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Abstract

The increasing availability of wireless access points (APs) is leading to human sensing
applications based on Wi-Fi signals as support or alternative tools to the widespread
visual sensors, where the radio signals enable to address well-known vision-related
problems, such as illumination changes or occlusions, and human privacy concerns.
These are possible because both objects and people affect wireless signals, causing
radio variations observed through the channel state information (CSI) measurement
of Wi-Fi APs that allows signal-based feature extraction, e.g., amplitude or phase.
On this account, this thesis shows how the pervasive Wi-Fi technology can be
directly exploited for solving person Re-ID, for the first time in literature, and image
synthesis problems. More accurately, for the former, Wi-Fi signals amplitude and
phase are extracted from CSI measurements and analyzed through a two-branch
deep neural network working in a siamese-like fashion. The designed pipeline
can extract meaningful features from signals, i.e., radio biometric signatures, that
ultimately allow the person Re-ID. The effectiveness of the proposed system is
evaluated on a specifically collected dataset, where remarkable performances are
obtained; suggesting that Wi-Fi signal variations differ between different people
and can consequently be used for their re-identification. Instead, for the image
synthesis, a novel two-branch generative neural network effectively maps radio data
into visual features, following a teacher-student design that exploits cross-modality
supervision. This strategy conditions signal-based features in the visual domain
to completely replace visual data. Once trained, the proposed method synthesizes
human silhouette and skeleton videos using exclusively Wi-Fi signal amplitude. The
approach is evaluated on publicly available data, where it obtains remarkable results
for both silhouette and skeleton videos generation, demonstrating the effectiveness
of the proposed cross-modality supervision strategy. Concluding, a small use case is
specified to show how videos synthesized from wireless signals can be used to solve
human activity recognition obtaining a privacy-conscious system and potentially
exploiting the radio signal benefits.
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Chapter 1

Introduction

In recent years, Wi-Fi technology is becoming ever more present equally in private
and public places by promoting, other than the constant Internet connection, the
growth of the Internet of Things (IoT) and wireless sensing applications. Wi-Fi
sensing is new automation enabling perception- and understanding-based tasks
by exploiting the now ubiquitousness of such wireless signals. The latter gained
momentum as an alternative or support solution to the classical human-related
comprehension problems traditionally based on visual information [8], such as event
detection [188, 177], gesture [182, 179] and activity recognition [143, 41], localization
[136, 81] and tracking [157, 121], health-care [173, 2], or pose estimation [65, 1]. The
reason is twofold. First, human privacy is naturally preserved because sensitive
information is not collected through the radio-based medium. Second, wireless
technology is not affected by eventually challenging visibility conditions. Generally,
vision-based applications are constrained to the frame of low-resolution or costly
visual sensors, requiring multiple devices strategically located in different places to
cover different points of view, even for small limited areas. In contrast, wireless
sensing applications can cover vast areas, potentially exploiting the existing networks
built through commodity, commercial, and low-cost Wi-Fi devices. Indeed, even
the IEEE 802.11 wireless LAN working group is already focusing on WLAN sensing
applications [104], and in the near future, Wi-Fi might become a day-life sensing
technology. Among the others, two of the most exciting fields still never or barely
explored through Wi-Fi sensing are person re-identification and image synthesis
[67, 50].

Person re-identification (Re-ID) addresses a recognition task across non-overlapping
camera views, understanding whether a given person appeared in the same (or a
different) location at distinct time instants [24]. Direct evolution from identification
approaches, where a person identity is classified into one of those known by the
system, in a Re-ID method the input image, called probe, is matched against a gallery
of identities so that the most probable one can be retrieved, as can be observed in
Fig. 1.1. While difficult, this task naturally enables for the re-identification of people
that were never seen before. To achieve this goal, however, it is necessary to correctly
model a person’s appearance and, as a consequence, existing approaches exploit
distinctive and reliable visual features extracted from images and video sequences
[72, 169]. Although these features have achieved impressive results in Re-ID over
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the last decade, especially due to deep learning advances, several challenges are still
open, including different viewing angles [33, 123]; illumination changes [145, 34];
background clutter [116, 191]; occlusions [91, 58]; and long-term Re-ID [77, 60],
where the person’s appearance can drastically change after long periods of time
(e.g., weeks). What is more, even though ever improving methodologies are being
developed to address these challenging problems [172, 94, 75], person Re-ID is still
considered an open task and, even more aggravating, it also presents a considerable
gap between research-oriented and practical scenarios [72]. Nevertheless, great efforts
are being made to improve this situation by also investigating techniques based on
different prerequisites. Indeed, alternative solutions are already exploiting skeleton
information [13] or multiple and diverse technologies such as thermal and infrared
images [168, 170] or radar sensors [31], since the re-identification task can be a
crucial asset in real application areas such as surveillance and forensics. To expand
on this matter, can be explored an unorthodox technology that, due to its nature,
inherently avoids the vision-based complications, and introduce a novel approach
based on a different medium, i.e., Wi-Fi transmissions.

Once the person is re-identified, perceiving and understanding the human behavior
can be an immediate consequence in advanced people monitoring scenarios. Therefore,
such radio transmissions can potentially be used even to synthesize human-related
images later employed for analyzing the human activities. Generally, the image
synthesis task refers to the creation of a new image using different types of sources
as an image description, as shown in Fig. 1.2. In recent years, the state-of-the-art
proposed several promising deep learning methods, including, but not limited to,
text-to-image [178, 195], sketch-to-image [106, 23], and image-to-image translation
[62, 90]. Among the existing deep neural networks, the generative adversarial network
(GAN) [46, 113] proved to generate reasonable, high-resolution, and realistic synthetic
images [153, 90]. Indeed, its generative power ensures impressive results in many
image synthesis and editing applications, e.g., image dataset augmentation [175],
3D object transformation [40], pluralistic image completion [186], or human-related
image generation [118]. In particular, the latter represents one of the most interesting
future research directions. In general, works performing synthesis of human-related
images exploit an initial image description that usually consists of text-based or

Matching

GalleryProbe

Figure 1.1. Vision-based person Re-ID example.
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visual information [193, 137]. However, since also in this case traditional methods
based on visual data are not helpful under challenging circumstances in which
occlusions, smoke, or darkness can limit visibility, Wi-Fi signals recently have been
explored to model and give a visual appearance to otherwise unavailable information
carried out by radio waves [50, 68].

Wi-Fi is a mature technology that leverages radio signals transmitted by several
access points (APs) to enable wireless communication between devices. When
traveling between two connected devices, Wi-Fi signals are influenced by objects as
well as people along their path, resulting in variations of the signal itself [25, 15].
These changes can be captured via either the received signal strength indicator
(RSSI) or the channel state information (CSI) measurements [54] to implement
wireless sensing applications. Despite this, the CSI is more stable and can carry
more signal information with respect to the RSSI due to the underlying technology
principles. In fact, for a given wireless data packet, the RSSI is represented by a single
value computed at the MAC layer, indicating the relative signal quality; whereas
the CSI is measured by employing the orthogonal frequency-division multiplexing
(OFDM) transmission technology at the PHY layer, and includes fine-grained signal
information defined at the subcarrier level [165]. What is more, this measurement
has been proven to be more robust in complex environments, enabling the extraction
of relevant signal characteristics, especially in indoor areas [42]. Indeed, among other
things, signals amplitude and phase can be retrieved from CSI measurements and,
as a matter of fact, several works exploit these radio signal properties to develop
useful diverse Wi-Fi sensing applications [78, 102, 112, 155, 135, 79]. The CSI
based methods are the most popular also because this measurement can be easily
computed via commodity Wi-Fi devices. A sound strategy to design these sensing
applications generally requires some sort of signal pre-processing to improve the
received CSI measurements quality by removing, for example, amplitude outliers [27]
and phase offset [139]. Subsequently, either a machine or deep learning approach
is usually employed to address the given wireless sensing task [85]. Concerning
the person Re-ID, systems performing person identification, i.e., methods that
classify signals into known people identities, indicate that distinct people affect the
Wi-Fi signals differently and, therefore, can prove particularly useful for security
applications [158]. Moreover, this difference in signal variation between people was
also extensively examined by previous studies on both electromagnetic absorption of
human bodies and radio waves interactions with biological tissues [38, 39]; where
it was shown that wireless propagation around a human body is highly dependent

Synthesis

New ImageSketch

Figure 1.2. Image synthesis example from sketch.
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on several characteristics such as skin and other biological tissues conditions, total
body water volume, and additional physical attributes including mass and height.
As a consequence, due to the high variability of such features, radio biometrics can
be extracted from Wi-Fi signals to describe and ultimately recognize a given person
[158]. Concerning the image synthesis, by translating radio frequency information
to the visible spectrum, automatic systems can be enhanced with powerful and
exciting capabilities. This domain translation is feasible because both inanimate
objects and people in an environment affect the electromagnetic (EM) spectrum at
different frequencies. Thus, measurements of the same entity performed at radio
frequency and optic ranges can be correlated [69]. Despite this, specific mathematical
operations do not exist to define this duality. However, in literature, models capable
of inferring a mapping between radio and optical frequencies were introduced in
the past. For instance, the ray-tracing for radio waves propagation modeling is
motivated by ray optics [174]. Consequently, the analogies between the radio and
visible EM spectra have made it reasonable to model the wireless signals to solve
comprehension tasks, including human pose estimation synthesizing skeletal visual
data [184, 185]. However, radio-based human data synthesis works are generally
based on non-commodity devices or exploit raw CSI measurements. Motivated
by these observations and existing literature, this thesis introduces two methods
that enable person Re-ID and human-related video synthesis through Wi-Fi signals.
Interestingly, the presented methods satisfy and expand the concept of a privacy-
conscious system [31]; therefore, people may be re-identified and monitored by
perceiving and understanding their behaviors without collecting sensitive or private
information, e.g., photos or audio recordings.

For the proposed Re-ID method, starting from an estimated CSI measurement,
signals amplitudes and phases are extracted and processed to improve their quality
through established procedures such as the outlier removal [27], for signals amplitudes;
and offset removal [139], for signals phases. Subsequently, the sanitized signals
are further refined through a median filtering [59] to create a single amplitude
heatmap and more stable phases along the various CSI measurements. These
features, representing a person’s radio biometrics, are then used as input for a
novel deep neural network architecture, based on a siamese structure, that was
specifically designed to extract meaningful radio biometric signatures through two
parallel sub-networks inside each siamese branch. Both sub-networks are based
on different models to correctly handle the computed signal amplitude heatmaps
and filtered phases, i.e., a convolutional neural network (CNN) and a long-short
term memory (LSTM). Afterwards, the output radio biometric signatures are used
to re-identify the person across the same or two different locations. To simulate
typical constrained surveillance scenarios [130] focused on single individuals, and
due to the lack of existing Wi-Fi collections for the Re-ID task, a dataset was
acquired capturing single persons standing between APs in several indoor locations.
Moreover, comparably to real-world environments, no shielding mechanism was
implemented against interference from other radio signals, since they are inevitable
in our highly connected world. Thereafter, similarly to classical Re-ID methods
that make use of visual information extracted from images and videos [181, 6, 192],
common Re-ID metrics, such as the mean average precision (mAP) and cumulative
matching characteristic (CMC), were employed to accurately evaluate the proposed
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methodology.
For achieving video synthesis from radio signals, instead, it is presented a novel

two-branch generative neural network that maps data acquired in the wireless spec-
trum to the visual domain, following a teacher-student fashion [6]. Specifically, also
in this case, sanitized Wi-Fi signals amplitudes extracted from CSI measurements
are used to synthesize video frames depicting human silhouettes or skeletons perform-
ing different poses. The signal amplitudes were chosen since the literature proves
that, other than people identity, they can discriminate human activities adequately
[152, 76, 110], supporting the immediate investigation of such radio features to
generate new pose-related visual data. In particular, the proposed method exploits
cross-modality supervision [92] at multiple levels of the network training pipeline
to transfer visual knowledge to Wi-Fi data and learn how to synthesize videos,
instead of static images, of human silhouettes or skeletons from signal-based features.
What is more, by leveraging 3D-GAN [148], long short-term memory (LSTM) [57],
and 3D convolutional neural networks (3D-CNN)[114] architectures, the approach
inherently accounts for motion information and can, therefore, also manage moving
subjects. This aspect is really important to enable perception and understanding of
human behavior from synthesized visual data. The latter is of particular interest
since the proposed method can be helpful in typical real-world applications such as
surveillance scenarios [131] by either supporting vision-based security systems or
improving privacy concerns. The effectiveness of the proposed method is evaluated by
performing experiments on publicly available data capturing human poses of single
individuals with commodity Wi-Fi in a controlled environmental setting, typical
for research-oriented and monitoring scenarios [14]. Specifically, ablation studies
on the pipeline were presented via quantitative performances, based on several
state-of-the-art metrics for image quality evaluation between real and synthesized
video frames. In addition, a qualitative assessment through visual observations, and
further investigations on the method abstraction capabilities by replacing silhouettes
in the training data with skeleton frames, demonstrated the effectiveness of the
proposed approach to translate radio features into a visual domain representation.
Finally, as a use case example, experiments on recognizing human activities from
synthesized silhouette and skeleton videos were conducted to prove the usefulness of
video synthesis from wireless signals for increasing classical human activity recog-
nition methods, such as benefiting from radio signals nature to avoid eventually
vision-based complications and eliminating privacy concerns in surveillance-based
applications. To this end, a small dataset was acquired by capturing single persons
performing specific actions between APs in a constrained indoor environment and
simulating the acquisition protocol of the aforementioned publicly available data
used to evaluate the synthesis solution.

1.1 State of the Art
This section, initially, discusses the state-of-the-art regarding the use of Wi-Fi signals
for solving human-related comprehension tasks. Subsequently, for both person Re-ID
and image synthesis, contributions of the presented wireless sensing solutions are
highlighted, also mentioning classical approaches.
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1.1.1 Person Re-ID

Depending on the signal measurement type, Wi-Fi sensing methods can be broadly
categorized into two classes, i.e., RSSI and CSI based approaches [73]. Concerning
the RSSI measure, it indicates the received power level after any possible transmission
loss, thus representing the relative signal quality. Inanimate objects (e.g., furniture)
or human presence can influence radio signals and, as a matter of fact, the authors
of [55] noticed significant RSSI fluctuations in both line-of-sight (LOS) and non-line-
of-sight (NLOS) conditions. Supporting these findings, the RSSI signal quality was
successfully employed in heterogeneous tasks such as map reconstruction [160, 66]
as well as human localization [161, 37, 159, 56, 119], tracking [17] and identification
[16]. Confirming the inanimate object influence on radio signals, a grid points filling
with low rank matrix theory on RSSI fingerprints exchanged between several APs
is used in [160], for example, to reconstruct radio maps of indoor environments;
while Markov random field modeling for loopy belief propagation of sparse signals is
employed, by the authors of [66], to build 3D radio maps of unknown structures using
RSSI signals examined by unmanned aerial vehicles. Considering human-focused
RSSI applications, instead, a popular and well-explored task is the localization one.
In [161], for instance, the best AP, i.e., with the best RSSI signal quality, is selected
to achieve indoor localization according to an eight-diagram approach defining the
signal propagation direction; while the authors of [37] develop a feature-scaling-
based k-nearest neighbors (KNN) algorithm and further refine the RSSI signals via
outlier removal to address an analogous task. Further improvements to localization
systems are also provided by techniques that can clean up the received signals.
For example, in [159, 56] and [119], Gaussian, weighted average, and continuous
wavelet transform (CWT) filtering are applied, respectively, to improve the input
for the chosen localization algorithms. The received signal quality increment can
also be obtained by reducing possible interferences as shown in [17], where a custom
communication protocol enables to track humans via RSSI measurements; or by
using wearable devices as demonstrated by the authors of [16], that present an RSSI
proximity algorithm able to identify several persons. What is more, improved RSSI
measurements are also successfully used to address other complex tasks such as
human action recognition. Indeed, as described in [48], sanitizing the RSSI through
outlier removal and Gaussian filtering, enables a feature fusion approach to obtain
significant results on the action recognition task, therefore indicating that the Wi-Fi
technology is a good medium for sensing applications and could be also effectively
applied to other tasks.

Regarding the CSI measure, it captures richer information about the wireless
transmission among communicating APs, contrary to the RSSI that does not provide
fine-grained features except from the relative signal quality of a wireless environment.
For instance, CSI can acquire amplitude and phase features for each subcarrier in the
OFDM channel [194]. By describing the channel characteristics of a frequency-diverse
group of subcarriers, this measurement is more robust to narrowband interference
from other signals. Moreover, it is not affected by the automatic power level adjust-
ment algorithm implemented in commodity wireless APs [29]. As a consequence,
the channel state information is gaining momentum in the latest years. In [141], for
example, the authors show that there is a high correlation between subsequent CSI
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measurements, and consistently detect falling humans via CSI amplitude. Similarly,
[93] and [135] detect falling humans through denoised frequency spectrogram images,
in the former, and phase differences, in the latter, that can be both extracted from
CSI measurements; thus indicating that CSI is an information-rich measure. Indeed,
among others, Wi-Fi signals amplitude [27, 117], phase [139, 127], and frequency
[156], obtained from CSI, are also effectively employed in other tasks such as human
indoor localization. For example, the authors of [117] apply a fingerprint matching
procedure after optimizing a centroid-based algorithm (i.e., KNN) used to examine
locations through CSI amplitudes. In [139], instead, indoor locations fingerprints are
defined by linearly transformed CSI phases, where offsets deriving from the transmis-
sion are removed; while in [156] the indoor localization is addressed through passive
radio maps that are analyzed via a probabilistic algorithm detecting anomalies in
CSI frequencies. Furthermore, CSI measurements can also be exploited to capture
human movements and, consequently, perform action recognition from the received
signals. For instance, the authors of [41] use several CSI channels to produce radio
images that enable both to localize and to recognize the corresponding human actions.
Similarly, in [151], activity recognition is achieved through variance-normalized CSI
amplitude waveforms filtered by the principal component analysis (PCA) procedure.
In [163], instead, gestures are recognized via a spatiotemporal examination of CSI
phases executed by a siamese recurrent neural network; an architecture that extracts
meaningful features from the input phases, and which has been extended in the
proposed approach since it is already successfully applied in classical vision-based
re-id approaches [150, 187, 26, 95, 126].

Although CSI-based works generally tend to focus on a single Wi-Fi signal
characteristic (e.g., amplitude), it is not uncommon to find approaches exploiting
more information derived from CSI measurements. Such an example is found in [49],
where both CSI amplitude and phase, computed along two distinct RX devices, are
used jointly to generate fine-grained human skeleton poses. Indeed, the multiple CSI
channels can provide relevant information about people between two, or more, APs
and, as a matter of fact, they are employed to define structural biometric features
in [158]. In particular, these features represent body pose differences that can be
registered and distinguished through the CSI by employing a time-reversal (TR)
technique, that ultimately enables to identify a known person. Following a similar
reasoning, the authors of [74] perform user identification through CSI frequency
shifts associated to gestures, by band-pass filtering the signals and further refining
them through PCA. In [30], instead, CSI amplitudes, treated with discrete wavelet
transforms (DWT) and statistical profiling (e.g., channel power distribution), are
coupled with people’s gait allowing for their identification through Wi-Fi signals.
In addition, further confirming the CSI measurement effectiveness, filtered CSI
amplitudes are exploited in [63] to simultaneously learn several tasks such as action
recognition, user tracking and identification, through a deep neural network. Finally,
in [133], the authors are able to also extract internal characteristics (i.e., respiration
rates) from CSI measurements by improving the SNR of signals associated to
breaths, which allow to identify known users; indicating that the CSI measure
contains different signal cues for distinct people, and therefore supporting our direct
investigation of CSI measurements to describe a person through radio biometric
signatures to address the re-identification task.
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1.1.2 Image Synthesis

The generative adversarial learning has been widely used for image synthesis in
several fields during the last few years. In [62], the authors address the paired
image-to-image translation investigating conditional GAN networks. They observed
that conditioned generative modeling efficiently handles tasks requiring photographic
output. Indeed, also in [178] two stacked conditional GAN models are used for photo-
realistic image synthesis from text data. However, they divide the text-to-image
problem into two main stages. The Stage-I GAN generates low-resolution images
while the Stage-II GAN, stacked on top of it, generates realistic high-resolution
images conditioned by the previous stage results and text descriptions. Once again,
GANs are also used in [103] for cross-view image synthesis to produce, principally,
outdoor scene images combining aerial and street image views. The authors of
[106] focus on the GAN-based sketch-to-image synthesis method, constraining the
generative process with sketched boundaries and color strokes to obtain realistic
images. Instead, in [196], the authors use cycle-consistent adversarial networks
(CycleGANs) for image-to-image translation but, differently from [62], learn to
translate an image from a source domain X to a target domain Y in the absence of
paired training examples. Recently, the GAN is being increasingly used to synthesize
human-related images. For instance, in [167] remarkable results are achieved for
person search in video sequences by combining the GAN capability with a deep
complementary classifier based on a convolutional neural network (CNN). They used
the GAN to generate new samples for the training set augmentation, improving the
classifier performance during the testing phase. In [32], instead, authors present
an identity-aware CycleGAN for face photo-sketch synthesis and recognition. They
improve the CycleGAN performance to solve the photo-sketch synthesis task by giving
attention to the facial regions, including eyes and nose, which can be significant in
identity recognition. Focusing on the dynamic synthesis of facial expressions, in [45]
is introduced a GAN working with a series of semantic parts with different shapes to
describe geometrical facial movements. For person monitoring applications, instead,
the GAN is primarily used to improve deep models performances [189, 83, 176]. On
a different note, a model trained on a specific dataset does not work when applied
on another collection. The authors of [190] solve such an issue by proposing a
GAN-based image-to-image translation, transferring the images of a source dataset
to the style of each camera in a target set of data. Similarly, in [84] is proposed a
GAN structure to preserve features for cross-domain person re-identification, solving
problems arising from significant variations between the training dataset and the
target scene.

The state-of-the-art validates the incredible power of generative adversarial
learning for image synthesis starting from text, sketch, or another image, as the
information source. However, nowadays, the Wi-Fi signal is being explored for syn-
thesizing visual data, opening up a new frontier for image synthesis and surveillance
applications. Indeed, in [134], the authors propose a method for person perception
using CSI measurements. They combine multiple residual convolution blocks and
U-Net [105] models to synthesize either human silhouette or pose. Similarly, only for
the latter, in [69] is introduced a network architecture comprising three CNN-based
sub-models: CSI encoder, domain translator, and frame decoder. The first encodes
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the CSI measurements, building the latent representations of radio features; the sec-
ond connects such representations to the visual domain. Finally, the third generates
images from the information in the latent visual domain. Again, the authors of [50]
propose a two-branch network to synthesize the human skeleton from a CSI-based
image. The top branch leverages the OpenPose [19] framework to extract, from
video frames, the skeletal data used as supervision. Instead, the bottom branch
generates the corresponding skeleton for each CSI image exploiting the supervision
data as ground truth (GT). A similar supervision strategy is followed in [68] for
image synthesis of stationary subjects starting from the signal-to-noise ratio (SNR)
of the Wi-Fi signal. They perform an ablation study on different classical GAN-
based structures combined with a complementary detection system to quantitatively
evaluate their synthesis capabilities. Despite the remarkable results, none of the
tested methods considers the motion aspect of moving subjects. To address the
latter, the proposed method improves the generative adversarial learning strategy
by exploiting the 3D-GAN architecture. Moreover, the model generalization capa-
bilities are further improved by manipulating the middle-level representations used
to transfer visual knowledge to wireless signal-based features, ultimately enabling
for the human silhouette and skeleton video synthesis via radio-to-visual domain
translation.

1.2 Contribution
This section reports in brief the contributions of this thesis with respect to the
state-of-the-art. Concerning the person Re-ID, the primary feature is the definition
of a completely new Wi-Fi sensing application by implementing the Re-ID based
exclusively on Wi-Fi signals that can also avoid classical vision-based drawbacks
thanks to the different medium nature of the wireless technology. This is done
by designing a novel architecture based on a siamese model structure, leveraging
parallel sub-networks in each siamese branch to extract meaningful radio biometric
signatures from radio signals examined at either the same or at different locations.
Concerning the image synthesis, the design of a novel two-branch generative Wi-
Fi sensing framework that inherently considers motion information to synthesize
coherent human silhouette and skeleton videos from wireless signals is proposed.
Moreover, through CSI measurements noise removal, a Wi-Fi data sanitization
procedure is applied to obtain robust radio features based on signals amplitudes and
increase the synthesized video quality.

Finally, to test the person Re-ID approach, a specific dataset was acquired
to prove the effectiveness of signal-based methods to address the Re-ID task in
typical constrained surveillance scenarios. Instead, publicly available Wi-Fi data
focused on humans performing different continuous poses were used to evaluate the
image synthesis solution in controlled environmental settings typical for monitoring
applications. In addition, a small dataset on human activities was acquired to show
the benefit of using video synthesis from wireless signals for enhancing traditional
human activities recognition systems capabilities, avoiding well-known vision-related
issues and eliminating privacy concerns in people monitoring-based applications.
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Chapter 2

The wireless channel

This chapter introduces the theoretical insights about the wireless communication
channel required to understand the underlying technology of the Wi-Fi sensing
applications, including person Re-ID and video synthesis through radio signals.

2.1 Physical Model for Wireless Channel
The main characteristic of all wireless communications, including Wi-Fi transmission,
is the use of electromagnetic (EM) radiation to convey information from a transmit-
ting (TX) to a receiving (RX) antenna. Such radiation travels at a constant speed
leveraging a sinusoidal waveform propagated through an unguided transmission
medium, e.g., air or space, as shown in Fig. 2.1a. Each EM wave, which results from
oscillations between electric and magnetic fields producing an electromagnetic field,
is characterized by wavelength and frequency properties. The former, shown in Fig.
2.1b, is the waveform length between two adjacent crests or troughs of the wave
and is measured in meters (m). The latter, shown in Fig. 2.1c, is the number of
oscillation cycles per second and is measured in Hertz (Hz). There exists a relation
between the wave propagation velocity v, wavelength λ, and frequency f , that can
be expressed as follows:

v = λf, (2.1)

where v is the speed of light c in a vacuum, i.e., 3 × 108 m/s , or less in a different
transmission medium. Therefore, starting from Eq. (2.1), λ and f can be defined as:

λ = v

f
, (2.2)

f = v

λ
, (2.3)

showing that the frequency and wavelength of an EM wave are directly proportional
to the propagation velocity and inversely proportional to each other. The electro-
magnetic field generated by traveling radiation changes depending on the distance
from the transmitting source, as shown in Fig. 2.2. Practically, the field defined
as one wavelength or less from the TX antenna is called near-field. Within this
region, the strength of radiation quickly decreases as the wave moves away from
its source and a close receiver influences the transmitter radiation. Indeed, this



2.1 Physical Model for Wireless Channel 11

electromagnetic field region is employed to implement NFC communication, where
it is required that the receiver NFC tag is located within 4 cm from the transmitter.
However, a different electromagnetic field region starts two wavelengths from the
TX antenna and propagates outward; this is called the far-field. Differently from
near-field within this region, traveling away from the transmitting source, the power
of the electromagnetic field decreases inversely to the square of the distance from
the TX antenna, and a receiver does not influence the original wave radiated by
a transmitting antenna. Due to its properties, the far-field enables the long-range
transmissions required for most wireless sensing applications that employ the widely
used radio communication methods, e.g., Bluetooth or Wi-Fi.

For the definition of a physical model for a wireless channel [128], the starting
point is a fixed TX antenna emitting a wave into free space. Being both electric and
magnetic fields proportional to each other, other than perpendicular to one another
and the direction of the EM wave propagation, it is sufficient to estimate only one of
them to describe the far-field of the transmitting source. Given a sinusoid cos 2πft
transmitted in a vacuum, in the absence of an RX antenna, the responding electric

Crest

Trough

(a)

0 0.5 1 1.5 2 2.5 3

Time (s)

Wavelength

(b)

0 0.5 1 1.5 2 2.5 3

Time (s)

 

Frequency

(c)

Figure 2.1. Electromagnetic radiation properties. In (a) the waveform representation, in
(b) the wavelength, and in (c) the frequency per second delimited by the orange dashed
rectangle.
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far-field at time t can be modeled as follows:

E(f, t, (r, θ, ψ)) = αs(θ, ψ, f) cos 2πf(t− r/c)
r

, (2.4)

where (r, θ, ψ) is the point in the space on which the electric field is measured, r is
the distance from the transmitter, θ and ψ are the horizontal and vertical angles
from the TX antenna to the considered point in the space, respectively. Due to
the vacuum, c indicates the speed of light as propagation velocity, and αs(θ, ψ, f)
is the far-field radiation pattern of the transmitting device in the direction (θ, ψ)
at the specific frequency f . The term αs is a scaling factor to take into account
antenna losses. The radiation pattern of an antenna indicates the variation of the
spatial distribution of power of the radiated EM wave as a function of angular
direction, and a graphical example is shown in Fig. 2.3. Each pattern is divided
into radiation lobes, and the main lobe is in the direction of maximum radiation
power. Instead, the side lobes are undesired radiation directions characterized by
less power. Finally, the back lobe is the direction with minimum radiation power.
As a consequence of the reciprocity theorem of electromagnetics, the sensitivity of
an antenna as a function of angular direction when used as the receiver, i.e., the
receiving pattern, is equal to the far-field radiation pattern of the same antenna
when used as a transmitter [122].

Following, considering the presence of a fixed RX antenna at a specific location
x = (r, θ, ψ), without noise, the waveform received in response to the same sinusoid
can be linearly defined as:

Er(f, t,x) = α(θ, ψ, f) cos 2πf(t− r/c)
r

, (2.5)

where α(θ, ψ, f) is the product of transmitting and receiving patterns of TX and
RX antennas in the given direction (θ, ψ). Adding the RX antenna, the electric
field changes in the proximity of x and this is considered by its receiving pattern.
Because of both Eqs. (2.4) and (2.5) are linear in the input; the received EM field
as a response to a weighted sum of transmitted waveforms at x is the weighted sum
of responses to each one of those waveforms. Then, for a given location x, we can
define:

H(f) := α(θ, ψ, f) e−j2πfr/c

r
, (2.6)

Near-field Far-field

Figure 2.2. The two different electromagnetic field regions: near-field and far-field.



2.1 Physical Model for Wireless Channel 13

(a) (b)

Figure 2.3. Example of antenna radiation pattern in 2D (a) and 3D (b) plots for a
comprehensive view.

having that Er(f, t,x) = R[H(f)ej2πft]. Therefore, H(f) is the definition of Eq.
(2.5) as the system function of a linear time-invariant channel in frequency domain
and its inverse Fourier transform is the corresponding impulse response in time
domain. However, the time-invariant property cannot be considered if the antennas
or possible obstructions are in relative motion. Therefore, considering the fixed
TX antenna and free space model defined by Eq. (2.4), examining a specific point
moving at velocity v in the direction of increasing the distance r from the wave
transmitter, expressed as r(t) = r0 + vt, the responding electric far-field at time t is
defined as:

E(f, t, (r0 + vt, θ, ψ)) = αs(θ, ψ, f) cos 2πf(t− r0/c− vt/c)
r0 + vt

, (2.7)

where f(t − r0/c − vt/c) can be rewritten as f(1 − v/c)t − fr0/c focusing on the
Doppler shift [43] of −fv/c caused by the motion of the observed point moving
away from transmitting source. Therefore, the EM wave at frequency f changes
to a radiation of frequency f(1 − v/c). This means that every consecutive crest in
the transmitted wave moves a little further before being captured at the examined
point. Subsequently, considering the model defined by Eq. (2.5), if the RX antenna
is placed at a moving location defined as x(t) = (r(t), θ, ψ), again with r(t) = r0 +vt,
the received waveform is determined as follows:

Er(f, t,x(t)) = α(θ, ψ, f) cos 2πf [(1 − v/c)t− r0/c]
r0 + vt

. (2.8)

The Eq. (2.8) cannot be described as a system function of a linear time-invariant
channel as it expressed. However, ignoring the time-varying distance r(t) at the
denominator, we can still define the channel as a system function by considering the
Doppler shift −fv/c rather than the corresponding frequency f .



2.2 Linear System for Wireless Channel 14

2.2 Linear System for Wireless Channel
In the previous section, we defined the wireless channel as the response to a sinusoidal
input ϕ(t) = cos 2πft that is propagating into free space observing a fixed and
moving receiving antenna. However, in real scenarios, it is necessary to account
for radio waves propagation delay caused by the total distance traveled at the
transmission medium speed. In addition, during the signal radiation, should also
be considered different attenuation factors causing the wireless channel strength
variations over both time and frequency due to large- and small-scale fading [128].
The former, typically frequency independent, is caused by the path loss of the signal
as a function of the distance and the shadowing effect by significant obstacles along
the propagation path, e.g., buildings. The latter, typically frequency-dependent, is
caused by the constructive and destructive interference due to the multi-path effect
that makes several signal replicas reach the receiver across multiple paths interfering
in amplitude and phase. Therefore, following these observations, a multi-path
wireless channel at specific frequency f can be linearly expressed as:

y(f, t) =
∑

i

ai(f, t)ϕ(t− τi(f, t)), (2.9)

where y(f, t) is the received signal as response to a transmitted sinusoid ϕ(t), ai(f, t)
and τi(f, t) are the signal attenuation and propagation delay, respectively, at time
t on the i-th path between TX and RX antennas. Assuming that individual path
attenuation and propagation delay are independent from frequency, for the principle
of superposition, Eq. (2.9) can be simplified as follows:

y(t) =
∑

i

ai(t)x(t− τi(t)), (2.10)

with x(t) an arbitrary transmitted bandpass signal. Despite the previous frequency
independence assumption on individual paths, notice that the channel response
can change according to frequency because different paths with different delays in
multi-path propagation cause multi-path fading. Being the Eq. (2.10) linear, a
fading multi-path wireless channel can be modeled, in time domain, as the channel
impulse response (CIR) at time t of a linear time-variant channel, as follows:

h(τ, t) =
∑

i

ai(t)δ(τ − τi(t)), (2.11)

where ai(t) and τi(t) still be the attenuation factor and propagation delay of the i-th
path, respectively, while δ(τ) corresponds to the Dirac delta function. Therefore,
comparing the Eqs. (2.9) and (2.11), the relation between the received signal, at
time t, and the bandpass signal x, transmitted at time t− τ , can be defined in terms
of impulse response as:

y(t) =
∫ ∞

−∞
h(τ, t)x(t− τ)dτ. (2.12)

Applying the Fourier transform (FT) to the impulse response, it is possible to
estimate the corresponding time-varying channel frequency response (CFR) defined
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Figure 2.4. Example of noisy signal. In (a) noise-free component in blue, and AWGN
component in orange. In (b) the resulting signal affected by AWGN noise.

as:

H(f ; t) =
∫ ∞

−∞
h(τ, t)e−j2πfτ dτ =

∑
i

ai(t)e−j2πfτi(t) = |H(f ; t)|ej∠H(f ;t), (2.13)

where |H(f ; t)|) and ∠H(f ; t) indicate the signal amplitude and phase responses,
respectively, and j is the imaginary component. Finally, in the frequency domain, a
time-variant channel can be linearly modeled as:

y(t) = H(f ; t) x(t− τ). (2.14)

However, notice that in the case of static environment with all fixed TX and RX
antennas, the wireless channel can be described as a linear time-invariant system
with Eqs. (2.11) and (2.13) specified as follows:

h(τ) =
∑

i

ai δ(τ − τi), (2.15)

H(f) =
∫ ∞

−∞
h(τ)e−j2πfτ dτ =

∑
i

ai e
−j2πfτi = |H(f)|ej∠H(f), (2.16)

where attenuations ai and propagation delays τi do not change with time t. As the
last step, in the definition of the wireless communication channel as a linear system,
other than factors causing signal attenuation and propagation delay, there is the
need to consider factors modeled as random and referred to as noise. It is common
for all communication systems in the real world to face such a noise effect, shown in
Fig. 2.4; indeed, it is physically impossible to have a noise-free channel. From the
signal formal definition point of view, the additive white Gaussian noise (AWGN) is
usually chosen for noise modeling on the received signal. Following this observation,
the wireless channel expressed by Eq. (2.10) under noisy conditions can be defined
as:

y(t) =
∑

i

ai(t)x(t− τi(t)) + ω(t), (2.17)
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where ω(t) is the AWGN component at time t. The noise component is additive
because, in the model specified by Eq. (2.17), the RX antenna process the sum
between a noise-free component, i.e., the signal that would have been received in
the absence of noise, and the noisy component independent from the transmitted
signal. Such component is random and, at each time, drawn from a fixed zero-mean
Gaussian distribution. The Gaussian is chosen because the noise results from adding
the effects of several and independent factors allowing the application of the central
limit theorem [35]. This theorem establishes that the sum of independent random
variables tends toward a normal distribution. Concluding, the noise is named white
because it has a uniform power across the entire frequency band.

2.3 Received signal strength indicator
The signal received from an RX antenna is characterized by a reduction in the
intensity of the waveform power accumulated as the EM radiation propagates
away from the transmitter and encounters several obstacles in the environment.
The received signal strength indicator (RSSI) indicates the relative signal quality
capturing the wireless channel strength variations. Indeed, such a measurement
has proved suitable for assessing the link quality in wireless networks [132] and
developing diverse Wi-Fi sensing applications [17, 56, 64]. Formally, the RSSI is
measured in decibels (dB) and generally expressed following the log-distance path
loss model [3], defined as:

PLd = PLd0 + 10n log10
d

d0
+ χ, (2.18)

where PLd is the path loss at an arbitrary distance d, n is the path loss exponent
depending from the environment, χ is a zero-mean Gaussian distributed random
variable with standard deviation σ in dB scale, representing noise to model shadowing
variations. Finally, PLd0 is the path loss at a reference distance d0 usually computed

Orthogonally spaced overlapping subcarriers

Subcarrier nulls

Subcarrier
peaks

(a)

Guard
interval

Sampling window

Signal

Delay 1

Delay N

(b)

Figure 2.5. OFDM technology simplified graphical representations. In (a) OFM signal
modulation example, in (b) guard interval visual interpretation.
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by exploiting the free-space path loss model, derived from Friis transmission equation
[36], defined as:

FSPL = 10 log10

(4πdf
c

)2
, (2.19)

where d is the distance between TX and RX antenna, c is the speed of light, and f
is the radio wave frequency obtained dividing the speed of light by the wavelength.

2.4 Orthogonal Frequency-Division Multiplexing
Most modern wireless communications, including IEEE 802.11a/b/g/n/ac/ax Wi-Fi
systems, employ the orthogonal frequency-division multiplexing (OFDM) signal mod-
ulation [21, 144] to transmit data encoded on multiple orthogonal carrier frequencies,
i.e., subcarriers, within the same individual communication channel. Specifically, as
shown in Fig. 2.5(a), a high-rate data stream is transmitted using closely spaced or-
thogonal subcarriers carrying information in parallel, each of which modulated using
a digital low symbol rate existing modulation scheme. By applying any modulation
scheme to a carrier, sidebands result from such a process causing the overlap between
different subcarriers involved in a multiple carriers scenario, creating interference at
any overlap frequency. However, this is not valid for orthogonal frequencies where
the orthogonality property generates signal nulls among adjacent subcarriers to
which each subcarrier peak is aligned. Therefore, the receiver can recover the original
signal correlating the known set of orthogonal sinusoids without interference despite
the overlapping sidebands.

Furthermore, combining various carrier frequencies allows reaching total data
rates comparable to single-carrier based modulation techniques within the same
bandwidths while preventing interference or signal corruption eventually caused by
the multi-path effect. The latter is possible using the guard intervals, ensuring that
new delayed replicas of the signal received do not alter the timing and phase of
the signal itself because data is only sampled in a stable condition as shown in Fig.
2.5(b). Therefore, the OFDM technique improves the classical frequency division-
multiplexing approach, exploiting multiple carriers to convey the information within
a channel, orthogonality to prevent interference caused by overlapping frequencies,
and guard bands for signal stability.

2.5 Channel State Information
The channel state information (CSI) is an alternative and more fine-grained wireless
communication channel measurement than the RSSI metric described in Sec. 2.3. It
is widely used in modern wireless communications based on the OFDM system to
obtain detailed signal propagation characteristics from the transmitter to the receiver
at the subcarrier level. In this way, transmissions can be adapted to the current
link conditions enabling reliable communications in multiple-input multiple-output
(MIMO) antenna configuration [109] shown in Fig. 2.6. While the RSSI indicates
the relative quality of the received signal, the CSI can capture richer information
about the signal such as amplitude, phase, or frequency. Indeed, as a consequence,
such a measurement is gaining momentum in recent years for developing numerous
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TX RX

Figure 2.6. Example of MIMO antenna configuration. Multiple TX antennas transmit
multiple parallel signals at the same frequencies to multiple RX antennas.

Wi-Fi sensing applications, including human presence detection [44, 146], activity
recognition [138, 154], and tracking [97, 177]. In a standard Wi-Fi transmission, P
data packets characterize the signal exchanged between TX and RX access points
(APs). The CSI is a frequency-domain evaluation measure involving the CFR values
computed for all the K OFDM-based subcarriers related to each p ∈ P packet
reaching the receiver. Given Θ and Γ arrays of fixed receiving and transmitting
antennas placed in a static environment, respectively, for each subcarrier k ∈ K over
the wireless communication established between the θ ∈ Θ and γ ∈ Γ antennas, the
frequency response H(f)θ,γ

k can be specified as:

H(f)θ,γ
k = |H(f)θ,γ

k |ej∠H(f)θ,γ
k , (2.20)

where |H(f)θ,γ
k | is the signal amplitude, ∠|H(f)θ,γ

k | is the signal phase, and j the
imaginary component resulting from the Fourier transform applied on the impulse
response. Therefore, the final CSI measurement estimated over all the K subcarriers,
considering all the antennas in the TX and RX arrays, is a complex matrix of size
Θ × Γ ×K, defined as:

CSI =


H(f)(1,1)

1 H(f)(1,1)
2 . . . H(f)(1,1)

κ

H(f)(1,2)
1 H(f)(1,2)

2 . . . H(f)(1,2)
κ

...
...

...
...

H(f)(θ,γ)
1 H(f)(θ,γ)

2 . . . H(f)(θ,γ)
κ

 , (2.21)

where H(f)(θ,γ)
κ is a signed 8-bit complex number indicating the κ-th subcarrier

CFR value over the θ ∈ Θ and γ ∈ Γ antennas.

2.6 Signal Amplitude
One of the most common signal characteristics derived from the CSI measurement
specification is its amplitude. During the propagation, the radio wave generates
patterns of disturbance oscillating through the transmission medium; therefore,
theoretically, such a measurement is the maximum displacement of points on the
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EM wave measured from its equilibrium position, as shown in Fig. 2.7. Practically,
instead, it can express the power of the radio signal reported in the dB scale. In real
scenarios, the wireless channel is not a noise-free communication system, and it is
accordingly modeled as in Eq. (2.17). Therefore, notice that even if the amplitude
patterns can be retrieved from the CSI matrix, they require further processing
to alleviate the possible noise from wireless protocol specifications and ambient
conditions. The solution can be the use of outliers removal strategies [98, 27].

2.6.1 Amplitude Sanitization

Abnormal values can occur in the CSI measurement and, consequently, influence the
signal amplitude extraction procedure; therefore, such outliers should be removed.
Sanitizing the amplitude through a filtering-based strategy allows eliminating even-
tually irrelevant radio information not necessarily required to solve the addressed
Wi-Fi sensing task, namely, to mitigate noise caused by various factors such as
furniture material and position or other external radio interference, as shown in Fig.
2.8(a). To this end, it is possible to investigate the Hampel identifier [28] to identify
an outlier value as any point falling outside a closed interval [µ− ξσ, µ+ ξσ], where
µ and σ are the median and median absolute deviation (MAD) of the data sequence,
respectively, and ξ is an application-dependent constant. Precisely, given a sliding
window of fixed length, outliers are identified by points resulting in more than ξ
local MAD away from the local median within this window over the wireless data
packets for each subcarrier. First, the local outliers are detected by exploiting local
median values over the sliding window. Afterwards, the detected abnormal values
are replaced with the previous non-outlier number to maintain consistent amplitude
information.

Formally, given the signal amplitudes extracted from the CSI measurements
of p ∈ P wireless packets transmitted between the TX and RX antennas, and
considering the size of a window w, the local median is defined as follows:

µ(Ωp,κ) = Ωp,κ
⌈w/2⌉, (2.22)
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Figure 2.7. Example of EM wave amplitude.
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Figure 2.8. CSI extracted amplitudes processing example. In (a) and (b) the raw and
sanitized amplitudes for one TX-RX antenna pair, respectively. Yellow circles are
abnormal values in raw data.

Ωp,κ =
{

|H(f)κ|p−⌊w/2⌋, . . . , |H(f)κ|p+⌊w/2⌋ :

|H(f)κ|p−⌊w/2⌋ < |H(f)κ|p+⌊w/2⌋
}
,

(2.23)

where Ωp,κ is the set containing w neighboring packets amplitude |H(f)κ| of the
κ-th subcarrier, in ascending order. Notice that we describe the equation for a
single sample for the sake of simplicity; however, µ is computed over all Θ × Γ ×K
antennas and subcarriers combinations. Therefore, the local MAD used to detect
abnormal amplitude values is defined as:

σ(Ωp,κ) = µ(|Ωp,κ
i − µ(Ωp,κ)|),

∀i, s.t. 1 ≤ i ≤ w.
(2.24)

Finally, the intervals in which points are acceptable local values are defined as:

limitp,κ = µ(Ωp,κ) ± ξ ∗ σ(Ωp,κ), (2.25)

and each value falling outside these ranges is replaced with the previous non-outlier
value to maintain information consistency, obtaining sanitized amplitudes as shown
in Fig. 2.8(b).

2.7 Signal Phase
Another common signal characteristic computed starting from the CSI measurement
is the signal phase. Such a measure is related to two or more radio signals sharing
the same frequency at a reference time. Specifically, given a point in time t, multiple
waves with the same frequency are said to be in phase if they are completely aligned,
whereas if crests and troughs do not overlap precisely, the radio waves are said to
be out of phase. Therefore, the phase can express the relative displacement among
the same frequency radio signals expressed in degrees or radians. Fig. 2.9 depicts
an original signal and its shifted version in time, causing the phase offset β. It is
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Figure 2.9. Example of a signal out of phase. The blue sinusoidal wave is the signal
originally transmitted, the dashed orange sinusoid is a delayed version of the same signal,
i.e., shifted in time, causing phase offsets.

crucial to notice that the phase influences the received radio wave amplitude. If the
signals are in phase, the combined amplitudes increase the received signal strength;
instead, if the signals are 180° out of phase, the resulting signal strength is null
because crests of one wave are aligned with troughs of the other wave canceling each
other. Similar to the amplitudes, phases can be retrieved from the CSI matrix but
require further processing to develop Wi-Fi sensing applications [99, 139].

2.7.1 Phase Sanitization

The signal phase behaving utterly random due to random noise, unsynchronized time
clocks between transmitting and receiving antennas, or the Doppler effect caused
by the communicating devices relative motion, makes the raw phase information
completely unusable and leads to random phase offsets, as shown Fig. 2.10(a). The
CSI extracted phases can be calibrated by applying a linear transformation based
technique as recommended in [108, 139] to address and mitigate such a problem.

Formally, the raw CSI phases ∠Ĥ(f)k measured for the k-th subcarrier can be
expressed as:

∠Ĥ(f)κ = ∠H(f)κ + 2πmκ

N
∆t+ β + Z, (2.26)

where ∠H(f)κ is the real phase, ∆t is the timing offset at the receiver corresponding
to the time interval between the signal arrival and detection, β is the unknown phase
offset, Z is the measurement noise, while mk and N correspond to the subcarrier
index and fast Fourier transform (FFT) size as specified by the IEEE 802.11n
standard [53]. Since ∆t and β are unknown, the genuine phase information cannot
be directly retrieved. However, considering the phase across the entire frequency
band, the unknown terms can be removed through a linear transformation, mitigating
the effect of random noise. To this end, being the subcarrier frequencies symmetric,
the phase slope a and offset b over the total frequency band can be represented via
the following equations:

a = ∠Ĥ(f)K − ∠Ĥ(f)1
mK −m1

, (2.27)
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b = 1
K

K∑
k=1

∠Ĥ(f)κ. (2.28)

Afterwards, the calibrated phases ∠H̃(f)κ for the k-th subcarrier, as shown in
Fig. 2.10(b), are computed as follows:

∠H̃(f)κ = ∠Ĥ(f)κ − amκ − b. (2.29)

Subtracting the linear term amk +b from the raw measurement ∠Ĥ(f)κ it is possible
to obtain a linear combination of genuine phases, denoted as ∠H̃(f)κ, from which
the random phase offsets have been removed.
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Figure 2.10. CSI extracted phase processing example. In (a) and (b), the raw and sanitized
phases of a single subcarrier, respectively.
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Chapter 3

Person Re-ID through Radio
Biometric Signatures

This chapter describes the deep neural network architecture designed to solve the
person Re-ID task. Initially, an overview of the proposed method is presented, then
the Wi-Fi signal processing, generation of radio biometric signatures, and Re-ID are
introduced in detail.

3.1 Proposed Method
An architecture that expands a two-branch siamese structure, comprising two parallel
sub-networks per model branch, was designed to achieve person Re-ID from Wi-Fi
signals, as shown in Fig. 3.1. The whole network can exploit both signals amplitude
and phase to address the re-identification task by following the proposed pipeline.
The rationale behind this choice is twofold and a requirement for the person Re-ID
task, where the lack of annotated data must be managed [150, 187, 101]. First,
this design is efficient in both supervised and unsupervised feature space learning.
Second, the underlying strategy allows to extract invariant feature representations
that enable a distance-based Re-ID, where similar identities will be close in the
learned feature space while dissimilar persons will have distant representations [171].
Moreover, a siamese strategy [18] has been widely used to address the vision-based
person Re-ID, achieving remarkable results [51, 183]. However, its usage for other
wireless sensing applications is fairly new and still being developed [164].

Specifically, the system first performs a CSI estimation step to capture propaga-
tion properties of signals influenced by humans standing between the transmitting
and receiving APs. The CSI measurement containing the affected signal is then
employed to extract amplitudes and phases, which are in turn processed to generate
sanitized feature vectors that represent relevant radio biometrics of a given person. In
particular, filtered amplitudes are transformed into heatmaps and analyzed through
a CNN-based network to capture meaningful signal patterns; calibrated phases are
instead processed via an LSTM-based model to describe discriminant temporal
changes deriving from life processes such as respiration and heartbeat. Subsequently,
the two sub-networks (i.e., CNN and LSTM components) outputs are combined
into a single feature vector representing a radio biometric signature that can be
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Figure 3.1. Proposed model architecture for person Re-ID through Wi-Fi. Starting from a
wireless transmission, CSI is estimated and used to extract amplitude heatmaps and
phase vectors as radio biometrics. A CNN and LSTM unit are then exploited to build
relevant radio biometric signatures, used for the person re-identification.

used to re-identify a person across the same or at different locations. Notice that
the proposed model, due to the identical branches with shared weights, is suitable
for finding similarities between comparable inputs and can generate final feature
vectors, i.e., radio biometric signatures, that account for possible environment noise
derived, for example, from different furniture. Indeed, by following the classical
vision-based siamese objective function structure, the proposed method ensures that
signals associated to the same person will have similar representations in the feature
space; therefore enabling for their Re-ID.

3.1.1 Channel State Information Estimation

The first CSI estimation step leverages commodity hardware for the TX and RX
APs, fixed in place inside stationary environments to reduce the amount of random
ambient noise. In detail, an 802.11n commercial router is used as transmitter (i.e.,
TX), while an Intel Wi-Fi Link 5300 (IWL5300) network interface card (NIC),
connected to a Desktop PC, acts as receiver (i.e., RX). The latter was chosen since
custom firmware and drivers that enable the CSI estimation were implemented
in [54], as it is still rather uncommon to use commodity hardware to access CSI
estimation. Furthermore, the proposed system exploits the MIMO technology to
take full advantage of the multi-path propagation as a consequence of TX and RX
APs integrating Γ = 2 and Θ = 3 antennas, respectively. Formally, considering the
described Wi-Fi signals propagation scenario, the communication channel can be
modeled in the time domain as the linear time-invariant channel filter specified by
Eq. (2.15) reported in Sec. 2.2. Note, however, that the CSI is a frequency-based
measurement; thus, for its estimation, the fast Fourier transform (FFT) is applied
on the impulse response at the receiver to obtain the corresponding CFR complex
value [111]. Consequently, the APs time-invariant communication channel in the
frequency domain can be linearly modeled as follows:

y = H(f) x+ ω (3.1)
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where y is the received signal vector; H(f) represents the CFR at specific frequency
f ; x is the transmitted signal vector; and ω indicates the AWGN component. From
this channel model, the OFDM technology provides a sampled CFR with a subcarrier
granularity; therefore, the CSI measurement is computed by including the CFR
value from each of them. Specifically, the IWL5300 component uses K = 30 OFDM
subcarriers sampled from the 20MHz channel which contains 56 subcarriers. For each
subcarrier κ ∈ K, the frequency response H(f)(θ,γ)

κ over the receiving θ ∈ Θ and
transmitting γ ∈ Γ antennas, can then be represented via the complex Eq. (2.20).
The final CSI matrix computed over the frequency response of all the subcarriers,
accounting for all transmitting and receiving antennas, is a 3 × 2 × 30 matrix defined
exploiting the Eq. (2.21), as follows:

CSI =


H(f)(1,1)

1 H(f)(1,1)
2 . . . H(f)(1,1)

30
H(f)(1,2)

1 H(f)(1,2)
2 . . . H(f)(1,2)

30
...

...
...

...
H(f)(3,2)

1 H(f)(3,2)
2 . . . H(f)(3,2)

30

 , (3.2)

where H(θ,γ)
κ is a signed 8-bit complex number indicating the κ-th subcarrier CFR

value over the θ ∈ Θ and γ ∈ Γ antennas. Observe that both amplitude and phase
can be retrieved from the CSI matrix, but require further processing to be used by
the proposed system as shown in Subsections 2.6.1 and 2.7.1.

3.1.2 Amplitude Sanitization and Heatmap Generation

To prepare clean radio biometrics for the CNN sub-network, CSI extracted amplitudes
are sanitized and transformed into heatmaps. See that the sanitization step is
required since the retrieved amplitudes present noise due to various factors such as
furniture material and position, external radio interference, and other environmental
conditions, as shown in Fig. 3.2(a).

Concerning the sanitization procedure, the method described in Subsec. 2.6.1 is
applied. Specifically, local outliers are first detected through local median values
computed over a sliding window of fixed length. Subsequently, these outliers are
replaced using the previous non-outlier value to retain consistent amplitude informa-
tion. In particular, outliers are identified by points resulting more than ξ = 3 local
MAD away from the local median within the sliding window applied across packets
of each subcarrier. Formally, given a wireless transmission between a TX and RX
antenna, amplitudes extracted from CSI measurements of p ∈ P data packets, and
a window size w = 5, by following the Eqs. (2.22) and (2.23) the local median is
defined as:

µ(Ωp,κ) = Ωp,κ
⌈5/2⌉, (3.3)

Ωp,κ =
{

|H(f)κ|p−⌊5/2⌋, . . . , |H(f)κ|p+⌊5/2⌋ :

|H(f)κ|p−⌊5/2⌋ < |H(f)κ|p+⌊5/2⌋
}
,

(3.4)

where Ωp,κ represents an ascending order set containing 5 neighboring packets
amplitude |Hκ| of the κ-th subcarrier. Note that the median described in Eq. (3.3)
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Figure 3.2. CSI extracted amplitude processing example. In (a) and (b), the raw and
sanitized amplitudes for a single TX-RX antenna pair, respectively. In (c), and (d), the
median filtered amplitudes across all antenna pairs, and the corresponding heatmap
used as input for the CNN sub-network.

is computed for all 3 × 2 × 30 antennas and subcarriers combinations, however a
single sample is reported for the sake of simplicity. Considering Eqs. (2.24) and
(2.25), the local MAD used to identify outliers and sanitize the amplitudes is then
computed as follows:

σ(Ωp,κ) = µ(|Ωp,κ
i − µ(Ωp,κ)|),

∀i, s.t. 1 ≤ i ≤ 5.
(3.5)

while the acceptable local amplitude ranges are defined as:

limitp,κ = µ(Ωp,κ) ± 3 ∗ σ(Ωp,κ), (3.6)

and every amplitude resulting outside these limits is replaced with the previous
non-outlier value to maintain signal consistency. The produced sanitized signals, for
an empirically chosen window size w = 5, are shown in Fig. 3.2(b).

Upon this first processing procedure that enables to reduce artifacts in CSI
measurements, a second median filtering is applied over the 3 × 2 transmissions.
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The reason behind this decision is twofold. First, it allows to reduce the data
dimensionality, and second, it condensates amplitudes characteristics shared among
different antennas transmissions, as shown in Fig. 3.2(c). Notice that this decision
was taken since, in general, the sanitized 3×2 transmissions present similar properties.
Lastly, the concentrated amplitudes are transformed into a single heatmap M of
size P × K, as displayed in Fig. 3.2(d), representing a person’s amplitude radio
biometric; which is to be used as input for the CNN sub-network.

3.1.3 Phase Sanitization

Similarly to CSI amplitudes, phases also require to be processed due to common
issues such as random noise and unsynchronized time clocks between TX and RX
APs, that can result, among other things, in random phase offsets, as shown in
Fig. 3.3(a). To address this issue, CSI-extracted are calibrated phases using the linear
transformation presented in Sec. 2.7.1. Formally, a raw CSI phase ∠Ĥκ measured for
the κ-th subcarrier can be expressed as Eq. (2.26). In particular, for the IWL5300
network interface, subcarrier indices range from −15 to 15, while N = 30. To
calibrate the phase, since the subcarrier frequency is symmetric, it possible to apply
the linear transformation specified in Eq. (2.29) and ignore unknown parameters by
considering the phase across the total frequency band. Specifically, the phase slope
a and offset b defined by Eqs. (2.27) and (2.28), respectively, can be defined as:

a = ∠Ĥ30 − ∠Ĥ1
m30 −m1

, (3.7)

b = 1
30

30∑
κ=1

∠Ĥκ. (3.8)

Afterwards, the calibrated phases ∠H̃κ, shown in Fig. 3.3(b), are computed by
Eq. (2.29). Once the phase calibration is completed, a median filtering is applied
over the 3 × 2 transmissions, similarly to the amplitude procedure, to reduce data
dimensionality and agglomerate typical phase values along the various subcarriers,
into a vector F . An example of filtered phases is shown in Fig. 3.3(c). Finally,
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Figure 3.3. CSI extracted phase processing example. In (a), (b), and (c), the raw, sanitized
and median filtered phases of a single subcarrier, respectively.
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the vector F of size P ×K, containing the processed phases that capture temporal
changes of a signal propagation, is used as input for the LSTM sub-network.

3.1.4 Radio Biometric Signatures

To perform person Re-ID an architecture based on a siamese structure is proposed; it
is implemented via a two-branch neural network with parallel sub-networks in each
branch, that is trained as a feature extractor, and that can learn invariant mappings
[52] from the extracted radio-based features, thus resulting in a good choice for
the addressed task. In detail, to compute such mappings, the model is composed
by two identical branches with shared weights. Moreover, both of the presented
architecture branches contain two parallel sub-networks, i.e., a CNN and an LSTM
model, to correctly analyze the preprocessed signals. In particular, for the CNN
module we followed a VGG-16 structure without its classification component (i.e.,
up to and including the last max pooling operation), since this model is an effective
image pattern extractor [115]. The LSTM sub-network, instead, is implemented via
a single recurrent neural network (RNN) layer containing P LSTM units. Moreover,
the CNN model takes as input the heatmap M presented in Sec. 2.6.1, representing
biometric information derived from amplitudes, and outputs a feature map vector M̄ ;
while the LSTM receives as input the F vector introduced in Sec. 2.7.1, containing
temporal biometric information, and outputs the feature vector F̄ . The resulting
sub-network outputs, i.e., M̄ and F̄ , are then concatenated and merged together
through a dense layer to build what is defined in this work as a radio biometric
signature s.

Concerning the model training, the proposed pipeline accepts as input data
pairs representing signals associated to the same or different persons. Afterwards,
while biometric signatures are being learned by the sub-networks of a branch, the
Euclidean distance is applied across the branches resulting outputs via a siamese loss
function. This procedure allows to minimize, or maximize, the generated biometric
signatures distance for similar, or dissimilar, inputs, respectively. Formally, given
a pair of CSI measurements (CSIi, CSIj) as input, biometric signatures si and sj

are computed by concatenating the model branches outputs and elaborating them
through a dense layer as follows:

si = wi(M̄i ⊕ F̄i) + bi,

sj = wj(M̄j ⊕ F̄j) + bj ,
(3.9)

where ⊕ represents the concatenation operation; while w and b indicate the dense
layer weights and bias, respectively. Subsequently, the siamese loss can be defined
as:

L(si, sj)
siamese

=
{1

2 ∥si − sj∥2 , if i = j;
1
2 max(m− ∥si − sj∥ , 0)2, if i ̸= j,

(3.10)

where ∥·∥2 is the Euclidean distance; while m is a margin, empirically set to 2 in this
work, that helps the dissimilar signatures separation during the optimization process.
What is more, notice that this architecture also enables the Re-ID of unknown
people, i.e., not observed during training, since their radio biometric signatures can
still be extracted and compared at test time; where likely matching identities will
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be associated by lower distances among signatures, in accordance with the reported
siamese loss function.

3.1.5 Joint Identification and Verification

The siamese loss function is key to the signatures generation, however, on the
basis of [124, 88], the training loss function is further extended by following a joint
identification and verification strategy that can improve the signatures quality. In
particular, at training time, each model branch will predict person identities while the
siamese cost described in Sec. 3.1.4 is also globally satisfied. Formally, the biometric
signature s generated by a given branch is fed to a dense layer with dimension D,
i.e., the number of known persons, and the identity loss is then implemented through
a categorical cross-entropy function, as follows:

L(D)
ID

= −
D∑
d

yd log
( exp(d)∑D

d′ exp(d′)

)
, (3.11)

where d and yd correspond to the predicted person identity and ground truth,
respectively. Subsequently, to improve Re-ID accuracy, the identification losses
computed by the two model branches are also employed in the overall training
objective function, as described in the following equation:

L = L(si, sj)
siamese

+ L(Di)
ID

+ L(Dj)
ID

. (3.12)

Observe that this joint objective function is only used to enable the model to
extract good biometric signatures from the input signals. However, at test time,
the architecture is only employed as a signature extractor. As a consequence, the
identification losses are ignored while the siamese one is replaced by an Euclidean
distance to address the re-identification task; where lower distances between two
signatures naturally indicate more likely matching identities.
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Chapter 4

Human Silhouette and Skeleton
Video Synthesis through Wi-Fi
signals

This chapter describes the deep learning strategy designed to solve the human
silhouette (or skeleton) video synthesis task. Initially, an overview of the proposed
method is presented, then the Wi-Fi signal processing, cross-modality supervision,
and synthesis of human dynamics are introduced in detail. Finally, implementing a
privacy-conscious system, a modified network architecture is introduced for solving
a small use case combining video synthesis and human activity recognition from
synthesized silhouettes or skeletons.

4.1 Proposed method
A novel two-branch neural network was designed and organized on parallel branches,
sharing a decoder component to map radio signals to the visual domain and synthesize
human silhouette and skeleton videos from Wi-Fi signals by emulating a teacher-
student relationship. In particular, the teacher supervises the student training phase,
transferring vision-based information to the associated sanitized amplitudes of the
observed signal. The proposed architecture is summarized in Fig. 4.1. Precisely,
the teacher model is a 3D-GAN handling visual data that, after learning the low-
dimensional manifold of observed videos about human silhouettes or skeletons,
produces data used as the visible ground truth for amplitudes processed by the
student model. Such GAN type has been chosen since it has been proven effective
in synthesizing both still images[89] and videos[162]. The student is a novel hybrid
autoencoder (AE) based on LSTM[12, 9] and CNN[10, 5] architectures, inspired by
the domain translation devised in [196] for image-to-image synthesis and our previous
experiences on training supervision [6, 11]. In detail, the latter was specifically
designed to handle amplitudes recorded over time, achieved by combining LSTM
and 3D-CNN architectures to generate a latent radio representation of the signal.
Then, by implementing a supervision from the teacher model, the student learns the
effective mapping between radio and visual domains, i.e., translating amplitudes into
silhouette or skeleton videos. Due to this distinctive design, the fundamental strategy
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Figure 4.1. Proposed model architecture for video synthesis from Wi-Fi signals. Given a
synchronized pair of human silhouette or skeleton video and CSI extracted amplitudes
as input, visual knowledge is transferred to radio-based features by translating and
mapping them in the visual domain via a teacher-student design. Red arrows indicate
cross-modality supervision. Note that the student model can synthesize videos leveraging
only Wi-Fi signals.

and difference with existing works addressing image synthesis from Wi-Fi signals,
is that the proposed network architecture exploits synchronized pairs composed
by a human silhouette (or skeleton) video and CSI extracted amplitudes, both
taken from the same underlying environment, of a person continuously performing
different poses to synthesize accurate outputs. The human silhouette, shown in
Fig. 4.2, is obtained by applying the semantic image segmentation solution proposed
in [22] to an input RGB sequence. The latter is also used as a starting point to
extract skeletons through the OpenPose[20] framework. In this way, environment
background and personal information are removed from the input, enabling the
model to focus exclusively on the subject and its dynamics [4], i.e., the person moving
in the scene, like in most real camera-based surveillance scenarios [8]. Instead, the
sanitized amplitudes are extracted from the CSI measurements of sequential Wi-Fi
data packets as signal-based features describing human poses in the radio domain
[86]. This paired input enables the cross-modality supervision to learn a mapping
from one domain to another during the network training phase. Accordingly, once
the whole network is trained, only the student model and sanitized CSI extracted
amplitudes are considered for the video synthesis. The result is a framework that
can generate new person-related video frames from Wi-Fi signals without requiring
any additional human or visual annotation as supervision as well as without any
loss of generality. For illustration, both training and testing workflows are depicted
in Fig. 4.3(a) and Fig. 4.3(b), respectively.

4.1.1 Channel State Information Estimation

Regarding a standard wireless transmission, P data packets characterize the Wi-
Fi signal exchanged between fixed transmitting (TX) and receiving (RX) APs,
integrating, respectively, Γ > 1 and Θ > 1 antennas. Specifically, public data used
for the evaluation of the proposed method were acquired with Γ = 6 and Θ = 3
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antennas and exploiting a 5GHz frequency band with 20MHz channel bandwidth
sampling K = 30 OFDM subcarriers. In this MIMO setting, the CSI is measured
including fine-grained signal information at the subcarrier level [166]. The CSI is
a frequency-based measurement obtained by applying the fast Fourier transform
(FFT) on the CIR value in time domain at the receiver, expressed as the linear
time-invariant channel filter specified by Eq. (2.15) in Sec. 2.2, to compute the
corresponding CFR complex number [110]. In practice, such a measurement estimates
the CFR for each packet p ∈ P reaching the RX device physical layer. Formally, in
the frequency domain, the APs time-invariant communication channel is linearly
modeled as follows:

y = H(f) x+ ω, (4.1)

where y is the vector of the received signal, H(f) indicates the CFR value at specific
frequency f , x is the vector of the transmitted signal, and ω is the AWGN factor.
From Eq. (4.1), the OFDM technology provides a sampled CFR at the subcarrier
level; thus, the CSI measurement is computed by including the CFR values from
K OFDM subcarriers defining the communication channel between RX and TX
APs. Indeed, over the receiving θ ∈ Θ and transmitting γ ∈ Γ antennas, for each
subcarrier κ ∈ K, the frequency response H(θ,γ)

κ is a complex value specified by Eq.
(2.20), including the signal amplitude and phase. Finally, the CSI matrix obtained
accounting all communicating antennas and all subcarriers is the 6 × 3 × 30 matrix
defined as:

CSI =


H

(1,1)
1 H

(1,1)
2 . . . H

(1,1)
30

H
(1,2)
1 H

(1,2)
2 . . . H

(1,2)
30

...
...

...
...

H
(6,3)
1 H

(6,3)
2 . . . H

(6,3)
30

 , (4.2)

where H(θ,γ)
κ is the signed 8-bit complex CFR number for the κ-th subcarrier over

the θ ∈ Θ and γ ∈ Γ antennas. According to the CSI specification, the amplitude
can be derived from such a matrix but eventually requires further processing to be
useful for Wi-Fi sensing applications as specified in Sec. 2.6.1.

4.1.2 Signal Amplitude Sanitization

To obtain meaningful radio-based features for synthesizing human silhouette or
skeleton videos, the procedure described in Subsec. 2.6.1 is applied to filter the
CSI extracted amplitudes and mitigate noises due to wireless protocol specifications
and environmental conditions, as can be observed in Fig. 4.4(a). Indeed, abnormal
values can appear in the CSI measurement and affect the extraction of human
dynamics; therefore, such outliers should be removed [99]. Filtering the amplitude
allows to suppress irrelevant radio information not necessarily correlated to human
activity, i.e., mitigates noise caused by various factors such as furniture material
and position or other external radio interference. To this end, the outlier value is
identified exploiting the local median values computed over a sliding window of
fixed length and replaced with the previous non-outlier value to keep congruous
amplitude information. In detail, by setting ξ = 3, outliers are identified by points
resulting in more than three local MAD away from the local median within the
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Figure 4.2. Video data input examples. The original RGB frames are reported in the top
row, while the corresponding extracted human silhouette and skeleton, are shown in the
middle and bottom rows, respectively.

sliding window over the packets for each subcarrier. Formally, considering the size of
a window empirically set to w = 50, and given the signal amplitudes extracted from
the CSI measurements of p ∈ P wireless packets transmitted between the TX and
RX antennas, according to the Eqs. (2.22) and (2.23), the local median is specified
as follows:

µ(Ωp,κ) = Ωp,κ
⌈50/2⌉, (4.3)

Ωp,κ =
{

|H(f)κ|p−⌊50/2⌋, . . . , |H(f)κ|p+⌊50/2⌋ :

|H(f)κ|p−⌊50/2⌋ < |H(f)κ|p+⌊50/2⌋
}
,

(4.4)

where Ωp,κ is the set containing 50 neighboring packets amplitude |H(f)κ| of the
κ-th subcarrier, in ascending order. Notice that the equation of a single sample is
reported for the sake of simplicity; however, Eq. (4.3) is computed over all 6 × 3 × 30
antennas and subcarriers combinations. Therefore, according to Eqs. (2.24) and
(2.25), the local MAD used to detect abnormal amplitude values is defined as:

σ(Ωp,κ) = µ(|Ωp,κ
i − µ(Ωp,κ)|),

∀i, s.t. 1 ≤ i ≤ 50.
(4.5)

Finally, the intervals in which points are acceptable local values are defined as:

limitp,κ = µ(Ωp,κ) ± 3 ∗ σ(Ωp,κ), (4.6)

and each amplitude falling outside these ranges is replaced with the previous non-
outlier value to obtain information consistency. The produced sanitized amplitudes,
for the considered window size, are shown in Fig. 4.4(b). Since the sanitized 6 × 3
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Figure 4.3. Proposed model workflows for video synthesis from Wi-Fi signals. In (a) and
(b) the training and testing flowcharts, respectively.

transmissions share similar amplitudes properties, median filtering is applied over
the transmissions to condensate such properties in a matrix A with size P ×K, as
shown in Fig. 4.4(c) and Fig. 4.4(d). In this way, data dimensionality is reduced,
and amplitudes shared among different antennas transmissions are concentrated. To
train the two-branch network, the CSI extracted amplitudes are paired with the
synchronized videos used to supervise the synthesis process.

4.1.3 Two-branch Network Architecture

Starting from the sanitized amplitudes paired with the corresponding synchronized
video, the mapping between radio and visual features is achieved by training the
two-branch network in a teacher-student fashion. In detail, to find this mapping,
the network exploits two parallel branches sharing the same decoder component.
The top branch has a 3D-GAN structure handling vision-based data and acts as the
teacher model. Specifically, the latter consists of video frames encoder Ev, decoder
Dv, and discriminator C components. In particular, for the Ev and C models,
there are 3 3D convolutional layers, each comprising the sequence of strided 3D
convolution, batch normalization [61], and leaky rectified linear unit (leakyReLU)
[87] activation function. However, these two components differ in the last layer. In
fact, being C a binary classifier, it applies a sigmoid activation function to the last
3D convolution output. Regarding the decoder Dv, it follows a reverse structure
with respect to the encoder Ev with 3 3D transposed convolutions, rather than
convolutions, and implements ReLU instead of LeakyReLU activation functions
to stabilize the training process, as suggested in [100]. Moreover, after the last
transposed convolution, Dv uses the hyperbolic tangent function to reconstruct
video frames. Notice that strided 3D convolutions are used rather than traditional
2D-based ones, which are generally followed by a max-pooling operation, and the
reason is twofold. First, the stride reduces the computational cost and dynamically
learns the pooling operation, improving the entire model generalization [120]. Second,
the 3D convolution effectively performs video analysis capturing both spatial and
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temporal information. Indeed, the 3D-GAN goal is to learn how to reproduce
the observed human silhouette, or skeleton, videos distribution, leveraging a low-
dimensional manifold that comprises feature maps in visual and temporal domains to
keep track of human poses across the video frames. Intuitively, given a sequence of L
3D convolutional layers, each of them extracts spatial and temporal characteristics
from the local neighborhood on the feature maps connected to various frames in
the corresponding previous layer. Subsequently, a bias is applied, and an activation
function is used on the result to generate feature maps on the current layer. The
temporal dimension is caught convolving the 3D kernel on stacked contiguous video
frames, allowing for the extraction of motion information from the video. Formally,
for each feature map j ∈ Jl computed in layer l ∈ L, the 3D value v at position

Figure 4.4. CSI extracted amplitudes processing example for 1000 data packets. In (a)
and (b) the raw and sanitized amplitudes for one TX-RX antenna pair, respectively.
Yellow circles are abnormal values in raw data. In (c) and (d) the median filtering over
the transmissions (i.e., all antenna pairs) and the corresponding 3D surface plot for a
more comprehensive view.
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(x, y, z) in j is defined as:

vxyz
lj = ϕ

(
blj +

∑
m

Wl−1∑
w=0

Hl−1∑
h=0

Tl−1∑
d=0

ρwht
ljm v

(x+w)(y+h)(z+t)
(l−1)m

)
,

(4.7)

where ϕ is the activation function; blj describes the bias for the current feature map;
m indicates the feature map index of the previous layer (l− 1) connected to the j-th
feature map; Wl, Hl, and Tl correspond to the height, width, and temporal depth
of the 3D kernel, respectively; while ρwht

ljm represents the the kernel ρljm value at
position (w, h, t) connected to the m-th feature map. This characterization allows the
teacher model to learn the latent space Z, with size JL ×TL ×HL ×WL, representing
multiple contiguous frames with JL feature maps of size TL ×HL ×WL. Observe
that this space includes low-dimensional spatial and temporal features describing
human silhouette, or skeleton, poses associated to the visual domain. Concerning
the bottom branch of the proposed network, it has a hybrid AE structure handling
radio-based data and acts as the student model. Precisely, the latter comprises
an LSTM-based signal encoder Es and shares the video frames decoder Dv of the
teacher. This type of architecture is significant for this branch because it effectively
learns to map radio features to vision-based data. In particular, for the encoder
Es, there is a LSTM layer with P units, i.e., one per packet, and a 3D transposed
convolution is applied on the last unit result to enable the radio-to-visual domain
translation. The LSTM was chosen since it can extract features from sequential
data [140]. In fact, this architecture has proven to be an ideal solution to learn
the low-dimensional radio features from the sequence of CSI extracted amplitudes
of contiguous wireless data packets. Afterwards, such features are translated and
employed to synthesize video frames through the Dv component. Note that each
LSTM unit retains important features computed from the amplitude sequence by
exploiting its input, forget, and output gates to update a cell state; allowing the
model to forget otherwise irrelevant information[47]. Formally, given a sequence
of CSI amplitudes A = {a1,1, a1,2, . . . , aP,K}, over the subcarriers κ ∈ K, for each
packet p ∈ P the corresponding LSTMp unit is defined as:

ip = σ(Πaiap + Uhihp−1 + Ψcicp−1 + bi),
fp = σ(Πafap + Uhfhp−1 + Ψcfcp−1 + bf ),
op = σ(Πaoap + Uhohp−1 + Ψcocp−1 + bo),
c̃p = tanh(Πac̃ap + Uhc̃ hp−1 + bc̃),
cp = fp ⊙ cp−1 + ip ⊙ c̃p,

hp = op ⊙ tanh(cp),

(4.8)

where i, f , and o indicate the the input gate, forget gate, output gate; h, c̃, and c
denote the hidden state, cell update, and cell state, respectively; Π, U , and Ψ are the
weight matrices for the corresponding gates, hidden states, and peep-hole connections;
while b indicates a bias vector added to every gate or cell update. Therefore, the
low-dimensional radio features learned by Es for P packets are represented by the
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last LSTM unit hidden state vector hP ; capturing an abstract representation of
the whole input sequence. Upon extracting these radio features, the 3D transposed
convolution is applied to prepare the hp vector for radio-to-visual domain translation,
obtaining a new latent representation V that enables the silhouette, or skeleton,
video frames synthesis through the Dv component.

4.1.4 Cross-modality Supervision

During the training phase, N pairs of synchronized data < F,A >n are used as the
model input, where F and A correspond to the set of human silhouette, or skeleton,
frames and sanitized CSI amplitudes extracted from the Wi-Fi signal associated to
the video, respectively, for the n-th dataset sample. In detail, for each sample n ∈ N ,
the encoder Ev takes as input the set F containing real frames and computes the
corresponding latent space Z. Afterwards, this low-dimensional representation is
used by the decoder Dv to reconstruct the original video, defining a set of fake frames
Y . On the other hand, the encoder Es, supervised by the teacher branch, takes as
input the sanitized amplitudes A and computes the latent vector hP which, analyzed
through the 3D transposed convolutional operation, outputs a latent space V , with
the same shape of Z, that is used for the radio-to-visual translation. Finally, the
shared component Dv synthesizes video frames S, corresponding to the original input
set F , using latent space V . In general, mapping data from radio to visible spectrum
is challenging due to the lack of labeled data. This problem is solved by employing
the teacher branch to generate ground truth data leading to the domain-to-domain
translation. In this proposed teacher-student design, the vision-based information is
transferred to signal features by linking the latent representations of video and CSI
extracted amplitudes.

Regarding the teacher model, the 3D-GAN learns a latent manifold of input
videos required for the reconstruction goal, employing the classical GAN adversarial
function based on the zero-sum game. Formally, this is achieved through the following
objective loss derived from the cross-entropy between real and fake videos, defined
as:

Z = Ev(F ),
Y = Dv(Z),
LF = EF [log C(F )],
LY = EY [log (1 − C(Y )],
Ladv = min

{Ev ,Dv}
max

C
(LF + LY ),

(4.9)

where Z and Y are the latent space and reconstructed set of fake video frames;
C(·) indicates the discriminator estimated probability of either real or fake videos
being effectively real; while EF and EY are the expected value over all the original
and fake sets of frames. The proposed teacher network, generating Y from the low-
dimensional features, tries to reproduce the real video F given as input. Therefore,
the mean squared error is computed between video frames of F and Y , as follows:

MSEY = 1
T

T∑
i=1

(Fi − Yi)2, (4.10)
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where T indicates the input video number of frames. Finally, the training objective
for the 3D-GAN is computed via the following weighted equation:

L
T eacher

= wadv Ladv +wY MSEY , (4.11)

where wadv and wY , with wadv < wY , are weights adjusting the impact of each
objective to the overall function. Notice that the obtained latent space Z and
reconstructed set of video frames Y are key elements that enable cross-modality
supervision for the student model. Concerning the student model, it is implemented
through a hybrid AE network that learns a low-dimensional representation of radio-
based features by analyzing sanitized amplitudes via its Es module. In addition,
due to the supervision process, the student can also find a feature mapping between
the visual and radio domains. Formally, given the CSI extracted amplitudes A for
P contiguous wireless data packets, the latent vector hP is computed as follows:

hP = Es(A). (4.12)

Afterwards, a 3D transposed convolution is applied on this latent representation to
obtain low-dimensional feature maps V with the same shape of Z. Subsequently,
the radio-to-visual domain translation is obtained by binding the two latent spaces
Z and V , effectively transferring knowledge from the visual domain, i.e., Z, into the
radio one, i.e., V . Formally, this can be achieved by defining the following objective
function for the student encoder Es:

MSEV = 1
|Z|

|Z|∑
i=1

(Zi − Vi)2, (4.13)

where |Z| correponds to the latent space size. Moreover, to further improve the
student abstraction capabilities, the reconstructed frames S, generated from the
radio latent space V through the shared decoder Dv, are constrained to the set of
frames Y produced by the teacher. This allows to correctly transfer knowledge by
binding the two outputs, i.e., Y and S, and, consequently, to generate frames that
are more similar to the real video frames F independently from the exploited input
type, i.e., video or radio. Formally, this second constraint is defined as:

MSES = 1
T

T∑
i=1

(Yi − Si)2, (4.14)

where T corresponds, again, to the input video number of frames. Notice that the
two objective functions MSEV and MSES are constraints required for the domain-
to-domain translation between video and signal amplitudes pairs. In particular,
latent space Z and reconstructed frames Y act as ground truth data enabling cross-
modality supervision from the teacher during the whole network training process.
Finally, the training objective for the hybrid AE, i.e., student model, is computed
through the following equation:

L
Student

= wV MSEV + wS MSES , (4.15)
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Figure 4.5. Proposed model architecture for video synthesis from Wi-Fi signals, shown in
Fig. 4.1, with the addition of a human activity recognition module (i.e, the red dashed
rectangle).

where wV and wS , with wV < wS , are weights adjusting the impact of each objective
to the overall function. Concluding, the entire two-branch network objective is to
minimize the following loss function:

L
Synth

= L
T eacher

+ L
Student

. (4.16)

4.2 Example - Use Case: Human Activity Recognition
An automated system capable of generating new visual dynamic content regarding
human silhouette or skeleton from Wi-Fi signals can be an advantageous alternative
or support tool in the case of limited visibility or violation of human privacy in
traditional vision-based surveillance applications. Therefore, a human activity
recognition module Ra was added to the network architecture designed in Fig.
4.1 to demonstrate how the proposed method works in conjunction with a simple
monitoring application to understand human behavior only by analyzing silhouette
or skeleton synthesized from Wi-Fi signals, satisfying the privacy-conscious concept.
The new edited architecture for this specific use case is depicted in Fig. 4.5, where
the new component Ra is highlighted with the red dashed rectangle. The latter
has the same structure of the discriminator C except for the last layer replaced
with a sequence consisting of two consecutive dense layers with leakyRelu activation
function only applied on the first. In particular, the module for activity recognition
will predict the human actions from synthesized videos without collecting personal
data while the synthesis cost specified by Eq. (4.16) is globally satisfied. Formally,
the features extracted by Ra from each generated video are fed to the second dense
layer with dimension B, i.e., the number of action classes, and the action loss is then
implemented through a categorical cross-entropy function, as follows:

L
activity

= −
B∑
b

yb log
( exp(b)∑B

b′ exp(b′)

)
, (4.17)
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where b and yb correspond to the predicted human action and ground truth, respec-
tively. Subsequently, to effectively increase the presented model capability handling
video synthesis and activity recognition jointly, obtaining a multi-task learning
scheme, the overall network objective to minimize for the specified use case becomes
the following loss function:

L = L
Synth

+ L
Activity

. (4.18)
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Chapter 5

Experimental Results

This chapter reports the implementation details and experimental results for both Wi-
Fi sensing applications presented and discussed. For person Re-ID, the experiments
are performed on a specific collected dataset fitting the task. For video synthesis,
the method is evaluated employing public available Wi-Fi data focused on human
subjects performing continuous poses. In addition, for the latter, the results of a use
case example involving human activity recognition from synthesized data are reported
to prove the usefulness of implementing the presented method in surveillance-based
applications.

5.1 Person Re-ID through Radio Biometric Signatures
To present a comprehensive evaluation of the proposed methodology for person
Re-ID, this section describes the data collection procedure, necessary due to the
lack of public datasets for Wi-Fi Re-ID; relevant implementation details, including
the chosen testing protocol and metrics; as well as qualitative and quantitative
evaluations for the various system components.

5.1.1 Dataset

To compensate for the Wi-Fi Re-ID datasets unavailability, a collection was acquired
to assess the presented approach. Specifically, Wi-Fi signals were captured for 35
distinct people, comprising 15 women and 20 men with similar body characteristics,
standing between the TX and RX APs, for a total of 525 transmissions. In more
detail, the average women height and weight were 165.3 ± 4.6cm and 61 ± 7kg,
while the average men measurements corresponded to 176.1 ± 6.7cm and 76 ± 8kg.
Furthermore, for each identity, five 3-seconds long transmissions (i.e., spanning
over 300 packets) were collected using the 20 MHz channel of a 2.4 GHz Wi-Fi
link in 3 different rooms: a conference hall, an office, and indoor hallway. Each
room configuration is shown in Fig. 5.1. In all cases, the TX and RX were fixed
and placed 2 metres apart, with no objects in between, and one person at a time
was asked to either face toward to or away from the TX while standing between
the two devices. Finally, all furniture and environment items were otherwise left
untouched, and no shielding mechanism was employed to avoid interferences from
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other radio signals, which effectively replicates real Wi-Fi networks characteristics
where multiple connections propagate across the same area and affect one another.

5.1.2 Implementation Details

Regarding the various experimental settings, Wi-Fi signals were preprocessed via
the Matlab R2021a software, while several ablation studies were performed on
the neural network component to correctly evaluate the proposed approach. The
assessed models followed the same protocol for all tests. Specifically, the dataset
was split into two subsets D1 and D2. The first one, which enables the model to
learn how to extract meaningful signatures via the two siamese branches, contained
20 distinct people, for a total of 300 Wi-Fi transmissions. This collection was used
in conjunction with a 10-fold cross-validation procedure using 4/1 random splits
per person samples of each room (i.e., 240 and 60 transmissions) for the training
and test sets, respectively. The second subset comprises, instead, the remaining
15 identities, counting a total of 225 samples, which were left out to evaluate the
system on the re-identification of unknown people. Furthermore, for each fold, every
architecture was trained for 200 epochs using the SGD algorithm [70], with an initial
learning rate lr set to 0.1, a weight decay of 5e-4, and a Nesterov momentum [125]
of 0.9. Moreover, a scheduler was also implemented to divide the lr by 5 at epochs
60, 120, and 160, so that the gradient update speed would be gradually reduced

(a) (b)

(c)

Figure 5.1. Rooms configuration for the proposed dataset acquisition protocol. In (a), (b),
and (c) the conference hall, office, and indoor hallway, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2. Heatmaps M -derived 3D surfaces examples for 200-packets acquisitions in the
three rooms, i.e., a hallway, office, and conference hall, in the first, second and third row,
respectively. Images (a), (d), and (g), correspond to no obstacles between TX and RX
APs; while triples (b), (e), (h) and (c), (f), (i) show two different persons of the collected
dataset.

for more stable signatures updates. Notice that for all experiments common person
Re-ID metrics were used, such as the mean average precision (mAP) and cumulative
matching characteristic (CMC) curve to represent up to Rank #10 re-identification
accuracy. Finally, all networks were implemented through the PyTorch framework
and its TorchVision library, while tests were performed using a single GPU, i.e., a
GeForce GTX 1070 with 8GB of RAM.

5.1.3 Signals Pre-Processing Qualitative Evaluation

Amplitude and phase extracted from CSI measurements of Wi-Fi signals contain
several information that can help distinguish different persons. Examples of the re-
sulting pre-processed signals characteristics are shown in Fig. 5.2, for the amplitudes,
and in Fig. 5.3 and Fig. 5.4 for the phases.
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Figure 5.3. Processed phases examples for 15-packets acquisitions in the same room, i.e.,
indoor hallway. In (a) to (i) the resulting F phases for 9 consecutive subcarriers of no
obstacles between TX and RX APs and two different persons; shown in blue, red, and
yellow, respectively.

Concerning the amplitudes, as can be seen in the heatmaps-derived 3D surfaces,
the general shape is retained across different rooms for the same identity (i.e., first,
second and third column in Fig. 5.2). However, the environment does affect the
received signal even after applying the sanitizing procedure, as clearly shown in
Fig. 5.2(a), Fig. 5.2(b) and Fig. 5.2(c), where the reported amplitudes are associated
to the empty rooms, i.e., only furniture was present and no obstacle was left between
the TX and RX APs. As a consequence, the resulting ambient noise will also affect
the received amplitude quality when humans stand across the propagated signal.
This outcome can be traced back to the random path followed by the signal itself,
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Figure 5.4. Processed phases examples for 15-packets acquisitions in the same room, i.e.,
conference hall. In (a) to (i) the resulting F phases for 9 consecutive subcarriers of no
obstacles between TX and RX APs and two different persons; shown in blue, red, and
yellow, respectively.

which is not guaranteed to be the same across multiple transmissions. However, due
to the stationary environments, possible random ambient noise can be successfully
mitigated by operating directly in the frequency domain, which is not feasible in
non-stationary scenarios, where the signal should also be processed in the time
domain [149, 129]. While this result might suggest that other techniques, such as
the angle of arrival, might further improve the signal processing procedures, the
produced heatmaps are still able to describe human presence in a detailed way,
especially when many packets are used to build the corresponding image. As a
matter of fact, the heatmaps generated in the various rooms show high inter-class
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and low intra-class shape differences, as can be seen in each Fig. 5.2 row; therefore
indicating that the derived amplitude heatmaps can correctly model characteristics
of distinct persons.

Regarding the phases, they can be used to capture temporal cues from Wi-Fi
signals, as can be inferred from Fig. 5.3 and Fig. 5.4. In more detail, the two images
report 15 consecutive filtered sanitized phases of distinct identities for 9 adjacent
subcarriers in two different rooms. i.e., indoor hallway and conference hall. As
shown, as time evolves, i.e., more packets are analyzed at the RX AP, phases at
each subcarrier tend to concentrate on the same spot due to the presented filtering
procedure that removes phase offsets. Even more interesting, for different persons,
the resulting phases have dissimilar values across the various subcarriers. This
outcome suggests that first, different people also have diverse effects on the signal
propagation, in accordance with the findings described in [38, 39] and second, there
is a little probability for two dinstict people to have the exact distribution across all
30 subcarriers for several consecutive packets; thus indicating that a sequence-based
architecture (e.g., LSTM) could most likely capture temporal shifts associated to
different persons. Observe that a small number of packets is reported for each identity
to avoid image clutter. However, the same reasoning applies to more subsequent
packets, therefore supporting that, similarly to amplitudes, phases can also help to
model unique persons and support their discrimination.

5.1.4 Wi-Fi Person Identification and Verification Evaluation

To show the effectiveness of the proposed method, several ablation studies were
performed concerning the architecture, the generated signature size, as well as
the number of consecutive packets to be analyzed from the Wi-Fi transmission to
generate meaningful amplitude and phase features.

In relation to the chosen Re-ID model, the first batch of experiments explored
the extracted features efficacy in both standalone and joint solutions by designing,
respectively, a siamese architecture with single sub-network streams, elaborating
either amplitudes or phases, and the presented model. Notice that these experiments
were performed by using subsets with increasing complexity generated from dataset
D1. Specifically, the evaluation was performed using signals associated to either
the single rooms (e.g., hallway or office), all possible pairs (e.g., hallway and office
or office and conference room), and all rooms in dataset D1 (i.e., as described in
Subsec. 5.1.2). The obtained results are summarized in Table 5.1. As shown, all
models achieve significant performances for both Rank #1 and mAP metrics, with the
full model consistently outperforming the single-subnetwork versions (i.e., SiameseA

and SiameseP ) by an ≈5% margin, independently of the number of examined
rooms. The reason behind this outcome is twofold. First, the extracted features can
capture enough differences to distinguish the 20 identities present in D1, since each
person seems to affect the signal similarly even across distinct rooms, as discussed in
Subsec. 5.1.3. Second, amplitudes and phases describe different characteristics due to
the chosen representation (i.e., heatmap M̄ and temporal sequence F̄ , respectively),
further improving the derived human descriptions when used jointly. Even more
interesting, siamese models exploiting phase information attained lower variance
across the 10-folds, which is due to temporal information captured from vector F̄
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by the LSTM unit. Indeed, while heatmaps can still represent different humans in
a meaningful way, they can also be subject to higher association errors since they
represent a coarse view of signals amplitudes.

Concerning the second round of ablation studies, an evaluation of different
signature sizes was performed to assess the effectiveness of the fused features M̄
and F̄ . The results obtained on dataset D1 are reported in Table 5.2. As can be
seen, employing higher dimensions for the signature s naturally results in improved
performances. This is a direct consequence of the task complexity when multiple
identities are present, as their representation cannot be fully described via small

Table 5.1. Model configuration 10-fold cross-validation performance evaluation on dataset
D1 for 300 consecutive packets, and |s| = 256. SiameseA, SiameseP , and Siamese models
exploit amplitude, phase, and joint signal properties, respectively.

Model #Rooms Rank #1 mAP
SiameseA 1 90.46% ± 4.40% 88.29% ± 6.36%
SiameseP 1 90.12% ± 4.05% 88.17% ± 5.12%
Siamese 1 94.42% ± 0.95% 92.90% ± 2.27%
SiameseA 2 89.78% ± 6.20% 87.96% ± 7.10%
SiameseP 2 89.35% ± 4.87% 87.90% ± 5.56%
Siamese 2 93.99% ± 1.01% 92.79% ± 2.31%
SiameseA 3 88.71% ± 7.24% 86.65% ± 7.51%
SiameseP 3 88.57% ± 5.15% 86.55% ± 5.97%
Siamese 3 93.51% ± 1.04% 92.17% ± 2.47%

Table 5.2. Signature size 10-fold cross-validation performance evaluation on dataset D1 for
300 consecutive packets.

Model |s| Rank #1 mAP
Siamese 16 56.72% ± 10.24% 50.84% ± 11.20%
Siamese 32 68.80% ± 8.05% 64.76% ± 9.06%
Siamese 64 85.59% ± 4.24% 83.41% ± 5.83%
Siamese 128 93.17% ± 1.12% 91.99% ± 2.63%
Siamese 256 93.51% ± 1.04% 92.17% ± 2.47%
Siamese 512 93.50% ± 1.01% 92.12% ± 2.48%
Siamese 1024 93.45% ± 0.99% 92.10% ± 2.43%

Table 5.3. Packets number 10-fold cross-validation performance evaluation on dataset D1
with |s| = 256.

Model #Packets Rank #1 mAP
Siamese 10 80.28% ± 9.13% 79.02% ± 9.98%
Siamese 25 85.51% ± 7.99% 82.65% ± 8.65%
Siamese 50 88.50% ± 5.34% 87.23% ± 6.34%
Siamese 100 91.56% ± 3.01% 89.88% ± 4.00%
Siamese 200 93.29% ± 1.10% 92.02% ± 2.54%
Siamese 300 93.51% ± 1.04% 92.17% ± 2.47%
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Figure 5.5. CMC curve up to Rank #10 computed on dataset D1 for different packets
number.

signatures. As a matter of fact, for |s| < 64, the system performances degrade
rapidly and show high variance, confirming that the signature s is not able to
capture meaningful characteristics for the unique identities discrimination. Moreover,
there are also diminished increase returns in correspondence to bigger s sizes. This
behavior is easily explained by the relatively low number of identities at our disposal
(i.e., 20 for dataset D1) which can be characterized by a signature size of 256.
Nevertheless, to correctly represent as many unique persons as possible, the chosen
signature size is a key component for the proposed system.

Regarding the last group of experiments, tests were performed to evaluate the
effectiveness of the extracted features by modifying the number successive packets
analyzed for their generation. The results obtained on dataset D1 are summarized
in Table 5.3. As can be seen, performances start converging to a stable percentage
from 200 packets, indicating that the corresponding extracted features carry enough
information to correctly describe the various identities in D1. In fact, using the
whole sequence of 300 packets results only in slight gains for both Rank #1 and
mAP metrics. This outcome confirms the representation capability of the system,
that can fully describe the various identities, while also suggesting the extracted
features effectiveness. As a matter of fact, significant performances are obtained
even by analyzing a lower number of packets (i.e., P ≤ 25). However, for these
configurations there is a higher variance due to the smaller extracted features which
might not fully capture distinct traits for more similar radio biometrics. What
is more, due to the chosen median procedures, using less than 10 packets results
in a performance degradation due to an increased noise in the produced features.
Nevertheless, the approach quality for fewer packets is also validated through the
CMC curve shown in Fig. 5.5, where all models attain higher performances (i.e., a
score of ≈90%) starting from Rank #3. This result highlights the proposed method
effectiveness and its ability to represent unique radio biometric signatures which are
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suitable for the person re-identification task, as demonstrated in the next section.

5.1.5 Wi-Fi Person Re-Identification Evaluation

Real-world person Re-ID scenarios, such as surveillance systems, require models
to also re-identify persons with different and unknown identities from those seen
at training time. Therefore, to correctly evaluate the presented pipeline in such
scenarios, a comprehensive assessment was performed for both model configurations
and successive packets number on the distinct dataset D2, by using the D1-trained
models with signature size s = 256, introduced in Section 5.1.4. Specifically, regarding
the evaluation on D2, for each of its 15 unique persons, 1 wireless transmission
per room was randomly selected as the gallery, for a total of 45 transmissions;
while the remaining 4 samples were used as probes to assess the re-identification
capabilities of the system, counting 180 test transmissions. Moreover, since dataset
D2 represents only a small fraction of real world data, tests were performed 10 times
using different random selections, and the average performance was reported to
ensure statistically stable results. Concerning experiments on model configurations,
the obtained results on dataset D2 for 300 consecutive packets are reported in
Table 5.4. As shown, the same behavior observed and discussed in Subsec. 5.1.4
also applies to the different unique identities of collection D2. Indeed, by increasing
the number of rooms, there is a slight performance decrease for all models, and

Table 5.4. Model configuration 10-fold cross-validation performance evaluation on dataset
D2 for 300 consecutive packets and |s| = 256. SiameseA, SiameseP , and Siamese models
exploit amplitude, phase, and joint signal properties, respectively.

Model #Rooms Rank #1 mAP
SiameseA 1 88.68% ± 3.59% 86.35% ± 4.54%
SiameseP 1 88.18% ± 3.50% 86.05% ± 3.64%
Siamese 1 90.28% ± 1.02% 89.77% ± 2.29%
SiameseA 2 86.72% ± 5.19% 80.12% ± 5.62%
SiameseP 2 86.52% ± 4.24% 80.02% ± 4.78%
Siamese 2 89.42% ± 1.09% 88.58% ± 2.55%
SiameseA 3 84.02% ± 7.25% 78.12% ± 7.70%
SiameseP 3 83.62% ± 5.07% 77.62% ± 5.12%
Siamese 3 88.82% ± 1.29% 87.52% ± 2.67%

Table 5.5. Packets number 10-fold cross-validation performance evaluation on dataset D2
with |s| = 256.

Model #Packets Rank #1 mAP
Siamese 10 72.12% ± 12.69% 64.52% ± 13.35%
Siamese 25 74.22% ± 9.34% 70.72% ± 10.23%
Siamese 50 80.95% ± 6.37% 78.75% ± 7.57%
Siamese 100 82.15% ± 4.98% 80.55% ± 5.60%
Siamese 200 85.05% ± 2.70% 83.85% ± 3.69%
Siamese 300 88.82% ± 1.29% 87.52% ± 2.67%
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Figure 5.6. CMC curve up to Rank #10 computed on dataset D2 for different packets
number.

architectures exploiting phase information have reduced variance for both Rank #1
and mAP metrics most likely due to, as mentioned, the temporal information for
the interested feature. Nevertheless, when analyzing the most complex scenario with
3 rooms, the full siamese model achieves significant perfomances; suggesting that
even though the architectures have never observed the various identities, they can
still extract relevant radio biometric signatures for their re-identification.

In relation to tests on the number of successive packets, results are reported in
Table 5.5, while the corresponding CMC curve up to Rank #10 is depicted in Fig. 5.6.
As shown, the best performing model exploits the whole sequence of 300 packets.
However, differently from the performances observed in Table 5.3, where models
using at least 100 packets had similar scores, for unknown identities there is a greater
gap with respect to the maximum amount of recorded transmission packets. The
motivation for this outcome is twofold. First and foremost, dataset D2 has 3 times
the number of test samples with respect to D1, which was purposely built in this way
to obtain consistent results over a more complex collection. Second, for real-world
scenarios, i.e., where re-identification is performed on unknown people, the proposed
model does not execute a training phase and, consequently, does not exploit the joint
loss function shown in Eq. (3.12), which also leverages the specific identities to build
more robust signatures. Nevertheless, while interesting performances are already
achieved with only 10 successive packets, by increasing this number it is possible to
obtain more discriminative radio biometrics and, therefore, improved radio biometric
signatures able to mitigate the identity loss absence. Thus, these results confirm the
findings presented in [38, 39] on signal variations in correspondence with different
biological tissues, and highlight the Wi-Fi effectiveness in addressing the person
re-identification task without classical vision-based drawbacks; consequently opening
up a new frontier for surveillance applications where it can be crucial to re-identify
unknown persons across different locations.
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5.2 Human Silhouette and Skeleton Video Synthesis
through Wi-Fi signals

This section first describes the public dataset used to evaluate the proposed architec-
ture, which is focused on capturing human poses of single persons with commodity
Wi-Fi. Then it provides implementation details, including the chosen hyperpa-
rameters and employed hardware. Finally, quantitative and qualitative results
are reported on the public collection mentioned above to present a comprehensive
evaluation of the two-branch network. Observe that, although the teacher branch
is fundamental for cross-modality supervision, it is exclusively utilized during the
training phase. Instead, at evaluation, the student is detached from the other branch
and tested directly by using sanitized signal amplitudes as input and by comparing
its reconstructed video with the real input frames paired with the Wi-Fi signals.
Moreover, to further investigate the proposed cross-modality supervision strategy
effectiveness in finding a mapping between radio features and vision-based human
representations, experiments were performed by reconstructing either silhouette or
skeleton videos exploiting exclusively radio signals as inputs.

For the image quality assessment, three state-of-the-art metrics are reported
concerning the quantitative results, i.e., the mean squared error (MSE), structural
similarity index (SSIM) [142], and feature similarity index (FSIM) [180]. Note that,
even though the MSE is considered as the traditional measurement, it only considers
pixel-by-pixel intensity comparison between original and synthesized video frames,
therefore ignoring image structures. Instead, the SSIM and FSSIM address this issue
by considering the structural and feature similarity, respectively. Concluding, results
on a small case of study combining the silhouette and skeleton video synthesis from
Wi-Fi signals to the human activity recognition are reported.

5.2.1 Dataset

The publicly available data collection presented in [50] contains 4.420 video frames
in total, depicting human subjects freely performing poses in a 7m × 8m room.
Furthermore, each video is associated with wireless data counting 1.000 CSI samples
for each RX antenna. In detail, the CSI was measured using the IWL5300 NIC
implementing the CSI Tool introduced in [54], and Wi-Fi signals were acquired
using 3 transceivers divided into 1 transmitter and 2 receivers, working in a 5GHz
frequency band with 20MHz channel bandwidth. The former includes Γ = 3 TX
antennas, while the latter each have Θ = 3 RX antennas. What is more, as shown
in Fig. 5.7, the receivers were placed perpendicularly to one another to increase
the wireless signals resolution. As a matter of fact, according to the Fresnel zone
model [147], two transceivers cannot capture a person walking parallel to the Line
of Sight (LoS) path. In addition, an RGB camera was attached to a receiver to
allow for synchronized video recordings and CSI samples. In particular, receivers
were synchronized via the network time protocol (NTP), while wireless and video
data, corresponding to a sample pair, were synchronized utilizing timestamps, with
an average error of less than 1.5ms. Finally, to adapt this collection for the video
synthesis task, the algorithms mentioned in Sec. 4.1 were employed to generate
human silhouette and skeleton videos from the RGB sequences, i.e., semantic image
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segmentation and OpenPose, respectively.

5.2.2 Implementation Details

The proposed two-branch architectural design has been implemented using the
Pytorch framework, and the Wi-Fi signals were processed via the MATLAB R2021a
software. To correctly evaluate the proposed approach, the same protocol devised
by the dataset authors in [50] is used for all the tests. Specifically, 75% of the
data was used to train the network, and the remaining 25% for tests. Furthermore,
each network was trained for 800 epochs using the Adam optimizer [71] with an
initial learning rate set to 0.0002, an ϵ numerical stability parameter of 1e-8, first
momentum term B1 with value 0.5 and, finally, second momentum term B2 with
value 0.999. Moreover, model weights were initialized from a zero-centered Gaussian
distribution with standard deviation 0.02, and the LeakyReLU slope in Ev and C
components is set to 0.2. Observe that these settings are suggested for stabilizing
the GAN-based networks training phase [100]. Regarding the weight parameters
employed to adjust teacher and student models losses, they were empirically set to
0.5 for wadv and wV , and to 1 for wY and wS . Finally, all reported experiments
were performed using a single GPU, i.e., a GeForce RTX 2080 with 16GB of RAM.

5.2.3 Silhouette Synthesis Evaluation

The first batch of experiments evaluates the architecture capabilities to reconstruct
human silhouette videos starting from Wi-Fi signals. The proposed solution allows
the student model to learn radio-to-visual features translation which can focus
exclusively on human body dynamics even though Wi-Fi signals contain coupled
scattering patterns of the human body and environment. As a matter of fact, by

TX

RX

RX

Video

Figure 5.7. Transmitter (TX), receivers (RX), and RGB camera locations used for data
collection in the experimental setting proposed in [50].
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Figure 5.8. Examples of synthesized human silhouette for hP with size of 100. In the top
row, the silhouette frames representing the ground truth. In the bottom row, the noisy
synthesized silhouette affected by the ghost effect, identified through a yellow rectangle.

retaining knowledge from the teacher, it is possible to transform CSI extracted
amplitudes into features discriminating human-related information. More precisely,
unlike existing methods that directly tune the network output, the proposed approach
acts on the low-dimensional radio features latent space representation V associated
with the visual domain Z via cross-modality supervision. Therefore, since V and Z
have the same shape due to the architecture structure, vector hP size results critical
for the domain-to-domain translation as it regulates the amount of information
extracted from radio signals. Accordingly, tests were performed to evaluate the
translated latent space V effectiveness by changing the size of hP , i.e., radio-based
feature vector, ranging from 100 to 400 elements. The quantitative evaluation
for this ablation study is reported in Table 5.6. As can be observed, the MSE
measurement is close to zero for all hP sizes, meaning that the student model can
reconstruct accurate silhouette videos pixel-wise. The high FSIM scores also confirm
the latter. In fact, this measure indicates a high image quality with respect to the
expected output, i.e., ground truth silhouette videos. Significant performances are
also achieved through the SSIM metric, which corresponds to structural similarities
between the GT and generated output. However, by using a small hP size, i.e.,
100, the extracted signal features cannot correctly describe human movements in a
scene, resulting in a noisy silhouette. This effect can be observed in Fig. 5.8, where
synthesized frames present after images in the form of ghost silhouettes performing
random poses due to the low representation capability derived from the small hp size.

Table 5.6. Latent signal-based feature vector hP size performance evaluation for human
silhouette video synthesis.

hP size MSE ↓ SSIM ↑ FSIM ↑
100 0.007 0.781 0.972
200 0.035 0.865 0.970
300 0.002 0.885 0.990
400 0.002 0.828 0.984
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Figure 5.9. Test samples showing the human silhouette video synthesis for hP vector
with the size of 100. In (a) and (d), the original RGB video frames are reported as
visual reference. In (b) and (e), silhouettes extracted from RGB frames representing the
ground truth. Finally, in (c) and (f), the silhouettes synthesized exploiting exclusively
Wi-Fi signals.

What is more, by increasing the radio feature size, i.e., |hp| = 400, performances start
to decrease due to the extracted features capturing other background information.
Consequently, for human silhouette generation, the best hp size is a vector with
dimension 300. Synthesized images for this configuration are shown in Fig. 5.9,
where the generated silhouettes are extremely similar and coherent with the expected
output.

The human silhouette synthesis evaluation is concluded by presenting a qualitative
comparison with the work introduced in [134] that, according to a thorough search of
the relevant literature, is the only one performing silhouette generation from Wi-Fi
signals to achieve person perception. Notice that a quantitative comparison cannot
be reported since in [134] experiments are performed on a private collection and did
not employ standard reconstruction metrics, such as MSE, but instead implemented a
segmentation measure to evaluate their method specifically. Regardless, a qualitative
comparison, albeit carried out on different images, is presented in Fig. 5.10. As
can be observed, silhouettes synthesized by the presented approach, using radio
features with size |hp| = 300, have higher image quality and show more detailed
silhouettes. Such an outcome highlights the cross-modality supervision effectiveness
in this domain-to-domain translation, which is achieved by mapping Wi-Fi signals
to a visual domain through the knowledge transferred from the teacher model to the
student one at training time.

5.2.4 Skeleton Synthesis Evaluation

In this second group of experiments, to further assess the proposed cross-modality
supervision strategy effectiveness, the architecture is evaluated by replacing silhou-
ettes in the video-radio signal training pairs with skeleton videos as an alternative
vision-based information. Human skeletons, obtained by applying the OpenPose
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Figure 5.10. Qualitative comparison for the human silhouette synthesis. In (a) and (c),
RGB visual references. In (b) and (d), the human silhouette synthesized from Wi-Fi
signals in [134] and the proposed method, respectively.

framework on RGB videos, were chosen since they are one of the most widespread
human body representations [7]. To train the architecture on human skeleton synthe-
sis from Wi-Fi signals, the same implementation details described in Sec. 5.2.2 were
employed. However, the system required to be trained for 1600 epochs to obtain
high-quality images due to the fine-grained skeleton representation of OpenPose.
Moreover, as mentioned in the previous section, since hp regulates the amount of
information used in the latent representation V used for radio-to-visual translation,
the same tests on hP vector size were performed, ranging from 100 to 400 elements.
The quantitative results for the student model are summarized in Table 5.7. As
shown, all hp sizes provide roughly the same performance in feature similarity and
pixel intensity comparisons, i.e., FSIM and MSE metrics, respectively. Concerning
the structural similarity measure, i.e., SSIM, instead, it can be noticed that sizes
100 and 400 have higher performances in comparison with sizes 200 and 300. This
outcome has a twofold explanation. First, independently from vector hp size, enough
information can be extracted from radio signals to correctly reconstruct skeleton
videos. Second, the extracted radio features might be subject to noise when they have
increased sizes, and it might affect the latent space representation, thus resulting in
artifacts appearing inside synthesized videos, similarly to ghost silhouettes. This
second aspect is caused by the OpenPose detailed skeleton, where bones connecting
the various joints have different colors to indicate clearly, among other things, left
from right body parts. As a matter of fact, this outcome is also supported by
the higher number of epochs required for the student to reach good results on the
skeleton video synthesis task. Regardless, when using a smaller hp size, the student
can avoid extracting noise, therefore synthesizing correct skeleton videos starting
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Figure 5.11. Test samples showing the human skeleton video synthesis for hP vector with
the size of 100. In (a) and (d), the original RGB video frames are reported as visual
reference. In (b) and (e), skeletons extracted from RGB frames representing the ground
truth. Finally, in (c) and (f), the skeletons synthesized exploiting exclusively Wi-Fi
signals.

from Wi-Fi signals. The latter can be observed in Fig. 5.11, where the student model
correctly reconstructs skeletons by considering a proper OpenPose color association.

In literature, due to the recent development of this field, the authors of [50]
are the sole researchers currently performing experiments on the same, and only
public collection available used to assess the proposed method on the skeleton image
synthesis from Wi-Fi signals. Therefore, quantitative and qualitative comparisons
with their work are reported to complete the human skeleton synthesis evaluation.
Regarding the former, the evaluation was performed by computing the same custom
metric devised in [50], i.e., percentage of correct skeleton (PCS), to have a fair
comparison. The obtained results are reported in Table 5.8. In detail, the PCS
metric, which is inspired by the percentage of correct keypoint (PCK), indicates the
percentage of Euclidean distances between synthesized frames and their ground truths
that lie within a variable threshold ξ. As shown, contrary to [50], the student model
achieves remarkable performances even for minimal threshold values, indicating
the synthesis of exhaustive and high-quality skeleton frames. A result that can be
likely associated with the architectural design that forces the decoder component to
recreate accurate skeletons from Wi-Fi signals through cross-modality supervision.

Table 5.7. Latent signal-based feature vector hP size performance evaluation for human
skeleton video synthesis.

hP size MSE ↓ SSIM ↑ FSIM ↑
100 0.001 0.954 0.991
200 0.003 0.770 0.964
300 0.005 0.776 0.949
400 0.001 0.944 0.989
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Table 5.8. PCS metric comparison for different ξ values, i.e., ground truth distance. Higher
percentages correspond to a better synthesis quality.

Threshold Student Guo et al.[50]
ξ = 1 95.5% -
ξ = 3 96.9% -
ξ = 5 98.3% -
ξ = 25 100.0% 2.5%
ξ = 30 100.0% 26.2%
ξ = 40 100.0% 75.6%
ξ = 50 100.0% 90.0%

Regarding the qualitative comparison, synthesized skeletons are depicted in Fig. 5.12.
As can be observed, even though both methods exploit OpenPose skeleton as ground
truth, the presented approach synthesizes more accurate and less noisy skeletons,
corroborating the results reported in Table 5.8. In fact, with respect to [50], the
proposed model generates more consistent OpenPose skeletons that also take into
account colors instead of binary maps, allowing to more easily identify the various
limbs in the reconstructed image. Moreover, by synthesizing these detailed skeletons,
the presented framework can also capture other details such as joints related to feet
in the image. Such a result can be related to the extracted radio-based features that
are mapped back to the visual domain by enforcing a similarity between the Z and
V representations, fully highlighting and confirming the proposed cross-modality
supervision and underlying architecture effectiveness.

5.2.5 Example - Use Case: Human Activity Recognition

The proposed method for silhouette or skeleton video synthesis from Wi-Fi signals
enables implementing classical vision-based tasks eventually avoiding visual-related
problems and protecting people privacy when personal information are not required,
such as in activity recognition systems. By employing wireless signals, sensitive data
are not collected; therefore, using synthesized data makes it possible to perceive

(a)

(b)

(c)

(d)

Figure 5.12. Qualitative comparison for the human skeleton synthesis. In (a) RGB frames
as visual reference. In (b), the OpenPose generated ground truth. In (c) and (d),
the human skeletons synthesized from Wi-Fi signals in [50] and the proposed method,
respectively.
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human behavior by developing an innovative and privacy-conscious system. Ob-
serving the results obtained in Subsec. 5.2.3 and Subsec. 5.2.4 on silhouette and
skeleton video synthesis, respectively, the best model found per each visual data
type was modified as described in Sec. 4.2 and trained to simultaneously address
synthesis and activity recognition tasks as a privacy-conscious system maintaining
the implementation details. To this end, a small dataset was acquired following
the same acquisition protocol of public data used to evaluate the synthesis process
and described in Subsec. 5.2.1. In detail, video sequences and Wi-Fi signals were
captured for 5 different persons performing specific actions between the wireless
transceivers: walking, jogging, hand-waving, bending, and jumping in place. The
latter were chosen by selecting the common between the publicly available datasets
widely used for visual activity recognition [107, 80, 96, 82]. Each person performed
every action 10 different times, resulting in 50 samples in total per action. Some
samples of the extracted silhouette and skeleton representations used for ground
truth labeling are shown in Fig. 5.13. Due to privacy reasons, RGB video sequences
are not included in this dataset. This data collection was organized using 40/10 split
per person samples of each action for the training and test sets, respectively. This use
case evaluation is performed reporting the classical accuracy metric and the related
confusion matrix, being the activity recognition a multi-class classification problem.
The classification accuracies and confusion matrices are reported in Table 5.9 and Fig.
5.14, respectively, for silhouette and skeleton synthesized data shown in Fig. 5.15.
For both data type, the performance of the presented use case network structure
is good; the model makes wrong predictions in a few cases due to similarities in
performing some actions (e.g., walking and jogging). However, this can be solved by
implementing a more advanced classifier as the Ra component of the network. The
latter was not the focus of this thesis, so a simple CNN-based classifier was used.
Notice that, for synthesized skeletons, the classification accuracy is barely higher,
probably due to the skeleton representation that is more accurate than the human
silhouette, permitting to mitigate actions similarity issues. Finally, the SSIM and
FSIM metrics increased slightly for synthesized visual information, probably because
the generated videos are refined through extra information, i.e., action recognition.
Therefore, it was demonstrated that using Wi-Fi signals the proposed synthesis
method can be used to develop human monitoring applications not revealing private
or personal information useful, among the others, in many surveillance applications.

Table 5.9. Human activity recognition use case performance evaluation from both synthe-
sized silhouette and skeleton videos.

hP size MSE ↓ SSIM ↑ FSIM ↑ ACC ↑
Silhouette 300 0.002 0.952 0.995 0.880
Skeleton 100 0.001 0.983 0.993 0.940
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(a) Walking (b) Jogging

(c) Bending (d) Hand-waving

(e) Jumping in place

Figure 5.13. Dataset samples used for ground truth labeling Wi-Fi signals and showing
silhouette (i.e., top rows) and skeleton (i.e., bottom rows) performing the chosen actions.
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Figure 5.14. Confusion matrices for human activity recognition from (a) silhouette and
(b) skeleton synthesized data.
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(a) Walking (b) Jogging

(c) Bending (d) Hand-waving

(e) Jumping in place

Figure 5.15. Synthesized action samples from Wi-Fi signals showing silhouette (i.e., top
rows) and skeleton (i.e., bottom rows) performing the chosen actions.
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Chapter 6

Conclusion

This chapter concludes the thesis by first summarizing the contributions to the
state-of-the-art and then by showing future work for the presented methods.

6.1 Person Re-ID through Radio Biometric Signatures
This thesis presented a novel person re-identification approach based on radio
biometric signatures extracted from Wi-Fi signals. As shown by the results achieved
in restricted environments, the proposed siamese architecture with parallel sub-
networks, analyzing amplitude heatmaps and phase vectors, can extract meaningful
representations, i.e., signatures, that enable the Re-ID of both known and unknown
persons thanks to the information carried by the transmitted signals, validating the
presented idea and potential application in real-world surveillance scenarios that are
typically constrained.

As future work, an extended dataset version with more than 150 distinct iden-
tities will be collected and released to offer a benchmark for this unorthodox re-
identification approach. In particular, this re-identification dataset will comprise
multiple modalities in the form of synchronized tuples. The latter will contain
Wi-Fi transmissions, RGB, and depth videos, to enable, on the one hand, a direct
comparison between video and wireless modalities on the Re-ID task, and on the
other hand, the implementation of multimodal methods that might benefit from
the added cross-modality information when re-identifying a person across different
locations. Furthermore, the presented pipeline will be used as a baseline approach
for the Re-ID from Wi-Fi signals. At the same time, specific video-based and mul-
timodal architectures will be implemented to present a comprehensive benchmark
comparing the differences between the various modalities with a focus on their
strengths and weaknesses. Moreover, further inquiries will be performed on other
signal properties in the time domain (e.g., impulse response or time of arrival) that
might be used either in a standalone solution or jointly with those implemented
in this work. In addition, different solutions will also be designed to better exploit
other characteristics, such as the angle of arrival, to further reduce possible ambient
noise and ultimately handle more complex non-stationary environments.
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6.2 Human Silhouette and Skeleton Video Synthesis
through Wi-Fi signals

This thesis also introduced a novel generative Wi-Fi sensing framework capable
of synthesizing human silhouette and skeleton videos by exploiting exclusively
wireless signals, enabling privacy protection in people monitoring and surveillance
applications. The latter was achieved by designing a cross-modality learning strategy
via a two-branch network that simulates a teacher-student model. Through this
configuration, the architecture can focus on human body dynamics and build a
mapping between different frequency spectra, i.e., visible and radio, by being trained
on synchronized video-radio signal sample pairs. Most notably, the proposed two-
branch network only requires visual data inputs at training time; then, by detaching
the teacher model, the student can synthesize videos starting from wireless signals
inputs. Since these signals are the only source of information for frame synthesis
during the model evaluation, several ablation studies were performed on the low-
dimensional radio features representation transferred into the visual domain to assess
both silhouette and skeleton video synthesis. The obtained results indicate that the
extracted radio features can influence the domain-to-domain mapping. Moreover,
qualitative comparisons with other literature works highlight the effectiveness of
the devised cross-modality learning approach since it enables the student network
to synthesize more accurate and less noisy silhouette and skeleton videos. Finally,
the implemented use case on human activity recognition demonstrated a joint
investigation, on the one hand, of transverse approaches such as multi-task learning
that can further refine the generated videos through extra information, on the other
hand, of person monitoring capabilities from the generated video sequences that
could be employed as an additional surveillance tool in security scenarios.

As future work, a more challenging dataset will be collected to account for more
elaborate human poses and more complex environments, where there is an increased
signal interference and a higher number of people simultaneously present in the
scene. The former will be enable to evaluate the robustness of the proposed method
in real-case scenarios where radio signal absorption, deformation, and superposition
are common occurrences. The latter would instead open up additional Wi-Fi sensing
applications of particular interest, where multiple people could be distinguished
without video devices; enabling the recognition, for instance, of group actions from
Wi-Fi signals. Moreover, further investigations will be performed on different signal
properties in the time domain, e.g., impulse response or time of arrival, to predict
human limb coordinates other than synthesizing visual representation.
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