induces the canonical filtration of WN , {FpWn}p≥−1, where

FpWN = {D ∈ WN | D(Fq ON ) ⊆ Fp+q ON )}. (1.5)

Explicitly, FpWN consists of vector fields D =
N∑

i=1
fi
∂

∂ti
such that all fi ∈ FpON .

It is easy to see that the canonical filtration satisfies

[FpWN , FqWN ] ⊂ Fp+qWN , (1.6)
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thus making the Lie bracket continuous.

Let ΩN =
⊕N

k=0 Ωk
N be the algebra of differential forms over ON .

Explicitly, ω ∈ Ωk
N will be a linear combination of elements of the form

fdti1 ∧ dti2 ∧ · · · ∧ dtik for some i1, . . . , ik ∈ {1, . . . , N}, f ∈ C[[t1, . . . , tN ]].

The action of WN on ON extends uniquely to an action on ΩN commuting with the differ-
ential d.
Explicitly, WN acts on ΩN via Lie derivative:

D · ω = d(ιDω) + ιD(dω) for D ∈ WN , ω ∈ ΩN (1.7)

where d is the De Rham differential and ιD is the contraction of ω by D.
One can define subalgebras of WN in terms of elements annihilating certain forms.
A volume form is any non-zero element of ΩN

N , i.e. a differentialN -form v = f(t1, . . . , tN )dt1∧
· · ·∧dtN such that f(0) ̸= 0. A symplectic form is a closed 2-form s =

∑
i,j sij(t1, . . . , tN )dti∧

dtj such that det(sij(0)) ̸= 0 and a contact form is a 1-form c =
∑

i ci(t1 . . . , tN )dti such
that c ∧ (dc)(N−1)/2 is a volume form.
It is a well known fact that any such form can be transformed by an automorphism of ON

in, respectively, the standard volume form v0 = dt1 ∧ · · · ∧ dtN , the standard symplectic
form s0 =

∑
i dti ∧ dtn+i if N = 2n (otherwise a symplectic form does not exist) and the

standard contact form c0 = dtN +
∑

i ti dtn+i if N = 2n + 1 (otherwise a contact form
does not exist).
One then defines the following (closed) subalgebras of WN :

• SN (v) = {D ∈ WN | Dv = 0}, N ≥ 2;

• HN (s) = {D ∈ WN | Ds = 0}, N even ≥ 2;

• KN (c) = {D ∈ WN | Dc = fc for some f ∈ ON }, N odd ≥ 3.

As special instances, denote SN (v0) = SN , HN (s0) = HN , KN (c) = KN , so that we
know that for each type we can only consider, up to an automorphism of ON , the "stan-
dard" subalgebras SN , HN , and KN .
Let L be one of these subalgebras of WN . The canonical filtration of WN induces a canon-
ical filtration on L, which equips it with a linearly compact topology.
Namely, FpL = FpWN ∩L. These filtrations are all transitive, meaning that dim L/F−1WN ∩
L = N . Moreover, they have the following transitivity property:

FkL = {D ∈ Fk−1L | [D,L] ⊂ Fk−1L}. (1.8)

These algebras are often referred to as Lie algebras of Cartan type. E. Cartan in 1909
proved the following celebrated result.

Theorem 1.1.1 ([C]). Any infinite-dimensional simple linearly compact Lie algebra is iso-
morphic to either WN or one of its subalgebras SN , HN or KN .

We will mainly focus on Lie algebras of type W and S.
Consider E =

∑N
i=1 t

i ∂
∂ti ∈ WN , which is called the Euler operator. Its adjoint action
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decomposes WN into eigenspaces WN ;j for j ≥ −1, thus defining a Z-gradation which is
called the canonical gradation of WN . In addition, [WN ;p,WN ;q] ⊂ WN ;p+q.
It is a well known fact that WN ;0 ∼= glN and WN ;k is isomorphic, as a glN -module, to
CN ⊗ (Sk+1CN )∗.
Notice that Es0 = 2s0, so the canonical gradation of WN induces the canonical Z-
gradation SN ;k of SN , for which analogously SN ;0 ∼= slN and the slN -module SN ;k is
isomorphic to the highest component of CN ⊗ (Sk+1CN )∗.

Remark 1.1.1. If we define the divergence map div : WN → ON as div(
∑

i fi(t) ∂
∂ti ) =∑

i
∂fi

∂ti , then it is not hard to see that for D ∈ WN , the condition Dv0 = 0 is equivalent to
div D = 0, i.e. SN = {D ∈ WN | div(D) = 0}.

For a satisfactory summary of the techniques that lead to Cartan’s classification see
[K2, Introduction].

1.2 Irreducible representations of Lie algebras of Cartan type

The study of irreducible representations of simple infinite-dimensional linearly com-
pact Lie algebras was carried out by Rudakov ([R1, R2]) and Kostrikin ([Ko]).
To be more precise, they studied continuous representations of Lie algebras of Cartan type
on discrete spaces of countable dimension, where we consider the linearly compact topol-
ogy on the Lie algebras.
This is a reasonable class of representations to be studied: it is natural to consider contin-
uous representations of linearly compact Lie algebras in linearly compact vector spaces.
However, it turns out to be technically more convenient to work with their (topological)
duals representations, which are indeed continuous representations in vector spaces with
the discrete topology.
In [R1] is defined the notion of height of a discrete representation. It is also introduced a
class of modules, called induced modules, which, as the name suggests, are induced by an
L0/Ln-module, where L is the Lie algebra of Cartan type and {Lk} its canonical filtration.
Every irreducible discrete module is a quotient of an induced module and its height n de-
termines from which L0/Ln induce in order to obtain this representation.
Irreducibility of induced modules in height n is related to the existence of vectors killed
by the term of the canonical filtration Ln, called singular vectors. When n > 1, it turns
out that there are no singular vectors and therefore the induced modules are irreducible and
they exhaust the classification of all such modules.
When n = 1 the picture is richer. In this case, one finds non-zero singular vectors that are
killed by L1.
We will resume the notation and the main results regarding these representations with par-
ticular focus on those for types W and S.

Let L be a simple infinite-dimensional linearly compact Lie algebra of Cartan type. We
will use the following properties of the topological Lie algebra L:

1. L has a linear topology with respect to which it is complete. In particular, the neigh-
bourhoods of 0 are linear subspaces of finite codimension and their intersection is
0;
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2. L admits a decreasing filtration {Lk}k≥−2, where L−2 = L, such that Lk ̸= 0 ∀k,
Lk = {D ∈ Lk−1 | [D,L−1] ⊂ Lk−1} for k > 0 and the subspaces Lk form a
fundamental system of neighbourhoods of 0.

3. Taking into account the associated graded algebra

L = grL =
⊕

k≥−2
Li =

⊕
k≥−2

Lk/Lk+1, (1.9)

then L−2 = [L−1, L−1].

Remark 1.2.1. The filtration can be taken to be the one induced by the canonical Z-
grading. For example, if L = WN , we can take Lk =

⊕
j≤k WN ;k. In this case, L

and grL are clearly isomorphic.

As usual, a representation of L (or a L-module) is a vector space V together with a linear
map ρ : L → End(V ) such that

ρ([a, b])(v) = ρ(a)(ρ(b)(v)) − ρ(b)(ρ(a)(v)) ∀a, b ∈ L, v ∈ V. (1.10)

We will denote a representation by (V, ρ) or just V and the action of L as av = ρ(a)(v).
The representation is continuous if V is a topological vector space and ρ is a continuous
map. A first obvious condition on the action of L to be continuous on a discrete vector
space is the following.

Lemma 1.2.1. Let (V, ρ) be a representation of L where V is a discrete topological space.
Then ρ is continuous if and only if any v ∈ V is killed by some Lp, i.e. exists p such that

Lpv = 0. (1.11)

In this section all representations will, unless otherwise specified, be continuous in a
discrete space.

Definition 1.2.1. Let V be an L-module or an L0-module. The height of the module V is
the minimal n such that Lnv = 0 for some 0 ̸= v ∈ V .
The set {v ∈ V | Lnv = 0} is denoted by V0.
If V is an L0-module and V = V0, then V is said to be homogeneous.

Notice that since [L0,Ln] ⊂ Ln, V0 is an L0-submodule of V . It is in particular an
homogeneous L0-module.
Thus it is possible to see V0 as a representation of the finite-dimensional Lie algebra L0/Ln.
Notice also that if V is an irreducible L0-module, then V is homogeneous.

Remark 1.2.2. Given an L0/Ln-module M , we can think of M as an L0-module by con-
sidering the trivial action of Ln on it. The structure of L0-module is said to be an extension
of the L0/Ln-module one.
With this terminology, an homogeneous L0-module of height n is an extension of an
L0/Ln-module.
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A central role for the classification of irreducible representations of L is played by
"induced modules".
Take an (arbitrary) Lie algebra g, a subalgebra h ⊂ g and a representation M of h. A
representation of h is equivalently a representation of U(h), where U(h) is the universal
enveloping algebra of h.
One can then define a g-module, called the induced module and denoted by Indgh(M), as

Indgh(M) = U(g) ⊗U(h) M. (1.12)

The action of g on Indgh(M) is given by multiplication on the left factor.

Apply this construction in our setting: let V be an L-module and consider the induced
L-module IndL

L0
(V0) = U(L) ⊗U(L0) V0. One can now define a mapping

φ : U(L) ⊗U(L0) V0 −→ V

u⊗ v 7−→ uv u ∈ U(L), v ∈ V0, (1.13)

which is clearly a morphism of L-modules (i.e. it commutes with the action of L).
In particular, if V is irreducible, then this morphism is surjective and V is isomorphic to a
quotient of the induced module.
The problem of classifying irreducible representations is thus reduced to the study of in-
duced modules of homogeneous L-modules of height n.
This study is carried out in [R1] by means of irregular submodules and singular vectors.
We will outline the main ideas without going too much into details.

Let M be an homogeneous L0-module of height n > 0 and consider the L-module
I = IndL

L0
(M).

Using the canonical filtration of L one can define an increasing filtration of L0-submodules
{Ip}p≥0 in I where I0 = M such that

LkIp ⊂ Ip−k+n−1 for k ≥ n− 1. (1.14)

LetN be an L-submodule of I . N is called an irregular invariant submodule ifN∩I0 = 0.
One can easily see that Kerφ is an irregular submodule. Hence, we are interested in find-
ing out when such submodules occur.

Take an element l ∈ Lk = Lk/Lk+1. Because of (1.14), when k ≥ n − 1, l defines a
map Ip −→ Ip−k+n−1, where Ij = Ij/Ij−1. We set I−1 = 0.
Notice that when n = 1, this defines an action of L = grL on the graded module I =
grI =

⊕
p≥0 Ip.

Definition 1.2.2. An element v ∈ Ip, p > 0, is called a singular vector if lv = 0 for all
l ∈ Lk and for all k ≥ n.

The most useful trait of singular vectors is that they "encode" the presence of an irreg-
ular submodule.

Proposition 1.2.1. If N is an irregular invariant submodule of the L-module I and if j0 is
the minimal index such that N ∩ Ij0 ̸= 0, then all the vectors in (N ∩ Ij0)/Ij0−1 ⊂ I are
singular.
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Proof. Just notice that for l ∈ Ln, l ·N ∩ Ij ⊂ N ∩ Ij−n+n−1 = N ∩ Ij−1 = 0.
Therefore, for any l ∈ Lp for p ≥ n, l · (N ∩ Ij0)/Ij0−1 = 0.

This tells us that when there are no singular vectors in grI , then I = I(M) has no
irregular invariant submodules. In fact, this turns out to be the case when n > 1.

Theorem 1.2.1. [R1, Theorem 6.1] Let L be a Lie algebra of Cartan type, V an homoge-
neous L0-module of height n > 1. If I = U(L) ⊗U(L0) V , then the module gr I contains
no singular vectors.

Corollary 1.2.1. If L is an algebra of Cartan type and M is an irreducible L0-module of
height n > 1, then I(M) is an irreducible L-module.

Proof. If M is an L-submodule of I(M), then by Proposition 1.2.1 it cannot be irregular.
Hence M ∩ I0(M) ̸= 0. But I0(M) ∼= M is irreducible, so M ⊇ I0. It is clear now that
by allowing L to act on M we obtain all I(M).

Corollary 1.2.2. If L is an algebra of Cartan type and if V is an irreducible L-module of
height n > 1, then the L0-module V0 is irreducible and

V ∼= U(L) ⊗U(L0) V0. (1.15)

Proof. Since V0 is homogeneous and since the height of V and V0 is the same, by Theorem
1.2.1 there are no non-zero singular vectors, hence no irregular submodules inU(L)⊗U(L0)
V0. This implies that the kernel of φ defined in (1.13) is 0. Therefore V ∼= U(L)⊗U(L0)V0.
Now the irreducibility of V implies that of V0.

Irreducible representations of height 1 were classified for WN ([R1]), SN and HN

([R2]) and KN ([Ko]).
As we mentioned before, the general picture in this case is richer. One does have non-zero
singular vectors and irregular submodules in induced modules.
First of all, if V is an homogeneous L-module of height 1, then V0 is the extension of a
module for L0/L1, which is isomorphic for cases WN , SN , HN and KN respectively to
glN , slN , spN and cspN−1. So, if one is interested in understanding when an induced mod-
ule is irreducible, it makes sense to study extension of irreducible L0/L1-modules.
Consider the induced module I(V0), where V0 is an irreducible L0/L1-module. One ob-
serves that, because of (1.14), the graded associated module I(V0) = gr I(V0) has a struc-
ture of L0-module. One can actually verify that I(V0) and I(V0) are isomorphic as L0-
modules. Hence, I(V0) is a graded L0-module, with graded terms denoted by In(V0).

For WN , it is proven that there are no non-zero singular vectors when V0 ≇
∧i(CN )

for i = 1, . . . , N where CN is the standard representation of glN .
Thus in this case, following the same line of reasoning of the Corollaries of Theorem 1.2.1,
one concludes that I(V0) is an irreducible L-module.
In the remaining cases, namely when V0 ∼=

∧i(CN ), singular vectors only appear in degree
1 (i.e. in I1(V0)) and they altogether generate a unique irregular submodule of I(V0).
One observes that the induced module I(

∧i(CN )) is isomorphic to Ωi
N , where the latter

is the L-module of differential forms of degree i. This allows to fit them in an exact se-
quence (contragradient of the De Rham complex) thus realizing the irreducible quotients
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as (dΩi)∗.
In other words, the existence of De Rham complex provides non-trivial extensions of
L0/L1 ∼= glN -modules, and there are no others.
For SN the picture is similar: induced modules I(V0) have no non-zero singular vectors
when the irreducible slN -module V0 is not isomorphic to

∧i(CN ) for any i = 0, . . . , N . In
the other cases, singular vectors appear only in degree 1 for i ̸= 1, and in degree 1 and 2
for i = 1 and again the correspondent modules fit in the De Rham complex.
ForKN andHN one gets a similar picture: apart from a finite number of cases, the induced
modules have no non-zero singular vectors and so are irreducible. In the exceptional cases,
they have singular vectors only in degrees 1 and 2.

1.3 Linearly compact Lie superalgebras

We turn now to the "super" setting. First, a couple of standard definitions.

Definition 1.3.1. A super vector space is a vector space V with a Z/(2)-grading, i.e. a
decomposition as a direct sum of subspaces V = V(0) ⊕ V(1) called respectively the even
and the odd part of V . Elements of V(0) and V(1) are said to be homogeneous.

A superalgebra is a super vector space endowed with a structure of an algebra that
behaves coherently with the Z/(2)-grading, i.e. such that VαVβ ⊂ Vα+β for α, β ∈ Z/(2).

Example 1.3.1. Given a finite-dimensional vector space U , its Grassman algebra
∧

(U) is
a superalgebra where the even part is

⊕
i even

∧i(V ) and the odd part is
⊕

i odd

∧i(U).

Definition 1.3.2. A Lie superalgebra L = L(0) ⊕L(1) is a super vector space together with
an bilinear map [· , ·] : L ⊗ L → L, called Lie superbracket, such that [Lα, Lβ] ⊂ Lα+β

for α, β ∈ Z/(2) and that satisfies for all homogeneous a, b, c ∈ L:

Super skew-symmetry [a, b] = −(−1)|a||b|[b, a],

Super Jacobi identity [a, [b, c]] = [[a, b]c] + (−1)|a||b|[b, [a, c]],

where if a ∈ Vα, |a| = α for α ∈ Z/(2) = {(0), (1)}.

Now, we are interested in (infinite-dimensional) linearly compact Lie superalgebras.
A linearly compact (Lie) superalgebra is a topological (Lie) superalgebra whose underlying
topological super vector space is linearly compact.

Example 1.3.2. The Z/(2)-grading of
∧

(n) =
∧

(Cn) induces a Z/(2)-grading in
∧

(m,n) =
Om ⊗

∧
(n), thus a structure of superalgebra on the latter. Meanwhile, the canonical filtra-

tion of Om induces a linearly compact topology on
∧

(m,n).

Simple infinite-dimensional linearly compact Lie superalgebras were only recently
classified by V. Kac in [K2]. The classification theorem is the following.

Theorem 1.3.1. [K2] Any simple linearly compact infinite-dimensional Lie superalgebra
is isomorphic to one of the following or its derived subalgebra:

1. eight seriesW (m,n), S(m,n),H(m,n),K(m,n),HO(n, n), SHO(n, n),KO(n, n+
1, β), SKO(n, n+ 1);
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2. two series of filtered deformations SHO(n, n)∼ (n even), SKO(n, n+1)∼ (n odd);

3. five exceptional Lie superalgebras: E(1, 6), E(3, 6), E(3, 8), E(4, 4), E(5, 10).

The first 4 families are "super " analogous of the Cartan classification: W (m,n) is
the superalgebra of derivations of

∧
(m,n) = Om ⊗

∧
(n) and S(m,n), H(m,n) and

K(m,n) are the subalgebras consisting respectively of "super" divergence zero vector
fields, of vector fields annihilating a "super" symplectic form and of vector fields that mul-
tiply a "super" contact form by a function; in addition, in the super setting also arise the
subalgebras HO(n, n), SHO(n, n), KO(n, n), SKO(n, n + 1) where HO(n, n) and
KO(n, n + 1) consist of respectively vector fields annihilating an odd super symplec-
tic form and vector fields multiplying an odd super contact form by a function, while
SHO(n, n) = HO(n, n)∩S(n, n), SKO(n, n+1, β) = {D ∈ KO(n, n+1) | divβD =
0} where divβ is a "deformed divergence", for β ∈ C.
The five exceptional Lie superalgebras are of particular interest, mainly because of their po-
tential application in particle physics (see for example [KR2, Section 8] for more details)
but also because they were not expected, having no "non-super" counterpart, and finally
because they have explicit descriptions in terms of formal vector fields and differential
forms that allow to study them and their representation theory exploiting techniques from
the non-super setting.
In [CK] is provided a geometric construction of exceptional Lie superalgebras that we con-
cisely recall now. We omit the description of E(1, 6).
Before doing that, we briefly recall the twisting of WN -modules, which is needed to de-
scribe some of these Lie algebras.
By definition WN acts on ON = C[[x1, . . . , xN ]]. Consider the semidirect sum W̃N =
WN + ON .
For any λ ∈ C, define the the Lie algebra homomorphism ϕλ : WN → W̃N as

ϕλ(D) = D + λdiv(D) for D ∈ WN . (1.16)

Now given a WN -module M , if the action of WN extends to an action of W̃N , one can
define a λ-twisted action of WN by pulling back ϕλ. The module with this new action is
denoted by Mλ.
WN acts on Ωk

N via Lie derivatives and this action naturally extends to an action of W̃N .
Hence we can define WN -modules (Ωk

N )λ.
Notice that when restricting to an action of SN , by definition of the latter the twist does not
modify the action.
In general, there is a one to one correspondence between vector fields and N − 1-forms
given by the map

ψ : WN −→ ΩN−1
N

D 7−→ ιD(v) (1.17)

where v is a fixed volume form. In general, this is not an homomorphism of WN -modules.
Anyway, a straightforward calculation shows that

Proposition 1.3.1. ψ induces an isomorphism of WN -modules (ΩN−1
N )−1 ∼= WN and an

isomorphism of SN -modules dΩN−1
N

∼= SN .
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We begin with E(4, 4). The even part E(4, 4)(0) = W4 consists of all formal vector

fields in 4 indeterminates, while the odd part E(4, 4)(1) = (Ω1
4)− 1

2 .
The bracket between even elements is the Lie bracket of W4 given by (1.3), while the
bracket involving even and odd elements is defined by the Lie derivative as in (1.7) twisted
by λ = −1

2 as described above.
The superbracket on the odd part is defined as

ω1 ⊗ ω2 7−→ dω1 ∧ ω2 + ω1 ∧ dω2 ∈ (Ω3
4)−1 for ω1, ω2 ∈ (Ω1

4)− 1
2 (1.18)

where we apply Proposition 1.3.1 and identify a 3-form γ with a vector field D such that
ιD(v) = γ for a fixed volume form v.

Next consider E(3, 6).
The even part is the direct sum E(3, 6)(0) = W3 ⊕ (Ω0

3 ⊗ sl2), while the odd part as an

E(3, 6)(0)-module can be identified with (Ω1
3)− 1

2 ⊗C2, where C2 is the standard represen-
tation of sl2.
The brackets involving the even part are clear. The bracket between odd elements is de-
scribed, for ω1 ⊗ v1, ω2 ⊗ v2 ∈ (Ω1

3)− 1
2 ⊗ C2, as follows:

[ω1 ⊗ v1, ω2 ⊗ v2] = (ω1 ∧ ω2) ⊗ (v1 ∧ v2) + (dω1 ∧ ω2 + ω1 ∧ dω2) ⊗ (v1 • v2) (1.19)

where v1 ∧ v2 ∈
∧2 C2 is a complex number and v1 • v2 is an element of S2(C2), the latter

being identified with sl2. We also identify Ω0
3 with (Ω3

3)−1 and (Ω2
3)−1 with W3.

Regarding E(3, 8), the even part is the semidirect sum E(3, 8)(0) = W3 + (Ω0
3 ⊗ sl2),

whileE(3, 8)(1) is isomorphic to ((Ω0
3)− 1

2 ⊗C2)+((Ω2
3)− 1

2 ⊗C2) as anE(3, 8)(0)-module.

The bracket between odd elements is defined, for ω1, ω2 ∈ (Ω2
3)− 1

2 , α1, α2 ∈ (Ω0
3)− 1

2 and
v1, v2 ∈ C2, as

[ω1 ⊗ v1, ω2 ⊗ v2] = 0; [α1 ⊗ v1, α2 ⊗ v2] = dα1dα2 ⊗ v1 ∧ v2;
[α1 ⊗ v1, ω1 ⊗ v2] = (α1ω1 ⊗ v1 ∧ v2) + ((α1dω1 − ω1dα1) ⊗ (v1 • v2)); (1.20)

where we use the same identifications as for E(3, 6).

Finally, we focus on L = E(5, 10), for which we will give a more exhaustive descrip-
tion than for the previous ones.
Let d = (C5)∗ and let {∂1, . . . , ∂5} and {x1, . . . , x5} be bases for respectively d and d∗.
We can realize the even part of L as zero-divergence vector fields in the indeterminates
x1, . . . , x5,

L(0) = S5 =
{
D =

5∑
i=1

fi∂i | fi ∈ C[[x1, . . . , x5]], div(D) = 0
}
,

and the odd part as closed 2-forms in the same indeterminates

L(1) = dΩ1
5 =

{
ω =

5∑
i<j=1

fijξij | fij ∈ C[[x1, . . . , x5]], ξij = dxi ∧ dxj ,

ω = dα for some α ∈ Ω1
5

}
.
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The bracket between even elements is the one of the Lie algebra S5, while the brackets
between even and odds elements are given by the Lie derivative

[D,ω] = LD(ω) = d(ιD(ω)) , (1.21)

where ιD(ω) is the contraction of ω by D.
Finally, the bracket between odd elements is given by wedge product and, by Proposition
1.3.1, consequent identification with a zero-divergence vector field:

[ω1, ω2] = D where D is such that ιD(v) = ω1 ∧ ω2, (1.22)

v being a fixed volume form. Notice that this is C[[x1, . . . , x5]]-bilinear.
In order to give an explicit formula, for i, j, h, k ∈ {1, . . . , 5} we set

(ijhk) =
{

0 if |{i, j, h, k}| < 4;
l otherwise, where {i, j, h, k, l} = {1, . . . , 5}.

(1.23)

We shall adopt the following convention: whenever such an index occurs in an expression
and it takes on the value 0, so does the expression.
This way the bracket between two odd elements can be defined as

[ξij , ξhk] = ε(ijhk)∂(ijhk) (1.24)

and then extended by C[[x1, . . . , x5]]-bilinearity, where ε(ijhk) is the sign of the permuta-
tion (ijhkl) if (ijhk) = l ̸= 0, 0 otherwise; in a similar way ∂(ijhk) = ∂l if (ijhk) = l ̸=
0, ∂(ijhk) = 0 otherwise.

Setting deg xi = − deg ∂i = 2 and deg ξhk = −1 provides L =
⊕

i≥−2 Li with
a transitive, irreducible Z-grading of depth 2 consistent with the superalgebra structure,
which means that

L(0) =
⊕

i even

Li, L(1) =
⊕
i odd

Li, [Ln,Lm] ⊆ Ln+m. (1.25)

We will call L− = L−2 ⊕ L−1, L+ =
⊕

i>0 Li and L≥0 = L0 ⊕ L+.
We have an isomorphism between L0 and sl(d) given by

xi∂j 7−→ −ei
j . (1.26)

Given the fact that [L0,Ln] ⊆ Ln, we can view Ln as an sl(d)-module; in particular,
L−2 ∼= d and L−1 ∼=

∧2 d∗ =: s.
It is useful to describe also L1 as an sl(d)-module: it is the highest weight representation in
d∗ ⊗

∧2 d∗, (see [CK, Section 4.3]) and it is generated by the highest weight vector x1ξ12.
Notice that Lj = Lj

1 for j ≥ 1 and that L− ∼= d⊕s is a finite-dimensional Lie superalgebra
whose superbracket is non trivial only when restricted to the odd part, where is given by
(1.22).
This grading extends to the universal enveloping algebra U(L), and in particular to U(L−).
In the latter case, as common practice, the sign of the degree is inverted in order to have a
grading over N.
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We will talk in detail in Chapter 3 about the representation theory of linearly compact
Lie superalgebras, in particular about E(5, 10). However, it is worth to mention now how
the general approach for the non-super case still applies in a considerable amount of cases,
which include E(5, 10).
One makes use of the following result, for which a proof can be found in [CK, Erratum,
Lemma 1].

Lemma 1.3.1. Let g be a finite-dimensional Lie superalgebra and let n be a solvable ideal
of g. Let a be an even subalgebra of g such that n is a completely reducible ad a-module
with no trivial summand. Then n acts trivially in any irreducible finite-dimensional g-
module V .

Now let L be a linearly compact Lie superalgebra with canonical filtration {Lp} and let
V be an irreducible L-module. One considers again continuous representations on discrete
spaces which, in order to avoid pathological example, are assumed to be K-locally finite for
an open subalgebra K ⊂ L (for which in most cases L0 is a good candidate), i.e. U(K)v is
finite-dimensional for any v ∈ V .
Let L− be a (finite-dimensional) complement of K and assume it is a subalgebra of L
(which is not always true in general). It is true, for example, for superalgebras with a
consistent transitive Z-grading of finite depth d > 0

⊕
n≥−d gn, such as E(5, 10), by

choosing K = L0 =
⊕

n≥0 gn and L− =
⊕

−d≤n<0 gn.
The notion of "height" of an L-module still makes sense, so assume the height of V is k
and let V0 ⊂ V be the subspace of elements of V killed by Lk.
V0 is an L0-submodule, hence by hypothesis it is finite-dimensional and one can apply the
previous lemma for g = L/Lp, n = L1/Lp and a = g0 ⊂ L0/Lp, which implies that L1
acts trivially on V0. In other words, k = 1.
Now consider the induced module, which is most commonly known in this framework as
a generalized Verma module, U(L) ⊗U(L0) V0 ≡ U(L−) ⊗ V0, where the identification
follows from the fact that, since the PBW theorem still holds in the superalgebra setting,
fixing an ordered basis of L− and L0, one has that U(L) = U(L−) ⊗ U(L0).
This, by means of the natural projection U(L) ⊗U(L0) V0 → V , u ⊗ v0 7→ uv0, reduces
the problem of classifying irreducible representations of L to the study of the generalized
Verma modules induced by representations of the (finite-dimensional) Lie algebra L0/L1.

1.4 Conformal algebras

Conformal (super)algebras were introduced by Kac ([K1]) in the context of chiral fields
in conformal field theory.
They encode the "singular part" of the Operator Product Expansions (OPEs) of a family
of (mutually) local fields, whereas the "regular" part is described by the normally ordered
product. The whole construction’s algebraic properties are described by a vertex algebra.

The basic (fairly simplified) idea is the following : given a vector space V , a field is
a formal distribution in one variable a(z) =

∑
n∈Z anz

n ∈ (EndV )[[z, z−1]] such that
a(z)v is a Laurent series in z for all v ∈ V (i.e. it has only finitely many negative powers
of z). One is interested (because of physics) in fields satisfying the locality principle:

(z − w)N [a(z), b(w)] = 0 for some N >> 0; (1.27)
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a(z) and b(z) are said to be mutually local. This locality axiom can be restated in terms
of the OPE ([K1]): two fields a(z), b(z) are mutually local if and only if there exist formal
distributions a(n)b for 0 ≤ n ≤ N − 1 such that

[a(z), b(w)] =
N−1∑
n=0

1
n! (a(n)b)(w)∂n

wδ(z − w) (1.28)

where ∂n
w is the nth partial derivate with respect to w and δ(z − w) denotes the delta

distribution ∂(z, w) =
∑

n∈Z z
nw−n−1.

The formal distributions a(n)b are C-linear in a and b and are called nth-products.
The other operation that defines a vertex algebra is the normally ordered product: if one
decomposes a field a(z) into its creation part a+(z) =

∑
n<0 anz

−n−1 and annihilation
part a−(z) =

∑
n≥0 anz

−n−1, then for two fields a(z), and b(z) one can define

: ab : (z) = a+(z)b(z) + b(z)a−(z) (1.29)

which is well defined because of a(z), b(z) being fields.
Roughly speaking, a vertex algebra can be thought of as a family of mutually local fields
closed under derivation, normally ordered product and OPE (the latter meaning that all nth-
products still belong to the family). When dealing with precise definitions, one can notice
that the property of being a field is only necessary in the definition of the normally ordered
product.
If one drops the latter, obtains a family of mutually local formal distributions closed under
derivation and nth-products. This is called a conformal family and its algebraic structure is
axiomatized by the following.

Definition 1.4.1. A (Lie) conformal algebra L is a C[∂]-module, where C[∂] is the Hopf
algebra of polynomials in the variable ∂, endowed with a C-linear map [·λ·] : L⊗L → L[λ]
called λ-bracket, where λ is an indeterminate.
The λ-bracket satisfies the following axioms, reminiscent of those of a Lie bracket:

(i) [∂aλb] = −λ[aλb]; [aλ∂b] = (∂ + λ)[aλb]; (Sesquilinearity)

(ii) [bλa] = −[a−λ−∂b]; (Skew-commutativity)

(iii) [[aλ[bηc]] = [[aλb]λ+ηc] + [bη[aλc]] (Jacobi identity)

for a, b, c ∈ L.
A conformal algebra is said to be finite if it is a finitely generated C[∂]-module.

Here one thinks of ∂ as the derivation ∂z and the λ-bracket as the Fourier transform of
(1.28).
In fact, if [a(z), b(w)] =

∑
n

1
n!(a(n)b)(w)∂n

wδ(z − w), then

[aλb] =
∑

n

λn

n! a(n)b (1.30)

satisfies (i) − (iii) for ∂ = ∂z .

The main examples of finite C[∂]-conformal algebras are the following.
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Example 1.4.1 (Current conformal algebras). Take a Lie algebra g (over C) and define
Cur(g) = C[∂] ⊗ g, the current conformal algebra associated to g, with λ-bracket

[1 ⊗ aλ1 ⊗ b] = 1 ⊗ [a, b] (1.31)

for a, b ∈ g and then extended by C[∂]-sesquilinearity (i.e. by means of (i)).
In the language of formal distributions, it corresponds to the conformal structure of
End(C[t, t−1] ⊗ g)[[z, z−1]], where C[t, t−1] ⊗ g is a Lie algebra with bracket

[tn ⊗ a, tm ⊗ b] = tn+m ⊗ [a, b]. (1.32)

Formal distributions are mutually local, since they satisfy the commutation relations

[g(z), h(w)] = [g, h](w)δ(z − w) (1.33)

where g(z) =
∑

n∈Z(gtn)z−n−1.

Example 1.4.2. (Virasoro conformal algebra) Take a free C[∂]-module of rank 1 generated
by an element l. The λ-bracket

[lλl] = (∂ + 2λ)l (1.34)

defines a conformal algebra structure on V ir = C[∂]l, which is called the Virasoro confor-
mal algebra.
It is the conformal structure associated toW alg(C×)[[z, z−1]], the conformal family of for-
mal distributions with values in the centerless Virasoro algebra W alg(C×), the Lie algebra
of algebraic vector fields on C× (i.e. vector fields in one indeterminate with Laurent poly-
nomial coefficients).
W alg(C×) is generated by the vector fields tn∂t and the formal distribution
L(z) =

∑
n∈Z(tn∂t)z−n−1 satisfies the commutation relations

[L(z), L(w)] = ∂wL(w)∂(w − z) + 2L(w)∂wδ(z − w). (1.35)

The classification of simple finite conformal algebras was obtained by D’Andrea and
Kac in [DK] and it actually consists of instances of the above examples.

Theorem 1.4.1 ([DK]). A finite simple conformal algebra is isomorphic either to V ir or
to the current conformal algebra Cur(g) of a simple finite-dimensional Lie algebra g.

This classification uses in an essential way Cartan’s classification of simple linearly
compact Lie algebras (Theorem 1.1.1) via the annihilation algebra.
In fact, one of the motivations for the classification of infinite-dimensional linearly compact
Lie superalgebra of Theorem 1.3.1 was to provide a similar tool for the classification of
finite conformal superalgebras, which was obtained by Fattori and Kac in [FK].
From a physical point of view, the classification of [DK] corresponds to chiral algebras
(i.e. vertex algebras) generated by a finite number of "bosonic" fields, whereas the "super"
counterpart contemplates also "fermionic" fields.
One can "reverse" the construction that gives a conformal algebra from a conformal family
of formal distribution: given a conformal algebra L, define the Lie algebra of Fourier
coefficients of L, denoted by A(L), as the C-linear span of symbols ai for a ∈ L, i ∈ Z
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quotient the relations (λa+ ηb)n = λan + ηbn and (∂a)n = −nan−1.
Then A(L) is a Lie algebra with bracket

[am, bn] =
∑

k

(
m

k

)
(a(n)b)m+n−k. (1.36)

This is all artfully built so that the formal distributions with values in A(L), written as

a(z) =
∑

n

anz
−n−1, (1.37)

satisfy the OPE encoded in the conformal algebra.
Now, the annihilation algebra of L is A−(L), which is the subalgebra of A(L) generated
by elements an with non-negative n (notation and terminology are reminiscent of the "an-
nihilation part" of a field).
The finiteness of L allows to define a filtration on A−(L) which defines a linearly compact
topology on the completion.

Example 1.4.3. For a current conformal algebra L = Curg, A−(L) is linearly generated
by elements an with a ∈ g and n ≥ 0 where the bracket is given by [an, bm] = [a, b]n+m.
It is easy to see that this is isomorphic to g[t] and its completion is g[[t]], with linearly
compact topology induced by the standard filtration {tng[[t]]}t≥0.
For instance, when g is the trivial one-dimensional algebra C, we obtain the algebra of
formal power series in one indeterminate C[[t]] and the standard filtration is the same of
Example 1.1.2.

Example 1.4.4. For the Virasoro conformal algebra L = V ir = C[∂]l, a linear system
of generators of A−(L) is given by the elements lj , j ≥ 0. It is easy to see that under
the identification lj 7→ −tj∂t, A−(L) is isomorphic to W alg(C), the Lie algebra of vector
fields over C with polynomials coefficients.
The filtration is the standard one {tn+1C[t]∂t}n≥−1 (cf. (1.5)), thus the completion is the
simple linearly compact Lie algebra of Cartan type W1.

We will not report the development of the representation theory of conformal algebras
and refer to [DK, CK2] for a detailed discussion. For our purposes, it will suffice to say
that, given the appropriate definitions, it is immediate to see that the natural notion of a
representation V of a conformal algebra L is the same as a conformal representation V of
the annihilation algebra A−(L), where conformal here means that for every element v ∈ V
there is a term of the filtration of A−(L) which acts trivially on it.
This correspondence allows to study the representation theory of linearly compact Lie alge-
bras using conformal techniques. However, by Theorem 1.4.1 and the previous examples,
this machinery only covers one Lie algebra of Cartan type, namely W1.
Nevertheless, the techniques developed proved interesting enough to introduce a "multi-
variable" generalization of the notion of a conformal Lie algebra, known as a Lie pseudoal-
gebra.
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Chapter 2

Hopf algebras and pseudoalgebras

2.1 Preliminaries and notation on Hopf algebras

The appropriate generalization of the notion of a conformal algebra is that of an H-
pseudoalgebra where the base field C is replaced by a cocommutative Hopf algebra H .
These objects where first introduced by Beilinson and Dreinfield in [BD] where they were
called Lie∗ algebras. They are algebras in a certain pseudotensor category, whence their
name. In order to be able to define them, we will need to talk briefly about (cocommutative)
Hopf algebras first.
In this section we review the definition of a cocommutative Hopf algebra and fix the nota-
tion, following [S] (to which we refer for details on the subject).
A bialgebraH is an associative algebra (over C) with unit together with an homomorphism
of algebras ∆ : H → H ⊗ H called coproduct and a linear map ϵ : H → C called counit
that satisfy the following axioms, for h ∈ H:

(Coassociativity) (∆ ⊗ idH)∆(h) = (idH ⊗ ∆)(∆(h)) ∈ (H ⊗H ⊗H); (2.1)

(Counit axiom) (ϵ⊗ idH)∆(h) = (idH ⊗ ϵ)∆(h) = h ∈ H ∼= C ⊗H ∼= H ⊗ C.
(2.2)

We will use the sumless "Sweedler notation", for instance given h ∈ H:

∆(h) = h(1) ⊗ h(2);
(∆ ⊗ id)∆(h) = h(1) ⊗ h(2) ⊗ h(3) = (id⊗ ∆)∆(h);

etc.

Notice that h(1) ⊗ h(2) ⊗ h(3) is well defined because of coassociativity.
The counit axiom and the fact that ∆ is an homomorphism of algebras can be rewritten, for
h, f, g ∈ H , as

ϵ(h(1))h(2) = h(1)ϵ(h(2)) = h (2.3)

(fg)(1) ⊗ (fg)(2) = f(1)g(1) ⊗ f(2)g(2). (2.4)

An Hopf algebra is a bialgebra endowed with a map S : H → H called the antipode such
that

h(−1)h(2) = ϵ(h) = h(1)h(−2) where S(h(i)) = h(−i). (2.5)
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From (2.3) and (2.5) one can deduce the useful identity in H ⊗H:

h(−1)h(2) ⊗ h(3) = h(1)h(−2) ⊗ h(3) = 1 ⊗ h. (2.6)

An Hopf algebra H is cocommutative if it is commutative as a coalgebra, i.e. h(1) ⊗
h(2) = h(2) ⊗ h(1) for all h ∈ H .

Example 2.1.1 (Group algebra). Given a group G , its group algebra C[G] has a natural
structure of Hopf algebra if one defines, for g ∈ G, ∆(g) = g ⊗ g, ϵ(g) = 1 and S(g) =
g−1. By definition, this is clearly a cocommutative Hopf algebra.
In a generic Hopf algebra H , an element h ∈ H with coproduct ∆(h) = h ⊗ h is called
group-like. The subset of group-like elements is denoted by G(H) and it is in fact a group.

Example 2.1.2 (Universal enveloping algebra). Take a Lie algebra d. Then its universal
enveloping algebra U(d) has a natural structure of Hopf algebra if we define for a ∈ d,
∆(a) = a⊗ 1 + 1 ⊗ a, ϵ(d) = 0 and S(a) = −a. Again, by definition this is a cocommu-
tative Hopf algebra.
Elements of a generic Hopf algebra h ∈ H such that ∆(h) = h⊗1+1⊗h are called primi-
tive and the subspace of primitive elements is a Lie algebra with respect to the commutator,
denoted by P (H).

There is a very important structure theorem on cocommutative Hopf algebras due to
Konstant (for a proof and the definition of the smash product see [S]).

Theorem 2.1.1. Let H be a cocommutative Hopf algebra over C (can be replaced by any
algebraically closed field of characteristic 0). Then H is isomorphic to the Hopf algebra
obtained by the smash product of the universal Lie algebraU(P (H)) and the group algebra
C[G(H)].

We will not explain this in details (see [BDK1]), but we mention that this result allows
in many circumstances in the study of pseudoalgebras to restrict to the case of H = U(d)
being the universal enveloping algebra of a Lie algebra d. For the purposes of this thesis,
we will also assume d to be finite-dimensional (we will highlight in some remarks through-
out the work where these assumptions are needed and why).

In this case, let ∂1, . . . , ∂N be a basis of d and take as a Poincaré-Birkhoff-Witt basis
of H , {∂(I)}I∈ZN

≥0
where

∂(I) = ∂i1
1
i1! · · · ∂

iN
N

iN ! , I = (i1, . . . , iN ) ∈ ZN
≥0. (2.7)

With this choice of basis it is easy to show that

∆(∂(I)) =
∑

J+K=I

∂(J) ⊗ ∂(K). (2.8)

Moreover, this lets us define the (canonical) increasing filtration on U(d)

F pH = spanC{∂(I) | |I| ≤ p}. (2.9)
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This filtration has the following immediate properties

(F pH)(F qH) ⊂ F p+qH; (2.10)

∆(F pH) ⊂
p∑

i=0
F iH ⊗ F p−iH; (2.11)

S(F pH) ⊂ F pH; (2.12)⋃
p

F pH = H; (2.13)

dim F pH < ∞. (2.14)

Remark 2.1.1. It is possible to define a filtration for any Hopf algebra H with similar
properties but the last two, the second to last being true for any cocommutative Hopf algebra
and the last being true for H = U(d) with finite-dimensional d or its smash product with
the group algebra of a finite group.

Remark 2.1.2. When d is an abelian Lie algebra, U(d) coincides with the symmetric al-
gebra S(d) = C[∂1, . . . , ∂N ]. In this case, instead of a filtration, one can define a grading
GpH = spanC{∂(I) | |I| = p}, which it is easy to see that satisfies (GpH)(GqH) ⊂
Gp+qH .
This grading induces the canonical filtration by writing F pH =

⊕
i≤pG

iH .

Now let X = H∗ := Hom(H,C) be the dual of H as a coalgebra.
X can be viewed as an H-bimodule with left and right actions given respectively by

⟨hx, f⟩ = ⟨x, S(h)f⟩, (2.15)

⟨xh, f⟩ = ⟨x, fS(h)⟩ for x ∈ X, h, f ∈ H. (2.16)

Therefore, by associativity of H ,

f(xg) = (fx)g for f, g ∈ H,x ∈ X. (2.17)

The left action makes X an H-differential algebra, i.e. an associative algebra with a left
action of H such that

h(xy) = (h(1)x)(h(2)y) for h ∈ H, x, y ∈ X. (2.18)

Similarly, for the right action (xy)h = (xh(1))(yh(2)).
Notice also that X is commutative when H is cocommutative.

The filtration of H induces a decreasing filtration FpX on X , where (set F−1 = X)

FpX = (F pH)⊥ = {x ∈ X | ⟨x, F pH⟩ = 0} for p ≥ −1. (2.19)

The properties of F pH imply the following ones:

(FpX)(FqX) ⊂ Fp+qX; (2.20)

(F pH)(FqX) ⊆ Fq−pX; (2.21)⋂
p

FpX = 0 (if (2.13) holds) . (2.22)
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We can consider on X the topology induced by taking as a fundamental system of neigh-
bourhoods of the origin the filtration {FpX} .
By (2.20) the product in X is continuous. In addition, if we consider the discrete topology
on H , by (2.21), the action of H on X is also continuous. This can be rephrased by saying
that X is a topological H-differential algebra.
Moreover, when (2.14) holds, dim X/FnX < ∞ for all n. Hence, if also (2.22) holds, by
the discussion of Section 1.1, X is linearly compact.

Remark 2.1.3. When H = U(d), the fact that X is a topological H-differential algebra,
together with (2.18) and the definition of the coproduct in H , shows that d acts on X by
continuous derivations.

When H = U(d), dim d = N , let {xI} be a dual basis of {∂(I)}, i.e. ⟨xI , ∂
(J)⟩ = δJ

I ;
in particular, we denote with {xi} the duals elements of the basis {∂i} for d ⊂ H , which
provides a basis of d∗ ⊂ X .
When H = U(d), it follows from (2.8) that

xIxJ = xI+J (2.23)

This allows us to write explicitly the basis elements xI of X :

xI = (x1)i1 · · · (xN )iN for I = (i1, . . . , iN ) ∈ NN (2.24)

where the basis elements xi = xεi of d∗ correspond to the multi index εi = (0, . . . , 1, . . . , 0)
with only a 1 in the ith position.

Example 2.1.3. When d is abelian and therefore H = U(d) = S(d) ∼= C[∂1, . . . , ∂N ],
it is a well known fact that X ∼= C[[x1, . . . , xN ]]. By setting deg xi = 1, X decom-
poses as a direct sum of spaces GpX generated by monomials of degree p such that
GpX ·GqX ⊂ Gp+qX and FpX/Fp+1X ∼= GpX .
Notice that since X is linearly compact,

⊕
pG

pX is a dense subspace of X and any ele-
ments in X can be written as a (possibly infinite) sum of elements in GpX . In other words,
X is isomorphic to the completion of

⊕
pG

pX in respect to the topology induced by the
filtration {

⊕
k≥pG

pX}k≥−1.

The previous example generalizes for any d. In fact, one can define a ring isomorphism

ϕ : X → ON = C[[t1, . . . , tN ]] (2.25)

by ϕ(xI) 7→ tI , where tI is defined similarly to (2.24).
Recall that ON by Example 1.1.2 is a linearly compact associative algebra, and so is X . In
fact, the filtration (2.19) corresponds via ϕ to the canonical filtration of ON , thus ϕ is an
isomorphism of linearly compact associative algebras.
This is an important feature: it allows us to define an action of H over ON , in particular
one of d, using (2.15) via ϕ.

Example 2.1.4. When d is an abelian Lie algebra, one can easily compute its action on X
and therefore on ON : for k ∈ {1, . . . , N}, I = (i1, . . . , iN ), J = (j1, . . . , jN ) ∈ NN ,

⟨∂kxI , ∂
(J)⟩ = −⟨xI , ∂k∂

(J)⟩ = −⟨xI , (jk + 1)∂(J+εk)⟩ =
− (jk + 1)δI

J+εk
= −(jk + 1)δI−εk

J = −(jk + 1)⟨xI−εk
, ∂(J)⟩
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where we set xI = 0 if I has a negative entry.
Under the isomorphism ϕ, this translates to ∂k acting on ON = C[[t1, . . . , tN ]] as − ∂

∂tk .
From a geometrical point of view, if one interprets C[[t1, . . . , tN ]] as the algebra of func-
tions on a formal neighbourhood of a point p in a complex manifold M of dimension N
(like at the beginning of Section 1.1), then d can be viewed as a Lie algebra of vector fields
on the formal neighbourhood (namely, elements of WN ) and elements of H as differential
operators.

One can extend the previous argument for any Lie algebra d by the following lemma.

Lemma 2.1.1. The following formulas hold for the action of d on X:

xi∂j = −δi
j −

∑
k<i

ci
kjx

k modF1X, (2.26)

∂jx
i = −δi

j +
∑
k>i

ci
kjx

k modF1X (2.27)

where ci
jk are the constants defining the Lie bracket in d, i.e. [∂j , ∂k] =

∑
i

ci
jk∂i.

Proof. Since we are only interested in identitiesmodF1X , we only need to check the result
of ⟨xi∂j , h⟩ for h ∈ F 1H .
If h = 1, then ⟨xi∂j , h⟩ = −⟨xi, ∂j⟩ = −δi

j .
If h = ∂k then ⟨xi∂j , h⟩ = −⟨xi, ∂k∂j⟩. This is equal to 0 when k ≤ j, since in this
case ∂k∂j is (up to a constant) an element of the basis of H . When k > j we obtain
−⟨xi, [∂k, ∂j ]⟩ − ⟨xi, ∂j∂k⟩; the second term is again 0, while the first is equal to −ci

kj

Same argument applies to ∂jx
i, with a switched sign.

We end this section by describing a very useful feature of Hopf algebras, the left (and
right) straightening.
Take a, b ∈ H . Using (2.6) , one obtains that

(a⊗ b) = (a⊗ 1)(1 ⊗ b) = (a⊗ 1)(b(−1)b(2) ⊗ b(3)) =
(ab(−1) ⊗ 1)(b(2) ⊗ b(3)) = (ab(−1) ⊗ 1)∆(b(2)). (2.28)

This allows us to claim that any element of H ⊗H can be written as a linear combination
of elements in (H ⊗ C)∆(H).
One can be more precise and by mean of the Fourier transform F : H ⊗ H → H ⊗ H
defined by the formula

F(f ⊗ g) = (f ⊗ 1)(S ⊗ id)∆(g) = fg(−1) ⊗ g(2) for f, g ∈ H (2.29)

prove the following lemma.

Lemma 2.1.2 ([BDK1]). Every element of H ⊗H can be uniquely represented in the form∑
i(hi ⊗ 1)∆(li) where {hi} is a fixed basis of H ((2.7) when H = U(d) for instance) for

some li ∈ H . In other worlds, H ⊗H = (H ⊗ C)∆(H).
In particular, for any H-module L, (H ⊗H) ⊗H L = (H ⊗ C) ⊗ L = (C ⊗H) ⊗H L.
Moreover this is compatible with filtration (2.9):
Fn(H⊗H) = (FnH⊗C)∆(H) = (C⊗FnH)∆(H) whereFn(H⊗H) =

∑
i+j=n F

iH⊗
F jH .
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2.2 Pseudotensor categories and Lie Pseudoalgebras

The theory of pseudotensor categories, introduced by Beilinson and Drinfeld in [BD],
generalizes the notion of symmetric monodial category (in fact every symmetric monodial
category has a pseudotensor structure) and "fits in" between it and the concept of ordinary
additive category (a pseudotensor category can be thought as an ordinary additive category
with an extra structure). It also generalizes the concept of operad (an operad turns out to
be, by definition, a pseudotensor category with one object).
The main benefit in working in this environment is to have the "absolute minimum" to be
able to define, in terms of polylinear maps, the notions of algebras, Lie algebras, represen-
tations, etc. This way one can generalize these concepts in suitable contexts.
We are mainly only going to give an account of definitions and main results; for a more
detailed discussion see [BD] or [BDK1]. In particular, our main object of interest in this
framework is to introduce H-pseudoalgebras (Lie algebras in a certain pseudotensor H-
category) and superalgebras (algebras in the usual Vec category but with a "signed" action
of the symmetric group) and to define Lie super H-pseudoalgebra.

Take as an example the category Vec of C-vector spaces. We can define, for any non
empty finite set I and any collection of spaces {Li}i∈I , M ∈ Vec, the vector space of
polylinear maps PI({Li}, M) = Hom(⊗i∈ILi, M).
Notice that we have an action of the symmetric group on these spaces by permutation of the
factors in ⊗i∈ILi. Moreover, for any surjective sets map π : I ↠ J and for any collection
of spaces {Kj}j∈J , we can define (obvious) compositions of polylinear maps:

PI({Li},M) ⊗
⊗
i∈I

PJi({Kj}, Li) −→ PJ({Kj},M)

ϕ⊗ {ψi} 7−→ ϕ ◦
⊗

i∈I ψi ≡ ϕ({ψi}) (2.30)

where we assume that j ∈ Ji = π−1(i).
These compositions have the following properties:

Associativity: If we have another surjective map H ↠ J , another collection {Nh}h∈H

and χj ∈ PHj ({Nh},Kj), then ϕ({ψi({χj})}) = (ϕ({ψi}))({χj}) ∈ PH({Nh},M).

Unit: For any object M there exists idM ∈ P1({M},M) such that ∀ϕ ∈ PI({Li},M),
idM (ϕ) = ϕ({idLi}) = ϕ.

Equivariance: Compositions are equivariant with respect to the natural action of the sym-
metric group SI onPI({Li},M).

Using this as a prototype, one defines:

Definition 2.2.1 ([BD]). A pseudotensor category is a class of objects M together with
vector spaces PI({Li},M) endowed with an action of the symmetric group SI and with
composition maps as in (2.30) which satisfy the properties of Associativity, Unit and Equiv-
ariance as above.

Notice that, given a pseudotensor category M and two objects L,M ∈ M, we can
define Hom(L,M) = P1({L},M). Composition of morphisms follow from composition
maps in (2.30), providing a structure of an ordinary (additive) category on M.
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In other words, we can think of pseudotensor categories as ordinary categories equipped
with an additional pseudotensor structure given by the polylinear maps in PI({Li},M) for
|I| ≥ 2.

Example 2.2.1. Consider the category of super vector spaces over C, i.e. Z/(2)-graded
vector spaces over C.
Notice that a Z/(2)-gradation on a vector space V = V(0) ⊕ V(1) is equivalent to give
a linear involution π : V → V ; in fact, V decomposes in two eigenspaces for the two
eigenvalues of π, −1 and 1. We shall call the eigenvectors homogeneous.
We can define the pseudotensor category of super vector spaces, SVec:

Objects: pairs (V, π) where V is a vector space over C and π ∈ End(V ) such that π2 =
IdV .

Polylinear maps:

PI

(
{(Li, πi)}, (M,ρ)

)
={

ϕ ≡ ⊗i∈Iϕi : ⊗i∈ILi → M | ϕi ∈ Hom(Li,M) and ϕi ◦ πi = ρ ◦ ϕi

}
(2.31)

where tensor products are the usual ones for vector spaces and linear maps, same for
compositions.

Action of SI : SI acts on PI

(
{(Li, πi)}, (M,ρ)

)
by permutation of factors in ⊗i∈ILi but

following the "Koszul sign rule", which instructs to multiply by a factor (−1)|x||y|

every time two homogeneous elements x and y swap position, where |x| ∈ Z/(2) is
the degree of x (in our notation |x| = 0 if π(x) = x and |x| = 1 if π(x) = −x).
Formally, given σ ∈ SI and ϕ ∈ PI

(
{(Li, πi)}, (M,ρ)

)
, then

(σ · ϕ)(⊗i∈Ivi) = ε(σ({vi}i∈I)) · ⊗i∈Iϕσ(i)(⊗i∈Ivσ(i))

where vi are homogeneous vectors of eigenvalues λi = 1 or −1 and ε is defined for
transpositions as

ε((k, l)({vi}i∈I)) =
{

−1 if λk = λl = −1
1 otherwise

(2.32)

and then extended to SI by multiplication.

Remark 2.2.1. The construction given for Vec applies for any symmetric monoidal (ten-
sor) category. Such a category is equipped with a tensor product and a map, called braiding,
τM,N : M ⊗N → N ⊗M such that τN,M ◦ τM,N = idM⊗N ∀M,N ∈ M.
One can proceed to define the following pseudotensor structure.

• Polylinear maps: PI({Li},M) = Hom(⊗i∈ILi,M);

• action of SI induced by τ : for any transposition σ = (j k) ∈ SI and ϕ = ⊗i∈Iϕi ∈
PI({Li},M), σϕ = (⊗i∈Iϕσ(i)) ◦ τLj ,Lk

;

• composition maps: same as in (2.30).
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Example 2.2.2. LetH be a cocommutative bialgebra. Then the category of leftH-modules
Ml(H) is a symmetric tensor category, hence can be made into a pseudotensor category as
seen above, where polylinear maps are PI(Li,M) = HomH(⊗i∈ILi,M) and the braiding
is the identity.
The same can be done for the category of H-bimodules (which are often indicated as H −
H-modules) Mb(H) where in this case one takes as polylinear maps morphisms ofH−H-
modules.

Example 2.2.3 (bis). Given V and W super vector spaces over C, one can define a tensor
product V ⊗W given by

(V ⊗W )(0) = (V(0) ⊗W(0)) ⊕ (V(1) ⊗W(1));
(V ⊗W )(1) = (V(0) ⊗W(1)) ⊕ (V(1) ⊗W(0)).

Furthermore one can define a braiding:

τV ⊗W : V ⊗W −→ W ⊗ V

v ⊗ w 7−→ (−1)|v||w|w ⊗ v (2.33)

where v ∈ Vα, w ∈ Wβ with α, β ∈ Z/(2) and |v| = α.
These make the category of super vector spaces over C a symmetric monoidal category,
thus giving another way to define the pseudotensor structure given in Example 2.2.1.
Explicitly, the polylinear maps are given by PI({Li},M) = Homeven(⊗i∈ILi,M) (where
even homomorphism are linear homomorphisms that preserve the Z/(2)-grading) with ac-
tion of SI given by

(σ(⊗i∈Iψi))(⊗i∈Ivi) = (−1)|σ({vi}i∈I)| ⊗i∈I ψσ(i)(vσ(i)) (2.34)

where vi are homogeneous vectors and if σ ∈ SI is equal, as product of transpositions, as
(j1 l1) · · · (jk lk), then |σ({vi}i∈I)| = |vj1 ||vl1 | + · · · + |vjk

||vlk |.

We hinted before that it is possible to define algebraic structures in pseudotensor cate-
gories that generalize usual ones.

Definition 2.2.2. An associative algebra in a pseudotensor category M is an object A ∈
M together with a polylinear map µ ∈ P2({A,A}, A) such that

µ(µ(·, ·), ·) = µ(·, µ(·, ·)). (2.35)

A is said to be commutative if, in addition,

µ = σ12µ, where σ12 = (1 2) ∈ S2. (2.36)

Definition 2.2.3. A Lie algebra in a pseudotensor category M is an object L ∈ M
equipped with a polylinear map β ∈ P2({L,L}, L) for which the following properties
apply:

Skew-commutativity β = −σ12β where σ12 = (1 2) ∈ S2;
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Jacobi identity β(β(·, ·), ·) = β(·, β(·, ·)) −σ12β(·, β(·, ·)), where we are thinking σ12 in
S3.

Definition 2.2.4. A representation of a Lie algebra (L, β) (or L-module) is an object V ∈
M together with a polylinear map ρ ∈ P2({L,M},M) satisfying

ρ(β(·, ·), ·) = ρ(·, ρ(·, ·)) − σ12ρ(·, ρ(·, ·)). (2.37)

If (L,α) is an associative algebra, then ρ must instead satisfy

ρ(α(·, ·), ·) = ρ(·, ρ(·, ·)). (2.38)

Remark 2.2.2. When the action of the symmetric group is the usual one, like in the case
of Vec, these definitions coincide with the usual ones.
In other cases we obtain new definitions. For instance, the multiplication of a Lie algebra L
in the pseudotensor category of Example 2.2.1 has to satisfy β(a, b) = −(−1)|a||b|β(b, a)
for all homogeneous elements a, b ∈ L. A similar argument applies to the Jacobi iden-
tity and commutativity; that is, we are defining superassociative (=associative) algebras,
supercommutative algebras and Lie superalgebras.

Example 2.2.4. A (Lie or associative) algebra in the pseudotensor category M l(H) of
Example 2.2.2 is called a (Lie or associative) H-differential algebra, which is a (Lie or
associative) algebra that has also a structure of H-module such that the product (or the
bracket) is a morphism of H-modules.

Example 2.2.5. A Lie superalgebra (resp. supercommutative algebra) is a Lie algebra
(resp. commutative algebra) in the pseudotensor category of super vector spaces
Notice that a definition of an associative superalgebra would be redundant because in Def-
inition 2.2.2 the action of SI is not involved for associative algebras (which is what deter-
mines the difference between "super" objects and usual ones).

Results involving only the polylinear maps structure over tensor categories still hold
for pseudotensor categories. For instance:

Proposition 2.2.1. Let (A,µ) be an associative algebra in a pseudotensor category M. If
we define the commutator β = µ− σ12µ, then (A, β) is a Lie algebra in M.

In order to define one of the main objects of our study, Lie pseudoalgebras, we need to
introduce, following [BD], the pseudotensor category M∗(H).
Given a cocommutative bialgebra H with coproduct ∆, M∗(H) is the pseudotensor cat-
egory having the same objects of Ml(H) (i.e. left H-modules) but with a different pseu-
dotensor structure: in this case we define the polylinear maps as

PI({Li},M) = HomH⊗I (⊠i∈ILi, H
⊗I ⊗H M) (2.39)

where ⊠i∈ILi is the H⊗I -module ⊗i∈ILi with action given component by component,
while the action of H⊗I on H⊗I ⊗H M is given by left multiplication.
Compositions of polylinear maps are given accordingly to the following construction:
given π : J ↠ I and polylinear maps

ϕ = ⊠i∈Iϕi ∈ HomH⊗I (⊠i∈ILi, H
⊗I ⊗H M)
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and, for i ∈ I and Ji = π−1(i),

ψi = ⊠j∈Ji(ψi)j ∈ HomH⊗Ji (⊠j∈JiNj , H
⊗Ji ⊗H Li),

one can realize ⊠i∈Iψi, consistently with π, as an element ofHomH⊗J (⊠j∈JNj , H
⊗J ⊗H

⊠i∈ILi). To obtain a polylinear map ϕ({ψi}) ∈ HomH⊗J (⊠j∈JNj , H
⊗J ⊗H M) we can

simply compose it with ϕ, provided, however, that since the latter is an homomorphism
of H⊗I -modules, we give it a structure of H⊗J -homomorphism (consistent with π). In
order to do so, one takes into account the functor ∆(π) : Ml(H⊗I) → Ml(H⊗J), M 7→
H⊗J ⊗H⊗IM where the right action ofH⊗I overH⊗J is induced by the iterated coproduct
according to π.
If, for example, π : {1, 2, 3, 4} → {1, 2, 3} where π(1) = 1, π(2) = π(3) = 2, π(4) = 3,
then ∆(π) = id⊗∆⊗id : H⊗3 → H⊗4 and the action overH⊗4 is given by multiplication
component by component.
If, again for example, π : {1, 2, 3, 4} → {1, 2} with π(1) = π(2) = 1 e π(3) = π(4) = 2,
then ∆(π) = ∆ ⊗ ∆ : H⊗2 → H⊗4.
Compositions of polylinear maps is defined as

ϕ({ψi}i∈I) = ∆(π)(ϕ) ◦ ⊠i∈Iψi. (2.40)

Explicitly, given nj ∈ Nj , we can write

ψi(⊗j∈Jinj) =
∑

k

hk
i ⊗H lki

for some hk
i ∈ H⊗Ji , lki ∈ Li. Similarly

ϕ(⊗i∈I l
k
i ) =

∑
t

gkt ⊗H mkt

for some gkt ∈ H⊗I , mrs ∈ M .
Then we define

(ϕ({ψi}i∈I))(⊗j∈J) =
∑
k,t

(⊗i∈Ih
k
i )∆(π)(gkt) ⊗H mkt (2.41)

where ∆π : H⊗I → H⊗J behaves as described above.
Finally, the symmetric group SI acts on polylinear maps permuting simultaneously factors
in ⊠i∈ILi and in H⊗I .

Remark 2.2.3. It is precisely the equivariance with respect to the action of the symmetric
group of composition of polylinear maps that demands the cocommutativity of H . Indeed
if we consider, for example, the action of σ12 = (1 2) ∈ S2 over (H ⊗H) ⊗H M , which
is given by σ12((f ⊗ g) ⊗H m) = (g ⊗ f) ⊗H m, equivariance implies in particular that
σ12∆ = ∆, that is the cocommutativity of H .

One can directly define the notions of Lie and associative pseudoalgebras.

Definition 2.2.5. A Lie (H-)pseudoalgebra is a Lie algebra in the pseudotensor category
M∗(H).
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Definition 2.2.6. An associative (H-)pseudoalgebra is an associative algebra in the pseu-
dotensor category M∗(H).

Anyway, we can be less cryptic by expressing the requested properties for the polylinear
maps used as operations.

Definition 2.2.7. An (H-)pseudoalgebra is an H-module L together with a polylinear map
β ∈ P2({L,L}, L) = HomH⊗H(L⊗ L, (H ⊗H) ⊗H L) called the pseudoproduct of L.
We will indicate the pseudoproduct β(a, b) as a ∗ b for a, b ∈ L. L is said to be finite if it
is finitely generated as an H-module.

Remark 2.2.4. By definition, β is H-bilinear, meaning that

fa ∗ gb = ((f ⊗ g) ⊗H id)(a ∗ b). (2.42)

Explicitly, if a ∗ b =
∑

i

(fi ⊗ gi) ⊗H ci, then fa ∗ gb =
∑

i

(ffi ⊗ ggi) ⊗H ci.

The above definitions of associative and Lie pseudoalgebras are obtained by attaching
properties to the pseudoproduct.
The definition of associativity of the pseudoproduct is the usual:

[Associativity] a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀a, b, c ∈ L (2.43)

To describe it explicitly, we need to make sense of the above elements in (H⊗H⊗H)⊗HL
by using compositions of polylinear maps.
If we have

b ∗ c =
∑

i

(fi ⊗ gi) ⊗H vi (2.44)

a ∗ vi =
∑

j

(hij ⊗ kij) ⊗ wij (2.45)

then a ∗ (b ∗ c) =
∑
i,j

(hij ⊗ fikij(1) ⊗ gikij(2)) ⊗ wij . (2.46)

Similarly, if

a ∗ b =
∑

i

(fi ⊗ gi) ⊗H vi (2.47)

vi ∗ c =
∑

j

(hij ⊗ kij) ⊗ wij (2.48)

then (a ∗ b) ∗ c =
∑
i,j

(fihij(1) ⊗ gihij(2) ⊗ kij) ⊗ wij . (2.49)

A pseudoproduct is commutative when

[Commutativity] a ∗ b = (σ ⊗H id)(b ∗ a) ∀a, b ∈ L (2.50)

where σ is the "flip" σ(f ⊗ g) = (g ⊗ f).
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When L is a Lie pseudoalgebra, the pseudoproduct is called pseudobracket and denoted
by [· ∗ ·]. It has, in addition to bilinearity, the following properties:

[Skew-commutativity] [a ∗ b] = −(σ ⊗H id)[b ∗ a]; (2.51)

[Jacobi identity] [a ∗ [b ∗ c]] − ((σ ⊗ id) ⊗H id)[b ∗ [a ∗ c]] = [[a ∗ b] ∗ c], (2.52)

for any a, b, c ∈ L, where the identity (2.52) in H⊗3 ⊗H L is in the sense described before.

In an analogous way one can define representations of Lie and associative pseudoalge-
bras.

Definition 2.2.8. A representation of a Lie H-pseudoalgebra L is a left H-module V to-
gether with a polylinear map ρ ∈ P2(L,M,M), denoted by ρ(a⊗ b) = a ∗ b such that

[a ∗ b] ∗ v = a ∗ (b ∗ v) − ((σ ⊗ id) ⊗H id)(b ∗ (a ∗ v)) ∀ a, b ∈ L, v ∈ V. (2.53)

V is said to be finite if it i finitely generated as an H-module.

We conclude this section by defining another pseudotensor category, which combines
Example 2.2.1 with the pseudotensor category M∗(H).
We define the pseudotensor category SM∗(H) as follows.

Objects: Z/(2)-graded left H-modules, or equivalently pairs (M,π) where M is a left
H-module and π : M → M is an involution of H-modules.

Polylinear maps:

PI

(
{(Li, πi)}i∈I , (L, τ)

)
={

ψ ≡ ⊗i∈Iψi ∈ HomH⊗I (⊠i∈ILi, H
⊗I ⊗H M) | ψi ◦ πi = τ ◦ ψi

}
. (2.54)

We are basically using the same polylinear maps as in (2.39), but we also require
them to commute with the involutions, so that they behave as we expect in respect to
the Z/(2)-gradation.
Compositions of polylinear maps follows the construction given for M∗(H).

Action of SI : The symmetric group SI acts on PI

(
{(Li, πi)i∈I}, (L, τ)

)
by permuting

simultaneously factors in H⊗I and in ⊠i∈ILi while at the same time applying the
"Koszul sign rule", as given explicitly in (2.32).

Definition 2.2.9. A Lie H-superpseudoalgebra is a Lie algebra in the pseudotensor cate-
gory SM∗(H).

In other words, a Lie super pseudoalgebra is a pair (L, π) (or equivalently a Z/(2)-
graded H-module L = L(0) ⊕ L(1)), together with a polylinear map β ∈ HomH⊗H(L ⊗
L, (H ⊗H) ⊗H L) commuting with π (or equivalently, such that β(L(i) ⊗ L(j)) ⊂ (H ⊗
H) ⊗H L(i+j) for i, j ∈ Z/(2)) which we write as β(a, b) = [a ∗ b], with "super" versions
of properties (2.51) and (2.52), i.e.

[Skew-commutativity]: [a ∗ b] = −(−1)|a||b|(σ ⊗H id)[b ∗ a] (2.55)

[Jacobi identity]: [a ∗ [b ∗ c]] − (−1)|a||b|((σ ⊗ id) ⊗H id)[b ∗ [a ∗ c]] = [[a ∗ b] ∗ c]
(2.56)
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for any homogenous element a, b ∈ L and c ∈ L.
The explicit description of these properties is the analogous "signed" version of the one in
the non "super" setting.

Remark 2.2.5. It is worth to notice that if we restrict the pseudobracket to L(0) ⊗L(0), we
obtain the definition of a Lie pseudoalgebra, while if we restrict it to L(0) ⊗ L(1), Jacobi
identity reads as the definition of a representation of a Lie pseudoalgebra.
In fact, one can easily see that the datum of a Lie super pseudoalgebra L = L(0) ⊕ L(1) is
equivalent to that of Lie pseudoalgebra L(0), an L(0)-module L(1) and a L(0)-equivariant
H-bilinear map : L(1) ⊗ L(1) → (H ⊗H) ⊗H L(0) such that

[a ∗ b] = (σ ⊗H id)[b ∗ a]; (2.57)

[a ∗ [b ∗ c]] + ((σ ⊗ id) ⊗H id)[b ∗ [a ∗ c]] = [[a ∗ b] ∗ c] (2.58)

∀ a, b, c ∈ L(1).

2.3 Pseudo linear algebra

The first example of a pseudoalgebra is given by the current pseudoalgebra.
LetH be a (cocommutative) Hopf algebra. Given a C-algebraA, its current pseudoalgebra
is the left H-module Cur A = H ⊗A with pseudoproduct

(f ⊗ a) ∗ (g ⊗ b) = (f ⊗ g) ⊗H ab (2.59)

for a, b ∈ L, f, g ∈ H , where ab is the product in A. If A is associative/Lie/commutative,
so is Cur A. We can also generalize this construction.

Definition 2.3.1. Let H ′ ⊂ H be an Hopf subalgebra and let L be an H ′-pseudoalgebra.
The current H-pseudoalgebra of L is

CurH′
H L = H ⊗H′ L

where the pseudoproduct is given by

(f ⊗H′ a) ∗ (g ⊗H′ b) = ((f ⊗ g) ⊗H 1)(a ∗H′ b)

for f, g ∈ H , a, b ∈ L, where ∗H′ denotes the pseudoproduct L⊗L → (H ′ ⊗H ′) ⊗H′ L.
The action of H is given by left multiplication on the first factor. CurH′

H L is a Lie (resp.
associative) pseudoalgebra when L is.

Remark 2.3.1. In other words, we are defining a pseudotensor functorCurH′
H : M∗(H ′) →

M∗(H).
The previous example arises as a particular case of this construction when H ′ = C. In
this case we are defining a pseudotensor functor CurH : Vec → M∗(H), where the pseu-
dotensor structure of Vec is the one described at the beginning of Section 2.2.

As we already mentioned, another class of examples of pseudoalgebras is provided by
conformal algebras.
First of all consider the one-dimensional Lie algebra C∂ generated by ∂. Then U(C∂) =
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C[∂] and we can define an Hopf algebra structure on the latter.
Now, let L be a conformal algebra (so in particular an H = C[∂]-module) with λ-bracket
given by

[aλb] =
∑

i

pi(λ)ci (2.60)

for some pi ∈ C[λ], ci ∈ L. Then L is a Lie H-pseudoalgebra with pseudobracket given
by

[a ∗ b] =
∑

i

(pi(−∂) ⊗ 1) ⊗H ci. (2.61)

One can check that properties of the λ-bracket listed in Definition 1.4.1 implyH-bilinearity,
skew-symmetry and Jacobi identity for (2.61).

We recover now few basic definitions and constructions about pseudoalgebras and
"pseudo linear" algebra that resemble those of linear algebra.
Given an H-pseudoalgebra L, then an H-submodule M ⊂ L is a subalgebra of L if

M ∗M ⊂ (H ⊗H) ⊗H M. (2.62)

A subalgebra is an ideal if L ∗ M ⊂ (H ⊗ H) ⊗H M . L is simple if its only ideals are 0
and L. Analogous definitions are given for Lie H-pseudoalgebras.

Example 2.3.1. If B ⊂ A are C-algebras, then CurB is a subalgebra of Cur A. In
particular, if A is simple, so is CurA.

Let L1, L2 be H-pseudoalgebras. A morphism of pseudoalgebras is, in the language
of pseudotensor categories, a polylinear map in P1({L1}, L2) = HomH(L1, H ⊗H L2) ≡
HomH(L1, L2) which respects the pseudoproducts .
Explicitly, it is an H-linear map γ : L1 → L2 such that, for a, b ∈ L1

((id⊗ id) ⊗H γ)(a ∗ b) = γ(a) ∗ γ(b). (2.63)

In Definition 2.2.4 we have defined representations of Lie and associative algebras in a
generic pseudotensor category in terms of polylinear maps. More explicitly, for an associa-
tive (or Lie) pseudoalgebra one has the following.

Definition 2.3.2. Let L be an associative H-pseudoalgebra. A representation of L, or L-
module, is an H-module V together with a map ρ : L⊗ V → (H ⊗H)⊗H written, with a
slightly abuse of notation, as a ∗ vρ(a, v) satisfying

a ∗ (b ∗ v) = (a ∗ b) ∗ v ∀a, b ∈ L, v ∈ V, (2.64)

where a ∗ b is the pseudoproduct in L.
If L is a Lie H-pseudoalgebra, the identity to be satisfied is

[a ∗ b] ∗ v = a ∗ (b ∗ v) − ((σ ⊗ id) ⊗H id)(b ∗ (a ∗ v)). (2.65)

An H-submodule U ⊂ V is called an L-subrepresentation, or L-submodule, if L ∗ U ⊂
(H ⊗H) ⊗H U .
An L-module is irreducible if the only submodules are {0} and L.
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In the classical setting, a representation of an associative (resp. Lie) algebra L is a
morphism of associative (resp. Lie) algebras ρ : L −→ End(V ) (resp. gl(V )).
Something similar can be done in the pseudo setting. First of all, we need to define pseu-
dolinear maps.

Definition 2.3.3. Let V,W be H-modules. An H-pseudolinear map from V to W is a
linear map α : V −→ (H ⊗H) ⊗H W such that

α(hv) = ((1 ⊗ h) ⊗H 1)α(v) ∀h ∈ H, v ∈ V. (2.66)

The space of pseudolinear maps from V to W is denoted by Chom(V,W ). This is an
H-module with action defined by

(hα)(v) = ((h⊗ 1) ⊗H 1)α(v) for α ∈ Chom(V,W ), h ∈ H, v ∈ V. (2.67)

When V = W , we denote Cend(V ) = Chom(V, V ).

Example 2.3.2. Let L be an H-pseudoalgebra and M an L-module. Then for any a ∈ L,
the map ma : V −→ (H ⊗ H) ⊗H V , v 7→ a ∗ v, is an H-pseudolinear map, so ma ∈
Cend(V ). One also has that hma = mha.

Given ϕ ∈ Chom(V,W ), ψ ∈ Chom(U, V ) one can consider the "composition" ϕ◦ψ
in the sense of (2.40). Anyway, in order to obtain a well defined element of Chom(U,W ),
one needs U to be finite (as an H-module).
It is shown in [BDK1, Chapter 10] that this can be done in an unique way such that the
composition is "associative". When applied to the case of V = U = W , this gives a
structure of associative pseudoalgebra for CendV . Moreover, ϕ ∗ v = ϕ(v) defines a
structure of Cend(V )-module on V .

Proposition 2.3.1. If A is an H-pseudoalgebra, giving a structure of A-module on a finite
H-module V is equivalent to provide an homomorphism of associative pseudoalgebras
from A to Cend(V ).

Proof. One associates to any a ∈ A the pseudolinear map ma from example 2.3.2. Then

(ma ∗mb) ∗ v = ma ∗ (mb ∗ v) = a ∗ (b ∗ v) = (a ∗ b) ∗ v = ma∗bv,

for any v ∈ V , therefore ma ∗mb = ma∗b.

By Proposition 2.2.1, given an associative pseudoalgebra one can define a Lie pseudoal-
gebra structure on it (same as in the non-pseudo setting). The Lie pseudoalgebra obtained
by Cend(V ) is denoted by gc(V ). Analogously to the previous proposition, we have the
following.

Proposition 2.3.2. If L is a Lie H-pseudoalgebra, giving a structure of L-module on a
finite H-module V is equivalent to provide an homomorphism of Lie pseudoalgebras from
L to gc(V ).

Remark 2.3.2. Let L be a Lie pseudoalgebra and V , W two finite L-modules. Then we
can give to Chom(V,W ) a structure of an L-module where the pseudoaction of a ∈ L on
φ ∈ Chom(V,W ) is given by

(a ∗ φ)(v) = a ∗ (φ ∗ v) − ((σ ⊗ id) ⊗H φ)(a ∗ v). (2.68)
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Definition 2.3.4. Let L be an H-pseudoalgebra. A derivation of L is an H-pseudolinear
map φ ∈ gc(L) satisfying, for all a, b ∈ L,

φ ∗ (a ∗ b) = (φ ∗ a) ∗ b+ ((σ ⊗ id) ⊗H id)(a ∗ (φ ∗ b)) (2.69)

if L is an associative pseudoalgebra, or

φ ∗ [a ∗ b] = [(φ ∗ a) ∗ b] + ((σ ⊗ id) ⊗H id)[a ∗ (φ ∗ b)] (2.70)

if L is a Lie pseudoalgebra.
The set of all derivations of L is denoted by Der L.

It is easy to see from the definition that Der L is a subalgebra of gc(L).

gc(V ) is, in general, a quite big object and it is less manageable that its "linear" coun-
terpart gl(V ). For instance, take a free H-module V = H ⊗ V0. We want V to be finite,
thus V0 is a finite-dimensional vector space.
In this case we can give an explicit description ofCend(V ) and gc(V ) (see [BDK1, Propo-
sition 10.11]).
As H-modules, they are isomorphic to (H ⊗H) ⊗H End(V0), where H acts by left mul-
tiplication on the first factor.
The pseudoproduct in Cend(V ) can be written, for f, g, h, k ∈ H, A,B ∈ EndV0, as

(f ⊗ g ⊗A) ∗ (h⊗ k ⊗B) = (f ⊗ hg(1)) ⊗H (1 ⊗ kg(2) ⊗AB). (2.71)

The pseudobracket in gc(V ) is given by the "commutator" of the pseudoproduct ofCend(V ),
i.e.

[(f ⊗ g ⊗A) ∗ (h⊗ k ⊗B)] =
(f ⊗ hg(1)) ⊗H (1 ⊗ kg(2) ⊗AB) − (fk(1) ⊗ h) ⊗H (1 ⊗ gk(2) ⊗BA). (2.72)

When V0 = Cn we denote Cendn = Cend(V ) and gcn = gcV .

Remark 2.3.3. Notice that if we restrict (2.71) to H ⊗ 1 ⊗ EndV0, we obtain

(f ⊗ 1 ⊗A) ∗ (h⊗ 1 ⊗B) = (f ⊗ h) ⊗H (1 ⊗ 1 ⊗AB). (2.73)

Therefore, H ⊗ 1 ⊗End(V0) is a subalgebra of Cend(V ) and, moreover, it is isomorphic
to Cur End(V0).
Similarly, we can embed Curgl(V0) ⊂ gc(V ).

We focus now on the case H = U(d) and identify d with its image in H , so that H ⊗ d
is a subalgebra of CurH = H ⊗H . Consider gc1

∼= H ⊗H ⊗ C ≡ H ⊗H .
If we restrict (2.72) to H ⊗ d, we obtain (recall that for a ∈ d, ∆(a) = a⊗ 1 + 1 ⊗ a):

[(f ⊗ a) ∗ (g ⊗ b)] =
(f ⊗ ga(1)) ⊗H (1 ⊗ ba(2)) − (fb(1) ⊗ g) ⊗H (1 ⊗ ab(2)) =
(f ⊗ ga) ⊗H (1 ⊗ b) + (f ⊗ g) ⊗H (1 ⊗ ba) − (fb⊗ g) ⊗H (1 ⊗ a) − (f⊗g) ⊗H (1 ⊗ ab) =
− (fb⊗ g) ⊗H (1 ⊗ a) + (f ⊗ ga) ⊗H (1 ⊗ b) − (f ⊗ g) ⊗H [a, b]. (2.74)
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We call W (d) the Lie pseudoalgebra H ⊗ d with pseudobracket defined by this formula
(with a switch sign for notational needs). W (d) plays a central role in the theory of finite
Lie pseudoalgebras.
We give also another interesting way to realize this subalgebra of gc1.
By definition, elements of gc1 are pseudolinear maps ϕ : H⊗C → (H⊗H)⊗H (H⊗C),
that can be canonically identified with H-linear maps H → H ⊗H where the action of H
on H ⊗H is by multiplication on the second factor.
ϕ is therefore uniquely determined by ϕ(1). Assume that ϕ(1) =

∑
i fi ⊗ gi for some

fi, gi ∈ H .
Now, if we realize H trivially as CurC, then it makes sense to ask ourself when ϕ is a
derivation of CurC = H . This happens when ϕ satisfies (2.69), where the pseudoproduct
of H is f ∗ g = (f ⊗ g).
Writing down (2.69) in this case, one obtains, under all obvious identifications, that fi, gi

must satisfy for all h, k ∈ H∑
i

fi ⊗ gi(1)h⊗ gi(2)k =
∑

i

fi ⊗ gih⊗ k + fi ⊗ h⊗ gih. (2.75)

In other words, one is asking that ∆(gi) = gi ⊗ 1 + 1 ⊗ gi, which is equivalent to say that
gi ∈ d.
This shows that H ⊗ d = W (d) = DerH . Now, comparing this with the definition of
WN in Section 1.1 in view of (2.25), hints to a very strong connection between this Lie
pseudoalgebra and the Lie algebra of Cartan type WN . This connection will be make
precise in terms of the annihilation algebra.

We end this section by defining other constructions we will need later, which are the
dual and the twisting of finite modules.

Definition 2.3.5. Given a finite L-module V , D(V ) := Chom(V,C) is called the dual
of V . If α : V ′ → V is an homomorphism of L-modules, then we define D(α) =
Chom(α, id) : D(V ) → D(V ′), ϕ 7→ ϕ ◦ α.

Definition 2.3.6. Given a finiteL-module V and a finite-dimensional d-module Π, TΠ(V ) =
Chom(D(V ),Π) is called the twisting of V by Π. If β : V → V ′ is an homomorphism
of L-modules, then we define the homomorphism TΠ(β) = Chom(D(β), id) : TΠ(V ) →
TΠ(V ′), ϕ 7→ D(β) ◦ ϕ.

We will only be interested in these objects for free H-modules of finite rank, which
makes it possible to write them explicitly, as well as the pseudoaction of L upon them.
Let V = H ⊗ V0 where V0 is a finite-dimensional vector space. Similarly to the previous
case of Cend(V ), if W is another finite H-module it is possible to identify Chom(V,W )
with the free H-module H ⊗ (W ⊗ V ∗

0 ). Then in particular we have isomorphisms of
H-modules D(V ) ∼= H ⊗ V ∗

0 , TΠ(V ) ∼= H ⊗ (Π ⊗ V0) where again the action of H
on the right hand sides is given by left multiplication on the first factor. The structure of
L-modules is given explicitly by next proposition.

Proposition 2.3.3. [BDK2] Let V = H ⊗ V0 be a finite L-module which is free as an H-
module, V0 a finite-dimensional vector space with basis {vi} and consider the dual basis
{ψi} of V ∗

0 . Fix a ∈ L and write

a ∗ (1 ⊗ vi) =
∑

j

(fij ⊗ gij) ⊗H vj (2.76)
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for some fij , gij ∈ H . Then the action of L on D(V ) ∼= H ⊗ V ∗
0 is given by

a ∗ (1 ⊗ ψk) = −
∑

j

(fjkgjk(−1) ⊗ gjk(−2)) ⊗H (1 ⊗ ψj). (2.77)

The action of L on TΠ(V ) ∼= H ⊗ (Π ⊗ V0) is given by

a ∗ (1 ⊗ u⊗ vi) =
∑

j

(fij ⊗ gij(1)) ⊗H (1 ⊗ gij(−2)u⊗ vj). (2.78)

It is also possible to describe explicitly the homomorphisms D(α) and TΠ(β) in Defi-
nitions 2.3.5, 2.3.6.

Proposition 2.3.4. Let V = H ⊗ V0, V ′ = H ⊗ V ′
0 be finite L-modules which are free

as H-modules. Let {vi}, {v′
i} be basis for respectively V0 and V ′

0 and consider the dual
basis {ψi}, {ψ′

i} of respectively V ∗
0 and (V ′

0)∗. Take an homomorphism of L-modules
β : V → V ′ and write

β(1 ⊗ vi) =
∑

j

fij ⊗ v′
j . (2.79)

for some fij ∈ H . Then D(β) : D(V ′) → D(V ) is given by

D(β)(1 ⊗ ψ′
k) =

∑
j

S(fjk) ⊗ ψj , (2.80)

while TΠ(β) : TΠ(V ) → TΠ(V ′) is given by

TΠ(β)(1 ⊗ u⊗ vi) =
∑

j

fij(1) ⊗ fij(2)u⊗ v′
j . (2.81)

2.4 Annihilation algebra and primitive Lie pseudoalgebras

The main tool in the study of Lie pseudoalgebras is the annihilation algebra. Take as
usual a cocommutative bialgebra H . Given an H-differential bialgebra Y in Mb(H), one
can define the annihilation functor AY from the category M∗(H) to the category of H-
differential modules Ml(H) (see [BDK1][Section 7.1]).
Remember that objects in both M∗(H) and Ml(H) are left H-modules.
This pseudofunctor associates to an H-module M another H-module AY (M) = Y ⊗H M
where H acts on the left factor.
Given a polylinear map ϕ ∈ HomH(⊠i∈ILi,M) for Li, M ∈ M∗(H), we associate to it
a polylinear map AY (ϕ) in Ml(H) denoted by µI ⊗H ϕ ∈ HomH(⊗iY ⊗H Li, Y ⊗M)
defined as the composition:

⊗i∈I Y ⊗H Li
∼= (⊠i∈IY ) ⊗H (⊠i∈ILi)

id⊗ϕ−−−→ (⊠i∈IY ) ⊗H (H(I) ⊗H M) ∼= (⊗i∈IY ) ⊗H M
µI⊗id−−−−→ Y ⊗H M (2.82)

where µI = µ(µ⊗ id) · · · (µ⊗ id⊗ · · · ⊗ id) is the iterated multiplication in Y .
Take for example β ∈ P2(L1 ⊗L2,M) for someH-modules L1, L2,M (for instance, think
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of β as the pseudobracket of a Lie H-pseudoalgebra L for L1 = L2 = M = L).
Then AY (β) : (Y ⊗H L1) ⊗ (Y ⊗H L2) → Y ⊗H M is defined as:

AY (β)(x⊗H a, y ⊗H b) =
∑

i

(xfi)(ygi) ⊗H ei (2.83)

where β(a, b) =
∑

i

(fi ⊗ gi) ⊗H ei, for a, b, ei ∈ L, fi, gi ∈ H , x, y ∈ Y .

Definition 2.4.1. Given a LieH-pseudoalgebraL, its annihilation algebra is theH-differential
algebra A(L) := AX(L) = X ⊗H L, where as usual X = H∗.

This is a Lie algebra with bracket induced by the pseudobracket of L following (2.83).
Notice that the left action of H on X ⊗H L satisfies:

h[x⊗H a, y ⊗h b] = [h(1)x⊗H a, h(2) ⊗H b] (2.84)

which is equivalent , when H = U(d), to say that d ⊂ H acts on A(L) by derivations.
When L is finite, the filtration of X induces one on the annihilation algebra. Take a finite-
dimensional subspace L0 ⊂ L such that HL0 = L and define

FpA(L) = {x⊗H a |x ∈ FpX, a ∈ L0}. (2.85)

This filtration satisfies
[FpA(L), FqA(L)] ⊂ Fp+q−lA(L) (2.86)

for some integer l depending on the choice of L0.
The same construction can be applied to a finite L-module M . A(M) := X ⊗H M is
called the annihilation module of M and it is an A(M)-module with action given again by
applying (2.83).
If M0 is a finite dimensional subspace that generates M as an H-module, one can again
define a filtration

FpA(M) = {x⊗H m |x ∈ FpX, m ∈ M0}. (2.87)

In [BDK1, Section 7.4] it is showed that the topology induced by these filtrations does not
depend on L0 and that the following holds.

Proposition 2.4.1. Let H be a cocommutative Hopf algebra such that the finiteness prop-
erty (2.14) holds.
If M is a finite H-module, then A(M) is a linearly compact topological H-module, mean-
ing that the action of H is continuous (where as usual we consider the discrete topology on
H).
Moreover, when M is a finite Lie H-pseudoalgebra, A(M) is a linearly compact Lie H-
differential algebra, i.e. the action of H and the Lie bracket are continuous in respect to
the linearly compact topology defined by (2.85).
Similar statements hold for representations and for associative pseudoalgebras.

We will see later that one can define the so called reconstruction functor that allows,
under some assumptions, to determine the finite H-pseudoalgebra L from the Lie H-
differential algebra AX(L).
From now on, H = U(d), where as usual d is a finite-dimensional Lie algebra.
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We define the extended annihilation algebra of L as the semidirect sum A(L)e = d⋉A(L)
where for [∂, y ⊗H a] = ∂y ⊗H a for ∂ ∈ d, y ⊗H a ∈ A(L).
We can carry on the filtration (2.85) to A(L)e setting FpA(L)e = FpA(L).
An A(L)e-module V is called conformal if any v ∈ V belongs to some

kerpV := {v ∈ V |FpA(L)v = 0}.

In particular ker−1V = kerV = {v ∈ V | A(L)v = 0}. Notice also that kerpV is a
subspace invariant under the action of F0A(L).
We state now two results [BDK2, Proposition 2.1,Lemma 2.3] that are crucial in the study
of representations of finite Lie pseudoalgebras.

Proposition 2.4.2. Any module V over a Lie pseudoalgebra L has a natural structure of a
conformal A(L)e-module, given by the action of d on V and by

(x⊗H a)v =
∑

⟨x, S(figi(−1))⟩gi(2)vi where a ∗ v =
∑

i

(fi ⊗ gi) ⊗H vi (2.88)

for a ∈ L, x ∈ X , v ∈ V .
Conversely, any conformal A(L)e-module V has a natural structure of an L-module given
by

a ∗ v =
∑

I∈Nn

(S(∂(I)) ⊗ 1) ⊗H ((xI ⊗H a) · v). (2.89)

Moreover, V is irreducible as a module over L if and only if it is irreducible as a module
over A(L)e.

Lemma 2.4.1. Let L be a Lie pseudoalgebra and V an L-module. Then, if both L and V
are finite, all vectors spaces kerpV/kerV are finite-dimensional. In particular, if kerV =
{0}, every v ∈ V belongs to a finite-dimensional subspace invariant under L0.

Remark 2.4.1. Notice that if one considers V as a representation of A(L) ⊂ A(L)e, the
condition of being conformal is equivalent to ask for V to be a continuous representation
of A(L) if endowed with the discrete topology.

We recover the definition of the Lie pseudoalgebra W (d) introduced at the end of pre-
vious section.

Definition 2.4.2. The Lie pseudoalgebra W (d) is the free H-module H ⊗ d with pseudo-
bracket given by, for a, b ∈ d, f, g ∈ H ,

[(f⊗a)∗(g⊗b)] = (f⊗g)⊗H (1⊗[a, b])−(f⊗ga)⊗H (1⊗b)+(fb⊗g)⊗H (1⊗a). (2.90)

We already noticed that it seems to have some similarities with the Lie algebra of Cartan
type WN . The link between the two is explained by considering the annihilation algebra of
W (d).
Let W = A(W (d)) be the annihilation algebra of W (d).
Since W (d) = H ⊗ d, W = X ⊗H (H ⊗ d) ≡ X ⊗ d. The Lie bracket of W is obtained
from (2.90) using (2.83):

[x⊗ a, y ⊗ b] = xy ⊗ [a, b] − x(ya) ⊗ b+ (xb)y ⊗ a for a, b ∈ d, x, y ∈ X. (2.91)
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The action of H on W is given by action on the first factor, as in (2.15), and, by (2.84),
d acts on W by derivations, which allows us to define the extended annihilation algebra
We = d⋉ W , where

[∂, x⊗ a] = ∂x⊗ a (2.92)

for a, ∂ ∈ d, x ∈ X .
Since W (d) is a free H-module, we can choose L0 = C ⊗ d and obtain an induced

decreasing filtration on W:

Wp = FpW = FpX ⊗H L0 ≡ FpX ⊗ d. (2.93)

W−1 = W and it satisfies (2.86) for l = 0; notice also that W/W0 ∼= C ⊗ d ≡ d and
that W0/W1 ∼= d∗ ⊗ d.
We use (2.93) to define a filtration in We as FpWe = Wp.
Take the usual basis {∂(I)} and {xI} of H and X .
Let ei

j ∈ gl(d) be given by ei
j∂k = δi

k∂j , so that ei
j corresponds to xi ⊗ ∂j under the

isomorphism gl(d) ∼= d∗ ⊗ d. Lemma 2.1.1 implies the following result.

Lemma 2.4.2. In W the following identities hold:

[xi ⊗ ∂j , 1 ⊗ ∂k] = −δi
k1 ⊗ ∂j modW0; (2.94)

[xi ⊗ ∂j , x
l ⊗ ∂k] = δl

jx
i ⊗ ∂k − δi

kx
l ⊗ ∂j modW1. (2.95)

Proof. By (2.91)

[xi ⊗ ∂j , 1 ⊗ ∂k] = xi ⊗ [∂j , ∂k] − xi(1 · ∂j) ⊗ ∂k + (xi∂k) ⊗ ∂j = −δi
k ⊗ ∂k modW0

where the first term equals 0 modW0 and the rest follows from Lemma 2.1.1.
Similarly,

[xi ⊗ ∂j , x
l ⊗ ∂k] = xixl ⊗ [∂j , ∂k] − xi(xl∂j) ⊗ ∂k + (xi∂k)xl ⊗ ∂j =

δl
jx

i ⊗ ∂k − δi
kx

l ⊗ ∂j modW1.

where again the first term is 0 modW1.

Notice that the right hand sight of these identities coincides to, respectively, the standard
action of gl(d) on d and the standard Lie bracket in gl(d) ∼= d∗ ⊗ d. In fact, this proves:

Corollary 2.4.1. The map W0/W1 → gl(d) defined by xi ⊗ ∂j modW1 7→ −ei
j ∈ gl(d),

is an isomorphism of Lie algebras. Moreover, under this isomorphism, the adjoint action
of W0/W1 on W/W0 corresponds to the standard action of gl(d) on d.

Recall that W (d) acts on H by derivations.
This action is given explicitly by

(f ⊗ a) ∗ g = −(f ⊗ ga) ⊗H 1 (2.96)

where f, g ∈ H, a ∈ d; this induces an action of W = X ⊗H W (d) on X ⊗H H ≡ X:

(x⊗ a)y = −x(ya) for a ∈ d, x, y ∈ X. (2.97)
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Remark 2.4.2. When d is an abelian Lie algebra, the Lie bracket in W reduces, for x, y ∈
X, a, b ∈ d to

[x⊗ a, y ⊗ b] = (xb)y ⊗ a− x(ya) ⊗ b. (2.98)

Consider the grading of X as in Example 2.1.3 and set GpW = (Gp+1X) ⊗ d. From
the previous equation follows easily that [GpW, GqW] ⊂ Gp+qW , thus we are defining a
Z-grading of depth 1 on W = X ⊗ d. It is also easy to see that GpW ∼= Wp/Wp+1.
In particular, G−1W ∼= d and G0W ∼= gl(d). Last isomorphism provides a structure of
gl(d)-module on GpW and X via respectively adjoint action and (2.97).
A direct calculation shows that, for any p ≥ 0, GpX ∼= Sp(d∗) and GpW ∼= GpX ⊗ d ∼=
Sp(d∗) ⊗ d as gl(d)-modules. W is the completion of

⊕
pG

pW .

We can now link the dots. Recall that we have an isomorphism (2.25) ϕ : X → ON

compatible with corresponding filtrations and topologies.
Recall also that by Remark 2.1.3, d acts on X by continuous derivations, so we can make
W act on ON = C[[t1, . . . tN ]] by continuous derivations as well. This way we are defining
a Lie algebra homomorphism φ : W → WN such that

φ((x⊗ a)y) = φ(x⊗ a)φ(y) (2.99)

We recall that

WN = Der(ON ) =
{ N∑

i=1
fi
∂

∂ti
| fi ∈ C[[t1, . . . , tN ]]

}
and that WN has a natural filtration given by

FpWN =
{ ∑

i

fi
∂

∂ti
| fi ∈ C[[t1, . . . , tn]]k , k ≤ p

}
where C[[t1, . . . , tN ]]k is the homogeneous component of degree k.
Then the following holds.

Proposition 2.4.3.

1. φ(x⊗ a) = φ(x)φ(1 ⊗ a) ∀x ∈ X, a ∈ d;

2. φ(1 ⊗ ∂i) = − ∂
∂ti

mod F0W (n);

3. φ is an isomorphism of Lie algebras;

4. φ(Wp) = FpWN ∀p ≥ −1.

Proof. 1. and 2. follow from (2.99) and Lemma 2.1.1.
3. and 4. follow from the previous ones and the definitions of filtrations (1.5) and (2.93).

Since φ preserves the filtrations that define the linearly compact topologies on W and
WN , we can finally claim that the annihilation algebra ofW (d) is isomorphic to the linearly
compact Lie algebra of Cartan type WN . Moreover, this isomorphism equips WN with an
action of d.
Due to this association, elements of W (d) are called pseudo vector fields. One can also
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establish a formalism of pseudoforms similar to the usual one of differential forms, which
we will see in next section.
Like for subalgebras of WN of Cartan type, one can define corresponding subalgebras of
W (d): S(d, χ), H(d, χ, ω) and K(d, θ), whose annihilation algebras are isomorphic to
SN , PN (which is an extension by a one-dimensional center of HN ) and KN from Cartan
classification. These, together with W (d), are called primitive pseudoalgebras.

Remark 2.4.3. One does not need the constriction of d to be finite-dimensional in order
to define primitive pseudoalgebras. However, it becomes necessary once we are interested
in their connection with linearly compact Lie algebras, since for their annihilation algebra
to be linearly compact they need to be finite H-modules and the finiteness condition (2.14)
needs to hold.
On the other hand, the same finiteness condition holds also when H is the smash product
of U(d) with the group algebra of a finite group G. Anyhow, in this case the notion of an
H-pseudoalgebra is equivalent to that of an U(d)-pseudoalgebra with an additional action
of G (see [BDK1, Section 5]) and the structure theory behaves in the same way ([BDK1,
Section 13.7]). So, for our purposes, there will be no loss of generalization by considering
only the case of H = U(d) for a finite-dimensional Lie algebra d.

In [BDK1] the classification of simple finite Lie H-pseudoalgebras was accomplished.
The classification relies on Cartan’s classification (Theorem 1.1.1) and the interplay be-
tween a finite Lie pseudoalgebra and its annihilation algebra (Proposition 2.4.1 and use of
the "reconstruction functor").

Theorem 2.4.1. Let H = U(d) where d is a finite-dimensional Lie algebra. Then any sim-
ple finite Lie H-pseudoalgebra is isomorphic to a current pseudoalgebra CurH′

H L′ where
H ′ = U(d′) for some subalgebra d′ ⊂ d and L′ is a finite-dimensional Lie algebra or a
primitive H ′-pseudoalgebra.

Notice that although Cartan’s classification is clean and simple, the classification in the
"pseudo" setting depends on a few parameters χ, ω and θ that arise from inequivalent ac-
tions of d over the annihilation algebras.
For the purposes of this thesis, we will only focus on the primitive pseudoalgebras of type
W and S, so we end this section by defining more accurately S(d, χ) and recover the (main
lines of) construction of its annihilation algebra from [BDK2, Section 3.4].

Define the H-linear map divχ : W (d) → H by divχ(
∑
hi ⊗ ∂i) =

∑
hi(∂i + χ(∂i)),

where χ is a trace form on d, i.e. a linear functional χ : d → C such that χ([d, d]) = 0.
Then

S(d, χ) := {s ∈ W (d) | divχ(s) = 0} (2.100)

is a subalgebra of the Lie pseudoalgebra W (d).
In [BDK1, Proposition 8.1] it is shown that S(d, χ) is generated as an H-module by the
elements of the form:

sab = (a+ χ(a)) ⊗ b− (b+ χ(b)) ⊗ a− 1 ⊗ [a, b] for a, b ∈ d. (2.101)

In what follows we will assume that dim d = n > 2.
Let S = A(S(d, χ)) = X ⊗H S(d, χ) be the annihilation algebra of S(d, χ).
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The Lie bracket is the one of W , since the canonical injection of S(d, χ) intoW (d) induces
a Lie algebra homomorphism ι : S ↪→ W .
Explicitly, if s =

∑
hi ⊗ ∂i ∈ S(d) ⊂ W (d) = H ⊗ d,

ι(x⊗H s) =
∑

i

xhi ⊗ ∂i ∈ W ≡ X ⊗ d

Choosing L0 = spanC{sab| a, b ∈ d} we get a decreasing filtration of S as in (2.85):

Sp = Fp+1S = Fp+1X ⊗H L0 for p ≥ −2. (2.102)

S−2 = S and it satisfies (2.86) for l = 1.
In [BDK1, Section 8.4] it is proven that the Lie algebras S and SN are isomorphic. We
would also like all the filtrations and related topologies defined on these spaces to be com-
patible. In order to do so, one should use φ defined before for W , which behaves well
related to the filtrations.
This can be done but carefully.
First define a map divχ : W = X ⊗ d → X as divχ(

∑
i yi ⊗ ∂i) =

∑
i yi(∂i + χ(∂i)).

It is not difficult to verify that

divχ([A,B]) = Adivχ(B) −B divχ(A) ∀A,B ∈ W,

where the action of W on X is given by(2.97). This implies that

S = {A ∈ W | divχ(A) = 0}

is a Lie subalgebra of W .
In [BDK2, Section 3.4] is proven first that ι : S ∼−→ S in such a way that ι(Sp) = S ∩ Wp

∀p ≥ −1 [Proposition 3.5], then that ϕ maps S , up to a Lie algebra automorphism ψ of
WN induced by a ring automorphism of ON , to SN ⊂ WN [Proposition 3.6].
Finally a Lie algebra isomorphism

ψ−1ϕι : S ∼−→ SN ⊂ WN (2.103)

such that Sp maps onto SN ∩FpWN is obtained [Corollary 3.3]. In particular we have that
S−2 = S−1 = S.

2.5 Pseudo De Rham complex

In the study of representation theory of simple finite Lie pseudoalgebra L, one can, al-
most always safely, assume that L is a primitive pseudoalgebra. In fact, by Theorem 2.4.1,
L is a current pseudoalgebra over either a finite-dimensional Lie algebra g or a primitive
pseudoalgebra. For the first case, the study of irreducible modules is easily linked to that
of the representations of g, which in the finite-dimensional setting are well understood.
Regarding the second case, in [D] it is shown that, apart for a single class of representa-
tions ofH(d, χ, ω), all irreducible representations ofL = CurH′

H L′, whereL′ is a primitive
pseudoalgebra, are of the form CurH′

H V where V is an irreducible L′-module.
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Proposition 2.4.2 sets a correspondence between representations of a Lie pseudoalge-
bra L and conformal modules over its extended annihilation algebra Le.
This implies in particular, when L is a primitive Lie pseudoalgebra, that any L-module V
is, if endowed with the discrete topology, a continuous representation of L = A(L). One
can therefore legitimately consider the height of V as in Definition 1.2.1.
Turns out that in this setting one only obtains representations of height 1. This is basically a
consequence of Lemma 2.4.1: if Lp acts trivially on some element of V , so that kerp V ̸= 0,
the fact that kerp V/ker V (or just kerp V if V is irreducible) is finite-dimensional im-
plies that L1 acts trivially on some submodule of kerp V/ker V (this follows from Lemma
1.3.1). This in particular means that V has height 1.
Consider now L = W (d). Because of this argument, one expects to recover the classifi-
cation of irreducible WN -modules of height 1, which are induced modules together with
modules obtained from the De Rham complex. It would be therefore useful to have some
similar machinery for W (d), which is provided by the following construction in [BDK2].

First, we give a more thorough definition of the Grassmann algebra.
Given a C-vector space V , take the tensor algebra T (V ) and consider the two-sided ideal
I generated by the elements of the form v ⊗ v, v ∈ V . The quotient algebra∧

(V ) := T (V )/I

is called the Grassmann algebra of V .
The product, induced by the tensor product ⊗ of T (V ), is called the wedge (or exterior)
product ∧.
Notice that since v⊗ v ∈ I and v⊗w+w⊗ v = (v+w) ⊗ (v+w) − v⊗ v−w⊗w ∈ I ,
we have in

∧
(V ) that v ∧ v = 0 and v ∧ w = −w ∧ v for all v, w ∈ V .

More generally, if σ ∈ Sk is a permutation, for any x1, . . . , xk ∈ V :

x1 ∧ · · · ∧ xk = (−1)σvσ(1) ∧ · · · ∧ vσ(k)

where (−1)σ is the sign of σ.
This implies in particular that x1 ∧ · · · ∧ xk = 0 whenever xi = xj for i ̸= j.

The natural grading of T (V ) induces one in
∧

(V ). Notice that I is generated by ele-
ments of degree 2, hence T 0(V ) = C, T 1(V ) = V embed naturally in

∧
(V ).

Explicitly, for k ≥ 2, if V is finite-dimensional and {v1, . . . , vn} is a basis of V ,
∧k(V ) is

the linear span of elements of the form vi1 ∧ · · · ∧ vik
for any i1, . . . ik ∈ {1, . . . , n}.

Example 2.5.1. Let V be a finite-dimensional vector space and define the space of n-forms
on V with constant coefficients as Ωn(V ) := HomC(

∧n(V ),C). SinceHomC(
∧n(V ),C) ∼=∧n(V ∗), one can use the wedge product of

∧
(V ∗) to define one on Ω(V ) =

⊕dim V
k=0 Ωk(V ).

More generally the same can be done for any ring Y with Ω•
Y (V ) := HomC(

∧•(V ), Y ) ∼=
Y ⊗

∧•(V ∗).
ΩY (V ) =

⊕
n Ωn

Y (V ), with wedge product induced by the one in
∧

(V ∗) extended by Y -
bilinearity, is the Grassmann algebra of forms with coefficients in Y on V .

Example 2.5.2. One can define a Z/2-grading of
∧

(V ) setting deg vi = 1. This grading
is consistent with the previous one, meaning that∧

(V )0 =
⊕

i≥0
∧2i(V ),

∧
(V )1 =

⊕
i≥0

∧2i+1(V )
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This is called a Grassmann superalgebra.

Remark 2.5.1. If L is a (Lie) superalgebra and
∧

(V ) is a Grassmann algebra, L ⊗
∧

(V )
is a (Lie) superalgebra, as for instance

∧
(m,n) in Example 1.3.2.

Let as usual H = U(d) for a Lie algebra d of dimension N and X = H∗ where we
identify the latter with ON .
Consider now the cohomology complex with constant coefficients,

0 → Ω0(d) d0−→ Ω1(d) d0−→ · · · d0−→ ΩN (d) (2.104)

where the differential d0 is given for α ∈ Ωk(d) and a1 . . . , ak+1 ∈ d by

(d0 α)(a1 ∧· · ·∧ak+1) =
∑
i<j

(−1)i+jα([ai, aj ]∧a1 ∧· · · âi ∧· · · âj ∧· · ·∧ak+1) (2.105)

where â means that the term a is omitted in the wedge product.

Ω(d) is a d-module via the coadjoint action, which can be written through the Cartan
formula, for a ∈ d,

(ad a)· = d0ιa + ιad0 (2.106)

where, for α ∈ Ωk(d), A ∈ gl(d), a1, . . . , ak ∈ d:

• ιa : Ωk+1(d) → Ωk(d) is the contraction operator, defined by

(ιaα)(a1 ∧ · · · ∧ak) = α(a∧a1 ∧ · · · ∧ak) α ∈ Ωk(d), a1, · · · , ak ∈ d; (2.107)

• the action of gl(d) ∋ ad a is the natural one, given explicitly by

(A · α)(a1 ∧ · · · ∧ ak) =
∑

i

(−1)iα(A · ai ∧ a1 ∧ · · · âi ∧ · · · ∧ ak). (2.108)

Similarly, one has the formal de Rham complex (where we are using the identification
X ∼= ON to write Ωk

X(d) = Ωk
N )

0 → Ω0
X(d) d−→ Ω1

X(d) d−→ · · · d−→ ΩN
X(d). (2.109)

In this case the de Rham differential d : Ωk
X(d) → Ωk+1

X (d) is given explicitly by

(dα)(a1 ∧ · · · ∧ ak+1) =
∑

i

(−1)iα(a1 ∧ · · · ∧ âi ∧ · · · ∧ ak+1)ai+∑
i<j

(−1)i+jα([ai, aj ] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ ak+1)

(2.110)

for α ∈ Ωk
x(d), a1, . . . , ak+1 ∈ d, where the right action of d on X is given by (2.16).

We can define an action of WN = DerON
∼= DerX ∼= X ⊗ d on Ωk

X(d) ∼= X ⊗
∧k(d∗)

via the Lie derivative, for which still holds the Cartan formula

Lx⊗a(α) = dιx⊗a(α) + ιx⊗a(dα), x⊗ a ∈ X ⊗ d, α ∈ Ωk
X(d), (2.111)
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where the contraction operator is defined as ιx⊗a(α) = xιa(α).
It is a well known and easy to check fact that Lω ∈ Der(ΩX(d)) ∀ω ∈ Wn.

Our next step is to define a "pseudo" version of the De Rham complex holding similar
properties as the latter.
First of all, consider the H-modules Ωk

H(d) = H ⊗
∧k(d∗) for 0 ≤ k ≤ N . These are

called the spaces of k-pseudoforms.
We want to define a pseudoaction of W (d) on Ωk

H(d) and a pseudo differential d∗ :
Ωk

H(d) → Ωk+1
H (d) such that:

• d2
∗ = 0;

• the pseudoaction of W (d) on Ωk
H(d) is given by a formula analogous to (2.111).

We will use the isomorphisms

Ωi
H(d) = H ⊗

∧i(d∗) ∼= HomC(
∧i(d), H)

h⊗ ω 7→ [a1 ∧ · · · ∧ ai 7→ hω(a1 ∧ · · · ∧ ai)] (2.112)

and define the pseudo differential on C ⊗
∧k(d∗), for ω ∈

∧k(d∗), a1, . . . , ak+1 ∈ d, as

(d∗(1 ⊗ ω))(a1 ∧ · · · ∧ ak+1) =∑
i

(−1)iω(a1 ∧ · · · ∧ âi ∧ · · · ∧ ak+1)ai+∑
i<j

(−1)i+jω([ai, aj ] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ ak+1) (2.113)

and then extend it by H-linearity to ΩH(d).
By this definition, d2

∗ = 0 is straightforward.
The sequence

0 → Ω0
H(d) d∗−→ Ω1

H(d) d∗−→ · · · d∗−→ ΩN
H(d) (2.114)

is called pseudo De Rham complex.

Proposition 2.5.1. [BDK1, Proposition 5.1] The n-th cohomology of the De Rham complex
is trivial for n ̸= N and 1-dimensional for n = N . In particular, the sequence (2.114) is
exact.

Regarding the pseudoaction of W (d) on Ωk
H(d), first define

∗ι : W (d) ⊗ Ωk
H(d) −→ (H ⊗H) ⊗H Ωk−1

H (d)
(f ⊗ a) ∗ι (g ⊗ α) = (f ⊗ g) ⊗H (1 ⊗ ιa(α)). (2.115)

Then, emulating (2.111), we define the H-bilinear map

∗ : W (d) ⊗ Ωk
H(d) −→ (H ⊗H) ⊗H Ωk

H(d)
w ∗ β = ((id⊗ id) ⊗H d∗)(w ∗ι β) + w ∗ι d∗β. (2.116)
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It is possible to write this explicitly for w = f ⊗ a ∈ W (d) and β = g ⊗ α ∈ Ωk
H(d) (see

[BDK1, Eq (8.7)]):

(w ∗ β)(a1 ∧ · · · ∧ ak) = − (f ⊗ ga)α(a1 ∧ · · · ∧ ak)+
k∑

i=1
(−1)i(fai ⊗ g)α(a ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ ak)+

n∑
i=1

(−1)i(f ⊗ g)α([a, ai] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ ak) (2.117)

for k ≥ 1, where w ∗ β = −f ⊗ ga for β = g ∈ Ω0
H(d) = H (the latter coinciding with

(2.96)).
Notice that since d2

∗ = 0, applying ((id⊗id)⊗H d∗) to (2.116) gives ((id⊗id)⊗H d∗)(w∗
β) = ((id⊗ id) ⊗H d∗)(w ∗ι d∗β).
On the other hand, by replacing β with d∗β, it also implies w ∗ d∗β = ((id ⊗ id) ⊗H

d∗)(w ∗ι d∗β).
Therefore ((id⊗ id) ⊗H d∗)(w ∗β) = w ∗ d∗β, which means that d∗ is an homomorphism
of W (d)-modules.
In [BDK2, Theorem 5.1] is proven that (2.116) is a pseudoaction of W (d) on Ωk

H(d)
∀ 0 ≤ k ≤ n by noticing that it is a tensor module, which we will introduce in next
section.
The similarities between the De Rham complex and its pseudo counterpart are not a coin-
cidence. Indeed, by means of the annihilation functor, from the definitions one can easily
derive the following.

Lemma 2.5.1. The WN -module Ωk
X(d) is isomorphic to A(Ωk

H(d)) as A(W (d)) ∼= WN -
modules for any k = 0, . . . , N and A(d∗) : A(Ωk

H(d)) ≡ Ωk
X(d) −→ Ωk+1

X (d) ≡
A(Ωk+1

H (d)) coincides with the de Rham differential.

Let Π be a finite-dimensional d-module (hence also an H-module). We can apply to
the pseudo De Rham complex the "twisting" construction given in Definition 2.3.6.
This provides a complex of W (d)-modules, called the Π-twisted pseudo de Rham complex,

0 → TΠ(Ω0(d)) dΠ−−→ TΠ(Ω1(d)) dΠ−−→ · · · dΠ−−→ TΠ(ΩN (d)) (2.118)

where dΠ = TΠ(d∗) and the action of W (d) are given by Proposition 2.3.3.
In [BDK2, Section 5.3] is showed that this sequence is still exact.

Before moving on to describe the classification of irreducible representations of Lie
pseudoalgebras of type W and S, we make a digression which looks unrelated with the
subject but will come in handy later on.
Let g be a semisimple finite-dimensional Lie algebra and consider the category Repss(g)
(possibly infinite-dimensional) g-modules that are obtained as a direct sum of finite-dimensional
irreducible representations of g, where each irreducible appears only a finite number of
times (up to isomorphisms). By definition, this is a semisimple category.
We can express the isomorphism class of such a representation V by a (possibly infinite)
sum χ(V ) =

∑
U irr mUU for some mU ∈ Z≥0, which we may call the character of V .

Clearly χ(V ⊕ W ) = χ(V ) + χ(W ) and it is easy to see that for an exact short sequence
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0 → V0 → V1 → V2 → 0 one has χ(V1) = χ(V0) + χ(V2).
There is no reason to expect in general that if V,W ∈ Repss(g), so does V ⊗W . However,
this is true when V or W is finite-dimensional and in this case χ(V ⊗W ) = χ(V ) ·χ(W ).
This shows that the characters of finite-dimensional representations form a ring, which is
known as the representation ring (see [FH]) or the Grothendieck ring of g (see [SeSc]), and
the characters of representations in Repss(g) realize a module over the said ring.

Consider now the pseudo De Rham complex and recall that Ωk
H(d) = U(d) ⊗

∧k(d∗).
Notice also that by Proposition 2.5.1 we may also consider the exact complex

0 → Ω0
H(d) d∗−→ Ω1

H(d) d∗−→ · · · d∗−→ ΩN
H(d) → C → 0. (2.119)

On one hand, one can easily see that, as a gl(d)-module, U(d) =
⊕

n≥0 S
n(d) where

Sn(d) is the n-th symmetric power of d; on the other,
∧k(d∗) is an irreducible gl(d)-

module of finite dimension
(N

k

)
. Hence, all the spaces of k-pseudoforms belong to the

above-mentioned category and we can look at their characters. Because they fit in the exact
sequence given above, we have the following identity:

N∑
k=0

(−1)k
(∑

n≥0
Sn(d)

)∧k(d∗) = C.

In other words,
∑N

k=0(−1)k ∧k(d∗) can be viewed as the inverse of
∑

n≥0 S
n(d) in the

character ring of Repss(gl(d)). One can clearly also consider the sl(d)-action obtained by
restricting the gl(d) one and the previous identity is still true for Repss(sl(d)).
Notice that we can replace d with any irreducible gl(d)-module U since we can embed
gl(d) in gl(U).
Notice also that if we take a finite-dimensional gl(d)-module V , the identity still holds if
we tensorize both sides by V .
The identity we will use is the following:( N∑

k=0
(−1)k ∧k(d)

)(∑
n≥0 S

n(d∗)V
)

= V. (2.120)

2.6 Irreducible representations of primitive Lie pseudoalgebras
of type W and S

In a series of papers by Bakalov, D’Andrea and Kac, irreducible (finite) representations
of primitive pseudoalgebras were studied and classified for W (d) and S(d, χ) ([BDK2]),
K(d, θ) ([BDK3]) and H(d, χ, ω) ([BDK4]). As we mentioned before, we are only inter-
ested here in cases W and S. We will sketch the main ideas in [BDK2], which are similar
in a way to the theory developed in [R1].

Recall that W0/W1 ∼= gl(d). So if we take a gl(d)-module V , we can allow W1 to act
on it trivially, thus obtaining a W0-module. We can now consider the induced W-module
U(W) ⊗U(W0) V .
In order to correlate this with the Lie pseudoalgebra W (d), we need to take into account
the action of d. To do so, we consider the extended annihilation algebra We.
Denote by NW the normalizer of Wp in We.
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Proposition 2.6.1 ([BDK2], Section 3.3). NW is independent of p. There is a decomposi-
tion as a direct sum of subspaces We = d ⊕ NW .
The subalgebra W1 ⊂ NW acts trivially on any irreducible finite-dimensional conformal
NW -module and NW/W1 ∼= d ⊕ gl(d). In particular, irreducible finite-dimensional con-
formal NW -modules (i.e modules in which every element is killed by some Wp) are in
one-to-one correspondence with irreducible finite-dimensional d ⊕ gl(d)-modules.

In [BDK2, Section 3.5] totally analogous results are proven for S . Denote the normal-
izer of Sp in Se = d⋉ S by NS .

Proposition 2.6.2. NS is independent of p. There is a decomposition as a direct sum of
subspaces Se = d ⊕ NS .
The subalgebra S1 ⊂ NS acts trivially on any irreducible finite-dimensional conformal
NS-module and NS/S1 ∼= d ⊕ sl(d). In particular, irreducible finite-dimensional con-
formal NS-modules are in one-to-one correspondence with irreducible finite-dimensional
d ⊕ sl(d)-modules.

Take now a finite-dimensional d ⊕ gl(d)-module V . Letting W1 act trivially on it, we
can define an action of NW and induce obtaining a We-module T (V ) = IndWe

NW
V =

U(We) ⊗U(NW ) V which can be identified, as a vector space, with H ⊗ V since We =
d ⊕ NW .
We can define an action of W (d) on H ⊗ V as follows (see [BDK1, Section 4.3]):

(1 ⊗ ∂i) ∗ (1 ⊗ v) =(1 ⊗ 1) ⊗H (1 ⊗ (ad ∂i)v) +
N∑

k=1
(∂k ⊗ 1) ⊗H (1 ⊗ ek

i v)

−(1 ⊗ ∂i) ⊗H (1 ⊗ v) + (1 ⊗ 1) ⊗H (1 ⊗ ∂iv) (2.121)

for v ∈ V . Here, ad ∂i is the adjoint action of d on itself and we think of it as an element
of gl(d). So ad ∂i and ei

k act on V as a gl(d)-module, while ∂i acts on V as a d-module.
T (V ) is called a tensor module for W (d).

Remark 2.6.1. Once we have identified WN with W = X ⊗ d, if we drop the action of d
on a tensor module T (V ), we obtain exactly an induced module of height 1 of WN as in
Section 1.2.
One then expects to obtain a similar classification.

Remark 2.6.2. When d is an abelian Lie algebra, if we take a gl(d)-module and make it a
d ⊕ gl(d)-module with trivial action of d, the pseudoaction of W (d) becomes

(1 ⊗ ∂i) ∗ (1 ⊗ v) =
N∑

k=1
(∂k ⊗ 1) ⊗H (1 ⊗ ek

i v) − (1 ⊗ ∂i) ⊗H (1 ⊗ v). (2.122)

Definition 2.6.1. Let g1 and g2 be Lie algebras and let Vi be gi-modules for i = 1, 2.
We denote by V1 ⊠ V2 the g1 ⊕ g2-module V1 ⊗ V2 where gi only acts on the Vi factor.

If V is of the form Π ⊠ U , we will also denote T (V ) = T (Π, U).

Remark 2.6.3. By definitions, one can easily check that T (Π, U) ∼= TΠ(U), where TΠ(U)
is the Π-twisting defined in Section 2.3.
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We can define on a tensor module T (V ) = H ⊗ V the filtration

F pT (V ) = F pH ⊗ V for p ≥ −1, (2.123)

which behaves nicely relatively to the filtration of W .

Lemma 2.6.1. [BDK2, Lemma 6.3] For every p ≥ 0 we have:

1. d · F pT (V ) ⊂ F p+1T (V );

2. NW · F pT (V ) ⊂ F pT (V );

3. W1 · T (V ) ⊂ F p−1T (V ).

Tensor modules play a central role in the classification of irreducible W (d)-modules
(as well as S(d)-modules), together with the notion of singular vectors, in a similar fashion
as induced modules do in the representation theory of Lie algebras of Cartan type.
Recall that by Proposition 2.4.2, any W (d)-module has also a structure of a We-module.

Definition 2.6.2. For a W (d)-module V , a singular vector is an element v ∈ V such that
W1 · v = 0. The space of singular vectors in V is denoted by sing V .
If we consider it as an NW -module, since NW/W1 ∼= d ⊕ gl(d) we have an action of the
latter on sing V , which we denote by ρsing : d ⊕ gl(d) → gl(sing V ).

Theorem 2.6.1. For any non-trivial finiteW (d)-module V , sing V ̸= {0} and sing V/kerV
is finite-dimensional.

Proof. Since clearly ker V ⊂ sing V , we can assume without loss of generality that
ker V = 0. Since V is a conformal We-module, there exist a p > 0 such that kerpV ̸=
{0}. This space, by Lemma 2.4.1, is finite-dimensional. Choose a minimal NW -submodule
W ⊂ V . Since it is an irreducible NW -module, we know by Proposition 2.6.1 that W1 acts
trivially on it. Hence, W ⊂ sing V .
The second statement follows from Lemma 2.4.1 for p = 1.

One of the advantages of working in the pseudo framework is that one has a nice control
over some characteristics of singular vectors. For instance, one has a direct estimate on their
"degree".

Lemma 2.6.2. Given a finite W (d)-module V , v ∈ V is a singular vector if and only if

(1 ⊗ ∂) ∗ v ∈ (F 1H ⊗ C) ⊗H V ∀∂ ∈ d (2.124)

or equivalently
(1 ⊗ ∂) ∗ v ∈ (C ⊗ F 1H) ⊗H V ∀∂ ∈ d. (2.125)

Proof. If W1v = 0 we have, by Proposition 2.4.2 that

(1 ⊗ ∂) ∗ v = (1 ⊗ 1) ⊗H ((1 ⊗ ∂)v) −
N∑

k=1
(∂k ⊗ 1) ⊗H ((xk ⊗ ∂)v).
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Conversely, by Lemma 2.1.2, (1 ⊗∂) ∗ v can be written uniquely as an element of the form∑
I∈NN

(∂(I) ⊗ 1) ⊗h vI for some vI ∈ V . By hypothesis, vI = 0 when |I| ≥ 2. Applying

again Proposition 2.4.2, we obtain

(x⊗ ∂)v =
∑

I:|I|<2
⟨x, S(∂(I))⟩v(I)

which is 0 when (x⊗ ∂) ∈ W1, since in that case x ∈ F1X .
The other equivalence is proven analogously.

It is possible to write explicitly the pseudoaction of W (d) on a singular vector.

Lemma 2.6.3 ([BDK1]). Let V be a W (d)-module. Then if v ∈ sing V , the action of
W (d) on v is given by

(1 ⊗ ∂i) ∗ v =
N∑

k=1
(∂k ⊗ 1) ⊗H ρsing(ek

i )v − (1 ⊗ 1) ⊗H ∂iv

+(1 ⊗ 1) ⊗H ρsing(∂i + ad ∂i)v. (2.126)

Corollary 2.6.1. Let V be a W (d)-module and let U be a non-trivial d⊕ gl(d)-submodule
of sing V . Then HU , the H-submodule of V generated by U , is also a W (d)-submodule
of V . In particular, if V is irreducible, V = HU .

Proof. By the previous Lemma, we have that W (d) ∗ U ⊂ (H ⊗ H) ⊗H HU . Then by
H-bilinearity, W (d) ∗HU ⊂ (H ⊗H) ⊗H HU .

For S(d, χ) we follow the same construction.
Let V be an S-module and denote by kerp V the space of elements v ∈ V that are killed
by Sp; in particular, ker V = ker−1 V = {v ∈ V | Sv = 0}. V is said to be conformal
if V =

⋃
p kerp V . Also in this case, by Proposition 2.4.2, any S(d, χ)-module carries a

structure of conformal Se = d⋉ S and vice versa.

Definition 2.6.3. For a S(d, χ)-module V , a singular vector is an element v ∈ V such that
S1 · v = 0. The space of singular vectors in V is denoted by sing V .
If we consider it as a NS-module, since NS/S1 ∼= d⊕ sl(d), we have an action of the latter
on sing V , which we denote again by ρsing : d ⊕ sl(d) → gl(sing V ).

Theorem 2.6.2. For any non-trivial finite S(d, χ)-module V , sing V ̸= {0} and sing V/kerV
is finite-dimensional.

Proof. The proof is the same of Theorem 2.6.1, whereas we apply Proposition 2.6.2 instead
of Proposition 2.6.1.

Recall that S(d, χ) is generated as an H-module by sij = s∂i∂j
defined in (2.101).

Lemma 2.6.4. Given a finite S(d, χ)-module V , v ∈ V is a singular vector if and only if

(1 ⊗ sij) ∗ v ∈ (F 2H ⊗ C) ⊗H V ∀i, j = 1, . . . , N, (2.127)

or equivalently

(1 ⊗ sij) ∗ v ∈ (C ⊗ F 2H) ⊗H V ∀i, j = 1, . . . , N. (2.128)
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Proof. Same proof as in Lemma 2.6.2 , whereas here the filtration {Sp} satisfies (2.86) for
l = 1 instead of l = 0 for {Wp}.

Take now a finite-dimensional d⊕sl(d)-module V and let S1 act trivially on it so that we
have an action of NS . Consider then the Se-module Tχ(V ) = IndSe

NS
V = U(Se) ⊗NU(S)

V , which can again be identified, as a vector space, with H ⊗ V .
In [BDK2, Theorem 7.3] it is proven that these modules can be obtained as the restriction
of tensor modules for W (d), therefore we will call them again tensor modules for S(d, χ).
H acts by left multiplication on the first factor and the action of S(d, χ) is the restriction of
(2.121).
If V is of the form Π ⊠ U , we will also the notation Tχ(V ) = Tχ(Π, U). In addition, we
can also denote Tχ(V ) = Tχ(Π, U, c) when we think of U as the sl(d)-module obtained
by the restriction of an action of gl(d) for which id ∈ gl(d) act by scalar multiplication for
c ∈ C.
We can define the same filtration we defined in the W (d) case and have the same nice
behaviour relatively to the filtration of S .
One also has the analogue of Corollary 2.6.1.

Theorem 2.6.3. [BDK2, Theorem 7.2] Let V be a S(d, χ)-module and let U be a non-
trivial d⊕ sl(d)-submodule of sing V . Then HU , the submodule generated by U , is also a
S(d, χ)-submodule of V . In particular, if V is irreducible, V = HU .

We summarize all the main results about tensor modules for W (d) and S(d, χ) and
singular vectors in [BDK2, Section 7].
What happens, roughly speaking, is that the tensor modules are all irreducible but the spaces
of pseudoforms. The existence of the pseudo De Rham complex in fact provides non trivial
submodules via d∗.
In particular, since d∗ is a morphism of W (d)-modules and since constant vectors are
always singular, one has for α ∈ Ωn(d) =

∧n d∗, 0 ≤ n ≤ N − 1, that d∗(1 ⊗ α) is
a singular vector in F 1(T (

∧n+1 d)) = F 1H ⊗
∧n+1 d∗.

We consider on Ωn(d) =
∧n d∗ the natural action of gl(d) (and of sl(d)), where Ω0(d) is

the trivial module C.
Notice that we can restrict the action of W (d) on the twisted pseudo de Rham complex to
one of S(d, χ), which provides a complex of S(d, χ)-modules.

Theorem 2.6.4.

• Every irreducible finite W (d)-module is a quotient of a tensor module;

• Let Π (resp. U ) be an irreducible finite-dimensional module over d (resp. gl(d)),
then the W (d)-module T (Π, U) is irreducible if and only if U is not isomorphic to
Ωn(d) for any n ≥ 1.

• If V = T (Π, U) with U not isomorphic to Ωn(d) for any n ≥ 1, then sing V =
F 0T (Π, U).

• If V = T (Π,Ωn), n ̸= 0, then sing V ⊂ F 1V .

Theorem 2.6.5.

• Every irreducible finite S(d, χ)-module is a quotient of a tensor module;
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• Let Π (resp. U ) be an irreducible finite-dimensional module over d (resp. sl(d)).
Then the S(d)-module Tχ(Π, U) is irreducible if and only if U is not isomorphic to
Ωn(d) for any n ≥ 0;

• If V = Tχ(Π, U) where U is not isomorphic to Ωn(d) for any n ≥ 0, then sing V =
F 0Tχ(Π, U).

• If V = Tχ(Π,Ωn), n ̸= 1, then sing V ⊂ F 1V ;

• If V = Tχ(Π,Ω1), then F 1V ⊊ sing V ⊂ F 2V .

Because of Remark 2.6.3, once one has this results, understanding the irreducible sub-
modules of the tensor modules of De Rham type leads to the complete classification of
irreducible finite modules.
It turns out that the images of dΠ are the unique proper W (d)-submodules of T (Π,Ωn(d))
for any 1 ≤ n ≤ N − 1 and it is still minimal (hence irreducible) for n = N .
The same goes for the restriction Tχ(Π,Ωn(d)) of T (Π,Ωn(d)) to the action of S(d, χ),
except for n = 1, in which case dΠTχ(Π,Ω0) has a proper submodule isomorphic to
dΠ′ Tχ(Π′,ΩN−1) where Π′ = Π ⊗ Ctr ad−χ. Here Cσ, σ ∈ d∗, is the 1-dimensional d-
module where a ∈ d acts as multiplication by the scalar σ(a). We can now finally state the
classification theorems.

Theorem 2.6.6. Any irreducible finite W (d)-module is isomorphic to one of the following:

• Tensor modules T (Π, U) where Π is an irreducible finite-dimensional d-module and
U is a finite-dimensional irreducible gl(d)-module not isomorphic to Ωk(d) for any
k ≥ 1. In this case, sing T (Π, U) ∼= Π ⊠ (U ⊗ Ctr) as d ⊕ gl(d)-modules.

• Images dΠT (Π,Ωk(d)) where Π is an irreducible finite-dimensional d-module and
1 ≤ k ≤ N − 1. In this case, sing dΠT (Π,Ωk(d)) ∼= Π ⊠ (

∧k(d∗) ⊗ Ctr) as
d ⊕ gl(d)-modules.

Theorem 2.6.7. Any irreducible finite S(d, χ)-module is isomorphic to one of the follow-
ing:

• Tensor modules Tχ(Π, U, 0) where Π is an irreducible finite-dimensional d-module
and U is a finite-dimensional irreducible sl(d)-module not isomorphic to Ωk(d) for
any k ≥ 0. In this case, sing Tχ(Π, U, 0) ∼= (Π⊗C−χ/N )⊠U as d⊕sl(d)-modules.

• Images dΠTχ(Π,Ωk(d)) where Π is an irreducible finite-dimensional d-module and
1 ≤ k ≤ N − 1. In this case, sing dΠ(Tχ(Π,Ωk(d))) ∼= (Π ⊗C−χ+k(χ−tr ad)/N )⊠∧k(d∗) as d ⊕ sl(d)-modules.

In both cases we will refer to irreducible modules obtained as images of dΠ as irre-
ducible modules of De Rham type.
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Chapter 3

Pseudoalgebraic approach to the
representation theory of E(5, 10)

3.1 Generalized Verma modules for E(5,10)

As was explained at the end of Section 1.3, the representation theory of (among other
Lie superalgebras)E(5, 10) can be reduced to the study of generalized Verma modules. We
briefly review now the main ideas applied to E(5, 10) following [R2](see also [KR4, CC]).
Fix d = (C5)∗, {∂1, . . . , ∂5} and {x1, . . . , x5} dual bases of d and d∗, and set as usual
H = U(d) and X = H∗.
Recall that E(5, 10)(0) = S5, E(5, 10)(1) = dΩ1(5) and that L = E(5, 10) =

⊕
i≥−2 Li

has a transitive, irreducible, consistent Z-grading of depth 2 such that L0 ∼= sl(d).
Recall also that we set the notation L≥0 =

⊕
i≥0 Li and L+ =

⊕
i>0 Li.

Given an sl(d) ∼= L0-module V , we can extend it to a L≥0-module by letting L+ act
trivially on it; we can then consider the induced L-module

T(V ) = U(L) ⊗U(L≥0) V (3.1)

where the action of L is given by left multiplication.

Definition 3.1.1. Let V be an sl(d)-module. The L-module T(V ) is called generalized
Verma module.
If V is a finite-dimensional irreducible sl(d)-module, we call T(V ) minimal.
A minimal Verma module is called non-degenerate if it is irreducible, degenerate otherwise.

Remark 3.1.1. Let us notice that, as vector spaces, T(V ) ∼= U(L−) ⊗ V . We will often
use this isomorphism omitting the subscript U(L≥0) on the tensor product.

When V = V (λ) is an irreducible sl(d)-module of highest weight λ, we may use the
notation T(V ) = T(λ). A dominant weight λ for sl(d) will be expressed in terms of a
quadruple [a1, a2, a3, a4] ∈ Z4

≥0 where λ = a1ω1 + · · · + a4ω4 and ω1, . . . , ω4 are the
fundamental weights of sl(d).
One should pay special attention because, since we set d = (C5)∗, all the highest weights
modules are the duals of the sl5 usual ones. For example, in our notation the sl5 standard
representation, which has highest weight [1, 0, 0, 0], will be d∗.
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The grading of U(L−) induces one on T(V ).
Poincaré-Birkhoff-Witt Theorem is still true in the superalgebra setting (see for example
[M, 6.1]), so fixed an ordered basis {∂1 . . . , ∂5, ξ12, . . . , ξ45} of L−, we can choose as a
PBW -basis for U(L−) the monomials ∂(I)ξK where,

∂(I) = ∂i1
1
i1! · · · ∂

i5
5
i5! , I = (i1, . . . , i5) ∈ N5 (3.2)

ξK = ξk12
12 · · · ξk45

45 , K = (k12, . . . , k45) ∈ {0, 1}10. (3.3)

The basis elements are, by definition of the grading, homogeneous of degree p = 2|I|+|K|,
where |I| = i1 + · · · + i5 and |K| = k12 + · · · + k45; they generate the homogeneous
subspaces Up(L−). We can thus equip T(V ) with a grading Tp(V ) = Up(L−) ⊗ V .
We should notice that this grading and the grading of L are compatible, by which we mean
that

LnT
p(V ) ⊆ Tp−n(V ). (3.4)

We will call the elements of Tp(V ) homogeneous vectors of degree p; in particular, we will
call the degree 0 ones constant.
For instance, T0(V ) = C ⊗ V , T1(V ) = s ⊗ V , T2(V ) = d ⊗ V +

∧2(s) ⊗ V , T3(V ) =
ds ⊗ V +

∧3(s) ⊗ V , etc.
If v ∈ Sn(d)

∧m(s) ⊗ V , to keep track of the even and odd degrees, we will say that v has
degree (n|m).

Remark 3.1.2. Take a generalized Verma module T(V ) = U(L−) ⊗ V = U(d + s) ⊗ V .
It is in particular an S5-module and, in view of (2.103), also an S-module. Furthermore,
considering the action of d as left multiplication in U(d + s), we can view T(V ) as a Se-
module. Since all these identifications are compatible with the filtrations, (3.4) implies
that T(V ) is a conformal Se-module. By Proposition 2.4.2, it has a natural structure of an
S(d, χ)-module.

Just like the presence of irregular submodules in induced modules for Lie algebras of
Cartan type depended on the existence of singular vectors, degeneracy of minimal Verma
modules can be reformulated in terms of singular vectors.

Definition 3.1.2. Let T(V ) be a Verma module. v ∈ T(V ) is called a singular vector if
L1v = 0.
The space of singular vectors will be denoted by sing T(V ).

Example 3.1.1. Any constant vector v ∈ T0(V ) is singular, since in that case L1v ∈
T−1(V ) = 0.

Remark 3.1.3. Take v ∈ sing T(V ) and z ∈ L0. Then, for any y ∈ L1, yv = 0 and so

y(zv) = [y, z]v + z(yv) = [y, z]v = 0

where the last identity follows from the singularity of v and the fact that [L1,L0] ⊆ L1.
In other terms, sing T(V ) is a L0-submodule of T(V ). In particular, since T(V ) =⊕

p T
p(V ) as L0-modules, homogeneous components of a singular vector are singular.

We will always assume that a singular vector is homogeneous.
The same holds for the weight components of a singular vector so we will assume, when-
ever possible, that a singular vector is also a weight vector.
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Proposition 3.1.1. A minimal Verma module T(V ) is degenerate if and only if it contains
non constant singular vectors.

Proof. Assume 0 ̸= v ∈ singTp(V ) for some p > 0. Since L− and L0 can only re-
spectively rise the degree of v or preserve it and since L+.v = 0 by assumption, Lv is an
L-submodule of T(V ), which is proper because it only contains vectors of degree ≥ p.
Vice versa, let W ⊂ T(V ) be a non trivial proper L-submodule and take 0 ̸= w ∈ W .
Since the action of L1 lowers strictly the degree of homogeneous components of w, we
know that eventually (L1)nw = 0 for some finite n ≥ 1; thus we can assume without
loss of generalization that w is singular. Now, if w was constant, by irreducibility of V
we would have L0w = C ⊗ V and therefore, by iterated action of L−, we would obtain
Lw = T(V ). But T(V ) ⊋ W ⊇ Lw = T(V ), a contradiction. Hence w is a non constant
singular vector.

The proof of the proposition shows vividly how singular vectors "detect" degeneracy
of minimal Verma modules.

Example 3.1.2. Let V = V ([0, 0, 0, 1]) ∼= d and let v =
∑

i

ξ1i ⊗ ∂i ∈ T(d).

A generic element of L1 is of the form y = xhξkl + xkξhl for some h, k, l ∈ {1, . . . , 5}.
To check if v is singular, we can carry out the computation:

y · v =
∑

i

xh[ξkl, ξ1i] ⊗ ∂i + xk[ξhl, ξ1i] ⊗ ∂i =∑
i

ε(kl1i) ⊗ (xh∂(kl1i))∂i + ε(hl1i) ⊗ (xk∂(hl1i))∂i =∑
i

−ε(kl1i) ⊗ eh
(kl1i)∂i − ε(hl1i) ⊗ ek

(hl1i)∂i =∑
i

−ε(kl1i) ⊗ δh
i ∂(kl1i) − ε(hl1i) ⊗ δk

i ∂(hl1i) =

− ε(kl1h) ⊗ ∂(kl1h) − ε(hl1k) ⊗ ∂(hl1k) =
− ε(kl1h) ⊗ ∂(kl1h) + ε(kl1h) ⊗ ∂(kl1h) = 0.

So v ∈ sing T1(V ).
Alternatively, one could notice that v is an highest weight vector, therefore realize that it is
sufficient to check that the lowest weight vector of L1, x5ξ45, acts trivially on v, which is
clearly easier (or at least shorter) (see [CC, Ch.3]).

In [KR4] Kac and Rudakov built complexes of modules for E(5, 10) which provided
families of degenerate Verma modules and they conjectured there were no others.

Conjecture 3.1.1. The complete list of degenerate minimal Verma modules for E(5, 10)
is given, for m,n ∈ Z≥0, by T(λ) for λ = [m,n, 0, 0], [0, 0,m, n] and [m, 0, 0, n].

In [R2] this conjecture was refined in terms of singular vectors and morphism of posi-
tive degree.
Given a morphism of L-modules φ : T(V ) → T(W ), one can associate to it ϕ ∈ U(L−) ⊗
Hom(V,W ) such that φ(1 ⊗ v) = ϕ(v) for any v ∈ V .
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One says that φ has degree k when ϕ =
∑

i ui ⊗ Ai for some ui ∈ U(L−), Ai ∈
Hom(V,W ) and all ui ∈ Uk(L−).
One can characterize morphisms of Verma modules by the following proposition.

Proposition 3.1.2 ([R2]). Consider a linear map φ : T(V ) → T(W ) and consider the
associated element ϕ ∈ U(L−) ⊗Hom(V,W ). φ is a morphism of L-modules if and only
if L0ϕ = 0 and yϕ(v) = 0 for any v ∈ V, y ∈ L1.

Now one can restate the degeneracy of a minimal Verma module with the existence of
positive degree morphisms.

Proposition 3.1.3. Let T(V ) be a minimal Verma module. Then the following conditions
are equivalent.

1. T(V ) is degenerate.

2. T(V ) contains non constant singular vectors.

3. there exists a minimal Verma module T(U) and a morphism φ : T(U) → T(V ) of
degree k > 0.

Proof. We already know that the first two conditions are equivalent. If φ : T(U) → T(V )
is a morphism of degree k > 0, then, for any u ∈ U , φ(1 ⊗ u) is a singular vector in T(V )
of degree k.
On the other hand, if v ∈ sing T(V ) has degree k > 0, one can define φ : T(U) → T(V )
as the unique morphism of L-modules such that φ(1 ⊗ u) = v where u is a highest weight
vector in U . φ is clearly of degree k.

The maps in the complexes built in [KR4] were L-morphisms of degree 1. Rudakov
proved in [R2] that there were no others and obtained morphisms of degree 2 and 3 com-
bining, when possible, morphisms of degree 1. He also found morphisms of degree 4 and 5,
all involving only minimal Verma modules in the list of Conjecture 3.1.1, and conjectured
there were no others.
In [CC] Caselli and Cantarini developed some combinatorial aspects of morphisms between
L-modules that allowed them, in particular, to confirm Rudakov’s conjecture up to degree
3.
Kac-Rudakov conjectures can be restated in terms of singular vectors.

Conjecture 3.1.2. A minimal Verma module T(λ) contains non constant singular vectors
if and only if λ = [m,n, 0, 0], [0, 0,m, n] or [m, 0, 0, n] and singular vectors have degree
≤ 5.

Despite a visible fair amount of understanding of these objects, an explicit bound on
the degree of singular vectors (or equivalently morphisms) was only implicitly conjectured
(at the beginning of the research work for this thesis).
We have seen in Section 2.6 that in the pseudo setting one has an explicit technique which
allows to bound the degree of singular vectors from above.
This suggested us the following strategy: verify if it was possible to present a Lie su-
perpseudoalgebra which induces, via the annihilation functor, E(5, 10) and check if, ex-
ploiting the "pseudo" language, this could provide useful new informations.
The idea was to utilize this case as a model to develop arguments that could be generalized
to be applied to suitable other linearly compact Lie superalgebras.
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3.2 A pseudoalgebraic structure for E(5, 10)
Let H = U(d) be the universal enveloping algebra of a Lie algebra d of dimension 5.

In this section we are going to define a finite Lie H-superpseudoalgebra L = e(5, 10) such
that A(L(0)) ∼= E(5, 10)(0), A(L(1)) ∼= E(5, 10)(1) and the Lie bracket of E(5, 10) is
induced via the annihilation functor by the pseudobracket of L.
Since the even and odd parts of L = E(5, 10) are explicitly known in terms of formal vec-
tor fields and differential forms, the strategy is to look at the analogues "pseudo" concepts.

Recall that X = H∗ can be identified with C[[x1, . . . , x5]]. We will denote ξij =
xi ∧ xj ∈

∧2(d∗).
Consider the even part L(0) = S5.
We already know that it is isomorphic to the annihilation algebra of S(d, χ).
Since A(S(d, χ)) is isomorphic to S5 regardless of d and χ, we will assume for simplicity
that d is abelian and that χ = 0 and we will denote S(d) = S(d, 0).

We set e(5, 10)(0) = S(d) with the usual pseudobracket inherited from W (d):

[(f ⊗ a) ∗ (g ⊗ b)] = ((fa) ⊗ g) ⊗H (1 ⊗ b) − (f ⊗ (gb)) ⊗H (1 ⊗ a) (3.5)

for f ⊗ a, g ⊗ b ∈ S(d) ⊂ H ⊗ d.

The odd part of E(5, 10) is dΩ1
5, the space of differential closed 2-forms in the indeter-

minates x1, . . . , x5.
Under the identification of X with C[[x1, . . . , x5]], the space of differential forms Ω5 can
be identified with ΩX(d) = X ⊗

∧
(d∗).

Recall that in Section 2.5 we have defined the pseudo De Rham complex with the pseudo
differential d∗ and a pseudoaction of W (d), with the properties that A(Ωk

H(d)) ∼= Ωk
X(d)

and that A(d∗) = d.
In particular, we know that dΩ1

X(d) ∼= A(d∗Ω1
H(d)) and that the action of WN via Lie

derivative coincides with the one induced by W (d) on d∗Ω1
H(d).

If we consider the action of SN and S(d) obtained by restriction of the previous ones, we
can effectively equip dΩ1

X(d) with a structure of A(S(d))-module induced by the pseu-
doaction of S(d) on d∗Ω1

H(d).
We set e(5, 10)(1) = d∗Ω1

H(d) and define the pseudobracket between the even and the odd
part as the restriction of the pseudoaction of W (d) on Ω2

H(d) given in (2.116) (where the
second term is missing because d2

∗ = 0):

[(f ⊗ a) ∗ (g ⊗ α)] = ((1 ⊗ 1) ⊗H d∗)((f ⊗ a)) ∗ι (g ⊗ α) (3.6)

for f ⊗ a ∈ S(d) ⊂ H ⊗ d and g ⊗ α ∈ d∗Ω1
H(d) ⊂ H ⊗

∧2(d∗).

The superbracket in E(5, 10) restricted to the odd part is given by (1.22) and explicitly
by (1.24).
In order to define the super pseudobracket on d∗Ω1

H(d), we first define the map

ϕ : Ω2
H(d) ⊗ Ω2

H(d) −→ (H ⊗H) ⊗H W (d)
(1 ⊗ ξij) ⊗ (1 ⊗ ξhk) 7−→ (1 ⊗ 1) ⊗H (ε(ijhk) ⊗ ∂(ijhk)) (3.7)
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and extend it by H-bilinearity.
The pseudobracket will be then the restriction of ϕ to d∗Ω1

H(d) ⊗ d∗Ω1
H(d), so for f ⊗ ξij ,

g ⊗ ξhk ∈ d∗Ω1
H(d) ⊂ H ⊗

∧2(d∗) we have

[f ⊗ ξij ∗ g ⊗ ξhk] = ε(ijhk)(f ⊗ g) ⊗H (1 ⊗ ∂(ijhk)). (3.8)

First of all, we need to be sure that this is well defined.

Lemma 3.2.1. [d∗Ω1
H(d) ∗ d∗Ω1

H(d)] ⊆ (H ⊗H)HS(d).

Proof. A generic element of Ω1
H(d) = H ⊗ d∗ can be written as

5∑
i=1

fi ⊗ xi for some

fi ∈ H .
Applying d∗ we obtain elements of the form

∑
i,j

fi∂j ⊗ ξij .

[
∑
i,j

fi∂j ⊗ ξij ∗
∑
h,k

gh∂k ⊗ ξhk] =
∑

i,j,h,k

ε(ijhk)(fi∂j ⊗ gh∂k) ⊗H (1 ⊗ ∂(ijhk)).

Applying (1 ⊗ 1) ⊗H div to the above expression, we expect to obtain 0.∑
i,j,h,k

ε(ijhk)(fi∂j ⊗ gh∂k) ⊗H (∂(ijhk)) ≡

∑
i,j,h,k

ε(ijhk)((fi∂j∂(ijhk) ⊗ gh∂k) + (fi∂j ⊗ gh∂k∂(ijhk))) =

∑
{i ̸=j ̸=h̸=k}

ε(ijhk)((fi∂j∂(ijhk) ⊗ gh∂k) + (fi∂j ⊗ gh∂k∂(ijhk)))

Take the terms of the form ε(ijhk)(fi∂j∂(ijhk) ⊗ gh∂k). Notice that they are different from
0 if and only if {i, j, h, k, (ijhk)} = {1, . . . , 5}. If we fix h and k, we obtain exactly
3! = 6 terms of the form fi∂j∂(ijhk) ⊗ gh∂k different from 0 (one for any way we order
the remaining 3 indices in fi∂j∂(ijhk)). If we also fix i, we get 2 choices for j and then
an obliged choice for (ijhk). The terms obtained from the two choices for j are oppo-
site (because of the definition of ε) and with ∂j and ∂(ijhk) swapped. Explicitly, we get
±fi∂j∂(ijhk) ⊗ gh∂k ∓ fi∂(ijhk)∂j ⊗ gh∂k. But we assumed d to abelian, so we can switch
∂j and ∂(ijhk) and obtain 0. This happens for any choice of h, k and i. A totally analogous
argument applies for the terms of the form ε(ijhk)(fi∂j ⊗ gh∂k∂(ijhk)), thus exhausting the
sum.

From this definition and by C[[x1, . . . , x5]]-bilinearity of the bracket of E(5, 10), it is
immediate to verify that the induced map [ , ] : A(d∗Ω1

H(d)) ⊗ A(d∗Ω1
H(d)) is equal to

(1.22):

[x⊗ ξij , y ⊗ ξhk] ≡ [x⊗H (1 ⊗ ξij), y ⊗H (1 ⊗ ξhk)] =
ε(ijhk)xy ⊗H (1 ⊗ ∂(ijhk)) ≡ ε(ijhk)xy ⊗ ∂(ijhk). (3.9)

However, since the bracket in E(5, 10) makes use of the wedge product in Ω5, we want to
verify if we can define a pseudowedge in ΩH(d) and obtain an analogous description of the
pseudobracket.
We can define on ΩH(d) =

⊕n
k=0 Ωk

H(d) = H ⊗
∧

(d∗) a structure of an associative
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H-pseudoalgebra by considering it as the current algebra (cf. Definition 2.3.1) over the
Grassman algebra

∧
(d∗) (cf. Example 2.5.1).:

CurH
∧

(d∗) = H ⊗
∧
d∗. (3.10)

The pseudoproduct, which we call pseudowedge and indicate by ∗∧, is induced by the
wedge product in

∧
(d∗):

(f ⊗ α) ∗∧ (g ⊗ β) = (f ⊗ g) ⊗H (1 ⊗ α ∧ β) (3.11)

for f, g ∈ H, α, β ∈
∧

(d∗).

Remark 3.2.1. It is easy to check that for w ∈ W (d) and α ∈
∧p(d), β ∈

∧q(d)

w ∗ ((1 ⊗ α) ∗∧ (1 ⊗ β)) =
(w ∗ (1 ⊗ α)) ∗∧ (1 ⊗ β) + ((σ ⊗ 1) ⊗H 1)((1 ⊗ α) ∗∧ (w ∗ (1 ⊗ β))), (3.12)

w ∗ι ((1 ⊗ α) ∗∧ (1 ⊗ β)) =
(w ∗ι (1 ⊗ α)) ∗∧ β + (−1)p((σ ⊗ 1) ⊗H 1)((1 ⊗ α) ∗∧ (w ∗ι (1 ⊗ β))) (3.13)

and therefore it is true, by H-bilinearity, in ΩH(d).
In other words, W (d) (and therefore S(d, χ)) acts on ΩH(d) by superderivations.

If we restrict now the pseudowedge to Ω2
H(d) we obtain an H-bilinear map

Ω2
H(d) ⊗ Ω2

H(d) −→ (H ⊗H) ⊗H Ω4
H(d)

α⊗ β 7−→ α ∗∧ β. (3.14)

In particular, if α = (f ⊗ ω1) and β = (g ⊗ ω2), then

α ∗∧ β = (f ⊗ g) ⊗H (1 ⊗ ω1 ∧ ω2), (3.15)

for f, g ∈ H , ω1, ω2 ∈ Λ2(d∗).

Define now a map

ϕ : Ω4
H(d) −→ W (d)

(1 ⊗ γ) 7−→ D (3.16)

where D is such that D ∗ι (1 ⊗ v) = (1 ⊗ 1) ⊗H γ where v = x1 ∧ · · · ∧ x5 ∈
∧5(d∗).

By (2.115), ϕ(1 ⊗ γ) = 1 ⊗ a for some a ∈ d. We can therefore extend ϕ by H-linearity.
The following is an equivalent statement of Lemma 3.2.1.

Lemma 3.2.2. If α, β ∈ d∗Ω1
H(d) ⊂ Ω2

H(d), then α ∗∧ β ∈ (H ⊗H) ⊗H d∗Ω3
H(d).

Proof. In the same notation of Lemma 3.2.1, a generic element of d∗Ω1
H(d) is of the form∑

i,j fi∂j ⊗ ξij . So given α =
∑

i,j fi∂j ⊗ ξij and β =
∑

h,k gh∂k ⊗ ξhk, then

α ∗∧ β =
∑

i,j,h,k

(fi∂j ⊗ gh∂k) ⊗H (1 ⊗ ξij ∧ ξhk).
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By Proposition 2.5.1, we only need to check that applying (id⊗id)⊗H d∗ to the expression
above gives 0.
Notice that ξij ∧ ξhk ̸= 0 only when i, j, h, k are all different from each other. Notice also
that d∗(1⊗ξij ∧ξhk) ∈ Ω5

H(d) ∼= H⊗
∧5(d∗) where

∧5(d∗) = Cv where v = x1∧· · ·∧x5.
It is easy then to see that d∗(1 ⊗ ξij ∧ ξhk) = ε(ijhk)∂(ijhk) ⊗ x1 ∧ · · · ∧ x5, where the sign
ε comes by rearranging the indexes i, j, h, k, (i, j, h, k).
The claim now follows from the same calculation carried out in the proof of Lemma 3.2.1.

Lemma 3.2.3. The restriction of ϕ to d∗Ω3(d) is an isomorphism of S(d)-modules between
d∗Ω3(d) and S(d).

Proof. A generic element of ω ∈ Ω4
H(d) is of the form ω =

∑
j<h<k<l fjhkl ⊗ xj ∧ xh ∧

xk ∧ xl for some fjhkl ∈ H . Denoting x̂i = x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x5 we can rewrite it
as
∑5

i=1 fi ⊗ x̂i. Then ϕ(
∑

i fi ⊗ x̂i) = D where D ∈ W (d) such that D ∗ι (1 ⊗ v) =∑
i(fi ⊗ 1) ⊗H x̂i. One is easily convinced of the fact that D =

∑
i(−1)ifi ⊗ ∂i.

Assume that div D = 0, which means that
∑

i(−1)ifi∂i = 0. Applying now d∗ to ω,
we obtain an element in Ω5

H(d) = Hom(
∧5(d), H) which can be written explicitly using

(2.113) (remember that we are assuming for simplicity that d is abelian) :

(d∗(
∑

i

fi ⊗ x̂i))(∂1 ∧ · · · ∧ ∂5) =∑
i,j

(−1)jfi∂j(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x5)(∂1 ∧ · · · ∧ ∂̂j ∧ · · · ∧ ∂5).

The generic term of the sum is different from 0 if and only if i = j. Thus we obtain∑
i(−1)i(fi∂i) which is 0 by assumption.

On the other hand, a generic element γ ∈ Ω3
H(d) is of the form

∑
h<k<l fhkl ⊗ xh ∧

xk ∧ xl, so d∗γ =
∑

j,h<k<l fhkl∂j ⊗ xh ∧ xj ∧ xl ∧ xj which can be rearranged as∑
j<h<k<l(−fhkl∂j + fjkl∂h − fjkl∂k + fjhk∂l) ⊗ xj ∧ xh ∧ xk ∧ xl.

If we again denote it as
∑

i fi ⊗ x̂i where i is the missing index such that {i}∪{j, h, k, l} =
{1, 2, 3, 4, 5}, then ϕ(d∗) =

∑
i(−1)ifi ⊗ ∂i.

Now, computing the divergence leads to the expression
∑

j<h<k<l(−1)i(−fhkl∂j∂i +
fjkl∂h∂i − fjhl∂k∂i + fjhk∂l∂i).
A straightforward combinatorial calculation similar to the one used to prove Lemma 3.2.1
shows that this equals 0.
In order to prove that ϕ is also a morphism of S(d)-modules, it is sufficient to verify it
when the action is carried out by the elements sij = s∂i∂j

defined in (2.101).
A direct calculation shows indeed that for any

∑
h fh ⊗ x̂h ∈ d∗Ω3

H(d),
((id⊗ id) ⊗H ϕ)(sij ∗

∑
h fh ⊗ x̂h) = sij ∗ (ϕ(

∑
h fh ⊗ x̂h)

We only need to notice now that ϕ((1 ⊗ ξij) ∗∧ (1 ⊗ ξhk)) = ϕ(1 ⊗ ξij ∧ ξhk) =
ε(ijhk)1 ⊗ ∂(ijhk).
In other words, we can define the pseudobracket between odd elements as the composition
of ∗∧ and ϕ.
Now we are ready to prove the following:

Proposition 3.2.1. e(5, 10) is a Lie superpseudoalgebra and A(e(5, 10)) ∼= E(5, 10).
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Proof. We only need to show that [· ∗ ·] is in fact a super pseudobracket.
H-bilinearity and super skew symmetry follow directly by the definitions (3.5), (3.6) and
(3.8).
Regarding the Jacobi identity, it is satisfied when one even element and two odd ones
are involved because of Lemma 3.2.3, and Remark 3.2.1. When only odd elements are
involved, a direct but tedious computation shows that the Jacobi identity is still satisfied.

Remark 3.2.2. For different choices of d and χ, it is still possible to define a pseudoalge-
braic structure by taking a suitable 1-dimensional d-module Π = Cε, where ε ∈ d∗ and
consider the Π-twisting of the De Rham complex (ε will be an adequate linear combination
of tr ad and χ).

Remark 3.2.3. It is worth to mention here that in [CCK2], in a similar fashion, E(5, 10)
is realized as the annihilation algebra of a Lie conformal superalgebra.

3.3 Bound on degree of singular vectors

We will apply now the pseudoalgebraic structure e(5, 10) to the representation theory
of E(5, 10). As we have seen in Section 3.1, the classification of irreducible E(5, 10)-
modules can be translated in terms of classification of singular vectors in generalized Verma
modules.
Direct computation of singular vectors is not immediate, especially in high degrees. One
thing one can do is trying, as a start, to rule out as many options as possible. This can be
done, for example, by looking for restricting conditions on the degree of singular vectors,
which is what we are about to do.
Recall that by Theorem (2.6.5), we have a very important result that points in this direction
in the "pseudo" setting. Having a pseudoalgebraic structure for E(5, 10) might therefore
be useful. Turns out, in order to get a first bound on the degree of singular vectors, it is
enough to take into account just the even structure of E(5, 10), exploiting the pseudoalge-
bra techniques already available in the non super setting.
To do so, we first define some subspaces of T(V ).
For i = 0, . . . , 10, let

Γi(V ) :=
{
v =

∑
I,K

∂(I)ξK ⊗ vIK ∈ T(V ) | |K| ≤ i se vIK ̸= 0
}
. (3.17)

In other words, Γi(V ) consists of vectors with "odd degree" at most i. We may also describe
Γi(V ) as the space generated by the PBW monomials of degree (n | j) with j ≤ i.
It is easy to check the following properties:

• Γi(V ) ⊆ Γi+1(V );

• Γ0(V ) = U(d) ⊗ V ;

• Γ10(V ) = T(V );

• Γi(V ) is a L(0) ∼= S5-submodule of T(V ).



66 3. Pseudoalgebraic approach to the representation theory of E(5, 10)

Basically, we have built a finite filtration of S5-modules of T(V ).
The last property follows from the fact that the action of an even element in L can only
lower the odd degree in T(V ). Take for example y ∈ L2, v = ∂(I)ξK ⊗ vK

I ∈ T(V ).
We have

y · v = y · (∂(I)ξK ⊗ vK
I ) = [y, ∂(I)]ξK ⊗ vK

I + ∂(I)[y, ξK ] ⊗ vK
I + ∂(I)ξK ⊗ y · vK

I .

Here the third term is 0 because L+ acts trivially on V ; the first term consists of elements
of degree ( |I| − 1 | |K| ); lastly, the second term, once expanded the bracket and sorted
everything, can only contribute with elements of degree (|I| | |K|−2) or (|I|+1 | |K|−4).
In any case the odd degree cannot increase.

These properties allow us to talk about quotients.
Let us consider the quotients of S5-modules Γi(V )/Γi−1(V ) for i = 0, . . . , 10 (where we
impose Γ−1(V ) = 0).
As sl(d)-modules, they are isomorphic to U(d)⊗ (

∧i(s)⊗V ) (follows from [M, Corollary
6.4.5]). The latter look a lot like tensor modules T (

∧i(s) ⊗ V ) for S(d): if the action of
S5 can be interpreted as the action of the annihilator algebra associated to pseudoaction of
S(d), we can put to use Proposition 2.4.2. This is, in fact, possible in the following way.

The action of y ∈ L2j on a class u · ξK ⊗ v ∈ Γi(V )/Γi−1(V ), where u ∈ U(d),
|K| = i and v ∈ V , behaves, depending on j, like:

for j = −1 y · uξK ⊗ v = (yu)ξK ⊗ v, since in this case y ∈ d ⊆ U(d);

for j = 0 y · uξK ⊗ v = [y, u]ξK ⊗ v + u[y, ξK ] ⊗ v + uξK ⊗ (y · v);

for j > 0 y · uξK ⊗ v =[y, u]ξK ⊗ v + u[y, ξK ] ⊗ v + uξK ⊗ (y · v)
=[y, u]ξK ⊗ v

where the last equality is due to the fact that y lowers the odd degree of at least 1, sending
the second term to 0 in the quotient, and acts trivially on V .
Notice that in the case j = 0, the action of y ∈ L0 ∼= sl(d) on ξK is actually the same as
the one on the sl(d)-module

∧i(s) (since the other terms that usually appear in the bracket
[y, ξK ] once sorted are 0 in the quotient).

Summing up, we have that L(0) = S5 acts on Γi(V )/Γi−1(V )

• by left multiplication on the H = U(d) factor with the negative degree part;

• by the natural action of sl(d) on U(d) ⊗ (
∧i(s) ⊗ V ) with the degree 0 part;

• trivially on
∧i(s) ⊗ V with the positive degree part.

Since this is exactly the action of S on the tensor module Tχ(
∧i(s) ⊗ V ) (with χ = 0,

so it can be omitted) via the isomorphism in (2.103), we can state:
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Proposition 3.3.1. Let V be a finite-dimensional irreducible sl(d)-module. Then we have
an isomorphism of S5 ∼= A(S(d))-modules

Γi(V )/Γi−1(V ) ∼= T (
∧i(s) ⊗ V ). (3.18)

Take now v ∈ sing Tp(V ). It is, in particular, a singular vector for L(0) = S5 of degree
p. We denote the space of such vectors with singS5 T(V ).
If we consider v ∈ Γi(V )/Γi−1(V ) for a suitable i = 0, . . . , 10, it will still be a singular
vector in what we now know is a tensor module. Therefore, by Theorem 2.6.5, the even
degree of v must be ≤ 2. Since the odd degree of a vector cannot be larger than 10,
these ideas, formalized, prevent vectors with a sufficiently high enough degree from being
singular.

Theorem 3.3.1. Let T(V ) be a minimal Verma module and let v ∈ sing T(V ). Then v has
degree at most 14.

Proof. We can assume that v is homogeneous of degree p.
We have, if p is either even or odd:

p=2n Tp(V ) = Sn(d) ⊗ V + Sn−1(d)
∧2(s) ⊗ V + · · · + Sn−5(d)

∧10(s) ⊗ V ;

p=2n+1 Tp(V ) = Sn(d) s ⊗ V + Sn−1(d)
∧3(s) ⊗ V + · · · + Sn−4(d)

∧9(s) ⊗ V .

We study the case p = 2n.
Let 0 ≤ m0 ≤ 10 be the greatest index such that the term of v in degree (p−m0

2 |m0) is not
0 (i.e. the term of v in S(p−m0)/2(d)

∧m0(s) ⊗ V ).
Therefore v ∈ Γm0(V ) and it is a combination of terms in degrees

(p−m0
2 |m0), (p−m0

2 + 1|m0 − 2), . . . , (p
2 |0).

We can then consider

v ∈ Γm0(V )/Γm0−1(V ) ∼= U(d) ⊗ (
∧m0(s) ⊗ V ).

Notice that given y ∈ L2, y · v ∈ Tp−1(V ) and the term of degree (p−m0−1
2 |m0) can be

obtained only acting with y on the term of v of degree (p−m0
2 |m0). Hence, if v is singular

for S5, so must be v.
To recap: if v ∈ sing Tp(V ), v ∈ U(d) ⊗ (

∧m0(s) ⊗ V ) = T (
∧m0(s) ⊗ V ) is a singular

vector for S5 of (even) degree (p−m0)/2 in a tensor module. By Theorem 2.6.5, the even
degree of v must be less than or equal to 2, which means that (p − m0)/2 ≤ 2, that is
p ≤ m0 + 4 ≤ 14. When p is odd the same argument holds.

The proof actually tells us more than the statement of the theorem: we can not only
estimate the singular vectors’ degree, but we can also rule out straightforwardly most of the
irreducible sl(d)-modules whose induced modules we expect to possibly contain singular
vectors of a certain degree. We recall that in our notation Ω1(d) = d∗ ∼= V ([1, 0, 0, 0]).
Similarly Ω2(d) ∼= V ([0, 1, 0, 0]), Ω3(d) ∼= V ([0, 0, 1, 0]) and Ω4(d) ∼= V ([0, 0, 0, 1]).

Now apply, for example, the proof’s arguments on degree 14:
let v be a singular vector of degree 14 in a minimal Verma module T(V ) and consider
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v ∈ Γ10(V )/Γ9(V ) ∼= U(d) ⊗ (
∧10(s) ⊗ V ) ∼= U(d) ⊗ V . If v ̸= 0, this means that the

term of v of degree (2|10) is not 0.
We know by Theorem 2.6.5 that we can find singular vectors of (even) degree 2 in a tensor
module T (V ) where V is irreducible if and only if V ∼= Ω1(d) ∼= V ([1, 0, 0, 0]).
Therefore, if we assume that V ≇ d∗, v will necessarily be 0. This implies that v ∈
Γ8(V ) and we can consider v ∈ U(d) ⊗ (

∧8(s) ⊗ V ), thus obtaining a singular vector
in T (

∧8(s) ⊗ V ) of (even) degree (14 − 8)/2 = 3. This cannot happen, so that the only
possible solution is v = 0. Iterating, we discover that v must be 0.
We proved:

Lemma 3.3.1. If V ≇ d∗ ∼= V ([1, 0, 0, 0]), sing T14(V ) = {0}.

3.4 Bound refining

A simple lemma will be extremely useful:

Lemma 3.4.1. Let T(V ) be a Verma module for L. If v ∈ sing T(V ) and ξ ∈ L−1 ∼= s,
then ξv ∈ singS5 T(V ).

Proof. Take y ∈ L2. Then

y · (ξv) = [y, ξ] · v + ξ(y · v) = 0,

where the second term is 0 because v is singular. The same goes for the first term since
[y, ξ] ∈ L1.

We apply this new piece of information to the case V ∼= d∗.
Let v ∈ sing T14(d∗). By the lemma, given any ξ ∈ s, ξv (which has now degree 15), is
still singular for the action of S5. Consider the term of degree (3|9) and the corresponding
ξv ∈ Γ9(V )/Γ8(V ) ∼= T (

∧9(s) ⊗ V ). Like before, it is still singular and has even degree
3, which implies that ξv = 0. We can then consider ξv ∈ Γ7(V )/Γ6(V ) and, iterating the
argument, obtain that ξv must be 0 ∀ξ ∈ s.
We remark that L−2 = [L−1,L−1] which means that, for any ∂ ∈ d ∼= L−2, we can find
ξ1, ξ2 ∈ s ∼= L−1 such that ∂ = [ξ1, ξ2]. This in particular implies that ∂v = 0 ∀∂ ∈ L−2.
Since the action of L−2 on a tensor module is simply given by left multiplication, it can
only mean that v = 0.
In conclusion, we showed that even if V ∼= d∗, T(V ) cannot have singular vectors of degree
14.
These ideas can be applied systematically to perform a refining of the bound in Theorem
3.3.1.

Theorem 3.4.1. Let T(V ) be a minimal Verma module and let v ∈ sing T(V ). Then v has
degree ≤ 12. More precisely:

1. if V ≇ V ([0, 0, 1, 0]), singular vectors have degree strictly smaller than 12;

2. if V ≇ V (λ) where λ = [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 1, 0], or
[1, 0, 0, 1], singular vectors have degree strictly smaller than 11;
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3. ifV ≇ V (µ) where µ =[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0],
[1, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [0, 0, 1, 1], [1, 0, 1, 0],
[0, 1, 0, 1], [1, 1, 0, 1], [0, 2, 0, 0], [2, 0, 0, 0], [1, 0, 2, 0],
or [3, 0, 0, 1], singular vectors have degree strictly smaller than 10.

The proof revolves around arguments similar to the previous ones. To that end, be-
cause of Proposition 3.3.1 and Theorem 2.6.5, we will need to be able to determine when,
given an irreducible sl(d)-module V , we can (or rather cannot) find a copy of V (ωi) in∧j(s) ⊗ V . Recall that every irreducible sl(d)-module V has a highest weight vector and
that V is uniquely determined by the highest weight. Here, as before, ω1 = [1, 0, 0, 0],
ω2 = [0, 1, 0, 0], ω3 = [0, 0, 1, 0], ω4 = [0, 0, 0, 1] and ω0 = [0, 0, 0, 0].
By Frobenius duality (keeping in mind that these are all finite-dimensional modules), V (ωi) ⊆∧j(s) ⊗ V if and only if V ⊆

∧j(s∗) ⊗ V (ωi).
In the following table we list the highest weights of the irreducible representations that
appear in the decomposition of those tensor products. It was obtained using computer soft-
ware "LiE" ( see [LiE] for further informations).∧9(s∗) ⊗ V (ωi)

∧8(s∗) ⊗ V (ωi)
∧7(s∗) ⊗ V (ωi)

∧6(s∗) ⊗ V (ωi)
i=0 [0,1,0,0] [1,0,1,0] [0,0,2,0], [2,0,0,1] [1,0,1,1], [3,0,0,0]
i=1 [0,0,1,0], [1,1,0,0] [0,1,1,0], [1,0,0,1],

[2,0,1,0]
[0,0,1,1], [1,0,2,0],
[1,1,0,1], [2,0,0,0],
[3,0,0,1]

[0,1,1,1], [1,0,0,2],
[1,0,1,0], [2,0,1,1],
[2,1,0,0], [4,0,0,0]

i=2 [0,0,0,1], [0,2,0,0],
[1,0,1,0]

[0,0,2,0], [0,1,0,1],
[1,0,0,0], [1,1,1,0],
[2,0,0,1]

[0,0,1,0], [0,1,2,0],
[1,0,1,1], [1,1,0,0],
[2,1,0,1], [3,0,0,0]

[0,0,2,1], [0,1,0,2],
[0,1,1,0], [1,0,0,1],
[1,1,1,1], [2,0,0,2],
[2,0,1,0], [3,1,0,0]

i=3 [0,0,0,0], [0,1,1,0],
[1,0,0,1]

[0,0,1,1], [0,1,0,0],
[1,0,2,0], [1,1,0,1],
[2,0,0,0]

[0,0,3,0], [0,1,1,1],
[1,0,0,2], [1,0,1,0],
[2,0,1,1], [2,1,0,0]

[0,0,1,2], [0,0,2,0],
[0,1,0,1], [1,0,2,1],
[1,1,0,2], [1,1,1,0],
[2,0,0,1], [3,0,1,0]

i=4 [0,1,0,1], [1,0,0,0] [0,0,1,0], [1,0,1,1],
[1,1,0,0]

[0,0,2,1], [0,1,1,0],
[1,0,0,1], [2,0,0,2],
[2,0,1,0]

[0,0,1,1], [1,0,1,2],
[1,0,2,0], [1,1,0,1],
[2,0,0,0], [3,0,0,1]

Proof of Theorem 3.4.1. We will outline the various steps in a schematic way. The ideas
are the same we have already discussed.
Degree 13:
Let v ∈ sing T13(V ). We first consider the term of v in degree (2|9); it can be different
from zero only if V appears in the decomposition of

∧9(s∗) ⊗ V (ω1) ∼= V ([0, 0, 1, 0]) ⊕
V ([1, 1, 0, 0]). So if V is not isomorphic to one of these two representations, the term in
(2|9) of v must be equal to 0, we look at next term, which is also 0 because has degree
(3|7). Iterating, we deduce that v = 0.
If V ∼= V ([0, 0, 1, 0]) or V ([1, 1, 0, 0]), take ξ ∈ s and consider the term in degree (2|10) of
ξv. It can be non zero only if V does not appear in

∧10(s∗) ⊗ V (ω1) ∼= V (ω1). It follows
that it must be 0 and, iterating, so does ξv ∀ξ ∈ s which in turn implies, as we already saw,
that v must be 0. In conclusion, sing T13(V ) is always 0.
Degree 12:



70 3. Pseudoalgebraic approach to the representation theory of E(5, 10)

Let v ∈ sing T12(V ). We consider the term of degree (1|10); it can be non zero only if
V appears in

∧10(s∗) ⊗ V (ωi) ∼= ωi for i = 0, . . . , 4. Therefore if V is not of the form
V (ωi), we check the term of degree (2|8) which must be 0 unless a copy of V appears in∧8(s∗) ⊗ V (ω1) = V ([0, 1, 1, 0]) ⊕ V ([1, 0, 0, 1]) ⊕ V ([2, 0, 1, 0]). In the remaining cases
v = 0.
Now assume V ∼= V ([0, 1, 1, 0]), V ([1, 0, 0, 1]), V ([2, 0, 1, 0]) or V (ωi) with i = 0, . . . , 4.
Take ξ ∈ s and consider the term of ξv of degree (2|9). It cannot be non zero if V does
not appear in

∧9(s∗) = V ([0, 0, 1, 0]) ⊕ V ([1, 1, 0, 0]). So if V ≇ V (ω3) ξv = 0 ∀ξ ∈ s
and again it implies that v = 0. Therefore the only case in which we cannot rule out the
presence of singular vectors of degree 12 is for V ∼= V (ω3).
Degree 11: Let v ∈ sing T11(V ). We consider the term of degree (1|9); it can be different
from zero when V appears in

∧9(s∗) ⊗ V (ωi) for i = 0, . . . , 4. It happens when V has as
highest weight one belonging to the first column of the table.
If we assume V is not isomorphic to any of them, we can move to the next term which
has degree (2|7). According to the table, if V is also not isomorphic to V ([0, 0, 1, 1]),
V ([1, 0, 2, 0]), V ([1, 1, 0, 1]), V ([2, 0, 0, 0]) and V ([3, 0, 0, 1]), v = 0.
Assume V is isomorphic to one of these representations, a fundamental representation or
the trivial one; take ξ ∈ s and check the term of degree (1|10); if V is not a fundamental rep-
resentation or the trivial one, we can move to the term of degree (2|8) which will be 0 unless
a copy of V appears in

∧8(s∗) ⊗ V (ω1) ∼= V ([0, 1, 1, 0]) ⊕ V ([1, 0, 0, 1]) ⊕ V ([2, 0, 1, 0]).
Therefore if V is not isomorphic to V ([0, 0, 0, 1]), V ([0, 0, 1, 0]), V ([0, 1, 0, 0]), V ([1, 0, 0, 0]),
V ([0, 1, 1, 0]) or V ([1, 0, 0, 1]), sing T11(V ) = 0.
Degree 10:
Let v ∈ sing T10(V ). The term of v with the greatest odd degree is the one of degree
(0|10). In this case we cannot deduce anything, since this term is constant from the point
of view of S5, therefore singular.
We relay again on Lemma 3.4.1: take ξ ∈ s and consider ξv, which has now degree
11. This time we can still look at ξv ∈ Γ9(V )/Γ8(V ) ∼= T (

∧9(s) ⊗ V )) which has
even degree 1. Again, we know that it is 0 unless V appears as an irreducible com-
ponent of

∧9(s∗) ⊗ V (ωi), i = 0 . . . , 5. So if the highest weight of V does not ap-
pear in the first column of the table, ξv = 0. We can then move to the next term,
which has degree (2|7). Here we look at the irreducible modules in

∧7(s∗) ⊗ V (ω1) ∼=
V ([0, 0, 1, 1]) ⊕ V ([1, 0, 2, 0]) ⊕ V ([1, 1, 0, 1]) ⊕ V ([2, 0, 0, 0]) ⊕ V ([3, 0, 0, 1]). So if in
addition we ask that V is not isomorphic to these modules, ξv = 0 ∀ξ ∈ s and again we
cannot have singular vectors of degree 10 in T(V ).

Almost at the same time as we obtained these results, Cantarini, Caselli and Kac pre-
sented in [CCK1] the complete classification of singular vectors and hence of all degenerate
Verma modules for E(5, 10), which confirmed Conjecture 3.1.1. However, the statement
about the degrees of singular vectors of Conjecture 3.1.2 turned out to be false: in addition
to the singular vectors already found by Rudakov, they found a singular vector of degree
11 and one of degree 7 in T(V ), where V is isomorphic respectively to V ([0, 0, 0, 1]) and
V ([0, 0, 0, 2]).
Of course, our results are compatible with the classification, since V ([0, 0, 0, 1]) appears in
our list of exceptions for degree 11. Remarkably enough, the existence of a singular vector
of degree 11 means that, except for the single case in degree 12, the estimate could not have
directly lowered any further (except by studying each case individually).
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The still satisfactory preciseness of the first rough estimate of Lemma 3.3.1 confirms a
promising "trend" which already held in the non "super" setting. Namely, the estimate for
the degree of singular vectors for W (d) and S(d, χ) provided respectively in Lemma 2.6.2
(degree less or equal to 1) and Lemma 2.6.4 (degree less or equal to 2) turned out to be
optimal, which is also true for the analogous situations of typeK (degree less or equal to 2,
[BDK3]) and H (degree less or equal to 2, [BDK4]). In particular, having an estimate from
above and a finite number of tensor modules that can possess non-trivial singular vectors,
makes the problem "finite" and possibly approachable with the help of a computer. Our
hope is that a similar strategy could be applied for most linearly compact Lie superalge-
bras, provided that one can exhibit a pseudoalgebraic structure.
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Chapter 4

Classification of pseudoalgebraic
structures for E(5, 10)

4.1 The reconstruction functor

In order to investigate the possible pseudoalgebraic structures for E(5, 10), a very im-
portant tool is the reconstruction functor, which we will introduce in this section following
[BDK1, Section 11].
Let H be a cocommutative Hopf algebra and let L be a topological left H-module.
The reconstruction functor C associates to L the left H-module

C(L) = Homcont
H (X,L), (4.1)

the space of continuousH-homomorphisms, where as usualH is endowed with the discrete
topology and X = H∗.
The action of H is given by

(hα)(x) = α(xh) for h ∈ H,x ∈ X,α ∈ C(L). (4.2)

Then C is a covariant functor from the category of topological H-modules to the category
of H-modules.
The reconstruction functor was introduced, as the name suggests, to "reconstruct" a finite
H-pseudoalgebra L from its annihilation algebra, which we recall is a linearly compact
H-differential algebra.
We want to use it in a similar fashion, applying it also to annihilation modules of finite
L-modules, therefore we will always assume that L is a linearly compact H-module.

Given a finiteH-moduleM and its annihilation module A(M) = X⊗HM , we denote
its reconstruction by M̂ = C(A(M)) = Homcont

H (X,X ⊗H M). There is a natural map
Φ : M −→ M̂ defined by

Φ(m) = ϕm where ϕm(x) = x⊗H m for m ∈ M,x ∈ X. (4.3)

By the definitions, we have

(hΦ(m))(x) = ϕm(xh) = xh⊗H m = x⊗H hm = ϕhm(x) = (Φ(hm))(x),
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thus Φ is an homomorphism of H-modules.
In [BDK1] is showed that if L is a finite Lie H-pseudoalgebra, it is possible to define a
pseudobracket on L̂ and Φ : L → L̂ is an homomorphism of Lie H-pseudoalgebras.
Similarly, if M is a finite L-module, one can define a pseudoaction of L on M̂ and Φ :
M → M̂ is a morphism of L-modules.
It is also proven the following result, which gives us useful properties of C.

Lemma 4.1.1. 1. C is left exact: if i is injective, so is C(i);

2. C preserves direct sums: C(L ⊕ M) = C(L) ⊕ C(M);

3. If H = U(d), then C(L) is a torsion-free H-module.

When M is a free H-module, Φ behaves very nicely.

Proposition 4.1.1. [BDK1, Proposition 11.3] LetM be a freeH-module. Then Φ : M −→
M̂ is an isomorphism of H-modules.

In particular, if L is a Lie H-pseudoalgebra free as an H-module, Φ : L → L̂ is an
isomorphism of Lie H-pseudoalgebras. Similarly, if M is an L-module free as H-module,
Φ : M → M̂ is an isomorphism of L-modules.

Example 4.1.1. IfM is a tensor module forW (d) or S(d, χ), sinceM is a freeH-module,
we have M̂ = C(A(M)) ∼= M .

Remark 4.1.1. Let L be a Lie H-pseudoalgebra, M = H ⊗M0 be an L-module which is
free as an H-module and let N ⊂ M be an L-submodule. Then, by definition, A(N) ⊂
A(M), which implies, since C is left exact, that N̂ = C(A(N)) ⊆ C(A(M)) = M̂ ∼= M
where last isomorphism follows from the fact that M is a free H-module. In other words,
N̂ is isomorphic to a submodule of M . This is enough to determine the reconstruction of
irreducible modules of De Rham type for W (d) (and S(d, χ)) because there is only one
proper submodule in the corresponding tensor module. However, one should be able to
verify that in this case N and M also induce the same annihilation algebra. This can be
useful for the cases of type H and K, for which not irreducible tensor modules can have
up to 3 submodules.

Lemma 4.1.2. If M is a finite irreducible representation of W (d) or S(d, χ), then M̂ =
C(A(M)) ∼= M .

Proof. We already know that the claim is true ifM is a tensor module by Proposition 4.1.1.
If M = d∗(Ωk

H(d)) is a module of De Rham type, it is in particular a submodule of the
tensor module T (

∧k+1 d∗). By the previous Remark, M̂ is isomorphic to a submodule of
T (
∧k+1 d∗) because the latter is a free H-module.

We know that M is the only proper submodule of T (
∧k d∗), hence M̂ ∼= M .

In the non-free case, Φ is in general neither injective nor surjective. However, when
H = U(d), its injectivity can still be controlled in terms of H-torsion. In fact, one has (see
[BDK1, Lemma 7.4, Proposition 11.5]):

Proposition 4.1.2. 1. if H is a Noetherian domain which has a skew-fields of fractions
K and L is a finite H-module, then there is an homomorphism i : L → F , where F
is a free H-module, whose kernel is Tor L.
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2. If L is a finite U(d)-module and a ∈ L is H-torsion, i.e. ha = 0 for some 0 ̸= h ∈
U(d), then X ⊗H a = 0.

Corollary 4.1.1. kerΦ = Tor L.

Proof. It is a well known fact thatH = U(d) is a Noetherian domain and that any two non-
zero elements in H have a non-zero left (and right) common multiple, which in particular
implies that H has a skew-field of fractions.
If a ∈ Tor L, then Φ(a)(x) = x⊗H a ≡ 0, so a ∈ kerΦ.
On the other hand, if a is not U(d)-torsion, i(a) ̸= 0. The induced map A(i) maps x⊗H a
to x ⊗H i(a) ∈ X ⊗H F . Proposition 4.1.1 implies that there exists x ∈ X such that
x⊗H i(a) ̸= 0, hence x⊗H a ̸= 0.

We very briefly review now the reconstruction of primitive Lie pseudoalgebras of type
W and S. For more details, see [BDK1, Section 12].

Let L be a subalgebra of WN with its canonical filtration {Lk}. The latter induces a
filtration of the Lie algebra DerL, (DerL)j = {d ∈ DerL | d(Li) ⊂ Lj+i}.
Recall that X = H∗ can be identified with ON and that under this identification WN is
isomorphic to A(W (d)) as linearly compact Lie algebras. By (2.84), this lets d act on
WN by derivations. The action of d on L is called transitive if the composition of the map
d → DerL with the projection DerL → DerL/(DerL)0 is a linear isomorphism.
In [BDK1, Lemma 12.1] is shown that if L is a simple Lie H-pseudoalgebra (or a current
pseudoalgebra over one), then the canonical action of d (2.84) on A(L) is transitive.

Recall also that under the identification X ∼= ON , d acts on ON by linear differential
operators, which is equivalent to say that there is an embedding d ↪→ DerON = WN ,
which is called the canonical embedding. This embedding is transitive, i.e. d ⊂ WN is a
complementary of F0WN .

A structure of an H-differential algebra on WN is equivalent to a transitive action of d
on WN by derivations, which, since DerWN = WN , is equivalent to a transitive embed-
ding of d in WN .
In [BDK1] is proved, applying a theorem of Guillemin and Sternberg [GS] ([BDK1, Propo-
sition 6.9]), that any two such embeddings are conjugated by an automorphism of WN .
Therefore, up to an automorphism of WN , we can assume that the transitive embedding is
the canonical one, which corresponds to the canonical action of d. With the corresponding
action of H , WN is isomorphic to A(W (d)).
Since W (d) is a free H-module, by Proposition 4.1.1 C(WN ) = W (d).
In [BDK1, Section 12.6] it is proven that, even if it is not a free H-module, the same holds
for S(d, χ).

Lemma 4.1.3. The reconstruction of the Lie algebra SN , provided with a transitive action
of d, is S(d, χ) where χ is a trace form on d.

Remark 4.1.2. We should stress the fact that A(W (d)) is always isomorphic, as a linearly
compact Lie algebra, to WN regardless of the Lie bracket of d (apart for its dimension,
which has to be N ). In order to apply the reconstruction functor then one needs an H-
differential algebra structure, which clearly depends on d and its action on WN ; the same
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is true for SN and S(d, χ) if one takes different d or χ.
Similarly, if V = H ⊗ V0 is a tensor module for W (d) (or S(d, χ)), then A(V ) is always
isomorphic, as linearly compact representations of WN (or SN ), to X ⊗ V0, while it can
have a different structure as an H-module. The same holds for modules of De Rham type.

One final fact that will be useful later is the following.

Proposition 4.1.3. [BDK1, Proposition 11.13] If L is a Lie H-pseudoalgebra which is
finite and torsionless as an H module and if A(L) has a finite-dimensional center, then L̂
is a Lie H-pseudoalgebra containing L as an ideal.

4.2 Reconstruction of irreducible representations of simple Lie
pseudoalgebras of type W and S

The reconstruction functor is used in [BDK1] to achieve the classification of finite
simple Lie pseudoalgebras. Roughly speaking, the idea is the following: one starts by
understanding the structure of the linearly compact Lie algebra associated to a simple Lie
pseudoalgebras (i.e. its annihilation algebra), then one checks for all possible compatible
H-module structures and finally applies the reconstruction functor.
The second step is far from being trivial and one expects it to be even harder in the "super"
setting, so while exploiting it for the even part of a Lie superpseudoalgebra, we will try to
avoid it for the odd one.
In this section, we develop a technique that works around this issue and that can be applied
to the odd part of e(5, 10) and hopefully to other cases.

Let L be a Lie H-pseudoalgebra isomorphic to either W (d) or S(d, χ) and let M be a
finite L-module.
Generally speaking, one should be able to reconstruct M from its annihilation module
M = A(M) if a structure of an Le = A(L)e-module for the latter is known, which is
equivalent to know the action of both L = A(L) and H . Our aim is to understand if, under
suitable conditions, the action of L is actually enough. This turns out to be true, and this
section will be devoted to prove the following result.

Proposition 4.2.1. Let M be an irreducible L-module. If M ′ is another L-module such
that A(M ′) ∼= A(M) as L-modules, then M ′ ∼= M .

Remark 4.2.1. We will carry out the calculations for W (d) and S(d, χ). However, the
technique should work, with adequate technical adjustments, for any simple finite Lie pseu-
doalgebra.

As explained in Remark 2.4.3, in our situation is not restricting to assume that H =
U(d). We will also assume all H-modules to be torsionless because we are interested in
their connection with the associated linearly compact objects via the annihilation functor
which, by Proposition 4.1.2, kills all torsion elements.
Recall that L has a canonical filtration such that F0L/F1L ∼= gL where gL = gl(d) if
L = W (d) and gL = sl(d) if L = S(d, χ).
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Recall that singM is a d ⊕ gL-module with action denoted by ρsing and that by Theo-
rems 2.6.6 and 2.6.7 it uniquely determines the irreducible L-module M .
Recall also that by Corollary 2.6.1 and Theorem 2.6.3 it generates M as an H-module and
by Theorems 2.6.1 and 2.6.2 it is finite-dimensional.
This allows us to define the filtration (2.87) on M = X ⊗H M . Namely,

FpM = FpX ⊗H singM. (4.4)

Consider the associated graded space of M: grM =
⊕

p gr
pM where

grpM = FpM/Fp+1M = FpX ⊗H singM/Fp+1X ⊗H singM.

It is easy to see that grpM is isomorphic, as a vector space, to Sp(d∗) ⊗ singM .

Lemma 4.2.1. If L = W (d), then grpM is an F0W/F1W ∼= gl(d)-module isomorphic to
Sp(d∗) ⊗ singM ⊗ Ctr

Proof. The pseudoaction of W (d) on v ∈ singM is given explicitly by (2.126):

(1 ⊗ ∂i) ∗ v =
N∑

k=1
(∂k ⊗ 1) ⊗H ρsing(ek

i )v − (∂i ⊗ 1) ⊗H v

−(1 ⊗ ∂i) ⊗H v + (1 ⊗ 1) ⊗H ρsing(∂i + ad ∂i)v.

Therefore, the action of W on FpM can be written, for x ∈ X, y ∈ FpX, v ∈ singM as:

(x⊗ ∂i)(y ⊗H v) =
N∑

k=1
(x∂k)y ⊗H ρsing(ek

i )v − ((x∂i)y + x(y∂i)) ⊗H v

+ xy ⊗H ρsing(∂i + ad ∂i)v. (4.5)

Notice that if x ∈ FqX (cf. (2.93)), then the right-hand side is in Fp+qX ⊗H singM . In
other words,

FqW · FpM ⊂ Fq+pM. (4.6)

The previous relation implies in particular that each grpM is a F0W/F1W ∼= gl(d)-
module.
Writing out this action from equation (4.5) for x = xj under the isomorphism xj ⊗ ∂i 7→
−ej

i , we obtain

ej
i (y ⊗H v) = y ⊗H ej

iv − ∂i
jy ⊗H v + (ei

jy) ⊗H v,

where we used (2.97).
y can be identified with an element xI ∈ FpX/Fp+1X ∼= Sp(d∗) (as vector spaces) where
xI = xi1

1 · · ·xiN
N for I = (i1, . . . , iN ) and |I| = p. Using Lemma 2.1.1, a straightforward

computation shows that (xj ⊗ ∂i)xI = xj(xI∂i) coincides with the action of −ej
i on

xI ∈ Sp(d∗), where ej
ixk = −δk

i xj .
Finally, notice that δi

j can be interpreted as the action of ej
i on Ctr, hence the claim is

true.

A similar statement holds for S(d, χ).
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Lemma 4.2.2. If L = S(d, χ), then grpM is an F0S/F1S ∼= sl(d)-module isomorphic to
Sp(d∗) ⊗ singM

Proof. For simplicity, assume that χ = 0 and d is an abelian Lie algebra. This is motivated
by the fact that the terms appearing in the action of S(d, χ) on singular vectors and involv-
ing χ and the adjoint action of d are killed by the quotient in grpM when one consider the
induced annihilation action of S .
Since all irreducible S(d)-modules are tensor modules (or submodules of tensor modules)
and since all tensor modules for S(d) are restrictions of tensor modules for W (d), we can
use formula (2.126) to derive an analogous one for S(d). Recall that S(d) is generated, in
our assumptions, as an H-module by elements sij = s∂i∂j

= ∂i ⊗ ∂j − ∂j ⊗ ∂i. Hence, for
v ∈ singM , using H-bilinearity of the W (d)-pseudoaction, we obtain:

sij ∗ v =
N∑

k=1
(∂k∂i ⊗ 1) ⊗H ρsing(ek

j )v − (∂i ⊗ ∂j) ⊗H v + (∂i ⊗ 1) ⊗H ρsing(∂j)v

−
N∑

k=1
(∂k∂j ⊗ 1) ⊗H ρsing(ek

i )v + (∂j ⊗ ∂i) ⊗H v − (∂j ⊗ 1) ⊗H ρsing(∂i)v.

This let us write down the action of S on FpM. For x ∈ X, y ∈ FpX, v ∈ singM ,

(x⊗H sij)(y ⊗H v) =
N∑

k=1
(x∂k)(y∂i) ⊗H ρsing(ek

j )v − (x∂k)(y∂j) ⊗H ρsing(ek
i )v

+((x∂j)(y∂i) − (x∂i)(y∂j)) ⊗H v + (x∂i)y ⊗H ρsing(∂j)v − (x∂j)y ⊗H ρsing(∂i)v.

Now, if x ∈ Fq+1X (cf. (2.102)), (x⊗H sij)(y ⊗H v) ∈ Fp+qM, so again

FqS · FpM ⊂ Fq+pM.

Now grpM is a F0S/F1S ∼= sl(d). A tedious but direct calculation shows that the action
coincides with the sl(d)-one expected.

Remark 4.2.2. Notice that all the extra structure regarding the d-action and the trace form
χ do not appear, as we expected since we are only considering the action of the linearly
compact Lie algebra L on the M.
In this regard, notice in particular that the d-module structure of singM does not affect
this construction.
This means that if M is a tensor module T (Π, V ) or a submodule of a Π-twisted De Rham
module dΠ(Ωk

H(d)) for an irreducible d-module Π, one will simply find dim Π copies of
V in the gL-module grM.

To adjust the notation, let VM be the irreducible gL-module correspondent to M , i.e.
VM = V if M = T (Π, V ) or VM =

∧k d∗ if M = dΠ(Ωk(d)).
Comparing the above lemmas with Theorems 2.6.6 and 2.6.7 we can summarize it as fol-
lows.

Proposition 4.2.2. If M is an irreducible L-module, then grpM is isomorphic, as a gL-
module, to Sp(d∗) ⊗ VM .
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Building on last remark, if we put ourself in the assumptions that d is abelian, it acts
trivially on singM and χ = 0, we obtain the same construction, whereas we can directly
define a grading on M (cf. Example 2.1.3 and Remark 2.4.2):

GpM = GpX ⊗H singM (4.7)

such that GpM ∼= FpM/Fp+1M.
To recap, we have associated to an irreducible L-module M a dense gL-submodule of M
which decomposes as an (infinite) direct sum of finite-dimensional gL-modules.

Remark 4.2.3. The assumptions of χ = 0, d being abelian and acting trivially on singM
are actually not necessary. In fact, by Proposition 1.1.1 follows that M is isomorphic to the
completion of the graded module associated to the filtration defining the linearly compact
topology. Moreover, it is showed in [BDK1] that the topology induced on M does not
depend on the choice of the finite-dimensional subspace used to define the filtration, so this
will not be an issue in the what follows.

We intend to compare two irreducible L-modules with isomorphic linearly compact
annihilation modules via these associated semisimple gL-submodules.
In order to do so, we need first to verify that there are no other finite-dimensional gL-
submodules in M.

Lemma 4.2.3. All finite-dimensional irreducible gL-submodules of M appear in
⊕

pG
pM.

Proof. Let V be an irreducible finite-dimensional gL-submodule of M.
Since every element in M is a (possibly infinite) direct sum of elements in GpM, we can
consider the projections πp : M → GpM.
πp is a gL-homomorphism, so when restricted to V , which is irreducible and finite-dimensional,
it is either 0 or an isomorphism into an irreducible in GpM ∼= Sp(d∗) ⊗ VM .
Now, let λ be the highest weight of V . The highest weights of the irreducible components
of Sp(d∗) ⊗ VM diverge as p goes to infinity (the highest weight of Sp(d∗) is [0, . . . , 0, p]).
Alternatively, one can notice that by Frobenius reciprocity, since all the representations in-
volved are irreducible, V ⊂ Sk(d∗) ⊗ VM if and only if Sk(d∗) ⊂ V ⊗ V ∗

M . Either way,
it is clear that there exists an index p such that πp = 0 for all p > p. This implies that the
isotypic component of V in M is contained in

⊕
p≤pG

pM ⊂
⊕

pG
pM.

The final ingredient we need is provided by the discussion at the end of Section 2.5. In
the proof of the previous lemma, we implicitly showed also that the following holds.

Corollary 4.2.1.
⊕

p S
p(d∗) ⊗ VM ∈ Repss(gL).

Proof. We proved that the isotypic component of any irreducible finite-dimensional gl(d)-
submodule of M is contained in a finite-dimensional submodule of

⊕
p S

p(d∗)⊗VM , hence
its multiplicity is finite.

This result allows us to apply identity (2.120) and obtain

( N∑
k=0

(−1)k ∧k(d)
)(∑

n≥0 S
n(d∗)VM

)
= VM . (4.8)

We are finally ready to prove Proposition 4.2.1.



80 4. Classification of pseudoalgebraic structures for E(5, 10)

Proof. Let N ⊆ M ′ be an irreducible L-submodule.
First, we claim that if A(N) = A(M ′), then N = M ′. In fact, applying the reconstruction
functor, we obtain that M̂ ′ = C(A(M ′)) = C(A(N)) ∼= N , where the last isomorphism
follows from Lemma 4.1.2.
Thus we have an homomorphism of L-modules Φ : M ′ −→ M̂ ′ ∼= N given by (4.3),
which is injective because we assumed all modules to be H-torsionless. Hence, N = M ′.
Now, we can apply the construction explained in this section and associate to N the gL-
module

⊕
p S

p(d∗) ⊗ VN , which is a dense gL-submodule of N . By assumption, N is, up
to isomorphism, a submodule of M.
By Lemma (4.2.3), every Sp(d∗) ⊗ VN is contained in

⊕
p S

p(d∗) ⊗ VM and by the same
Lemma the opposite also holds.
In other words,

⊕
p S

p(d∗) ⊗ VM
∼=
⊕

p S
p(d∗) ⊗ VN . Applying the identity (4.8), we get

VM
∼= VN .

By definition, this means that M ∼= N .
Now the claim at the beginning of this proof implies that N = M ′ ∼= M .

Remark 4.2.4. Since the odd part of e(5, 10) presented in Section 3.2 is an irreducible
S(d)-module, this is enough for our purposes. However, this argument should be easily
generalized to determine the uniqueness, up to isomorphism, of a completely reducible
L-module.

4.3 Classification of U(d)-pseudoalgebraic structures for E(5, 10)
We are interested in developing techniques that will allow us to characterize all possible

pseudoalgebraic structures of a given linearly compact Lie superalgebra.
As a "proof of concept", we present here the application for the Lie superalgebra E(5, 10).

By anH-pseudoalgebraic structure for a linearly compact Lie superalgebra L = L(0)⊕
L(1) we mean a Lie H-superpseudoalgebra L = L(0) ⊕ L(1) (where the decomposition is
also of H-modules) such that:

1. A(L(0)) ∼= L(0) as linearly compact Lie algebras;

2. A(L(1)) ∼= L(1) as linearly compact representations of the linearly compact Lie
algebra L(0) ∼= A(L(0));

3. the restriction of the pseudobracket of L to L(1) induces via the annihilation functor
the restriction of the Lie bracket of L to L(1) up to an automorphism of L(1) as an
L(0)-module.

Example 4.3.1. The Lie superpseudoalgebra e(5, 10) constructed in Section 3.2 is a U(d)-
pseudoalgebraic structure for E(5, 10) with d being an abelian Lie algebra.

In this section H will be the universal enveloping algebra of a Lie algebra of dimension
5. Because of Proposition 4.1.2, we will assume all H-modules to be H-torsionless and as
usual finite.
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If L(0) is a Lie H-pseudoalgebra such that A(L(0)) = E(5, 10)(0) = S5, we know that
the canonical action of d on A(L(0)) is transitive, hence, by Lemma 4.1.3, C(A(L(0))) ∼=
S(d, χ). The assumption of no H-torsion, Proposition 4.1.3 and simplicity of S(d, χ) im-
ply that Φ : L(0) −→ L̂(0) ∼= S(d, χ) (4.3) is an isomorphism of Lie H-pseudoalgebras.

Our main result is the classification of U(d)-pseudoalgebraic structures for E(5, 10).

Theorem 4.3.1. For any choice of a trace form χ ∈ d∗, there exists a unique Lie super
pseudoalgebra structure of the form L = S(d, χ) ⊕L(1) inducing E(5, 10) as annihilation
superalgebra. The Lie superpseudobracket identifies L(1) with dΠ(Ω1

H(d)) as a S(d, χ)-
module for a suitable choice of Π only depending on χ and the Lie superpseudobracket
L(1) ⊗ L(1) → (H ⊗ H)HL(0) coincides with the pseudo de Rham wedge operation as in
(3.11).

We will provide here a proof for the case of d being abelian and χ = 0 to keep the
exposition clear and simple.
First we show how the result of the previous section takes care of the odd part of the pseu-
doalgebraic structure L(1).
If S(d)⊕L′

(1) is another potential pseudoalgebraic structure forE(5, 10), this means in par-
ticular that the annihilation module A(L′

(1)) is isomorphic to the SN -module A(d∗(Ω1
H(d))).

Since d∗(Ω1
H(d)) is an irreducible S(d)-module, Proposition 4.2.1 straightforwardly im-

plies that L′
(1)

∼= d∗(Ω1
H(d)).

Now that both the even and the odd parts are, up to isomorphisms, fixed, we just need
to check that the same happens for the pseudobracket restricted to L(1) = d∗(Ω1

H(d)).
Let ρ, τ : L(1) ⊗ L(1) −→ S(d) be H-bilinear maps such that they induce via the anni-
hilation functor the same map A(L(1)) ⊗ A(L(1)) −→ SN up to an automorphism ψ of
A(L(1)) as an SN -module, i.e.

A(ρ) = ψ ◦ A(τ). (4.9)

To understand what such an automorphism looks like, we can relay on the pseudoalgebraic
structure. In fact, we can consider the morphism of S(d)-modules

C(ψ) : C(A(L(1))) = Homcont
H (X,A(L(1))) −→ C(A(L(1))) = Homcont

H (X,A(L(1)))
ϕ 7→ ψ ◦ ϕ. (4.10)

Moreover, we know that L(1) ∼= C(A(L(1))) via (4.3). Explicitly, this isomorphism is given
by v 7→ ϕv, where ϕv(x) = x⊗H v for v ∈ L(1), which tells us that

(C(ψ)ϕv)(x) = ψ ◦ ϕv(x) = ψ(x⊗H v). (4.11)

Recall that by Proposition 2.4.2 a W (d)-module naturally carries a structure of con-
formal A(W (d))e-module. It is straightforward by definitions that a morphism of W (d)-
modules commutes with the action of A(W (d))e.
This implies in particular that C(ϕ) sends singular vectors to singular vectors and that it
commutes with the action of sl(d) ∼= F0S/F1S.
By Schur lemma, C(ψ) ≡ λId for some scalar λ ∈ C. However, recall that L(1) is gen-
erated as an H-module by sing L(1). Since a morphism of W (d)-modules is in partic-
ular a morphism of H-modules, we have that for any α ∈ L(1) there exist h ∈ H and
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v ∈ sing L(1) such that α = hv. Therefore,

C(ψ)(α) = C(ψ)(hv) = hC(ψ)(v) = λhv = λα.

Combining the previous identity with (4.11) gives us, for x ∈ X, v ∈ Mi,

ψ(x⊗H v) = (C(ψ)ϕv)(x) = (ϕλv(x)) = λx⊗H v. (4.12)

Now, applying C to the relation (4.9) tells us that ρ = λτ , which implies in particular that
any two superpseudobrackets inducing the Lie supebracket of E(5, 10) define the same Lie
superpseudoalgebra structure up to a constant.
This concludes the proof.
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