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Abstract 

In a damage avoidance design perspective, seismic rocking of rigid-like blocks, such as masonry walls, precast 

r.c./timber panels, art objects, etc., can be controlled through viscous elastic dampers. This paper discusses how to 

perform a seismic risk assessment of masonry walls undamped and damped by viscous-elastic dampers installed 

at the top of them. Firstly, a deterministic analysis allows understanding the role of the damper, whose coupling 

with a recentering component attenuates the motion, increases the rotation frequency and in some cases impedes 

overturning with respect to the undamped case. Secondly, the risk assessment is made developing a multiple stripe 

analysis to compute univariate fragility curves combining uplift, overturning probability and probability of 

exceedance. Thirdly, seismic demand hazard curves are obtained for two walls representative of buildings and 

monumental structures in an Italian site of high seismicity. The PSHA results show the remarkable risk reduction 

of ultimate limit states, for which the annual exceedance rate is respectively one and two orders of magnitude 

lower than the undamped case.  

Keywords: rocking; seismic control; damped wall; fragility curve; seismic demand hazard curve; restrained 

rocking wall; out-of-plane; nonlinear dynamic analysis; recentering; seismic vulnerability mitigation 

1. Introduction 

The analysis of existing masonry structures, especially those belonging to the cultural heritage, requires to follow 

a multi-level procedure [1], [2]. In it, the local analyses play a crucial role; the elements to assess can be considered 

as rigid blocks rocking out-of-plane (OOP). The seismic performance of rocking blocks is brought under the 

attention of many researchers for the preservation of both structural (masonry walls, precast r.c. and timber panels) 
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and non-structural (cabinets, artistic assets, art and decorative objects, statues) elements. The numerous 

contributions available in the literature start from the pioneering Housner’s work [3] which laid the theoretical 

foundation of the rocking behavior of rigid blocks. Since then, many contributions were offered, studying the 

transition of phases between rest, rocking, translation-jump, rotation-jump and sliding phenomena, besides 

overturning criteria [4]–[6], also using nonlinear static analyses [7], [8]. Rocking as seismic isolation technique 

was recently proposed considering the capacity of slender structures that survived over the centuries under 

earthquakes [9]. This concept merges into the damage avoidance design intended to realize integrated low damage 

systems [10]. The idea is to couple recentering systems to hysteretic or viscoelastic dissipators, which should be 

cost-efficient and replaceable. Indeed, the structure can be seen as composed by rigid rocking blocks or elements 

with sacrificial devices meant to be damaged under design earthquakes, as “weakest links of the chain” [11]. This 

way, repair and downtime costs are minimized, as the replacement of specific components, whose access is eased 

to facilitate inspections, is much simpler and less demanding than the retrofitting of plasticized or broken structural 

components.  

The coupling of dissipative devices to self-centering components or tendons produces a hybrid system associated 

to a flag-shape force-displacement relationship. The viscous-elastic damper can be located at a certain height from 

the wall base with the purpose of mitigating its seismic vulnerability. A similar passive seismic device was recently 

patented and illustrated in [12]. Analytical and numerical approaches were provided to investigate the uplift of 

anchored rigid blocks [13], [14] and the seismic fragility of furniture, electric or mechanical equipment anchored 

at the base [15], [16]. When the seismic performance of rocking structures is considered in a probabilistic sense, 

specific intensity measures must be assumed, as illustrated in [17] for controlled rocking steel braced frame system 

and a rocking spine system for reinforced concrete infill frames and in [18] for rocking podium structures. Diverse 

probabilistic models are available in the literature to predict the stochastic behavior of rocking blocks, either free 

from restraints or restrained. For example, Bakhtiary and Gardoni [19] proposed a probabilistic model to predict 

the response of rigid symmetric bodies with a Bayesian updating approach. Contento et al. [20] developed a 

probabilistic model to assess the seismic safety of rigid block-like elements with base isolation and or pendulum 

mass dampers. This paper has the purpose of investigating the effects of viscous dampers (or dashpots) coupled 



with recentering components in masonry walls rocking OOP.  The paper is structured such as the risk assessment 

is performed after a proper selection of ground motions and a preliminary deterministic analysis to discuss the 

effect of dampers on the transient response. The seismic risk assessment consists in two phases: the determination 

of univariate fragility curves and the computation of seismic demand hazard curves, to understand the level of 

improvement in terms of annual exceedance rate is gained with the adopted passive seismic control device. More 

in detail, Section 2 contains the analytical formulation of the rocking block restrained by a horizontal fluid viscous 

damper and recentering component. Section 3 illustrates the assumptions of the numerical simulations and the 

probabilistic models, whereas Section 4 discusses the fragility curves found for slender walls of different size. 

Section 5 is devoted to the risk assessment through seismic demand hazard curves and compares them in the 

damped and undamped systems, to quantify the beneficial effect of the seismic control device. 

2. Analytical background 

This Section contains the analytical background necessary to perform non-linear transient rocking analyses, aimed 

at discussing the effect of a dashpot and a recentering element. 

2.1 General assumptions 

The OOP rocking motion of rigid blocks free to rock or horizontally/vertically restrained is studied under the 

following assumptions: the seismic excitation only acts along a horizontal axis, the foundation on which the block 

rocks is infinitely stiff, bouncing, sliding and interaction between in-plane and out-of-plane behavior are neglected. 

The last hypothesis is always valid for enough slender blocks with ℎ/𝑏 greater than 4 [21], which is the case of 

the walls investigated in this paper.  Moreover, energy is dissipated during impacts on the corners and – only in 

the restrained configurations – when the relative velocity of the dashpots is non-zero. Dashpots are considered as 

linear fluid viscous dampers. The horizontal elastic restraint is assumed to act only up to its own yielding value; 

once this threshold has been reached, it becomes inactive.  

 

 



2.2 Equations of motion 

The equations of motion of a block purely rocking around its base corners can be obtained through the Euler-

Lagrange’s formulation. The block is geometrically defined by its size 𝑅 and its slenderness ratio 𝛼, arctangent of 

height to thickness ratio (Figure 1a). The block can be either free-standing or connected to a fixed support via 

vertical or horizontal dissipative restraints, in which elastic and/or viscous forces may develop. 

For a rectangular block of mass 𝑚 and inertia moment 𝐼0  (Figure 1b) connected to a damper of equivalent viscous 

coefficient 𝑐 installed at a certain height from the base hinge, the equation of motion reads: 

𝐼0�̈� + 𝑠𝑔𝑛(𝜗)𝑚𝑔𝑅 sin[𝛼 − 𝑠𝑖𝑔𝑛 (𝜗)𝜗] + 

+𝑠𝑔𝑛(𝜗) 𝐾𝛽2𝑅2 cos[𝛼 − 𝑠𝑖𝑔𝑛 (𝜗)𝜗] [sin 𝛼𝑟 − sin[𝛼 − 𝑠𝑖𝑔𝑛 (𝜗)𝜗]] + 𝑐 𝛽𝑑
2𝑅2 𝑐𝑜𝑠2 𝐴𝑑,𝜗  �̇�

= 𝑚 �̈�𝑔𝑅 𝑐𝑜𝑠 𝐴𝜗 

(1) 

 

𝑔 is the gravity acceleration and 𝐾 the stiffness of the horizontal restraint, whereas 𝛼𝑟 is the angle between the 

radius vector 𝑅𝑑 and the external wall profile, as shown in Figure 1a. The position of the horizontal restraint is 

defined by 𝑅𝑑 = 𝛽𝑅, being 𝛽 a scalar coefficient variable from 0 (no restraint) to 2 (restraint at the top corner). 

whenThe term depending on 𝐾 is calculated as explained in [22]. Similarly, through the Euler-Lagrange’s 

formulation, the term depending on 𝑐 is obtained [23]. The arguments of the sinusoidal functions are expressed as:  

𝐴𝜃 = 𝛼 − 𝑠𝑔𝑛(𝜗) ∙ 𝜗; 𝐴𝑟,𝜗 = 𝛼𝑟 − 𝑠𝑔𝑛(𝜗) ∙ 𝜗; 𝐴𝑑,𝜗 = 𝛼𝑑 − 𝑠𝑔𝑛(𝜗) ∙ 𝜗 (2) 

The equation for the free-standing system is obtained from Eq. (1) with the condition 𝐾 = 𝑐 = 0. The transition 

from the equation valid for restrained blocks to that coherent for free-standing blocks is considered with a fracture 

function proposed in [14]: 

𝑓(𝜗) = 1 when 𝜗(𝑡) > 𝜗𝑦 

𝑓(𝜗) = 0 when 𝜗(𝑡) ≤ 𝜗𝑦 

(3) 

 

where 𝜗𝑦 is the block rotation corresponding to the yielding of the horizontal restraint, which can be fixed 

according to the used material. 



Generally, the displacement time-history is expressed in normalized terms as 𝜗/𝛼 [24].  In case of statistical 

analysis, the corresponding engineering demand parameter (EDP) for each realization is the maximum 𝜗/𝛼 

registered over the individual earthquake time. This EDP is that normally selected when the motion is pure rocking 

since the block returns, if stable, to its original position virtually without any permanent deformation or damage.  

 

(a) 

 

(b) 

 

 

(c) 

Figure 1 (a) Schematics of the rocking block restrained by a viscous damper coupled with horizontal recentering component; 

example of rocking control device (LICORD) embedded in a masonry wall (b) with its components (c) (for more details about 

experimental tests on LICORD refer to [12]). 

3. Stochastic vulnerability analysis 

This Section discusses the fragilities associated to OOP rocking walls strengthened by dampers and recentering 

components. The purpose is to assess the vulnerability of masonry walls under diverse intensity earthquakes and 

its reduction thanks to anti-seismic devices functioning as viscous dampers with recentering component [12]. 

3.1 Methodology 

In this paper, the beneficial effect of the damping control device is demonstrated through a methodology applied 

to two walls of representative geometry. The effect of dampers is investigated through a stochastic analysis applied 

to slender masonry walls rocking OOP. Non-linear dynamic analyses are performed by solving Eq. (1) with a code 

developed in MATLAB, and the maximum rotations of rocking walls subject to selected ground excitations are 

measured. All the analyses are performed assuming a  coefficient of restitution function of the slenderness ratio 

𝑒 = 1 −
3

2
sin2 𝛼 [3]. From the results of the dynamic analyses, the conditional probability that an engineering 



demand parameter (EDP or the normalized rotation) overcomes a capacity limit is calculated, given an intensity 

measure associated to the input action. Afterwards, that probability of exceedance is combined with the uplift and 

the overturning probability to get the final failure probability (as explained more in detail in Section 3.2). 

The two walls are assumed as rectangular blocks representative of typical structural elements in existing masonry 

buildings: a “building” type wall and a “monumental” type wall (Table 1). The “building” block has dimensions 

(height x width x thickness) 2.70 m x1.52 m x 0.25 m, with a specific weight of 19 kN/m3; the consequent mass 

and geometric properties can be easily calculated and are reported in Table 1. The monumental wall is selected to 

have the same slenderness ratio (𝜶 =0.09, or height/thickness≅11) as the building type wall, dimensions 10.8 m 

x6.08 m x1.00 m, with a specific weight of 19 kN/m3. The monumental wall width, which is representative of 

church façades, has been chosen with the same height-to-width ratio as the building type wall 

(2.70/1.52=10.6/6.08≅1.8). Walls of other slenderness ratios are not investigated as the slenderness chosen is quite 

high and therefore the results represent an upper bound of safety assessment.  

Both walls rotate out-of-plane (OOP) and the mechanical characteristics of the viscous dampers are calculated 

considering values reported in [12] for similar devices. In particular, the lower bound of damping coefficient 𝑐 =1 

kNs/m is assumed for the building type wall. That of the monumental wall is assumed to be proportional to its 

own mass, which is 65.2 times that of the building type wall. The recentering component has stiffness of 10 kN/m 

for the building wall and 652 kN/m for the monumental wall.  

Table 1 Geometric and mechanical parameters of the analyzed blocks and limit states for fragilities.Errore. L'origine riferimento 

non è stata trovata. 

wall mass  

[kg] 

Slenderness ratio 𝜶  

[-] 

Radius vector 𝑅 

[m] 

𝑐  

[kN/m/s] 

K 

[kN/m] 

“building” 1960 0.09 1.36 0-1 0-10 

“monumental” 127850 0.09 5.42 0-65.2 0-652 

Limit states LS0-rocking initiation or 

uplift 

LS1-limited 

rocking 

LS2-moderate 

rocking 

LS3-static 

threshold 

LS4-near-

collapse 

𝐸𝐷𝑃𝑙𝑖𝑚 =
𝜗𝑚𝑎𝑥

𝛼
  0.0 0.1 0.4 1.0 1.5 



 

The five limit states (LS) considered in the stochastic analyses are rocking initiation, limited rocking, moderate 

rocking, static threshold and near-collapse rocking. Each LS is identified by an 𝐸𝐷𝑃 =
𝜗𝑚𝑎𝑥

𝛼
  [25] as shown in 

Table 1. The rocking initiation 𝐿𝑆0 corresponds to the uplift condition or 𝜗 ≠ 0. Uplift occurs when the peak 

ground acceleration is greater than the minimum ground acceleration, �̈�𝑔,𝑚𝑖𝑛 = tan 𝛼. The numerical value to set 

in the MATLAB code for rocking initiation is set to 1E-4. The limited rocking 𝐿𝑆1 corresponds to 
𝜗𝑚𝑎𝑥

𝛼
= 0.1 and 

it was considered by Dimitrakopoulos et al. [25] as a promising balance of the benefits of rocking isolation, 

excluding risk of overturning. The moderate rocking 𝐿𝑆2, the static threshold 𝐿𝑆3 and the near-collapse 𝐿𝑆4 

correspond to 
𝜗𝑚𝑎𝑥

𝛼
= 0.4, 1.0 and 1.5 respectively. The static threshold limit state 𝐿𝑆3 refers to the limit condition 

of static safety, that is 𝜗 = 𝛼.  𝐿𝑆1 can be seen as serviceability LS, whereas 𝐿𝑆2, 𝐿𝑆3 and 𝐿𝑆4 as ultimate LS.  

3.2 Fragility analysis 

The fragility curves (FCs) are obtained by post-processing the results of the non-linear seismic analyses, 

considering only demand uncertainties. These realizations are treated by calculating fragility as conditional 

probability of failure, where the demand is represented by the 𝐸𝐷𝑃𝑠 calculated from transient analyses and the 

capacity 𝐶 is defined by the 𝐿𝑆 described in the previous section. The 𝐸𝐷𝑃𝑠 clearly depend on the seismic input, 

in turn defined by specific intensity measures (𝐼𝑀𝑠). The conditional probability of exceedance is expressed by 

the standard cumulative distribution function 𝛷 assuming a lognormal distribution of the rocking cases (excluding 

overturning cases): 

𝑃𝑒𝑥 = 𝑃(𝐸𝐷𝑃 > 𝐶|𝐼𝑀) = 𝛷 (
ln 𝐷−ln 𝐶

𝛽𝐷|𝐼𝑀
). 

(4) 

𝛽𝐷|𝐼𝑀 is the logarithmic standard deviation, or dispersion, of the demand conditioned on the 𝐼𝑀 level. 𝐷 is the 

median structural demand (= 𝐸𝐷𝑃) described by a power law in case of univariate 𝐹𝐶𝑠: 

𝐷 = 𝑎 𝐼𝑀𝑏. (5) 



Once 𝐷 is calculated, Equation (4) applies to find the conditional probability of exceedance . Considering only the 

exceedance probability 𝑃𝑒𝑥 to stochastically assess the safety of the rocking block would bring to wrong 

estimations, because 𝑃𝑒𝑥 neglects the overturning cases for which a two-level categorical probability must be 

computed. Consequently, the correct probability 𝑃𝐸𝐷𝑃|𝐼𝑀(𝑒𝑑𝑝|𝑖𝑚𝑦) that 𝐸𝐷𝑃 > 𝑒𝑑𝑝 given 𝐼𝑀 = 𝑖𝑚  is computed 

also taking into account the probability of uplift 𝑃𝑈𝑃 and the probability of overturning 𝑃𝑅𝑂. The latter are 

calculated by means of the method of maximum likelihood [26] which allows the estimation of the fragility 

function parameters (mean �̂�𝑅𝑂 and standard deviation �̂�𝑅𝑂) assuming that the IM values of the ground motions 

causing uplift/overturning are lognormally distributed and that the uplift/overturning occurrence follows a 

binomial distribution. The three probabilities are then combined to obtain the failure probability as follows [27]: 

𝑃𝐸𝐷𝑃|𝐼𝑀(𝑒𝑑𝑝|𝑖𝑚𝑦) = 𝑃𝑈𝑃[𝑃𝑅𝑂 + (1 − 𝑃𝑅𝑂)𝑃𝑒𝑥] (6) 

The intensity measures (IMs) are links between the seismic hazard of the site and the structural response of a 

building located in that site. Many research contributions are available to assess the ability of specific IMs to 

provide reliable estimates of rocking structural response as illustrated in [17]. In the present paper, the fragilities 

are obtained considering as IM the peak ground acceleration (PGA). 

For what concerns the computational time, each analysis requires from 12 to 15 hours for each of the six systems 

(free wall, wall+damper, wall+damper+recentering component, two geometries, considering 80 earthquakes and 

6 intensity measure levels) with a core i7 8th gen CPU and 8GB RAM. The time step is not fixed but automatically 

varied by the MATLAB’s ODE 45 solver [28]. 

3.3 Selection of seismic records  

A robust probabilistic analysis requires the selection of significant ground motions, which should capture the 

intensities, return periods, duration and frequency contents of the possible seismic events for diverse civil 

engineering systems [29]. The selection process is similar to that adopted by Tabandeh & Gardoni [30] and by 

Huang et al [31]. The ground motions are selected such as that their response spectra are spectrum compatible. 

The 5% damping spectrum is obtained for the Italian site L’Aquila (long. 13.3944°, lat. 42.366°), assuming site 



class A, topographic category T1, return period 475 years [32]. The matching process is performed by the software 

package REXEL [33] imposing a lower tolerance by 10% and an upper tolerance by 30% as recommended in [32]. 

The compatibility period range is included between 0.15 seconds and 2 seconds.  

All the earthquakes are collected from the Engineering Strong Motion database (ESM [34]). The ground motion 

prediction equation (GMPE) is that proposed by Ambraseys et al. [35], fitted on records with magnitude 𝑀𝑊 from 

4.0 to 7.5 and source-distance 𝑅 up to 200 km. 

The following bins are considered: 

• BIN SMSR (small M and small R): 5.5 ≤ 𝑀𝑊 ≤ 6.5 and 15 ≤ 𝑅 ≤ 30 km 

• BIN SMLR (small M and large R): 5.5 ≤ 𝑀𝑊 ≤ 6.5 and 30 ≤ 𝑅 ≤ 50 km  

The preliminary inventory of the BIN SMSR consists of 24 events with 94 records among which the spectrum 

compatibility is found imposing a maximum mean amplification factor by 2. The preliminary inventory of the BIN 

SMLR consists of 23 events with 72 records among which the spectrum compatibility is found imposing a 

maximum mean amplification factor by 5. Twenty combinations of seven seismic records each are extrapolated 

(Figure 2a); then, each bin is formed with twenty earthquakes with consistent characteristics and belonging to 

different distinct events. The number of records in the two bins is the same to provide an even representation of 

the possible characteristics without introducing bias into the assessment of the seismic demand variables [31]. The 

structural analyses are performed for both bins doubling the number of earthquakes, considering positive and 

negative signs of the shocks, for a total number of eighty analyses for each IM level.  

Especially for existing masonry buildings, local OOP failure modes are likely to occur in the upper floors, where 

the stabilizing effect of gravitational loads is lower and the connection with roof is often deficient. For this reason, 

these seismic inputs should be magnified considering the dynamic amplification that walls experience whether 

their rotational hinge is at a certain height from the foundation. To account for this phenomenon and assuming a 

physically reliable value and in favour of safety, an amplification factor of 2 is assumed in the structural analyses 

for all the earthquakes. The results are therefore conditioned to this assumption. 



 

 

(a) 

 

(b) 

Figure 2 Selection of ground motions and hazard parameters: (a) example of combination of spectrum-compatible natural 

records from REXEL [33]; (b) annual exceedance rate of IM=PGA for the reference site (L’Aquila) computed from a PSHA with 

REASSESS [36]. 

3.4 PSHA: methodology to compute seismic demand hazard curves 

In this section a probabilistic approach applicable to free and damped rocking masonry walls is presented. A similar 

probabilistic method, which was recently applied to walls restrained by elasto-plastic tie-rods in [27], was proposed 

in [37]. Here, three systems are considered: free-standing wall, wall restrained by a top damper, wall restrained by 

a top damper with recentering element (Figure 1). Analogously to the fragility analysis, the EDP is the maximum 

normalized amplitude rotation 𝜗/𝛼 of the response time history. A MSA is performed because it is independent 

on the conditioning 𝐼𝑀, in contrast to the limitations of the intensity-based assessment. In the latter, indeed, the 

distribution 𝑓𝐸𝐷𝑃|𝐼𝑀(𝑒𝑑𝑝|𝑖𝑚𝑦) for different 𝐼𝑀𝑠 (e.g. PGA, PGV or PGD) having the same annual exceedance 

rate 𝜆𝐼𝑀(𝑖𝑚𝑦) = 𝑦 can be different [37]. The procedure followed in the analysis is thoroughly illustrated in [27] 

and here briefly recalled. 



Firstly, a representative ensemble of 𝑛 ground motions is selected (in our case 𝑛 = 80, Section 3.3). Then, the 

seismic hazard curve (Figure 2b) is obtained as relationship of the annual exceedance rate 𝜆𝐼𝑀 with 𝑚 values (in 

this case 𝑚 = 6) of the selected intensity measure PGA.  

The PSHA is performed through the open-source code REASSESS [36] for the same site used in the selection of 

ground motions (Section 3.3), L’Aquila, obtaining the relationship between annual exceedance rate and reference 

intensity measure, PGA. This curve is necessary for computing the seismic demand hazard curves; the annual 

exceedance rate curve is drawn for six levels of IM, from IM1=0.10g to IM6=0.56g (Table 2), the same used in 

the MSA to obtain the fragility curves. Each of the IM levels corresponds to specific return periods reported in the 

same table.  

Afterwards, 𝑛 rocking analyses are performed for each 𝑖𝑡ℎ IM level (𝑖 = 1, … , 𝑚), collecting the individual 

realizations to be elaborated, although the scaling of the record is not strictly necessary when MSA is performed. 

Finally, the annual exceedance rates of the EDP, which represent the ordinates of the seismic demand hazard curve 

(SDHC) are computed with the following integral [37]: 

𝜆𝐸𝐷𝑃(𝑒𝑑𝑝) = ∫ 𝑃𝐸𝐷𝑃|𝐼𝑀(𝑒𝑑𝑝|𝑖𝑚𝑦)|
𝑑𝜆𝐼𝑀(𝑖𝑚)

𝑑𝐼𝑀
|𝑑𝐼𝑀

∞

0

 
(7) 

 

𝑃𝐸𝐷𝑃|𝐼𝑀(𝑒𝑑𝑝|𝑖𝑚𝑦) is computed with Eq. (6), whilst the derivative 
𝑑𝜆𝐼𝑀(𝑖𝑚)

𝑑𝐼𝑀
 is calculated from the hazard curve.  

It is worth noting that the first and the last values of return period in Table 2 are solely used for calculating the 

derivative 
𝑑𝜆𝐼𝑀(𝑖𝑚)

𝑑𝐼𝑀
 used in Eq. (7), and therefore the corresponding IM do not need to be explicated.  

  Table 2 Values of peak ground acceleration and corresponding return periods of the seismic hazard curve computed from a 

PSHA with REASSESS [36]. 

PGA - IM1=0.100g IM2=0.190g IM3=0.220g IM4=0.328g IM5=0.448g IM6=0.559g - 

Return 

period 

(years) 

30 50 150 201 475 804 979 2004 

 



The SDHC so obtained are relevant for a risk assessment of rocking walls since hazard and vulnerability are 

considered together. These curves are therefore used to compare the performance of undamped and damped 

rocking walls, to understand the beneficial effect offered by springs and dampers in stochastic terms.   



4. Fragility curves from MSA 

For all the seismic inputs and for all the scaled intensity measures, the addition of the dissipative restraint mitigates 

the rotation amplitude, as shown in Figure 3 for some selected rotation time-histories. In general, the damper alone 

(violet curve) reduces the normalized rotation peaks or delays overturning with respect to the free-standing wall 

without restraint (red curve), whereas the coupling of it with a spring (black curve) further attenuates the motion 

(Figure 3a), increases the rotation frequency (Figure 3a and Figure 3c) and impedes overturning (Figure 3b).  

   

(a) 

 

(b) 

 

(c) 

Figure 3 Time-history analysis results for selected earthquakes (the characteristics, record stations and dates of the earthquakes 

can be found in [33]). 

The univariate fragility curves are calculated from the EDPs (plotted against the intensity measures PGA and PGV 

in Figure 4a, d for the building type wall) to assess the mitigation of seismic vulnerability due to the damper with 

the methods illustrated in Section 3.2. The limit states LS1 (limited rocking), LS2 (moderate rocking), LS3 (static 

threshold) and LS4 (near-collapse rocking), listed in Table 1 are considered. The graphs reported in Figure 4a-c 

refer to the whole set of seismic records, whereas Figure 4d-f show the results only for BIN SMSR (Section 3.3). 

The formers are more reliable, although the two sets of curves are very similar each other, demonstrating that the 

selection of ground motion is valid. Figure 4b reports the probability of overturning for the set BIN SMSR+SMLR 

whilst the probability of exceedance for each LS is shown in Figure 4e for BIN SMSR. It should be noticed that 

the probability of exceedance does not represent the overcoming of a limit state, but the overcoming of a limit 

state conditioned on the occurrence of the block not overturning. Thus, these curves can be considered as a simple 

tool to compare the fragilities in case of different damper properties or boundary conditions, but they do not 



provide the actual failure probability (which is instead calculated with Eq. (6) and reported in Figure 4c and Figure 

4f).  

As expected, the overturning probability increases with the IM amplitude for each system. Such an increase is 

particularly evident for the rocking wall without anti-seismic devices, whilst it is basically null or assume very low 

values for the case of block with damper. If the wall is also horizontally restrained by a recentering element of 

stiffness 𝐾, the overturning probability is even lower but only for seismic intensity over PGA=0.9g (Figure 4b).  

Thus, in general the addition of the dashpot (damper with damping coefficient 𝑐) strongly reduces the seismic 

vulnerability of the wall, as demonstrated by the failure probability curves (Figure 4c for the whole set of ground 

motions, and Figure 4f for BIN SMSR). The recentering element (spring of stiffness 𝐾) implies a further but slight 

reduction of failure probability up to 1g PGA earthquakes (Figure 4c, Figure 4f), due to its already mentioned 

beneficial effects. For higher intensity earthquakes, the elastic component is sensitively more beneficial than the 

damper alone. The quantitative variation of safety assessment can be computed by analyzing Figure 4c, valid for 

the building type wall, which is more seismically vulnerable than the monumental type wall due to the scale effect 

highlighted in [3]: 

1. An equivalent damping coefficient of 𝑐 = 1
𝑘𝑁𝑠

𝑚
 implies remarkable reductions of the OOP vulnerability 

of the wall. This value is half of that used for a passive seismic control device presented in the literature 

to control rocking of masonry walls (Table 1 in [12]). Therefore, even a low damping coefficient is 

favourable for reducing the seismic vulnerability of the wall; 

2. The maximum reduction of failure probability between damped (without spring) and undamped wall in 

case of high-intensity earthquakes is obtained for the near-collapse limit state (LS4), with a percentage of 

81% at a value of 𝐼𝑀 = 𝑃𝐺𝐴 = 1.05𝑔. This behavior is expected since for high IMs the wall dynamic 

amplitude is greater, and the damping effect is more relevant for ultimate limit states; 



3. The maximum reduction of failure probability in case of low/moderate intensity earthquakes is registered 

for the serviceability limit state (LS1), obtaining a reduction percentage by 66% at a value of 𝐼𝑀 = 𝑃𝐺𝐴 =

0.2𝑔; 

4. The maximum difference of failure probability between wall + damper and wall+damper+spring is less 

than 10% and becomes greater for high-intensity ground motions and ultimate limit states. This occurs 

because the recentering effect plays a role for high-intensity earthquakes smoothening the response peaks. 

A much remarkable difference is observed for LS4, with half failure probability in case of spring, since 

the latter, although in a few cases, impedes the wall to overturn (see also Figure 3c). 
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Figure 4 Fragility curves from MSA: (a, d) EDPs; (b) probability of exceedance (Eq. (4)); (e) probability of overturning; (c, f) 

failure probability (Eq. (6)). 
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Figure 5 Comparison of fragility curves for masonry walls of same slenderness and different size: (a) limited rocking limit state 

LS1; (b) moderate rocking limit state LS2. 

The comparison of failure fragility curves obtained for the building type wall and the monumental wall allows 

making additional remarks (Figure 5). First of all, as already mentioned, the failure probability is lower for the 

monumental wall as the block of same slenderness but with greater size is more stable. There is not a specific trend 

for the minor or major beneficial effect due to the damper considering either the building type wall or the 

monumental wall. The percentage reduction of fragility is more or less similar for the limited rocking limit state 

(Figure 5a) and for the moderate rocking limit state (Figure 5b), being of the order of 60%-80%. The monumental 

type wall even without seismic control device has a very low fragility, being slightly more than 20% for rare 1.2g 

PGA earthquakes considering the moderate limit state, where the limit normalized rotation is 0.4. For higher limit 

states, the fragility of the free-standing monumental wall is even lower and therefore not reported.   

5. Risk analysis and seismic demand hazard curves 

The seismic demand hazard curves plot the annual exceedance rate in terms of annual exceedance rate (Figure 6a) 

and of return periods (inverse of annual exceedance rate, Figure 6b). The circles of the SDHC are each 

representative of the five limit states reported in Table 1, from the uplift to the near-collapse limit state. From the 

observation of the SDHC it is evident the great improvement achieved by controlling rocking motion through a 



damper. A further reduction of seismic risk is visible for the system with the recentering element, particularly for 

the three ultimate limit states of static, moderate and near-collapse rocking.  

In particular, the following considerations can be drawn from Figure 6: 

1. the risk associated to the uplift limit state does not vary with the type of system (restrained or free). Indeed, 

for free-standing and damped wall the return period is always 39 years. This is due to the fact that damper 

and spring are mobilized only for non-null rotations, as spring is not pre-compressed and the initial input 

velocity is zero; 

2. the annual frequency of exceedance rate for the limited rocking limit state decreases by 42% passing from 

the undamped to damped case; the further decrease recorded in case of the additional spring component is 

negligible, being less than 6%; 

3. The moderate rocking limit state implies a more evident beneficial effect of the damper, for which the 

return period increases by at least 2.5 times with respect to the wall without restraints; 

4. regarding the exceedance of the static threshold limit state, this event is exceeded once in 265 years for 

the freestanding block, in 2721 and 4576 years respectively for the simply damped wall and that with 

damper and spring. Such a remarkable effect, which reduces by at least one order of magnitude the annual 

exceedance rate, reveals the great enhancement achieved for ultimate limit states.  

5. Such a decrease is even more evident for the near-collapse limit state arbitrarily fixed at a normalized 

rotation of 1.5, being the annual frequency rate of the damped cases of two orders of magnitude lower 

than the undamped case. For both ultimate limit states LSstatic and near-collapse LS the addition of the 

recentering component almost doubles the return period for which the event occurs.  

  



  

 (a) 

  

 (b) 

Figure 6 Seismic demand hazard curves in terms of (a) annual exceedance rate and (b) return period from Eq. (7). 
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Figure 7 Comparison of seismic demand hazard curves of building type and monumental type walls in terms of (a) annual 

exceedance rate and (b) return period from Eq. (7). 

A last comparison is performed between building type and monumental type walls in Figure 7. The building type 

wall restrained by viscous damper and spring (top black curve in Figure 7a) has a slightly greater annual 

exceedance rate than that of the monumental type wall without damper (red curve at the bottom in Figure 7a). In 

any case, the reduction of risk is more remarkable for the ultimate limit states, in particular for the static threshold 

and the near-collapse limit states. 



These beneficial effects confirm that limiting OOP modes with passive seismic control devices is a key aspect for 

the seismic vulnerability mitigation of existing masonry buildings. The added value of the damper as innovative 

device [12] consists in the possibility of controlling OOP modes reducing the number and amplitude of oscillations 

and consequently limiting the risk of damage to the rocking wall itself and to the adjacent structures (horizontal 

diaphragms, arches, vaults and sidewalls). 

Summarizing, these risk analyses are recommended due to the record-to-record variability typical of rocking 

analyses performed on restrained masonry walls. Moreover, the comparison between SDHC is a straightforward 

and useful tool to quantify the level of improvement reached with seismic control devices. Such a comparison can 

be used for a specific design case or to build abaci to estimate the increase of safety level gained by diverse passive 

seismic control systems.  

Conclusions 

This paper presented the results of stochastic analyses to assess the mitigation of seismic risk of damped rocking 

blocks. Examining the structural analysis results, it is observed that the damper reduces the dynamic response or 

delays overturning with respect to the free-standing wall without restraint, whereas the coupling of it with a spring 

further attenuates the motion, increases the rotation frequency and impedes overturning. 

These beneficial effects are also observed in stochastic analysis, as demonstrated by the failure probability curves. 

Even dampers with low damping coefficients (of the order of 𝑐 = 1
𝑘𝑁𝑠

𝑚
) cause remarkable reductions of the OOP 

vulnerability of the building type wall, which is the most vulnerable. The additional recentering element (with 

stiffness of K=10 kN/m for a wall mass of about 2 tons) implies a further but slight reduction of failure probability 

up to 1g PGA earthquakes, whereas for higher intensity earthquakes, the elastic component is sensitively more 

beneficial than the damper alone. The maximum reduction of failure probability between damped (without spring) 

and undamped wall in case of high-intensity earthquakes is obtained for the near-collapse limit state, with a 

percentage of 81% at a value of 𝑃𝐺𝐴 = 1.05𝑔. The maximum reduction of failure probability in case of 

low/moderate intensity earthquakes is registered for the serviceability limited rocking limit state, obtaining a 

reduction percentage by 66% at a value of 𝑃𝐺𝐴 = 0.2𝑔. The failure probability is lower for the monumental wall 



as the block of same slenderness but with greater size is more stable. There is not a specific trend for the minor or 

major beneficial effect due to the damper considering either the building type wall or the monumental walls but it 

is comparable, being of the order of 60%-80% for all the limit states. Therefore, the seismic behavior enhancement 

is clear with the use of this seismic control device. For what concerns the risk analysis, seismic demand hazard 

curves (SDHC) proved to be an effective tool to quantify the level of improvement achieved by controlling the 

rocking response through damper and springs. The numerical analysis showed that the most positive effects are 

obtained for ultimate limit states. Indeed, in the moderate rocking limit state, there is a minimum increase of the 

occurrence return period by at least 2.5 times with respect to the undamped wall.  For the static threshold and near-

collapse limit states, the annual exceedance rate is one and two orders of magnitude lower than the undamped case 

respectively.  

These beneficial effects confirm the relevance of limiting OOP modes with passive seismic control devices in the 

vulnerability mitigation of existing masonry buildings. With specifically design of damping and stiffness 

properties of these devices through SDHC, OOP rocking can be controlled by reducing the number and amplitude 

of oscillations and consequently limiting the level of damage to the rocking wall itself and to the adjacent structures 

(horizontal diaphragms, arches, vaults and sidewalls). 
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