
energies

Article

A Fault Diagnostic Scheme for Predictive Maintenance of
AC/DC Converters in MV/LV Substations

Giovanni Betta 1, Domenico Capriglione 1, Luigi Ferrigno 1, Marco Laracca 2 , Gianfranco Miele 1,* ,
Nello Polese 3 and Silvia Sangiovanni 2

����������
�������

Citation: Betta, G.; Capriglione, D.;

Ferrigno, L.; Laracca, M.; Miele, G.;

Polese, N.; Sangiovanni, S. A Fault

Diagnostic Scheme for Predictive

Maintenance of AC/DC Converters

in MV/LV Substations. Energies 2021,

14, 7668. https://doi.org/10.3390/

en14227668

Academic Editor: Abu-Siada Ahmed

Received: 1 October 2021

Accepted: 12 November 2021

Published: 16 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Information Engineering, University of Cassino and Southern Lazio,
03043 Cassino, Italy; betta@unicas.it (G.B.); capriglione@unicas.it (D.C.); ferrigno@unicas.it (L.F.)

2 Department of Astronautics, Electrical and Energy Engineering, Sapienza University of Rome,
00184 Rome, Italy; marco.laracca@uniroma1.it (M.L.); silvia.sangiovanni@uniroma1.it (S.S.)

3 Faculty of Economics, Mercatorum University, 00186 Rome, Italy; nello.polese@unimercatorum.it
* Correspondence: g.miele@unicas.it

Abstract: The reliability of systems and components is a fundamental need for the efficient devel-
opment of a smart distribution grid. In fact, the presence of a fault in one component of the grid
could potentially lead to a service interruption and loss of profit. Since faults cannot be avoided,
the introduction of a diagnostic scheme could predict the fault of a component in order to carry out
predictive maintenance. In this framework, this paper proposes a novel Fault Detection and Isolation
(FDI) scheme for AC/DC converters in MV/LV substations. In order to improve the reliability of the
FDI procedure, the system architecture includes also an Instrument Fault Detection and Isolation
section for identifying faults that could occur on the instruments and sensors involved in the moni-
toring process of the AC/DC converter. The proposed architecture is scalable, easily upgradable,
and uses cost-effective sensors. Tests, carried out on a real test site, have demonstrated the efficacy
of the proposal showing very good IFDI diagnostic performance for the 12 types of faults tested.
Furthermore, as the FDI diagnostic performance regards, it shows a detection rate close to 100%.

Keywords: FDI; IFDI; predictive maintenance; AC/DC converter; fault diagnosis

1. Introduction

The development of intelligent electricity grids (Smart Grids) brings new challenges
to reliability and safety; therefore, the presence of faults in various components in Smart
Grids is a critical issue. Furthermore, in the same component, the faults can be of different
types and prompt diagnostics and maintenance actions need to be taken.

In the scientific literature, different methods for diagnosing faults and for the mainte-
nance of the various components present in the smart grids are described. The applications
of smart meter data, based on machine learning techniques for the processing, prediction,
and monitoring of the distribution network, are described in [1]. To detect substation faults
for timely repair, a fault detection method in switching process, based on the time-series
model, is proposed in [2]. Different techniques are used to predict and diagnose the faults of
power transformers [3,4]. In particular, a novel sensor platform, based on software defined
networking, is proposed to monitor the electrical parameters and eliminate any future fails
in distribution transformers [3], while a data-driven method, which uses a combination of
principal component analysis, particle swarm optimization, and support vector machines
to enable a better fault diagnosis of power transmission and conversion transformers, is
proposed and investigated in [4]. Elsayed et al. [5] proposed a battery management and
diagnostic system for Smart Grid, based on calculation individual state of charge levels and
C-rates, while a consortium blockchain technology is used in [6] to diagnose smart terminal
and grid protection devices. The data mining for predictive maintenance in an industrial
big data environment is studied to predict the remaining life of key components of machin-
ing equipment by analyzing multisource heterogeneous data [7]. A predictive maintenance

Energies 2021, 14, 7668. https://doi.org/10.3390/en14227668 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-0002-7118
https://orcid.org/0000-0001-7571-6327
https://doi.org/10.3390/en14227668
https://doi.org/10.3390/en14227668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14227668
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14227668?type=check_update&version=1


Energies 2021, 14, 7668 2 of 23

approach for sectionalizing switches, circuit breakers, and current transformers in bays
of electric transmission and distribution substations is proposed in [8]. In particular, a
relationship similar to the signal-to-noise ratio is used to detect degradation in electrical
contacts, based on the spectral analysis of the load current that is flowing through the bay’s
components. In [9], the deep learning model in the framework of the internet of things is
used to predict and diagnose the faults of wind power generation. The most meaningful
techniques in the field of instrument fault detection and isolation are characterized on
physical redundancy and analytical redundancy-based approaches [10,11].

Primarily, there are two categories of methods: (i) model-based methods in which the
data coming from the real components are analyzed and compared with the outputs of the
models of the healthy components and (ii) data-based methods in which the data coming
from the real components are compared with the stored data measured on the healthy real
physical components [12]. Various fault detection and diagnosis approaches are investi-
gated based on threshold methods [13], fuzzy logic methods [14], domain transformation
methods (Fourier transform, wavelet transform) [15], classification methods (decision tree,
feature extraction, support vector machine classifier, neural network classifier) [16], and
state estimation methods [17].

To guarantee the quality of the service and reduce downtime, maintenance is typically
carried out with defined times (for example every six months) or following breakdowns,
using redundant systems or with stringent intervention times. However, the physical
redundancy, utilized in different areas [18], does not represent the optimal solution, be-
cause a fault on a component could be generally due to the device aging or to particular
climatic and electromagnetic operating conditions also suffered by the redundant device.
It is preferable to develop suitable Fault Detection and Isolation (FDI) schemes for early
identifying incipient faults, thus enabling a policy of predictive maintenance which allows
reducing the related costs and downtime for the process under consideration. In addition,
it is necessary to consider a further issue regarding assuring the reliability of measurement
data used for the diagnosis, because even the sensors and the instruments can be interested
by faults, aging, and changing of the input/output characteristic, thus altering both diag-
nosis results and maintenance timelines. Consequently, to have a reliable FDI of a system,
it is needed to also implement an Instrument Fault Detection and Isolation (IFDI) scheme
that is able to identify faults occurring on sensors and devices used to monitor the system
itself.

So, if on one hand, predictive maintenance is very important to guarantee the quality
of the services and to allow optimized and low-cost maintenance schemes, on the other
hand, the application of FDI and IFDI solutions is typically based on multisource sensors
that can generate large amounts of data. This aspect, although we are in the era of industry
4.0 and Big Data, can become a problem, as these huge amounts of data, necessary for
diagnosis, can overload the communication network and the system (communication
storage and processing). Therefore, it is necessary to have architectures that allow reducing
and managing this information at the cloud level [19].

The novelty of this article is focused on the proposal of an FDI and IFDI diagnostic
scheme that allows solving the above-mentioned problems. In particular, the proposal
is based on two main approaches: (i) the use of a pyramidal architecture (structured
with local measurement systems, diagnostic systems, and supervisors), that improves the
data management at different architectures levels, and (ii) a suitable choice of synthetic
parameters allowing to perform FDI and IFDI diagnostics using a reduced quantity of
information to be managed.

The proposed architecture also aims to create a structure for advanced distributed di-
agnostics useful for a global predictive maintenance in the smart grid. Just for instance, the
synthetic diagnosis parameters extracted in one point of the smart grid (e.g., a substation)
can be also used as a diagnostic input for the components present in other points of the
grid.
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In the architectural proposal of the distributed diagnostic system, the attention was fo-
cused on the AC/DC converter typically present in the MV/LV substations. The synthetic
diagnostic parameters proposed in this paper are consequently referring to the chosen
application (AC/DC converter diagnosis), but it can be easily extended to the other compo-
nents present in the substations; obviously, in this case, some of the synthetic diagnosis
parameters could change.

Finally, the proposed solution can be structured as (i) an add-on device to be installed
on the component on which the FDI has to be pursued (in this case, all the sensors, data
acquisitions, and processing of the acquired data to evaluate the synthetic parameters and
send them to the hierarchically superior diagnostic devices are on board to the device); (ii)
a device that can use sensors, data acquisition systems, and intelligence already present in
modern smart grid substations (obviously, in this case, it may be necessary to carry out a
customization process of the devices and systems in the substations in order to apply also
the FDI and IFDI schemes).

After a brief recall on the FDI and IFDI schemes reported in Section 2, the proposed
system is described in Section 3 detailing both the architecture and the hardware/software
solutions. In Section 4, the proposed case study on the FDI–IFDI of AC/DC converters is
reported. After a brief introduction about AC/CD converters systems and faults (Section 4.1),
an experimental analysis was presented to analyze the range of variations of the quantities
of interest (Section 4.2). Then, the proposed FDI/IFDI scheme for AC/DC converter is
described (Section 4.3) and experimentally validated emulating several faults on both the
AC and DC side of the converter (Section 4.4). A final discussion is reported in Section 5.

2. Brief Recall on FDI and IFDI Schemes

The growing need to improve safety and reliability in industrial processes is leading
to increasingly widespread use of automatic measurement and control systems with self-
diagnosis capabilities, i.e., equipped with FDI features. In this framework, the IFDI plays
a fundamental role as well. Indeed, the IFDI includes all those hardware and software
solutions for the detection and diagnostics of faults that affect the measurement instrumen-
tation used for monitoring a system. These systems, in addition to preserving the safety
of operators and systems, also allow detecting the degradation of the adopted to monitor
the system of interest, thus allowing making a reliable FDI and reducing the frequency of
normal maintenance, with a consequent reduction in costs.

The first essential step for the fault diagnosis is the detection of any fault (fault
detection). To be able to detect a fault, the following conditions have to be satisfied:

• A good knowledge of the system to be monitored;
• The possibility of generating residuals, i.e., functions whose value increases when a

fault occurs;
• The possibility of determining, in the experimental tuning phase, the thresholds, after

which the residuals become a symptom of failures.

A form of redundancy is indispensable to generate the residuals. To this aim, two
approaches can be followed: physical and analytical. The former consists of a twin system
that operates in parallel with the one under monitoring. The latter consists of a model of
the system in question that works in parallel with the one under monitoring. In this last
case, there are different techniques for determining an equivalent model of the system in
question.

Physical redundancy has higher costs and bulk compared to analytical redundancy
as it requires the presence of a twin system. However, the schemes based on physical
redundancy are generally easy to implement and ensure high sensitivity in detecting faults.
As regards analytical redundancy, on the other hand, it is based on the knowledge of
several models of the system under monitoring:

• Nominal model: is the model of the system in the absence of faults;
• Failure models: these are the models of the system in the presence of failures;
• Observed model: is the model evaluated on the basis of the measured values;
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The residuals are obtained by comparing the expected values, obtained from the
nominal model, and the measured values, obtained from the observed model. In case of
failure, the latter is isolated by comparing the values of the observed model with those of
the different failure models. In practical applications, the most common approaches for
generating residuals are as follows:

1. Monitoring of a set of measured quantities, when the model of the system consists in
the knowledge of the values that said quantities must assume in fault-free conditions
(absence of faults);

2. Comparison between the measured outputs of the system under examination and
the estimated outputs from its nominal model, when the real system and its nominal
model receive the same input;

3. Comparison between some characteristic parameters of the real system and those of
the corresponding nominal model.

Once the residuals have been defined, it is necessary to set the thresholds against which
the residues are to be compared. These thresholds are determined in the experimental
phase and must be greater than the residuals in fault-free conditions and lower than the
residuals when a fault occurs.

Once the value of a certain number of residuals exceeds the corresponding thresholds,
thus highlighting the occurrence of a fault, it is necessary to locate the fault (fault isolation).
Only a careful analysis of residuals exceeding the corresponding thresholds can lead to the
isolation of the fault.

Since the development of the model of a system is based on the processing of the
input and output signals of the system itself, in the case of sensors (or more in general,
instruments), the generation of a model would require knowledge of the input signal to
the sensor (by measuring). However, since the only means to know the input of a sensor
is the sensor itself, in the case of diagnosis on measurement instrumentation (IFDI), it is
not possible to estimate both the observed model and the output of the nominal model.
Therefore, in the case of diagnosis on the measuring instrumentation, it is suitable to
use, rather than mathematical models schematizing the functioning of the measuring
instrument, the relationships existing between the different measured quantities. In this
way, the analytical redundancy relations between the measured quantities in the event
of fault-free become the nominal model of the measurement instrumentation, the values
assumed by these relations in the event of failures constitute the failure models, while the
values evaluated based on data acquired in real-time constitute the observed model. The
detection of the fault is made by continuously verifying the consistency of the redundancy
relationships, using the dynamically measured data (observed model).

The IFDI represents, in the context of fault detection and isolation, a particular case
in which faults on the measurement instrumentation are detected and localized. The
approach based on physical redundancy requires the use of several sensors greater than
the minimum required by the application, by a factor of two or three (or even greater)
depending on the diagnostic capabilities required. It is easy to understand that the use of
two sensors that measure the same quantity allows only the fault detection phase, while to
identify the faulty sensor with an acceptable probability, greater physical redundancy is
required. The use of more than two twin sensors also allows the creation of fault-tolerant
measurement stations, in which a fault on a sensor does not affect the reliability of the
measurements, being able to replace the measurement of the faulty sensor with that of one
of the other fault-free sensors.

As regards the approach based on analytical redundancy, it allows avoiding replicating
twin sensors and can be considered more robust concerning the physical one whenever the
fault on the sensors is due to extreme operative conditions or to the presence of external
damaging disturbances. Indeed, in such cases, the twin sensors could fail for the same
event, thus making a reliable diagnosis impossible.

As said before, the analytical redundancy is based on the verification of the consistency
of the analytical relationships existing between the quantities measured by the different
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sensors, and in the case of diagnosis on measuring instruments, it is not possible to use
a nominal model of the sensor, since the latter’s input is unknown, and the previously
mentioned approaches 2 and 3 for the generation of residuals are not directly applicable.
Generally, as for IFDI, the techniques based on analytical redundancy reported in Figure 1
can be followed [10,11].
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Whenever a good knowledge of the system is available, the most effective approach
is based on the use of parity relations and analytical models because they do not require
facing the issues arising by training, validating, and testing, which is typical of the design
and tuning phases of artificial intelligence-based techniques [20–23].

In addition, they allow achieving low computational burden with a consequent im-
provement of the diagnosis promptness and allow enabling the compliance with hard
real-time constraints even if the FDI and IFDI schemes have to run on low powerful
microcontrollers [24,25].

3. The Proposed System

As previously mentioned, the proposed system has been developed with the aim of
providing predictive maintenance of AC/DC converters employed in the MV/LV substa-
tions. Considering this particular framework, the developed system has been designed in
order to be scalable and easily upgradable.

A simplified block diagram of the proposed system, which involves only one diag-
nostic system, is reported in Figure 2. It is composed of three main components: (a) a
measurement system for the acquisition of the quantities that are fundamental for mon-
itoring AC/DC converters; (b) a diagnostic system that implements the schemes for the
identification of faults on AC/DC converters (FDI) and on the sensors and measuring
devices (IFDI); and (c) a supervisor unit with suitable rules for the predictive mainte-
nance of the above-mentioned converters. These three units are connected among them
through an Ethernet-based local area network (LAN). Each measurement system is located
in proximity of the AC/DC converter. The diagnostic system, from a hierarchical point
of view, is located to an upper layer with respect to the measurement unit, and it can
receive measurement data from more than one measurement system. Consequently, it
can implement FDI and IFDI schemes for identifying incipient faults in several AC/DC
converters. The supervisor receives data from many diagnostic systems; as a consequence,
it represents the highest layer of the proposed architecture.
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It is worth noting that this general architecture has been designed so that the supervisor
receives data pre-processed by the diagnostic systems and, in turn, diagnostic systems
receive data pre-processed by each measurement system. This implementation should
allow obtaining the following benefits for the entire system:

1. Data operations that need a big computational burden are carried out by the periph-
eral nodes of this network. As a consequence, the computational burden of the upper
layers’ nodes will not increase very much when the number of peripheral nodes will
increase. The system has only to manage more network connections.

2. Each node will send to its upper node only pre-processed data, reducing the amount
of data to be transmitted on the network. This choice allows the improvement of
network efficiency and reliability. Furthermore, it allows to choose cost-effective
hardware with limited computing resources for building these nodes.

3. The decentralized data processing allows obtaining better scalability of the proposed
architecture, especially when possible faults occur in a node that cause the need to
replace it.

3.1. Measurement System

As the measurement system regards, a simplified sketch is reported in Figure 3. As
previously said, it is installed in the proximity of the AC/DC converter to be monitored. It
is designed in order to sense and acquire the input AC voltage (VAC) and current (IAC) of
the AC/DC converter and its output DC voltage (VDC) and current (IDC).

In particular, an AC voltage probe has been designed for the acquisition of VAC. It has
been realized with a ZMPT101B Active Single Phase Voltage Transformer Module. It has
an input AC voltage range up to 250 V, and it is equipped with an isolation transformer.
The probe’s output is a voltage signal that is proportional to the AC input voltage.
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As IAC and IDC regard, they are sensed with an ACS712 [26] Hall-effect-based linear
current sensor. The output of this sensor is a voltage signal proportional to the input
current.

A DC voltage probe has been connected to the AC/DC converter output. It is a
suitably designed voltage divider circuit.

The output of each sensor and probe has been connected to a data acquisition (DAQ)
board, namely a National Instruments™ NI USB-6001 [27]. It is a low-cost, multifunction
DAQ device. It offers 8 analog 14-Bit input channels with a maximum sampling rate equal
to 20 kS/s.

The DAQ board is connected through a USB cable with an industrial personal com-
puter (PC) having the following characteristics: CPU Intel Core i5-4200U processor up to
2.60 GHz, 4 GB RAM, 256 GB SSD hard disk drive, Ethernet network interface card, and
Windows 10 operating system.

A picture of the electronic board including the above-mentioned components is re-
ported in Figure 4.
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The PC automatically runs at startup a suitably designed LabVIEWTM program, which
sets the DAQ board sampling rate to 2.5 kS/s, retrieves data samples from the DAQ board,
and calculates the following parameters:

• The root mean square value of the input AC voltage (Vin_rms).
• The root mean square value of the input AC current (Iin_rms).
• The peak value of the input AC voltage (Vin_pk).
• The peak value of the input AC current (Iin_pk).
• The frequency of the input AC voltage (f_in).
• RTHD_I defined as follows:

RTHD_I =

√
∑i I2

in,i√
∑i I2

out,i

, (1)

where Iin,i and Iout,i are the rms value of the i-th harmonic of the AC current and DC current,
respectively.

• RTHD_V defined as follows

RTHD_V =

√
∑i V2

in,i√
∑i V2

out,i

, (2)

where Vin,i and Vout,i are the rms value of the i-th harmonic of the AC voltage and DC
voltage, respectively.
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• The mean value of the output voltage (Vout).
• The mean value of the output current (Iout).
• The ripple of the output voltage (RVout).
• The ripple of the output current (RIout).
• The main frequency component of the ripple of the output voltage (f_out).

Furthermore, this program updates the value of each parameter every 2 s and periodi-
cally transmits them to the Diagnostic System.

A picture of the front panel of the designed LabVIEW program is reported in Figure 5.
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Each sensor and probe, adopted in the realized measurement stations, has been
preliminary tested and metrologically characterized.

3.2. Diagnostic System

The main aim of this system is to identify faults occurring either on an AC/DC
converter or on the measurement system. To reach this goal, it applies IFDI and FDI
schemes suitably designed for this application. They will be described in the next section.

The above-mentioned IFDI and FDI schemes are carried out by a LabVIEW program
whose front panel is shown in Figure 6. It runs on an industrial personal computer (PC)
having the following characteristics: CPU Intel Core i5-4200U processor up to 2.60 GHz,
4 GB RAM, 256 GB SSD hard disk drive, Ethernet network interface card, and Windows 10
operating system.

In particular, it receives data from the measurement systems connected to it and
processes them to identify the following faults of the measurement system and related to
the AC/DC converter:

• DC Voltage sensor fault.
• DC current sensor fault or loads issues.
• AC voltage sensor fault.
• AC current sensor fault.
• A generic fault of the sensing section.
• AC/DC converter fault.
• AC/DC converter fault or loads issues.

All these failures are indicated by a round LED indicator on the LabVIEW program
front panel.

Furthermore, for each measurement system connected to it, it provides a log containing
a count of the AC overvoltage anomalies.
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Data processed by the diagnostic system, containing the detected faults and anomalies
are periodically sent to the supervisor.

3.3. Supervisor

As previously mentioned, the goal of the supervisor is the implementation of rules for
the predictive maintenance of the AC/DC converter. A suitable LabVIEW program has
been suitably designed to allow this task. Figure 7 reports a picture of the front panel of
the supervisor LabVIEW program.

Energies 2021, 14, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 7. Front panel of the supervisor LabVIEW program. 

If a failure of the sensing system occurs, it is possible to check which sensor is under 
failure, analyzing the Boolean-led indicators reported per each measurement station. 

4. The Case Study and Results 
4.1. Brief Recalls about AC/DC Converter Systems and Faults 

As for the case study considered in this paper, a typical AC/DC converter employed 
for powering electronic systems installed in the MV/LV substations has been considered, 
whose main nominal features are reported in Table 1 [28]. 

Table 1. Main nominal features of the considered AC/DC converter [1]. 

Parameter Minimum Value Maximum Value 
Input Voltage (Vin_rms) 185 V (RMS value) 264 V (RMS value) 
Input Current (Iin_rms) // 1.98 A (RMS value) 
Input Frequency (f_in) 47 Hz 63 Hz 
Output Voltage (Vout) 23 V 27.5 V 

Output Voltage Ripple (RVout) // 0.05 V (Peak-to-Peak) 
Output Current (Iout) // 15 A 

Output Frequency (f_out) 94 Hz 126 Hz 

In particular, AC/DC converters can be considered as electronic devices able to feed 
DC loads converting the AC electrical energy taken by the electrical network. To this aim, 
with reference to a typical operation of an AC/DC converter, three main sections can be 
highlighted: (i) the AC electrical power network, (ii) the electronic device itself, and (iii) 

Figure 7. Front panel of the supervisor LabVIEW program.



Energies 2021, 14, 7668 11 of 23

In particular, it has been customized in order to supervise up to eight measurement
systems and, per each of them, it can show if a fault is occurring: sensing system failure,
AC/DC converter failure, or if it is evolving to failure.

Furthermore, per each measurement station it plots five quantities of interest: VDC,
VDC ripple, IDC ripple, RTHD_I, and RTHD_V.

If a failure of the sensing system occurs, it is possible to check which sensor is under
failure, analyzing the Boolean-led indicators reported per each measurement station.

4. The Case Study and Results
4.1. Brief Recalls about AC/DC Converter Systems and Faults

As for the case study considered in this paper, a typical AC/DC converter employed
for powering electronic systems installed in the MV/LV substations has been considered,
whose main nominal features are reported in Table 1 [28].

Table 1. Main nominal features of the considered AC/DC converter [1].

Parameter Minimum Value Maximum Value

Input Voltage (Vin_rms) 185 V (RMS value) 264 V (RMS value)
Input Current (Iin_rms) // 1.98 A (RMS value)
Input Frequency (f_in) 47 Hz 63 Hz
Output Voltage (Vout) 23 V 27.5 V

Output Voltage Ripple (RVout) // 0.05 V (Peak-to-Peak)
Output Current (Iout) // 15 A

Output Frequency (f_out) 94 Hz 126 Hz

In particular, AC/DC converters can be considered as electronic devices able to feed
DC loads converting the AC electrical energy taken by the electrical network. To this aim,
with reference to a typical operation of an AC/DC converter, three main sections can be
highlighted: (i) the AC electrical power network, (ii) the electronic device itself, and (iii) the
DC load. This scheme is reported in the simplified block diagram of Figure 8 that sketches
both the ideal operating and the main functional parts of a generic converter.
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Sections (i) and (iii) are external to the AC/DC converter, but they are directly con-
nected to it; consequently, their deviations from nominal values influence the behavior of
the AC/DC converter itself and can concur to accelerate the aging and malfunctioning of
the components present in the electronic power device. As an example, on the AC main
(i.e., section (i)), dangerous phenomena for the AC/DC converter can be considered as
power surges, high-voltage spikes and sags, transients, frequency variations, and electrical
line noise, to cite a few. As for the section (iii), dangerous operating conditions are related
to overloading and switching characteristics of the load that might influence the operation
of the AC/DC converter.
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The above-mentioned phenomena, together with the aging of the electronic compo-
nents internal to the device, can worsen the performance and finally can produce faults
in all the sections considered in Figure 8, namely the input noise filter, the input and the
output smoothing filters, the DC/DC converter, and the control circuit, which are contained
in section (ii).

In a more detail, the presence of power surges and high-voltage spikes forces all the
above-mentioned functional parts to operate in an unwanted range. In the absence of
electrostatic traps or voltage suppressors, these events frequently cause the breakdown of
the AC/DC converter with consequent output faults. Moreover, electrostatic traps may
lead to broken or premature aging of capacitors, transistors, and diodes that are in the block
diagram of Figure 8 (section (ii)). The effect of this aging can be highlighted by looking at
the increasing of the ripple on the voltage (RVout) and current DC (RIout) output.

Moreover, considering Power Quality phenomena as dips, sags, swells, transients, and
frequency deviations, generally, they do not directly cause instantaneous brokenness in the
AC/DC converter but increase the premature aging of the above-mentioned components.
In addition, in this case, the DC voltage and current signals and the AC current signal may
show deviation from the expected behaviors.

As a consequence, these considerations led to identifying the set of parameters to be
monitored and the fault symptoms, which should be considered for identifying either a
fault occurred on the AC/DC converter or an operating condition of the AC/DC converter
that could lead to a possible fault. In particular, based on the above considerations, the set
of parameters of interest that we have considered are Vout, Iout, f_out, RVout, and RIout
(output current ripple).

After such quantities of interest and fault symptoms are identified, the FDI scheme
can be designed for generating the residuals, i.e., functions whose values overcome suitable
thresholds in case of faults. To these aims, a preliminary experimental analysis has to
be performed for quantifying the variability ranges of the parameters of interest (i.e., the
“nominal model” for the input/output quantities of the AC/DC converter) when no faults
have occurred. Then, the deviations from nominal variability ranges are adopted for
highlighting the occurrence of a fault on the AC/DC converter.

4.2. Preliminary Experimental Analysis

To analyze the range of variation of the quantities of interest, a preliminary experi-
mental analysis has been carried out. These quantities have been measured by using the
experimental setup reported in Figure 9 in terms of block diagram (a) and picture (b).

In particular, besides the measurement instrumentation and probes needed for acquir-
ing the quantities of interest on both AC and DC sides, the experimental setup includes
a programmable power source and electronic load, which are used for emulating several
operating conditions of the AC/DC converter, by varying the AC source and the kind of
load according to the technical standard series EN 61204, which describes the test methods
for low-voltage power supply devices (including switching types) providing d.c. output(s)
up to 200 V d.c. at a power level up to 30 kW, operating from a.c. or d.c. source voltages
of up to 600 V. As for the electronic load, a ZSAC C4244 has been used and was remotely
controlled through a RS-232 interface.

As for the AC and DC voltage probes as well as the AC and DC current, the sensors are
the same as those used for the prototype development in order to keep the same features
and calibration data during all experimental activity.

As for the digital scope, it is a LeCroyTM Waverunner LT264 (350 MHz-bandwidth,
1 GS/s-sampling frequency) remotely controlled by means of a IEEE-488 interface bus,
whereas the AC power source is a Pacific Smart source 305AMX.

In particular, as for the AC source, the rms value will be varied inside the AC/DC
converter nominal range for monitoring its overall behavior versus this quantity of influ-
ence. In the same way, different constant loads (which led to different output DC current
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values) and switching loads (considering suitable time profiles) will be considered in order
to analyze several operating conditions of the AC/DC converter.
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With reference to the development of the FDI scheme, these tests will allow identifying
the AC/DC converter nominal model, which in turn provides the variation range of the
quantities of interest in the absence of faults. To this aim, the test conditions described in
Table 2 have been considered for testing the AC/DC converter. For each test condition,
10 consecutive repetitions have been collected for analyzing the mean values and the
experimental standard deviations of the quantities of interest.

Table 2. Experimental test conditions for achieving the nominal model of the AC/DC converter.

Test Condition # Vin_rms [V] Iout [A] Type of Load

1 230 4 constant
2 230 6 constant
3 230 8 constant
4 230 10 constant
5 230 14 constant
6 250 4 constant
7 250 6 constant
8 250 8 constant
9 250 10 constant
10 250 14 constant
11 200 4 constant
12 200 6 constant
13 200 8 constant
14 200 10 constant
15 200 14 constant
16 220 4 switching (1 Hz)
17 220 6 switching (10 Hz)
18 220 8 switching (20 Hz)
19 220 10 switching (100 Hz)
20 220 14 switching (1 kHz)
21 230 4 switching (1 Hz)
22 230 6 switching (10 Hz)
23 230 8 switching (20 Hz)
24 230 10 switching (100 Hz)
25 230 14 switching (1 kHz)

As an example, Figure 10 reports the time evolutions of the measured quantities on
both sides (AC and DC) for the test condition #1.
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Starting from the collected data, the quantities of interest for the FDI have been
analyzed. Table 3 provides the experienced ranges and standard deviations achieved
during all the considered test conditions of Table 2.

Table 3. Overall experimental values of the quantities of influence.

Parameter Standard Deviation Minimum Value Maximum Value

Vout (V) 0.1 21.0 24.5
RVout (%) 0.05 0.20 0.30
RIout (%) 0.05 0.25 0.32
f_out (Hz) 0.5 99.9 100.1

Where
RVout% =

RVout

Vout
100 (3)

and
RIout% =

RIout

Iout
100. (4)

The values reported in Table 3 have to be fused with values reported in Table 1
for achieving the nominal model (to be considered in absence of a fault) of the AC/DC
converter.

Moreover, further analysis has been carried out for observing behaviors of typical
harmonic distortion indexes against the output current, as also shown in Figures 11 and 12.
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Therefore, RTHD_I and RTHD_V have been evaluated and reported in Table 4 with
the normalized standard deviations evaluated applying the following formulas:

σRTHD_I % =
σRTHD_I
RTHD_I

100 (5)

σRTHD_V % =
σRTHD_V
RTHD_V

100. (6)
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Table 4. Experimental values of RTHD_I and RTHD_V against Iout.

Iout [A] RTHD_I σRTHD_I% RTHD_V σRTHD_V%

4 2.35 10% 3.85 10%
6 1.10 8% 2.30 9%
8 1.00 8% 2.00 8%
10 0.96 10% 1.92 10%
14 0.60 6% 1.37 6%

4.3. The Proposed FDI/IFDI Scheme

As also recalled in Section 2, when an FDI/IFDI scheme has to be set up, the quantities
measured by the set of transducers are digitized and processed for calculating the residuals,
which are software functions whose values in case of fault significantly differ from the
values they assume in fault-free conditions [10,11,18]. So, from the analysis of residuals,
it is possible to identify the eventual presence of a fault on the system under evaluation.
To warrant a reliable fault diagnosis, it should be assured that the quantities measured by
the transducers be reliable. In other words, the fault diagnosis procedure should include
a first processing section devoted to the Instrument Fault Detection and Isolation (IFDI)
for providing information on the status (fault-free or faulty) of the transducers employed.
Subsequently, the FDI procedure can run and provide reliable results.

Further general aspects of FDI deal with the tradeoff between sensitivity and prompt-
ness to detect faults. In most of the applications, the promptness has to be preserved for
assuring the real-time management of a fault [24,29]. In such cases, the sensitivity to small
or incipient faults is relatively low, and the faults detected and correctly isolated are the only
ones causing clear symptoms (i.e., residuals that clearly overcome thresholds), whereas
faults characterized by weak symptoms (i.e., incipient faults) become more difficult to
detect or require longer observation time intervals to be recognized if the false alarms
percentage has to be kept low. With reference to the incipient faults, they are generally
difficult to identify, but they are crucial because they could alert the system manager for
actuating a predictive maintenance of the system.

As for the FDI and IFDI, among the techniques available in the literature, an analytical
rule-based approach has been adopted [10,11]. Then, as it is described in the following, the
fault diagnosis is based on either relationships (analytical or soft) or inequalities between
quantities of interest, which become inconsistent in case of faults.
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Starting from the values reported in Table 1, Table 3, and Table 4, the IFDI/FDI scheme
is proposed by considering a rule-based approach, thus by defining some relationship
representing the nominal operating of the AC/DC converter according to the values
reported in Table 1, Table 3, and Table 4. In particular, the following twelve relationships
have been identified:

R1 : VoutMIN1 < Vout < VoutMAX1
R2 : IoutMIN1 < Iout < IoutMAX1

R3 : ∆Vout%MIN < ∆Vout% < ∆Vout%MAX
R4 : ∆Iout%MIN < ∆Iout% < ∆Iout%MAX

R5 : foutMIN < fout < foutMAX

R6 : VoutMIN2 < Vout < VoutMAX2
R7 : IoutMIN2 < Iout < IoutMAX2

R8 : VinrmsMIN < Vinrms < VinrmsMAX

R9 : IinrmsMIN < Iinrms < IinrmsMAX

R10 : Vout · Iout ≥ η·Vinrms·Iinrms
R11 : RTHDI = g1(Iout)

R12 : RTHD_V = g2(Iout)

where:

- VoutMIN1 is the minimum value of Vout according to the value reported in Table 1;
- VoutMIN2 is the minimum value of Vout according to the value reported in Table 3;
- VoutMAX1 is the maximum value of Vout according to the value reported in Table 1;
- VoutMAX2 is the maximum value of Vout according to the value reported in Table 3;
- IoutMIN1 is the minimum value of Iout according to the value reported in Table 1;
- IoutMIN2 is the minimum value of Iout according to the value reported in Table 3;
- IoutMAX1 is the maximum value of Iout according to the value reported in Table 1;
- IoutMAX2 is the maximum value of Iout according to the value reported in Table 3;
- RVout%MIN is the minimum value of RVout% according to the value reported in Table 3;
- RVout%MAX is the maximum value of RVout% according to the value reported in Table 3;
- RIout%MIN is the minimum value of RIout% according to the value reported in Table 3;
- RIout%MAX is the maximum value of RIout% according to the value reported in Table 3;
- f _outMIN is the minimum value of f_out according to the value reported in Table 1;
- f _outMAX is the maximum value of f_out according to the value reported in Table 1;
- Vin_rmsMIN1 is the minimum RMS value of Vin according to the value reported in

Table 1;
- Iin_rmsMIN1 is the minimum RMS value of Iin according to the value reported in

Table 1;
- η is the efficiency of the AC/DC converter, which was equal to 90% for the considered

device;
- g1(Iout) and g2(Iout) are functional links that map the values of RTHD_I and RTHD_V

according to the values reported in Table 4.

As a consequence, based on both the nominal values (Table 1) and the experimental
analyses (Tables 3 and 4), the threshold values reported in Table 5 have been considered.

The continuous check of the consistency of all relationships allows identifying pos-
sible faults that could occur on the main components of the AC/DC converter or on the
measurement systems involved for monitoring the system itself.

However, in order to record some transitory overvoltages that could occur on the AC
side and that could speed up the aging of all components, a further value check has been
identified as reported in the following:

Check_1: Vin _pk > Vin_pk_MAX;
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where Vin_pk is the peak value of the measured Vin and Vin_pk_MAX = 500 V. This last
value has been selected according to the common rules and values of disturbance levels
typical of the electromagnetic compatibility immunity tests [30].

Table 5. Threshold values for R1–R9.

Ri Lowest Values Highest Values

R1 20.9 V 27.6 V
R2 3.7 A 14.6 A
R3 0.2% 0.3%
R4 0.25% 0.32%
R5 93 Hz 127 Hz
R6 0.1 V 3.5 V
R7 0.5 A 20 A
R8 185 V 265 V
R9 0.5 A 1.3 A

In this way, the whole diagnostic scheme is reported in Figure 13.
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4.4. Experimental Campaign

As for the performance analysis, several faults have been emulated on both the AC
and DC side of the converter under controlled conditions.

To evaluate the FDI and IFDI capabilities, the following performance parameters were
calculated:

• Percentage of Correct Detection: percentage of the number of faults detected with respect
to the total number of emulated faults;

• Percentage of Missed Detection: percentage of the number of undetected faults out of
the total number of emulated faults;

• Percentage of Correct Isolation: percentage of the number of faults correctly isolated
with respect to the total number of faults detected;

• Percentage of Missed Isolation: percentage of the number of non-isolated faults compared
to the total number of faults detected;

• Percentage of Incorrect Isolation: percentage of the number of faults not correctly isolated
out of the total number of faults detected.

As for the kind of faults, they have been either simulated or emulated (whenever
possible) according to the scheme reported in Table 6.

Table 6. The considered faults cases.

Quantity or Device Involved Type of Fault Symptom

Voltage sensor
(on AC or DC side) Open circuit the sensor output reaches the full-scale

value
Voltage sensor

(on AC or DC side) Short circuit the sensor output approaches the zero
value

Voltage sensor
(on AC or DC side) Hold the sensor output is kept to a constant

value once the fault occurs
Current sensor

(on AC or DC side) Open circuit the sensor output reaches the full-scale
value

Current sensor
(on AC or DC side) Short circuit the sensor output approaches the zero

value
Current sensor

(on AC or DC side) Hold the sensor output is kept to a constant
value once the fault is occurred

DC voltage Out of the nominal
range

variation of the AC/DC converter output
voltage with respect to the related

nominal ranges

DC voltage ripple Out of the nominal
range

variation of the AC/DC converter output
voltage ripple with respect to the related

nominal ranges

DC current Out of the nominal
range

variation of the AC/DC converter output
current with respect to the related

nominal ranges

DC current ripple Out of the nominal
range

variation of the AC/DC converter output
current ripple with respect to the related

nominal ranges

DC voltage ripple frequency Out of the nominal
range

variation of the AC/DC converter output
voltage ripple frequency with respect to

the related nominal ranges

AC main Out of the nominal
range Transient overvoltage on the AC main

The faults described in Table 6 have been randomly applied during the experimental
campaign in order to analyze the diagnostic performance of the proposed procedure.
Tables 7 and 8 report the achieved results.
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Table 7. The IFDI diagnostic performance.

Type of Fault Correct
Detection

Missed
Detection

Correct
Isolation

Missed
Isolation

Incorrect
Isolation

Open circuit on AC
voltage sensor 100.00% 0.00% 100.00% 0.00% 0.00%

Short circuit on AC
voltage sensor 100.00% 0.00% 100.00% 0.00% 0.00%

Hold on AC voltage
sensor 100.00% 0.00% 95.00% 5.00% 0.00%

Open circuit on AC
current sensor 100.00% 0.00% 100.00% 0.00% 0.00%

Short circuit on AC
current sensor 100.00% 0.00% 100.00% 0.00% 0.00%

Hold on AC current
sensor 100.00% 0.00% 94.74% 5.26% 0.00%

Open circuit on DC
voltage sensor 100.00% 0.00% 100.00% 0.00% 0.00%

Short circuit on DC
voltage sensor 100.00% 0.00% 100.00% 0.00% 0.00%

Hold on DC voltage
sensor 100.00% 0.00% 96.34% 3.66% 0.00%

Open circuit on DC
current sensor 100.00% 0.00% 94.74% 5.26% 0.00%

Short circuit on DC
current sensor 100.00% 0.00% 100.00% 0.00% 0.00%

Hold on DC current
sensor 100.00% 0.00% 94.74% 5.26% 0.00%

Table 8. The FDI diagnostic performance.

Type of Fault Correct
Detection

Missed
Detection

Correct
Isolation

Missed
Isolation

Incorrect
Isolation

DC voltage 100.00% 0.00% 100.00% 0.00% 0.00%
DC voltage ripple 100.00% 0.00% 100.00% 0.00% 0.00%

DC current 95.00% 5.00% 100.00% 0.00% 0.00%
DC current ripple 100.00% 0.00% 100.00% 0.00% 0.00%
DC voltage ripple

frequency 100.00% 0.00% 100.00% 0.00% 0.00%

It is possible to highlight that the proposed IFDI and FDI schemes show very attractive
performance.

In particular, as for the IFDI capabilities, all faults considered are correctly detected
and isolated, but the “hold on fault” is not always correctly isolated, although it is correctly
detected. However, this kind of sensor’s fault is generally less frequent concerning the
other ones.

As for the FDI capabilities, only faults whose symptom correspond to a variation
of the DC current are not always correctly detected, whereas the other kind of faults are
always correctly detected and isolated.

Finally, all transient overvoltage on the AC side has been correctly identified in all
cases.

5. Discussion

An innovative distributed system for monitoring and performing the fault diagnosis
of AC/DC converters in MV/LV substations has been proposed.

It has been designed and built to be scalable and cost-effective.
The main novelty of the proposal regards the implementation of a novel Fault Detec-

tion and Isolation (FDI) scheme especially designed for AC/DC converter fault diagnosis.
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Furthermore, the reliability of the proposal improved by the implementation in the
proposed architecture of an Instrument Fault Detection and Isolation (IFDI) section for
identifying faults that could occur on the instruments and sensors involved in the monitor-
ing process of the AC/DC converter. As for the approach followed for the development of
the diagnostic scheme, the analytical redundancy has been considered, and a rule-based
technique has been set up on the basis of both theoretical links among the quantities of
interest and empirical trends observed with a large experimental campaign.

The performance of the proposed FDI/IFDI scheme has been experimentally evaluated
by emulating several faults on both the AC and DC side of the converter under controlled
conditions.

The obtained results have demonstrated the IFDI capability of correctly detecting all
faults and very good isolation performance that in the worst case is equal to 94.74%.

As FDI capabilities regard, the proposal has correctly isolated all the considered faults
with a detecting performance which, in the worst case, is equal to 95%. Then, having
chosen a simple rule-based technique for the FDI–IFDI schemes, the proposal can be easily
developed on low powerful microcontroller architectures, thus assuring a cost-effective
solution even for large-scale deployment.

As further future development, the realized system can be considered the first step
toward a more powerful system that aims to develop a prognostic platform for predictive
fault diagnosis and predictive maintenance. In detail, according to the requirement of the
Industry 4.0 paradigm, the future system will predict the possible faults of these systems
to minimize the plant shutdown. In detail, the authors are considering the suitability of
two solutions.

The former is based on the adoption of an approach very similar to the one used in
the statistical control of production processes. In particular, the Control charts, also known
as Shewhart charts (after Walter A. Shewhart) or process–behavior charts, in statistical
process control are tools used to determine if a manufacturing or business process is in a
state of statistical control [8]. A set of rules are used to predict the future performance of
the system under evaluation [9]. If the chart indicates that the monitored system is not
“in control”, analysis of the chart can help determine the sources of variation, as this will
result in degraded system performance. Such concepts can be adopted for identifying an
incipient fault occurring on the AC/DC converter, thus enabling the ability to actuate a
predictive maintenance policy.

The latter is based on the adoption of the digital twin paradigm. In detail, the
acquisition, for a long time, of the considered data allows developing a state model of the
device (Hidden Markov Model—HMM). The HMM is characterized by a number of states
(nodes) and a number of transitions among states (arches). Each transition has a certain
statistical probability. Then, a fault could produce effects on the born of new states or in
terms of changes in the probability of some transition. The early estimation of these effects
could give information about possible future faults.
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