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Abstract

The purpose of this thesis is to provide a stochastic model consistent with the

accounting principles envisaged by Directive 138/2009/EC aimed at quanti-

fying demographic risk. This model, already developed in a local account-

ing context, is then adapted to market-consistent valuation, highlighting the

bridge between the two frameworks, the individual risks that are quantified

and the differences in terms of numerical results. The application of the

model leads to the identification of some sub-risks inherent to the demo-

graphic one: the idiosyncratic, the trend one and a risk linked to risk-free

rate changes. For the first risk, using an approach based on the concept of

cohorts, closed formula results are obtained about expected value, standard

deviation and skewness. Moreover, it is possible to numerically quantify the

capital requirement and, at the same time, approximate it according to the

characteristics of the profit (loss) random variable. Regarding the second

risk, the model pursues the aim of quantifying the Solvency Capital Require-

ment by simulating the possible trajectories of mortality and obtaining the

simulated distribution of the company’s profit (loss) linked to the possible

variation in demographic expectations. Thus, it was possible to numerically

quantify the capital requirement coherently with in force regulatory princi-

ples.

Keywords: Life insurance; Solvency Capital Requirement;

Demographic Profit; Risk Theory; Cohort approach.

PhD dissertation in Actuarial Sciences May 29, 2022



To my mentors,

professor Clemente and professor Savelli



CONTENTS

Contents

Introduction 6

1 The legislative framework evolution for Capital Requirement

in insurance 11

1.1 Introduction: Solvency in life-insurance . . . . . . . . . . . . . 11

1.2 From Solvency 0 to Solvency II . . . . . . . . . . . . . . . . . 12

1.3 Solvency II: introduction and structure . . . . . . . . . . . . . 16

1.4 The valuation of assets and liabilities in the Economic Balance

Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 The valuation of technical provisions in the Economic Balance

Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 The Best Estimate . . . . . . . . . . . . . . . . . . . . 21

1.5.2 The Risk Margin . . . . . . . . . . . . . . . . . . . . . 24

1.6 SCR and Life Underwriting Risk . . . . . . . . . . . . . . . . 27

1.6.1 The Solvency Capital Requirement: definition and op-

erational aspects . . . . . . . . . . . . . . . . . . . . . 27

1.7 Life Underwriting Risk in the Standard Formula . . . . . . . . 30

1.7.1 Mortality and longevity risks: the Standard Formula

approach . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 The stochastic model for demographic profit in the Local

GAAP framework 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 From Technical to Demographic Profit . . . . . . . . . . . . . 36

2.3 The cohort approach and the exact individual approach . . . . 43

3



CONTENTS

2.4 The characteristics of the main variables . . . . . . . . . . . . 47

2.5 The characteristics of demographic profit in a Local GAAP

context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Determination of the Capital Requirement and QIS n.2 . . . . 52

2.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7.1 Pure Endowment - Local GAAP context . . . . . . . . 57

2.7.2 Term Insurance - Local GAAP context . . . . . . . . . 62

3 The market consistent valuation: the bridge between the

Local GAAP framework and the market consistent one 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Homans’ revised decomposition . . . . . . . . . . . . . . . . . 70

3.3 The bridge from Local GAAP to MCV framework . . . . . . . 74

3.4 Model algebra and underlying recursive formula . . . . . . . . 77

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Idiosyncratic and trend risks 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Idiosyncratic Risk . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 The expected value . . . . . . . . . . . . . . . . . . . . 87

4.2.2 The more compact version of the idiosyncratic risk . . 89

4.2.3 Standard deviation and skewness of the idiosyncratic

risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Trend risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 The Poisson log-bilinear model . . . . . . . . . . . . . 94

4



CONTENTS

5 Numerical results 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Idiosyncratic risk results . . . . . . . . . . . . . . . . . . . . . 99

5.2.1 Idiosyncratic risk - Pure Endowment . . . . . . . . . . 99

5.2.2 Idiosyncratic risk - Term Insurance . . . . . . . . . . . 105

5.3 Trend risk results . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Trend risk - Pure Endowment . . . . . . . . . . . . . . 112

5.3.2 Trend risk - Term Insurance . . . . . . . . . . . . . . . 115

6 Conclusions 118

7 Bibliography 122

8 Acknowledgements 128

5



CONTENTS

Introduction

The introduction of Directive 2009/138/EC, commonly called “Solvency II”,

has deeply changed the structural aspects of the insurance world. In par-

ticular, both the risk assessment and the capital requirement quantification

shifted from factor-based to a more realistic, a more relevant methodology

that went into the direction of the undertaking risk profile assessment. Sim-

ilarly, the valuation of the liabilities, i.e. the technical provisions, moved

towards fair value principle defined as the theoretical value at which they

could be transferred between system operators. In this context, this the-

sis proposes a new methodological framework, coherent with the accounting

principles of Solvency II, based on the cohort approach and aimed both at

identifying the different sources of demographic risk and at quantifying the

Solvency Capital Requirements (SCRs). With this purpose, it separately

models, within demographic risk, an idiosyncratic (or unsystematic) com-

ponent and a trend (or systematic) component. A unified model, focused

on quantifying the SCR in a closed form, is provided for policies both with

survival-linked benefits and for death-linked benefits.

In literature, many works deal with this topic. Savelli & Clemente (see [34])

proposed a stochastic model, based on the cohort approach. Even if this

model is developed in a Local Generaly Acceptec Accounting Principles (Lo-

cal GAAP) context, it presents fundamental relationships that this thesis

demonstrates to be underlying also in the market consistent framework. In

this regard, Section 3 of this thesis is based on a joint work with Savelli &

Clemente (see [13]). In particular, in that work it is proved how it is pos-

sible to adapt the cohort model presented in [34] to the market consistent
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context envisaged by Solvency II. This gap is bridged by abandoning the val-

uation of mathematical reserves with locked and prudential technical bases

(used in pricing phase) and adopting realistic bases that can be updated

over time. This thesis extends [13] through the identification of a systematic

component (trend risk) and an unsystemic component (idiosyncratic risk)

of the demographic risk. With reference to the latter, by using the cohort

approach, it is possible to accurately quantify the moments of distribution;

with reference to the trend component, a bootstrap model will be applied in

order to estimate the volatility of the mortality rates and, consequently, the

Solvency Capital Requirement. Both risk identification and SCR assessment

(which concern Sections 4 and 5 of the thesis) are subject to publication.1.In

this field, Pitacco & Olivieri (see [27]) analyse longevity risk by referring to a

portfolio of annuities. In particular, through risk-neutral approaches, the au-

thors reconcile the traditional methodology with the market-consistent one.

Jarner & Møller (see [24]) propose a partial internal model for the longevity

risk component, which incorporates an unsystematic element linked to the

size of the portfolio. Similarly to [24], this thesis overcomes the methodology

provided by the Standard Formula based on a longevity shock. However,

this approach is different since it includes also mortality risk in the evalu-

ation and consider the volatility of the sums insured within the portfolio,

usually neglected in literature.

This thesis therefore takes up the stochastic model based on the cohort ap-

1In April 2022, the paper titled “A stochastic model for capital requirement assess-

ment for mortality and longevity risk, focusing on idiosyncratic and trend components” is

awaiting second reviewer assignment
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proach aimed at quantifying the capital requirement in the Local GAAP

context, and analytically quantifies the bridge towards market consistent

valuation. This first step makes it possible to highlight how the fair value

measurement of liabilities structurally modifies the quantification of the ex-

pected future demographic profit and its volatility. The second step involves

the identification of the two components of demographic profit, the idiosyn-

cratic (or unsystemic) and the trend (or systemic) risks. Regarding idiosyn-

cratic one, thanks to the cohort approach, it is possible to quantify in a

closed formula the main characteristics of the distribution and, consequently,

to assume a proxy to estimate the SCR consistent with the principles of reg-

ulatory system. Regarding the trend component, the proposed framework is

not bound to the use of a specific model for the projection of mortality rates:

from a practical point of view, therefore, the model of this thesis can be ex-

tended to any model present in the literature focused on longevity/mortality

assessment. For example, citing the main ones, in [30] a mortality model

is proposed for forecasting trends. In [9], the shock given by Solvency II is

compared with the results of the forward models proposed by Bauer et al.

(see [5] and [6]). In [10], the authors propose an ad-hoc mortality model that

considers both longevity and mortality and the dependency structure be-

tween the different cohorts. Moreover, Gylys and Šiaulys (see [22]) compare

the run-off and the one-year approach fitting stochastic mortality data on

different years than those used for Solvency II calibration by EIOPA. Zhou

et al. (see [39]) model a multi-population mortality model overcoming the

common assumptions of dominant population.

This thesis is organized as follows: Section 1 presents the regulatory context:
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in particular, an excursus of the capital requirement for life insurance is pre-

sented. This section also deals with the issue of the fair value valuation of

non-hedgeable technical liabilities, i.e. those liabilities for which it is neces-

sary to calculate the Best Estimate and Risk Margin separately.

Section 2 takes up the model presented by Savelli and Clemente (see [34])

reproducing the numerical results using the most up-to-date technical bases

and neglecting the effects of lapses and expenses: the aim is to obtain results

related to the Local GAAP framework that are comparable with those of the

following sections, developed in a market-consistent context.

Section 3 presents the innovative mathematics underlying the stochastic

model of the market-consistent framework: since there is a misalignment

between the first-order and second-order demographic base, it is necessary

to revisit the Fouret equation to guarantee the recursion property. In the

same section, the topic of identifying the sources of risk linked to the insur-

ance business is introduced, by re-adapting the Homans breakdown.

Section 4, with reference to demographic risk, focuses attention on the two

components of greatest importance: the idiosyncratic and the trend one. As

regards the first, the use of the cohort approach allows to reach results in

a closed formula with reference to the characteristics of the distribution. In

particular, closed formulas are obtained for expected value, standard devia-

tion and skewness: through these statistics it is possible to present a compact

formulation (similar to QIS n.2, cfr. [14]) for the calculation of the SCR. With

reference to the trend component, on the other hand, the Poisson log-bilinear

model is presented to estimate the volatility around the company’s expecta-

tions (see [11]).

9
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In conclusion, Section 5 shows the results of the stochastic model, compar-

ing them with the analogues of the Local GAAP context, highlighting how

the market-consistent valuation allows to identify new sources of risk (first

and foremost structural longevity and mortality risk) and to carry out a

risk-based assessment of the company risk profile.
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1. The legislative framework evolution for Cap-

ital Requirement in insurance

1.1. Introduction: Solvency in life-insurance

2 Solvency, understood as a situation of general well-being of the insurance

company both from the point of view of the supervisory authority and from

the point of view of management, is a constant frontier issue for actuarial

disciplines.

The two concepts aforementioned do not coincide perfectly: solvency in the

strict sense refers to the ability of the insurance undertaking to meet the reg-

ulatory requirements in terms of capitalization in order for the supervisory

authority to deem the requirement in question satisfied. On the other hand,

the expression ”financial strength” refers to the ability of the insurance com-

pany to cope with adverse scenarios and, consequently, the ability to operate

in the long term. In the study of insurance solvency, the ultimate aim is to

guarantee policyholders that the company is able, even in extreme scenarios,

to meet its contractual commitments: obviously this purpose is not in an

absolute sense, but a threshold is assumed, in terms of probability, within

which the company must be solvent.

This ability to meet contractual commitments can be pursued with three

different types of approaches. In the wind-up approach, a completely static

situation is considered: in this context, a company must be solvent with

2This subsection is taken from [33], a text of particular inspiration for the whole of this

thesis
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1.2 From Solvency 0 to Solvency II

exclusive reference to the business hired up to the moment of evaluation.

In the run-off approach it is assumed that the acquisition of the business

does not cease immediately, but that it continues involving immediately pre-

dictable contracts (generally within 2 years): in this case, therefore, reference

is made to a dynamic solvency criterion applied to a portfolio semi-closed.

The latter approach, called going-on, assumes that the insurance company

will continue building business without any future disruption. This type of

approach, which concerns the concept of dynamic solvency for an open port-

folio, implies the correct evaluation of the insurance liabilities (contracts not

commonly transferred between insurers) so that the transfer of risks by the

company in a state of emergency to solid companies is conceivable. Finally,

it is specified that this last approach, necessary from a perspective point of

view, is typically the same as adopted by the management since the going

concern is a prerequisite for the exercise of the industrial activity itself.

1.2. From Solvency 0 to Solvency II

Before the promulgation of Law 742 of 1986, the exercise of insurance activ-

ity by Italian insurance undertakings, from the point of view of the capital

requirement, was subject to the possession of a minimum share capital, cal-

culated according to the Line of Business (LoBs) exercised.

With the entry into force of Directive 79/267/EEC (see [18]) also known as

Solvency 0, the assumption and exercise of the autonomous direct insurance

business carried out by undertakings established in a Member State is subject

to the holding of capital (see art. 18) at least equal to a specific Minimum

Solvency Margin (see art. 19). The proposed formula, which was identified

12



1.2 From Solvency 0 to Solvency II

for the different Lines of Business and policies, was defined as:3

MSM = 4% · V B · r1 + 3� · (C − V B)+ · r2 (1)

Where:

� V B means the mathematical reserves gross of reinsurance,

� The ratio r1 was calculated as r1 = max

(
V Bnet

V Bgross
; 85%

)
where V B

were the mathematical reserve, respectively net and gross of reinsur-

ance; it is therefore possible to deduce that the reduction in the Mini-

mum Solvency Margin thanks to reinsurance was equal to a maximum

of 6� of the mathematical reserves,

� (C−V B)+ are the so-called sums at risk, i.e. the difference between the

insured sums C and aforementioned reserves V B. We highlights the

fact that the legislator considered these values only if positive: as we

will see in the continuation of this thesis, this formulation only concerns

policies whose benefits are mainly linked to the death of the insured

(Term Insurance and Endowment policies),

� The ratio r2 was defined as r2 = max

(
(C − V B)+,net

(C − V B)+,gross
; 50%

)
. Also in

this case, it can be deduced that the maximum reduction of the MSM

due to reinsurance was equal to 1.5� of the sums at risk when positive.

An interesting aspect lies in the fact that the aforementioned 4% of the math-

ematical reserves can be understood as the sum of two capital requirements:

3The presence of additional reserves for specific LoBs is reminded
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1.2 From Solvency 0 to Solvency II

3% of the mathematical reserves is linked to the investment risk (a prelimi-

nary form of market risk) while the remaining 1% is linked to the expense risk.

Therefore, the second component of formula (1) is to be understood as the

first formulation of a capital requirement linked to demographic risk: how-

ever, since it refers only to policies with positive Sum at Risk, 3�·(C−V B)+

should be treated as a capital requirement linked to mortality risk.4

In regard to Solvency 0 we underline that the mathematical reserves men-

tioned above are equal to the sum of the pure mathematical reserve and

the mathematical reserve for expenses. The pure one is defined as the ex-

pected present value of the benefits net of the expected present value of the

premiums: both the aforementioned quantities are calculated on first-order

(financial and demographic) bases, i.e. fixed and prudential technical bases.

Neglecting here the presence of guarantees and options, which will be dis-

cussed when the Solvency II framework will be presented, right now it is

emphasized that at the time of subscription it is possible to define the value

of the mathematical reserve rate (defined as the ratio between the mathe-

matical reserve and sum insured) over the entire contractual time span. Its

reason relies on the fact that the technical rate used is deterministic and

constant and that the survival probabilities used are not subject to revision.

Directive 2002/83/EC, with the aim of increasing the clarity which disap-

peared after the introduction of the Second and Third Directives (in the Life

insurance they were respectively 90/619 and 92/96 which, however, do not

4In the event that reference was made to Term Insurance with a duration lower than 3

years, the percentage shifted from 0.3% to 0.10%; for TIs with a duration of 3 to 5 years,

it was 0.15%.

14



1.2 From Solvency 0 to Solvency II

modify the Capital Requirement ) recast the regulation of life insurance un-

dertakings and is a prelude to the introduction of a new system that fully

regulates the insurance sector: Solvency I.

From this brief summary of the legislative landscape prior to the introduction

of Solvency II, it is clear that despite the innovativeness of the juridical law

aimed at guaranteeing the solvency of insurance undertakings, the factor-

based approach does not allow specific identification of risks and precise

quantification of the same.In particular, it is remarked that:

� Some risks with a particularly pronounced impact are completely ne-

glected: in particular the longevity risk, the catastrophe risk and the

risk linked to lapses,

� The benefit of diversification is not considered in any way: by neglecting

the dependencies between risks, it is not possible to exploit natural

hedging in order to reduce the risk profile of the undertaking,

� Reinsurance is treated without differentiating according to the type

of contract: whatever reinsurance was underwritten, it was considered

only through the factors r1 and r2 mentioned in formula (1),

� The valuation of technical liabilities with locked demographic and fi-

nancial bases does not allow for the acknowledgement of any exoge-

nous changes/shocks: in particular, neither a change in demographic

assumptions nor a structural change in the financial context affect the

valuation of reserves.

The aforementioned limits, together with a profoundly changed financial

framework (i.e. the evolution of the risk-free rate curve) has led to a radical

15



1.3 Solvency II: introduction and structure

change in prudential supervision, setting the goal of creating a system ori-

ented to the quantification of economic capital, intended as an indicator of

the effective risk profile of the individual undertaking.

1.3. Solvency II: introduction and structure

The process of conception and adoption of Solvency II was as long as it was

troubled: the turning point coincides with the approval by the European

Parliament of Directive 2009/138/EC on 22nd April 2009; subsequently it

was modified until reaching the current version of 30th June 2021.

Its regulatory structure follows the Lamfalussy process: it is built on four

levels, briefly summarized below:

� The first level concerns the Directive itself, stating the general princi-

ples and introducing the 3-pillar system,

� The second level concerns implementing measures: technical imple-

menting measures adopted by the European Commission in the form

of Delegated Regulation (see [19]). This second level therefore contains

both the details of the Standard Formula and the methodologies for

implementing the principles of the Directive,

� The Omnibus II Directive (see [20]) introduces an intermediate light

concerning the technical measures proposed by the European Insurance

and Occupational Pensions Authority (EIOPA) and adopted by the

European Commission. These technical standards are oriented towards

16



1.3 Solvency II: introduction and structure

internationalization (regulatory technical standards) and the standard-

ization of the European regulatory landscape (implementing technical

standards),

� The third level consists of the non-binding guidelines addressed to the

individual Supervisory Authorities: these are neither mandatory nor

coercive measures, but if they are rejected it is necessary to explain the

reason.

� The fourth level concerns the verification and application of the direc-

tive by individual states and provides for sanctions against those who

have not complied with Community legislation.

This rigid structure, aimed at limiting the freedom of manoeuvrer of national

legislators, makes it possible to standardize insurance and insurance activi-

ties within the Member States. The risk-based economic approach takes the

form of a three-pillar structure, where each pillar concerns a specific macro-

area. Pillar I concerns the valuation of assets and liabilities, the definition

and quantification of both the SCR and the Minimum Capital Requirement

and, in conclusion, the identification and classification (tiering) criteria of

own funds. Pillar II, on the other hand, concerns the principles of corporate

governance, management and management rules: the proposal of a quali-

tative management aims to reduce all those risks not identified by the first

Pillar, but whose economic effects would have repercussions on the prospec-

tive trend of the undertaking: an example is reputational risk. Pillar II also

concerns the Own Risk and Solvency Assessment (known by its acronym,

ORSA), that is the procedure according to which each insurance undertak-

17



1.4 The valuation of assets and liabilities in the Economic Balance Sheet

ing is required to assess both its own risk profile and the consistency of the

calculation criteria, of the capital requirement with its own profile. Pillar II

ends with the supervisory review process: the supervisory authority has the

task of evaluating the ORSA by requesting any capital add-ons if necessary

to improve the solvency situation of the undertaking.

In conclusion, the third pillar regulates the information that each under-

taking must provide on the one hand to the Supervisory Authority and, on

the other hand, to the market: this information is both periodic (Report to

Supervisors and Quantitative Report Templates) and extraordinary. The in-

troduction of a high degree of transparency and market discipline encourages

undertakings to better manage risks, precisely in order not to suffer penalties

from the market.

1.4. The valuation of assets and liabilities in the Eco-

nomic Balance Sheet

The valuation of assets and liabilities in the Economic Balance Sheet is a key

element both from a Solvency II perspective and for the implementation of

stochastic models aimed at quantifying the SCR. The starting point for the

assessment in question is Article 75 of the Directive: it, called the fair value

principle, states that ”assets shall be valued at the amount for which they

could be exchanged between knowledgeable willing parties in an arm’s length

transaction”while the liabilities ”shall be valued at the amount for which they

could be transferred, or settled, between knowledgeable willing parties in an

arm’s length transaction”. Furthermore, where there is consistency in terms

of fair value with the Directive, undertakings must also consider Regulation

18



1.4 The valuation of assets and liabilities in the Economic Balance Sheet

(EC) N°. 1606/2002 containing provisions on the use of International Ac-

counting Standards in order to ensure homogeneity and transparency in the

valuations.

From an application point of view, Article 10 of the Delegated Acts defines

3 criteria (in preferential order) to be used:

1. If the asset or liability is regularly traded on an active market, its value

coincides with ”quoted market prices in active markets”. In this con-

text, the ”replicating portfolio method” is perfectly allowed: it allows

you to calculate the value (price) of a certain financial instrument with

certain cash flows, such as the sum of the market prices of the instru-

ments which, if considered within a portfolio, exactly replicate the cash

flows of the instrument being valued,

2. If the quoted price is not available, it is possible to use the quoted price

of similar assets / liabilities, applying corrections to take into account

the difference element,

3. If it is in no way possible to exploit neither market prices nor other

inputs directly observable on the market, the Delegated Acts allow

for the undertakings to use techniques consistent with at least one of

the following methods: market approach (e.g. matrix pricing), income

approach (based on the conversion of future cash flows into current

values, e.g. option pricing) and cost approach (linked to the cost of

replacing the financial instrument).

19



1.5 The valuation of technical provisions in the Economic Balance Sheet

1.5. The valuation of technical provisions in the Eco-

nomic Balance Sheet

In this subsection the criteria linked to the evaluation of Technical Provisions

(TPs) are investigated, paying particular attention to the Best Estimate com-

ponent: as will be seen in the following, the Risk Margin is not considered

in quantifying the SCR, therefore a correct use of the first component, will

allow the drafting of stochastic models consistent with the legislation.

First of all, it is specified that, consistently with Art. 10 investigated previ-

ously, if the valuation of liabilities is possible by observing the quoted prices

of active markets, this solution remains the best-choice: i.e. policies without

demographic risk and with a single financial component (particular types of

Index-Liked and specific Units -Linked). The situation is much more thorny

when considering traditional policies or, more simply, policies with a demo-

graphic component: taking a simple Term Insurance as an example, it is

intuitive to grasp that neither financial products nor replicating portfolios

can produce the same outflows of the policy. Such liabilities, called non-

hedgeable, must be valued in accordance with Art. 77 of the Directive. The

purpose is to calculate the so-called current exit value, which is the value

that the undertaking would have to pay if it were to transfer the obligation

to another company.

In this regard, the Directive specifies that the value of the technical provi-

sions must be calculated as the sum of two components: Best Estimate and

Risk Margin.

20



1.5 The valuation of technical provisions in the Economic Balance Sheet

1.5.1. The Best Estimate

The first component is defined as ”the probability-weighted average of future

cash-flows, taking account of the time value of money (expected present value

of future cash-flows), using the relevant risk-free interest rate term struc-

ture”;5 furthermore, the Directive specifies that it must be calculated gross

of reinsurance, based on credible, realistic and up-to-date information.

The first element to consider is the the time span within which the cash flows

must be considered: this topic, defined as boundary of the contract, refers to

the fact that the boundary coincides with the last moment when the under-

taking has the unilateral right to terminate the contract, to refuse the award

or has the unconditional ability to modify the awards and future benefits.

The second topic regards the breadth of the spectrum of cash flows to be

considered within the Best Estimate considering the closed portfolio with

respect to the future new business. Art. 28 of the Delegated Acts provides a

list of cash flows to be considered in calculating the Best Estimate. Starting

from the cash outflows, on the first hand, they concern the benefits to be

paid to policyholders (maturity, death, surrender, annuities, disability bene-

fits and medical expenses). On the second hand, they also concern all forms

of expenses (direct and indirect administrative, investment management and

claims management), any fees (both management and structural) and tax-

ation payments which charged to policyholders / are required to settle the

insurance obligations. Cash inflows regard every premium that will be col-

lected by policyholders, both discretionary and those expected due to the

5Article 77, paragraph 2, Directive 2009/138/EC
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1.5 The valuation of technical provisions in the Economic Balance Sheet

contracts.

We should observe that the undertaking, based on one’s specific past expe-

rience, produces a large number of realistic bases (so-called second order).

Two other elements of fundamental importance in the evaluation of the best

estimates related to the Life business concern future discretionary benefits

and financial guarantees / contractual options.

Future management actions are those actions of management that affect the

benefit due to the policyholder. Since both future discretionary benefits and

the capital gains management (e.g. in case of segregated funds) make the

valuation of technical provisions discretionary, Art. 23 of the Delegated fully

regulates future management measures. Briefly, they must be declared in

advance, they must be consistent both with each other and with the under-

taking business strategies.

With reference to financial guarantees, Art. 79 of the Delegated Acts speci-

fies that the undertaking must consider the value of financial guarantees and

any contractual options included in insurance and reinsurance policies. Fur-

ther information derives from the Technical Specifications (TP.2.120), where

it is specified that in the absence of quoted prices in the ADLT (active, deep,

liquid and transparent) markets, it is necessary to use a mark-to-model ap-

proach. This result must be:

� consistent with the ADLT markets

� consistent with the assumption of absence of arbitrage

� consistent with the risk-free rate structure
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1.5 The valuation of technical provisions in the Economic Balance Sheet

This means that, indicating with Vt the mark-to-model value of the insurance

obligation and with Zt the known risk factors at time t:

Vt = f(t, Zt) = EQ[FDCF|Ft] (2)

From a mathematical point of view, we choose a sufficiently rich probability

space (Ω,F , P ) and an increasing sequence of σ-fields F = (Ft)t=0,...,n on

(Ω,F , P ). Therefore, (Ω,F , P,F) is a filtered probability space with filtra-

tion F, while the σ-field Ft represents the information available at time t.

We assume that every component of the F-adapted cash flow Z on (Ω,F , P,F)

is square integrable. Considering formula (2), f is a function that assigns

a monetary value at time t to the cash flow Zt, i.e. it attaches an Ft-

measurable price to the cash flow Zt. FDCF stands for future discounted

cash flows (discounted with specific financial rates, i.e., risk-free rates) while

Q is the “risk-neutral” probability measure. It is evident that the evaluation

of the expected value defined in formula (2) requires the use of stochastic

models where the solution is not known (considering exceptions, the evalua-

tion of a European or American call: the Black-Scholes model and Longstaff

& Schwartz’one propose solutions obtainable without the use of nested sim-

ulations).

The last aspect to be clarified in relation to the Best Estimate concerns the

discounting factor: as can be seen from the definition, the interest rate used

on the individual maturity must be the risk-free one. The rationale coincides

with the fact that the risk adjustment (where necessary, for example in the

valuation of hedgeable liabilities the value of the replicating portfolio already

contains the compensation in question) is considered with the addition of the

Risk Margin. The risk-free interest rate chosen is the interest rate swaps one,
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1.5 The valuation of technical provisions in the Economic Balance Sheet

adjusted for credit risk: this deduction must be between 10 and 35 bps. The

calculation of the risk-free rate curve is carried out monthly by EIOPA for

each individual currency: the risk-free rates are considered up to a matu-

rity called Last Liquidity Point and subsequently extrapolated so that the

long-term forward rate (so-called Ultimate Forward Rate ) coincides with the

predetermined forward rate.

Ultimately, the presence of alternative adjustments to the interest rate is

allowed:

� The Matching Adjustment, the use of which is subject to the approval

of the Supervisory Authority, which is applicable only if there is an

intention to hold the assets to cover the technical reserves until maturity

(the liabilities must therefore not be liquid: for example there must be

no options for the policyholder to surrender early),

� The Volatility Adjustment, provided by EIOPA and applicable up to

the Last Liquidity Point, which aims to reduce the impact of market

volatility in the short term in times of market stress,

� Finally, it is specified that the quantification of aforementioned in-

struments is subject to improvement/modification with the in progress

Solvency review .

1.5.2. The Risk Margin

As previously mentioned, the Risk Margin is that quantity which, added to

the Best Estimate, allows to calculate the current exit value of liabilities;

moreover, the Risk Margin satisfies the need to consider the risk aversion of
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financial operators.

It is possible to write the Risk Margin formula as:6

RM(P ) = CoC ·
∑
t≥0

SCRRM
t

(1 + i(0, t+ 1))t+1
(3)

where P is the whole undertaking’s portfolio, SCRRM
t is the SCR specific to

the calculation of the Risk Margin (ratios and differences will be explained

in the next lines), CoC is the Cost of Capital and i(0, t + 1) is the risk-free

rates between 0 and t+ 1.

The first interesting topic concerns the level of aggregation: as can be seen

from formula (3), the Risk Margin is calculated at the level of the entire

undertaking portfolio. As will be shown shortly, unlike the Best Estimate,

the Risk Margin is a sub-additive function and an assessment at the level

of the entire portfolio allows to exploit the maximum benefit deriving from

diversification: in this way, the undertaking can benefit from both the di-

versification between the LoBs and within the LoBs. However, it should

be added that the Technical Specifications, with reference to the calculation

of the technical provisions, also require to calculate them for homogeneous

groups (which bear the same risks), at most by dividing into LoBs: it fol-

lows that it is a duty of the undertakings to use methodologies to allocate

the portions of Risk Margin to the portfolio segments. In order to put the

description of the Risk Margin before the topic of its allocation, we now pro-

ceed to the description of the components and finally the discussion will be

concluded. CoC stands for Cost of Capital: it is a coefficient equal to 6%

6The Solvency II Review 2020 brings a slight change regarding the discounting of the

most distant SCRs, in particular those over 20 years
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and, citing Article 75 paragraph 5 of the Directive, it ”shall be equal to the

additional rate, above the relevant risk-free interest rate, that an insurance

[...] undertaking would incur holding an amount of eligible own funds [...]

equal to the Solvency Capital Requirement necessary to support insurance and

reinsurance obligations over the lifetime of those obligations”.

It is therefore noted that the CoC rate is multiplied by the sum of all future

SCRs, discounted to the current date. It is emphasized that the difference

in the subscripts between the SCRs and the qualification factors is linked to

the need to hold the SCR for the entire following year. In conclusion, it is

specified that the SCRs of the various years that fall within the calculation

of the Risk Margin only concern the following risks:

� The underwriting risk linked to the existing business

� The market risk different from the interest rate risk (only if relevant)

� Credit risk linked to insurance contracts, vehicle companies, interme-

diaries and contractors

� The counterparty risk with respect to passive reinsurance contracts

In conclusion, a methodology proposed in the Technical Specifications is

presented to distribute the Risk Margin, calculated on the entire portfolio

benefiting from the effect of diversification, to the individual LoBs:

RM(LoB) =
SCRRU,LoB(0)∑
LoB SCRRU,LoB(0)

·RM(P ) (4)

It is specified that this proxy allocates an aggregate value as a function of

values that do not consider the benefit of diversification.
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1.6. SCR and Life Underwriting Risk

1.6.1. The Solvency Capital Requirement: definition and opera-

tional aspects

According to Section 4 of the Directive, each undertaking must possess suffi-

cient eligible own funds to cover the SCR: this requirement must be calculated

on the risk profile of the individual company at least once a year, must be

communicated to the Supervisory Authority and must be based on the as-

sumption of business continuity.

Quoting Art. 100 of the Directive, paragraph 4, it It shall correspond to the

Value-at-Risk of the basic own funds of an insurance or reinsurance under-

taking subject to a confidence level of 99.5% over a one-year period. Hence,

indicating with Ẽt+1
7 the random expenses amount and with i(0, 1) the risk-

free spot rate between 0 and 1, the company’s eligible own funds SCR at

time t+ 1, are defined as the x that satisfies the following relation:

SCR = inf

[
x : P[Ẽt+1 + x · (1 + i(t, t+ 1)) ≥ 0] = 1− α

]
Et + SCR = V aR1−α[∆Ẽt+1]

(5)

Qualitatively, therefore, the SCR coincides with the 1 − α percentile of the

distribution of the variation of the eligible own funds. An extremely impor-

tant aspect that will have significant consequences in the stochastic models

presented in the next sections, concerns a specification of the Technical Pro-

visions: in the calculation of the SCR, in order to avoid circularity, any

reference to the Technical Provisions is to be understood net of the Risk

7All the random variables of this Thesis are indicated with the tilde
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1.6 SCR and Life Underwriting Risk

Margin. In other words, therefore, the Risk Margin is not to be considered

in the models designed to quantify the SCR.

The SCR must be calculated with one of the following three methods, listed

from the simplest to the most complex:

� Standard Formula: It presents the essential risks that any undertaking

must consider (these macro modules are: Market risk, Health under-

writing risk, Default Risk, Life underwriting risk, Non-Life underwrit-

ing risk and Intangible), proposes correlation matrices both to aggre-

gate the SCRs of the aforementioned macro modules , both to aggregate

the risks of the sub-modules and, finally, proposes calculation methods

to calculate the individual SCRs. The structure of the Standard For-

mula is shown in Figure 1. These methodologies are the ”factor based”

Figure 1: The structure of the Standard Formula

28



1.6 SCR and Life Underwriting Risk

and ”scenario based” approaches.

In the first, the coefficients (sigma factors) set by the legislation are

applied to the typical undertaking quantities. It is noted that the

MSM proposed for demographic risk by Solvency I pertained to this

category. The ”scenario based” approach, the SCR is calculated by

observing the difference between two scenarios: that of normality and

the ”stressed” one, where some grades are precisely stressed according

to the provisions of the Delegated Acts. It is emphasized that, with

the scenario-based method, in addition to the Risk Margin which must

not be changed in any way, the stressed scenario does not even con-

cern the values of deferred tax assets and liabilities, the value of future

profit sharing and, above all, the value of the company does not adopt

extraordinary measures.

� Undertaking Specific Parameters (USP): The USP approach allows the

undertaking to independently calibrate parameters set by the Delegated

Acts in a Standard Formula context. This methodology allows you to

grasp the actual risk profile of the company with more precision: in

particular, the USP approach allows you to modify the sigma factors

of the tariff and reserve risk for a Non-Life partner and the increases

in the amount of benefits of annuities in the ”revision” submodule of

the Life & Health Underwriting risk macro modules.

� Internal Model (Partial or Full): these methodologies, subject to a

strong review and approval by the Supervisory Authority, allow the

undertaking to autonomously model one or more macro risk modules
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1.7. Life Underwriting Risk in the Standard Formula

As anticipated when the Standard Formula was discussed and as evident

from Figure 1, the Life Underwriting Risk is one of the macro-modules, it

concerns one of the specific and technical risks of the insurance business and

is the result of the following sub-modules:

� Mortality,

� Longevity,

� Disability,

� Life expense,

� Revision,

� Lapse,

� Life catastrophe.

The aggregation of the sub modules takes place using the following formula

and using the linear correlation coefficients shown in Table 1:

SCRLUR =

√∑
i,j

CorrNLi,j · SCRi · SCRj (6)

where CorrNLi,j denotes the correlation parameter for life underwriting risk

for sub-modules i and j. An interesting and singular aspect is the only neg-

ative correlation coefficient predicted by the Standard Formula, that is the

coefficient between Longevity and Mortality, exactly the risks I will focus on.

The two risks, as you can intuitively think, are ”opposite” but not com-

pletely: although it is logical that the increase in survival leads to a reduction
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Table 1: Correlation matrix of Life Underwriting Risk

i,j Mortality Longevity Disability Life Expense Revision Lapse CAT

Mortality 1

Longevity -0.25 1

Disability 0.25 0.25 1

Life Expense 0.25 0.25 0.5 1

Revision 0 0.25 0 0.5 1

Lapse 0 0.25 0 0.5 0 1

CAT 0.25 0 0.25 0.25 0 0.25 1

in mortality (so-called natural hedging), usually the two risks act on insur-

ance portfolios profoundly different in terms of policyholders. The mortality

risk, generated mainly by Term Insurance policies, derives from policyhold-

ers exposed to the risk of death, i.e. policyholders who tend to be elderly.

The longevity risk, on the other hand, concerns policyholders with a high life

expectancy, therefore generally young and in good health. The phenomenon

whereby the intrinsic characteristics of a policy attract certain types of pol-

icyholders relates to the issues, known in the literature, of self-selection and

adverse selection.

1.7.1. Mortality and longevity risks: the Standard Formula ap-

proach

Mortality risk is defined as ”the risk of loss, or of adverse change in the

value of insurance liabilities, resulting from changes in the level, trend, or

volatility of mortality rates, where an increase in the mortality rate leads to

an increase in the value of insurance liabilities”.

This risk affects those policies that provide for the payment of a benefit,
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1.7 Life Underwriting Risk in the Standard Formula

subject to the death of the insured, which is greater than the technical pro-

visions: this definition, attributable to that of positive Sum at Risk, is linked

to Term Insurance and Endowment policies. For the latter, the EIOPA

Technical Specifications exclude unbundling, i.e. allow the ”natural” com-

pensation between the component of the benefit in the event of death and

the component of the benefit in the event of survival. The SCRLUR,mortality

is calculated as a variation of the Basic Own Funds (BOF):

SCRLUR,mort = ∆BOF |(shockmort) (7)

From a qualitative point of view, the SCR is therefore calculated as the differ-

ence between the Basic Own Funds of the undertaking in the ordinary situa-

tion and the Basic Own Funds in the scenario with mortality rates increased

instantly and permanently by 15% (shockmort). A simplified methodology is

proposed in the Technical Specifications (SCR.7.19.) and it can be applied

subject to the so-called ”principle of proportionality”, i.e. if the calculation

with the Standard Formula is disproportionate and excessive compared to

the size of the portfolio.

SCRLUR,mort = 0.15 · SaR · q ·
n∑

k=1

(
1− q

1 + i(0, k)

)k−0.5

(8)

where:

� SaR stands for Sum At Risk,

� q is the weighted average of the mortality rates, where the weights

coincide with the insured sums,

� n is the modified duration expressed in years relating to the possible
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payments in the event of death included in the calculation of the Best

estimate,

� i(0, k) is the risk-free spot rate relating to maturity k.

Longevity risk, on the other hand, is defined as the risk of loss, or of adverse

change in the value of insurance liabilities, resulting from changes in the level,

trend, or volatility of mortality rates, where a decrease in the mortality rate

leads to an increase in the value of insurance liabilities”.

This risk therefore affects policies that provide for the payment of a benefit

subject to the survival of the policyholder at a certain date: in this case,

therefore, a reduction in mortality rates implies an increase in the expected

present value of the benefits and a consequent increase in the Best Estimate.

The SCR linked to the longevity risk proposed by the Standard Formula,

also calculated with a scenario based approach, is equal to:

SCRLUR,long = ∆BOF |(shocklong) (9)

where shocklong represents a decrease of mortality rates instantly and per-

manently by 20%. As for the mortality risk, the Regulation proposes a

simplified formulation in order to respect the principle of proportionality, i.e.

when the calculation with the approach envisaged by the Standard Formula

is disproportionate to the undertaking business.

SCRLUR,long = 0.2 · q · n · 1.1(n−1)/2 ·BElong (10)

Where:

� q is the average mortality rate expected by policyholders over the next

12 months; the weights of the weighting coincide with the sums insured,
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� n is the duration in years of the benefits to be provided to policyholders

included in the calculation of the Best Estimate,

� BElong is the Best estimate of liabilities exposed to longevity risk.
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2. The stochastic model for demographic profit

in the Local GAAP framework

2.1. Introduction

The previous Section 1 showed the regulatory evolution of the capital re-

quirement linked to demographic risk. As stated in the Introduction, with

the aim of presenting a stochastic model that is consistent with the market

consistent valuation of Solvency II, this section presents a model known in

literature, developed in a Local Generally Accepted Accounting Principles

(Local GAAP) context (see [33], [34]).

The purpose is to show what the underlying assumptions are, what types

of risks the model identifies and what (numerical) results it brings: it is

observed that the fundamental quantities of the model (insured sums of oc-

curred deaths and insured sums of occurred lapses) are the same of a market

consistent model, with the difference that in the latter case the assessment

criteria of assets and liabilities changes radically.

In conclusion, it is anticipated that the case study reproduced will be applied

to two traditional without-profit policies (policies whose benefit is determin-

istic and is not linked to any financial instrument): the aim is to isolate the

demographic risk and prevent the results from being linked to market risk.
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2.2. From Technical to Demographic Profit

The starting point coincides with the presentation of a ”corporate” equation

aimed at quantifying the Risk Reserve. It, also called surplus or asset margin,

indicates the difference between assets and liabilities and, therefore, can be

considered as free own funds.

Before presenting the aforementioned equation, two particularly important

elements are highlighted for the understanding of the theoretical actuarial

aspects of this thesis:

� Ft indicates natural filtration containing the information available at

time t. Each random variable, indicated with the tilde symbol, refers

to the respective stochastic process and is conditioned by the natu-

ral filtration of the evaluation instant. Except in cases where it will

be explicitly indicated, all the stochastic processes are adapted to Ft:

therefore the values assumed at the time of evaluation are deterministic.

� The evaluation instant is always t = 0. This implies that, technically,

even the random variables evaluated at time t would be random. Since

the objective of each stochastic model presented in this article is to

evaluate the capital requirement between t and t + 1, it is assumed

that we position at instant t where all the stochastic processes have

assumed their average value so as to be able to evaluate the volatility

in the time span alone [t, t+ 1).

Resuming the definition of the risk reserve Ũt+1, it is now possible to present

the formulation:

Ũt+1 = Ut + UNt+1 + [(Ỹ Lt+1 + C̃H t+1)− ˜TX t+1 − D̃V t+1] (11)
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Where:

� UNt+1 is the monetary amount of the (possible) payment of further

funds by the shareholders: it is noted that this value is not random as

it is assumed that the planning of capital payments takes place at the

beginning of the year,

� Ỹ Lt+1 is the gross ordinary profit for the year, not influenced by ex-

traordinary items and before taxes,

� C̃H t+1 is the random variable of the gains (losses) linked to changing

in value of the assets market values,

� ˜TX t+1 is the random variable for taxes pertaining to the year,

� D̃V t+1 is the random variable dividends to be distributed to sharehold-

ers.

Considering the case of without-profit policies8, gross ordinary profit Ỹ Lt+1

can be defined as:

Ỹ Lt+1 = [Ỹt+1 + (J̃T t+1 − J̃t+1)] (12)

The gross ordinary profit Ỹ Lt+1 is therefore defined as the sum of the insur-

ance profit for the year Ỹt+1 and the financial return due to the difference

between the financial interests realized by all the activities of the company

8In the Local GAAP context, the addition of revaluations due to Segregated Funds

would not involve particular changes in the model as the insured sums are valued at the

valuation date and any financial guarantees do not change their value
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J̃T t+1 net of the investments realized only on the insurance resources J̃t+1,

hence premiums and reserves. it is now possible to define the insurance profit

for the year, it is equal to:

Ỹt+1 = [V Bt +Bt+1 + J̃t+1]− [Ẽt+1 + S̃t+1 + X̃t+1 + ˜V Bt+1] (13)

Where:

� V Bt represents the complete mathematical reserve calculated at time

t. It therefore coincides with the sum of the pure mathematical reserve

with the reserve for expenses: the first is equal to the expected present

value of the benefits net of the expected present value of the premiums,

while the second is equal to the expected present value of the expenses

net of the value current expected charges for expenses. It is specified

that both the pure mathematical reserve and the reserve for expenses

are calculated (consistently with the Local GAAP framework) on a

first-rate technical basis: in this case, the expected present values are

calculated using the same prudential demographic base and the same

rate technical used in the pricing phase.

� Bt+1 represents the amount of gross premiums collected by the under-

taking therefore they, called also tariff premiums, include both the pure

premium (calculated on the technical basis of the first order) and the

expenses loadings. It is assumed that they are collected at the begin-

ning of the year: therefore late payments by policyholders are excluded

and, for these reasons, they are deterministic.

� Ẽt+1 indicates the stochastic amount of expenses incurred by the un-

dertaking. They are also assumed to be paid at the beginning of the
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year.

� S̃t+1 indicates the total amount of lapses: they are also assumed at the

beginning of the time span [t, t+ 1).

� X̃t+1 represents the amount of claims occurred in the year and paid

at the end of the same year. From an exclusively qualitative point of

view, X̃t+1 is equal to 0 in the case of Pure Endowment, is equal to the

insured sum in the case of Term Insurance and Endowment and equal

to the instalment in the case of annuity.

The starting point of this thesis coincides with the presentation of a stochas-

tic model based on the theory of risk oriented to the quantification of demo-

graphic risk in a Local GAAP context (see [33], [34]).

First, we consider the formulation of the technical profit at a generic instant

t+ 1:

Ỹ LG
t+1 = [V Bt +Bt+1 + J̃t+1]− [Ẽt+1 + S̃t+1 + X̃t+1 + ˜V Bt+1] (14)

Before explaining the meaning of the quantities present in formula (14), we

specify that each random variable is indicated with the letter tilde: since the

objective of this thesis is to evaluate the SCR over an annual time horizon

(see Art. 101 of [21]), we assume to be at time t and to make an assessment

considering the time span [t, t+ 1). From a probabilistic point of view then,

we are assuming that all of stochastic processes are adapted to filtrations

(Ft)tϵI , therefore measurable with respect to the natural filtrations Ft
9.

9I is a index set with a total order ≤
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Returning to formula (14) we observe that it is calculated as the difference

between two sums. The first one concerns the complete mathematical provi-

sions V Bt calculated with Local Generally Accepted Accounting Principles

(Local GAAP)10, the volume of premiums collected Bt+1 and the financial

returns obtained from the investment of business assets J̃t+1 in the time span

[t, t+ 1). The minuend is made up of the sum of expenses Ẽt+1, lapses S̃t+1,

claims occurred during the year X̃t+1 and settled at instant t+1 and, finally,

the new complete mathematical reserves ˜V Bt+1. As demonstrated in [33], it

is possible to break down the technical profit described in formula (14) into

5 profit components: demographic, financial, expenses loading, lapses and

residual. Since our aim is to analyse the demographic profit and quantify a

SCR that is consistent with the market consistent valuation introduced by

Solvency II, we now report the first two components previously mentioned,

defining the quantities that constitute them.

Before presenting the two aforementioned components, we introduce the rate-

based notation: in the continuation we will use lowercase letters to indicate

the ”rates”, that is, quantities linked to unitary insured sums precisely in

order to highlight the main drivers of the effects on the various components

of profit.

ỹLG,Dem
t+1 =[vbt + bt+1 · (1− α∗ − β∗)− γ∗] · (wt − s̃t+1) · (1 + j∗)

− (x̃t+1 + w̃t+1 · vbt+1)
(15)

10The complete mathematical reserve is therefore the sum of the expenses reserve and

the pure mathematical reserve. Both are calculated with locked and prudential technical

bases: that is, they are calculated with the technical rate and with the mortality table

used in the pricing phase.
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The random variable “demographic profit in LG context at time t + 1”

ỹLG,Dem
t+1 is defined as the difference of two terms. The first one concerns the

sum of the complete technical provisions vbt and the pure premiums collected

in t+1 (defined as the tariff premiums bt+1 net of loading for acquisition α∗,

collection β∗ and management costs γ∗). This first term is multiplied by the

monetary amounts, defined as the insured sums calculated at time t wt net

of the sums eliminated because of lapses s̃t+1, and subsequently capitalized

for one year at the technical rate j∗, technical financial basis (i.e. technical

rate).11

The second term, on the other hand, is composed of the sum of the amount

of the claims occurred in year x̃t+1 and the new complete technical provisions

established in year t+1, vbt+1. We note that the definition of x̃t+1, typical in

the non-life insurance context, indicates the payments of the insured sums in

the face of the deaths of policyholders: this implies that, as will be detailed

below, this random variable will be considered only in the case of Endow-

ments and Terms Insurance, while it will take on the value 0 in the case of

Pure Endowments and annuities except in the distribution phase. Standing

11At this stage we introduce the notation linked to the technical (demographic and

financial) bases: those of the first order, prudential and used in the pricing phase, will be

indicated with an asterisk ∗, while those of the second order considered “realistic” by the

undertaking, will be referred to as j and q
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z̃t+1 the insured sums of occurred deaths:

x̃t+1 =


z̃t+1, for term insurance and endowment policies;

0, for pure endowment policies and annuities in the accumulation period;

w̃t+1, for annuities in the benefit period.

(16)

Although this is not exactly the point of this thesis, we now present the

formulation of financial profit: it is intuitive to think that in a market con-

sistent context, where non-hedgeable liabilities are valued at risk-free rates,

it is impossible to analyse the demographic profit without considering the

iterations with financial profit.

ỹLG,F in
t+1 =(j̃t+1 − j∗) ·

[
vbt · wt + bt+1 · (1− α∗ − β∗) · (wt − s̃t+1)

− γ∗ · wt − gt · vzt · s̃t+1

] (17)

where gt is a specific penalization coefficient applied in case of surrender and

vzt is the Zillmer reserve. The most interesting aspect to underline is that the

financial profit depends on the difference between the yield actually achieved

by the undertaking and that assumed during the pricing phase: the financial

profit will therefore be as much greater as the yield. obtained from insurance

investments exceeds the return assigned to policyholders.

Taking up the formulation of demographic profit in the Local GAAP context

defined in formula (15), it is possible (see [34]) to define a ”more compact”

version, which highlights the model drivers:

ỹLG,Dem
t+1 = DLG,compl

t+1 · [q∗x+t · (wt − s̃t+1)− z̃t+1] (18)

Therefore follows that the demographic profit assessed in a Local GAAP

context depends on the probabilities of death used in the pricing phase q∗x+t,
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the insured capital wt net of the insured sums of occurred lapses and the

insured sums of occurred deaths.

The first term, DLG,compl
t+1 , indicates the complete (of expenses) Sum-at-Risk

(SaR) rate, defined as:

DLG,compl
t+1 =



(1− vbt+1), for term insurance and endowment policies;

−vbt+1, for pure endowment policies;

−vbt+1, for annuity in accumulation period (t ≤ m) ;

−(1 + vbt+1), for annuity in the payment period (t ≥ m).

(19)

2.3. The cohort approach and the exact individual ap-

proach

In this section we present the general aspects of the model, in particular

we follow the so-called cohort approach. Let’s assume that the portfolio is

divided into sub-portfolios of homogeneous risks. In this case, each policy-

holder within the same cohort has the same age, the same gender, the same

survival probability and so on: the only element of differentiation between

policyholders within the same cohort concerns the sums insured, denoted

with Ci for the policyholder i. Particularly notable is that policyholders

within the same cohort are assumed to be independent and identically dis-

tributed.

The use of this assumption has two important consequences. On the one

hand it implies that the aggregation and dependencies between the differ-

ent cohorts must be specifically modelled. On the other hand it is possible
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2.3 The cohort approach and the exact individual approach

to describe the survival of each policyholder in a given time span with a

dichotomous random variable as a Bernoulli distribution. Additionally, the

cohort approach is consistent with the framework defined by Solvency II and

IFRS17.

We denote with w0 =
∑l0

i=0 Ci the total sums insured of a cohort with l0

policyholders at the inception of the contract t = 0. We assume that the

sums insured of a cohort follows the following rule over time:

w̃t = wt−1 − s̃t − z̃t (20)

where z̃t are the sums insured of occurred deaths between t− 1 and t.

In this context, in order to quantify the characteristics of the demographic

profit random variable and estimate its confidence intervals, it is necessary

to model the insured sums, the insured sums of occurred deaths and, if you

want to quantify also the lapse risk, the insured sums of occurred lapse. Two

different approaches to the problem were considered.

Considering the exact individual approach, the algorithm provides that:

� We assume that the vector of the exact monetary amounts of the in-

sured sums of each policyholder belonging to the cohort is known. This

assumption is consistent with reality, where the vector of insured sums

of each policyholder is contained in undertaking’s data warehouse. This

approach, coherently with the following points, provides for the simu-

lation of the survival/death of each individual policyholder. This is the

main difference with the adjusted individual approach presented below,

where instead of working with a vector of insured sums, it is consid-

ered a generic probability distribution, calibrated on available data,
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2.3 The cohort approach and the exact individual approach

from which to simulate the single insured sum. The simple moment of

n order is indicated with C̄n
t+1; hence, assuming a cohort composed of

lt policyholders at time t,

C̄t+1 =

∑lt
i=1Ci

lt
(21)

C̄2
t+1 =

∑lt
i=1C

2
i

lt
(22)

C̄3
t+1 =

∑lt
i=1C

3
i

lt
(23)

It is therefore anticipated that in an exact individual approach each

policyholder has his specific insured sum: this phenomenon leads to

volatility within the insured sums. This volatility, as explained in the

next point, is quantified by individually simulating the survival of the

individual insured and, therefore, the fact that her/his specific insured

sum remains or not within the cohort insured sums. This approach

obviously has longer computational times than an approach where each

single sum insured is treated as the realization of an appropriately

parameterized random variable, but allows to exactly quantify the effect

of death (and therefore of the elimination from the portfolio of the

respective insured sum) of the individual policyholder.

� Setting the number of cohort policyholders equal to l0, its permanence

in the portfolio is simulated assuming a lapse rate equal to δ and a

probability of death equal to qx. This simulation takes place assuming

that each policyholder is described by a Bernoulli r.v.12 and that people

12The support [0, 1] is therefore associated with the states “survived” and “deceased”
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2.3 The cohort approach and the exact individual approach

are independent from each other and identically distributed;

� The sums insured of occurred deaths z̃t+1 and the insured sums of

occurred lapse s̃t+1 are calculated. The new sums insured amounts are

updated using formula (20);

� The procedure is repeated N times.

The adjusted individual approach (not used in this thesis), is presented with

the purpose of showing a proxy:

� The insured sums are described by a known probability distribution (for

example a Log-normal) which parameters are determined according to

the moments of the insured sums of the portfolio relative to the specific

generation examined. It is also assumed that this distribution remains

constant over time;

� Through suitable distributions (for example Binomial) the number r̃ of

lapses is simulated

� The sums insured of a number of policyholders equal to the number

extracted in point 2 are extracted from the distribution mentioned in

the first point;

� The procedure used to simulate the insured sums of occurred lapse is

replicated to simulate the insured sums of occurred deaths;

� The procedure is repeated N times.
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2.4 The characteristics of the main variables

Using the exact individual approach, both the characteristics of the main

random variables inherent to the model and the characteristics of the de-

mographic profit will now be presented, with the aim of identifying a SCR

consistent with the legislation. A theme that remains open, possible for

in-depth research, is the aggregation (and therefore of dependencies) of the

results relating to different cohorts.

2.4. The characteristics of the main variables

Now, we start considering the individual approach and a one-year time hori-

zon. The lapse of each individual policyholder is described as a Bernoulli dis-

tribution with parameter δt, that represents the expected annual lapse rate

at time t. Lapses are here assumed independent and identically distributed

random variables. Therefore, considering a cohort of l0 policyholders it is

possible to obtain the following relations (representing the mean, the vari-

ance and the skewness, respectively) related to the r.v. number of lapses r̃t+1

during the period (t, t+ 1] in the cohort:

E [r̃t+1] = lt · δt

σ2[r̃t+1] = lt · δt · (1− δt)

γ[r̃t+1] =
(1− 2 · δt)√
lt · δt · (1− δt)

(24)

In a analogous way, we define the random variable d̃t+1 number of deaths

during the period (t, t + 1] as the sum of Bernoulli random variables, each
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2.4 The characteristics of the main variables

one with parameter qt · (1− δt), we obtain:

E
[
d̃t+1

]
= lt · qt · (1− δt)

σ2[d̃t+1] = lt · qt · (1− δt) · [1− qt · (1− δt)]

γ[d̃t+1] =
[1− 2 · qt · (1− δt)]√

lt · qt · (1− δt) · [1− qt · (1− δt)]

(25)

First of all, we observe that by keeping the number of policyholders lt and

the actual probabilities of lapse fixed, the average of d̃t+1 grows, very intu-

itively, as the actual probabilities of death increase. With reference to the

variability instead, it has a paraboloidal trend that increases as qt tends to

0.5, then decreases towards 0. An interesting aspect is that, by calculating

the Coefficient of Volatility (CoV), we obtain:

CoV (d̃t+1) =

√√√√√ σ2[d̃t+1]

E
[
d̃t+1

]2 =

√
[1− qt · (1− δt)]

lt · qt · (1− δt)
(26)

The CoV is therefore a hyperbolic function that tends to +∞ as q tends to 0

and tends to 0 as q tends to 1: this trend highlights the relative riskiness of

policies that pay benefits in the event of death, for example Term Insurance.

Considering a generic policyholder i and a specific time period (e.g. (t, t+1]),

we define the moment generating function Ms̃i(s) of the r.v. s̃i that denotes

the sum insured eliminated due to lapses of the i-th policyholder: in this

context the insured sum is not unitary, but equal to Ci. Notice that for the

sake of simplicity, we neglected the notation related to the time period.

Hence, the moment generating function of s̃i is defined as:

Ms̃i(s) = 1− δ + es·Ci · δ (27)
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2.4 The characteristics of the main variables

Considering now the whole cohort, under the assumption of dd. of the poli-

cyholders, we obtain the cumulant generating function of the r.v. s:

Ψs̃(s) =
l∑

i=1

ln(1− δ + es·Ci · δ) (28)

The characteristics of the distribution of s̃t+1 are easily obtained:

E [s̃t+1] = lt · δt · C̄t+1 = E [r̃t+1] · C̄t+1

σ2[s̃t+1] = lt · δt · (1− δt) · C̄2
t+1 = σ2[r̃t+1] · (C̄t+1)

2 · r2,Ct+1

γ[s̃t+1] =
(1− 2 · δt)√
lt · δt · (1− δt)

·
C̄3

t+1

(C̄2
t+1)

3/2
= γ[r̃t+1] ·

r3,Ct+1

(r2,Ct+1)
3/2

(29)

where risk indices of order n are defined as rn,Ct+1 =
C̄n

t+1

(C̄t+1)n
. Similarly, for

the r.v. sums insured in case of death, we define the cumulant generating

function of the random variable z̃. Notice that for the sake of simplicity, we

neglected the notation related to the time period.

Ψz̃(s) =
l∑

i=1

ln

(
1− ((1− q) · δ) + es·Ci · q · (1− δ)

)
(30)

As for the r.v. sums insured of occurred lapse, the following cumulants are

obtained for z̃t+1:

E [z̃t+1] = E
[
d̃t+1

]
· C̄t+1

σ2[z̃t+1] = σ2[d̃t+1] · C̄2
t+1 · r2,Ct+1

γ[z̃t+1] = γ[d̃t+1] ·
r3,Ct+1

r
3/2
2,Ct+1

(31)

We observe that the expected value of the sums insured eliminated due to

deaths increases on average with both the number of deaths and the amounts

of sums insured. Volatility increases both as a function of the variance of the
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2.5 The characteristics of demographic profit in a Local GAAP context

number of deaths and as the relative volatility of the sums insured increases.

The sign of the skewness depends exclusively on the sign of the skewness of

the number of deaths.

2.5. The characteristics of demographic profit in a Local

GAAP context

In this subsection, we highlight the analytical results related to the charac-

teristics of the r.v. ”demographic profit in a Local GAAP context” neglecting

the effects of lapses: if they were considered, they would allow us to grasp the

joint effect with mortality, but would be inconsistent with the idea of mod-

elling only the demographic risk. As with the aggregation of several cohorts,

we believe that the diversification between mortality risk and surrender must

be treated separately.

Starting from formula (18), the expected profit is equal to:

E
[
ỹLG,Dem
t+1

]
= DLG,compl

t+1 · λx+t · E
[
d̃t+1

]
· C̄t+1 (32)

The first interesting aspect is that the expected gain depends on the SaR rate

DLG,compl
t+1 calculated using first order basis (i.e. the technical pricing bases):

in what follows the SaR rate trends for different policies will be shown; thus

we highlight that these values are very different in the various policies. For

example, in Pure Endowment and Endowment the SaR rates start from 0 at

the inception and are worth 1 at maturity, while in Term Insurance they are

worth 0 both at the beginning and at maturity, while during the contractual

duration they are very close to 0.

λx+t is a measure of the implicit safety loading: it is calculated as λx+t =
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2.5 The characteristics of demographic profit in a Local GAAP context

q∗x+t − qx+t

qx+t

and therefore depends on the difference between the demographic

base used in the pricing phase q∗ and the realistic one, named q. One aspect

that should be pointed out is that, as can be observed, the sign of the ex-

pected gain (profit) depends on the combined effect of DLG,compl
t+1 and λx+t: in

policies with a positive SaR rate (Term Insurance and Endowment), in order

to obtain a positive expected profit, it is necessary to use a demographic base

with a greater probability of death than those believed to be true during the

pricing phase, i.e. it is necessary to use an older demographic base. If, on

the other hand, the policy provides for a negative SaR rate (Pure Endow-

ment and annuity), the expected profit is reached only with a negative safety

loading, hence the pricing must be conducted with a ”future” demographic

base compared to the realistic one: this necessity implies the need to create

selected and, above all, projected mortality tables. Considering formula (18),

the standard deviation can be defined as follows:

σ[ỹLG,Dem
t+1 ] =

√
(DLG,compl

t+1 )2 · σ2[z̃t+1]

= |DLG,compl
t+1 · C̄t+1 · lx+t| ·

√
qx+t · (1− qx+t)

lx+t

· r2,C
(33)

On the first hand, we observe that as for the expected profit, the SaR rate

value is one of the main drivers of standard deviation.The second factor of

considerable interest is
qx+t · (1− qx+t)

lx+t

: it grows as q grows from 0 to 0.5,

then decreases towards 0. The interesting aspect is that except for extreme

ages (i.e. ω > 95), this factor increases when the policy approaches maturity:

this phenomenon is therefore common to the policies on the market. The

last aspect concerns the presence of r2,C : i.e. a volatility index of the insured

sums.
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In conclusion, we show the results related to skewness:

γ[ỹLG,Dem
t+1 ] = −

(DLG,compl
t+1 )3

|(DLG,compl
t+1 )|3

· (1− 2 · qx+t)√
lx+t · qx+t · (1− qx+t)

· r3,C
(r2,C)3/2

(34)

The skewness index depends on three factors: the first ratio exclusively de-

termines its sign (except in cases where the cohort has probability of death

greater than 50%). In particular, the sign of skewness is equal to opposite of

the sign of the SaR rate. This means that the distribution of demographic

profit in a local GAAP context has positive skewness in the case of Pure En-

dowment and annuities and negative skewness in the case of Term Insurance

and Endowment. The second term, as previously mentioned, is positive only

if qx+t < 0.5; moreover, it highlights the benefit of diversification, tending to

0 as lx+t grows. The last term, which depends on the volatility of the insured

sums, affects only the order of magnitude of the skewness index.

2.6. Determination of the Capital Requirement and QIS

n.2

The purpose of the model presented is to quantify the SCR linked to the

demographic risk, such that it is consistent with the legislation, indeed it is

calculated with the Value at Risk measure, the time horizon is annual and

the confidence level is equal to 99.5%. Consistently with this definition, Risk

Based Capital is defined as:

SCRLG,Dem
t+1 = −V aR(ỹLG,Dem

t+1 ) (35)

An aspect that should be emphasized concerns the possibility of quantifying

the capital requirement with a proxy, as occurs in the Non-Life insurance
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context13.

Since the value of both the volatility and the Potential Releases can be easily

deduced from the model, the goal becomes that of identifying a multiplier

that approximates formula (35). Hence, we propose to compute the capital

requirement as:

SCRLG,Dem
t+1 = k[γ(ỹLG,Dem

t+1 )] ·

√
qt · (1− qt)

lt
· r2,Ct+1 ·

(
|DLG,compl

t+1 | · C̄t+1 · lt
)

(36)

where k[γ(ỹLG,Dem
t+1 )] is a deterministic multiplier of the standard deviation,

obviously depending on skewness of the demographic profit γ(ỹLG,Dem
t+1 ). In

this regard, let us go back to the formulation proposed by the Quantitative

Impact Study n.2 (see [14]) proposed by CEIOPS14 prior to the drafting of

Solvency II. It provided that the demographic risk was broken down into two

macro-components: the risk of mortality and the risk of longevity. The first

was in turn divided into “volatility”, “trend” and “CAT”. The former only

in “volatility”and “trend”. In formulas:

SCRmort = SCRmort,vol + SCRmort,trend + SCRCAT

SCRlong = SCRlong,vol + SCRlong,trend

(37)

13According to the Standard Formula, it is quantified as 3 · σNonLife · VNonLife, where

σNonLife is the sigma factor linked to the Non Life Underwriting Risk, VNonLife is the sum

of the volumes of premiums and best estimates (technical provisions) net of reinsurance.
14CEIOPS (Committee of European Insurance and Occupational Pensions Supervisors),

successively transformed into European Institution EIOPA in 2011
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We now report the definition of the two risks linked to volatility:

SCRmort,vol = 2.58 ·
√

qx · (1− qx)

N
· SumAtRisk

SCRlong,vol = 2.58 ·
√

qx · (1− qx)

N
· PotentialRelease

(38)

where N indicates the number of policyholders within the cohort (indicated

in our model with lt). Comparing the two requirements of formula (38), it is

observed that in the case of mortality risk, the Sums-at-Risk are considered

and in the case of longevity risk, the Potential Releases (PRs) are considered.

PRs are defined as the mathematical reserve, i.e., the opposite of the Sum-

at-Risk.15 It is highlighted that in the stochastic model discussed in [34],

through the notation
(
|DLG,compl

t+1 | · C̄t+1 · lt
)

it is possible to indicate both

“SumAtRisk” and “PotentialRelease” at the same time thanks to the abso-

lute value of the Sum-at-Risk, as reported in formula (36). Therefore, the

quantity
(
|DLG,compl

t+1 | · C̄t+1 · lt
)
indicates the Sum-at-Risk in case of death-

linked policies and the PRs in case of survival-linked policies..

Comparing formula (36) with formulas (38), we observe the following main

differences:

� The multiplier, indicated in formula (36) with k[γ(ỹLG,Dem
t+1 )], chosen in

QIS n.2 is the 99.5% percentile of a standard normal (2.58) therefore,

in other words, it is assumed that the distribution of the demographic

profit in a Local GAAP context is Gaussian.

15It is specified that this is correct in the case of Pure Endowments and Annuities in

the accumulation phase, for the Annuities in the disbursement phase it is also necessary

to consider the installment if advanced
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� Components linked to volatility are equal if in formula (36) we set

r2,Ct+1 equal to 1; in other words, the two formulas are the same if the

volatility within the vector of the sums insured is neglected.

In conclusion, the model presented in [34] allows to quantify the risk linked

to the volatility of mortality, the so-called idiosyncratic risk. In order to

adapt this stochastic model to Solvency II, it is first necessary to switch

from the locked and prudential valuation of the liabilities to the market

consistent valuation. Secondly, it is also necessary to introduce volatility

due to structural fluctuations in the mortality curve, i.e. to introduce trend

risk. For the reasons set out above, formula (36) can be understood as an

improvement of the SCR where the only source of uncertainty is one linked

to the idiosyncratic volatility of the deaths of the cohort.

2.7. Numerical results

This subsection presents the results of applying the model described consis-

tent with the Local GAAP context.

Table 2 presents all the input data: from a purely qualitative point of view, it

is specified that a cohort of 15, 000 i.i.d. policyholders entering the portfolio

in t = 0, i.e. in 2018, where each policyholder has a different sum insured.

It is specified that the individual insured sums were generated ex-nihilo from

a Log-normal with an expected value of 100, 000 and a CoV equal to 2; sub-

sequently they have been saved and will be used for all the case studies of

this thesis: it is thus possible to compare the results with the same input

data.

The model was applied to two distinct contractual forms: a Pure Endowment
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Table 2: Model parameters

Policyholders date of birth 31st December 1978

Policyholders gender Males

Policies moment of issue 31st December 2018 (t = 0)

Policy duration 20 y

Premium type Annual premiums (20 y)

Initial number of policyholders (l0) 15,000

Expected value of the single insured sum (CU)a 100,000

CoV of the insured sums 2

First order financial rate j∗ 1%

aCU stands for Currency Unit

and a Term Insurance. This choice arises from the need to seize the fevers

linked to two structurally opposite policies16 and that, above all, if combined

they generate all the most common policies on the insured market: for ex-

ample an Endowment coincides with the sum of a Pure Endowment and a

Term Insurance that have the same maturity and the same technical bases,

while an Annuity is a sum of Pure Endowments with different maturities and

the same technical bases.

16In this case, Pure Endowment gives the right to a benefit that expires only when the

insured survives to maturity, while Term Insurance pays a benefit to the beneficiary at

the end of the year if the policyholder dies during the year
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2.7.1. Pure Endowment - Local GAAP context

With reference to the application of the stochastic model to the cohort of

15,000 policyholders born in 1978 holders of Pure Endowments, the technical

bases used are now specified.

The second order demographic base qt, i.e. the one considered the best es-

timate of the mortality of the cohort, was calculated by applying the Lee

Carter model (details about calibration are provided later) applied to the

data relating to the Italian population from 1872 to 2018 contained in the

Human Mortality Database. The first order demographic basis, therefore the

one used in the pricing phase and containing an implicit safety loading, is

calculated by reducing the mortality rates of the second order demographic

base by 20%. Hence, with reference to formula 32 of the profit expected value

in a Local GAAP context, λx+t =
q∗x+t − qx+t

qx+t

= −20%.

To facilitate the presentation of the results, the following Figure 2 shows the

trend of the SaR calculated with the first-order technical bases previously

declared. The strong variation of (DLG,compl
t+1 ) over the 20-year time span is

observed: it decreases up to −100% at maturity, with a concavity propor-

tional to both the technical rate and the probability of death. Therefore,

considering the expected value of the demographic profit calculated in a Lo-

cal GAAP context and the standard deviation, it is possible to anticipate

that the magnitude of the SaR rate will deeply affect them. Consistently

with what was previously stated, it is noted that for the same λx+t, the ex-

pected value of the demographic profit in the Local GAAP context varies

according to two drivers: (DLG,compl
t+1 ) and E

[
d̃t+1

]
. The first of them, as

presented in Figure 2, is strictly increasing in absolute value with consider-
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Figure 2: Behaviour of SaR rate - Pure Endowment Case

Figure 3: Behaviour of Expected Value - Pure Endowment Case

able variations, the second undergoes two effects: the increasing probability

of death over time one and that of the increasingly reduced cohort. It is

specified that although E
[
d̃t+1

]
is slightly increasing (the relative value from
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0.04% to 0.36%) the main driver of the expected value is the SaR rate.

Figure 4, on the other hand, shows the trend of the standard deviation: also

in this case it is possible to observe that the trend is mainly dictated by that

of the SaR rate. In this context, however, it is observed that the volatility

of the insured sums of procured deaths z̃t+1 increases as t grows up: in fact,

observing the ratio qt · (1− qt), it is noted how it grows as qt tends to values

close to 0.5 (see formula (33)).

An interesting aspect concerns the analysis of the CoV, understood as the

ratio between the standard deviation and the expected value. It is observed

that as the valuation instant t increases, this ratio increases, passing from

22% to about 67%: the relative volatility therefore increases where the effect

of term qt · (1− qt) becomes more relevant.

Figure 4: Behaviour of Standard Deviation - Pure Endowment Case

Figure 5 shows the skewness trend: with reference to formula (34), it is ob-

served that since the SaR rate is negative, the skewness of the distribution
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Figure 5: Behaviour of Skewness - Pure Endowment Case

is always positive if qt < 0.5. This phenomenon occurs by virtue of the

non-extreme age of the policyholders: however, as t increases, the nominator

of the above mentioned formula increases, reducing the value and showing

distributions more and more similar to the Normal one. It is specified that

the effect is not linear because the denominator grows quadratically for the

reasons explained when the trend of the standard deviation was shown.

Table 3 shows the results relating to the simulations of the random variable

ỹLG,Dem
t+1 in three different years: the first year of the contract (t = 1), in tenth

year (t = 10) and in last year (t = 20). Each time span was simulated with

10 millions of scenarios: this choice derives from the fact that the possibility

of converging towards the exact moments of the distribution requires only

17 minutes, hence it’s not time consuming17. On the one hand it is observed

17Working in parallel with a Intel i7 8700K processor (6 Cores, 12 Threads)
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Table 3: Simulated and theoretical characteristics of idiosyncratic profit and loss distri-

bution for a Pure Endowment contract for three different time periods in a Local GAAP

context

Pure Endowment t=1 t=10 t=20

Theoretical expected value 5,706 186,600 1,095,008

Simulated mean 5,749 187,882 1,101,972

Theoretical standard deviation 25,295 468,605 1,657,030

Simulated standard deviation 25,306 467,042 1,649,935

Theoretical skewness 3.26 1.84 1.10

Simulated skewness 3.25 1.83 1.09

Solvency Capital Requirement 22,178 522,639 1,880,416

SCR/Sums insured 0.001% 0.035% 0.129%

that the high number of simulations allows to obtain simulated results very

close to theoretical results: obviously these results are a good approximation

to decreasing volatility. On the other hand it is observed that through Monte

Carlo simulations it is possible to identify the percentiles of the ỹLG,Dem
t+1 dis-

tribution, in particular the order 0.5% one: it is therefore an estimate of the

SCR in a Local GAAP context consistent with formula (5).

In conclusion, Figure 6 shows the simulated distributions over different time

horizons t: it is interesting to observe how all the effects described so far

can be seen jointly. As t increases, both the expected value (shifting the

distributions to the right ) and the standard deviation increase (flattening

the distributions), while the skewness reduces making the distributions more

asymmetric.

In this regard, the relationship between the SCR and the standard deviation
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Figure 6: Simulated profit distributions - Pure Endowment Case

is observed: net of the effect of the SaRs, it is observed that this value in-

creases from 0.88 to 1.14. This phenomenon is mainly linked to the decrease

in skewness over time: since the distribution of the demographic profit tends

(without reaching it, see at the value equal to 1.10 in t = 20) to a Gaussian

distribution, the limit is that of the 2.58 identified from the QIS n.2 (see

formula (38)).

2.7.2. Term Insurance - Local GAAP context

Also in this case study the data shown in Table 2 is used: the only substantial

difference concerns the first-order demographic technical basis.

IAlso in this case, the demographic basis of the second order is still calcu-

lated by applying the Lee-Carter model to the data from 1972 to 2018 of the

Italian population contained in the HMD. The first order demographic base

is calculated by increasing the mortality rates of the second order basis by
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2.7 Numerical results

20%. It follows that λx+t = 20%.

Figure 7: Behaviour of Skewness - Pure Endowment Case

In Figure 7 we show the behaviour of the SaR rate which, consistent with

formula (19), is calculated as the complement to 1 of the mathematical re-

serve rate computed with the prudential and locked bases of the first order.

It is observed that this behaviour is diametrically opposite to that of a Pure

Endowment: on the first hand its shape is convex (therefore decreasing in

the first development years and subsequently increasing), secondly its range

of variation is extremely limited, in fact it is always very close to the value

of 1.

The first intuition is that in this context, the structural characteristics of the

policy will not influence so much the determinations of the expected value

and the standard deviation, while the fact that the SaR rate is always pos-

itive will profoundly modify the skewness. Figure 8 shows the trend of the
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Figure 8: Behaviour of Standard Deviation - Pure Endowment Case

expected value of the demographic profit: it is observed that since the ab-

solute value of λx+t and E [z̃t+1] are unchanged, the only difference between

the case of Term insurance and that of Pure Endowment concerns the trend

of the SaR rate. Since both SaR rates converge to the value of 1 at maturity,

the most evident differences can be seen in the first part of the behaviour:

in this regard, it should be remembered that the expected value of the de-

mographic profit calculated in a Local GAAP context in the case of Pure

Endowment was just over 5,000 euros: in this case E
[
ỹLG,Dem
1

]
≃ 128, 000.

With reference to the standard deviation, it is observed that it undergoes

the same effects as the expected value: in particular, it is observed that both

the standard deviation of Pure Endowment and that of Term Insurance grow
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2.7 Numerical results

Figure 9: Behaviour of Skewness - Pure Endowment Case

in the same way with reference only to the

√
qx+t · (1− qx+t)

lx+t

· r2,C factor.

The difference between the two standard deviations concerns exclusively the

SaR rate: in particular, at maturity (where the absolute values of both SaR

rates are equal to 1) the two standard deviations coincide; in the first times

the volatility of Term Insurance is much higher. With reference to skew-

ness, a singular phenomenon is observed: since the intrinsic characteristics

of the policies are reflected only on the SaR rate and this rate affects only the

skewness sign, the Pure Endowment skewness module is equal to the skew-

ness module of Term Insurance. Obviously, since Term Insurance’s SaR rate

is always positive in a Local GAAP context (unlike that of Pure Endowment

always negative), the Skewness sign of Term Insurance is opposite to that

of Pure Endowment.Therefore, as shown in Figure (10), in the first instants
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2.7 Numerical results

Figure 10: Behaviour of Skewness - Pure Endowment Case

it assumes strongly negative values close to −3 and subsequently increases

reaching values close to −1.

Table 4 shows the simulated and analytically results related to the charac-

teristics of the demographic profit distribution calculated in a Local GAAP

context of a cohort of 15,000 policyholders holding Term Insurances.

The first interesting aspect is that when the SaR rate of the policy is equal to

1 (at maturity), the exact moments coincide with those of the Pure Endow-

ment case. Since also in this case 10 million scenarios have been simulated

for each distribution, the simulated results are very close to the theoretical

results and this element allows to calculate the Capital-at-Risk with a high

precision. In this regard, the SCR grows as the standard deviation increases,

but the ratio between the simulated value and the standard deviation itself
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Table 4: Simulated and theoretical characteristics of idiosyncratic profit and loss distri-

bution for a Term Insurance contract for three different time periods in a Local GAAP

context

Term Insurance t=1 t=10 t=20

Theoretical expected value 127,841 396,959 1,095,008

Simulated mean 128,426 394,563 1,102,456

Theoretical standard deviation 566,728 990,865 1,657,030

Simulated standard deviation 567,359 988,636 1,652,745

Theoretical skewness -3.26 -1.84 -1.10

Simulated skewness -3.25 -1.83 -1.09

Solvency Capital Requirement 2,723,310 4,027,834 4,954,808

SCR/Sums insured 0.182% 0.271% 0.341%

decreases, passing from values about to 4.83 to 3.This effect is due to the

shape of the distributions: when the time horizon t is close to the signing

of the contract, the distributions are particularly asymmetric (with negative

skewness) and the percentile is in the far left tail. When t grows, the distri-

bution is more and more similar to a Normal which would have a multiplier

equal to 2.58 identified by QIS n.2 (see formula (37)). In conclusion, as in the

case of the Pure Endowment, the distributions of profit over different time

spans are shown in Figure 11: it should be noted that the distributions are

sharper than the analogue relating to PE; they also are more volatile and less

concentrated around the average value when t is far to 0. From the figure

it is also possible to see that the shape of the distributions is asymptotically

convergent to a Normal: it is therefore evident that the Capital Requirement

can be approximated by 2.58 · σ(z̃t+1) only when it is calculated for cohorts
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Figure 11: Simulated profit distributions - Term Insurance Case

with annual probability of death close to 50% and without expected profit.
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3. The market consistent valuation: the bridge

between the Local GAAP framework and

the market consistent one

3.1. Introduction

Up to now, a model based on risk theory has been adopted which, through

the cohort approach, allows to model both the demographic profit quantified

in a Local GAAP context, and the main variables that characterize it.

This section is not exclusively oriented to present an innovative stochastic

model which aims to the calculation of the SCR, but rather to present a

bridge that highlights the transition from the Local GAAP context to the

market-consistent one introduced by Solvency II.

The first purpose is to present a decomposition of the company’s technical

profit, as presented in formula (14), considering however that the Technical

Provisions are no longer calculated as the expected present value of cash

flows with locked and prudential bases, but using the Solvency II principles

presented in Section 1. In this context, attention is paid to the demographic

profit which, intuitively, is not only affected by the idiosyncratic volatility

deriving from stochastic deaths, but also by the risks associated with the

possibility of changing the best estimates of mortality rates and the risk

associated with changes risk-free rates. In conclusion, a fundamental recur-

sive equation is presented in the market consistent context that will allow

us to quantify the exact moments of the ”idiosyncratic demographic useful”

distribution in the next section.
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3.2 Homans’ revised decomposition

3.2. Homans’ revised decomposition

The first goal is to convert formula (13) so that it is consistent with the

regulations relating to Solvency II, (see, e.g. [21] and [19]). The problem

therefore concerns the calculation of the technical provisions calculated in

the Local GAAP context as the expected present value of cash flows, using

the first-order locked and prudential bases as technical bases.

It is noted that the liabilities linked to life-time insurance policies are non-

hedgeable: in particular it is not possible to think of any financial instrument

commonly traded on the markets (or a portfolio of instruments) whose cash

flows can replicate those of the policy in object. For these reasons, consis-

tently with article 77 of the Delegated Acts, they must be calculated as the

sum of the Best Estimate and Risk Margin.

As detailed in Section 1, the replacement of the technical provisions with the

sum of the Best Estimate and Risk Margin would be consistent in models

oriented to liabilities valuation or to undertaking profit assessment, however

not the case of SCR calculation. In the case relating to the SCR, the legisla-

tion clearly specifies (see, e.g. Art. 83 Technical Specifications) that changes

in the Risk Margin must not be included in the calculation of the capital

requirement. Hence, in the continuation of the report, we will speak of ran-

dom variable ”profit” not in the business sense, but only with reference to

the calculation of the capital requirement indeed the technical provisions will

be represented only by the Best Estimate component.

The market-consistent (MC) insurance profit is divided into 5 components,

so that the effects of the main drivers are separated, as far as possible.

Ỹ MC
t+1 = ỹMC,Dem

t+1 + ỹMC,Fin
t+1 + ỹMC,Lapse

t+1 + ỹMC,Exp
t+1 + ỹMC,Res

t+1 (39)
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3.2 Homans’ revised decomposition

It is specified that the proof relating to the decomposition into the five com-

ponents follows simple algebra. With reference to formula (39), it is noted

that it is possible to break down the technical-insurance profit of the under-

taking into 5 components, i.e according to the drivers underlying the model.

In particular, ỹMC,Dem
t+1 is the profit linked to fluctuations in mortality rates,

whatever their nature (therefore both idiosyncratic variations and variations

in the mortality trend are considered). ỹMC,Fin
t+1 is the profit linked to financial

aspects: it arises from the difference in various financial technical bases used:

the premiums are calculated with the locked and prudential technical rate

j∗, the Best Estimate is discounted with the risk-free rates and the under-

taking, through the investment of premiums and reserves, obtains a specific

(stochastic) financial return. The third component, ỹMC,Lapse
t+1 , is the lapse

margin and is linked to the difference between the assumptions in terms of

surrenders and the actual realizations of the homonymous random variable.

The forth component, ỹMC,Exp
t+1 , is the so-called expense margin and arises

from the difference between the expense loadings collected by the undertak-

ing and the expenses actually incurred, i.e. those of acquisition, collection

and management. The last component, ỹMC,Res
t+1 , which the relative effect on

the insurance profit is almost negligible, is the residual profit and arises from

the interaction between expense loadings and financial returns.

Now we introduce, from a quantitative point of view, the demographic profit

(technical profit first component):

ỹMC,Dem
t+1 = [be

Rf(t),q(t)
t + bt+1(1− α∗ − β∗)− γ∗](wt − s̃t+1)(1 + j∗)+

− (x̃t+1 + w̃t+1 · b̃e
R̃f(t+1),q̃(t+1)

t+1 )
(40)
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3.2 Homans’ revised decomposition

It is possible to observe that, although this component is oriented to quantify

the effects of changes in both expectations and mortality realizations, other

random variables come into play: in particular the volatility linked to lapses

and that linked to the new interest risk-free curve R̃f(t + 1), available in

t + 1. Considering again formula (40), it is possible to observe that it is

very similar to formula (15): both calculate the demographic profit as the

difference between the sum of reserves and premiums net of the sum of claims

paid and new reserves, but in the market-consistent context the reserves

V Bt+1 are replaced by the Best Estimate rate b̃e
R̃f(t+1),q̃(t+1)

t+1 .

Due to the presence of risk-free rates in the formulation of the demographic

profit, it is difficult to treat it as a Leibnizian monad. For this reason,

the formulation of the financial component is now presented specifying the

importance to give an insight into the double effect of risk-free rates (and,

more generally, of the financial basis), both on the first and on the second

component of the technical profit.

ỹMC,Fin
t+1 =(j̃t+1 − j∗) · (beRf(t),q(t)

t · wt + bt+1(1− α∗ − β∗)(wt − s̃t+1)+

− (γ∗wt)− (g∗t · be
Rf(t),q(t)
t · s̃t+1)

(41)

where g∗t is a specific penalization coefficient applied in case of surrender. It

is noted that net of the part relating to the penalty of lapses, the financial

profit mainly depends on the difference between j̃t+1 and j∗. In this case,

it is equal to the sum of the technical provisions calculated in a market-

consistent context and the pure premiums multiplied by the spread between

the actual returns obtained from the company’s investments (of reserves and

premiums) and the technical rate (first-order financial basis) guaranteed to

policyholders. It is noted that in this context the technical rate, which works
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3.2 Homans’ revised decomposition

as a financial guarantee returned to the policyholders, represents a share of

the financial profit obtained by the company: the profit is positive only if

what is obtained as an investment is sufficient to cover what is guaranteed

to the policyholders.

The third component, the lapses linked one, is defined as:

ỹMC,Lapse
t+1 = (be

Rf(t),q(t)
t − γ∗ − g∗t · be

Rf(t),q(t)
t ) · (1 + j∗) · s̃t+1 (42)

From formula (42) it is understood that the profit in the event of lapses

derives from two conditions:

� Surrenders occurs: in this context, policyholders are treated as inde-

pendent and identically distributed random variables with the same

lapse rate

� In the event of surrender, the policyholder receives an amount lower

than the amount allocated to the reserve. In this context, the previ-

ously mentioned coefficient g∗t is precisely aimed to penalize the pol-

icyholders by guaranteeing a profit that can replace the demographic

and/or financial one.

g∗t =

0 if t < τ

(1 + js)
−(m−t) if t >= τ

(43)

where τ > 0 and j∗s < j∗ are fixed by the undertaking. I add a proposal

relating to g∗t with a typical increasing and convex trend. It is observed that

for the first moments the lapse is not even allowed, subsequently it assumes

values typically calibrated above 80% and then converges to 1 at maturity.
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We define the expenses linked component, the fourth one, as:

ỹMC,Exp
t+1 = (1 + j∗)[(∆α∗

t+1 +∆β∗
t+1) · bt+1 · (wt − s̃t+1) + ∆γ∗

t+1 · wt] (44)

where ∆α∗
t+1, ∆β∗

t+1 and ∆γ∗
t+1 depend on the differences between the first

order expense assumptions and the realistic ones.

The last component, is the residual profit:

ỹMC,Res
t+1 = (j̃t+1 − j∗)[(∆α∗

t+1 +∆β∗
t+1) · bt+1 · (wt − s̃t+1)+

+∆γ∗
t+1 · wt]

(45)

3.3. The bridge from Local GAAP to MCV framework

The purposes of this and next subsections are to present two fundamental

aspects of the model:

1. how to break down the demographic profit of formula (40) into separate

submodules;

2. what is the relationship between the demographic profit of formula (15)

(Local GAAP) and the market consistent formula (40)

With reference to the breakdown of the market consistent demographic profit,

we consider adding and subtracting the following three terms:

� w̃t+1·b̃e
Rf(t+1),q̃(t+1)

t+1 : representing the product between the insured sums

(stochastic) at time t + 1 and the best estimate rate calculated with

a deterministic curve of risk-free rates and stochastic assumptions on

mortality q̃(t + 1). In particular, it is specified that the risk-free rate

curve used in t+1, Rf(t+1) coincides with the forward rates inferable

from the spot rates of the curve available at time t,
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3.3 The bridge from Local GAAP to MCV framework

� w̃t+1·beRf(t+1),q(t+1)
t+1 : representing the product between the insured sums

at time t+1, w̃t+1 and the best estimate of the reserves using the risk-

free rate curve achievable from the curve available at time t (i.e. the

forward rates) Rf(t+1) and the same demographic assumptions of the

previous instant q(t+1) = q(t) = q, as if the company confirmed them.

� it(t, t+1)·(wt− s̃t+1)·[beRf(t),q(t)
t +π]: representing the product between

the sum of the best estimate at the valuation instant t and the pure

premiums amounts and the risk-free rate it(t, t+ 1)

The result is the following:

ỹMC,Dem
t+1 = ỹIdiost+1 + ỹTrend

t+1 + ỹRiskFree
t+1 + ỹNDM

t+1 (46)

where:

1. The idiosyncratic risk:

ỹIdiost+1 = [be
Rf(t),q(t)
t + bt+1(1− α∗ − β∗)− γ∗](wt − s̃t+1)(1 + it(t, t+ 1))+

− (x̃t+1 + w̃t+1 · beRf(t+1),q(t+1)
t+1 )

(47)

It quantifies the variability linked to the stochastic process of deaths

in the strict sense, i.e. to the fact that we are working with random

variables. It should be noted that in this context, the best estimate rate

is also deterministic for t+1: it is calculated on the same technical basis

used at the beginning of the year, therefore the only source of variability

is linked to the deaths of the cohort and, consequently, with formula

(20), to the sums insured,
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3.3 The bridge from Local GAAP to MCV framework

2. The trend risk:

ỹTrend
t+1 = −w̃t+1 · (b̃e

Rf(t+1),q̃(t+1)

t+1 − be
Rf(t+1),q(t+1)
t+1 ) (48)

This second component mainly concerns the difference between the

best estimate calculated at time t + 1 with the same demographic as-

sumptions used at time t and the new assumptions deriving from the

new information contained in the filtration Ft. It is specified that this

component also depends on the volatility of the insured sums since the

amounts of the best estimates are stochastic.

3. The risk-free linked risk:

ỹRiskFree
t+1 = w̃t+1 · (b̃e

R̃f(t+1),q̃(t+1)

t+1 − b̃e
Rf(t+1),q̃(t+1)

t+1 ) (49)

This third component, net of the amounts w̃t+1, is equal to the dif-

ference between the effective best estimate computed on the basis on

rates published by EIOPA in t + 1 and that calculated in t + 1 using

the risk-free interest rate curve available at time t . A thorny aspect

is linked to the fact that the demographic base used is the effective

second order one used in t+ 1, therefore unknown at time t. However,

it is considered that within the round brackets there is the difference

between two best estimates where they have both the same number of

terms, the same amounts and the same stochastic survival/death prob-

abilities.

It is therefore possible to observe that if the risk-free curve available

in t + 1 is equal to what is predicted in t, this component disappears.

Depending on the variation of the rates (only and only if the risk-free
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3.4 Model algebra and underlying recursive formula

rates are specified) there will be a profit/loss whose magnitude de-

pends on the best estimate of mortality at t+ 1. Since the sign of the

component depends only on the risk-free rates, it is believed that this

third component belongs to the Financial Profit, second component, of

the Demographic risk, as presented in formula (39). The joint study of

mortality and risk-free rates can be a further starting point for research

either to quantify the dependence between the two risks and to grasp

the overall effect of the two sources on the company’s SCR.

4. The non mortality-depending risk:

ỹNDM
t+1 = (j∗ − it(t, t+ 1)) · (wt − s̃t+1) · [beRf(t),q(t)

t + π] (50)

The last component does not depend on mortality. Therefore, if the

effect of lapses were ignored, a purely deterministic amount would be

obtained whose main driver is the spread between the risk-free rate and

the guaranteed technical rate. The analysis of this risk free component

is not dealt in this thesis because it does not modify the volatility of

the demographic profit; it should be considered when evaluating the

overall undertaking’s profit.

3.4. Model algebra and underlying recursive formula

Having presented the four components of demographic risk (idiosyncratic,

trend, risk-free and not mortality-depending), we now demonstrate the rela-

tionship with the demographic risk of the Local GAAP context reported in

formula (15).

By definition, the demographic risk of the Local GAAP context measures
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3.4 Model algebra and underlying recursive formula

the risk of suffering losses linked to adverse fluctuations in mortality rates:

it is noted that this definition coincides with that of idiosyncratic risk. it is

therefore natural to start from formula (47) to try to rewrite it as a func-

tion of the compact version of formula (18). In order to clearly show all

the drivers of the model, the component linked to the volatility of risk-free

rates is also considered: it has been stated that ỹRiskFree
t+1 should be allocated

to the ỹMC,Fin
t+1 component and the reason will be clear from the following

demonstration. To this end, a new quantity is introduced, indicated with

epvj
∗,q

t , which coincides with the expected present value of the cash-flows net

of the expected present values of the premiums. The technical bases used are

a hybrid between the locked and prudentials of the technical provisions of

the Local GAAP context and the dynamic and updated ones of the Solvency

II framework. The technical rate coincides with the first-order financial base

j∗, while the demographic base coincides with the second-order table q.

ỹIdiost+1 + ỹRiskFree
t+1 + ỹNMD

t+1 = ỹLG,Dem
t+1 + ỹMCV Rf−j∗

t+1 +1 ỹ
MCV q−q∗
t+1 (51)

The proof of the above derives from simple algebra and from the use of the

recursive formula (20).

In this context,

� ỹLG,Dem
t+1 is defined exactly as in formula (15),

� ỹMCV Rf−j∗
t+1 is defined as:

ỹMCV Rf−j∗
t+1 =(wt − s̃t+1) · [(beRf(t),q

t − epvj
∗,q

t )(1 + j∗)− (b̃e
˜Rf(t+1),q

t+1 − epvj
∗,q

t+1 )]

+ (b̃e
˜Rf(t+1),q

t+1 − epvj
∗,q

t+1 ) · z̃t+1

(52)
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Net of the component linked to the insured sums of occurred deaths

z̃t+1, this is greater than 0 when the jump between the best estimate

and the expected present value calculated on the same demographic

basis, but with a financial basis equal to the first-order technical rate,

is greater than the analogous jump in t+ 1, discounted for one year.

�

ỹMCV q−q∗
t+1 =(wt − s̃t+1) · [(epvj

∗,q
t − vbt )(1 + j∗)− (epvj

∗,q
t+1 − vbt+1)]+

(epvj
∗,q

t+1 − vbt+1) · z̃t+1

(53)

Net of the component linked to the insured sums of occurred deaths

z̃t+1, this is greater than 0 when the jump between the expected present

value calculated and the Local GAAP mathematical reserve calculated

on the same financial basis, but with a demographic basis equal to the

first-order mortality rate, is greater than the analogous jump in t + 1,

discounted for one year.

Remark. The following proof, aimed at proving that E
[
ỹLG,Dem
t+1

]
= −E

[
ỹMCV q−q∗
t+1

]
,

allows to highlight two fundamental aspects of the model represented by for-

mula (46):

1. Since various sources of uncertainty come into play in the definition

of market-consistent demographic profit, it is necessary to divide them

according to the source of risk itself (idiosincratyc, trend, iteration

between risk-free and mortality and lapse risk). For this reason, the

present proof will give an important indication that leads to the specific

decomposition of formula 46
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3.4 Model algebra and underlying recursive formula

2. The definition of the 4 components and of the idiosyncratic one in

particular, arises from a particular recursive equation (which will be

demonstrated in the Theorem) whose definition, however, arises from

the demonstration that E
[
ỹLG,Dem
t+1

]
= −E

[
ỹMCV q−q∗
t+1

]
Considering formula (20), we can rewrite the right member of formula (51)

as:

1ỹ
LG
t+1 +1 ỹ

MCV q−q∗

t+1 =
(
π + epvj

∗,q
t

)
· (wt − s̃t+1) · (1 + j∗)

− x̃t+1 − epvj
∗,q

t+1 · (wt − s̃t+1 − z̃t+1)

= (wt−s̃t+1) ·
[(

π + epvj
∗,q

t

)
· (1 + j∗)− epvj

∗,q
t+1

]
+epvj

∗,q
t+1 · z̃t+1 − x̃t+1

(54)

The next step is to calculate the expected value. Since the equality concerns

”best estimates” and ”expected present values” it is necessary to define these

quantities from a practical point of view. To this end, the most generic case

possible is considered, namely that of an Endowment with regular premiums.

Obviously, the case of regular premiums is the general case of single premiums

since in the latter case it is sufficient to set all the terms of the premium

carrier to 0, except for the first. It is also specified that an Endowment is

a policy that guarantees a specific sum insured in the event of the death of

the insured at each possible anniversary of the policy in the event of death

or sum insured to maturity in the event of survival. For this reason, by

incorporating both benefits in the event of death and benefits in the event

of survival, any demonstration involving it can be extended to both policies

with benefits only in the event of death (Term Insurance) and policies with

benefits only in the event of survival. (Pure Endowments or Annuities).

80



3.4 Model algebra and underlying recursive formula

Therefore formula (54) is considered and its expected value is calculated:

E
[
1ỹ

LG
t+1 +1 ỹ

MCV q−q∗

t+1

]
=

E [wt − s̃t]
[(

π + epvj
∗,q

t

)
· (1 + j∗)− epvj

∗,q
t+1

]
+ epvj

∗,q
t+1 · E [z̃t+1]− E [x̃t+1]

Since x̃t+1 = z̃t+1 for an endowment contract and E [z̃t+1] = qx+t ·E [wt − s̃t],

we have:

E
[
1ỹ

LG
t+1 +1 ỹ

MCV q−q∗

t+1

]
=

E [wt − s̃t]

((
π + epvj

∗,q
t

)
· (1 + j∗)− epvj

∗,q
t+1 · px+t − qx+t

)

Since empirical analysis shows that the expected value of the two components

is equal to 0 when t > 0, we proceed to the analysis of the recursive formula

highlighted in the round brackets.(
π + epvj

∗,q
t

)
· (1 + j∗) = epvj

∗,q
t+1 · px+t + qx+t (55)

In the case of a endowment contract with unitary sum insured, we have:

epvj
∗,q

t =n−tpx+t · (1 + j∗)−(n−t) +
n−t−1∑
h=0

h/1qx+t · (1 + j∗)−(h+1)+

− π
n−t−1∑
h=0

hpx+t · (1 + j∗)−h =

n−tpx+t · (1 + j∗)−(n−t)+

+ (qx+t · (1 + j∗)−1 +
n−t−1∑
h=1

h/1qx+t · (1 + j∗)−(h+1))+

− π · (1 +
n−t−1∑
h=1

hpx+t · (1 + j∗)−h)
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3.4 Model algebra and underlying recursive formula

That, for s = h− 1, could be rewritten as:

epvj
∗,q

t =n−tpx+t · (1 + j∗)−(n−t)+

+ (qx+t · (1 + j∗)−1 +
n−t−2∑
s=0

(s+1)/1qx+t · (1 + j∗)−(s+2))+

− π · (1 +
n−t−2∑
s=0

spx+t · (1 + j∗)−(s+1))

Considering now:

epvj
∗,q

t

1Ex+t

=n−t−1px+t+1 · (1 + j∗)−(n−t−1)+(
qx+t

1px+t

+
n−t−2∑
s=0

(s+1)/1qx+t

1px+t

· (1 + j∗)−(s+1)

)
+

− π

1Ex+t

− π ·
n−t−2∑
s=0

spx+t+1 · (1 + j∗)−s

we have:
epvj

∗,q
t

1Ex+t

= epvj
∗,q

t+1 − π

1Ex+t

+
qx+t

1px+t

and, with simple algebra, easily follows equation (55). Therefore, it has been

shown that formula (55) is a recursive equation: it is similar to Fouret one,

with the difference that epvj
∗,q

t+1 and π are calculated on a different demo-

graphic basis (respectively q and q∗).

It follows that, if all the components are well defined (i.e. when none as-

sumes a value of 0 by construction, e.g. when t = 0), E
[
ỹLG,Dem
t+1

]
=

−E
[
ỹMCV q−q∗
t+1

]
.

The most interesting aspect of this proof concerns two insights into formula

(40):

� On the one hand, it is necessary to isolate the effects of (1 + j∗): in

particular, the sum of the best estimate rate and the pure premium is
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3.4 Model algebra and underlying recursive formula

not consistent with the capitalization rate. To this end, through the

Theorem proposed below it will be shown that the coherent rate is the

risk free one between t and t+1, it(t, t+1): for these reasons the ỹNDM
t+1

component is built in formula (46).

� On the second hand, it is necessary to consider separately the differ-

ences between the actual realizations of the risk free and mortality

random variables from the respective average values. For these rea-

sons, these effects are specified in the Trend Risk and Risk Free Risk

components of formula (46), called respectively ỹTrend
t+1 and ỹRiskFree

t+1 .

Theorem 1. 18 Considering a without-profit endowment insurance contract

that pays a lump sum equal to 1 either in case of death or in case of survival

at the end of the contract and without benefits in case of lapses, if second-

order technical bases at time t and time t + 1 are the same, the following

recursive equation holds:

(bet + π)(1 + it(0, 1)) =/1 qx+t + bet+1 ·1 px+t (56)

where π is the regular premium rate, it(0, 1) is the one-year risk-free spot rate

in force at time t and bet and bet+1 are the pure best estimate rates computed

using realistic demographic and financial assumptions in force at time t and

neglecting expenses and expenses loadings.

Proof. We recall here the definition of the best estimate rate of an endowment

policy computed using realistic demographic assumption q and the risk-free

18The original version of this Theorem can be found in [13]
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3.4 Model algebra and underlying recursive formula

rate curve it in force at time t.

bet =n−tpx+t ·

[
n−t−1∏
h=0

(1 + it(0, h, h+ 1))

]−1

+

n−t−1∑
k=0

k/1qx+t

[
k∏

h=0

(1 + it(0, h, h+ 1))

]−1

− π · ä(x+t):(n−t)

(57)

where it(0, h, h+ 1) is a risk-free forward rates.

Previous formula is also equal to:

bet =n−tpx+t

[
n−t−1∏
h=0

(1 + it(0, h, h+ 1))

]−1

+/1 qx+t · (1 + it(0, 1))
−1+

n−t−1∑
k=1

k/1qx+t

[
k∏

h=0

(1 + it(0, h, h+ 1))

]−1

− π ·
n−t−1∑
h=1

hEx+t − π

(58)

From formula (58), we have that the following relation holds:

(bet + π) · (1 + it(0, 1))−/1 qx+t =n−t px+t

[
n−t−1∏
h=1

(1 + it(0, h, h+ 1))

]−1

+
n−t−2∑
s=0

(
(s+1)/1qx+t

[
s+1∏
h=1

(1 + it(0, h, h+ 1))

]−1)

− π ·
n−t−1∑
h=1

(
hpx+t

[
h∏

j=1

(1 + it(0, j, j + 1))

]−1)
(59)

Since, the estimation of the best estimate at time t+1 under the assumption

in force at time t is equal to:

bet+1 =n−t−1px+t+1

[
n−t−1∏
h=1

(1 + it(0, h, h+ 1))

]−1

+

+
n−t−2∑
k=0

(
k/1qx+t+1 ·

[
k+1∏
h=1

(1 + it(0, h, h+ 1))

]−1)
+

− π · ä(x+t+1):(n−t−1)

(60)
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3.5 Conclusions

it is noticeable that the right-hand side of formula (59) is equal to bet+1 ·1px+t.

Hence, we have:

(bet + π)(1 + it(0, 1)) =/1 qx+t + bet+1 ·1 px+t (61)

It is worth pointing out that the proof can be easily adapted to the cases of

single premiums, pure endowment or term insurance contracts and flat rates,

that have been also analysed in the thesis. All of these combinations can be

considered as special cases of the one that has been proved.

3.5. Conclusions

Section 3, full of technical demonstrations and analyses, is necessary in the

first place because it shows the need to divide the effect of compounding with

the technical rate (1+ j∗) by formula (46). On the other hand, by defining of

formula (61) as a recursive formula, highlights that this component (which

coincides with the idiosyncratic profit, see formula (47), must be treated

separately. For these reasons it is necessary that formula (46)) divides the

effects of changes in expectations, whether demographic (ỹTrend
t+1 ) or financial

(ỹRiskFree
t+1 ), from idiosyncratic risk itself.
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4. Idiosyncratic and trend risks

4.1. Introduction

In this section the concepts of idiosyncratic risk and trend risk are taken

up, their characteristics are studied by reaching closed formulas, the model

is applied to a case study and, by comparing the results with those of the

Local GAAP context, a methodology is proposed for the calculation of the

SCR partially similar to that used by Solvency II to quantify the Non-Life

Underwriting Risk.

In order to facilitate the reader’s understanding, the component of the de-

mographic profit (see formula 46) relating to idiosyncratic profit is taken

up:

ỹIdiost+1 = [be
Rf(t),q(t)
t + bt+1(1− α∗ − β∗)− γ∗](wt − s̃t+1)(1 + it(t, t+ 1))+

− (x̃t+1 + w̃t+1 · beRf(t+1),q(t+1)
t+1 )

In this context, it is noted that the only source of volatility relates to deaths

(hence the claims x̃t+1) and, consequently, the sums insured w̃t+1 at the end

of the valuation period. The most interesting issue is that the best estimate

rate, improperly defined, is calculated on the same realistic (and therefore

second-order) basis used in t, i.e. in the previous instant.

Conversely, considering the trend risk component shown below, the volatility

of interest concerns the mortality estimates that the company makes at the

time of valuation, generally different from those used in the previous instant.

ỹTrend
t+1 = w̃t+1 · (b̃e

Rf(t+1),q̃(t+1)

t+1 − be
Rf(t+1),q(t+1)
t+1 )
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4.2 Idiosyncratic Risk

4.2. Idiosyncratic Risk

Now take formula (47) and calculate the expected value; the second step will

be to rewrite it with a more compact notation, similar to formula (18), which

allows you to calculate standard deviation and skewness.

With reference to the expected value, it should be remembered that, where

the formula is well defined, it is of the recursive type: it is therefore reasonable

to expect that this expected value is equal to 0 when t > 1. The main problem

concerns the instant t = 0 where the rate of best estimate, not yet set aside,

is equal to 0.

4.2.1. The expected value

Lemma 2. Considering a generic risk-free rate curve Rf(t) and a generic

second order demographic assumption q(t), regardless of the first order pric-

ing bases (demographic assumption q∗ and technical rate j∗), when t = 1 it

is possible to define:

E
[
ỹIdios1

]
= −be

Rf(0),q(0)
0+ ·

(
1 + i0(0, 1)

)
· (w0 − E [s̃1]) (62)

where be
Rf(0),q(0)
0+ is the expected present value of the benefits net of the ex-

pected present value of the premiums, calculated in t = 1 using as demo-

graphic base q(0) and Rf(0) as risk-free discount curve.

Whereas when t > 0:

E
[
ỹIdiost+1

]
= (be

Rf(t),q(t)
t +π) ·(1+it(t, t+1))−px+t ·beRf(t),q(t)

t+1 −qx+t = 0 (63)

For t > 0, formula (63) is a recursive equation, therefore if there are no

changes in second-order demographic bases (i.e. the company does not
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4.2 Idiosyncratic Risk

change its expectations on future mortality), E
[
ỹIdiost+1

]
is equal to 0.

When t = 1, formula (62) of Lemma 1, is proved with following simple alge-

bra:

E
[
ỹIdios1

]
=(w0 − E [s̃1]) · (0 + π) ·

(
1 + i0(0, 1)

)
+

−
[
E [w̃1] · beRf(1),q(0)

1 + E [x̃1]

]
.

(64)

because be
Rf(0),q(0)
0 = 0 in t = 0.

Since for an Endowment x̃t+1 = z̃t+1
19 and E [z̃t+1] = qx+t · E [w̃t − s̃t], we

have:

E
[
ỹIdios1

]
=(w0 − E [s̃1])·[

(0 + π) ·
(
1 + i0(0, 1)

)
−
(
px · beRf(1),q(0)

1 + qx

)] (65)

For an endowment contract without lapses, we can rewrite (65) in the fol-

lowing way:

E
[
ỹIdios1

]
=(w0 − E [s̃1]) ·

(
π ·
(
1 + i0(0, 1)

)
−
[
px·(

n−1px+1

[
n−1∏
h=1

(1 + i1(0, h, h+ 1))

]−1

+

+
n−2∑
k=0

(
k/1qx+1 ·

[
k+1∏
h=1

(1 + i1(0, h, h+ 1))

]−1)
+

− π · ä(x+1):(n−1)

)
+ qx

])
(66)

19Using an Endowment policy is a sufficient condition to verify the validity of any other

policy: if we had considered a Pure Endowment (or an annuity) x̃t+1 = 0, if instead we

had considered a Term Insurance x̃t+1 = z̃t+1
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4.2 Idiosyncratic Risk

The best estimate at t = 0+ can be defined as follows:

be
Rf(0),q(0)

0+ =npx

[
n−1∏
h=0

(1 + i0(0, h, h+ 1))

]−1

+/1 qx · (1 + i0(0, 0, 1))
−1+

n−1∑
k=1

k/1qx

[
k∏

h=0

(1 + i0(0, h, h+ 1))

]−1

− π ·
n−1∑
h=1

hEx − π

(67)

Therefore, from (66) and (67), we have formula (62).

It is noteworthy that formula (62) defines the profit or loss that is released at

the inception of the contract. Demographic profit or loss is indeed generated

by the differences between the life table used for computing premiums and the

assumptions used for the computation of the best estimate (be
Rf(0),q(0)

0+ and

be
Rf(1),q(0)
1 ). Obviously in case no differences are observed, also the expected

value in formula (62) is zero since be
Rf(0),q(0)

0+ is zero.

4.2.2. The more compact version of the idiosyncratic risk

We focus now on the other characteristics of the distribution of the r.v. ỹIdt+1,

i.e. standard deviation and skewness; for this purpose a more compact ver-

sion of formula (47) is presented. We break down the best estimate rate into

a pure component bePt (expected present value of benefits net of expected

present value of premiums) and a component relating to expenses beEt (ex-

pected present value of expenses net of expected present value of loadings per

expense). Since both the financial basis used, i.e. the risk free curve available

at time t, Rf(t), and the demographic basis, best estimate of mortality rates

at time t, q(t), are the same both in the calculation of be
Rf(t),q(t)
t and in the

calculation of be
Rf(t+1),q(t+1)
t+1 , to facilitate understanding of the reader, the
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4.2 Idiosyncratic Risk

information on the technical basis is neglected.

ỹIdiost+1 =(wt − s̃t+1) ·

[
bePt + beEt + π

]
· (1 + it(t, t+ 1))+

−
[
w̃t+1 · (bePt+1 + beEt+1) + x̃t+1

] (68)

Considering the recursive formula (20) relating to the insured sums, we ob-

tain:

ỹIdiost+1 =(wt − s̃t+1) ·

[
bePt + beEt + π

]
· (1 + it(t, t+ 1))+

−
[
(wt − s̃t+1 − z̃t+1) · (bePt+1 + beEt+1) + x̃t+1

] (69)

By simple steps, we have:

ỹIdiost+1 =

[
(bePt + π)(1 + it(t, t+ 1))− bePt+1

]
(wt − s̃t+1)− x̃t+1 + bePt+1z̃t+1

− beEt

[
wt − s̃t+1(1 + it(t, t+ 1))

]
− beEt+1(wt − s̃t+1) + beEt+1z̃t+1

(70)

We consider now a further break down of formula (70): the pure premium

π is discomposed into the risk premium rate πr and the rate of savings pre-

mium πs. We could do it because formula (63) is a recursive equation (see

Theorem 1).

The two components of the π premium are defined as:

πr = qt(1k − bePt+1)(1 + it(t, t+ 1))−1

πs = bePt+1(1 + it(t, t+ 1))−1 − bePt

(71)

where

1k =

0 in case of Pure Endowments & Annuities

1 in case of Term Insurances & Endowments

(72)
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It follows that the πr risk premium rate can be written as:

πr = (π + bet)− bet+1(1 + it(t, t+ 1))−1 (73)

In a completely analogous way, it is possible to define for the component

relating to expenses:

πer = (πe + beEt )− beEt+1(1 + it(t, t+ 1))−1 (74)

By formula (70), we can write:

ỹIdiost+1 =

[
πr(1 + it(t, t+ 1))(wt − s̃t+1)

]
−x̃t+1 + bePt+1+

− πer
t+1(1 + it(t, t+ 1))(wt − s̃t+1) + beEt+1z̃t+1

(75)

and

ỹIdiost+1 =qt(I − bePt+1)(wt − s̃t+1)− x̃t+1 + bePt+1z̃t+1

− beEt+1(qt(wt − s̃t+1)− z̃t+1)
(76)

On the one hand, we now consider the case of Term Insurance and Endow-

ment policies, where x̃t = z̃t and 1k = 1, and on the other hand the case of

Pure Endowment and Annuities where x̃t = 0 and 1k = 0. In both cases it

is possible to rewrite the demographic profit linked to the idiosyncratic risk

as:

ỹIdiost+1 = D
Rf(t),q(t)
t+1

[
qt(wt − s̃t+1)− z̃t+1

]
(77)

4.2.3. Standard deviation and skewness of the idiosyncratic risk

Having defined a more compact version of formula (47), it is easy to calculate

both the standard deviation and the skewness of the idiosyncratic component

of demographic risk in a market-consistent context. To this end, the effect
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of lapses is neglected. As for the case study developed in the Local GAAP

framework, the dynamics of lapses impact the amounts of the insured sums

which, in turn, impact the idiosyncratic component. However, since the aim

is to calculate the SCR linked only to the components that depend on the

risk of mortality, the absence of surrenders is also neglected here. In this

way, it is also possible to compare the results with those of Section 2.

σ(ỹIdiost+1 ) ≈ D
Rf(t),q(t)
t+1 · σ(z̃t+1)

= |DRf(t),q(t)
t+1 | ·

√
σ2(d̃t+1) · C̄2

t+1 · r2,Ct+1

=
(
|DRf(t),q(t)

t+1 | · C̄t+1 · lt
)
·

√
qt · (1− qt)

lt
· r2,Ct+1

(78)

γ(ỹIdiost+1 ) ≈ −
(D

Rf(t),q(t)
t+1 )3

|DRf(t),q(t)
t+1 |3

· γ(z̃t+1)

= −
(D

Rf(t),q(t)
t+1 )3

|DRf(t),q(t)
t+1 |3

· γ(d̃t+1) ·
r3,Ct+1

(r2,Ct+1)
3/2

= −
(D

Rf(t),q(t)
t+1 )3

|DRf(t),q(t)
t+1 |3

· (1− 2qt)√
lt · qt · (1− qt)

·
r3,Ct+1

(r2,Ct+1)
3/2

(79)

The results obtained are now compared with the results of the model devel-

oped in the Local GAAP context. Following aspects are noticeable:

� By construction, the demographic risk constructed in the Local GAAP

context (see formula (18)) is attributable only to the idiosyncratic com-

ponent. Actually, a change in demographic expectations (or in risk-free

rates) does not affect the results of the Local GAAP model: in the same

way, the idiosyncratic risk component is sensitive only and exclusively

to actual changes in mortality rates with respect to their predicted

value.
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4.3 Trend risk

� Comparing formula (18) with formula (77) we observe that the only

differences concern D
Rf(t),q(t)
t+1 and qt: the first is a multiplicative compo-

nent of the only random variable of the formula, z̃t+1, while the second

is an additive component. The properties of variance are well known,

primarily that of translational invariance, the variability of the Local

GAAP context depends on the SaR rate calculated on the basis of the

locked and prudential first order, the variability of idiosyncratic risk in

the market consistent context depends on from the same quantity, but

calculated on the updated second order bases Rf(t) and q(t).

4.3. Trend risk

In this subsection we will deal with studying the trend risk component of the

demographic profit which, for simplicity, is reported below:

ỹTrend
t+1 = −w̃t+1 · (b̃e

Rf(t+1),q̃(t+1)

t+1 − be
Rf(t+1),q(t+1)
t+1 )

With reference to formula (48), above for convenience, it is observed that

there are two sources of volatility: the first one is related to insured sums

w̃t+1 and the second one is linked to expectations (second order) on the mor-

tality rates which the company will adopt in t+ 1, hence stochastic rates.

Insured sums, stochastic, are always a positive value while the driver of the

trend risk is the difference between the (deterministic) demographic assump-

tions q(t+1) and the stochastic ones q̃(t+1). Therefore, the random variable

z̃t+1 affects the amount of profit (if the spread is positive) or loss (in case of

negative spread), but not the sign.

For this reason, the main interest of this section will be oriented to the
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4.3 Trend risk

analysis of the distribution of b̃e
Rf(t+1),q̃(t+1)

t+1 and, consequently, of the afore-

mentioned spread. Even in terms of quantifying the SCR, the volatility of

w̃t+1 will be neglected: the joint assessment of w̃t+1 and q̃(t + 1) is instead

necessary for quantifying the dependence between the two random variables

and, therefore, for model the aggregation between SCRTrend
t+1 and SCRIdios

t+1 .

Therefore, the target on b̃e
Rf(t+1),q̃(t+1)

t+1 doesn’t regard the estimation of the

evolution of q̃(t + 1), but rather the volatility around the aforementioned

estimation assuming that the procedure is carried out in t as q(t) represents

the best estimate of the future mortality of the cohort. In this way it is

therefore possible to construct a confidence interval and, above all, to quan-

tify the percentile of order ϵ of the distribution: if this evaluation is made on

an annual time horizon and ϵ = 0.5%, then this methodology is completely

consistent with Solvency II.

In this thesis, the choice fell on Bootstrapping the Poisson log-bilinear model

for mortality forecasting (see [11]), a model that will be presented later, as it

manages to capture both the volatility linked to the estimate of the param-

eters, and the volatility of deaths.

4.3.1. The Poisson log-bilinear model

In this paragraph we recall the structure of the Poisson log-bilinear model

in order to explain the results of the numerical section and, above all, to

highlight the strengths and weaknesses of the model.

� The starting point coincides with the definition of the random variable

T̃x representing the residual life span of an individual of age x. It follows

that, for example, the probability that an individual of age x survives
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for h years is equal to:

hpx = P[T̃x > h]

µx is defined as the force of mortality (also called mortality intensity)

as the ratio between the instantaneous probability of death and a time

span of infinitesimal amplitude. In formulas:

µx(t) = lim
t→+0+

P[T̃x ≤ t]

t

= lim
t→+0+

tqx
t

(80)

We then introduce the survival function Sx(t) defined as:

Sx(t) = P[T̃x > t]

The definition of Sx(t) is necessary to define the central mortality rate

mx(t). Defined an age x, it is equal to the weighted average of the mor-

tality forces, with weights equal to the values of the survival function.

In formulas:

mx(t) =

∫ 1

0
Sx+u(t) · µx+u(t)du∫ 1

0
Sx+u(t)du

(81)

in this context it is assumed that the mortality force is piecewise con-

stant therefore, when 0 ≤ t ≤ 1:

– Constant and continuous function on its right. When 0 ≤ k < 1:

µx+k(t) = µx(t) (82)

– Coincidence between central mortality rate and force of mortality:

µx(t) = mx(t) (83)
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– Exponential formula of the probability of survival:

tpx = e−t·µx(t) (84)

� We assume that the number of deaths follows a Poisson distribution

based on the following assumptions:

Dx,t ∼ Poisson

(
Ex,tµx(t)

)
µx(t) = exp(αx + βxκt)

(85)

where Ex,t is used to indicate the exposure-to-risk at age x during

calendar year t, i.e. the total time lived by people aged x in year t

and where µx(t) is described by the Lee-Carter model (see [25]). In

particular, it is assumed that the logarithm of the mortality force is

described by a linear combination of three vectors of parameters α, β

and κ and by a disturbance factor.

αx describes the general shape of mortality according to different ages,

κt reproduces the underlying time trend, while the term βx is considered

in order to take into account the different effect of time t at each age.

� Instead of resorting to Singular Value Decomposition, we estimate the

model parameters by maximizing the log-likelihood function defined as:

L(α,β,κ) =
∑
t

∑
x

(
Dx,t(αx+βxκt)−Ex,te

(αx+βxκt)

)
+constant (86)

Vectors of parameters α, β, κ are obtained by an iterative algorithm

and under properly constraints to assure a unique solution:
∑

t kt = 0

and
∑

x βx = 1.
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� Finally, Box-Jenkins methodology is used to generate the appropriate

ARIMA time series model for forecasting of kt. In particular, the pa-

rameter κt is considered as a discrete stochastic process of the ARIMA

type (ARIMA (0,1,0) for men and ARIMA (0,1,1) for women, respec-

tively). The methodology allows to obtain an estimate µ̂x(t) for each

age x and time t.

� The procedure is iterated n times, following the parametric bootstrap

proposed in [11]. Bootstrap samples have been derived by simulating

Dn
x,t from a Poisson:

Dn
x,t = Ex,t · µx(t) (87)

Therefore, it is added a heteroskedatic noise that will consider greater

volatility for the most extreme ages. Given the new set of deaths Dn
x,t

obtained in each iteration, the Lee-Carter methodology is applied in

order to estimate µ̂n
x(t). The procedure involves the estimation of n

Poisson Lee-Carter models and as many forecasts. It is time-consuming

but allows to quantify the two volatilities previously mentioned in the

calculation of future best estimates rates.
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5. Numerical results

5.1. Introduction

The purpose of this concluding section is to show the application of the model

presented in the previous sections. In particular, the purpose is dual: on the

one hand we want to show the ability of the model to intercept the differ-

ent sources of uncertainty while remaining consistent with the accounting

principles of Solvency II, on the other hand we want to show how the new

framework is distant, in terms of capital requirement, from the Local GAAP

one.

In order to cover all aspects of a comparative nature between the two frame-

works, the characteristics of the cohorts and those of the market will be kept

unchanged, so that the only drivers of the differences between the two models

will be only the evaluation criteria linked to the technical liabilities of the

company.

We then proceed to the presentation of the results linked to the two com-

ponents of the demographic risk linked exclusively to the achievements /

expectations relating to mortality, i.e. the idiosyncratic and trend compo-

nents. Also in this section the two components will be treated separately

and evaluated in relation to the two elementary policies through which it is

possible to build each policy on the insurance market: Pure Endowment and

Term Insurance.
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5.2 Idiosyncratic risk results

5.2. Idiosyncratic risk results

In this section we will present the results of the model developed in Section

4 applied to both a Pure Endowment and a Term Insurance. As anticipated,

a particularly interesting aspect will be the comparison of the market consis-

tent results with those relating to the Local GAAP context: for this reason,

it is specified that the model parameters will be those proposed in Table 2.

This table will be shown below with an addition relating to risk-free rates:

from what has been learned, it is necessary to specify the risk-free rate curve

available at the time of valuation. Although the exact moments of the id-

iosyncratic demographic profit do not depend on the shape of the curve

(generally shared by EIOPA), it is observed that the formulation of the ex-

pected value of the market-consistent demographic profit when t = 1 (see

formula (62)) depends from the ratio between the first-order financial basis

used in the pricing phase j∗ and the risk-free rates of the curve. Because of

this reason, the assumption that the risk-free rates are constant and equal

to the value of the technical rate j∗ is added in the table below.

Therefore, in conclusion, this simplifying hypothesis is not strictly neces-

sary for the application of the model, but allows to neutralize the effect of

the spread between the two aforementioned financial rates on the expected

value. In this way it is possible to compare the proposed results with those

of Section 2 without having an extra distorting component.

5.2.1. Idiosyncratic risk - Pure Endowment

The starting point to analyse the characteristics of the idiosyncratic profit

is the SaR rate which, in the case of the Pure Endowment, is calculated as
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5.2 Idiosyncratic risk results

Table 5: Model parameters

Policyholders date of birth 31st December 1978

Policyholders gender Males

Policies moment of issue 31st December 2018 (t = 0)

Policy duration 20 y

Premium type Annual premiums (20 y)

Number of policyholders (l0) 15,000

Expected value of the single insured sum (CU) 100,000

CoV of the insured sums 2

Risk-free rates 1% (flat)

First order financial rate j∗ 1%

the opposite of the mathematical reserve: for this purpose it is presented in

Figure 12 the trend of the two SaRs, i.e. the market consistent one and the

one consistent with the Local GAAP framework. First of all it is specified

that although the two curves are very similar, both of them are calculated

on a unitary insured sum: a variation (even slight) is then multiplied by the

insured sums of the entire portfolio, so the overall effect is amplified.

Secondly, it is observed that for each value of t, the SaR rate Local GAAP

is strictly lower than the market consistent one: to understand the reason

it is sufficient to remember that, with the same technical-financial rate, the

mathematical reserve curve of the Local context GAAP is less convex than

the best estimate one since the first order death probabilities are lower than

the second order ones, hence it should be recalled that λx+t =
q∗x+t − qx+t

qx+t

=

−20%.
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5.2 Idiosyncratic risk results

Figure 12: SaR rates comparison: the market consistent one and the Local GAAP consis-

tent one

With reference to Table 6, the first element on which to focus is the expected

value. On the first hand, it is observed that, consistently with the recursive

formula (63), this expected value is always equal to 0 when t > 1. The most

interesting aspect is that the expected value, which, when t = 1, depends

mostly on be
Rf(0),q(0)
0+ , i.e. the expected present value of the benefits net of the

expected present value of the premiums. Since the cash flows are discounted

with the same technical rate of the first order (financial bases) with which

the pricing was done and since the demographic base of the first order is

prudential, the so-called be
Rf(0),q(0)
0+ is negative and the expected profit in

t = 1 is positive.

The fact that the expected profit is fully expected at the end of the first time

span, i.e. when t = 1 , has two notable implications:

� Unlike the Local GAAP context (see Table 3), where the expected profit

depends on the differnce between what is “expected” in the accounting
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5.2 Idiosyncratic risk results

Table 6: Simulated and theoretical characteristics of idiosyncratic profit and loss distri-

bution for a Pure Endowment contract for three different time periods in the market-

consistent context. Last two rows summarize SCR and SCR ratio with respect to sums

insured.

Pure Endowment t=1 t=10 t=20

Theoretical expected value 5,807,038 0 0

Simulated mean 5,807,024 -122 124

Theoretical standard deviation 23,115 464,869 1,657,030

Simulated standard deviation 23,091 463,478 1,632,732

Theoretical skewness 3.26 1.84 1.10

Simulated skewness 3.25 1.84 1.09

Solvency Capital Requirement -5,784,999 704,780 2,985,434

SCR/Sums insured -0.38% 0.05% 0.21%

year and what actually happens, in the market-consistent context the

profit is expected when a “new” difference is observed between the

technical bases of the first order and those of the second order. Since

the financial basis in this case study is the same, all expected profit is

entirely demographic.

� Having all the expected profit accounted for in a single payment is cer-

tainly a phenomenon to be managed for the company. This thesis does

not aim to give a practical solution, even if all the actuarial practices

known in the literature on the subject are feasible. An example could

be to split the expected profit in the various time-periods according to

the volume of premiums collected compared to the total.
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5.2 Idiosyncratic risk results

It is observed that the volatility of the demographic profit grows both as a

function of the increase in SaRs, and as the (realistic) probability of death of

the policyholders increases. These probabilities, at the same time, are strictly

lower than 0.5, hence the skewness decreases approaching its limit of 0. Com-

paring Table 3 (demographic profit distribution in the Local GAAP context)

with Table 6 (demographic profit distribution in the market consistent con-

text) and analysing the theoretical standard deviation, the absolute value of

the SaR rate is higher in the Local GAAP context, while the

√
qt · (1− qt)

lt
factor is the same in the two frameworks. The result is that the theoretical

standard deviation is greater in the Local GAAP context when the differ-

ence between the two SaR rates is greater: actually it occurs in the first time

spans then it’s decreasing until the expire date where the SaR rates are the

same, hence the volatilities are identical.

Finally, it is noted that the company’s SCR strictly depends on the volatility

of the demographic profit, therefore the idea behind the QIS n.2 is partially

confirmed, with the following specifications:

1. With reference to formula (36), it is possible to calculate it as the

product of a coefficient and the standard deviation of the demographic

profit,

2. The standard deviation must consider both the volatility of the deaths

of the cohort and the volatility of the sums insured. Both must be

calculated on realistic and non-prudential demographic bases used in

the pricing phase,

3. The multiplier of the standard deviation, indicated with k[γ(ỹMC,Dem
t+1 )],
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5.2 Idiosyncratic risk results

cannot be set equal to 2.58 because the shape of the distribution is not

that of a Gaussian and the skewness is strictly different from 0,

4. From an Internal Model perspective, the company must first calculate

the expected value of the demographic profit deriving from the use, at

the pricing stage, of prudential demographic bases, and then it must

spread it over the various time points with a methodology consistent

with the business of the company.

Figure 13: Simulated distributions of idiosyncratic profit and loss for a pure endowment

Figure 13 show the simulated distributions of the demographic profit ran-

dom variable over different time instants. Comparing it with Figure 11 it

is observed that the shapes of the distributions are very similar, with the

difference that the first is shifted to the right due to the profit deriving from

the use of prudential technical bases and the other distributions are centred

on 0.
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5.2 Idiosyncratic risk results

5.2.2. Idiosyncratic risk - Term Insurance

Also in this section, the starting point between the results of the appli-

cation of the stochastic model developed in the Local GAAP context and

that developed in the model consistent with Solvency II, coincides with the

analysis of the SaR rate. Figure 14, shows two characteristics of the SaR

Figure 14: SaR rates comparison: the market consistent one and the Local GAAP consis-

tent one

rate on which to focus: on the one hand the first values of the SaR rate

of the market-consistent scenario are greater than unity since, also in this

context, the demographic base of the first order is obtained with the goal

of having a constant absolute lambda value equal to 20%20. On the other

hand, net of the graphical effect of the figure, it is observed that since only

20Instead of reducing them, in the case of Term Insurance, first-order mortality rates

are calculated by increasing second-order mortality rates by 20%
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5.2 Idiosyncratic risk results

Table 7: Simulated and theoretical characteristics of idiosyncratic profit and loss distribu-

tion for a Term Insurance contract for three different time periods in the market-consistent

context. Last two rows summarize SCR and SCR ratio with respect to sums insured.

Term Insurance t=1 t=10 t=20

Theoretical expected value 8,696,520 0 0

Simulated mean 8,696,373 -49 331

Theoretical standard deviation 569,948 995,523 1,657,030

Simulated standard deviation 570,607 991,701 1,632,169

Theoretical skewness -3.26 -1.84 -1.10

Simulated skewness -3.25 -1.83 -1.09

Solvency Capital Requirement -5,826,888 4,444,835 6,057,733

SCR/Sums insured -0.38% 0.29% 0.41%

the demographic bases vary between the two assessments (Local GAAP and

market-consistent), the two SaR rate curves are very close, but with the

market-consistent one always above. The effect deriving from the SaR rate

will therefore be to further amplify the volatility of the idiosyncratic demo-

graphic profit. With reference to the results of the simulation model reported

in Table (7), first of all it is observed that also in this market-consistent case

all the expected profit is recognized during the first time span, while subse-

quently it is null. An interesting aspect, comparing the expected profit in

t = 1 with the analogous value of the Pure Endowment is that the Term

Insurance one is higher: the reason lies in the fact that in relative terms, the

safety loading in the demographic base of the first order compared to second

order, is greater. Despite in both cases |λx+t| = 20%, it is specified that in

the case of the Pure Endowment, the benefit is paid in the event of survival,
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5.2 Idiosyncratic risk results

while in the Term Insurance in the event of death: from this point of view it

is clear that the relationship between the demographic base of the first order

and the second order one is greater in the case
q∗x+t

qx+t

of the Term Insurance.

With reference to the trend of the standard deviation, the main driver are the

probabilities of death which (see formula (78)) increase over time, approach-

ing the absolute maximum of 0.5. Since the first order death probabilities

are greater than those of the second order (by construction), the SaR rate of

the market consistent framework is higher than the Local GAAP framework

one; therefore, except when t = 20, the standard deviation of the market

consistent demographic profit is higher than the analogous value in the Lo-

cal GAAP framework (see Table 4 and Table 7).

In this context, as in the analogous Local GAAP one, the SaR rate is not

a fundamental driver because, as per Figure 14, its value is always very

close to 1: it is interesting, however, to observe that the difference between

the market-consistent SaR and the Local GAAP SaR justify the difference

between the theoretical standard deviations of the two models.

The SCR, on the other hand, defined as the opposite of the 0.5% order

percentile of the demographic profit distribution is particularly strong since

the distributions of ỹIdiost+1 , shown in Figure 15, has a particularly important

volatility and a skewness that is always negative21, in absolute value above

3 in the first time spans.

21Remember that the skewness, as demonstrated in formula (79), depends on the oppo-

site of the sign of the SaR
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5.3 Trend risk results

Figure 15: Simulated distributions of idiosyncratic profit and loss for a term insurance

5.3. Trend risk results

This subsection presents the numerical results of the application linked to

the log-bilinear Poisson bootstrap model in order to obtain an estimate of

the variability around mortality expectations.

First of all, it is specified that the data used are those from 1872 to 2018

relating to the Italian population present in the Human Mortality Database:

the choice not to exclude the years relating to the World Wars and the Span-

ish Fever derives from the fact that, as in the case of the 2019 pandemic,

we do not want to arbitrarily reduce volatility by excluding future semi-

catastrophic scenarios. Figure 16 shows the estimated mortality rates and
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5.3 Trend risk results

Figure 16: Estimated and forecasted mortality rates - cohort 1978

their projection for the generation of policyholders in 1978, which in 2018

(age of underwriting of twenty-year policies) reached 40 years. This projec-

tion assumes particular importance for two main reasons: on the first hand

it coincides with the second order demographic table used by the company.

On the second hand, in order to calculate the SCR over a time span of one

year, for t > 0 the deaths of the cohort are equal to those expected up to the

age of x + t − 1 and , subsequently evolve randomly. This last aspect is of

particular importance because it allows to incorporate in the model not all

the volatility between 2018 and the valuation year, but only the annual one

useful for the purposes of the SCR.

Taking up the methodological steps shown in Subsection 4.3, a bootstrap

model is then applied for each t to describe the probability distribution of
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5.3 Trend risk results

the death expectations and, consequently, the best estimate of the company’s

liabilities b̃e
Rf(t),q̃t+1

t+1 .

As shown in Figures 17 it is not possible to identify the expected death

Figure 17: Estimated and forecasted mortality rates - cohort 1978

curve that implies the worst case scenario of the company, transcending the

type of policy. The use of the bootstrap model makes it possible to simulate

different trajectories of the probability of death of the cohort which, how-

ever, intersect with each other: this means that it is necessary to directly

associate the corresponding value of the best estimate to each curve which,

in turn, depends on the structure of the policy and from different cash-flows

at different time points.

The last aspect, demonstrable empirically by the execution of the bootstrap
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5.3 Trend risk results

log-bilinear Poisson model is that for any age of the cohort, the distribu-

tion of the probability of death has a positive skewness: consider, intuitively,

that it is more probable that the whole community survive rather than die

entirely. The mathematical reason lies in the use of the Poisson random

variable to describe the number of deaths: it is known that Poisson has a

positive skewness that tends to 0 as the parameter increases.
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5.3 Trend risk results

Table 8: Simulated and theoretical characteristics of trend profit and loss distribution for

a Pure Endowment contract for three different time periods. Last two rows summarize

SCR and SCR ratio with respect to sums insured.

Pure Endowment t=1 t=10

Be rate 0.04 0.46

Simulated mean 0.04 0.46

Simulated standard deviation 0.25% 0.14%

Simulated skewness -0.43 -0.29

Solvency Capital Requirement 7,843,214 5,064,797

SCR/Sums Insured 0.52% 0.33%

5.3.1. Trend risk - Pure Endowment

The results relating to the application of the Poisson log-bilinear model to

the cohort of policyholders holding Pure Endowments are presented in this

subsection.

It is specified that the application of the bootstrap model is by its nature

extremely time consuming, in fact for each bootstrapped scenario it is neces-

sary to re-calibrate the parameters of the Lee Carter model: the consequence

is that in this context, five thousand simulations are presented for each sce-

nario.

It is observed that despite the limited number of simulations, the estimate of

the best estimate at instant t+1 is extremely close to its average (see Table

8). With reference to the standard deviation, on the other hand, a decreas-

ing trend is identified: the reason lies in the fact that, as the time horizon

increases, a revision of the mortality expectations of the cohort impacts on

112



5.3 Trend risk results

a number of smaller future time spans (intuitively, consider that a revision

of expectations in t before expiration, only affects the benefit at maturity).

Since the asymmetry of the death distribution is distributed as a Poisson,

with positive asymmetry, the distribution of the best estimate has negative

skewness: the highest value of b̃e
Rf(t),q̃t+1

t+1 correspond to cases where a large

increase in the probability of survival is expected.

Figure 18: Distribution of BE rates at time 1 and time 10 for a Pure Endowment. Blue

lines represent the expected values of the distributions, therefore be
Rf(1),q(0)
1 for the left

figure and be
Rf(10),q(9)
10 for the right figure. The red lines indicate the 99.5% percentile of

the distributions; then the black lines indicate the spreads between the expected values

and the stressed values indicate the SCRs.

Hence, Figure 18 shows the simulated distributions of b̃e
Rf(0),q̃1
1 and b̃e

Rf(9),q̃10
10

highlighting, in addition to the characteristics described above, how the SCR

linked to the Trend risk decreases as the time horizon increases.

A particularly important aspect is therefore the SCR linked to demographic
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5.3 Trend risk results

risk for the Pure Endowment cohort: it is observed that on the one hand the

capital for idiosyncratic risk increases as the time horizon increases because

the volatility linked to deaths increases and increases the impact due to the

absolute value of the SaRs, on the other hand the requirement linked to the

trend risk decreases because, even in the event of a revision of the second-

order demographic base, the impact on the best estimates is increasingly

limited . In spite of this, however, the impact of a possible change in mor-

tality has a weight, in terms of SCR, that is much more relevant than that

deriving from fluctuations in mortality: in this context, therefore, the choice

of the model used to estimate the evolution and, above all, the volatility

linked to the company’s future estimates.
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5.3 Trend risk results

Table 9: Simulated and theoretical characteristics of trend profit and loss distribution for

a Term Insurance contract for three different time periods. Last two rows summarize SCR

and SCR ratio with respect to sums insured.

Term Insurance t=1 t=10

Be rate -0.4% 0.5%

Simulated mean -0.4% 0.5%

Simulated standard deviation 0.34% 0.17%

Simulated skewness 0.33 0.19

Solvency Capital Requirement 15,382,318 6,618,003

SCR/Sums Insured 1.02% 0.44%

5.3.2. Trend risk - Term Insurance

As for the cohort of policyholders holding Pure Endowments, the application

of the Poisson log-bilinear bootstrap model to the cohort of policies holding

Term Insurances is particularly time consuming. Even in this case, however,

the five thousand simulations are sufficient to ensure that the estimated av-

erage of the best estimate at the next instant coincides with the theoretical

one: obviously these results are consistent and robust from a theoretical point

of view and present a challenging theme in term application in relation to

the estimate of the extreme quantiles of the distribution. As in the case of

the Pure Endowment, it is observed that the volatility of the best estimate

decreases as the time horizon increases because, also in this context, any new

demographic bases influence an increasingly limited number of time points

that provide for the hypothetical benefit to the policyholder.

A completely different element from what we have seen so far concerns the
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5.3 Trend risk results

skewness analysis: as mentioned, the distribution of policyholder deaths fol-

lows a Poisson distribution with positive asymmetry. In this context, there-

fore, the extreme cases on the right tail predict a high number of deaths: for

this reason, even the skewness of the trend risk distribution has a positive

skewness that strongly influences the SCR values. In conclusion, Figure 19

Figure 19: Distribution of BE rates at time 1 and time 10 for a Term Insurance. Blue

lines represent the expected values of the distributions, therefore be
Rf(1),q(0)
1 for the left

figure and be
Rf(10),q(9)
10 for the right figure. The red lines indicate the 99.5% percentile of

the distributions; then the black lines indicate the spreads between the expected values

and the stressed values indicate the SCRs.

shows the representation of the difference between the best estimate in the

strict sense and the percentile of order of 99.5% of the same, driver of the
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5.3 Trend risk results

SCR. It is noted that, although the SCR decreases as the valuation time

increases, the amounts are multiples of the analogous value referred to the

idiosyncratic risk. For a company that operates with policies whose benefits

are linked to mortality, the keystone of the business model will not be so much

the intrinsic volatility of the business, but rather the structural fluctuations

in mortality rates.
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6. Conclusions

This thesis aims to resume the stochastic model, based on the cohort ap-

proach and built up in a Local GAAP context, in order to extend it to the

MCV framework introduced by Solvency II.

The process starts with the presentation of demographic profit in a Local

GAAP context, where the expected profit appears over time as the well-

known function of the difference between the first-order demographic bases

(used in the pricing phase) and the second-order demographic bases consid-

ered realistic at the evaluation date. Similarly, volatility and skewness of

the r.v. demographic profit depend on the structural characteristics of the

contract (i.e. the events involving the payment of benefits, whether related

to survival or death) and to the features of the policyholders cohort.

Section 3 presents the mathematical aspects necessary to shift from the Local

GAAP framework to the MCV one: the most interesting theme is that using

the definition of Best Estimate as it is under Solvency II legislation (see Sec-

tion 1), we arrive at the definition of market-consistent demographic profit

with all the desired properties. In particular, we obtain a random variable

that incorporates demographic, risk-free rate, lapse and expense risks where

the expected profit appears entirely when the company observes differences

between the demographic basis. It occurs certainly upon underwriting, in

case of prudential bases, and it could be observed also during the contract

lifespan if the expectations are revised.

It is worth pointing out that we provide a bridge between the demographic

profit of the Local GAAP context (which recognizes only the idiosyncratic

component) and the MCV demographic profit which, by its nature, is com-
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posed by an idiosyncratic component, by a trend component and, moreover,

takes into account the effects of changes in the risk-free rate curve. The cohort

approach was then applied to the components of the market-consistent demo-

graphic profit. By this way, expected value, standard deviation and skewness

of the idiosyncratic component were calculated in closed forms. These results

appear to be of particular relevance because they allow to provide formula-

tions of the SCR similar to those proposed in the Life Underwriting Risk -

idiosyncratic risk of QIS n.2.

Therefore, it is possible to quantify the capital requirement taking into ac-

count the following aspects:

(a) the expected profit estimated by the company: it generally derives from

the use of prudential demographic (and financial) basis;

(b) the volatility of the idiosyncratic risk, which depends on the cohort

characteristics and on underwritten contracts types;

(c) the skewness of the distribution: known that Solvency II uses the Value

at Risk as risk measure, the knowledge of the skewness is fundamen-

tal to understand the shape of the distribution and, consequently, the

extreme quantile.

As regards the trend component of the demographic profit, it is not possible

to obtain the main characteristics of the distribution in closed form because

they depend on the variation of the technical provisions as the company

expectations on cohort mortality vary. In this context, therefore, the appli-

cation of a stochastic model was proposed to quantify the volatility around
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the expectations of death rates to arrive at the computation of a SCR con-

sistent with Solvency II legislation.

On the one hand, the proposed model, after identifying the underlying risks,

bases all its formulations on the cohort approach. From an operational point

of view, it is certainly complex and nearly unreal to break up the undertak-

ing’s portfolio into hundreds of cohorts (sometimes thousands, depending on

the size of the portfolio). On the other hand, we specify two fundamental

aspects:

(a) the first aspect regards that the model is perfectly adaptable to the

operational reality. It is possible to divide the undertaking portfolio in

order to build clusters capable of identifying model points with a certain

degree of approximation. They are defined as policies representative of

the single clusters and the model is suitable for assessing their risk.

Using this approach, it is therefore possible to assess the risk of the

overall portfolio as a function of the model points risk;

(b) the second important aspect concerns the extraordinary computational

capacity, from an IT point of view, of the undertakings: it allows the

possibility of carrying out analysis at a single contract level. Both in

the case of individual policy analysis and in the case of cohort eval-

uation, it is possible to achieve an aggregate result by modelling the

dependencies. In this regard, it is necessary to use methodologies that

contemplate non-linear dependencies and a typical solution concerns

the use of copula functions.

It should also be noted that each undertaking is required to carry out the
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Own Risk and Solvency Assessment (ORSA) in accordance with Solvency

II legislation. The purpose of ORSA is to evaluate the risk profile of the

company and, in case of Standard Formula use, to verify that it does not

underestimate the capital requirement. In this context, the present model

may be adopted as a tool both for identifying the risk sources and their

quantification.

This use related to demographic risk quantification is of strategic relevance

since it identifies the volatility of the pure demographic component, without

keeping the results obscured by the financial part. The most suitable case

concerns undertaking with significant Term Insurance portfolios. It is known

that these policies involve the premiums payment and the reserves allocation,

which amounts are very low. However, these policies certainly have a not

negligible weight on the company economic result; hence, their assessment

plays a strategic role on the undertaking business and in planning future

portfolio value.

Therefore, if the purely demographic risk component is the main driver of

the overall undertaking risk profile (in addition to the case of Term Insurance

portfolio it is also necessary to mention the Endowments case), the model

may be suitable as an easily adaptable (to the characteristics of the cohorts)

proxy for the quantification of the capital requirement. In conclusion, it is

emphasized that this use as a SCR proxy is consistent with the Undertaking

Specific Parameters approach envisaged by Solvency II. Furthermore, and in

conclusion, the possibility of using a model with closed formulas allows the

possibility of knowing deeply the demographic risk and, at the same time, of

optimizing any reinsurance operations to contain the volatility of the profit.
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