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A B S T R A C T   

Classification of landslide type is an essential step in risk management, although is often missing in large in-
ventories. Here we propose a novel data-driven method that uses easily accessible morphometric and geospatial 
input parameters to classify landslides type at a national scale in Italy by means of a shallow Artificial Neural 
Network. We achieved an overall True Positive Rate of 0.76 for a five-class overall classification of over 275,000 
landslides as (1) rockfall/toppling, (2) translational/rotational slide, (3) earth flow, (4) debris flow, and (5) 
complex landslide. In general, the model performance is very good in the entire national territory, with large 
areas reaching F-score higher than 0.9. The method can be applied to any polygonal inventory, as those produced 
by automatic mapping procedures from Earth Observation imagery, in order to automatically identify the types 
of landslides.   

1. Introduction 

The first step in landslide hazard assessment is to map the exact 
location of gravitational processes and to define the type of movement 
(Mantovani et al., 1996). In engineering geology, classifying landslides 
by type allows defining of the most suitable instrumental investigations 
needed to study in depth the phenomenon (Popescu, 2001). 

At regional scale, clusters of landslides of the same type may be 
associated with similar geo-environmental features (Rosi et al., 2018) 
which can be, for instance, indirectly inferred by observing the type of 
landslide. In addition, different types of failures may evolve in a 
different way under the effect of global warming (Gariano and Guzzetti, 
2016). Furthermore, different threats can arise depending on the type of 
mass movement thus, its classification is an essential step for planning 
adequate countermeasures at site and regional scales (Guzzetti et al., 
1999). 

The failure typology is usually defined in accordance with a classi-
fication system commonly accepted in literature, such as: the 1978 
“Varnes Classification System” (Varnes, 1978) and relevant updates 
(Dikau et al., 1996; Hungr et al., 2014; Cruden and Varnes, 1996) ; those 
proposed by Hungr et al. (2001) and Hutchinson (1988); or some 
simplified versions of the aforementioned systems as proposed by Guz-
zetti et al. (2012). In addition, detailed classifications have been 

proposed for specific types of landslide (e.g. Li and Mo, 2019). 
During the production of landslide inventories, mass movement type 

is classified by means of field survey or image interpretation done by an 
expert, with big effort in terms of time and human resources (Prakash, 
et al. 2020). In the last decades, the increased availability of satellite 
products has fostered the production of an increasing number of land-
slide inventories by means of Automatic or semi-automatic Mapping 
(AM) methods, reducing the time needed for the production of a land-
slide map (Guzzetti et al., 2012). Nevertheless, AM approaches usually 
suffer from some difficulties in automatically defining the type of failure 
with the same proficiency they detect them (Barlow et al., 2006). As a 
result, landslide inventories are often inaccurate for one or more of the 
following reasons: (i) they ignore the coexistence of more landslide types 
in a given area (Moosavi et al., 2014); (ii) they a priori refer only to a 
single – often generic – landslide type (e.g. “shallow landslides”, Amato 
et al., 2019); (iii) they perform a simplified classification (e.g. “shallow 
vs. deep”) (Mezaal and Pradhan, 2018). Only few studies demonstrated 
the possibility to determine landslide types automatically and according 
to a complex classification system (Barlow et al., 2006; Martha et al., 
2010, 2011; Taalab et al., 2018). These have in common one or more of 
the following aspects: (i) landslides type classification is usually com-
bined with landslides mapping from remote sensing imagery; (ii) rules 
set by the user are applied to drive the failure type classification; iii) they 
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adopt a combination of spectral, terrain and morphometric parameters, 
and (iv) they usually deal with small inventories (<100 landslides). Only 
Taalab et al. (2018) adopts a large inventory (>30,000) to produce a 
landslide susceptibility map for multiple types of landslides. 

In short, although the classification of mass movement types was 
demonstrated to be an important metric for risk management (Wood 
et al., 2020), such information is often missing in landslide inventories 
or is performed by means of supervised methods or limited to small 
inventories. 

In this paper, we propose a novel, simple method for landslide type 
classification, which uses easily accessible input parameters and does 
not require the intervention of the user, and we apply it to a national- 
scale dataset. It relies on the use of shallow Artificial Neural Networks 
(ANNs). ANNs model the relationship between independent and 
dependent variables in a complex non-linear way and are intrinsically 
overparameterized. With respect to traditional methods, ANNs can 
model complex relations and thanks to overparameterization, they are 
not very sensitive to collinearity problems (De Veaux and Ungar, 1994). 
This typically ensures a greater robustness of the predictive perfor-
mances (Garg and Tai, 2012) and the possibility of considering a greater 
number of predictive variables. On the other hand, due to over-
parameterization, they are not typically used for a model interpretation 
but mainly for predictive purposes. The method contains several novel 
elements. First, it relies on the exploitation of the information extracted 
from a Digital Elevation Model (DEM) and from the inventory (e.g. 
landslide shape-related indices), instead of using aerial images and 
spectral information. Indices like compactness and length-to-width ratio 
have been included in the analysis, posing this work in continuity with 
past experiments concerning the link between landslide type and its 
shape (Taylor et al., 2018). Secondly, the analysis includes the spatial 
distribution of the landslides, proposing an original approach rarely 
discussed in the literature. Thirdly, it relies on an existing inventory to 
extract the information instead of generating an ad hoc landslide map. 
Finally, the method does not require any pre-set rule to drive the clas-
sification since the ANN identifies the most important parameters to 
optimise the classification performances. 

In conclusion, to the best of authors’ knowledge, this is the first paper 
proposing a simple, data-driven model of landslide type classification 
since it does not require any pre-set rule to drive the classification and 
does use only the information extracted from a DEM and from landslide 
shape-related indices extracted from traditional inventories. The 
method can also be tested in other geographical areas where a DEM and 
a polygonal landslide inventory are available. It can also find potential 
use in the revision of classification accuracy of other inventories or to 
implement landslide type classification in those inventories in which 
this information is missing. 

2. Material and methods 

The workflow of the proposed method has been summarized in the 
flow chart shown in Fig. 1. More detailed explanations of the methods 
used are provided in the following sections. 

2.1. Dataset 

The dataset we used to train the ANN and perform the classification 
of the landslide types was extracted from the IFFI Italian Landslide In-
ventory (Trigila et al., 2010). The IFFI catalogue counts over 620,000 
mass movements, collected and validated by the means of aerial photo 
interpretation, historical documents and field surveys, while their type 
classification refers mainly to Varnes (1978) and Cruden and Varnes 
(1996) systems. From the full IFFI catalogue, we selected landslides with 
associated polygonal shape data among the ones classified as: (1) 
rockfall/toppling, (2) translational/rotational slide, (3) earth flow, (4) 
debris flow, and (5) complex landslide, which were the most populated 
landslide categories in the inventory and are among the most common 
types of landslide. These five mutually exclusive classes can be reason-
ably considered also as jointly exhaustive of the entire dataset since the 
total number of landslides in classes other than these represents only 
0.07% of the total. 

2.2. Model parameters 

The total number of parameters considered by the network in order 
to perform the landslide classification is 53. They were associated with 
each polygon of the landslide dataset. These parameters can be divided 
into three groups: (1) Spatial parameters, providing information on the 
geographical position of each failure and on the other landslides in its 
vicinity; (2) Terrain parameters, constituted by some of the classical 
DEM-derived indices largely used in landslide geospatial models; (3) 
Shape-related parameters, which represent the geometric properties of 
the landslide polygon shape. 

2.2.1. Spatial parameters 
The occurrence of a landslide in a certain position implies the pres-

ence of peculiar geomorphological and geological conditions, co- 
existing at the failure point (Rosi et al., 2018; Guzzetti, 2000). There-
fore, as a first approximation, the combination of these conditions can be 
resumed by providing its geographic location. Furthermore, we assumed 
that the occurrence of a type of landslide in a given area may imply the 
presence of other, same-type, failures in its vicinity, as in the cases of a 
multiple-occurrence landslide event (Crozier, 2005). In order to test this 
assumption, we computed for each landslide and fed to the ANN the 
North and East coordinates of the polygon centroid and a series of 

Fig. 1. Workflow of the proposed method.  
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parameters, described below, which aimed at providing information on 
the types of the landslides located in the vicinity of each failure. These 
parameters refer to landslides located within the given radius from a 
landslide and they are: 

“NearSlopeN”: total number of landslides. 
“NearMeanDist”: mean distance of the landslides. 
“NearPerci”: ratio between the number of class i landslides (with i 

from 1 to 5) and the total number of landslides. 
“NearNumi”: number of class i landslides. 
“NearSupi”: the total area covered by class i landslides. 

2.2.2. Terrain parameters 
Here we used a 20 m DEM released by the Italian Institute for 

Environmental Research (ISPRA) in 2013. For each landslide polygon, 
we calculated the mean value and the standard deviation of the 
following DEM derivatives: 

Aspect (Dai and Lee 2002), Elevation (Ayalew et al., 2004), General 
Curvature, Longitudinal Curvature and Tangential Curvature (Evans 
1980), Planar and Profile Curvatures (Heerdegen and Beran, 1982), 
Slope (Zevenbergen and Thorne, 1987), Topographic Positioning Index 
(TPI, Pourghasemi et al., 2018), Topographic Roughness Index (TRI, 
Riley et al., 1999), Topographic Wetness Index (TWI, Beven and Kirkby, 
1979). 

2.2.3. Shape-related parameters 
Here we included Area (A), Perimeter (P), and a list of geometrical 

indices computed in order to quantify the 2D and 3D characteristics of 
the landslide shape. These are: 

“Compactness IPQ” (Osserman, 1978), “Compactness Moment of 
Inertia” (Bachi, 1999), “HullArea” (area of the convex hull), “Hull-
Perimeter” (perimeter of the convex hull), “HullAreaRatio” (ratio be-
tween landslide area and convex hull area), “HullPerimRatio” (ratio 
between convex hull perimeter and landslide perimeter). 

Furthermore, some parameters have been originally computed and 
considered for the first time in this work. These are based on two 
geometrical features, specifically “Direction of maximum slope” and 
“Centroidal Principal moments and axes”. 

The first is the direction of the line that links the highest part of the 
landslide to the lowest one and represents an approximation of its ex-
pected direction of movement. We calculated “the highest part” as the 
centroid of the contour points whose elevation is greater than the 70% of 
the heights range, and “the lowest part” as the centroid of the ones 
whose elevation is lower than the 30% of the heights range. 

“Centroidal Principal moments and axes” were calculated on the 
basis of the landslide area and shape. The major/minor principal 
moment is the maximum/minimum moment of inertia among those 
evaluated by considering all possible axes passing through the centroid 
of the area. The major/minor principal axis of the shape corresponds to 
the major/minor principal moment. The minor principal axis corre-
sponds to the main linear orientation of the object, i.e. to the direction 
along which the shape is more elongated, and it is perpendicular to the 
major one. 

In detail, the original shape-related parameters are: 
“SlopeLengthCos”: cosine of the angle between the direction of 

maximum slope and the minor principal axis. The parameter aims at 
evaluating whether the direction of movement of a landslide is close to 
the direction along which the shape is more elongated. This parameter 
was considered because several contiguous small landslides might be 
sometimes mapped as a single, larger polygon, resulting elongated 
perpendicularly to its direction of movement. This parameter, instead, 
allows to distinguish between a narrow, elongated landslide and a large, 
short-running one. 

“OblongityMoments”: it was calculated as the square root of the ratio 
between the major and minor principal moments. This parameter aims 
at quantifying the difference between the shape distribution along the 
main orientation and its perpendicular. 

“SqrtMomentsMaxSlope”: it was calculated as the square root of the 
ratio between the centroidal moment wrt the perpendicular to the 
maximum slope direction and the centroidal moment wrt the maximum 
slope direction. This parameter aims at quantifying the difference be-
tween the shape distribution along the direction of the landslide’s 
maximum slope and its perpendicular. 

“Number of holes within a landslide polygon”: this factor aims at 
reproducing the presence, within a large mass movement, of smaller 
failures mapped separately generating “holes”. Intuitively, this circum-
stance can more easily occur in complex landslides (class 5), slow- 
moving flows (class 3) and slides (class 2) than in rockfalls (class 1) or 
debris flows (class 4). 

A panoramic view and a short description of all the 53 parameters is 
provided in Table 1. 

2.3. Modelling procedure 

We adopted this procedure: (i) we selected a landslide dataset from 
the IFFI inventory, composed by a number N of samples (landslide 
polygons); we split them into training, validation and test subsets; (ii) 
we produced a list of a number M of parameters potentially useful to 
distinguish between different landslide types; (iii) we associated 53 
values (one for each parameter) to each sample by creating a N by M 
matrix and used it as an input dataset for the ANN; to each sample, the 
corresponding class of failure type is also associated as expected output; 
(iv) we set the optimal ANN design and we trained, validated and tested 
the network over the respective subsets. The complete dataset counted 
275,749 landslides, among which 8313 (3.02%) belong to class 1, 
132,561 (48.07%) to class 2, 67,151 (24.35%) to class 3, 14,845 
(5.38%) to class 4 and 52,879 (19.18%) to class 5. 

ANNs training does not require an equal number of samples per class 
(balanced dataset). The machine learning methods for supervised clas-
sification, however, in the case of an imbalanced dataset tend to provide 
better performances for the more most populated classes to the detri-
ment of with respect to the less least populated ones. In particular, there 
is a tendency to over-classify the samples in the most populated classes 
with the consequent misclassification of the samples belonging to the 
least populated classes. Even general performance metrics tend to be 
biased by the presence of class imbalance. In order to overcome these 
problems, it is possible to consider algorithm-level methods or simpler 
data-level methods (Johnson and Khoshgoftaar, 2019). The latter 
involve both random under-sampling of the most numerous classes and 
random over-sampling with repetition of the least numerous ones (Van 
Hulse et al., 2007). 

Thus, we preliminarily balanced the number of samples per class as 
follows. If N is the total number of samples, the number Q of samples per 
class is calculated by dividing N by the number of classes. For each class, 
if the total number of available landslides is greater than Q, we 
randomly selected a number Q of them without repetition. If the total 
number of available landslides is smaller than Q, a number Q of them is 
randomly selected with repetition. In order to preserve their indepen-
dence, the training, validation and test datasets are randomly extracted 
by the N samples dataset with a constraint of complementarity: the same 
landslide can belong to only one of the three datasets. 

In the end, we set a fixed number of 32,000 samples per class, this 
number being chosen according to the criteria explained in Section 2.4, 
so that the whole dataset fed to the network counted 160,000 samples in 
total. This was split as follows: 70% of the samples were used to train the 
model, 15% for the validation and 15% for the test. 

The training dataset was used by the network to optimise the weights 
and the bias of each node. During training, the ANN performed the same 
classification also on the validation dataset. By continuously comparing 
the results of these two datasets, model overfitting was avoided by using 
an early training stop criterium. The test dataset was an independent 
dataset used to test the reproducibility of the performances obtained on 
the first two datasets. 
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Table 1 
Panoramic view and a short description of all the considered parameters.  

Group Name Cod Description 

Terrain Aspect 1 The average Aspect (Dai and Lee 
2002) of the landslide polygon, 
calculated from the DEM at 20 m. 

General Curv. 2 The average General Curvature ( 
Evans, 1980) of the landslide 
polygon, calculated from the DEM 
at 20 m. 

Longitudinal Curv. 3 The average Longitudinal 
Curvature (Evans, 1980) of the 
landslide polygon, calculated from 
the DEM at 20 m. 

Planar Curv. 4 The average Planar Curvature ( 
Heerdegen and Beran, 1982) of the 
landslide polygon, calculated from 
the DEM at 20 m. 

Profile Curv. 5 The average Profile Curvature ( 
Heerdegen and Beran, 1982) of the 
landslide polygon, calculated from 
the DEM at 20 m. 

Slope 6 The average Slope (Zevenbergen 
and Thorne, 1987) of the landslide 
polygon, calculated from the DEM 
at 20 m. 

Topographic 
Positioning Index (TPI) 

7 The average TPI (Pourghasemi 
et al., 2018) of the landslide 
polygon, calculated from the DEM 
at 20 m. 

Topographic Roughness 
Index (TRI) 

8 The average TRI (Riley et al., 1999) 
of the landslide polygon, calculated 
from the DEM at 20 m. 

Topographic Wetness 
Index (TWI) 

9 The average TWI (Beven and 
Kirkby, 1979) of the landslide 
polygon, calculated from the DEM 
at 20 m. 

Tangential Curv. 10 The average Tangential Curvature ( 
Evans, 1980) of the landslide 
polygon, calculated from the DEM 
at 20 m. 

Elevation 11 The average Elevation of the 
landslide polygon, calculated from 
the DEM at 20 m. 

Aspect STD 12 The standard deviation of the 
Exposure of the landslide polygon. 

Gen. Curv. STD 13 The standard deviation of the 
General Curvature of the landslide 
polygon. 

Long. Curv. STD 14 The standard deviation of the 
Longitudinal Curvature of the 
landslide polygon. 

Plan. Curv. STD 15 The standard deviation of the Plan 
Curvature of the landslide polygon. 

Prof. Curv. STD 16 The standard deviation of the 
Profile Curvature of the landslide 
polygon. 

Slope STD 17 The standard deviation of the Slope 
of the landslide polygon. 

TPI STD 18 The standard deviation of the TPI 
of the landslide polygon. 

TRI STD 19 The standard deviation of the TRI 
of the landslide polygon. 

TWI STD 20 The standard deviation of the TWI 
of the landslide polygon. 

Tan. Curv. STD 21 The standard deviation of the 
Tangential Curvature of the 
landslide polygon. 

Elevation STD 22 The standard deviation of the 
Elevation of the landslide polygon.  

Shape Slope-elongation cosine 23 Cosine of the angle between the 
direction of maximum slope and 
the minor principal axis. The 
parameter aims at evaluating 
whether the direction of movement 
(expressed as direction of 
maximum slope) of a landslide is  

Table 1 (continued ) 

Group Name Cod Description 

close to the direction along which 
the shape is more elongated. This 
parameter was chosen because 
several contiguous small landslides 
might be sometimes mapped as a 
single, larger, polygon, resulting 
elongated perpendicularly to its 
maximum slope (or direction of 
movement). This parameter, 
instead, allows to distinguish 
between a narrow, elongated, 
landslide and a large, short- 
running, one. 

Area 24 Area of the landslide polygon. 
Perimeter 25 Perimeter of the landslide polygon. 
IPQ Compactness ( 
Osserman, 1978) 

26 Compactness of the landslide 
polygon shape measured as 4πA)/ 
P2. A circular shape, the most 
compact, has an IPQ compactness 
equal to 1. Less compact shapes 
will values close to 0. 

Compactness (Bachi, 
1999) 

27 Compactness of the landslide 
polygon shape measured as A2/ 
2πIg, where Ig is the is centroidal 
polar moment of the landslide 
shape. It is based on the ratio 
between the moment of inertia of a 
circle of the same area about its 
centre and the moment of inertia of 
the shape about its centroid (i.e. the 
centroidal polar moment). It varies 
between 0 and 1 (when the shape is 
a perfect circle). 

Oblongity 28 Square root of the ratio between 
the major and minor principal 
moments of the landslide polygon 
shape. By computing the ratio 
between the two principal 
moments, this parameter aims at 
quantifying the difference between 
the shape distribution along the 
main orientation (i.e. the minor 
principal moment) and its 
perpendicular (i.e. the major 
principal moment). This parameter 
is very similar to Oblongity, which 
was proposed by Bachi (1999) as a 
tool to study the noncompactness 
of a 2D object. 

SqrtMmtMax 29 It is calculated as the square root of 
the ratio between the centroidal 
moment with respect to the 
perpendicular to the maximum 
slope direction and the centroidal 
moment with respect to the 
maximum slope direction. This 
parameter aims at quantifying the 
difference between the shape 
distribution along the direction of 
the landslide’s maximum slope and 
its perpendicular. 

Hull Area 30 Area of the convex hull of the 
landslide 2D shape. 

Hull Perimeter 31 Perimeter of the convex hull of the 
landslide 2D shape. 

Hull Area Ratio 32 Ratio between landslide area and 
convex hull area. It ranges between 
0 and 1, where a value close to zero 
means that the landslide shape is 
particularly indented or concave. 

Hull Perimeter Ratio 33 Ratio between convex hull 
perimeter and landslide perimeter. 
It ranges between 0 and 1, where a 
value close to zero means that the 

(continued on next page) 
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In order to build a statistically significant distribution of the model 
results and to calculate reliable mean and standard deviation of the 
performance metrics, we performed the landslide type classification 
training for 100 times. For each ANN training, the dataset composed of 
160,000 was randomly generated from the 275,749 landslides of the 
complete dataset. ANN weights and biases are randomly initialised 
before each training also. 

We represented the classification performance obtained by the 
network by means of the True Positive Rate (TPR) and the Receiver 
Operating Characteristic (ROC) curve, with related AUC (Area Under the 
Curve). Furthermore, we calculated False Positive Rate (FPR), False 
Negative Rate (FNR), True Negative Rate (TNR) and F-score (Tharwat, 
2021). 

2.4. ANN design 

The ANN architecture is a two-layers feed-forward network opti-
mised for multi-class classification. For the hidden layer, we considered 
a sigmoid activation function. The output layer is a “softmax layer”, in 
which the outputs are normalised into probabilities proportional to the 
exponential of the input values. The network is trained by scaled con-
jugate gradient backpropagation. In order to limit any overfitting effect, 
we adopted an “early stopping by validation” training criterium. Cross 
entropy was used as loss function. 

For each sample, the ANN assigns five probability values, namely one 
probability to belong to each landslide class. Each sample is thus clas-
sified as belonging to the class with the highest probability. The ANN 
hyperparameters have been tuned considering the number of available 
samples and trying to guarantee the best trade-off between perfor-
mances and processing times. 

2.5. Features importance analysis 

In order to study the parameters importance for the classification 
task, we performed an a posteriori feature importance analysis. The 
method we adopted was the Permutation Feature Importance (PFI) 
(Putin et al., 2016). The PFI randomly permutates the values of one of 
the parameters within the ANN input matrix and keeps the others un-
changed. The meaningful information of that parameter is thus made 
uncorrelated with the expected output, yet preserving the original dis-
tribution of parameter values. The more important is the parameter, the 
worse is the model performance as the permutation is applied. The PFI 
score for a parameter is here defined as the ratio between the TPRs 
without and with permutation. 

Given the ANN architecture, we tuned the number of nodes in the 
hidden layer and the number of samples per landslide class. Since these 
two hyperparameters are highly related, they were tuned jointly: we 
calculated the ANN performances for all the possible combinations be-
tween 4000, 8000, 16000, 32000, 64,000 landslides per class and 1, 2, 4, 
8, 12, 16, 20, 26, 32 nodes in the hidden layer, with a radius fixed at 
1500 m for spatial parameters. 

In Fig. 2 it is shown how the overall TPR varies for the three datasets 
and for the whole dataset (training + test + validation) as a function of 
the number of landslides per class and the number of hidden layers 
nodes. 

As expected, TPR increases asymptotically with the number of the 
hidden layer nodes. This, however, occurs only if we consider a suffi-
ciently large number of samples. 

In order to avoid excessive oversampling, which is needed to balance 
the less populated classes, we operated a trade-off among the number of 
samples, the ANN performance and the computational burden. Consid-
ered that the dataset has 8313 landslides in the less populated class 
(class 1 - rockfall/toppling) and 132,561 in the most numerous one 
(class 2 - translational/rotational slide), we opted for setting 32,000 
samples per class and 26 nodes for the ANN final design. This choice also 
permitted to maintain a moderate computing time. During the optimi-
sation phase of the hyperparameters, we verified that oversampling did 
not provide any advantage or disadvantage to the performance of one 
class compared to those of the other classes. It should be noted that the 
number of landslides per class is an important parameter, but not critical 
for the applicability of the proposed method. Even when considering a 
low number of landslides, a minimum decrease in performance is 
observed. This is a good basis for the applicability of the proposed 
method to catalogues of landslides more limited than the considered 
one. 

Another parameter to be tuned is the radius used to compute the 
spatial parameters. We calculated the ANN performance as the radius 
varied from 0 to 10 km. Fig. 3 shows that the mean of the overall TPR 
reaches its maximum for a 1500-m radius. This value was used in the 
optimised model. 

3. Results 

Once the hyperparameters were fixed, the ANN was trained for 100 
times on randomized datasets, as described in section 2.3. Fig. 4 shows 
the TPR per class we obtained by applying the classification to the 
training, validation, test and whole datasets. 

TPR values for training, test and validation datasets are very similar 
to each other. This demonstrates that training with early stopping by 
validation allows to minimise overfitting. The performance obtained on 
the whole dataset was taken as a representative of those obtained on the 
other three datasets since they are all very similar to each other. Table 2 
shows the whole dataset mean confusion matrix (reported as the per-
centage of classified samples with respect to the total number of sam-
ples) and a list of performance indices achieved. All standard deviations 
of performance indices were less than 0.006. 

We also evaluated the ROC curve of each class, which illustrates the 

Table 1 (continued ) 

Group Name Cod Description 

landslide shape is particularly 
indented or concave. 

N holes (number of 
holes within the 
landslide polygon) 

34 This factor aims at reproducing the 
presence, within a large mass 
movement, of smaller failures 
mapped separately generating 
“holes” within the bigger polygon. 
Intuitively, this circumstance can 
more easily occur in complex 
landslides (type 5), slow-moving 
flows (type 3) and slides (type 2) 
than in rockfalls (type 1) or fast 
debris flows (type 4).  

Spatial North coordinate (Y) 35 North coordinate of the centroid of 
the landslide polygon. 

East coordinate (X) 36 East coordinate of the centroid of 
the landslide polygon. 

Near Landslides 37 Total number of landslides located 
within a given radius from the 
landslide polygon centroid. 

Mean Distance 38 Mean distance of the landslides 
located within a given radius from 
the landslide polygon centroid. 

% of class i (i = 1…5) 39–43 Ratio between the number of class i 
landslides and the total number of 
landslides within a circle of given 
radius from the landslide polygon 
centroid. 

N of class i (i = 1…5) 44–48 Number of class i landslides within 
a given radius from the landslide 
polygon centroid. 

Area of class i (i = 1…5) 49–53 The total area covered by class i 
landslides within a given radius 
from the landslide polygon 
centroid.  

G. Amato et al.                                                                                                                                                                                                                                  



International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102549

6

performances achieved in classifying the samples as belonging or not to 
that class for any possible classification probability threshold. Fig. 5 
shows the mean ROC curve and AUC value for each class of the whole 
dataset. AUC standard deviations were less than 0.002. 

In Fig. 6, we plotted, for each of the five classes the geographical 
distribution of the landslides and the corresponding mean value of the 
obtained F-scores. Both are evaluated on a regular 10-km by 10-km grid. 

Fig. 2. Overall TPR as a function of the number of nodes in the hidden layer and of landslides per class: (a) training, (b) test, (c) validation, and (d) whole datasets.  

Fig. 3. Mean and standard deviation of the overall TPR as a function of the radius used to compute the spatial parameters: (a) training, (b) test, (c) validation and (d) 
whole datasets. 
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4. Discussion 

In general, TPR values for all classes are very good (Fig. 4), with an 
overall classification TPR of 0.76. TPR of classes 1 and 4 (rockfall/ 
toppling and debris flow, respectively) are higher than those of classes 2, 
3 and 5 (translational/rotational slide, earth flow and complex land-
slide, respectively). This may be due to the fact that slides, earth flows 
and complex landslides are more similar in shape than rockfalls and 
debris flows, so that the latter have more peculiar features that makes 
their classification easier to the ANN according to the parameters 
considered. This is confirmed also by the results reported in the confu-
sion matrix in Tab. 2. Classes 2, 3 and 5 are more often confused with 

each other than with classes 1 and 4. This is particularly true for class 3 
(otherwise 5) samples, which are wrongly predicted as classes 2 or 5 
(otherwise 2 or 3) in about 2% of cases, while they are confused with 
class 1 or 4 in less than 1% of cases. 

AUC values are higher than 0.92 for all classes, demonstrating an 
excellent performance of the model that is remarkably able to predict a 
landslide as belonging to a given class or not. In agreement with the TPR 
values, also the AUC values for class 1 and 4 are higher than those ob-
tained for classes 2, 3 and 5. The model performance is particularly good 
if compared with that of other morphometric-based landslide classifi-
cation models: Martha et al. (2010) correctly classified 69.1% of 55 
landslides into five classes, while Barlow et al. (2006) achieved TPR 

Fig. 4. Boxplots of the TPR per class: (a) training, (b) test, (c) validation and (d) whole datasets.  

Table 2 
Mean confusion matrix and performance indices for the whole dataset.   

PREDICTED   

Class 1 2 3 4 5 Sum  

1 16.49% 1.26%  0.61%  1.05%  0.59% 20% 

TRUE 
2 1.35% 13.72%  2.16%  0.72%  2.05% 20% 
3 0.47% 1.66%  14.51%  1.07%  2.29% 20% 
4 1.17% 0.54%  0.95%  16.82%  0.52% 20% 
5 0.98% 1.83%  2.19%  0.91%  14.09% 20%  

Sum 20.46% 19.01%  20.42%  20.57 %  19.54% 100%   

Metric Per class Overall  

TPR 0.824 0.686  0.726  0.841  0.704 0.756  
TNR 0.950 0.934  0.926  0.953  0.932 0.939  
FPR 0.050 0.066  0.074  0.047  0.068 0.061  
FNR 0.176 0.314  0.274  0.159  0.296 0.244  
F-score 0.815 0.704  0.718  0.829  0.713 0.756   
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values between 0.60 and 0.90 for a classification into three classes on a 
dataset with 20 samples per class. It should be also noted that the model 
here presented is completely data-driven and that the results were ob-
tained without any expert-supervision. 

Maps with the geographical distribution (Fig. 6) show that the model 
performance is very good over the entire national territory, with several, 
extended areas with an F-score averagely higher than 0.9. Nevertheless, 
the F-score distribution is not homogeneous in all the regions and pre-
sents geographical-related patterns, especially for slides, earth flows and 
complex landslides (class 2, class 3 and 5, respectively). The best results 
(F-score > 0.7) for slide-type landslides are located in the central- 
northern regions (Tuscany, Emilia-Romagna, parts of Lombardy and 
Piedmont) and in southern-west part of the peninsula (Calabria). 
Conversely, the highest densities of low values (F-score < 0.5) are 
located on the northeast (Friuli Venezia Giulia) and northwest (Liguria) 
regions as well as on the southern part of central Italy. In the two major 
Italian islands, Sardinia and Sicily, the number of landslides is too poor 
to perform reliable statistics. 

F-scores of earth flows (class 3) are particularly good (>0.7) along a 
NE-verging curved band that corresponds to the Apennine mountain 
belt, and in Sicily region (the southern island). In the central regions, F- 
scores are moderately good (>0.5), while lower values are not numerous 
and randomly distributed over the national territory. 

F-scores of class 5, complex landslides, are very good (>0.7) in the 
northern part of the Apennine chain and in Sicily, moderately good 
(≃0.6) in the northwest and in Calabria, with lower values (<0.5) 
mainly concentrated in the north-northeast and in central Italy. 

Rockfalls and debris flows (classes 1 and 4) show a more homoge-
neous distribution and very good results: high F-scores (>0.7) are uni-
formly distributed over the entire national territory, while low values 
(<0.5) are few in number, randomly distributed and not clustered in 
meaningful concentrations. 

The presence of clusters of low F-scores observed in some regions 
(Fig. 6) can be partially due to a density of landslides that is too low to 
calculate reliable values of spatial parameters. Contextually, the in-
homogeneity of landslide mapping criteria adopted during the inventory 
production could have given raise to such heterogeneous distribution of 
the classification performance. The IFFI is produced by using different 
methods (aerial photo interpretation, historical documents, and field 
surveys) and integrates information from landslide inventories compiled 

Fig. 5. ROC curves for each of the five classes.  

Fig. 6. Maps of landslide density and mean F-score per class per 
square kilometre. 
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by local authorities. As a consequence, the presence of areas where 
collected data are less accurate or underestimated has been detected in 
the IFFI (Trigila et al., 2010). In this context, the proposed classification 
method could provide an aid in validating the classification accuracy of 
an inventory. Actually, it should be considered that the training of the 
ANN is carried out by considering a national level dataset, thus opti-
mising an overall classification model considering the full variety of 
classification methodologies used. In particular, it may be possible to 
identify areas where the performances obtained are generally lower than 
those expected and to investigate whether such inhomogeneities are 
introduced by inaccurate local classification criteria. The proposed 
method could be also used to identify individual landslides whose 
classification in the inventory might be wrong or for which the relative 
shape has not been accurately recorded. In this case, those landslides 
classified by the proposed method with a high probability in a class 
other than that of the catalogue could be identified for a subsequent 
accurate check. If the potential of the proposed method in identifying 
possible errors were confirmed, this could be used for a supervised or 
automatic correction of the database. The correction of the dataset, 
besides being of interest for the entities that manage it, would also allow 
to train the ANN with a smaller number of mislabelled samples, this 
potentially guaranteeing better classification performances. The pres-
ence of mislabelled samples in the training phase negatively influences 
the classification capacity of the ANN. 

As a third application, the trained ANN can be applied to existing 
inventories in order to provide a landslide type classification when this 
information is missing. 

Fig. 7 reports the results of the features importance analysis as the 
mean and standard deviation of the PFI score of each input parameter 
after 100 replicates. Parameters are sorted by a decreasing mean PFI. 

PFI analysis shows that only a couple of terrain parameters is, in fact, 
meaningful for the classification, while vicinity and shape parameters 
play a key role. In particular, “Compactness IPQ” is the most important 
parameter. This result can be due to the fact that rockfalls and slides are 
generally more compact shaped than flows, which frequently show 
elongated shapes. This finding supports Taylor et al. (2018)’s observa-
tion on the more elliptical and compact shapes of low-mobility land-
slides. Among the shape-related factors, also “Compactness Moment of 
Inertia” and “HullPerimeter” have a major role. The latter may be seen 
as a measure of the indentation of the landslide shape. Intuitively, flows 
and complex landslides, being often sourced from different detachment 
points, can assume more indented shapes than rockfall and slides. 

The most interesting result is the high PFI score of various spatial 
parameters. The number of near landslides, within a 1.5-km radius, is 
important to drive the classification, yet their distance from near land-
slides seems to be less important (“NearMeanDist” in Fig. 7), probably 
due to the fact that the mean distance among landslides within the given 
radius is relatively constant. On the other hand, the type of near land-
slides plays a key role in the classification: specifically, the percentage of 
slides, earth flows and debris flows in the vicinity deeply affects the final 
performance. This can be due to the fact that similar geo-environmental 
conditions may yield a similar distribution of these types of landslides. 
These can be the cases of hilly regions covered by weak lithologies and 
affected by numerous slides (Rosi et al., 2018) or high mountain steep 
slopes where several debris flows channelize into a single major valley 
stream (Guzzetti, 2000). 

Rockfalls are also known to cluster along a common steep rock face 
(Varnes, 1978) and the percentage of class-1 landslides within a 1.5-km 
radius had considerable weight (Fig. 7) in the model results. This finding 
is well supported by the high F-scores assumed by the rockfall class 
along coastal areas and in the Alpine region, as shown in Fig. 6. The 
percentage of complex landslides within 1.5-km radius resulted to have 
the lowest importance, among the spatial parameters, for the classifi-
cation success. 

Finally, the TRI and the standard deviation of elevation had high PFI 
scores among the terrain parameters. This can be explained by the fact 
that debris flows can cause the outcropping of irregular bare rock sur-
faces along their run-out channel, due to their erosive capability, while 
earth flows can give rise to heterogeneous terrain deformation, due to 
different activity rates within the landslide body. Conversely, slides, 
usually moving along pre-existing or regular surfaces (e.g. strata planes), 
may cause lower terrain roughness. 

The mean value of slope gradient of the landslide also resulted to be a 
relevant terrain factor: rockfalls and debris flows are often characterised 
by high slope angles in their detachment and run-out zones while slides 
and earth flows may develop even in hilly and more gentle slopes 
composed by soft rocks. 

At last, we grouped all the parameters in four groups: (1) North and 
East coordinates of the landslide polygon centroids, (2) shape-related, 
(3) terrain and (4) spatial parameters. First, we run the model adopt-
ing all the possible combinations of these groups and then we plotted the 
results for each possible combination. Fig. 8 shows the AUC of every 
class changes depending on the different combinations. 

We can observe that the classification of rockfall and debris flow 

Fig. 7. Output of the Permutation Feature Importance analysis.  
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generally reaches the best results, regardless of the parameters combi-
nation. Nevertheless, the choice of the parameters deeply affects the 
final performances. In this regard, it is clear that using only shape- 
related or terrain parameters is not sufficient to achieve a reliable 
classification of landslide types. In particular, the classification metrics 
of rockfall/toppling and translational/rotational slide improves 
considerably if terrain parameters are considered. The same improve-
ment is observed for debris flow if shape factors are considered. This 
analysis confirms the key role played by the spatial parameters in the 
improvement of the classification performance. From Fig. 8 we can infer 
that, rather than the North and East coordinates of a landslide, the 
number and the type of the failures located in its vicinity play a crucial 
role. These parameters are rarely considered in landslide geostatistical 
models: with these findings, we aim to provide an original insight for 
discussion within the community. In this regard, the assumption that the 
conditions that caused a landslide in the past can cause a similar event 
also in the future is largely accepted by the community (Guzzetti et al., 
1999). Therefore, according to these findings, we can assume that these 
conditions may occur again not only in time, but also in space and close 
to the location of occurrence of a landslide in the past. Under this 
assumption, we could infer that a slope failure may tend to be sur-
rounded by failures of the same type and, thus, this information may 
represent a meaningful parameter to be modelled in landslide 
geostatistics. 

5. Conclusions 

In this work, we presented an innovative data-driven model of 
landslide type classification and its application to a national-scale 
dataset of landslides in Italy. The method relies on the use of ANN and 
of input parameters that can be easily extracted from polygonal land-
slides inventories and DEM. The results achieved a very good perfor-
mance in landslide classification (TPR of 0.76 for a five-class overall 

classification of over 275,000 landslides). They provide insight on the 
meaningfulness of the landslide spatial distribution for geostatistical 
modelling and foster further investigation on the link between landslide 
process and its shape. 

The method can be applied to any polygonal inventory, like those 
produced by automatic mapping procedures from Earth Observation 
imagery, in order to automatically define the types of landslides when 
this information is missing. It should be noted that the experiment 
presented here can be reproduced in other geographical areas where 
there is the availability of a DEM with spatial resolution similar to the 
one used in this work and of a polygonal landslide catalogue that in-
cludes the landslide types modelled here. Actually, the ANN does not 
require the input of site-specific information (such as geology or land 
cover) in order to perform the landslide type classification. Finally, this 
paper can represent a step forward to the standardisation of landslide 
inventories compiled from different sources, producing tangible effects 
for hazard modelling applications. 
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