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The presence of massive particles with spin during inflation induces distinct signatures on correlation
functions of primordial curvature fluctuations. In particular, the bispectrum of primordial perturbations
obtains an angular dependence determined by the spin of the particle, which can be used to set constraints
on the presence of such particles. If these particles are long-lived on super-Hubble scales, as is the case,
e.g., for partially massless particles, their imprint on correlation functions of curvature perturbations would
be unsuppressed. In this paper, we make a forecast for how well such angular dependence can be
constrained by the upcoming EUCLID spectroscopic survey via the measurement of the galaxy bispectrum.
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I. INTRODUCTION

Inflation [1] is a successful theory in solving the problems
of the standard big bang theory, namely the flatness and
horizon problems. Additionally, it provides a mechanism for
generating primordial fluctuations which are the seed of the
observed anisotropies in the cosmic microwave background
(CMB) as well as the large scale structure (LSS) of the
Universe. The simplest models of inflation with a single
degree of freedom, i.e., inflaton, originating from the Bunch-
Davies vacuum, predict a nearly Gaussian distribution of
primordial fluctuations. High-precision constraints on the
level of primordial non-Gaussianity [2] will shed light on
the field content and interactions between quantum fields
during inflation and, hence, enable us to distinguish between
inflation models.
Even when inflation is driven by a single degree of

freedom, the excitation of additional particles present during
inflation can leave an imprint on correlation functions of
primordial curvature perturbations ζ. In particular, it gen-
erates primordial non-Gaussianity which can be used to
constrain the characteristics of such particles. The signatures
of extra scalar fields have been extensively studied in the
context of curvatonmodels (see [3] for a review) in the case of
light scalar fields, and in the context of quasisingle field
models [4–9] for the case ofmassive scalar fieldswithmasses
of the order of the Hubble parameter during inflation.
A general treatment of the impact of massive particles with
spin on the correlation functions of primordial curvature
perturbations has been recently studied in [10,11]. It was
shown that for particles with m ∼H during inflation, the
primordial bispectrum has an angular dependence

(depending on the angles between the three wave vectors)
determined by the spin of the particles and an oscillatory
(or power-law) feature determined by its mass.
The so-calledHiguchi bound [12] implies that themassive

spinning fields in the de Sitter background decay on super-
Hubble scales; hence, they are short-lived and their imprint
on the cosmological correlation functions is suppressed.
There are two ways in which one can generate long-lived
massive particles with spin, and thus unsuppressed pertur-
bations on super-Hubble scales. One is by introducing a
suitable coupling between the inflaton and the extra particle
with spin [13,14], in analogy to the previously studied case
of vector fields coupled to the inflaton [15–18]. Another
possibility is the partially massless particles [19–22] which,
for some discrete values of the mass of the particle with spin
s, are characterized by long-lived perturbations on super-
Hubble scales for certain helicity states. In both ways, and in
the context of exact de Sitter (which amounts to assuming the
curvature perturbation is generated not by the inflaton, but by
a spectator field and thereforemultifieldmodels of inflation),
it was shown in Ref. [14] that a spinning field obtains a a
nonzero vacuum expectation value which introduces pre-
ferred direction leading to the statistical anisotropy of the
cosmological correlators, in particular in thepower spectrum,
bispectrum, and trispectrum.1

In this paper, we investigate detectability of signature
of such long-lived higher spin (HS) fields through their
imprint on the galaxy bispectrum. Current best constraints on

*amoradinejad@physics.harvard.edu

1Partially massless particles were considered also in Ref. [23],
but within the single-field models of inflation and with no
vacuum expectation value for the spinning fields, thus giving
rise to a nonvanishing trispectrum of curvature perturbations
while the bispectrum is vanishing.
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various shapes of primordial non-Gaussianity are from
measurements of temperature and polarization bispectra of
theCMBby thePlanck satellite [24]. Further improvement of
these constraints are expected to be achieved via analysis
of clustering statistics of LSS from upcoming galaxy
surveys such as DESI [25], EUCLID [26], and LSST [27].
Additionally, intensity mapping technique can also poten-
tially be used as a tracer of large scale structure and hence
provide a mean to constrain primordial non-Gaussianity.
There are several forecasts for constraints on primordial

non-Gaussianity of local, equilateral, and orthogonal shapes
from upcoming galaxy and intensity mapping surveys (see,
e.g., [28–36]). The constraints on the presence of additional
(short-lived) massive particles with and without spin from
LSS were obtained in [37–40]. For the long-lived particles
with spin, their detectability in the CMB and the galaxy
power spectra, as well as the CMB bispectrum, is studied
in [41,42]. We extend their analysis to obtain constraints
from the galaxy bispectrum, see Fig. 1 for a schematic
representation.
The analysis of the imprint of the full anisotropic

bispectrum on CMB and LSS bispectrum is rather complex,
if not unfeasible. One can instead consider the angle-
average bispectrum as is done in Ref. [42] to search for the
imprint of these long-lived higher-spin particles. It was
shown in [42] that the angle-averaged bispectra due to
massive and partially massless particles with a given spin,
can be expanded in terms of Legendre polynomials with a
finite number of terms. We use this result to constrain the
coefficients of this expansion from measurements of the
galaxy bispectrum from the upcoming EUCLID survey.
The rest of the paper is organized as follows: in Sec. II, we

review the features of the bispectrum of curvature perturba-
tions due to the presence of long-lived higher-spin fields and
the template of primordial bispectrum that we use in our

forecast. In Sec. III, we review our model of the observed
galaxy bispectrum, while in Sec. IV, we outline our fore-
casting methodology. We present our results in Sec. V and
conclude in Sec. VI.

II. PRIMORDIAL BISPECTRUM DUE TO
LONG-LIVED SPINNING PARTICLES

The impact of spinning particles on cosmological
correlators can be analyzed with the aid of the dS=CFT3

correspondence [43], which can be used under the
assumption that inflation is realized as a phase of
(quasi–)de Sitter spacetime in the early Universe. On the
boundary of dS spacetime, i.e., in the limit where the
conformal time τ tends to zero, the HS field can be written
as Ai1���is ð⃗x; τÞ ¼ ð−τÞΔ−sAi1���is ð⃗xÞ where Δ ¼ 3=2−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 1=2Þ2 − m2=H2

p
. One can easily notice that the

value of conformal weight Δ ¼ 0 is indeed a very special
case, as it is the only one giving rise to healthy long-lived
perturbations. For values Δ < 0 one encounters unphysical
divergences of the ultraviolet modes stretching over the
horizon scale during inflation. On the other hand, for
positive values of the conformal weight, the characteristic
amplitude of the HS fluctuation rapidly decays on super
Hubble scales. In particular, the bispectrum contribution
from the spinning particles in the squeezed limit configu-
ration is suppressed by a factor ðklong=kshortÞΔ [10]. While
the Higuchi bound [12] dictates that the conformal weight
Δmust be higher than one due to unitarity bounds, there are
at least two ways in which Δ ¼ 0 can be achieved, namely
through an ad hoc coupling between the inflaton and the
HS fields or by restricting the analysis to partially massless
HS fields, as stated in the Introduction.
In order to parametrize the impact of spinning particles

on the bispectrum, we adopt the following template,

Bζðk1;k2;k3Þ¼
X
n

CnPnðk̂1 · k̂2ÞPζðk1ÞPζðk2Þþ2 perms;

ð1Þ
where Pn are Legendre polynomials of order n, and PζðkÞ
is the power spectrum of primordial fluctuations. As we
will review below, the long-lived particles with spin s
induce sþ 1 nonvanishing coefficients with n even: C0;
C2;…; C2s−2; C2s.
Referring to [14,42] for details, we present only the

main results relevant for the present discussion. In the case
of HS fields coupled to the inflaton, it was found that the
statistically anisotropic curvature bispectrum takes the
form [14]

Bζðk1;k2;k3Þ ¼ gshĀi1���isihĀj1���jsiPζðk1ÞPζðk2Þ
× Πl1���ls

i1���is ðk1ÞΠl1���ls
j1���js ðk2Þ þ 2 perms;

ð2Þ

FIG. 1. A schematic representation of various realizations of the
first N − Nk e-folds of inflation in which the long-lived IR (i.e.,
super-Hubble) higher-spin modes AIR

μ1���μs act as nontrivial back-
ground. The cosmological perturbations depend on the particular
value the IR modes assume in a single realization of the ensemble
of possible universes.
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where gs is an undetermined constant proportional to the
spin-dependent coupling between the HS field and the
inflaton, and the projector tensor Πj1���js

i1���is ðkÞ is built as
the sum of helicities of the HS polarization tensors:

Πj1���js
i1���is ðkÞ≡

X
λ

ϵλi1���isðkÞϵ
�j1���js
λ ðkÞ: ð3Þ

It was also assumed that the background generated by the
IR modes breaks the isotropy by identifying a constant
unit vector p̂i (p̂ · p̂ ¼ 1) such that

hĀi1���isi ¼ Ā0

h
p̂i1 � � � p̂is −

1

2s − 1
ðδi1i2 p̂i3 � � � p̂is

þ permsÞ þ � � �
i
; ð4Þ

where the ellipsis stands for further terms ensuring the
rhs is transverse and traceless. Then, the angle-averaged
bispectrum (averaging over p̂) was found to be

Bζðk1; k2; k3Þ ¼
1

2
gsI0sPζðk1ÞPζðk2Þ

× fð1þ cos θk̂1;k̂2Þ2s þ ð1 − cos θk̂1;k̂2Þ2sg
þ 2 perms; ð5Þ

where we have defined I0s ¼ Ā2
0s!=ð2sþ 1Þ!! and gs is an

undetermined constant. We expect gs to be of order unity
and A0

¯ to be of order of HN1=2 where H is the Hubble rate
and N is the total number of e-folds of inflation. The
observational limits discussed in this paper can, therefore,
provide useful information about the number of e-folds if
H is known by some alternative method. Finally, the
coefficients Cn appearing in Eq. (1) are

C0 ¼
4sgsI0s
ð2sþ 1Þ ;

Cn ¼
C0ð2nþ 1ÞΓð2sþ 1ÞΓð2sþ 2Þ
Γð−nþ 2sþ 1ÞΓðnþ 2sþ 2Þ ½n ¼ even�;

Cn ¼ 0 ½n > 2s or n ¼ odd�: ð6Þ
It is interesting to note that the same combination of
undetermined constants gsĀ2

0 appears in all even Cn.
In an analogous way, the angle-averaged bispectrum

contribution resulting from partially massless spinning
particles takes the form [14]

Bζðk1; k2; k3Þ ¼ gPMs I0sPζðk1ÞPζðk2ÞΠs þ 2 perms; ð7Þ
where

Πs ¼
X

λ1λ2≠0;�1

dsjλ1jdsjλ2jjϵλ1;i1���isðk1Þϵ�λ2;i1���isðk2Þj2: ð8Þ

The constants dsjλj, normalized so that dss ¼ 1, account for
the mixing of different helicities of the partially massless
field due to the different expectation values of its s − 2

components. As such, they should be treated as free and
independent parameters since the expectation values are not
predicted by the underlying theory. For the simplest case
s ¼ 3 the coefficients Cn in Eq. (1) are

C0 ¼
16

7
ð2þ 3d32Þ2gPMs I0s ;

C2 ¼
400

21
gPMs I0s ;

C4 ¼
1

66
ð7

ffiffiffiffiffiffiffiffi
3C0

p
þ 12

ffiffiffiffiffiffi
C2

p
Þ2;

C6 ¼
1

275
ð5

ffiffiffiffiffiffiffiffi
3C0

p
þ 7

ffiffiffiffiffiffi
C2

p
Þ2;

Cn ¼ 0 ½n ≠ 0; 2; 4; 6�: ð9Þ

Analogously, for s ¼ 4, it was found that

C0 ¼
256

315
f972d242 þ 360d42ð1þ d43Þ

þ 35ð1þ 2d43 þ 18d243ÞggPMs I0s ;

C2 ¼
512

693
f648d242 þ 49ð2þ d43Þ

− 72d42ð4þ d43ÞggPMs I0s ;

C4 ¼
512

5005
f245þ 11763d242 − 735d43

þ 990d42ð−2þ 3d43ÞggPMs I0s ;

C6 ¼
512

3465
f14þ 11664d242 − 119d43

− 198d42ð−4þ 17d43ÞggPMs I0s ;

C8 ¼
128

6435
ð1þ 144d42Þ

× ð1þ 144d42 − 16d43ÞgPMs I0s ;

Cn ¼ 0 ½n ≠ 0; 2; 4; 6; 8�: ð10Þ

Note that, in this case, in addition to the combination gsĀ2
0,

certain combinations of dsjλj appear.
Note that the template of the form given in Eq. (1) has

been initially introduced in Ref. [17] to characterize the
angle-averaged bispectrum sourced by the presence of a
Uð1Þ gauge vector field coupled to inflaton field via the
interaction IðϕÞF2 during inflation [15,16], models with
primordial magnetic fields [44], and models with nontrivial
symmetry structure of inflaton field as in solid inflation
[45,46]. These models can generate angular dependence
corresponding to the first three terms in the above expan-
sion. Therefore, this template is used to forecast the
constraints on C0;1;2, from the CMB and LSS (see, e.g.,
[17,47–49]). Moreover, observational bounds for C0;1;2

are obtained via the measurements of the CMB bispectra
by the Planck satellite [24]. In Ref. [14,42], the higher-
order (even) terms in the expansion are considered. They
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performed a forecast to obtain constraints onC0;2;4;6;10 from
measurement of CMB temperature bispectrum [42]. We
extend their work by making a forecast for these coef-
ficients using the observed galaxy bispectrum from upcom-
ing galaxy surveys.

III. THE OBSERVED GALAXY BISPECTRUM

Our model of the galaxy bispectrum is the same as
Ref. [40], so we would not repeat the details here and refer
the reader to that reference. To summarize, we model the
galaxy bispectrum at tree level in perturbation theory
accounting for redshift-space distortions (RSD) (linear
Kaiser term and Finger-of-God effect) in addition to
Alcock-Paczynski (AP) effect. In relating the galaxy over-
density to that of underlying dark matter, we assume a
simple model of the bias, accounting for local-in-matter
terms up to quadratic order as well as the tidal shear bias.
Neglecting the AP effect, let us briefly review the model

of the galaxy bispectrum we use in our forecast. In addition
to the contribution from the nonvanishing primordial
bispectrum, nonlinear gravitational evolution generates
nonzero bispectrum of matter density field and biased
tracers. At leading order in perturbation theory, the total
bispectrum at redshift z is the sum of the two contributions

Bgðk1;k2;k3; zÞ≡ Bgrav
g ðk1;k2;k3Þ þ BPNG

g ðk1;k2;k3Þ;
ð11Þ

where the contribution from gravitational evolution is

Bgrav
g ðk1;k2;k3Þ ¼ DB

FoGðk1;k2;k3Þ½2Z1ðk1ÞZ1ðk2Þ
× Z2ðk1;k2ÞP0ðk1ÞP0ðk2Þ þ perms�;

ð12Þ

while the contribution from primordial bispectrum Bζ is
given by

BPNG
g ðk1;k2;k3Þ ¼ DB

FoGðk1;k2;k3Þ

×
Y3
i¼1

½Z1ðkiÞMðkiÞ�Bζðk1; k2; k3Þ:

ð13Þ

The kernels Zi are the perturbation theory kernels in redshift
space and DB

FoG is the finger-of-God suppression factor. P0

denotes the matter power spectrum linearly extrapolated to
redshift z, andMðkÞ is the transfer function that relates the
primordial fluctuations ζ to the linearly extrapolated matter
overdensity during the matter-domination era. The explicit
expressions of these functions are given in Ref. [40]. Note
that for brevity, we have dropped the explicit redshift
dependence in the above expressions. Momentum conser-
vation k1 þ k2 þ k3 ¼ 0 removes the dependence on one

of the wave vectors. Even if the primordial bispectrum is
isotropic, RSD and AP effects, render the observed bispec-
trum anisotropic. Therefore, to characterize the galaxy
bispectrum in addition to the shape of the triangle, one
needs to define the orientation of the triangle with respect to
the line of sight. Hence, the bispectrum depends on five
independent parameters which can be chosen to be the three
sides of the triangle k1, k2, k3, the angle θ between one of
the wave vectors and the line-of-sight, and the azimuthal
angle ϕ between two wave vectors.

IV. FORECASTING METHODOLOGY

We use the Fisher matrix formalism to study the potential
of the upcoming EUCLID spectroscopic survey, in setting
constraints on the presence of long-lived particles with spin.
Our forecasting methodology and the survey specifications
are the same as Ref. [40], so here we only briefly review our
assumptions and refer the reader to this reference for details.
We use the survey specifications of the EUCLID

spectroscopic survey as outlined in [26,50]. We assume
a sky coverage of 15000 deg2, i.e., fsky ¼ 0.36, and
redshift uncertainty of σzðzÞ ¼ 0.001ð1þ zÞ. The redshift
distribution dN=dz is obtained from empirical data of
the luminosity function of Hα emitters, and we take the
limiting flux of 4 × 10−16 ergs−1 cm−2 and efficiency of
35%. We consider 12 equally populated redshift bins in the
range of 0.4 < z < 2.1, similar to what is done in Ref. [28].
The Fisher matrix of the galaxy bispectrum at a given

redshift bin with mean zi is given by

FαβðziÞ ¼
Vi

ð2πÞ5
Z
VB

dVkk1k2k3

Z
1

−1
d cos θ

Z
2π

0

dϕ

×
ð∂Bobs

g =∂λαÞð∂Bobs
g =∂λβÞ

VarBg
; ð14Þ

where we defined dVk ≡ dk1dk2dk3, VB is the tetrahedral
domain allowed by the triangle condition for the wave
numbers kmin < ki < kmax, and Vi is the volume of the
redshift bin zi. For each redshift bin, we take kmin ¼
2πð3Vi=4πÞ−1=3 and set kmax such that the variance of
the matter density field at that redshift is equal to the
variance at z ¼ 0 for kmax ¼ 0.15 hMpc−1. We also impose
a conservative upper bound that kmax ≤ 0.3 hMpc−1. The
total Fisher matrix is the sum of the Fisher matrices in all
redshift bins covered by the survey

Fαβ ¼
X
i

FαβðziÞ: ð15Þ

For the variance of the bispectrum, in our main analysis, we
only consider the Gaussian contribution which is given by
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VarBgðk1; k2; k3; θ;ϕ; ziÞ ¼ s123
Y3
j¼1

�
Pobs
g ðkj; μj; ziÞ þ

1

n̄i

�
;

ð16Þ

where Pobs
g is the observed power spectrum, with μj being

the angle of each wave vector with the line of sight. n̄i is
the mean number density of galaxies in redshift bin zi
and s123 ¼ 6, 2, 1 for equilateral, isosceles, and scalene
triangles. The constraints we report in Sec. V are obtained
imposing Planck priors, as discussed in Ref. [40], using
synthetic temperature data, therefore,

Ftot
αβ ¼ Fαβ þ FPlanck

αβ : ð17Þ

In our forecast, we consider three cases: only one of
the coefficients Cn is nonzero, all even Cn coefficients up to
n ≤ 10 are nonzero and the coefficients are all a function
of C0. In addition to the coefficients Cn, we vary five
cosmological parameters; amplitude lnð1010AsÞ, and spec-
tral index ns of primordial scalar fluctuations, Hubble
parameter h, and the energy density of cold dark matter
Ωcdm, and that of baryons Ωb. We also vary three biases,
linear and quadratic local biases b1, b2 and tidal shear bias
bK2 . For the biases, we assume that the redshift evolution is
known (as discussed below), and we vary a single param-
eter characterizing the overall amplitude of the three biases.
The suppression factor of the FoG effect is determined by
the dispersion velocity of galaxies, for which we assume
that the redshift evolution is known and vary a single
parameter σFOG;0. In obtaining the constraint on each
coefficient Cn, our parameter array is, therefore, λðiÞ¼
½lnð1010AsÞ;ns;h;Ωcdm;Ωb;Cn;σFOG;0;b1;b2;bK2 �.
We choose the fiducial values of the cosmological

parameters to be lnð1010AsÞ¼3.067;ns¼0.967;h¼0.677,
Ωcdm ¼ 0.258, Ωb ¼ 0.048, setting the pivot scale of
kp ¼ 0.05 Mpc−1, consistent with the Planck 2015 data
[51]. For the Cn coefficients we set the fiducial values of
Cn ¼ 1, and for the velocity dispersion we set the fiducial
value to be σFOG;0 ¼ 250 km s−1 (similar to Ref. [28]). We
model the redshift evolution of the linear bias as b1ðzÞ ¼
b̄1

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
and set the fiducial value of b̄1 ¼ 1.46 such that at

z ¼ 0 the value of the linear bias is consistent with the results
of Ref. [52] for halos of mass M ¼ 3 × 1013h−1 M⊙.
For quadratic biases, we assume scaling relations of
b2¼b̄2ð0.412−2.143b1þ0.929b21þ0.008b31Þ and bK2¼b̄K2

ð0.64−0.3b1þ0.05b21−0.06b31Þ, which are fits to N-body
simulations provided inRefs. [52,53]. Based on these results,
we assume that the above relations between b2 and bK2 with
b1, are preserved in the redshift range we consider and use it
to set the fiducial values of the biases in each redshift bin.We
vary two parameters for the overall amplitudes b̄2 and b̄K2 .
Additionally we will also consider how the forecasted

constraints on the coefficients Cn degrade, once the

uncertainty in the theoretical model of the galaxy bispec-
trum [31,32] and leading non-Gaussian corrections to the
variance [32,54] are accounted for. We will follow the same
prescriptions as reviewed in [40]; therefore, we refer the
reader to Ref. [40] and references therein for the details.

V. RESULTS

As discussed in Sec. II, both in the case of a HS field
coupled to inflaton and that of the partially massless HS
field, different Cn coefficients are related to one another. In
our analysis, being agnostic to the theoretical model, we first
consider the case where the coefficients Cn are independent
of one another. We obtain constraints on Cn0;2;…;10

, assuming
only one is nonzero (shown in Table I), or all are nonzero
(shown in Table II). Next we consider the case of the field
with spin s coupled to inflaton, where all the even Cn≤2s
coefficients can be written in terms of C0, and obtain
constraints on C0 for a given spin (shown in Table III).
In all the tables below, the three columns correspond to using
the Gaussian expression for the variance (“Base”), account-
ing for the leading non-Gaussian correction to the variance
(“NG Var.”), and accounting for the theoretical error
(“TH Err.”). The constraints are obtained marginalizing over
cosmological parameters, biases and the dispersion velocity
as described in Sec. IV.
In Table I, we show the 1-σ constraints on C0;2;…;10,

varying one at the time and assuming all the others are zero.
As a consistency check of our forecasting pipeline, note
that for n ¼ 0, the template in Eq. (1) reduces to the local
shape with C0 ¼ 6=5flocNL. Therefore, the constraint for C0

is in agreement with that of Ref. [40] for the local shape.
The constraints get weaker as n increases. Accounting for
the leading NG correction to the variance degrades the
constraints by about a factor of (30–40)%, while taking into
account the theoretical error weakens the constraints by less
than 10%.
The current best constraint on the lowest-order coeffi-

cients are obtained from measurement of CMB temperature
and polarization bispectra by Planck satellite which pro-
vided σðC0Þ ¼ 6 and σðC2Þ ¼ 26 [24]. For higher-order

TABLE I. 1-σ constraints on the coefficients Cn, varying one at
the time and setting the rest to zero. The constraints are obtained
marginalizing over cosmological parameters and biases. We
chose Cn ¼ 1 as our fiducial values. The fiducial values of
biases and cosmological parameters are given in the text.

Base NG Var. TH Err.

σðC0Þ 0.451 0.610 0.490
σðC2Þ 0.895 1.22 0.981
σðC4Þ 1.03 1.40 1.13
σðC6Þ 1.24 1.61 1.29
σðC8Þ 1.43 1.96 1.55
σðC10Þ 1.58 2.17 1.71

CONSTRAINTS ON LONG-LIVED, HIGHER-SPIN … PHYS. REV. D 98, 063520 (2018)

063520-5



terms, comparing our forecasted constraints with those for
CMB temperature bispectrum in [42], our result indicate
that the measurement of the galaxy bispectrum would
provide significantly tighter constraints, which can be
attributed to having access to more modes since LSS is
a three-dimensional map of the Universe in contrast with
CMB which is a two-dimensional map. Moreover, unlike
the constraints from CMB [42], in which the constraints
on higher-order coefficients are significantly weaker than
lowest-order ones, the LSS constraints on coefficients with
n ¼ 0;…; 10 are comparable. We believe this can be
understood in the following way: the CMB bispectrum
probes the projected primordial bispectrum in two dimen-
sions; hence, the oscillatory features of the bispectrum are
washed away. The impact is more important for higher-order
Legendre polynomials since they are highly oscillatory.
Since the theoretical models considered here, predict a

subset of the Cn coefficients to be nonzero for a given spin,
to study the degeneracy between various Cn coefficients,
next we assume that C0;2;::10 are nonzero simultaneously.
We obtain the 1-σ constraints on each of the Cn, margin-
alizing over the others, as well as cosmological parameters,
biases and dispersion velocity. The results are shown in
Table II. Overall, the constraints on each coefficient are
weaker than in the case of varying only one at a time, due to
degeneracy between them. Among all, the constraints on
the coefficient C6 are the weakest and improves for n > 6.
We note that if considering the un-marginalized constraints
(the numbers in the parentheses), the constraints degrade
for increasing n. Therefore, the improvement in the mar-
ginalized constraints for n > 6 is due to parameter

degeneracies. Accounting for the leading non-Gaussian
correction to the variance and the theoretical error, degrade
the constraints by about a factor of (40–50)% and (15–20)%,
respectively. To show the dependence of the constraints on
the choice of kmax, in Fig. 2, we show the 1-σ constraints on
Cn as a function of kmax at redshift z ¼ 0. Note that
plateauing of the constraint is partially due to the fact that
we always impose the upper bound of kmax ≤ 0.3 hMpc−1.
Figures 3 and 4 show the 1- and 2-σ confidence ellipses
between Cn coefficients and between Cn coefficients and the

FIG. 2. 1-σ confidence ellipses for the coefficients Cn from
EUCLID survey as a function of kmaxðz ¼ 0Þ. The fiducial values
of biases and cosmological parameters are given in the text.

TABLE II. 1-σ constraints on each Cn when all varied,
marginalizing over the other coefficients as well as cosmological
parameters and biases. The fiducial values of biases and cosmo-
logical parameters are given in the text. The numbers in the
parentheses are the un-marginalized constraints.

Base NG Var. TH Err.

σðC0Þ 1.23 (0.275) 1.72 1.45
σðC2Þ 4.28 (0.688) 6.22 5.08
σðC4Þ 6.22 (0.930) 9.12 7.25
σðC6Þ 7.05 (1.12) 10.3 8.21
σðC8Þ 6.51 (1.35) 9.35 7.59
σðC10Þ 4.20 (1.50) 5.88 4.85

TABLE III. 1-σ constraints on C0 from massive particles with
spins s ¼ 1, 2, 3, 4, 5 coupled to inflaton. Constraints are
obtained marginalizing over cosmological parameters and biases.

Base NG Var. TH Err.

s ¼ 1 0.301 0.439 0.328
s ¼ 2 0.189 0.246 0.199
s ¼ 3 0.138 0.176 0.143
s ¼ 4 0.110 0.138 0.114
s ¼ 5 0.093 0.114 0.095

FIG. 3. 1- and 2-σ confidence ellipses for the coefficients Cn
from EUCLID survey, marginalizing over all the other param-
eters. We chose Cn ¼ 1 as our fiducial values. The fiducial values
of biases and cosmological parameters are given in the text.
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three biases, respectively, marginalizing over all the other
parameters. There is a significant degeneracy between
various Cn coefficients and a non-negligible degeneracy
between C0 and C2 with the biases as shown in Fig. 4. The
degeneracy between the coefficients Cn and cosmological
parameters is rather week, and hence, we do not show it here.
To compare with the prediction of the theoretical models
described in Sec. II, in Fig. 3, as an example we also show
the values of Cn for n ≠ 0 in terms of C0 for the case of a
particlewith spin s ¼ 5 coupled to inflaton as given in Eq. (6).
Next, we consider the case of the HS field coupled to

inflaton, in which the coefficients Cn are all related to C0 as
give in Eq. (6). For a given spin s, only even coefficients up

to n ≤ 2s are nonzero. We consider particles with spins 1,
2, 3, 4, 5 and obtain the constraint on C0 in each case,
marginalizing over all the other parameters. The results are
given in Table III. In this case, as one would expect, we
obtain better constraints on C0 than previously, since there
are additional contributions from higher-order Legendre
polynomials to C0. The constraints are degraded by about a
factor of (20–40)%, when we account for the leading NG
correction to the variance and by less than 10% when
theoretical error is accounted for. Note that if we were to
measure Cn of various orders, a nonzero value of C0 and
zero value for all higher-order terms would correspond to
detecting the local shape non-Gaussianity. However, if we
only measureC0, we cannot infer that the signal is due to the
local shape unless we measure other coefficients to be zero.
To demonstrate the degeneracy between C0 and other

parameters, for the case of a HS field with s ¼ 5, we show
the 1- and 2-σ confidence ellipses between C0 and the
cosmological parameters, as well as with the biases in
Fig. 5. The constraints are obtained marginalizing over all
the other parameters.

VI. CONCLUSIONS

Particles with nonzero spin, if present during inflation,
leave a distinct angular dependance on correlation func-
tions of primordial curvature fluctuations. For massive
particles, the amplitude of the signal, in particular the
bispectrum, of primordial scalar fluctuations, however, is in
general suppressed with suppression factor determined by
the mass of the particles. Recently it has been shown that by
introducing a suitable coupling between the particles with
spin and inflaton, or by considering the partially massless
particles, one can generate long-lived particles that lead to
unsuppressed primordial bispectrum. The resulting bispec-
trum in these models are shown to be anisotropic as the
nonzero vacuum expectation value of the particle with spin,
introduces a preferred direction. After angular averaging
this bispectrum, one can express the results as a finite
expansion in terms of Legendre polynomials. The contrib-
uting terms and the relation between the coefficients of the
expansion are fully determined in each model.
In this paper we investigated the potential of the upcoming

EUCLID spectroscopic survey in constraining the coeffi-
cients of this expansion, and hence in setting constraints on
the presence of long-lived extra particles with spin, described
by these models. Assuming that the coefficients of this
expansion are independent of one another, we considered
terms up to tenth order and showed that measurement of the
galaxy bispectrum from the EUCLID survey can potentially
constrain them with an uncertainty of order unity. We addi-
tionally considered the case where the relation between the
coefficients is determined by the theoretical model (the HS
field coupled to inflaton). In this case the primordial bispec-
trum receives contribution from all the even terms in the
expansionwithn ≤ 2s and the amplitude of all is proportional

FIG. 4. 1- and 2-σ confidence ellipses for the biases and the
coefficients Cn from EUCLID survey, marginalizing over all the
other parameters. The fiducial values of biases and cosmological
parameters are given in the text.

FIG. 5. 1- and 2-σ confidence ellipses for C0 from HS massive
particles with s ¼ 5, and cosmological parameters and the biases
from EUCLID survey, marginalizing over all the other param-
eters. The fiducial values of biases and cosmological parameters
are given in the text.
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to the zeroth-order term C0. Therefore, in this case the
constraints on C0 improve by about an order of magnitude.
Furthermore, within the assumptions of our prescriptions, we
showed that the non-Gaussian contribution to thevariance has
a more significant impact on the constraints than the uncer-
tainty in theoretical modeling of the observed galaxy bispec-
trum (neglecting the higher-order loops).
As a last comment, let us reiterate that if in the future a

local non-Gaussian linear parameter (corresponding to C0)
is measured to be significantly different from zero, one
should make an effort to detect the higher multipoles of the

bispectrum in order to be sure that one is not dealing with a
higher-spin field. Conversely, detecting the higher multi-
poles will be an indication that higher-spin fields play a role
during inflation.
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