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Abstract: Healthcare facilities require flexible layouts that can adapt quickly in the face of various
disruptions. COVID-19 confirmed this need for both healthcare and manufacturing systems. Starting
with the transfer of decision support systems from manufacturing, this paper generalizes layout
re-design activities for complex systems by presenting a simulation framework. Through a real case
study concerning the proliferation of nosocomial cross-infection in an intensive care unit (ICU), the
model developed in systems dynamics, based on a zero order immediate logic, allows reproducing
the evolution of the different agencies (e.g., physicians, nurses, ancillary workers, patients), as well as
of the cyber-technical side of the ICU, in its general but also local aspects. The entire global workflow
is theoretically founded on lean principles, with the goal of balancing the need for minimal patient
throughput time and maximum efficiency by optimizing the resources used during the process. The
proposed framework might be transferred to other wards with minimal adjustments; hence, it has
the potential to represent the initial step for a modular depiction of an entire healthcare facility.

Keywords: system simulation; zero order immediate; lean management; healthcare operations;
decision support system; data overload reduction; hybrid model simulation; patient safety; iatrogenic
harm; nosocomial infections

1. Introduction

Hospital leadership has to cope daily with the unpredictability of the demand for care,
the need to find the trade-off between effective therapies at minimum cost, and limited
material and human resources. The usual improvement strategies involve both investment
in infrastructure and increasing operational costs. The latter are related to the management
of the newly added location and also to the new human resources allocated. Relative
economic and financial sustainability is difficult to achieve because it runs counter to budget
constraints imposed by national institutes providing healthcare [1,2]. Typical factors, such
as the need to increase healthcare services [3] to meet an increasing rate of demand, the need
to reduce operating costs, the growing trend toward the specialization of care processes,
and the patient-centered philosophy [4], are key to designing improvement strategies to
maximize the efficiency and effectiveness of clinical performance. Consequently, patient
management based on the rational use of resources would be less costly.

Traditionally, the underlying philosophy of lean principles aims to better manage
existing resources by reducing waste in any productive activity, including clinical activities.
For example, lean has already proven successful in the manufacturing sector. Typical results
include reduced operating costs, reduced cycle time, and increased customer satisfaction.
Problems such as the budget deficit, hospital infections, the need to reduce care risks and
the number of deaths, the limited supply of services, the charges of endemic inefficiency,
the public interests, the lack of safety and quality, and the low level of personnel motivation
affect all kinds of health organizations all over the world. The novelty of lean management
techniques is the ability to improve quality (providing better care in a timely manner), to
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make the job less stressful and more rewarding, and at the same time to increase efficiency
and productivity [5].

In this paper, a system dynamics (SD)-based simulation framework is proposed to
reproduce the systemic complexity of a typical hospital ward, and subsequently has been
tested and validated in a use case within the Intensive Care Unit (ICU) of one of the largest
hospitals in Italy. The framework, designed according to lean principles, is designed to
provide mitigation solutions which are easy to implement so to cope with the overwhelming
complexity of healthcare systems.

The ICU department from which the actual comparison data were extracted complains
of an endemic spread of nosocomial cross-infection. The problem is actually widespread [6].

To the best of our knowledge, there is no research in the literature that has developed
simulation models based on lean principles in SD that address the problem of nosocomial
cross-infection. Given the compelling relevance of this issue, starting from an initial
configuration model, two alternative scenarios have been developed which have proven to
increase the throughput of the clinical activities and to reduce the clinical treatment costs
as well as the infection prevalence.

The paper is structured as follows: Section 2 briefly describes the literature related to
the present research; Section 3 details the methods used to derive the simulation framework;
Section 4 highlights the results obtained through the application of the simulation model;
Section 5 concludes and outlines future research.

2. Related Literature

Over the past two decades, educators and healthcare professionals have sought to
implement lean tools in healthcare [7–9]. Successful lean implementation depends on
educating clinicians about continuous improvements in lean tools and making sure that
they are part of the improvement team. Based on the revealed enablers and barriers, a
comprehensive lean implementation framework was created and then used in conjunction
with engineering tools in a large hospital. The results of the implementation showed a 60%
reduction in cycle time, an 80% reduction in operational costs, and many other benefits [10].
The most meaningful and, at the same time, the most counterintuitive idea is founded on
the principle that it is possible to do more with less stress to the system [11].

Hospital wards are recognized as complex systems [12,13]. A complex system can be
defined as a set of connected components whose interactions, which are marked by circular
and nonlinear causal relationships, are the main driver that generates the dynamic behavior
of the system itself [14]. The continuous evolution of events (i.e., dynamic complexity) is
often characterized by different objectives and interests that, in different circumstances,
may conflict with each other. In such situations, it is difficult to understand how, where,
and when to operate, since most of the interventions could generate unexplained conse-
quences [15].

The characteristics and behavior of dynamic healthcare systems are typically gener-
ated by a large number of factors, such as the degree of connection of the relationships,
the degree of nonlinearity of the relationships, the degree of system adaptability, the self-
regenerative behaviors, and the complexity of the feedback structures, which show the
system dependence on the previous states. It follows that in order to represent this complex-
ity opportunely, there is need of an approach of the theory of the systems [16]. The process
of modeling and simulation is the instrument that is able to implement the “inductive”
path allowing to face the complexity of the system without trivializing it.

Simulation is a particular kind of modeling of reality that allows situations or environ-
ments to be recreated for the purpose of practice, learning, evaluation, testing, or to gain
understanding of human systems or actions [17].

Hospital facilities design is among the oldest applications of simulation in health-
care [18]. More recently, several simulation models have been proposed to address facilities’
problems. For example, Koizumi, Kuno, and Smith used a queuing model to analyze
congestion processing in patient flows [19].
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An SD model was proposed to evaluate the performance of the testing center in a
medical diagnostic laboratory. The aim of the research was to improve the service for
patients, with the goal of reducing the average waiting time and its variability, providing a
valuable contribution to the design of the testing center [20].

The use of simulation has been widely used even by the World Health Organization,
for example, in finding the best strategies to mitigate the effects of COVID-19 [21].

Generally, increasing stakeholder engagement has a positive impact on projects, and
simulation has proven to be an effective engagement tool. This suggests the value of
introducing the use of facilitated workshops in hospitals [22]. A notable gap in stakeholder
engagement is the model coding phase, where a conceptual model is transformed into a sim-
ulation model [23]. Considering the latter fact, Abdelghany and Eltawil reviewed different
integrated simulation approaches used in healthcare, e.g., discrete event simulation (DES),
agent-based simulation (ABS), and SD [24]. Among these, the major advantage of using SD
is that it allows for the consideration of systemic feedbacks; hence, it is particularly suitable
for representing systems’ complex reinforcing dynamics. Simulation-based decision aids
can often serve to produce visually clear information. This is a significant advantage
given that medical and nursing staff are particularly prone to information overload [25,26].
Improving stakeholder health literacy can achieve positive feedback effects on a hospital’s
ability to manage critical issues [27]. For example, often physicians must decide whether to
deny a needy patient access to a full ICU or create a vacancy by prematurely discharging a
current occupant. In the medical literature, the influencing factors are identified, the whole
patient discharge process has been described, and the consequences for the patient’s health
have been analyzed. In 2020, Azcarate, Esparza, and Mallor provided a review of medical
and mathematical literature on patient discharge decisions and proposed a simulation
framework capable of modeling realistically the patient discharge process [28].

In healthcare organizations, everything is affected by everything else. Therefore, there
is a need to take into account both systemic complexity from a top-down point of view and
detail complexity from a bottom-up point of view. The solution proposed by Brailsford,
Desai, and Viana involves the construction of a hybrid model that exploits the peculiarities
of the DES in order to detail the single parts of the hospital and, at the same time, using the
features of the SD to build a glue substructure to represent both the environmental dynamics
and the connecting relationships between the different subsystems [29]. More specifically,
the proposed model evaluated hospital performance by considering the dynamic behavior
of the Chlamydia trachomatis pathogen.

Such hybrid approach between the DES and SD represents a notable first step towards
the formulation of integrated modeling systems in healthcare.

Chahal, K. et al. [30], after identifying the reasons why there is a need for hybrid
simulation, defined a standard procedure for creating hybrid DES/SD simulation models
in healthcare. Specifically, the proposed procedure is divided into three phases: the first
one allows to identify the problem in order to understand if it is necessary to use a hybrid
approach; the second phase is characterized by the separate development of DES and SD
models with the purpose of identifying the interaction points between the models in order
to formulate their mutual relationship; the third phase allows to investigate the interactions
between the models according to the spatiotemporal coupling.

In the wake of a growing trend toward the hybridization of simulation approaches,
the search for the perfect hybrid has undergone further developments with [31], which
made a comparison highlighting the main pros and cons between SD and DES in healt-
hcare settings.

The year 2016 seems to have been a fruitful year for the effort toward hybrid mod-
els: Zulkepli and Eldabi conceptualized modeling by the use of a hybrid simulation, its
advantages, and issues. That research work was focused on patient pathways within
large healthcare systems and suggested when and how to implement hybrid solutions [32].
In [33], the hybrid approach has been used to generate cardiac ill population samples,
thereby making hybrid models more and more important in healthcare; ref. [34] provided a
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step-by-step simulation tutorial in real-world healthcare settings, with particular concern
in privacy and security.

As the various studies and numerous applications point out, the well-established
simulation philosophies that contrast the high-level holistic view of dynamically connected
systems (typical of SD modelers) with the detailed “microscopic” view of individual
systems (typical of DES modelers) show some clear points of contact that are progressively
strengthened by the processes of “hybridization” and by the simultaneous evolution
of simulation software. This evolution underlies an increasingly consolidated trend of
simulation software vendors to develop DES platforms with continuous features and SD
platforms with discrete features. The authors of [35] reviewed and summarized publications
related to various simulation tools in healthcare. Moreover, the paper finalized five main
types of simulations, arguing that future studies should focus on developing a framework
that supports a problem-based selection of simulation types.

The literature on hybrid models suggests that the integration of SD and DES is an
effective and efficient solution as a decision support system. However, the framework
implemented in the present work should not be intended as such a traditional approach.
The discrete process is realized within the SD simulation environment itself. A previous
attempt of such an approach can be traced back to [36–40]. The idea, by now consolidated
for the authors, is to follow the states’ evolution of the system, e.g., being time-driven, that
is, recording the values of the state’s variable states at regular intervals of time. During
these intervals, the events that follow are the results of dynamic relationships based on
feedback control. With this paradigm, however, we are only able to control the transition
from one state to the next, at each finite delta T, losing the information of the transition
during one state to the next. Therefore, the state-to-state evolutionary path can be used to
build differential equations in an infinitesimal dt; hence, the system’s evolution changes
accordingly to the finite interval of the simulation.

Recently, the combined approach of SD and DES has been used to plan resources
relative to the COVID-19 pandemic [41], proving to be a useful and effective decisional
support tool.

3. Materials and Methods
3.1. Types of Variables Used in SD

The main analogical formalism on which the SD is based is that of the bathtub. That is
to say that the evolution of the states of a system can be modeled similarly to containers
of finite capacity that can be filled and emptied, operating on the flow rates in input and
output. A model in SD is constituted, therefore, by state variables (i.e., indicating the
situation of the system in every instant) and by flow variables (i.e., concurring to modify
the state of the system). Such formalism is known as the stock and flow (or level and rate)
diagram, and constitutes the archetypal structure of whichever model of simulation in
SD. The stocks (levels) are fundamental in order to generate the behavior in a system; the
flows (rates) cause the change of the stocks. Such analogical formalism corresponds to a
logical–mathematical formalism expressed in terms of differential equations.

There are three variable types used in SD: levels, which represent the system states
changing over time; auxiliaries, which combine and reformulate information as it passes
through the system; constants, which represent information unchanged by the simulation
but that can be changed by the user through input controls.

Levels are variables with memory whose value is determined by the flow in and the
flow out. At the time t, the level value is represented by the expression below, where dt
is the time step of the simulation run. Levels conserve the matter that flows in and out
of them.

Levelt+dt = Levelt + inflowst − outflowst (1)

Such a definition is used to calculate the initial value of the level variable: the value at
start-up. In addition, a level contains a flow definition regarding how the flows accumulate
in each time step. The flows are also controlled by other variables (one per flow) that work
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as flow rates. In the framework proposed below, we used a custom formalism. The level
variables have been indicated with the caption in [variable_name]. In our framework, we
used a custom formalism. The level variables have been indicated with the caption in
[variable_name] while the flow variables are indicated with the ev [variable_name] one.

In general, there are three types of flows available in SD: continuous, discrete, and
logical. If one or more flows regarding a level is continuous, the level data type must be
either real or complex due to the nature of continuous flows. Otherwise, if the flow is
discrete, the level can be an integer. For logical flows, both the flow rate and the level
must be logical. The flows are controlled by flow rates, and when creating level-and-flow
structures, it is important that the controlling flow rates and the levels match each other’s
definitions (including units, data types, and dimensions). Specifically, to the proposed
framework, the discrete formalism is in use. That happens since each patient outflow is
implemented by associating a stochastically generated care path, hence it is discrete.

While continuous flows represent quantities being transported between levels, discrete
flows represent transactions of given quantities at given times (i.e., the so-called tokens).
While continuous flows are integrated over the time step (and is thus dependent of the
length of the time step), discrete flows represent a quantity that is accumulated by the level
of each time step (and is thus independent of the length of the time step). The expressions
for continuous flows and discrete flows are shown below (as they appear in the flow
expression for the connected level).

Continuous flow = dt · Rate (2)

Discrete flow = Rate (3)

A flow is defined by two parts: the flow rate variable definition and the equation flow
specified for the level variables connected to that flow. To create a discrete flow, the flow
rate must use a “zero order integration setting”. The difference between “Zero Order” and
“Zero Order Immediate” settings is shown in the expressions below, where L is the level
and F the controlling flow rate:

Zero Order: Lt + dt = Lt + Ft (4)

Zero Order Immediate: Lt + dt = Lt + Ft + dt (5)

The time at which the flow rate F is calculated and at which the flow is added to the
level L is different.

In Zero Order, the integration is performed at the end of the time step. In Zero Order
Immediate, the integration occurs at the beginning of the time step. As a consequence, the
variable will only be evaluated upon the entry of the time step and stay constant for the
remainder. The flow rate’s value, calculated in the current time step, is then immediately
accumulated by the level, hence the name “immediate”.

When using immediate discrete flows, the value of the flow rate will remain constant
over the time step. When using a zero order immediate flow, this allows us to create a
structure immediately assigning a value to a level when the condition occurs.

3.2. The Simulation Framework

The proposed simulation framework consists of five main parts:

• The “patients” module: The patients follow a predetermined three-stepped ICU
pathway made of acceptance, therapeutic care, and transfer to the inpatient ward. The
latter, being outside the ICU, is represented simply by removing the patients at the
end of the pathway;

• The “chain of events” module: This is the simulation module subsuming routine care
procedures as they take place in the ICU. The care procedures have been identified in
a previous stage from the medical literature;
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• The “resource management system” module: The hospital’s internal management
system that decides and redistributes the allocation of resources for the ICU, e.g., the
available beds and the employed personnel (both nursing and medical);

• The “hourglass” module: The purpose of this module is to align and measure the
care activities with ongoing simulation time;

• The “variables management” module: This module serves both input settings and
performance parameter evaluation of the ICU. The variables management module
operates also as a front-end interface to both set control variables and observe ICU
behavior through some specific key performance indicators (KPIs).

In the following the five parts of the framework are thoroughly discussed one by one:

3.2.1. Patients

This part of the framework models the states that patients undergo during their stay
in the ICU. It is represented by a sequential structure of twelve variables: six level variables
(patient; patients_in; patients_in_therapy; patients_exiting_ICU; patients_in_ post_therapy;
patients_discharged) and six flow variables (ev_patient_in; ev_bed_free; ev_exit_ICU;
ev_post_therapy; ev_discharge) (Figure 1).
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Figure 1. The Patient module.

The first level variable (patients) takes into account patients incoming in the ICU. Their
number is established at a pace set by a patients_generation_rate adjusted accordingly
to real data. Excessive patients_generation_rate might result in a possible congestion
condition of the department in case of the unavailability of beds. The patients_in_therapy
level variable indicates the amount of patients that are in the ICU at each simulation time;
therefore, it is upper-bounded by beds capacity. The patients_exiting_ICU variable accounts
for the level of patients ending the intensive care and then destined to post-therapy care,
consisting in washing and cleaning. Such state is represented by patients_in_post_therapy.
Patients_discharged indicates the total number of patients who left the department.

The ev_patient_in represents the flow that transfer tokens from patients to patient_in.
The flow is active only if there is an integer number of patients to be admitted in the ICU.

The ev_bed_free flow variable allocates the previously generated patients into pa-
tients_in_therapy level. It acts as a control valve permitting the flow only when there are
simultaneously both incoming patients_in and beds_available.

The flow between patients_in_therapy and patients_exiting_ICU states is controlled
by ev_exit_ICU. The flow is positive when both the conditions <patients in the previous
level> and <completed current therapeutic activities> are met.

The ev_post_therapy variable is the flow allocating patients to post-treatment pro-
cedures. The ev_discharge variable controls patient flow from patients_in_post_therapy
to patient_discharged and is triggered when the previous level is full or when there are
patients who have completed all care in the post-treatment setting.
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3.2.2. Chain of Events

The level variables patients_in and patients_in_post_therapy constitute the blocks that
process patient operations as a result of a circular programming activity. These variables
have been linked with the chain of events—the module that defines how all the states vary
within the model. These structures have the duty of scanning the sequence of operations
performed by physicians and nurses in the ward until the moment of discharge. The
model adopts an array logic: each patient care cycle follows a scheduled pathway in which
each next step can be activated only if the resources (bed, medical, nurse, equipment) are
available (Figure 2).
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3.2.3. Resource Management System

The resources management system is realized by using two level variables linked to
some flow variables determining the transition from the state seize to the release one of
the resources (Figure 3). Each of these flows are triggered if the resource’s availability is
different from zero and there are entities that require it. Each resource is seized for a time
interval proportional to its usage and equal to a value that begets accordingly to a real
data fitting distribution. At the expiry of the time of use, the resource is released. Such
mechanism is replicated both for physicians and nurses.
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3.2.4. Hourglass

This module reproduces the timing of any intensive care procedure, and also allows
for the triggering of state evolution, not only when resources become available, but also in
the event that the time associated with the activities runs out. For example, the timing of
patient stabilization is triggered by the ev_stabilization flow variable (Figure 4).
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The reached state of stabilization recalls the value from the variable stabilization_time
that is copied in the level variable in_stabilization. At the same time, the ev_end_stabilization
drains the stabilization time until its exhaustion for every corresponding increment of sim-
ulation time.

The in_stabilization state activates the evolution from the state patient_stabilized to
the patient_in_care one in the chain of events (Figure 2).

Table 1 accounts for the main time-related parameters provided by the hourglass module.
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Table 1. Time-related parameters.

Parameter Definition

in_place_on_bed Time required for placing the patient on bed

in_trauma_team Duration spent by the patient under the management of the
trauma team

in_checking Mean time required to check patient’s condition
in_stabilization Duration spent by the patient to stabilize

in_therapy Duration spent by the patient under care
in_blood_sampling Mean time required for blood sampling

in_testing Mean time required for test analysis
in_consultation Time required for medical consultation in discharge
in_emergency Duration spent by the patient in an emergency state

in_place_on_stretcher Time required for placing the patient onto stretcher
in_washing_patient Duration spent by the patient to be washed

hospitalization_time_per_patient The sum of all the above parameters

3.2.5. Variables Management

As previously mentioned, this module allows front-end management of the entire
model. That is a required feature, since the model needs to be validated and subsequently
tuned in search for optimality. The identified parameters are:

• Average Length of Stay (ALOS), the average length of stay calculated as the ratio of the
amount of actual hours of hospitalization to the number of patients leaving the ICU:

ALOS =
Σ (hospitalization_time_per_patient)

patient_discharged
[day/patients] (6)

• ICU Throughput, which is defined as the reciprocal of the ALOS:

ICU Throughput =
1

ALOS
[patients/day] (7)

• Average Daily Admissions (ADA), the average of patients_in per day [patients]
• Average Daily Dismissions (ADD), the average daily of patients_discharged per

day [patients]
• Average Daily Census (ADC), which quantifies the daily ICU saturation (measured in

patients). It can be calculated as:

ADC = ADA × ALOS [patients] (8)

• Bed Turnover Rate (BTR), which is the average duration, in days, that elapses between
the discharge of one patient and the admission of the next inpatient to the same bed
over any period of time:

BTR =
(Available Bed Days − Occupied Bed Days)/

patient_discharged
[%] (9)

• Patient Turnover (PT), which measures the number of times the ICU renews the inpatients.

PT =
patients_discharged

Occupied beds
[patients /beds] (10)

Although several software solutions were available, it was chosen to implement the
framework in Powersim, which allows, in our opinion, to schematize complex systems
relatively easily with simple building blocks. It must be said, however, that such simplicity
of the atomic building blocks makes it rather difficult to build realistic models of the
different behaviors. It becomes necessary in the fact of the use of an elevated number of
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variables of level and flow, and, moreover, connected in various ways. Powersim uses the
same variable of level and flow in order to realize parts of the framework that supply the
useful data of output to the analysis.

Finally, it is possible to obtain the results for the scenario analysis independently
from the integration step in which the states of the system are updated. This allows the
generalization of the output analysis. As a result, there is no dependence of the results on
whether Powersim was used.

3.3. Data Analisys and Model Validation

Data analysis was preliminary to both the construction of the simulation model, which
uses stochastic functions built on the real data, and the model validation phase.

The data used were collected based on hospital reports recorded for approximately
3 years. In these reports, the access times to the ICU facilities, the types of pathologies,
and, for each patient, the “exit” events from the ICU sections both towards other hospital
departments and towards the exit were recorded.

In order to analyze the data, inference analyses were carried out to identify the
mathematical functions that best approximate the successions of the data.

These functions make it possible to construct the phenomenon of arrivals and, for
the different pathologies, the treatment services associated with the departments of the
hospital structure.

The simulation model was validated by using real data collected in four ICUs (burns,
neurosurgery, liver, and postoperative) of a large hospital located in South Italy. The reports
analyzed referenced recorded admissions/discharges. This made it possible to identify the
month in which the ICUs was most loaded, i.e., October. In addition, shared the demand
rates by time slot and relative to an ordinary day of the same month, standardized operation
times from intensive care protocols, and finally, the statistical distribution of length of stay
based on a sample of 1563 registered admissions were collected and used to calibrate
the model.

The demand rate for a typical October day was identified as a function of the hourly
curve of admissions divided according to three time slots in order to obtain three Poisson
generations with an appropriately summarized mean (Table 2).

Table 2. Poisson distribution with associated average values.

Time Slot Average Value

00:00–13:00 0.127
13:00–19:00 0.339
19:00–24:00 0.187

Further processing identified the statistical distribution of ALOS. The latter shows an
exponential hourly trend of an average 242.85 h (Figure 5).

Using Kelton’s formula [42], the number of runs that allow to obtain an acceptable
error with a probability of 99% is about 2870; therefore, it can be considered not affected by
random input data.

Subsequently, the simulation runs have been carried out over a two-month period
monitoring the output parameter inferred from the level variable patients_discharged.
This result, compared with the admissions/discharge records obtained during the same
time slot, totally confirms the simulation model’s validity: the simulated value (117 pa-
tients) is totally comparable to the theoretical one (122 patients) identified in the real data
analysis stage.
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The one-month ALOS in simulation time stabilizes around a value of 8.5 days/patient
(approximately 204 h), with a standard deviation of 7.5 days/patient (180 h).

Comparing the simulation data with those reported in the study [43] (e.g., the ALOS
equal to 7.5 patient-days and the standard deviation equal to 2.9), it shows a discrepancy
of one day at the ALOS and standard deviation, respectively. In addition, the ADM
equal to 2.23 patient-days and the ADD equal to 1.9 patient-days are summarized by
the ICU Throughput performance indicator, which shows a decreasing trend in transient
settling around a controlled value of 0.12 patient-days. The time differences and indicators
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just described clearly demonstrate that the ICU accepts incoming patients faster than it
discharges them, consequently generating congestion problems.

These phenomena are further justified by the low daily PT of 0.10 patients/bed and
the high bed utilization (98%). The saturation sustained by the ICU was identified thanks
to the ADC indicator, and influenced by the ADA and ALOS variables, is around a value of
18.9. This coefficient was used as a term of comparison between the performances in the
different scenarios. Finally, with regard to staff utilization, in the time slot characterized by
the highest demand for care (1:00 p.m. to 7:00 p.m.), medical and nursing staff utilization
amounted to 78% and 75%, respectively, compared to ward congestion.

The simulation model fully confirms the critical problems of the department high-
lighted by both experts in the field and scientific publications. These problems, resulting
from the combination of conflicting factors, such as the demand for intensive care and the
limited availability of life support stations, can generate phenomena of congestion defined
as “bed blocking” [44].

The causes of the phenomenon are substantially two:

• The delayed discharge, which occurs when patients, although clinically ready to be dis-
charged from the ICU, cannot be transferred to inpatient wards due to bed unavailability;

• The so-called nosocomial cross infection. Nosocomial or hospital infection means any
disease with an infectious origin, with microbial or viral origin, clinically recognizable,
lacking or incubating at the time of admission, which is acquired by patients during the
hospital stay. This hazard strongly impacts hospital units from both an organizational
and economic point of view. In particular, critically ill patients develop about 25%
of all nosocomial infections that we can recognize in the hospital and about 90% of
hospital epidemic events concern ICUs.

Both factors trigger a chain mechanism that deteriorates the ICU’s level of service, in-
creasing the value of ALOS, decreasing the throughput of clinical activities, and, inevitably,
increasing overall costs.

To reduce the aforementioned inefficiencies, the simulation model, validated on real data, has
been used to build alternative scenarios with the aim of improving the system’s performances.

Below are the two, which were found to be the most effective, imagined following
lean principles: the two solutions reschedule the activities and redesign in a viable way the
layout, trying at the same time to minimize costs and reorganizational efforts.

4.1. Scenario 1: Insertion of a Post-Hospitalization Buffer

The first lean solution aims to achieve a ward configuration that facilitates the removal
of stabilized patients through the creation of an area operating as a buffer between the
ICU and the ordinary hospitalization wards. This area is designed to facilitate, on the one
hand, the discharging process and therefore the bed’s releasing, and, on the other hand, the
identification of the final ordinary hospitalization location. According to the literature data,
the maximum allowed length of stay in an ICU after that the patient can be discharged is
equal to 7.5 days (180 h).

An improvement that is immediately effective might be realized by introducing a
buffer that allows the time limit to be contained in the 7.5 days. In particular, there is a
reduction of 12% of ALOS, whose value is equal to 7.5. This decrease has a positive impact
both for the ADM, with an increase of 70%, to a value of 3.80 patients/day both for the
ADD, with an increase of 68% to a value equal to 3.2 patients/day; consequently, the ICU
Throughput increases to 8% with 0.13 patients/day. According to the obtained results,
the saturation indicated by the ADC amounts to 28.5 and shows a higher value than the
obtained one in the baseline scenario.

The new configuration’s positive effects are further highlighted by the daily PT in-
dicator, which is equal to a value of 0.14 patients/bed underlining an increase of 40% if
compared to the baseline (Figure 7).
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4.2. Scenario 2: The “Cell Design” Infection’s Management

An additional configuration was designed to limit the effect of the bed blocking
phenomena and, consequently, the extension of the recovery period. It is known to correlate
with the risk of nosocomial cross-infection, which produces an increase in costs, human
and economic, for people and hospital as well.

Pathogens need a vector to infect patients. The transmission vehicles most frequently
involved in nosocomial infections are the hands of healthcare workers and air conditioning.
It is not uncommon for antibiotic-resistant bacteria to find optimal conditions to repro-
duce on air conditioning filters. Consequently, in under-crowded ward conditions and a
prolonged length of stay, the inpatients are exposed to a higher chance of being infected.

Taking for granted the accuracy in the execution of care practices, preventive hand
cleaning and sterilization of instruments, the use of disposable equipment, and the timely
detection of bacteria, a scenario has been identified in which the ICU is configured to limit
the phenomena of cross-infection. The layout in this case consists of a distribution of beds
that follows a cell logic: a “noninfected” cell consisting of twelve beds and an “infected”
cell consisting of the remaining eight beds appropriately isolated. Figures 8 and 9 show,
respectively, the patient and the chain of events modules for the present scenario.
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The incidence referred to the inpatient stay of nosocomial cross-infected patients was
obtained from data provided by the Italian Group for the Evaluation of Interventions in
Intensive Care [45], which conducted a continuous monitoring study on 133 ICUs (87.2%
multifunctional, 4.5% neuro-surgical, 8.3% other) distributed on the national territory.
Ten percent of patients develop at least one during hospitalization; specifically, 3% had
infections on admission and during hospitalization; the remaining 7%, although not infected
on admission, developed infections during recovery in the ICU. The latter fraction of
patients represents the major cause of the spread of nosocomial infection in crowded
conditions and is difficult to contain. Under this assumption, the condition in which
patients develop infection during their inpatient stay is the most severe. With this idea in
mind, it is possible to classify patients in descending order of nosocomial harm: infected
patients receive greater nosocomial harm than uninfected patients; in addition, those who
develop infection in the inpatient stay receive greater nosocomial harm than those who
present on admission. The result of this classification gives us the incidence and mean
range of ALOS by class (Table 3).

Table 3. Range of length of stay per class of infection. Severity of infection decreases with the class.

Infection
Class at Admission Time During Stay Incidence ALOS Range [Days]

I X X 3% 12–36
II X 7% 10–30
III X 10.5% 2–11
IV 79.50% 1–4
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From this, it follows that the proposed layout for the cell design scenario can efficiently
manage the flow of patients. In particular, the timely isolation of the infected during
admission or in the first hours of stay prevents the uncontrolled spread of nosocomial
cross-infection, reducing the overall ALOS and the saturation of the department. As a
result, not only does it decrease average hospitalization time, but it tends to safeguard
long-term residents more. The results of the model are confirmed in research studies [46,47].
The implementation of preventive procedures for prompt detection of nosocomial cross-
infection sentinel germs, together with the isolation of infected patients, allows to move
from the baseline scenario with an exponential hospitalization with an average of 9–10 days
(totally in accordance with the data) to a final scenario in which uninfected patients have
an average hospitalization of 3 days and infected patients have an average hospitalization
of 34 days. In detail, the patient module is realized using a 2 × 1 array, whose first row
represents the infected cells and the second one the not-infected ones. A submodule was
prepared to share a time slot generation according to a percentage of 10% on the first cell
and of 90% on the second one; then, for the two cells, a treatment time of 34 and 3 days,
respectively, was set. With this refinement, the results show further improvements for the
ALOS (6.32 days/patient), with a reduction of 16% compared to the posthospitalization
buffer scenario (Figure 10).
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ADM and ADD do not seem affected by such improvements, remaining quite un-
changed (3.33 patients/day and 3 patients/day, respectively); the ICU throughput increases
to 23% (0.16 patients/day). ADC indicator amounts to 21.04 and shows a lower value of
saturation than the one obtained in the posthospitalization buffer scenario.

The improvements in the cell design scenario are even more evident when looking at
the PT indicator, which reaches an average value equal to 0.14 patients/bed, and it shows
an increase of 70% in comparison with the baseline.

Table 4 summarizes the performances in the different scenarios.
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Table 4. KPIs for the three scenarios.

KPI Units Baseline Posthospitalization
Buffer Cell Design

ALOS [days/patients] 8.5 7.5 6.32
ADM [patients/day] 2.23 3.80 3.33
ADD [patients/day] 1.9 3.2 3
ADC [patients] 18.9 28.5 21.4
ICU

THROUGHPUT [patients/day] 0.12 0.13 0.16

PT [patients/bed] 0.10 0.14 0.14

5. Conclusions

This research paper explored the use of SD in the evaluation and management of
discrete systems by proposing a framework suitable for hospital departments. In particular,
the framework modifies the classical model by introducing the zero order immediate
approach. Moreover, both the macroscopic aspects (traditionally associated to the SD)
and the microsimulative ones (usually faced with discrete-event techniques) have been
integrated in the proposed framework. Concerning the model tailored to the case study
and implemented on arrays pertaining to the care pathway, it faithfully reproduces the
behavior of the real twin department, offering management decision support. The use of
lean principles has been shown to produce improvement scenarios with immediate benefits
at a low implementation cost, such as the dynamic reconfiguration through cell-based
design for the management of patients who develop nosocomial cross-infection.

Unfortunately, SD offers few building blocks for the detailed description of systems;
consequently, it is only possible to account for complex internal relationships at the price
of elaborate micromodeling structures (e.g., arrays). The worst consequence is that you
get models that are not immediately readable, especially for those not accustomed to such
an approach. We believe that these shortcomings are abundantly counterbalanced by
the advantageous possibility of implementing different feedback logics—thus, inherently
systemic and possibly nonlinear—in the modeling.

The model has been implemented in Powersim, a choice that, in our opinion, allows a
certain freedom of maneuver in the design of the models. This freedom of expression is
paid for by an excessively large number of level and flow variables. However, the results of
the analysis are well generalizable given the independence of the integration step at which
the system is updated. Independence from update status also implies independence of
results from the particular software employed.

The framework, per se, with minimal adjustments, can produce models capable of
describing other hospital departments. It follows that the repeated application of such
modular framework allows, in principle, to model an entire healthcare infrastructure. With
more redesign effort instead, you can certainly transfer it to other application domains.

Finally, the proposed tool allows the classification of patients, and associated medical
procedures, through a cell design. Although it was designed for the management of noso-
comial cross infection, without any imaginative effort, it can replicate for other infectious
diseases, such as COVID-19 or the next pandemic threat.

The impact on COVID-19 of this model can be identified in the ability to manage
the critical infrastructure/components of a hospital system, to withstand the pressure of
an increasing number of infected patients who require their use. In Scenario 2, the “Cell
Design” infection’s management analyzes what the benefit of a cell layout is, with the
realization of an isolated ward for the quarantines imposed by infectious viruses. The
benefit is measured in terms of improvements on the crossing time of patients affected
by cross-infection compared to the case of a classic layout with patients sharing the same
space. The layout in cells can reduce, due to isolation, the cross-infection, decreasing the
transmissibility of the disease and increasing the healing time.
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Therefore, the use of the framework is configured as a decision support to re-engineer
the layout of critical hospital departments, thus improving the effectiveness of care.
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