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Abstract

Robots nowadays are being employed in increasingly complex scenarios, where the
number of possible assumptions that can be made to ease the control synthesis
is getting considerably smaller compared to the past. In fact, back in the day
control engineers could heavily rely on a static world assumption and on a perfect
knowledge of the system dynamics, since robots were practically only confined in
controlled assembly lines where everything was predetermined beforehand. Given
these premises, it was fairly easy to synthesize control laws able to solve with
high precision the programmed task. Recently, task complexity started to grow
considerably with respect to the past, requiring a new type of controller able to adapt
continuously to the unknown scenarios to be faced. Among all the new methods,
learning-based control can be considered one of the most promising approaches in
literature today.

This thesis investigates the use of this new control technique in robotics. We
start by giving some background materials on Machine Learning, discussing how
we can learn a better dynamical model for the robot just from sensor data, or even
directly synthesize a control law from experiences. Then, after a small excursus on
Optimal Control we present our contributions in this novel field.

Specifically, a learning-based feedback linearization controller is proposed to deal
with model uncertainties in fully actuated robots. This novel technique is then
extended to underactuated systems, where control is tremendously complicated
by the impossibility in these robots to follow arbitrary trajectories which are not
dynamically feasible, i.e. not generated by an exact knowledge of their models.

Finally, we present a contribution in the field of Reinforcement Learning, an
approach that is able to learn directly a controller for a given task just by a trial
and error mechanism. As detailed in the first chapters, Reinforcement Learning does
not assure arbitrary constraints satisfaction in the final learned controller, which
limits tremendously its applicability on real platforms. For this aspect, we propose
an online mechanism where Optimal Control is used to enhance the safety of the
final control law.
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Chapter 1

Introduction

Historically robots have been always adopted in closed and controlled environments,
where the same task was performed thousand of times and the presence of unexpected
events was reduced to a minimum. This modality, suitable only for replacing a subset
of the repetitive works, greatly simplified the control problem to be faced since the
robot model was exactly known in advance, from an offline identification or from
the datasheet of the manufacturer, and the environment was predetermined. In fact,
usually every object to be manipulated was carefully taken into consideration before
the control synthesis, assuring optimal repeatability and accuracy on a given task.
Thanks to this simplification and its performance, robots saw a steady increase in
usage in the majority of the assembly lines every year (Fig. 1.1), and still nowadays
it continues to be the most prominent approach used in industry.

In the last decades, this paradigm started to change due to an increase of
demanding tasks to be faced. Robots started to be adopted outside their cage, in
what is called a non-structured environment, making it impossible to predetermine
exactly a task beforehand. Nowadays autonomous cars are being tested worldwide,
robot vacuums are more and more present in houses and new package delivery
techniques, such as using drones, are being tested daily in order to optimize costs
(Fig. 1.2). All of these examples share an increment in the task complexity with
respect to what was requested to the robots in the past, and the same inevitable
presence of uncertainties, both in the robot dynamics - which cannot be known
exactly in general - and in the environment model. In both cases, the problem

Figure 1.1. Assembly line robots.



2 1. Introduction

Figure 1.2. (left) autonomous driving; (right) drone delivery.

of the control synthesis started to be tremendously complicated, and the number
of possible tasks to be solved started to grow up rapidly, requiring specialized
controllers. Furthermore, nominal control laws, which were developed under the
promise of determinism in the robot model and environment, were shown to be
prone to failure in the real world.

Recently, to deal with these new trends in robotics, learning-based controllers
have gained popularity in the control community with the promise to deal both with
task complexity (control learning) and the presence of uncertainties (model learning).
In the first case, Reinforcement Learning (RL) promises to eliminate the need for
hand-tuned controllers favoring generalization [1]. This is achieved by trying to
learn an optimal controller to solve the task directly from experience, maximizing a
user-tuned reward function and without any - or with a minimum - prior knowledge
on the problem. In general, this avoids the need of programming a controller for
each new task to be solved, preferring a single and general algorithm that can learn
on demand. It can be argued that RL is what humans do in everyday life and
that our continuous adaptation is the only way we can deal with the complexity of
the world. In robotics, RL has shown great capabilities in different scenarios, for
example for solving tasks like grasping [2, 3], navigation [4, 5, 6] and even for legged
locomotion [7, 8, 9]. Despite these successful applications, still many challenges
remain to be solved that make not straightforward its applicability to real system,
such as the need of an excessive number of experiences in continuous and high
dimensional state spaces, and the impossibility to analyze precisely its performance
or to impose a precise behaviour to the final controller [10]. The latter will be one
of the topics discussed in this thesis.

In the second case, uncertainties, that are inherent in a real-world scenario, can
be learned in few seconds directly during operation, augmenting continuously a
nominal controller with new information about the world. In general, this idea
eliminates the need for a static world assumption, and in contrast to the past, it is not
needed anymore to know a-priori the time-varying dynamics of a robot, for example
caused by wearing, or to know in advance every object dynamical parameters. In
the past, two main classes of controllers were used to counteract this unavoidable
problem, namely robust [11] and adaptive control [12]. Robust control starts with
the assumption of a known and bounded uncertainty set, but although effective, this
approach leads to an excessive conservatism in the control law, which in this case
should be robust enough to handle all the possible disturbances, and it is corrupted
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by the presence of high chattering in the control signal. Adaptive control, on the
other hand, tries to increase the controller performance via an online estimation
of some free parameters in the control law, which are adapted during operation
taking into account an error feedback directly from the robot sensors. Therefore,
adaptive control can react quickly on the single realization of the uncertainties set
increasing performance. Still, this control techniques suffer some drawbacks, such as
poor convergence properties to the true uncertainties values [13], hence providing
only a local improvement in the performance. On the other hand, learning-based
controllers aim to directly estimate the true unknown dynamics before the control
synthesis, taking into consideration all the datapoint collected by the sensors during
operation. In literature, many outstanding examples of model learning can be found
in the context of robotics. For example in [14, 15] Neural Networks are employed
to learn the nonlinear dynamics respectively of a drone and an helicopter. In [16]
the authors propose an optimal controller coupled with a popular nonparametric
regression method, called Gaussian Process, which we will see is considered one of
the best tools in the context of online learning, for obtaining superior performance
in a car racing scenario. Finally, in [17] multiple local models are concurrently
learned for a robotic flexible hand to perform dexterous manipulation using again
optimization for robot motions.

Problem statement In this thesis, we tackle the general problem of learning-
based control for robotics systems. In the first part, we will present novel algorithms
that are able to deal online with the problem of uncertainties in model-based control,
in which performances are obviously strongly coupled with the exact knowledge of
the system. Instead, in the last part of the thesis, we will discuss a method that is
able to increase the safety of a learned controller, which is an essential condition
for the applicability of RL in a real-world scenario that unfortunately nowadays
cannot be assured by any standard learning techniques. Extensive simulations and
in many cases experiments will be presented in the following chapters to prove the
effectiveness of the proposed methods, which can be applied both for fully-actuated
and underactuated robots.

1.1 Manuscript overview

This thesis is organized into seven chapters shortly described below, including this
introduction and some final remarks.

• Chapter 2 - Background on Robot Learning This chapter provides a
review of various learning-based methods for robotics, describing the distinction
between the concepts of model and control learning. Furthermore, some
background materials on Machine Learning will be presented in order to make
the thesis self-contained. Specifically, two different regression techniques that
can be used both for learning a model and for representing a controller are
detailed, namely Neural Networks and Gaussian Processes. Furthermore, in
the context of RL we will make a digression on two popular solution techniques,
called Policy Search and Value function methods.
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• Chapter 3 - Background on Optimal Control In this chapter, we provide
some background material on Optimal Control, which is extensively used in
this thesis both for planning and control purposes for various robots. We
will explain first what is an optimization problem, presenting a distinction
between cases where we cannot impose any constraints on the final control law
and cases where this is possible. Specifically, we will present for the first case
the Linear Quadratic Regulator, a very common controller in underactuated
systems, while for the second case we will detail Model Predictive Control,
both for linear and for nonlinear systems. Finally, for this last controller, we
will discuss how it can be efficiently solved by means of numerical tools since
a solution cannot be found in general in closed form.

• Chapter 4 - An online learning procedure for feedback linearization
control The problem of uncertainties in model-based control is character-
ized in the case of fully-actuated robots. These uncertainties in dynamical
parameters, such as mass, inertia, friction, and unknown payloads, can cause
the controller to behave unexpectedly, leading to sub-optimal performance.
In [18] we proposed an online learning-based version of a feedback-linearization
controller that is able to cope with such uncertainties online, improving the
robot tracking performance in just a few seconds. The proposed approach
was tested in simulation on a Kuka LBR robot and presented during the
Conference of Robotics Learning in 2019.

• Chapter 5 - Online learning for planning and control of underactu-
ated robots The problem of uncertainties in the dynamics model is studied
in the case of underactuated robots, where their effect is seen not only in the
low performance of the controller but even during planning. In fact, every
planned trajectory needs to be dynamically feasible to be perfectly tracked
in those systems, which turns out to be a strong requirement in the presence
of even the smallest source of uncertainty. In this case, it is not only needed
to optimize the control law in order to increase the control accuracy but it is
necessary to plan an a-priori accessible trajectory for the robot. In [19] we
proposed an iterative approach, composed of sequences of planning and control
phases, in order to cope with the aforementioned problem. The proposed
approach was tested experimentally on a two-link underactuated robot, the
Pendubot, and it was published in the IEEE Robotics and Automation Letters
in 2022.

• Chapter 6 - Enforcing constraints over learned policies via Nonlinear
MPC The problem of constraints satisfaction in learned control policies is
studied. In general, these requirements cannot be hardly imposed, neither
during the training of the policy nor the deployment on a real robot, due to
the unconstrained optimization nature of RL. In [20] we proposed an online
safety filter, based on the Real-time Iteration Model Predictive Control, that
is able to impose arbitrary constraints on the system while performing the
desired task. This work was again experimentally tested on the Pendubot and
presented at IFAC in 2020.
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• Chapter 7 – Conclusions Final remarks on the given contributions are
summarized.

Additionally, in the Appendix after the final chapter is detailed the computation
of the Pendubot dynamical model, along with the value of its kinematic and dynamic
parameters.
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Chapter 2

Background on Robot Learning

Robot Learning is a branch of robotics that originates from the intersection of
Control Theory and Machine Learning. The main building block is data, recovered
by sensors such as cameras, encoders, or inertial measurement units, which measuring
the state of the robot and the state of the environment feeds the main feedback loop
for all the learning algorithms in this field.

Robot Learning can be divided in different sub-branches, such as model and
control learning. The first, described in Sec. 2.1, is focused on learning directly the
model of a system. Most of the time we will start from a nominal knowledge of our
robots, which will be then refined during operation comparing its prediction with
how the system actually evolves. Model learning makes extensive use of regression
techniques from the field of Machine Learning, in order to obtain algorithms with
bounded reconstruction error, probabilistic with an associate variance value that
defines uncertainties, or in the particular robotics context, that are data-efficient in
order to learn on the fly during operation. The second branch, control learning, has
the goal of learning directly a controller for a given system and a given task. This
is usually done by a trial and error mechanism, having as a feedback not only the
robot state from sensors but also a reward function, which embeds the specification
of the task to be solved. In this case, we talk about Reinforcement Learning, which
will be described in depth in Sec. 2.2. As we will see, RL can be subdivided into
two main approaches, namely value function methods, where we try to learn a score
function that helps us find the optimal control policy, and policy search where we
directly try to obtain the optimal controller from data. It should be noticed that in
literature other algorithms and sub-branches exist in the field of Robotics Learning,
such as Imitation Learning, where we try to copy a particular controller, or Inverse
Reinforcement Learning, where we try to infer the optimal reward function that in
some cases is difficult to synthesize manually, such as in the case of car driving. In
both cases, we also have as a feedback the behaviour of an optimal teacher that
guides the learning algorithm.

A sketch of the Robotic Learning taxonomy can be found in Fig. 2.1. Many of
the terms presented in the figure will be clear after reading the rest of this chapter.
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robot learning

model learning control learning
imitation learning

inverse reinforcement learning

Policy Search Value FunctionSupport Vector Machine
Linear Bayesian Regression

Gaussian Process
Neural Network

model free/model based
on-policy/off-policy

...

Figure 2.1. Robotic Learning taxonomy. Note that sometimes the division between the
branches is not always sharp, e.g. imitation learning can be considered linked to control
learning in the final goal but it requires a different dataset.

2.1 About model learning

Models are of paramount importance in robotics. They can be used to predict the
behaviour of a system, study its properties analytically or through simulation, or
synthesize a particular control law. In general, as we discussed in the introduction,
not always a model of a system, found in general by first-order principles, is exact.
This can happen when uncertainties are present in the environment, or when the
robot is characterized by a time-varying dynamics, for example due to the wearing
of its mechanical parts. Other times, a system can even be difficult to model from
physics, such as in the case of contact for legged robots, turbulence models, or
pedestrian behaviour. For these reasons, nowadays model learning is an attractive
method in the robotics community since it gives the possibility of autonomously
learn - or correct - a model of the system just by looking at the continuous stream
of data coming from the robot sensors.

Many approaches were developed in the last decades showing outstanding per-
formances. In [21], the authors proposed a learning-based robust controller able to
decouple robustness from performance, using a Tube-Based Robust Model Predictive
Control for the constraints and a learned linear model for the cost function. In [22] a
stochastic controller was proposed for a mobile robot, making use of a probabilistic
regression model to reduce the conservatism of the control law taking into considera-
tion the uncertainty in the prediction. This is similar to what was done in [23] in the
case of a robot manipulator. Finally, in [24] a Neural Network based regression model
was employed for developing a nonlinear controller with stability guarantee in order
to counteract the aerodynamic effects acting on a drone. In all of these approaches,
the first step is to choose the best regression tool from Machine Learning to perform
the estimate of the unknown part of the robot dynamics. Different techniques were
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developed during the years, such as linear model estimation via Least Square (LS),
Support Vector Machines (SVM), Gaussian Processes (GP), Neural Networks (NN),
and many others. All of them can be chosen ad-hoc depending on the characteristics
of the unknown function to estimate, which can be linear or nonlinear, the amount
of data available for training, and the computational time they require to perform
a prediction, which is an important aspect for real-time control application. In
general, it is clear looking at the literature that GP and NN, that will be discussed in
Sec. 2.1.1 and 2.1.2, are nowadays the prominent methods used in robotics since they
are able to estimate any nonlinear function without requiring any explicit knowledge
of its mathematical form.

Note that in literature there exist two different ways to approach model learning:
by learning the direct model or by reconstructing an inverse representation of the
robot’s dynamic. In the first case (direct model learning) the aforementioned method
tries to understand how the system, given its actual state, responds to a certain
input, while the second approach focus on estimating the input that needs to be
given to the system in order to achieve a certain desired new state (inverse model
learning). Even if one can state that inverse model learning is more similar to control
learning in the goal, they are both considered in the literature part of model learning
techniques, hence they will be presented here without any major distinction.

2.1.1 Gaussian Process

To understand how we can learn the model of a dynamical system, both in the case
of direct or inverse modeling, let us consider first the following generic function

y = f(x) + ε (2.1)

where x is the input vector with nx components, y represents the scalar output
value which can be measured, for example, by a sensor and ε an additive noise
with zero mean and variance σ2. Suppose we have at our disposal a dataset
D = {(xi, yi) |i = 1, . . . , nd} with nd the number of elements. We wish to infer a
function that represents the best our dataset D, called f∗ = θ>x, where θ represent
a set of parameters that we wish to optimize. Different techniques exist to perform
this computation, called regression, that works both in the presence of a linear or
nonlinear function f . We will first describe a popular probabilistic method called
Bayesian Linear regression (BLr), which will be then augmented with nonlinear input
features. BLr will be used to derive lather another popular regression technique in
robotics, called Gaussian Process regression (GPr), which will be extensively used
in Ch. 4 and 5.

Starting with the assumption of an identical distributed Gaussian noise with a
zero mean ε = N (0, σ2), we are interested, given our dataset D, to compute the best
set of parameters θ. The posterior probability of the parameters can be written by
using Bayes’ Theorem as

p(θ|X,Y ) = p(Y |X,θ)p(θ)
p(Y |X) (2.2)

where p(θ) is, by assumption, a Gaussian prior over the parameters value N (mp,Σp),
p(Y |X,θ) is the likelihood of our dataset output value Y given the input data X
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and the parameters θ, and p(Y |X) is the marginal likelihood, needed to normalize
the posterior. Notice that the dimension of X is nd × nx, where nx represent
the dimension of the input vector x, while for Y is nd × 1 since for simplicity we
are supposing a scalar output value. The posterior probability distribution of the
parameters given the training data can be calculated in closed form obtaining

p(θ|X,Y ) = N (mn,Σn) (2.3)

with mn and Σn, the mean and variance of the best parameters, equal to

Σn = (Σ−1
p + σ−2X>X)−1 (2.4)

mn = Σn(Σ−1
p mp + σ−2X>Y ) (2.5)

In order to perform a prediction on a given query points x∗, we should average
the outputs that we obtain for all the possible realizations of the parameters θ
that can be extracted by the Gaussian in eq. (2.3). This can be done through the
marginalization of θ over the full probabilistic model p(y∗|x∗,θ)p(θ|X,Y ), obtaining
the posterior predictive distribution

p(y∗|x∗,X,Y ) =
∫
p(y∗|x∗,θ)p(θ|X,Y )dθ (2.6)

= N (x>∗mn,x
>
∗ Σnx∗ + σ2). (2.7)

See [25] for the complete derivation of eq. (2.7).
In general, when we make a prediction we do not care about the variance, but in

some cases, it can be used as an estimate of the regressor uncertainty on a given
query point x∗. This can enable cautious behaviour in the context of robotics in
regions where we do not know enough about our model.

If the function f is nonlinear, the linear model used in the previous computation
is prone to fail. A popular workaround to solve this problem is to project the input
data x to an higher dimensional space, using a set of nonlinear basis function such as
φ(x) = (1,x,x2,x3, ...)>, which, if we considered from now on a scalar input data
x, takes dimension of 1× nφ. This set of basis functions can be usually found from
physics, as in the case of robotics when we know explicitly the form of the robot
dynamics. Repeating the same computation as before (see [25]), we can obtain the
equivalent nonlinear BLr model for a scalar input x

p(y∗|x∗,X,Y ) = N (φ(x∗)>mn,φ(x∗)>Σnφ(x∗) + σ2) (2.8)

where, insidemn and Σn the input vector dataX is substituted with Φ, representing
the corresponding matrix obtained computing the basis function for all the X
elements. Hence, the mean and the variance are defined as below

Σn = (Σ−1
p + σ−2Φ>Φ)−1 (2.9)

mn = Σn(Σ−1
p mp + σ−2Φ>Y ). (2.10)

GPr can be seen as a generalization of BLr with an infinite number of basis
function. We can rewrite eq. (2.8), substituting inside the elements of eqs. (2.9-2.10)
as

N (φ>∗ ΣpΦ(Φ>ΣpΦ + σ2I)−1y,

φ>∗ Σpφ∗ − φ>∗ ΣpΦ(Φ>ΣpΦ + σ2I)−1Φ>Σpφ∗)
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highlighting all the multiplication which involves the basis functions φ∗ and the
matrix Φ. Each of them can be split into multiple dot products and represented by
a function k(xi, xj), usually called covariance function or kernel, where the indexes
i and j represent a generic query or data point in the dataset D. Replacing the
calculation of the basis functions with a single kernel can be convenient since it
can free from the construction of hand-tuned features favouring generalization. For
example, a popular choice for k(·, ·) is the exponential (or gaussian) kernel, defined
as

k(xi, xj) = exp
(
−‖xi − xj‖

2

2

)
(2.11)

which is shown to be equivalent to an infinite dimensional set of basis functions.
Usually, this kernel is used in conjunction with some hyperparameters to be optimized,
e.g. in the case of eq. (2.11) we have

k(xi, xj) = a2 exp
(
−‖xi − xj‖

2

2 l2

)
(2.12)

where l and a are called the length-scale and the amplitude of the kernel. Other
kernel functions used in literature are for example

• linear: k(xi, xj) = xixj

• linear with features: k(xi, xj) = φ(xi)>φ(xj)

• rational quadratic: k(xi, xj) = a2
(

1 + ‖xi−xj‖2

2α`2

)−α
, where α is a scaling factor

• periodic: k(xi, xj) = exp
(
−2 sin2

(
xi−x′j

2

)
1
l2

)
and each of them can be chosen depending on our prior knowledge of the function
f to estimate, e.g. if we know that it is periodic we can opt for the last kernel on
the list, instead if we want to incorporate some ad hoc features we can choose the
second one. Kernel function can be even hand-tuned, but they should respect some
properties such as

• symmetry: k(xi, xj) = k(xj , xi)

• positive-definiteness:
∑n
i=1

∑n
j=1 cicjk (xi, xj) ≥ 0 ∀n ∈ N and ∀ci,cj ∈ R

Furthermore, given that the sum or the product of two kernels is still a valid kernel,
one can usually mix them at need.

For prediction, we can compute the mean and the variance of a GP on a query
point x∗ as

f∗ = k(x∗,X)(K(X,X) + σ2I)−1Y (2.13)
σ∗ = k(x∗, x∗)− k(x∗,X)(K(X,X) + σ2I)−1K(X, x∗) (2.14)
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Figure 2.2. Example of GP regression varying the hyperparameters of an exponential
kernel with an optimized lenght-scale l = 0.9048 (left), and with a non-optimized value
of l = 0.3679 (right). In both cases, the dashed blue line represent the true function
f(x) = sin(x), while in red is plotted the mean prediction f∗ (eq. 2.13) and in grey
the 95% confidence interval obtained using the variance information of eq. (2.14) plus
and minus the mean. Furthermore, in blue and using the plus symbol are plotted the
training points corrupted by a small additive noise.

where k(x∗,X) is a vector of dimension 1× nd where each component is the output
of the kernel function (2.11) between x∗ and the entire dataset X, and K(X,X) is
the equivalent kernel matrix with dimension nd × nd.

Finally, is important to mention that the set of hyperparameters in (2.11) are in
general tuned through gradient descent, maximizing the marginal likelihood equation
over all the possible functions f represented by the GP

p(Y |X) =
∫
p(Y |f,X)p(f |X)df (2.15)

where p(f |X) = N (0,K) is the GP prior (for simplicity with mean 0) and p(Y |f,X) =
N (f, σnI) is the likelihood. To facilitate the optimization, eq. (2.15) is transformed
conveniently in the log form

−1
2Y

T
(
K(X,X) + σ2

nI
)−1

Y − 1
2 log

(∣∣∣K(X,X) + σ2
nI
∣∣∣)− nd

2 log(2π)

which derivation can be found in [26], Ch. 2. The three terms in eq. (2.1.1) are
dependant respectively on the training data (first term), on the complexity of the
model defined on the covariance matrix K, and on a normalizing constant (the last
term). In Fig. 2.2 is reported the regression result obtained from two GPs, with
and without optimizing their hyperparameters. As can be seen from the figure,
decreasing the length-scale l of the kernel (2.12) we can augment the flexibility of
the learned regressor which become more rough.

Additionally to the maximization of eq. (2.1.1), we can perform a cross-validation
step on our dataset D. The basic idea is to split the dataset into two disjoint sets, one
for training while the other to be used as a validation set, to monitor performance
such as the generalization error on the chosen kernel function. In practice, a drawback
of the hold-out method is that only a fraction of the full dataset can be used for
training and that if the validation set is small, the performance estimate obtained
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may have a large variance. Another drawback is that just performing an optimization
step is usually computationally expensive on its own since it requires an inversion
of the covariance matrix K, and cross-validation adds another costly computation.
For these reasons, usually in online model learning this is not carried out since
we seek to maximize speed. Another potential issue for real-time control is that
the computational complexity of the prediction of a GP is O(n3

d), with nd the size
of the dataset. To keep the computation of the prediction fast enough, different
approximations exist which use only a reduced set of only d datapoints, chosen for
example on the basis of the information gain criterion [27], or more commonly in
the case of robotics chosen depending on the distance from the reference trajectory.

The readers can refer to [26] for a broader treatment about the GP theory and
their training procedure, and for a more detailed list of the different types of kernel
functions that can be adopted.

A noticeable example of a learning-based controller using GP can be found in [28],
where different techniques are detailed in order to propagate the regressor inside a
Nonlinear Model Predictive Control, together with a description on how probabilistic
bounds for the controller constraints can be generated according to the variance
information (eq. 2.14). The GP mean and variance are again used in [29], where the
authors proposed a procedure to tune the weights of a PD controller to counteract
model uncertainties, and in [30] where a Sliding Mode Controller is adopted using
the variance directly in the discontinuous part of the control law. Many other works
in literature have shown that GPs are a viable solution in the case of unknown
dynamics and that they can be used for a large variety of different controllers, for
example in Differential Dynamic Programming [31], Adaptive Control [32] and finally
Backstepping [33].

2.1.2 Neural Network

Neural Network (NN) is another popular technique in the Machine Learning com-
munity used for solving regression problems. So far we have considered model of the
form f(x) = φ(x)>θ, where φ(x) can be some combination of nonlinear features in
order to perform nonlinear regression. In the case of NN, we can perform the same
task starting from a concatenation of a simple equation, representing a neuron and
expressed as

φ(x) = σ(x>W + b) (2.16)

where σ are some nonlinear functions that perform computation component-wise
and output a single scalar value, and W and b, called weights and bias, are the
parameters θ = [W , b] to be tuned. Commonly used nonlinear functions σ are for
example

• sigmoid: σ(x) = 1
1+e−x

• relu: σ(x) = max(0, x)

• tanh: σ(x) = e2x+1
e−2x−1

but many others can be found in literature.
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Figure 2.3. A simple three-layers Neural Network, with a single neuron both in the input
and in the output layer.

A NN is usually composed by a concatenation of multiple neurons, each of them
represented by the eq. (2.16). For example, the output of a single neuron can enter
as input to another one, forming a two-layers NN

φ21(x) = σ(φ11(x)>W2 + b2)

where the first number in the subscript identify the layer while the second the neuron.
Furthermore, multiple neurons can coexist in parallel in a single layer, e.g.

φ31(x) = σ(φ21(x)>W31 + b31 + φ22(x)>W32 + b32)

where both φ21(·) and φ22(·) have the same input, e.g. the original data or another
neuron itself, and W 3 = [W31,W32], b3 = [b31, b32] are partitioned accordingly.

The most common architecture for a NN is composed of three layers, represented
in Fig. 2.3, where the first is called the input layer and takes as input the data
x, the second is called the hidden layer, while the third is the output layer that
finally outputs the value of the reconstructed function f . It is important to know
that the use of a three-layer NN is due to the universal approximation theorem [34],
which states that an architecture composed by a linear output layer and at least
one hidden layer with a nonlinear activation function, is able to approximate any
function, provided that the hidden layer is composed by enough parallel neurons.
We are not guaranteed, however, that the training algorithm, which will tune the
weights and bias W and b, will be able to learn that function. This can fail for a
variety of reasons, such as the optimization algorithm used for training may not be
able to find the optimal parameters that correspond to the true function, or we may
have not chosen the right amount of hidden units. In fact, the theorem does not
state the exact amount of neurons needed, and one in practice usually prefers to
increase the number of hidden layers until the needed regression accuracy is reached.

To describe the training procedure of a NN, we can start first defining a loss
function over the entire dataset D defined previously in Sec. 2.1.1. For example, for
a least-square loss we have

L(θ) = 1
nd

nd∑
i=0

(yi − fNN (xi)) (2.17)
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where fNN is the output of the NN queried at the known datapoint xi. From eq. 2.17
we can compute the gradient over the parameters W and b and perform a gradient
descent step. For example, for the weights and the bias at the layer j we have the
following update rule

W j = W j − α
∂L

∂W j
(2.18)

bj = bj − α
∂L

∂bj
(2.19)

where α is a chosen learning rate used to stabilize the training procedure.
For a deeper treatment on Neural Networks, their training procedure, and a

description of different architectures such as Convolutional and Recurrent NN, the
reader can refer to [35].

In the field of Robot Learning, Neural Networks are used both in the case of model
and control learning. In the first case, they show great reconstruction performances
and outstanding generalization capabilities, meaning that if the training is performed
correctly and the data is informative enough they can converge to the true function
f . Furthermore, their prediction time remains constant with the increase of the
dataset, differently from GP. An example of their use in robotics can be found in [36],
where they were employed to generate a dynamically feasible trajectory for a drone
starting from a coarse initial guess, and in [37] where they were used to represent
the model of an elastic surgical robot, difficult to represent and to identify using
standard techniques. Finally, other works with NN can be found in [38], where they
were coupled with Control Barrier Function to attain a safe control law, and in [39]
where a new interesting NN architecture, based on physics principles, was proposed
for model learning.

Despite their capabilities, NNs are not considered on par with Gaussian Processes
in the field of online learning, i.e. when we are in a low data regime and we have a
very little amount of data given by the robot. In fact, NNs are considered more data-
hungry, and furthermore they do not automatically embed any variance information
(eq. 2.14), that can be used for example to obtain a safer control law. Even so, they
have a broader usage in the context of control learning since they can be used to
represent practically an infinite number of possible nonlinear controllers.

2.2 About control learning
Control learning is at the forefront of research in Robot Learning nowadays, and
his biggest representative, Reinforcement Learning [40], in recent years has been
proven to be particularly successful in extremely complex application scenarios, such
as from beating professional gamers [41, 42], dexterous in-hand manipulation for
solving a Rubik’s cube [43] to locomotion problems both for quadruped [44] and
humanoid [45] robots.

The goal of RL is to directly learn an optimal controller, defined as π, through
experience and interactions with the environment. During each training episode, at
each control step k the robot sense its state xk, choose a control action uk = π(xk)
and receive as feedback a reward signal r(xk,uk) that represent how optimal is its
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choice. Shaping the reward r is not always straightforward, since it should embed
both the desired task to be solved and the behaviour to be adopted. For example, in
the case of a robotic manipulator in a reaching task, r can be composed by a term
that represents the distance of its end-effector from the object to grasp, minus some
terms that discourage collisions and minimize torques. Along with the reward signal,
the robot receives also its next state xk+1, making the knowledge of its model not
always necessary.

RL can be seen as an unconstrained optimization problem in which we seek to
maximize - not minimize for an historical reason - the future rewards, described as

J(xk,uk) =
∞∑
k=1

r(xk,uk) (2.20)

where, in general, this summation is truncated after N steps in order to represent
the maximum length of a given training episode. The necessity of this finite horizon
formulation arises from a practical prospective, making the optimization problem
more tractable and finite dimensional. Usually, the robot can be trained both in
simulation or in the real world, and after the end of the horizon is brought back to
its initial state. This helps the to encounter multiple similar experiences from which
we can extract meaningful informations about the task.

RL is strongly related to the concepts of dynamic programming (DP), which
uses as a backbone the Bellman’s principle of optimality [46], which alleges that
each subtrajectory of an optimal trajectory is an optimal trajectory as well. In DP
we try to find the optimal policy minimizing backward in time the value function

Jk(xk) = r(xk,uk) + min
uk

Jk+1(f(xk,uk)) (2.21)

starting from a known final cost JN (xN ) at end of the horizon. Eq. (2.21), in
the case of linear systems, can be optimized in closed form in order to derive an
optimal controller such as the discrete Linear Quadratic Regulator (LQR), or for
the nonlinear case controllers such as Differential Dynamic Programming [47] and
its lightweight variant Iterative LQR [48], both of which have proven to be very
successful in robotics in a variety of different complex scenarios [49]. In RL in general
we do not know the form of the value function Ji, nor the model of the system f .
Hence we cannot make use directly of DP in order to optimize directly our control
policy.

2.2.1 Value function approximation

A first workaround for this problem comes from the value function methods, in which
we try to estimate the value function Ji directly from data. More specifically, we are
usually interested in a surrogate function Q(x,u), called state-action value function
or Q-value function, defined as

Qπ(xk,uk) = r(xk,uk) + Jπf (xk+1) (2.22)

which directly associate a score to the choice of a particular control action uk in a
given state xk, and then following the actual policy π. If we can estimate correctly
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the Q-value function, and we have in hand a finite dimensional problem with a finite
number of control actions, just taking the best action with the greatest associate Q
value can give us back the optimal control policy. In order to estimate it, different
algorithms were developed during the years, such as SARSA [50] and Q-Learning [51],
both of which will be briefly described here for clarity.

Let us consider first a discrete scenario, with a finite number of possible states
xi, with i = 0, ..., I and a finite number of control actions uj , with j = 0, ..., J , e.g.
a grid-world where we can just move in four different directions such as up, down,
left and right. In SARSA (State-Action-Reward-State-Action), we can define the
Q-value function in a tabular form, with dimension I × J . In order to optimize it,
we start from a zero initial guess in all its cells, and then we incrementally perform
an update following the equation

Qπ(xk,uk) = Qπ(xk,uk) + α(r(xk,uk) + λQπ(xk+1,uk+1)−Qπ(xk,uk)) (2.23)

where α is called learning rate, and define how much we modify our current guess of
Q, and λ is a discount factor ∈ [0, 1) which tunes the importance of future rewards.
With a λ = 0, the agent will be myopic by only considering the instantaneous
reward r, instead with a value greater than 1 the Q-value function could actually
diverge. We use here the subscript k to define a general step in the environment,
without worrying about the subscript i and j for simplicity. At each time step
the robot senses its state xk and chooses a control action uk following an ε-greedy
policy, which for example alternates between a control action that maximizes Q
and a random action for exploration. Analyzing eq. (2.23), we can see that SARSA
requires not only the state and the control input at state k but even at the next step
k + 1, alongside the immediate reward r. Furthermore, it is considered an on-policy
algorithm, which means that the update of the Q-value function is strongly related
to the policy adopted (ε-greedy). A sketch of the algorithm SARSA, which can help
to understand its generic iteration, can be found in Table 1. The algorithm runs for
a finite number of episodes, each of them for a given horizon/number of steps.

Algorithm 1 SARSA algorithm
Require: α > 0, λ ∈ [0, 1), exploration rate ε > 0

1: Initialize Qπ(xi,uj) = 0 for all xi and uj with i = 0, ..., I and j = 0, ..., J
2: Loop for each episode:
3: initialize the state x0 randomly and set k = 0
4: Loop for each step of the horizon:
5: choose action uk using policy derived by Qπ (e.g. ε-greedy)
6: observe r(xk,uk) and xk+1

7: choose action uk+1 from xk+1 using policy derived by Qπ (e.g. ε-greedy)
8: Qπ(xk,uk) = Qπ(xk,uk) + α(r(xk,uk) + λQπ(xk+1,uk+1)−Qπ(xk,uk))
9: set k = k + 1

Q-learning is an off-policy variant of SARSA, meaning that the Q function
estimated is not directly hinged to a specific policy followed. In fact, it seeks directly
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to find the optimal Q-value function Q∗ through the following update law

Q∗(xk,uk) = Q∗(xk,uk) + α(r(xk,uk) + λmax
u

Q∗(xk+1,u)−Q∗(xk,uk)) (2.24)

where, compared to eq. (2.23), we choose at each time step the current guessed
best action uk+1 to maximize the future rewards. The algorithm follows the generic
iteration described in Table 2, using eq. (2.24) instead of eq. (2.23) and without the
requirement of using of an ε-greedy policy to choose the next action uk+1. Both
SARSA and Q-Learning are proved to converge to the optimal Q-value function Q∗
with a rate that depends on the exploration policy used and on α. Both of them do
not require a model of the system f , and for this reason, are considered model-free.

Algorithm 2 Q-learning algorithm
Require: α > 0, λ ∈ [0, 1), exploration rate ε > 0

1: Initialize Q∗(x,u) = 0 for all xi and uj with i = 0, ..., I and j = 0, ..., J
2: Loop for each episode:
3: initialize the state x0 randomly and set k = 0
4: Loop for each step of the horizon:
5: choose action uk using policy derived by Q∗ (e.g. ε-greedy)
6: observe r(xk,uk) and xk+1

7: Q∗(xk,uk) = Q∗(xk,uk) + α(r(xk,uk) + λmaxuQ∗(xk+1,u)−Q∗(xk,uk))
8: set k = k + 1

Having a model, in general, can speed up significantly the convergence of these
algorithms, and in literature many RL algorithms exist which try to learn concurrently
both f and Q. These methods are called model-based, and are proven to be more
data-efficient with respect to model-free algorithms, meaning they require far less
interaction with the environment to converge. One of the first model-based RL
algorithms is Dyna-Q [52], which can be considered a model-based extension of
Q-Learning. It not only estimates the optimal Q-value function as done in eq. (2.24)
via experience, but concurrently tries to learn a model of the environment/robots
which can be used to perform multiple updates of Q entirely offline speeding up
the convergence of the algorithm. A summary of the algorithm can be found in
Table 3. One can observe that a limitation of this approach (and by extension to all
the model-based RL algorithms) is that its performance strongly depends on the
accuracy of the learned model f . For this reason, usually in literature model-free
algorithms outperform their model-based counterpart.

As we saw, in the case of discrete and low dimensional systems the optimal Q
or V can be easily found in tabular form, but in general in robotics we are more
interested in high dimensional and nonlinear systems which require the use of some
function approximators. For example, using the tool described in Sec. 2.1.1, we can
represent the Q-value function using a linear model with nonlinear input features,
e.g. Q = φ(x,u)>θ, where θ are the usual parameters to tune. In this case, we can
seek for the optimal Q∗ iteratively, similar to what was done before, defining the
loss function
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Algorithm 3 Dyna-Q algorithm
Require: α > 0, λ ∈ [0, 1), exploration rate ε > 0

1: Initialize Q∗(x,u) = 0 for all xi and uj with i = 0, ..., I and j = 0, ..., J
2: Loop for each episode:
3: initialize the state x0 randomly and set k = 0
4: Loop for each step of the horizon:
5: choose action uk using policy derived by Q∗ (e.g. ε-greedy)
6: observe r(xk,uk) and xk+1

7: Q∗(xk,uk) = Q∗(xk,uk) + α(r(xk,uk) + λmaxuQ∗(xk+1,u)−Q∗(xk,uk))
8: set k = k + 1 and append to D the training data (xk,uk,xk+1, r)
9: learn a model of the system and of the reward function f∗(xk,uk) using D

10: Loop for each simulated step of the horizon:
11: choose a random state xk
12: choose action uk using policy derived by Q∗ (e.g. ε-greedy)
13: query the learned model xk+1, r = f∗(xk,uk)
14: update again Q∗ using eq. (2.24)

L(θ) = 1
2(r(xk,uk) + λmax

u
φ(xk+1,u)>θ − φ(xk,uk)>θ) (2.25)

and updating the parameters θ via for example a least-square solution. Unfortunately,
the use of function approximation annihilates the proof of convergence of the
algorithms described previously, but it is an essential step to deal with more complex
RL problems.

Even if linear function or Gaussian Process can be used to learn Q efficiently,
nowadays the most used function approximators are Neural Networks. In fact, one
of the greatest breakthroughs in RL is dated back to 2013 [53], where Q-Learning
and NN were coupled together attaining superhuman performances in a variety of
atari games.

2.2.2 Policy Search

The use of value function methods is, in general, troublesome if the action space
is continuous, such as in Robotics. In fact, in a discrete setting once we estimate
the optimal Q∗(x,u) we can choose the best action u just by evaluating all the
possibilities, but this cannot be easily done in a continuous action space. Additionally,
value function methods in general need global convergence of the value function
over the entire state-input space, which can be in general troublesome in a low
data regime. Another popular RL method, called policy search, tries to bypass
these problems by finding directly an optimal policy π without estimating directly
the optimal Q-value function. In this case, we can parametrize our policy using
some function approximators as before, e.g. π(xk) = φ(x)>θ, and try to perform
a gradient descent step directly over the cumulative reward of eq. (2.20). This
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can be done starting from a fixed initial state x0 and a fixed set of parameters θi,
performing multiple experiments with small perturbations of θi and registering the
different obtained cumulative rewards J . Then, we can perform a batch update of
the form

θi+1 = θi + α∇θJ (2.26)

with
∇θJ = (∆θ>∆θ)−1∆θ>∆J (2.27)

where the matrices ∆θ and ∆J represent the stacked samples of perturbation on
the parameters and their corresponding cumulative reward. This update law in
general behaves poorly, because it strongly depends on the learning rate α and can
be very noisy. Furthermore, it requires a reinitialization of the system in the same
initial position x0 in order to make the cumulative reward J comparable between
experiences.

A better approximation of ∇θJ comes from the policy gradient theorem which
first application can be found in the algorithm REINFORCE [54]. For a deterministic
policy it reduces to the deterministic policy gradient theorem [55], where the gradient
is simply defined as

∇θJ = ∇θπθ(x)∇uQπ(x,u)|u=πθ(x) (2.28)

which, roughly speaking, links the direction of improvement of the policy π with
the direction of increment of the Q-value function. Algorithms that use eq. (2.28)
together with function approximators are called actor-critic, where the term actor
refers to the policy while critic to the estimator of Q.

Even in the case of policy search, algorithms can be subdivided into on-policy
and off-policy, which can be both model-free [56] or model-based [57]. The readers
can refer to [58] for a broader description of policy search methods.

Applications of PS can be found in all areas of robotics. For example, in [59], a
stochastic policy is optimized for solving the locomotion problem for a simple 3D
humanoid. In [60], a model-based PS approach is applied to a low cost manipulator
showing astonishing data-efficiency, and finally in [61] PS is used as an high level
governor for a Model Predictive Controller for maximizing performance on a drone.

2.3 Chapter Summary
This chapter gave an overview of the necessary theoretical foundations for the field
of Robot Learning. It began by stating its two main branches, namely model and
control learning, and then providing a description of their core components. In the
case of model learning, different regression techniques were detailed, such as Linear
weighted Bayesian regression, Gaussian Processes, and Neural Networks. In the case
of control learning, RL was introduced by describing two different methodologies
(value function method and policy search) to obtain a control policy.

In the next two chapters (Chs. 4–5), Gaussian Processes will be used to describe
two novel learning-based algorithms, one that is applicable to fully-actuated robots
while the other tailored for underactuated platforms.
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Instead in Ch. 6 of this thesis, we will make use of a popular actor-critic, model-
free, and off-policy RL algorithm [62]. It should be clear from this chapter that
RL is solved by an unconstrained optimization procedure. In the case of discrete
and finite state space, we usually obtain the optimal solution, hence if we embed in
the reward function some hard constraints as penalties they will be not violated at
convergence. This is not true in a continuous state space, such as in robotics, since
the optimal solution is not usually found and a sub-optimal solution can lead the
robot to act unsafely. This motivates Ch. 6, where an online safety filter is presented
to mitigate this issue.
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Chapter 3

Background on Optimal Control

An appealing method to command motions to a robot is by deriving control laws
that are optimal with respect to some chosen criteria, e.g. that minimize for example
energy consumption while enabling the system to reach some desired goal. This
idea makes the foundation of the field of Optimal Control Theory, which as we will
see, shares strong similarities with Reinforcement Learning discussed previously
in Sec. 2.2. In fact, RL and Optimal Control can be seen as highly related topics
because they actually share the same goal, i.e. obtaining the most optimal controller
given, in the first case, a reward function and in the second one a cost. Still, they
approach this problem in a very different way: for example, RL does not explicitly
require to know neither the final form of the controller to be optimized nor the
model of the system to control, while in contrast, in Optimal Control is essential to
define both of them beforehand.

Nowadays Optimal Control is a well established topic in robotics for obtaining
powerful linear and nonlinear control laws, and the aim of this chapter is to present
a series of techniques that will be used in the rest of the thesis. In Sec. 3.1, we will
derive a linear optimal controller called Linear Quadratic Regulator (LQR), used
in Chs. 5–6 to stabilize the Pendubot around its equilibrium points. In Sec. 3.2 a
popular control technique able to deal with state and inputs constraints, called Model
Predictive Control (MPC), is introduced both for linear and nonlinear systems. MPC
and Nonlinear MPC (NMPC) will be used respectively in Chs. 4–5. Unfortunately,
NMPC cannot be used as it is for control since it introduces a large delay due to its
expensive computation. For this reason, in Sec. 3.3 we will introduce the Real Time
Iteration (RTI) scheme, a popular control method that is able to obtain real-time
nonlinear control laws. RTI will be used in Ch. 6 to generate an online safety filter
for learned control policies. Finally, since most of these controllers cannot be solved
in closed form, in Sec. 3.4 we will describe a popular numerical solver.

3.1 Linear Quadratic Regulator

LQR is a linear controller widely used even in the context of nonlinear systems. In
fact, usually one can perform a linearization of the dynamics equation of the system
near an equilibrium point, obtaining as a result an equivalent linear representation
that is valid only in the vicinity of the chosen point. This procedure is very common
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since from Control Theory we have well established tools to synthesize linear control
laws to stabilize a system. The synthesis of LQR starts from the choice of the cost
function to minimize. This is usually chosen to be in a quadratic form since, if the
model of the system is linear, we will obtain a Quadratic Problem (QP) that is easier
to solve both in closed form or using numerical methods. In fact, in a QP we have
only one local solution that is also the global optimum of the problem, hence we do
not have to perform an expansive search of the best solution in the optimization
problem. For simplicity, we start from a linear and discrete model of the form

xk+1 = Axk +Buk (3.1)

obtained from a linearization of the real nonlinear system ẋ(t) = f(x(t),u(t)) using
a first order Taylor expansion and then discretized using for example the Euler
method. The quadratic cost function is defined as below

J(xi,ui) =
N−1∑
i=0

Js(xi,ui) + JN (xN ) (3.2)

where N is the optimization horizon, in this case finite, that represents how far we
look into the future, and Js, JN are called respectively the stage and the final cost.
The last term plays an important role in our optimization problem since it should
define what happens from N to infinity, and hence should embed a meaningful
information about future steps. The cost function J is usually composed by some
quadratic terms that incentive the robot to reach a target position xg maintaining
there a final control inputs ug or to follow a precomputed reference trajectory
(xref

i , uref
i ) for i = 0, .., N . In the first case, we have a regulation problem and J can

be composed by the following stage and final costs

Js(xi,ui) = (xi − xg)>Q(xi − xg) + (ui − ug)>R(ui − ug) (3.3)
JN (xN ) = (xN − xg)>QN (xN − xg). (3.4)

where Q, R, Qf are positive-definite weights matrices. From now on, to simplify
the notation, we will assume a robotics task where we need to stabilize the system
around a free equilibrium point, i.e. (xg,ug) = (0,0), hence eqs. (3.3–3.4) can be
simply rewritten as

Js(xi,ui) = x>i Qxi + u>i Rui
JN (xN ) = x>NQNxN .

The discrete LQR problem can be defined as a minimization of the above cost
function J , plus an equality constraint dictated by the system model (3.1). Formally,
it can be expressed by the following optimization problem

min
u0,...,uN−1

N−1∑
i=0

Js(xi,ui) + JN (xN ) (3.5)

subject to

xi+1 −Axi +Bui = 0, i = 0, . . . , N − 1 (3.6)
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that once solved, will give us back a sequence of optimal control inputs to drive our
system. Different ways exist to solve this QP, and above all DP (Sec. 2.2) is one of
the most common approaches. In Dynamic Programming, we seek to optimize our
cost function backward in time starting from the known final cost QN . For example,
following the update rule of eq. (2.21), and defining PN = QN , we can find in closed
form the relationship between the value function at time N and its value at time
N − 1 as below

JN (xN ) = x>NPNxN

JN−1 (xN−1) = x>N−1QxN−1 + min
uk

(u>N−1RuN−1 + x>NPNxN ) (3.7)

where in the last equation the variable xN can disappear substituting inside the
linear model of the system xN = AxN−1 +BuN−1. At the time N − 1, since we
opted for a quadratic cost function plus a linear model, we can calculate in closed
form the optimal control inputs uN−1 putting the derivative of JN−1 over the control
inputs equal to zero, obtaining the one step control law

uN−1 = −
(
R−1B>PNB

)−1
B>PNAxN−1

which, if substituted back in eq. (3.7), will give us a new cost matrix PN−1 equals to

PN−1 = Q+A>(PN − PNB(R+B>PNB)−1B>PN )A. (3.8)

Eq. (3.8) is called the Riccati difference equation. We can continue the iteration
until the initial time 0 is reached, obtaining finally the optimal control inputs to be
applied at the current robot state x0. An interesting feature of the DP method is
that, taking an horizon N large enough, the matrix P i in one of the backward steps
will converge at some point to a fixed value P , which is the solution of the infinite
version of optimization problem considered. There, the single matrix P is usually
found by solving the equation below

P = Q+A>(P − PB(R+B>PB)−1B>P )A. (3.9)

called the Discrete Time Algebraic Riccati equation (DARE). This correspondence is
important since it gives us the possibility to solve just once the DP recursion, offline
and for a very large horizon, precomputing the fixed P i ≈ P matrix and hence an
optimal control law that can be emplyed for each possible initial state of our system,
thus avoiding any control overhead during robot motion.

Examples of LQR in robotics can be found in [63], where it is used in a whole-
body control setting for a two-wheeled inverted pendulum named Ascento. In [64]
Machine Learning and LQR are combined together to find the optimal set of cost
matricesQ,R,QN adopting Bayesian Optimization, which is an optimization method
that leverages GP (Sec. 2.1.1) for reconstructing the unknown function to optimize.
Finally, LQR can be even used for a tracking task, as done in [65] for a cart-pendulum
robot. In this case, we should linearize the nonlinear model of the system around
the desired trajectory and not anymore on a single equilibrium point. We will obtain
in this case a linear time-variant system, and during the backward computation of
DP the matrices A and B will not be anymore constant but will change along the
horizon.
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Figure 3.1. MPC receding horizon strategy. At each control step, the optimization problem
is solved starting from the current state x0 and only the first control inputs u0 si applied
to the system.

3.2 Model Predictive Control
Unfortunately, it is not always possible to apply the LQR control law to a robot. This
can be due to a variety of reasons, for example, the required control law could exceed
the motor’s maximum torque, or other physical constraints such as the maximum
angular velocity of a rotational joint could be violated during motion, thus making
the prediction in eq. (3.6) not anymore consistent with reality. In all of these cases,
we need to solve a different QP problem, where state and inputs constraints are
actually enforced during optimization. The most famous controller that nowadays is
able to deal with such cases is linear MPC [66]. It tries to solve at each control step
k a constrained QP formulated as following

QP(x0) = min
u0,...,uN−1

N−1∑
i=0

J(xi,ui)

subject to

xi+1 −Axi +Bui = 0, i = 0, . . . , N − 1,
Gixi ≤ 0, i = 1, . . . , N,
H iui ≤ 0, i = 0, . . . , N − 1, (3.10)

where the last two inequalities are the desired state and input linear constraints that
we would not violate, and where the cost function J , for example, is formulated
as in eqs. (3.3–3.4) to solve a regulation task. Notice that in eq. (3.10) we use can
actually get rid of the equality constraints dictated by the dynamical model. In fact,
we can forward integrating the system, thus eliminating all the state variables xi.
This approach is called the single shooting method.

MPC applies a receding horizon strategy in the control law (see Fig. 3.1), i.e.
it solves the aforementioned constrained QP starting from the actual state of the
robot x0 = xk, and then it applies only the first control inputs u0 to the system.
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After that, it solves again the control problem from the successive robot state and
so on. The need for such strategy derives primarily for obtaining a closed loop
behaviour of the controller, since differently from the LQR problem (3.1), MPC
computes the optimal state feedback only for the current state and it does not give
us a general control law. To be solved, MPC needs specialized solvers which can be
very computationally demanding. For this reason, the increase of the complexity
of the problem is usually compensated by choosing a shorter prediction horizon N ,
but this can have serious drawbacks on the pure performance of the final controller,
i.e. the closed loop system could be even unstable. To solve this issue, a common
approach is to mix both LQR and MPC together, taking the best from the two
control laws. For example, we could formulate the cost function J of the MPC as
following

Js(xi,ui) = x>i Qxi + u>i Rui
JN (xN ) = x>NPxN .

where we set the matrix P obtained by the LQR recursion as the final cost of
our problem. As detailed previously, P embeds future information about the
optimization problem, hence the shorter N is actually compensated by a prediction
of the cost encountered in the future steps. This is usually an approximation of the
considered constrained QP problem, since P does not contain any information about
constraints, but in many cases if we are near enough the equilibrium point/reference
trajectory, constraints could not be violated by even an unconstrained control law,
thus making P the true final cost. In fact, violations can usually happen when we
are far away from the regulation point since the controller could require a motion
that would exceed the robot constraints. In the case of tracking the same reasoning
applies, with an additional assumption that the reference trajectory is feasible for
the robot, i.e. once the robot carefully reproduces the trajectory its constraints are
not violated.

Although systems in robotics have a nonlinear model, linear MPC is still widely
adopted in academia and in the industry along with a simplified model that describes
the system along some reference trajectory or equilibrium point ([67, 68]), similar
to what is done for LQR. Furthermore, in the case of model uncertainties many
approaches exist in the context of linear MPC to obtain a robust variant of this
controller, named Robust MPC (see [69, 70]).

Many times we do not have any reference trajectory to follow a-priori, or in the
case of regulation we could be too far away from the equilibrium, hence invalidating
the linearization procedure of the system. In this case, we can try to solve a different
optimization problem that considers the nonlinearities of the system at full. In
this case, we talk about Nonlinear MPC (NMPC). In NMPC we usually start from
an initial guess of the solution (xguess

i , uguess
i ) for i = 0, .., N , which can be for

example a reference trajectory precomputed or a vector of zero elements, both for
controls and states, meaning that we do not have any assumption about how to solve
the problem. The NMPC is usually solved by applying the Sequential Quadratic
Programming (SQP) method [71], which iteratively solves quadratic approximations
of the following NonLinear Program (NLP)
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NLP(x0) = min
u0,...,uN−1

N−1∑
i=0

J(xi,ui)

subject to

xi+1 − f(xi,ui) = 0, i = 0 . . . , N − 1,
g(xi) ≤ 0, i = 1, . . . , N,
h(ui) ≤ 0, i = 0, . . . , N − 1 (3.11)

until convergence is achieved. Noticed that in the NLP above, the first equality
constraint is represented directly by the nonlinear dynamics of the system f , while g
and h are possible nonlinear inequality constraints. In order to solve it, in the SQP
approach we sequentially approximated by QPs the above NLP starting from the
available initial guess. We can formulate a generic single QP at the SQP iteration j
as

QP(x0,x
guess
j ,uguess

j ) = min
∆u0,...,∆uN−1

N−1∑
i=0

J(∆xi,∆ui)

subject to

∆xi = xi − xguess
j,i , i = 0, . . . , N − 1,

∆ui = ui − uguess
j,i , i = 0, . . . , N − 1,

∆xi+1 −A∆xi −B∆ui = 0, i = 0, . . . , N − 1,
Gi∆xi ≤ 0, i = 1, . . . , N,
H i∆ui ≤ 0, i = 0, . . . , N − 1, (3.12)

where
Ai = ∂f(x,u)

∂x

∣∣∣∣
xguess

j,i ,uguess
j,i

Bi = ∂f(x,u)
∂u

∣∣∣∣
xguess

j,i ,uguess
j,i

Gi = ∂g(x)
∂x

∣∣∣∣
xguess

j,i ,uguess
j,i

H i = ∂h(u)
∂u

∣∣∣∣
xguess

j,i ,uguess
j,i

,

are the linear approximation of the nonlinear dynamics f and the state and input
constraints along with the provided initial guess. It should be noticed that, if no
initial guess is provided, i.e. they are composed by zero elements, the two QP
problems (3.10–3.12) are equivalent since the linearization is performed around a
free equilibrium point. After the solution of (3.12), we can update the previous
initial guess as following

(xguess
j+1 ,u

guess
j+1 ) = (xguess

j ,uguess
j ) + (∆x,∆u) (3.13)

and then continue to iterate until the cost J does not decrease anymore. Furthermore,
in order to avoid an abrupt change of the initial guess during iteration, usually a
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constant α ≤ 1 is premultiplied to each QP solution and the initial guess update is
performed as below

(xguess
j+1 ,u

guess
j+1 ) = (xguess

j ,uguess
j ) + α(∆x,∆u).

The full SQP algorithm to solve the NLP (3.11) is detailed in Table 4.

Algorithm 4 SQP algorithm
Require: initial state x0, initial guess (xguess

j , uguess
j ), j = 0

1: While not converged:
2: compute Ai,Bi,Gi,H i by a first order linearization over (xguess

k , uguess
k )

3: solve QP(x0, xguess
j , uguess

j )
4: update the initial guess (xguess

j+1 , uguess
j+1 ) = (xguess

j , uguess
j ) + α (∆x,∆u)

5: j = j + 1

Solving the NLP problem by applying the SQP method until convergence can be
very time consuming. The speed of this computation usually depends strongly on
the initial guess provided to the problem in two different ways: first avoiding the
SQP algorithm to exit with an infeasible solution; second, it allows to take a full
step with α = 1 hence allowing for a fast convergence rate. In the specific context of
SQP for NMPC, a very good initial guess for the discrete control time instant k can
be constructed adopting the solution obtained at time k − 1 as following

xguess
k,i = xk−1,i+1, i = 0, . . . , N − 1,
uguess
k,i = uk−1,i+1, i = 0, . . . , N − 2,
xguess
k,N = f(xk−1,N ,uk−1,N−1)

(3.14)

where with (xk−1,uk−1) we denote the previous NMPC solution at time k − 1.
Notice that in eq. (3.14) we only miss the last terms at time N and at time N − 1,
respectively for the state and for the input. An easy solution to this problem, is just
replicating the last control input at time N − 2, obtaining concurrently the terminal
state by forward integration of the nonlinear dynamics. In this case, if the solution
at time k − 1 is feasible for the problem, then the shifted solution is feasible (except
for the last time step) with respect to the dynamic constraints. Additionally, if the
guess for the time instant k obtained via the shifting procedure is sufficiently close
to the exact solution of the NMPC problem, then we can just perform one iteration
of SQP since we provide already an excellent approximation of the exact solution to
the NMPC problem.

Other solutions exist in literature for initializing the SQP iteration. For example,
an RL policy can be learned offline and queried at run-time to provide a good
initial guess to the optimization problem, hence giving stronger assurance in the
performance of the final control law. In fact, in a continuous state space we do not
have any assurance of the performance of RL, which can return a very poor solution
in some parts of the state-space. On the other hand, a poor initialization of the
SQP algorithm can make the NMPC not run in real-time, hence using as bootstrap
the RL can help to speed-up the solution of the NLP.
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3.3 The Real Time Iteration scheme

Even if we smart initialize the initial guess, SQP introduces a high delay in the
computation of the control law. In fact, only the first iteration of the algorithm
contains a true estimate of the initial state of the problem xk, while, since time is
evolving during computation, the following iterations will be based on old estimation
that is not anymore valid. To solve this issue, the real-time iteration algorithm was
introduced in [72]. It consists in performing only one iteration step of the SQP
iterations using the shifting procedure in eq. (3.14), plus it divides the computation
of the optimization problem in two different phases, called preparation phase and
feedback phase. In the preparation phase, the shifting procedure is performed, and
then the QP (3.12) is constructed performing the linearization of the nonlinear
dynamics and constraints. This phase can be conducted just after completing the
previous NMPC step, without waiting for the next sampling interval. Next, when
the new state of the robot is available from sensors, in the feedback phase only
one iteration of SQP is performed. A sketch of the algorithm can be found in
Table 5.

Algorithm 5 RTI algorithm
preparation phase
Require: (xk, uk) from the previous NMPC solution at time k − 1

1: shift initial guess according to eq. (3.14)
2: compute Ai,Bi,Gi,H i by a first order linearization over (xguess

k , uguess
k )

3: return QP(x0, xguess
k , uguess

k )

feedback phase
Require: initial state x0 = xk obtained in the current sampling interval k

1: compute (∆x, ∆u) solving QP(x0, xguess
k , uguess

k )
2: update initial guess (xguess

k , uguess
k ) = (xguess

k , uguess
k ) + α(∆x,∆u), α = 1

The separation into distinct phases reduces the delay to a minimum. In fact,
first the construction of the QP (3.12) that in general can take some time does
not introduce any delay in this formulation, since all the computation is performed
before the control instant k. Second, thanks to the smart shifting solution and the
single one SQP iteration, the feedback phase is in general very fast to compute, with
a complexity that is equal to the one obtained in the linear MPC (3.2). In fact,
remember that linear MPC and NMPC are equal if just one iteration is performed.
Furthermore, the sampling time that can be achieved via RTI based NMPC increases
from standard linear MPC by the time required for the preparation phase.

In literature two main open source libraries exist that provide an efficient im-
plementation of RTI: the ACADO Toolkit [73] and acados [74]. They have the
peculiarity of providing autogenerated C++ code that can be used for fast real-time
applications (see [75, 76, 77]). In this thesis will use the first library for obtaining a
control law for the Pendubot in Ch. 6.
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3.4 Quadratic Program solution
Until now we have not yet discussed how to solve the QP generated by the linear
MPC and by the SQP method at each iteration. The aim of this section is to provide
to the reader one solution method from many, named the active-set algorithm, which
is used as a backbone of all the optimization problems that will be formulated in
the following chapters. Before starting its explanation, it is necessary to introduce
the famous Karush-Kuhn-Tucker (KKT) optimality conditions and the concept of
the Lagrange multipliers, which play a crucial role in numerical methods for optimal
control. Let us assume a simplified version of the QP problem (3.10) with an horizon
N = 2 and two inequalities constraints h1(u1) ≤ 0, h2(u2) ≤ 0 on the only two
inputs that are available. Furthermore, remember that equality constraints dictated
by the robot dynamics can actually be eliminated by the QP by forward integration
of the system model, thus obtaining a QP that is dependant only on the control
inputs variables. The KKT conditions state that if u∗ = (u∗1, u∗2) is a local optimizer
of the QP, then there exists the so called multiplier vector µ∗ = (µ∗1, µ∗2) such that

L(x0,u
∗,µ∗) = ∇J (x0,u

∗) +∇h1 (u∗1)µ∗1 +∇h2 (u∗2)µ∗2 = 0
h1 (u∗1) ≤ 0
h2 (u∗2) ≤ 0

µ∗ ≥ 0
µ∗1h1 (u∗1) = 0
µ∗2h2 (u∗2) = 0.

(3.15)

where L(x0,u
∗,µ∗) is called the lagrangian equation. Notice that eqs. (3.15) are

a simplified version of the more general KKT conditions that can be found in [78],
since here we are just considering inequalities constraints.

Motivating the KKT conditions is fairly simple. Rewriting the inequalities
constraints as d = (h1, h2), they states that at the solution u∗ the gradient of the
cost function J is balanced by the gradient of d multiplied the lagrange multipliers
µ. This can happen in three different ways. First, we can have µ∗ = 0 obtaining

∇J (x0,u
∗) = 0

∇d (u∗) < 0
(3.16)

where the inequalities d are not active and removing them does not change the
global solution of the problem. Second, it can happen that µ∗ > 0 and thus

∇J (x0,u
∗) 6= 0

∇d (u∗) = 0
(3.17)

hence the solution is at the border of both the constraints d which are considered
active. Finally, the third possibility is that one constraint i is active (µ∗i > 0), while
the other does not play any role in the optimization problem. These three different
possibilities are drawn in Fig. 3.2.

In order to solve the constrained QP, in the active-set method we check iteratively
all the three possibilities above. First, we verify if the unconstrained solution of the
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Figure 3.2. The three different scenarios in which eqs. (3.15) are satisfied. In the top-left
both constraints are active at the solution, while in the top-right their elimination does
not change the optimum of the problem. Finally, in the bottom only h1 is active.

QP satisfies eqs. (3.16). This can be done taking the gradient of J over the decision
variable u or by DP recursion, obtaining the global unconstrained minimum u∗. If
the KKT equations are respected, we have actually found the global solution and we
stop. If not, we start by choosing an initial guess for the solution u∗ along with some
active constraints, e.g. h1(u∗1) = 0, and then we optimize a simpler unconstrained
QP neglecting all the other inequalities. Notice that in our two-step horizon example,
this means optimizing only the second input u2 that remained free. If still eqs. (3.15)
do not hold, we can change the active constraint and continue until convergence.
Iterating this procedure in fact, we can actually find which constraints are active
and which are not, and at the end we will obtain the constrained global optimum of
the QP. As can be imagined, this methodology can be very time consuming, since it
depends strongly on the number of constraints that are present in our problem. Still,
this computation can be made faster by exploiting another warm-start procedure.
In fact, the set of the active constraints from the previous QP solution can be easily
exploited and used as an initial guess for the current iteration.

For one of the most efficient active-set solvers the reader can refer to QPOASES [79]
which is one of the solution methods available in the library ACADO.

3.5 Chapter Summary

This chapter gave an overview on Optimal Control. We started by explaining LQR,
which is a linear controller very popular in robotics especially in underactuated
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robots, such as the Pendubot, where it can be used for balancing the system around
an equilibrium point. We then explained the basics of MPC, introducing the need
for constraints satisfaction in a real system, and we focused on the computational
complexity of both its linear and nonlinear version. In the second case, we introduced
an iterative method called SQP which will be used in Ch. 5 directly for planning
and not for control, and then we discussed an efficient version of the NMPC based
on the Real Time Iteration scheme. Finally, we concluded this chapter explaining
how the QP generated by all these constrained controllers can be solved, presenting
an overview of the active-set method.
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Chapter 4

An online learning procedure
for feedback linearization
control

4.1 Motivation and Contribution

As stated in the introduction, the knowledge of accurate dynamic models is of
paramount importance for several robotic applications. It is necessary, in fact, for
designing control laws with superior performances [80], during robot interactions
with the environment (for example when implementing strategies for the sensorless
detection, isolation and reaction to unexpected collisions [81]), or when regulating
force or imposing a desired impedance control at the contact [82] is required. In
order to retrieve an estimation of the dynamic model, regression techniques are
widely employed [83, 84]. These techniques are hinged on a well-known property:
the linear dependence of the robot dynamic equations in terms of a set of ρ dynamic
coefficients [85], (also denoted in the literature as base parameters) [86], which are
linear combinations of the dynamic parameters of the links composing the robot
(masses, centers of gravity and inertia tensors).

In order to retrieve a reliable estimation of the dynamic model, a series of exciting
trajectories are typically commanded to the robot, and the joint positions and torques
are recorded during motion. It is eventually possible to obtain a numerical estimation
of the dynamic coefficients by exploiting the filtered joint torques and the filtered
joint positions, velocities and accelerations obtained by numerical derivation [86].
Typically, this whole procedure, whose output is the estimation of the dynamic
model of the robot under study, is performed offline. Therefore, in case of changes in
the structural parameters of the robot, the identification procedure has to be carried
out again from scratch. This is the case, for instance, when unknown payloads are
attached to the end-effector of a manipulator: in this regard, a method to update
the dynamic model has been presented recently [87], but it requires an initial phase
of setup for updating the dynamic model parameters. Especially when collision
detection and reaction strategies are adopted during motion, it is essential to have
an adaptable and reliable estimation of the dynamic model, employed to properly
implement those algorithms [81].
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In the last years, to overcome the limitations imposed by the aforementioned
approaches, a new set of techniques has emerged relying on the employment of
regression techniques to face the problem of robotics model learning. As stated
previously, in literature there exist two different way to tackle this issue, namely
direct model [88], [89], [90], [91] and inverse model learning [92],[93],[94]. In regards
to the first class of methods in [88], the authors propose to learn the transition
probability model, while in [90] the authors try to reconstruct the system nonlinear
dynamics with a GP in order to improve approximate linearization of the system
around an operating point. In [91] the authors utilize the regressor as a predictive
model for a nonlinear MPC. In our approach, we make use of a linear MPC in the
control scheme, but we design a procedure for learning the inverse dynamics of the
system. In the context of inverse model learning, in [95] the authors describe a way
to learn a computed torque controller, employing the torque measurements to build
their training dataset. In our work, we learn the unmodeled dynamics to improve
the feedback linearization process without the use of any joint torque measurements,
which are known to be noisy.

In this chapter, we propose a method to reconstruct dynamic model uncertainties
and parameter variations by means of an online algorithm based on GP regression,
which we described previously in Sec. 2.1.1. Having an a-priori estimation of the
dynamic model of a robot, we show that it is possible to improve the model by
exploiting only joint position measures, without the need for any joint torque data.
Indeed, torque measurements are usually affected by a high level of noise, typically
higher than the noise added to the measures coming from the encoders which return
joint positions [80]: thus, the employed algorithm is able to obtain a reliable estimate
of dynamic uncertainties.

This chapter is organized as follows. Sec. 4.2 introduces the dynamic model of
fully actuated robots, highlighting the problem deriving from a not exact Feedback
Linearization (FL) controller. In Sec. 4.3 the learning procedure is presented, with a
description of the data collection procedure and of the proposed control architecture.
In Sec. 4.4 simulation results for a 7-dofs LBR robots are shown, and finally in
Sec. 4.5 a summary of the chapter is presented along with possible future works.

4.2 Problem Formulation
For a robot with n degree of freedom and n actuators, its dynamics can be written
as

M(q)q̈ + n(q, q̇) = τ , (4.1)

in which q is the n-dimensional configuration vector, q̇, q̈ are, respectively, the joint
velocities and accelerations; M is the inertia matrix and n is a vector obtained by
the sum of the Coriolis and centrifugal forces and the gravity vector. Supposing that
the robot is fully actuated, it is possible to design a FL controller [80], providing a
control input τFL that cancels the nonlinear dynamics components of the model in
eq. (4.1), as

τFL = M(q)u+ n(q, q̇), (4.2)
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where u represents the desired joint accelerations vector. In principle, given a perfect
knowledge of the system dynamic model and applying the FL controller (4.2) we
would get a linear system of double integrators

q̈ = u, (4.3)

but in reality this is typically not true due to unmodeled dynamics and uncertainties
in the system parameters. If we explicitly account for these uncertainties in the
model, we have therefore

M = M̂ + ∆M n = n̂+ ∆n. (4.4)

where M̂ and n̂ are nominal quantities (for instance, previously estimated or given
by the manufacturer of the robot), ∆M and ∆n are increments characterizing the
uncertainties. Thus, M̂ and n̂ incorporate our a-priori knowledge of the system
that we can exploit in a model-based control law.

If we apply the nominal FL control on the real system of eq. (4.1), that is

τ̂FL = M̂u+ n̂, (4.5)

considering eqs. (4.4), we obtain

q̈ = M−1M̂u−M−1∆n = u+ δ(q, q̇,u) (4.6)

where δ accounts for all the unmodeled dynamic and uncertainty terms. The presence
of these model perturbations affects considerably the control problem, requiring
usually the use of a high gain controller to track some reference trajectories which
can even destabilize the system. Here instead, we want to retrieve an online estimate
of δ in order to directly eliminate the remaining unknown uncertainties.

4.3 The Proposed Approach

In this section, we describe the proposed online learning approach that is able
to counteract these uncertainties in the dynamic model, composed by a dataset
reconstruction method (Secs. 4.3.1–4.3.2), and by a linear but effective control law
(Sec. 4.3.3). At its core there is a learning process which continuously updates a
regressor ε estimate of the perturbation term δ in (4.6) from position measurements
during robot motion.

4.3.1 Dataset collection procedure

At first, we suppose that it is possible to drive the manipulator by commanding joint
torques, that the current robot state is xk = (qk, q̇k) and that we want to reach a
desired target state xd

k+1. We compute the input acceleration uk that should drive
the robot to the desired state supposing a perfect FL controller, i.e. by imposing
the joint torque τ̂FL from eq. (4.5)

Mq̈k + n = τ̂FL,k = M̂uk + n̂. (4.7)



38 4. An online learning procedure for feedback linearization control

where uk is chosen accordingly to reach xd
k+1, but due to the effect of unmodeled

dynamics the robot reaches a different state xk+1 = (qk+1, q̇k+1). At this point,
from eq. (4.7), it is possible to compute the perturbation term δ that depends only
on the system state at time xk, the desired and actual system accelerations u, q̈k as

q̈k − u = −M̂−1(∆Mq̈k + ∆n). (4.8)

In eq. (4.8) the term q̈k cannot be known in advance and has to be computed a
posteriori using the information about the states xk and xk+1. To this aim, we
can utilize the notion of Controllability Gramian by calculating the true joints
acceleration q̈g,k that would have brought the perfectly feedback linearized system
in the state xk+1 in the first place. In section 4.3.2 we will show that under certain
conditions q̈g,k = q̈k.

Our learning framework is based on a torque controller to command the robot
while collecting the data for estimating the model. By introducing a function
regressor ε(·) in the FL control law, we show that with our method it’s possible to
progressively (and thus online) improve the control performances exploiting all the
data about the unknown dynamics acquired while commanding the robot. Therefore,
we introduce the new FL control input τFL,k where from the commanded high level
acceleration uk we subtract the regressor prediction ε(·)

τFL,k = M̂(uk − εk) + n̂. (4.9)

in order to cancel at best the perturbation δ. If we repeat this procedure for several
states, we can incrementally construct a dataset D = {(Xi,Y i) |i = 1, . . . , nd},
where nd is the number of elements in our dataset. For each sample i, we have

Xi = (qi, q̇i, q̈g,i); Y i = q̈g,i − ui − εi

where εi appear in order to preserve the correctness of the dataset since at each time
step the robot moves under the modified control law of eq. (4.9). At this stage, it is
important to point out that only the knowledge of states xk and xk+1 and of the
desired acceleration ui are needed while no torque information is necessary to build
the dataset D. Additionally, notice that in the published version of this work [18]
we used a modified eq. (4.9), where the regressor ε is specified at the torque level
and does not represent an acceleration. There is no practical difference in these two
versions, and here the acceleration description is chosen only to ease the linking
between Ch. 4 and Ch. 5.

When, a time k, we want to predict the compensation that is required to cancel
out the unmodeled dynamics, the regressor inputs will be

εk(qk, q̇k,uk)

where uk is the desired joint acceleration obtained by a high level controller. Un-
fortunately, due to the prediction error of our regressor, small errors will be always
committed that will be eventually reduced over time by increasing the dataset size.
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4.3.2 Controllability Gramian

In order to reconstruct the unknown part of the dynamic model of the robot, the
proposed estimation procedure requires the estimation of the real joint accelerations
q̈k. For this purpose, we employ the concept of the Controllability Gramian starting
from a generic continuous linear system

ẋ(t) = Ax(t) +Bu(t) (4.10)
y(t) = Cx(t) (4.11)

where x is the state vector, A is the state matrix, B is the input matrix, u is the
input vector, y is the output vector and C is the output matrix, representing in this
case the perfect feedback linearized system of eq. (4.3).

In this work, the robot state consists of joint positions and joint velocities, and
in particular, for a n-DoFs robot, the state is x = (q, q̇). Under the hypothesis of
a perfectly feedback linearized system, it is possible to represent it as a chain of
integrators, separating the whole system (4.11) into n independent subsystems of
dimension 2. Therefore after the FL law, a single joint j, will have the following
discrete state-space representation

xjk+1 =
(

1 Ts
0 1

)
xjk +

(
0.5 T 2

s

Ts

)
ujk

yjk =
(
1 0

)
xjk. (4.12)

If the sampling time Ts is sufficiently small, the discrete system (4.12) approximates
well its continuous counterpart (4.11). This system (4.12) is controllable since

rank(B AB) = rank
(

0.5Ts2 1.5Ts2

Ts Ts

)
= 2,

and therefore it is possible to define the discrete Controllability Gramian as

W (k − 1) =
k−1∑
m=0

AmBBT (AT )m.

from which it is possible to retrieve the minimum energy input that drives the system
from an initial state xk to a final state xk+1 in m steps, as

uk = −BT (AT )m−kW−1(m)[(AT )mxk − xk+1] k = 0, . . . ,m− 1.

Since the systems consists in a chain of two integrators, only two steps are required
to obtain q̈g

q̈g = u0 + u1 = (BTAT +BT )W−1(1)(ATxk − xk+1).

without using any numerical differentiation tools.
Finally, to summarize the whole process: in the case of perfect modeling, the FL

would be exact and the system would act as a double integrator. Since the nominal
model presents a mismatch with respect to the real one, the controlled system will
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behave in a different way, performing a diverse motion. This unexpected motion
can be interpreted as if the feedback linearization was correct while the robot was
driven by another unknown acceleration reference. Following this interpretation, it
is always possible to use the Controllability Gramian on a double integrator in order
to estimate this new reference acceleration, that will be used for the construction
of the dataset. For this reason, the acceleration estimated by the Controllability
Gramian is correct and it is independent from the current knowledge about the
system’s complete model.

4.3.3 Control Architecture

model
predictive

control 

fully-actuated
robot 

online

feedback
linearization

Gaussian Process
regression 

Controllability
Gramian 

learning

Figure 4.1. Block diagram of the proposed algorithm. Solid signal lines represent data
that are used at each time step, whereas the dashed line represents the desired trajectory
computed offline.

In this section we describe in detail the control algorithm (see Fig. 4.1). Our
method allows for robot trajectory tracking even if we have only a partial knowledge
of its dynamic model. In order to achieve perfect FL, we fit online the obtained
datapoints in D using GP regression. In this work we employ only the mean
prediction value of eq. (2.13), represented here as ε. Since no assumption has been
made on its structure, a squared exponential kernel is employed (2.12) to define the
covariance matrix. In addition, we set conditionally independent GPs for each joint
of the manipulator.

In order to avoid unfeasible control actions or unfeasible reached states (i.e., out
of known mechanical ranges), we generate the desired joint accelerations uk through
a linear MPC (see Sec. 3.2), which is able to provide smooth joint acceleration
signals while satisfying state and input constraints. It should be noticed that we are
not hinged with this particular choice, and other control laws could be implemented
as well. For example, if we do not care about constraints in general, a simpler PD
control law or the LQR (Sec. 3.1) could be used as well.

Under the assumption of perfect FL, the prediction model of the robot inside
the MPC can be represented as a set of n independent linear double integrators
with the discrete model described in eq. (4.12). Suppose now to have precomputed
a reference trajectory (xref(t), uref(t)) that we can discretize by a sampling time
interval Ts obtaining its counterpart (xref

k , uref
k ) for k = 0, .., T/Ts. The optimal
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control problem at the generic control time k can be written as

min
u0,...,uN−1

N−1∑
i=0

Js(xi,ui) + JN (xN )

subject to

xi+1 −Axi +Bui = 0, i = 0, . . . , N − 1,
g(xi) ≤ 0, i = 1, . . . , N,
h(ui) ≤ 0, i = 0, . . . , N − 1,

with x0 = xk the initial state of the robot at time k and g(·) and h(·) the desired
state and input constraints. In this work we define the cost function as the sum of a
stage cost Js and a terminal cost JN which penalize the deviation from the reference
trajectory and smooth the control inputs

Js(xi,ui) = (xref
i − xi)>Q(xref

i − xi) + (ui − ui−1)>R(ui − ui−1),

JN (xN ) = (xref
N − xN )>QN (xref

N − xN )
(4.13)

where Q, QN , and R are the usual positive-definite, symmetric matrices of weights.
The feasibility of the commanded acceleration uk is obtained by imposing a set of
state and control constraints g(·) and h(·) in our optimization problem

qm ≤ q ≤ qM
q̇m ≤ q̇ ≤ q̇M
q̈m ≤ u ≤ q̈M

where qm, q̇m, q̈m and qM , q̇M , q̈M are the lower and upper bounds for, respectively,
joint positions, velocities and accelerations. The MPC constraints do not provide a
strict safety guarantee at the beginning of the learning process, since the model in
eq. (4.12) does not represent exactly the real system. Over time the online learning
strategy improves the correction of the unmodeled dynamics resulting in a better
correspondence between the MPC internal model and the real robot. Therefore,
once the GP prediction error will became negligible, the optimal control input from
the MPC will assure constraint satisfaction for the real manipulator as well.

The choice of the optimization horizon N is crucial for a real-time control law. In
this work, we have not investigated this requirement, but in order to take a realistic
scenario we have chosen N = 20 since the model is linear and the GP prediction is
only computed once for each time step. The constrained optimization problem was
solved in MATLAB using the mpc function and its default active-set solver, which
we described in general in Sec. 3.4.

4.4 Simulation results
In this section we report the results of simulations performed applying the proposed
method on a KUKA LBR iiwa 7 R800 manipulator performing a trajectory tracking
task (Fig. 4.2). We analyze the tracking capabilities of the simulated robot, whose
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Figure 4.2. A KUKA LBR iiwa realizing a trajectory tracking task with the nominal
controller (right, red) and with the proposed learning method (left, blue). A video of the
simulation can be found at the following link https://www.youtu.be/PfEt2G9MpHU.

dynamic parameters are the ones reported in [96, 85] (originally identified for the
academic version of the iiwa robot, namely the LightWeight Robot (LWR) 4+,
which shares with the iiwa the same kinematics) with a deviation from the nominal
parameters (around 20 % of their value), comparing the performances with and
without the GP correction. In particular, we increase the nominal values of masses
and CoM positions, modifying the barycentric inertias accordingly. Additionally, in
the simulation we employ a friction model, that in general is considered difficult
to estimate, with a nonlinear and non-smooth behavior (i.e., viscous and Coulomb
friction with a Stribeck effect) [97] that was not considered in the nominal model
of the system. Furthermore, the discretization time is set at Ts = 1 ms, while
the high-level MPC and the dataset acquisition run at 200 Hz. The cost function
matrices in (4.13) are diagonal, and equal to R = In, while Q = QN = 2I2n, where
In, I2n are identity matrices of respectively n and 2n diagonal elements, with n = 7
the number of joints.

The simulation task consists in following a given reference trajectory in the
joint space, both for joint positions and velocities. In particular, the first six joints
should follow a sinusoidal path while the last one should remain at rest. Fig. 4.3
reports the joint angular position errors during the tracking task. The blue curves
show the absolute value of the error when the proposed learning scheme of Fig. 4.1
is adopted. The red curves show, instead, the absolute values of the errors when
only the nominal model (a-priori knowledge) is employed to compute the driving
torque. It is evident that our learning scheme improves the quality of the tracking
capabilities of the controller. In fact, already during the first moments there is an
evident increment of the tracking performances in the joints 1, 4, 5, 6 and 7. This is
achieved thanks to the high frequency of the data collection procedure employed,
which permits a more accurate prediction of the disturbance since in this case from
points that are near enough arise a similar value of δ.

The tracking error in the joint space has a direct effect on the cartesian error as
well. Indeed, even small errors of the angular positions of the joints may dramatically
deviate the end-effector position from the desired path. Fig. 4.4 reports the cartesian
error at the end-effector level when the GP correction is active (blue curves) and

https://www.youtube.com/watch?v=PfEt2G9MpHU&ab_channel=GiulioTurrisi
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when it is not (red curves). Even in this case, the use of the learning routines
improves the quality of the tracking controller.

Additionally, in Fig. 4.5 is plotted a comparison between the learned regressor ε
and the true mismatch δ acting on the simulated system, divided by their contribution
on each single joint. There, it can be seen that thanks to the high frequency of the
dataset acquisition/prediction and the absence of additional noise, the GP is able to
reconstruct the true signal accurately. Finally in Fig. 4.6 we show that, with our
framework, the reference accelerations computed by the MPC and the measured
accelerations of the robot converge thanks to the learned correction, meaning that
the double integrator model used inside the controller becomes exact thanks to ε.

4.5 Chapter Summary
This chapter presented a new approach for online learning an exact feedback lin-
earization controller for a manipulator under model perturbations. The proposed
method is composed by a dataset collection procedure that exploits the concept
of Controllability Gramian and Gaussian Processes, and by a controller cascade
composed by a Linear MPC that computes the commanding joint torques according
to a desired trajectory plus a learned correction term that is able to counteract
model uncertainties. It should be noticed that the computational time required for a
prediction using GP is strictly dependant on the size of the dataset, but in this work
we did not investigate this particular aspect since the GP prediction was not used
inside the MPC formulation and it was computed only once for each control step.
We showed that the proposed approach attained lower tracking error with respect
to a nominal controller without any online correction, requiring only the knowledge
of joint positions and velocities and without the need for any torque measurements.

Possible extensions of this algorithm will be the implementation of the proposed
method on a real manipulator and an analysis of the effect of the learning transient
for constraints satisfaction, which within this framework cannot be strictly assured in
the initial moments. Another possibility could be to exploit the variance information
of the GP regressor (2.14) applying the feedback linearization law at the cartesian
level, exploiting the redundancy of the KUKA LBR iiwa to obtain equivalents joints
motion with lower variance, i.e. with joints positions and velocities q, q̇ that are
most similar to the previously collected data. Furthermore, in this work we have
considered the KUKA robot as a rigid manipulator, but in reality it has some
flexibility in its mechanical structure between the joints and the motors. In that
case, learning is complicated since most of the time we do not have encoders for
both of them, hence a correct dataset D is difficult to obtain. A solution could be to
describe the system using the joints variables up to the fourth order q[4] [98], thus
eliminating the need of using the motor variables to obtain a unique representation
of the system.

In the next chapter, it will be presented the generalization of this approach
for underactuated robots, which differently from full-actuated manipulators can-
not undergo over a full feedback linearization procedure but still can be partially
linearized.
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Figure 4.3. Joints position errors comparison: in red with the nominal model, in blue with
learning enabled.
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Figure 4.4. End-effector trajectory of the robot in the 3D cartesian space: in red with the
nominal model, in blue with learning enabled.
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Figure 4.5. Comparison between the GP predictions ε and the mismatch signals δ for
each joint. The last joint, given its mass and inertia, is the more susceptible to the
acceleration mismatch.
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Figure 4.6. Comparison between the commanded accelerations u and the actual accelera-
tions of the robot using our approach (left) and using a nominal controller (right) for
joints 1 and 6.
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Chapter 5

Online learning for planning and
control of underactuated robots

5.1 Motivation and Contribution

Underactuation in mechanical systems occurs when there are less independent actu-
ation inputs than generalized coordinates. This situation may be due to the nature
of the mechanism, to its prevailing design, or it may be the result of an intentional
choice aimed at reducing weight, cost or energy consumption. Many advanced robotic
platforms are indeed underactuated, including manipulators with some passive joints,
most underwater and aerial vehicles, legged robots, and nonprehensile manipulation
systems.

An adverse effect of underactuation is that generic state space trajectories
become unfeasible, since the dynamics of the passive degrees of freedom represents
a set of second-order differential constraints that must be satisfied throughout any
motion [99]; in practice, this limits the directions of instantaneous accelerations
that can be commanded to the system. As a consequence, trajectory planning in
the absence of obstacles, which is a relatively trivial issue for fully actuated robots,
becomes a challenging problem in the presence of underactuation. Motion control
is also made more difficult for these systems since full state feedback linearization
cannot be achieved, and one has to deal directly with - actually, make use of -
nonlinear, coupled dynamic effects.

In the literature, several model-based techniques have been proposed for planning
and stabilizing motions of specific underactuated robots, with a notable emphasis on
manipulators with passive joints [100]. In particular, the problem of state transfer
between equilibria has been addressed mainly on two benchmark platforms, i.e.,
the Pendubot and the Acrobot; these are both 2R robots moving in the vertical
plane with a single actuated joint (respectively, the first and the second). A classical
approach is to use collocated or non-collocated Partial Feedback Linearization
(PFL) in combination with energy-based controllers [101, 102]. Swing-up maneuvers
of these robots have been achieved using passivity-based approaches [103, 104],
orbit stabilization [105], impulse-momentum techniques [106], and sequential action
control [107]. Typically, the maneuver includes a final balancing phase realized
through an LQR (Sec. 3.1) designed around the target equilibrium.
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Figure 5.1. The Pendubot performing two different swing-up maneuvers using the proposed
method: the targets are the up-up equilibrium (first row) and the down-up equilibrium
(second row).

Although effective, the above approaches have two main limitations from the
viewpoint of our work. First, the design techniques used for trajectory planning
and control are invariably specific (or had to be specialized) for the considered
robot, and sometimes also for the particular maneuver. Second, and even more
important, all of them require an accurate knowledge of the robot dynamic model
for successful performance. Exceptions are [108, 109], which propose robust control
of the Pendubot via adaptive and fuzzy sliding modes respectively; however, these
methods are tailored to the platform and do not tolerate large model uncertainties
in practice.

To avoid the need for an accurate dynamic model, modern learning techniques
have been applied for deriving feedforward and feedback control even for underac-
tuated robots. In [110, 111] and [112], model-based RL procedures are proposed
to generate robot control policies in a data-efficient way. However, this class of
algorithms is not able in general to ensure the satisfaction of hard constraints in a
specific robot task as explained in Sec. 2.2. An optimization-based iterative learning
approach is used in [113, 114], where experience from previous robot trials is used
to build incrementally the feedforward command needed to follow a desired output
trajectory.

Other works that are more closely related to our approach have been published
recently. In [115], a method for the swing-up of an Acrobot has been proposed which
avoids the need for a model by using deep RL, requiring however a huge number
of experiments for training. A robust control scheme for trajectory tracking under
repetitive disturbances has been presented in [116] for a 3R planar manipulator with
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two actuators and one passive joint. The control design is tailored to this specific
system, and cannot be easily extended to generic underactuated robots. In [117], a
learning scheme is proposed to realize trajectory tracking of underactuated balance
robots (e.g., a Furuta pendulum); because of the simpler balancing task, the reference
trajectory of the active joints is not replanned and stabilization in the large is never
addressed.

In this chapter, we build upon our learning method for fully actuated robots
discussed in detail in Ch. 4, to devise an iterative approach for planning and
controlling transfers between (stable or unstable) equilibria of underactuated robots
in the presence of large dynamic uncertainties. The basic idea is to alternate off-line
optimization-based planning and online PFL control, using regression to learn model
corrections for the active and passive degrees of freedom. As a result, dynamically
feasible state reference trajectories are learned and convergence to zero trajectory
tracking error is obtained over the iterations. The main benefits of the proposed
approach are:

• it applies to any underactuated robot;

• it applies to any state transfer maneuver;

• convergence is reached even in the presence of large uncertainties on the robot
dynamics, requiring very few iterations in the considered case studies;

• more accuracy in the nominal dynamic model leads to even faster convergence;

• additional constraints (on state, on input, obstacle avoidance, etc.) can be
explicitly taken into account in the optimization problem of the planning
phase.

As an application, we provide an extensive evaluation of the performance of
our approach on a Pendubot which must execute various swing-up maneuvers and
state transfers between unstable equilibria (see Fig. 5.1). Furthermore, we provide
simulation for a three links underactuated robots to show the generality of our
approach.

This chapter is organized as follows. Section 5.2 introduces the dynamic model
of underactuated robots, highlighting how model uncertainties affect the active
and passive subsystems. The proposed iterative approach is presented in Sec. 5.3,
discussing both the planning and the control phases and describing the data collection
procedures with the regressors adopted for learning. In Sec. 5.4, we report on the
application to the Pendubot, showing comparative simulation and experimental
results. Finally, a summary of the proposed approach is presented and some general
conclusions about the approach are drawn in Sec. 5.5.

5.2 Problem Formulation
For a robot with n degrees of freedom (dof) and m < n actuators, the dynamics can
be expressed [100] as

Maa(q)q̈a +Map(q)q̈p + na(q, q̇) = τ (5.1)
Mpa(q)q̈a +Mpp(q)q̈p + np(q, q̇) = 0, (5.2)
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Figure 5.2. Block diagram of the generic iteration of the proposed algorithm. Solid signal
lines represent data that are used at each time step, whereas dashed lines are data
transferred at the end of the iteration.

where q = (qa, qp) is the n-dimensional configuration vector, with qa, qp representing
respectively the m active and the n−m passive generalized coordinates. The inertia
matrix M and the vector n of the remaining nonlinear terms are partitioned
accordingly. The m generalized forces τ only perform work on the qa coordinates.
We do not assume any structural control property (e.g., feedback linearizability or
flatness) for system (5.1-5.2), nor any particular degree of underactuation.

In the presence of model perturbations (incorrect parameters and/or unmodeled
dynamics), we are again in the same case of eqs. (4.4), where only the nominal terms
M̂ and n̂ are known and available for control design.

Let x = (q, q̇) be the robot state. Given a start and a goal equilibrium points,
respectively denoted by xs = (qs,0) and xg = (qg,0), we want to plan and execute
in a fixed time T a transfer motion from the start to the goal, while satisfying
constraints on state and/or inputs, collectively expressed in the form h(q, τ ) ≤ 0.
This transfer between equilibria problem is particularly challenging for robots that
are not fully actuated because not all trajectories between two equilibria are feasible.

For the following developments, it is convenient to perform a preliminary nonlinear
feedback aimed at exactly linearizing the nominal active dynamics. This collocated
PFL controller is always well defined and takes the form

τPFL =
(
M̂aa − M̂apM̂

−1
pp M̂pa

)
u+ n̂a − M̂apM̂

−1
pp n̂p, (5.3)

where u ∈ Rm is the new input, i.e., the acceleration of the active dofs. Using (5.3)
and (4.4) in (5.1–5.2), we obtain the perturbed closed-loop dynamics

q̈a = u+ δa(q, q̇,u) (5.4)

q̈p = −M̂−1
pp (n̂p + M̂paq̈a) + δp(q, q̇, q̈a), (5.5)

where δa and δp represent the cumulative effect of perturbations on the active and
passive subsystems, respectively.

5.3 The Proposed Iterative Approach
The presence of model perturbations affects the considered planning and control
problem at two levels. First, planning based on the nominal model would produce



5.3 The Proposed Iterative Approach 53

trajectories that may not be feasible, and in any case do not land at the goal
equilibrium. Second, even when the reference trajectory is feasible, effective tracking
is not achieved if the controller is designed on the nominal model.

In this section, we describe an iterative scheme for concurrent planning and
control. At its core there is a learning process (Sects. 5.3.3–5.3.4) which continuously
updates two regressors εa and εp, respectively estimates of the perturbations δa
and δp in (5.4–5.5). Both regressors are reconstructed from position measurements
during robot motion.

Each iteration consists of an off-line planning phase and an online control phase.
In the planning phase (Sec. 5.3.1), the nominal model is corrected by taking into
account εp; an optimization problem is then solved to compute a reference trajectory
qref(t) leading this model to xg at time T . In the control phase (Sec. 5.3.2), the
robot tracks qref(t) under the action of a PFL control law given by (5.3), in which the
corrective term εa is added to the commanded acceleration u. During the motion,
new data points are collected and used in the learning process. In this work, we
employ Gaussian Processes regressors (Sec. 2.1.1) for reconstructing εa and εp, given
the good performance that this technique displays in the online learning context,
with a squared exponential kernel (eq. 2.12). However, it is important to notice
that other techniques such as Neural Networks, Generalized Linear Regression or
Support Vector Machine could have been adopted without any modifications on the
structure of the framework.

A block diagram of the generic iteration of the proposed approach is shown in
Fig. 5.2.

5.3.1 Planning

In the planning phase, a reference trajectory is computed by solving a numerical
optimal control problem for the underactuated robot. In particular, a prediction
model is obtained by setting δa = 0 and δp = εp in eqs. (5.4–5.5):

q̈a = u (5.6)

q̈p = −M̂−1
pp (n̂p + M̂pau) + εp(q, q̇,u). (5.7)

In other words, we are assuming in (5.6) that partial feedback linearization has been
achieved in spite of model perturbations. The rationale is that the control law will
try to cancel δa as much as possible using a correction term equal to its current
estimate εa (see Sec. 5.3.2). Moreover, the available estimate εp of the perturbation
on the passive subsystem has been used in (5.7). Upon convergence of the overall
scheme, eq. (5.6) will become exact, and εp in (5.7) will eventually be equal to δp. In
principle, we could have also included εa in the right-hand side of (5.6). The learning
transient would be similar and, upon convergence, the obtained system behavior
would be the same. However, the separate use of one regressor (εp) in the planning
phase and of the other (εa) in the control phase proves to be computationally more
efficient.

We consider a discrete-time setting in which the input u is piecewise-constant
over N sampling intervals of duration Ts = T/N . Denoting by f(·) a discretization
of the state-space representation corresponding to (5.6–5.7), with the robot state
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xi = x(ti) and the starting and goal equilibrium points xs and xg defined in Sec. 5.2,
the nonlinear optimization problem is written as

min
u0,...,uN−1

N−1∑
i=0

Js(xi,ui) + JN (xN )

subject to

xi+1 − f(xi,ui) = 0, i = 0 . . . , N − 1,
g(xi) ≤ 0, i = 1, . . . , N,
h(ui) ≤ 0, i = 0, . . . , N − 1,

with x0 = xs. The objective function is the sum of a stage cost Js and a terminal
cost JN , both penalizing the state error with respect to the goal xg and the control
effort, while g and h represent state and input constraints, respectively. The cost
terms take the form

Js(xi,ui) =(xg − xi)>Q(xg − xi) + u>i Rui,

JN (xN ) = (xg − xN )>QN (xg − xN )

where Q, QN and R are positive-definite, symmetric matrices of weights. The
solution of the NLP is a reference trajectory with the associated nominal input,
represented by discrete sequences qref = {qref

1 , . . . , qref
N } and uref = {uref

0 , . . . ,uref
N−1}

respectively. The reference velocities q̇ref = {q̇ref
1 , . . . , q̇ref

N } are also available.
To speed up convergence to a solution, one typically uses the reference trajectory

of the previous iteration as a warm start when solving the current NLP. Furthermore,
in our context this idea helps to diminish the number of iterations needed by our
approach to convergence. In fact, each planned trajectory will be more similar to
its previous one, being by construction local solutions of the previous optimization
problems and probably near to the minimum of the successive NLP. This idea
incentivizes learning a local model of the system instead of the global one, that is
obviously more difficult to estimate correctly with little data. Notice that a similar
behaviour can be obtained using the variance information of the GP (2.14) inside
the NLP cost function. However, this can increase significantly the planning time,
and furthermore it will not minimize directly the difference between two subsequent
planned trajectories but only the distance with respect to the actual robot motions.

5.3.2 Control

In the control phase, the robot moves under the action of a digital control law, that
for simplicity it is assumed with a control sampling interval Ts equal to the one in
planning, aimed at driving q along the current reference trajectory qref . To achieve
stable tracking of qref

a , the commanded acceleration uk in [tk, tk+1) is chosen as

uk = uref
k +KP (qref

a,k − qa,k) +KD(q̇ref
a,k − q̇a,k)− εa,k, (5.8)

with KP ,KD > 0. Here, the nominal input produced by the planner is used as
feedforward term, and the current regressor εa,k has been added to cancel at best
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the perturbation δa affecting the active subsystem (5.4). Note that as soon as qa
will be able to follow exactly qref

a , the passive variables qp will evolve as planned in
the previous phase. Next, we use (5.3) to compute the generalized force as

τPFL,k = B̂kuk + η̂k, (5.9)

where
B̂k = M̂aa(qk)− M̂ap(qk)M̂

−1
pp (qk)M̂pa(qk)

and
η̂k = n̂a(qk, q̇k)− M̂ap(qk)M̂

−1
pp (qk)n̂p(qk, q̇k).

It should be noticed that different control laws can be used to derive the commanded
acceleration uk. For example, in our short paper [118] we have employed a Nonlinear
MPC given the remaining nonlinearities of the unactuated part of the system.
Alternatively, one can use without any major difference a discrete linear time-varying
LQR (Sec. 3.1), linearizing completely the partial feedback linearized system on the
planned trajectory.

5.3.3 Dataset collection procedure for the active dofs

The collection procedure of the datapoint needed to learn εa,k follow closely the
description carried out in the previous chapter in Sec. 4.3.1. In fact, from eq. (5.4)
we may write

δa,k = q̈a,k − uk. (5.10)
and in view of eq. (5.10), a new data point is generated at the k-th control step as

Xa,k = (qk, q̇k,uk) Y a,k = q̈a,k − uk.

with the acceleration q̈a,k to be reconstructed in this work numerically. We note
that the actual acceleration is functionally dependent through (5.4) on the robot
state (qk, q̇k) and on the commanded acceleration uk, i.e., on the input Xa,k of the
regression scheme.

Every time a new data point is available, it is immediately used to update
the regressor εa, maintaining a queue of dimension d that mixes the most recent
data-points along with the most informative chosen according to the information
gain criterion [27]. However, the hyperparameters of the kernel function (2.12) are
only updated at the end of each iteration due to the time complexity needed to
perform a tuning procedure.

5.3.4 Dataset collection procedure for the passive dofs

To learn an estimate εp of the model perturbation δp, we compare the commanded
and the actual acceleration for the passive dofs. In fact, from eq. (5.5) we have

δp,k = q̈p,k + M̂−1
pp,k(n̂p,k + M̂pa,k q̈a,k). (5.11)

Given numerical approximations of the actual accelerations q̈a,k and q̈p,k, a new
data point is generated at the k-th step as

Xp,k = (qk, q̇k, q̈a,k)

Y p,k = q̈p,k + M̂−1
pp,k(n̂p,k + M̂pa,k q̈a,k).
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Figure 5.3. The Pendubot and its generalized coordinates.

Differently from εa, all the data points computed during the iteration are used to
update the passive subsystem regressor εp at the end of each trial; in fact, since the
planning phase is performed off-line, the complexity associated to an exact regression
does not represent a problem here. As before, the hyperparameters of the kernel
function (2.12) are also updated at the end of the iteration.

5.4 Results
The proposed approach has been validated through simulations and experiments on
the Pendubot, a two-link arm moving in the vertical plane with an active joint at
the shoulder and a passive joint at the elbow (qa = q1 and qp = q2). See Fig. 5.3 for
the definition of the generalized coordinates and the Appendix A.1 for the dynamic
model and the nominal parameter values for our Pendubot prototype.

In the following, we will address the problem of executing various transfer motions
between equilibria in the presence of severe uncertainty on the dynamic model. The
proposed iterative method is used to steer the Pendubot to the basin of attraction of
an LQR balancing controller designed around the goal state. The latter is obviously
needed to stabilize the robot after the planning horizon T .

The discretized state-space model used in the planning phase has been obtained
by Euler method. The sampling interval is set to Ts = 10 ms. The cost function J in
the NLP includes two quadratic terms that penalize the state error with respect to
the goal xg = (q1,g, q2,g, 0, 0) as well as the control effort, while the optimization is
performed in MATLAB using the fmincon function, which implements a Sequential
Quadratic Programming method (Sec. 3.2). The joint velocities are bounded as
|q̇1| ≤ 8 rad/s and |q̇2| ≤ 15 rad/s. Finally, terminal constraints are included to
guarantee convergence at time T to the following basin of attraction of the balancing
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Figure 5.4. Simulation scenario 1 (swing-up to q u-u): results without learning. Left: Using
the nominal model for planning and the true model for control. Right: Vice versa.

controller
|qj,N − qj,g| ≤ 0.2, |q̇j,N | ≤ 0.5, j = 1, 2.

We were able to obtain convergence to the basis of attraction for different values of
the weights Q, QN and R in the cost function. Still, they play an important role
in shaping the final trajectory of the robot, e.g. lowering the joints velocities, the
required control input etc.

In the control phase, the PD gains in (5.8) are chosen as KP = 50 and KD = 20,
while the sampling interval is again 10 ms. While all data points (with nd equal
to N times the number of iterations so far) are considered for updating εp, the
maximum number of data points used for computing εa in real-time is d = 180.
With this choice, the GP prediction takes around 7 ms on our PC equipped with
an Intel i7-4770@3.40 GHz processor. It should be noticed that for a higher dofs
system with more than one actuated joint, the prediction time can remain equal
if multiple GP are learned and their predictions are shared across the cores of the
processor. Given our computer, a similar computational complexity can be observer
up to a maximum of 4 actuated joints.

The readers can refer to the following link https://www.youtu.be/1aKG_8gfvk
for clips of all the simulations and experiments shown in the following.

5.4.1 Simulation Results

Two scenarios of transfer between equilibrium states will be presented. To show
that the proposed method can achieve robust performance in the presence of severe
model perturbations, we perturbed for control design the nominal values of the
Pendubot parameters (see Table A.1), increasing by 30% the link masses m1 and
m2 and reducing by the same percentage the distances d1 and d2 of the centers of
mass of the two links from their respective joints. The barycentral inertia I1 and I2
were changed accordingly.

In the first scenario, the start configuration is qs = (0, 0) while the goal is the
up-up configuration qg = q u-u = (π, 0), corresponding to a transfer from a stable to
an unstable equilibrium (swing-up). The planning horizon is chosen as T = 1.6 s
(N = 160).

https://www.youtube.com/watch?v=1aKG__8gfvk&t=1s&ab_channel=RoboticsLabSapienza
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Figure 5.5. Simulation scenario 1 (swing-up to q u-u): results with the proposed approach.
Just before the end of the third iteration, the state has converged to the basin of
attraction of the balancing controller, which is then activated (as indicated by the
vertical dashed line).

To highlight the necessity of learning in both the planning and control phases,
we have preliminarily considered two complementary situations where learning is
not used. Figure 5.4, left, refers to the first situation, in which we use the nominal
model for planning and the true model for control. The result shows that planning
the motion of an underactuated robot based on an inaccurate model produces
dynamically unfeasible trajectories, that cannot be tracked in spite of the ideality of
the controller. Vice versa, in Fig. 5.4, right, the true model is used for planning and
the nominal for control. As expected, the inaccuracy of the controller prevents the
completion of the swing-up maneuver.

Next, we tested the proposed approach on the same scenario, obtaining the
results in Fig. 5.5. After three iterations, the Pendubot is able to track with
sufficient accuracy the planned trajectory, ultimately entering the basin of attraction
of the balancing controller to complete the swing-up maneuver. This shows that, in
spite of the very large model uncertainty, the learning component of our method is
able to reconstruct the correct model in a few iterations. Further iterations of the
planning-control sequence do not change significantly the resulting motion.

To put our result in perspective, we have applied to this scenario also the passivity-
based swing-up method proposed in [104], using the same balancing controller in
the final phase. As shown in Fig. 5.6, the method works perfectly if the robot model
is exactly known, but is unable to complete the maneuver in the presence of the
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Figure 5.6. Simulation scenario 1 (swing-up to q u-u): results with the method in [104].
Left: assuming exact model knowledge the state enters the basin of attraction of the
LQR controller at t = 1.3 s circa. Right: with the same model uncertainty of Fig. 5.5,
convergence is not achieved.

.

Figure 5.7. Simulation scenario 2 (transfer between unstable equilibria): results with the
proposed approach. Two iterations are needed to achieve convergence.

considered model uncertainty. In particular, while the first joint still converges to
its target, the passive joint drifts away very quickly.

In the second scenario, the start is qs = (π/4, 3π/4) while the goal is qg =
(5π/4,−π/4); this amounts to a transfer between two unstable equilibria. The
planning horizon is chosen as T = 0.7 s (N = 70). The results are shown in Fig. 5.7.
Two iterations are now sufficient to reach the basin of attraction of the balancing
controller, thus completing the maneuver correctly. Indeed, a closer look at the joint
motion reveals that in both iterations the transfer is performed with the second
link approximately vertical, a situation which inherently reduces the effect of the
uncertain dynamic parameters, leading to a faster convergence.

We have performed further simulations on a 3R Pendubot (Fig. 5.8) with two
passive joints that must execute a swing-up maneuver to q u-u-u under perturbed
conditions similar to scenario 1. Once again convergence was achieved in 3 iterations,
a result suggesting that our method performs effectively even for higher degrees of
underactuation.
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Figure 5.8. Simulation scenario 3 (swing-up to q u-u-u): results with the proposed approach.
Three iterations are needed to achieve convergence.

5.4.2 Experimental Results

The proposed method has also been tested experimentally on our Pendubot prototype,
using again the nominal model in A.1 for planning and control design. Joint velocities
and accelerations are obtained in real-time via filtered numerical differentiation of
encoder measurements. In our prototype, the encoders have a resolution of 1/8192
for the first joint while 1/4096 for the second. To further remove the noise affecting
the learning dataset for the passive dofs, we used a non-causal Savitzky-Golay filter
to compute q̈2. It works trying to interpolate a low-degree polynomial on a moving
horizon window, a procedure that is known as convolution. Since the learning of the
passive joint is performed offline, there is no problem related to its speed or to the
non-causality.

The first experiment replicates the swing-up scenario to q u-u of Sec. 5.4.1, using
the same planning horizon of T = 1.6 s (N = 160). The results are shown in Fig. 5.9.
Only two iterations are required for our method to enter the basin of attraction
of the LQR controller. The combination of online learning of the active joint
dynamics together with the off-line re-planning of both joint trajectories, driven by
the regressor built for the passive joint dynamics, allows a successful execution of
the swing-up maneuver. When comparing the tracking errors between the single run
without learning (Fig. 5.9, first image) and the first iteration of the method (Fig. 5.9,
second image), no major changes are observed for the active joint q1, whereas the
passive joint q2 behaves quite differently toward the end of the motion. In both
cases, the error diverges (the second link falls in two opposite directions) because
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Figure 5.9. Experimental scenario 1 (swing-up to q u-u): results with the proposed approach.
For comparison, the top-left image shows the results without learning, i.e., when partial
feedback linearization and stable tracking for the first joint are computed on the nominal
model.

the currently planned trajectory is still dynamically unfeasible for the Pendubot.
Already at the second iteration (third image), the robot is correctly driven to the
basin of attraction of the desired equilibrium (the LQR stabilizer is triggered at
about t = 1.4 s). Performing a third planning-control iteration shows no significant
variation of the obtained reference trajectory and control accuracy.

Table 5.1 offers further insight on the performance in both scenarios. In particular,
it shows that the tracking accuracy for q1 does not change significantly over the
iterations, while the evolution of q2 gets increasingly closer to the planned trajectory,
as the latter approaches feasibility thanks to the model learning procedure.

Table 5.1. Tracking root mean squared error [rad] in the experiments

scenario 1 scenario 2

q1 q2 q1 q2

without learning 0.045 0.191 0.056 0.320
iteration 1 0.035 0.623 0.022 0.470
iteration 2 0.037 0.038 0.023 0.034
iteration 3 0.036 0.036 – –
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Figure 5.10. Experimental scenario 1 (swing-up to q u-u): results with the method in [104].

For comparison, Fig. 5.10 shows the experimental results obtained in this scenario
with the method of [104] under the same nominal information on the robot dynamic
model. While the active joint converges to its desired goal, the second joint oscillates
(with a light damping due to friction) without ever entering the basin of attraction
of the stabilizing controller. Therefore, we can claim that the learning procedure
makes the proposed method able to withstand a level of model uncertainty that is
not tolerated by purely model-based controllers.

The second experiment is again a swing-up scenario, but the goal is now the
down-up configuration q d-u = (0, π). The planning horizon has been set to T = 2 s
(N = 200). As shown in Fig. 5.11, also in this case the learning procedure allows to
complete the maneuver successfully after two iterations (see also the second column
in Table 5.1).

5.5 Chapter Summary

In this chapter we have proposed an iterative method for planning and controlling
motions of underactuated robots in the presence of model uncertainty, built on our
previous work described in Ch. 4. The method hinges upon a learning process which
estimates the induced perturbations on the dynamics of the active and passive dofs.
Each iteration includes an off-line planning phase and an online planning phase,
which take advantage of the learned data to improve the feasibility of the planned
trajectory and the accuracy of its tracking.

The proposed approach was validated by application to the Pendubot, a well-
known underactuated platform consisting of a 2R planar robot with a passive elbow
joint. In particular, numerical simulations of our iterative method starting with
considerable errors in the nominal dynamic parameters (±30% of the true values)
have shown that swing-up maneuvers and transfers between unstable equilibria can
be executed successfully after very few iterations. This remarkable performance was
confirmed in experimental tests on a real Pendubot. An additional simulation was
performed on a more complex 3R planar manipulator, showing that our approach
generalizes even in the case of higher dofs.

In addition to the applicability to general underactuated systems and indepen-
dence from the specific maneuver, a further aspect of our method that deserves to
be emphasized is that no torque measurement is required. In fact, only positions,
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Figure 5.11. Experimental scenario 2 (swing-up to q d-u): results with the proposed
approach. Just before the end of the second iteration the state converges to a region
where the LQR controller can be successfully activated.

velocities and accelerations must be available, so that implementation is possible
using only encoders. Another interesting feature is the possibility to incorporate con-
straints on the robot states and/or inputs in the planning phase, as well as to handle
(without any modification) also the presence of repetitive external disturbances.

With this chapter we conclude the description of our works in the field of model
learning.
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Chapter 6

Enforcing constraints over
learned policies via Nonlinear
MPC

6.1 Motivation and Contribution

Reinforcement Learning, discussed previously in Sec. 2.2, in recent years has gained
a lot of popularity in the robotics community thanks to its promise to deliver optimal
control laws learned just from data and that do not require any specialized process
of control synthesis. Nonetheless, real robotics applications pose many challenges
which, still now, are not yet completely solved by the research community, such as
the presence of continuous state spaces and control, the need for data efficiency (i.e.
minimum number of interactions with the environment) if the learning procedure is
performed directly on the robot, or in alternative the need of accurate of physics
simulator if the learning is carried out offline, and finally the necessity of imposing
state and control constraints on the final control law which can guarantee, for
example, safety conditions.

In the last two decades many efforts have been devoted to improving the effec-
tiveness of RL in robotics scenarios. Policy Search methods (Sec. 2.2.2) represent
a first attempt to overcome the issue of directly estimating the optimal cost-to-go
for each state, a problem that becomes rapidly intractable for robotics applications
given the dimension of the state and the input space. From PS, more recently other
solutions have been proposed to deal with continuous control-state space such as
Deep Deterministic Policy Gradient (DDPG) [62] and Proximal Policy Optimiza-
tion [119]. Moreover, in the literature it has been shown that PS approaches are
effectively more data-efficient with respect to value function approximation methods
(Sec. 2.2.1), and if a model of the controlled system is learned in combination with
a control policy, such as in [110], just few iterations on the real robots are usually
required to obtain a control policy which furthermore reduces to a minimum the
need of learning on a simulator.

Fewer works instead consider the problem of constraints satisfaction. In RL
this issue is usually addressed by extending the reward with a penalty term. This
approach has however several drawbacks and feasibility is not always assured. [120]
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Figure 6.1. The Pendubot performing a swing-up maneuver with the proposed approach.

proposes an actor-critic approach based on a constrained Markov decision process
formulation, which is solved by approximations. Similarly, in [121] a penalization
term is added to limit constraint violations, thus increasing the safety of the learned
policy. Another recent work [122] introduces an algorithm to learn the viability
kernel directly in the control-state space. Even though it provides an estimation
of a safety measure while learning, this procedure is conservative by construction
and might converge slowly in a large control-state space. On the other hand, from
the control community, different tools exist to deal explicitly with state and input
constraints, such as Model Predictive Control (Sec. 3.2). The possibility of including
input and state constraints in the optimization problem, together with its inherent
robustness, makes MPC one of the most successful strategies. Even though a large
number of algorithms have been developed for efficiently computing a solution, in
general, for nonlinear control problems, the use of MPC in real time is typically
not straightforward. Usually a simplified prediction model is convenient and, when
the final state is not reachable in a small time frame, the knowledge of a reference
trajectory for the entire task is required.

Many works aim at achieving better performance through the combination of
MPC with data driven approaches. One of the first attempt to combine RL and
MPC has been presented by [123], where an offline estimation of the value function
is used as a final cost in an unconstrained iterative linear quadratic regulator. [124]
propose iterative learning of a term in the objective function to incorporate long-term
reasoning into the MPC. Other works have applied data driven techniques to learn
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a predictive model for MPC [125, 126]. More recent contributions towards the
combination of MPC and RL are due to [127, 128, 129, 130].

Here we introduce an algorithm for combining MPC and RL that tries to overcome
the aforementioned issues. We propose an optimal controller based on state-of-the-art
Nonlinear MPC solvers that allow for constraints satisfaction and can be used in
real-time on challenging robotic systems. We explore how the continuous interaction
between the control policy and the MPC can take care of constraints satisfaction
in a real application scenario. The performance of our method is tested both in
simulation and experiments on a challenging underactuated robotic system, the same
used in Ch. 5, the Pendubot (see Fig. 6.1).

This chapter is organized as follows. Sec. 6.2 describes the proposed approach
going into the details of the control architecture, the RL algorithm and the NMPC
formulation. Simulation and experimental results on the Pendubot are presented in
Sec. 6.3. Finally, future developments are briefly discussed in Sec. 6.4.

6.2 The Proposed Approach
The proposed method consists of two different phases. In the first phase any RL
approach can be used to learn an offline control policy that solves the desired task.
In our case we use Deep Deterministic Policy Gradient (DDPG) from [62]. In the
second phase, once a control policy is learned, we can employ this information online
to provide guidance for an MPC. Here we define an NMPC problem and provide an
online solution using the Real-Time Iteration scheme (Sec. 3.3), which is an SQP
variant. At each time step, starting from the current state, the learned policy is
applied to a simulated robot model over a fixed prediction horizon. The resulting
control-state trajectory is passed as a reference to the cost function of the NMPC,
which allows to transfer the policy learned offline into an optimal control problem
to enforce the constraints satisfaction. Afterwards, the resulting optimal control
action is applied to the physical robot, which in turn reaches a new state where the
procedure is then restarted. A block scheme of the proposed algorithm is shown in
Fig. 6.2.

Our method is capable to find a successful solution under the assumption that
the control policy has learned a sequence of actions to accomplish the given task
at least in a subset of the feasible region. In practice, an extensive training phase
and a large exploration of the control-state space can ensure the validity of the
aforementioned hypothesis.

6.2.1 Offline Policy Learning

Let us denote with π(x) the control policy, and with uk, xk respectively the control
action and the system state defined at time k. DDPG is an actor-critic algorithm
where the control policy π(x|θπ) and the Q-value function Q(x,π(x|θQ)) are both
approximated with two neural networks, where θπ and θQ are their parameters.
The actor π, given the actual state xk, outputs a control action uk, while the critic
Q provides an estimate of the Q-value function for the pair (uk,xk). During the
offline training phase, at each time step, the agent applies an action ut = π(xk) to
the simulated robot and collects a reward rk from the environment. The generated
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Figure 6.2. Block scheme of the proposed approach. At each control step, the policy π is
queried to obtain an up-to-date trajectory.

experience represented by (xk,uk, rk,xk+1) is stacked inside the Replay Buffer
(RB), an array that contains a fixed number of elements I. To stabilize the learning
procedure, two additional copies of the actor, π′(x|θπ′) and the criticQ′(x,π(x)|θQ′)
are used in the algorithm in order to avoid abrupt changes in their value due to the
optimization routine. In fact, during training their parameters are usually transferred
to the main networks with a weighting factor αt that can be freely tuned.

DDPG alternates between updating the Q-value function and the control policy.
The learning process is performed at a fixed frequency during the exploration phase
of the agent. The update of the parameters θ = (θQ,θπ,θQ′ ,θπ′) follows the
subsequent steps: first, we randomly retrieve n samples from the RB, where n
represents the chosen batch size. For each experience i only the new state xi+1
is passed to the actor copy network π′ which returns the action ui+1. The pair
(ui+1,xi+1) is used as input to Q′ that estimates the associated Q-value. The
obtained result is then combined with the sampled experience reward ri to compute
the temporal difference, which is defined as

yi = ri + λ Q′(xi+1,π
′(xi+1|θπ

′)|θQ′),

where λ is the discount factor. The final loss L, calculated by subtracting to yi the
Q function computed over the sampled values (ui,xi) as

L = 1
n

∑
i

(yi −Q(xi,ui|θQ)2),

is then used to retrieve the gradient for the critic Q.
Finally the actor gradient π can be approximated as

∇θππ ≈ 1
n

∑
i

∇uQ(x,u|θQ)|xi,π(xi)∇θππ(x|θπ)|xi .
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Each gradient is then back-propagated to update the values of the parameters θ
with two different learning rates αa, αc (see 2.19 of Ch. 2), respectively for the actor
and for the critic. At the end of the training phase, the control policy π is obtained.
It will be used online to generate the reference trajectory for the NMPC.

During the offline policy learning phase, constraints cannot be explicitly enforced,
but their violation can only be penalized through the reward function.

6.2.2 NMPC for Online Constraints Satisfaction

NMPC is an advanced control method that uses a nonlinear dynamic model of a
system to define a finite-time constrained NLP that is solved numerically in an
iterative fashion. Let

T (xk) =
{

(uref
k ,xref

k ), k = 0, . . . , N
}

represents the control-state reference trajectory where xref
k and uref

k = π(xref
k ) are

the state and control input at k generated by forward integrating the simulation
robot model with π(·) from the initial condition xk. We formulate the NLP as

min
u0,...,uN−1
s0,...,sN

N−1∑
i=0

Js(xi,ui, si) + JN (xN )

subject to

xi+1 − f(xi,ui) = 0, i = 0 . . . , N − 1,
g(xi)− si ≤ 0, i = 1, . . . , N,

h(ui) ≤ 0, i = 0, . . . , N − 1,

with x0 = xk again the actual state of the robot. Differently from the optimization
of Sec. 4.3.3 and Sec. 5.3.1, this formulation contains a second set of variables s,
called slack variables, that can be manipulated by the solver in order to perform
constraints relaxation if the problem became unfeasible, i.e. no solution exists that
respect the actual constraints. The cost terms take the form

Js(xi,ui, si) = (xref
i − xi)>Q(xref

i − xi) + (uref
i − ui)>R(uref

i − ui) + ρ

2s
2
i ,

JN (xN ) = (xref
i − xN )>QN (xref

i − xN )

where the last term in Js(xi,ui, si) is present to minimize as much as possible
constraints relaxation. In fact, one should choose the weight ρ in order to make this
term more relevant with respect to the others to allow constraints violation only
when became strictly necessary.

It is important to notice that each time the system reaches a new state xk+1,
before solving the NMPC problem, an update of the reference control-state trajectory
is required. Hence, to generate the new trajectory, the policy π learned offline is
applied to the simulated robot. The resulting control-state trajectory T (xk+1) is
used as a reference in the cost function of the NMPC problem. Updating the
reference trajectory plays a central role in the proposed algorithm. Thus, in the
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Figure 6.3. Schematic of the Pendubot coordinate system.

event that the current reference trajectory violates the constraints, the NMPC will
drive the system away from the current reference trajectory, which will become
obsolete.

In real-time applications, the NMPC needs to be solved at every sampling instant
under tight runtime requirements. For this reason, here we employed the RTI scheme
in order to obtain a real-time control law.

6.3 Results

We tested the proposed controller on the Pendubot (Fig. 6.1), an underactuated,
planar, robotic system described previously in Ch. 5. We consider again the problem
of swinging up and balancing the robot around the up-up equilibrium starting from
the stable down-down equilibrium, while satisfying the imposed velocity constraints.
Differently from what is done in Ch. 5, in order to be compliant with our published
paper [20] and its related video, we define a coordinate system where the desired
final state is xg = (q1, q2, q̇1, q̇2) = (0, 0, 0, 0), with qi and q̇i respectively the position
and the velocity of the i-th joint (Fig. 6.3). The joint position q1 is measured with
respect to the upwards vertical axis, the angle q2 is defined relatively to the first
joint, while the start configuration is defined as xs = (q1, q2, q̇1, q̇2) = (−π, 0, 0, 0).

In the following we will describe the setup of the learning and control phases.
Moreover, we will show the behaviour of the Pendubot under two different constraint
settings, either in simulation and on the real platform. Finally, we will show that
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the continuous update of the reference trajectory is critical to successfully achieve
the desired task.

6.3.1 Offline Learning Phase

The learning of the control policy π is performed offline using the simulated robot
model described in the published version of our work [20]. Its derivation, with
the different set of generalized coordinates used in Ch. 5, can be found in the
Appendix A.1. In order to train π, a reward function must be defined. The function
used here penalizes the distance between the current state and the desired one
xg = (0, 0, 0, 0). Thus, we define the reward r(x) as

r(x) = −r1(q)− αvr2(q̇)− ατ |τ |, (6.1)

where αv = 0.1, ατ = 0.01 are weighting parameters, and r1(q) = |q1| + |q2|.
Moreover, as it is desired to have an upper limit on the joint velocities, both in
experiments and in simulations, the quantity r2(q̇) = |q̇1| + |q̇2| is introduced in
eq. (6.1). Finally, the term −ατ |τ | is used to minimize the control effort, with τ
representing the applied torque.

We optimize the control policy π on an Intel i7-4770 processor with a maximum
frequency of 3.40 GHz. The hyperparameters of DDPG were tuned by trial and
error performing different learning experiments, and were finally chosen as following

• learning late αa actor: 0.0001

• learning late αc critic: 0.0001

• discount factor λ: 0.9

• target network copy rate αt: 0.01

• layers Actor: 3

• neurons Actor: [80, 64, 1]

• layers Critic: 4

• neurons Critic: [100, 60, 60, 1]

Furthermore, all the first and hidden layers were composed by a relu activation
function (see Sec. 2.1.2), while the output layers were composed in the case of the
Critic by a linear activation, while for the Actor by a tanh postmultiplied by a
scalar. Usually the use of a tanh is a common practice in RL since it permits to
obtain a bounded control action, meaning that it cannot exceed a maximum chosen
value. In our Pendubot prototype, in fact the maximum applicable torque is 0.4
Nm. During training, just after 500 episodes which lasted approximately 1 hour, the
learned policy π was able to conclude the task performing both the swing-up and
the balancing. Moreover, we trained the system exploiting only one core of our CPU,
but usually one can cut considerably the learning time by performing a parallel
training of the agent exploiting all the CPU cores available. More recently, different
physics simulators such as [131, 132] permit to exploit even the cores of the graphics
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card (GPU), without sharing any data with the processor during training and hence
reducing greatly all the communication bottlenecks. For example, thanks to this
idea in [133] more than 4000 robots were trained in parallel on a single workstation
with just an Nvidia GPU.

6.3.2 Online Control Phase

The Pendubot system is characterized by highly nonlinear and fast dynamics, and
therefore a high frequency controller is necessary to reach the desired goal. The
proposed framework runs in real-time with a control frequency of 500 Hz. To
solve the NMPC for both the simulations and the experiments we used the ACADO
Toolkit [73], with a fixed prediction horizon of N = 10, obtaining a mean compute
time of 98.6 µs. We used an ERK4 integration scheme to discretize the nonlinear
dynamics of the system, while the weighting matrices and the slack penalty in the
cost function of the optimization problem were chosen as Q = diag(3, 3, 1, 1), R = 5,
QN = diag(3, 3, 1, 1), and ρ = 40. The simulated robot model defined in [20] is
used both within the NMPC optimization problem and for generating the desired
reference trajectory querying the policy π at each time step, which requires about
1.2 ms. The swing-up of the Pendubot can be performed either rapidly or with
an energy pumping maneuver, reaching the desired state xg through an oscillatory
motion. In both cases, when the state is close to xg, a local controller, usually based
on a linearization of the system around the final equilibrium point, can be used for
the balancing phase. To this end we implemented an LQR controller (3.1) for the
experiment on the real platform, using the same weighting matrices Q,QN and R.

Since the robot is only equipped with encoders, angular velocities are numerically
derived from position measures. Still, as explained in Ch. 5, given the high resolution
of the robot sensors we obtain a good estimation of q̇ without the need of any
filtering.

6.3.3 Simulation and Experimental Results

In this section we show the results obtained in simulation and on the real robot,
under two different constraint settings. The control policy, learned as explained in
Sec. 6.2.1, is able to solve the swing-up including the balancing phase. The maximum
velocities reached in simulation during the motion are 9.2 rad/sec and 9.8 rad/sec for
the first and second joint, respectively. For clarity, in Figs. 6.4–6.5–6.6, and Fig. 6.7,
we represent with blue lines the solution obtained with the NMPC, and with the
red dashed lines the state trajectory qπi obtained using only the control policy π.

In the first setting, we impose a symmetric velocity constraint q̇1,b = 7.2 rad/sec
on the first joint and a maximum admissible torque τ1,b = 0.4 N ·m. We compare
our approach with an NMPC where the reference trajectory obtained by the control
policy is never updated. In our case (Fig. 6.4), due to the imposed constraints the
proposed controller steers the system to new feasible states, forcing the policy to
recalculate a different trajectory, while successfully reaching the up-up configuration.
On the other hand, if an NMPC with a fixed reference trajectory is used, the robot
does not reach the desired final configuration as shown in Fig. 6.5. It is therefore
clear from these results, that recomputing the control-state trajectory at each time
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Figure 6.4. Simulation result obtained with the constraints q̇1,b = 7.2 rad/sec with our
approach.

step is crucial to successfully complete the desired task.
In the next simulation, we define a second constraints setting, with q̇1,b =

7.8 rad/sec, τ1,b = 0.4 N · m and q̇2,b = 5 rad/sec for the angular velocity of the
second joint. As shown in Fig. 6.6, our controller is still able to perform the desired
task. The maximum admissible velocity for the second joint is quickly reached,
and the final motion of the system has a larger change with respect to the solution
obtained with the first constraints setting.

Finally, we validated our approach on the real Pendubot system using a second
constraints scenario. Fig. 6.7 shows that our method is able to successfully perform
the swing-up maneuver despite the velocity constraints. In this experiment a final
LQR is used to stabilize the system around the equilibrium point, and the use of soft
constraints in the NMPC formulation becomes necessary to avoid infeasibility due
to model inaccuracies. Indeed, the introduction of slack variables determines small
constraint violations of 0.1 rad/s and 1 rad/s, respectively on the first and second
joint velocities (see Fig. 6.7). Controlling the real robot, in fact, involves additional
challenges due to model uncertainties, since both the NMPC and the policy are
unaware of the true dynamical model of the system. Hence, π will not generate
exactly a dynamically feasible trajectory, and the use of soft constraints in the NMPC
formulation becomes necessary to recover the local feasibility of the optimization
problem. Although this approach does not necessarily guarantee that the constraints
will be exactly satisfied, it does allow a new control input to be computed that will
try to minimize the violation as much as possible. Thus, the oscillatory behaviour,
that is visible on the velocity of the second joint (Fig. 6.7), depends on the effect
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Figure 6.5. Simulation result obtained with the constraints q̇1,b = 7.2 rad/sec using a
NMPC with a fixed trajectory. Given the presence of underactuation, the fixed trajectory
mechanism does not allow the completion of the task.

of the cost minimization associated with the constraints violation. Model and
parameters uncertainties, due to mechanical wear and time-varying dynamics (like
the dynamic friction induced by the sliding contacts for the encoder of link 2),
explain the difference between the results obtained in simulation and on the real
robot.

A video of the proposed experiments can be found at the following link
https://www.youtu.be/5KATfbDwKlI.

6.4 Chapter Summary
In this chapter we have presented an approach for imposing constraints to a learned
control policy. We test the proposed controller both in simulation and on a real
Pendubot robot, showing that the continuous interplay between the NMPC and the
learned policy is at the base of the constraints enforcement.

In the future, we plan to extensively study the NMPC steering capabilities. Not
every constraint can be arbitrarily imposed in the optimization problem, since no
assumption is made over the policy capability π to generate a satisfactory trajectory
in the feasible region. A possible solution will be to automatically retrieve an
index that measures the ability of the policy to accomplish the given task from
any state, relaxing the constraints when it is needed using the slack variables. A
second extension will be the improvement of the robustness over model uncertainties.
Multiple policies can be learned in simulation with different dynamical parameters,

https://www.youtube.com/watch?v=5KATfbDwKlI&ab_channel=RoboticsLabSapienza
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Figure 6.6. Simulation result obtained with the constraints q̇1,b = 7.2 rad/sec and q̇2,b = 5
rad/sec using our approach.

and the choice of the appropriate π can be recomputed online within the NMPC
formulation.
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Figure 6.7. Experimental result obtained with the constraints q̇1,b = 7.8 rad/sec, q̇2,b = 5
rad/sec. Constraints violations can be observed during motion due to the presence of
model uncertainties.
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Chapter 7

Conclusions

In this thesis we have presented three different learning-based techniques linked
to the concepts of model and control learning, applicable both in the case of fully
actuated and underactuated robots.

We started this manuscript by presenting some background materials on the field
of Machine Learning, describing some regression techniques (Gaussian Process and
Neural Network) that can be used for learning the dynamical model of the system
or part of it. In the same chapter, we described Reinforcement Learning, one of the
most promising techniques to learn a controller just from data, highlighting one of
its most important drawbacks that is the impossibility to enforce hard constraints.

We then moved to the field of Optimal Control, since most of the controllers
used in the rest of the thesis are related to this branch of Control Theory. We
described the Linear Quadratic Regulator, used for balancing the Pendubot in two
of our works, and then we illustrated Model Predictive Control, both in the linear
and nonlinear case, which is one of the few control laws able to enforce constraints
to robot motion.

Finally, in the last three chapters of this thesis, we presented our contributions in
the literature. Specifically, in Ch. 4 we have derived a feedback linearization controller
that is able to reconstruct during motion, thus online, model uncertainties, obtaining
superior performance due to a batter cancellation of the system nonlinearities. The
proposed controller is composed of a high level linear Model Predictive Controller,
applied on a simple double integrator model which is able to deal with constraints
both on the inputs and on the states, plus a learned correction term reconstructed
using the Controllability Gramian. To prove the effectiveness of our method, we
tested the proposed controller in simulation on the 7-dofs Kuka LBR robot.

In Ch. 5 we have extended the previous method in the case of underactuated
robots, systems that require specialized controllers in order to deal with the absence
of control inputs. In this case, we showed that due to model uncertainties it is
necessary not only to increase the performance of the controller but even to plan a
dynamically feasible trajectory, a strong requirement for an underactuated system
that cannot be met in the presence of uncertain dynamics. We resolved this problem
with an iterative algorithm that alternates a planning phase, solved by an SQP
method and where uncertainties on the unactuated part of the system are taken into
consideration, and a control phase where a simple PD control law plus a learned
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correction term is employed to perform stable tracking. We have shown that in just
a few iterations our method is able to solve different tasks, no matter how uncertain
is its dynamical model and independently from the dimension of the robot state
space. We tested the proposed approach both on the Pendubot, a 2R underactuated
system, and on a similar 3R underactuated manipulator with two passive joints.
Furthermore, we conducted extensive experiments in order to show the capabilities
of our method in a realistic scenario.

Finally, in Ch. 6 we have tackled the problem of constraints satisfaction in
Reinforcement Learning, which has we detailed cannot in general be hardly imposed
neither during training nor during test using standard learning techniques. We
proposed to this end a shielding mechanism composed of a fast Nonlinear Model
Predictive Control implementation (the Real Time Iteration scheme), which is able to
deviate the system from unfeasible states continuously querying the learned control
policy in order to obtain an up-to-date trajectory. In this way, we were able to
satisfy different imposed constraints at demand on the Pendubot, both in simulation
and on the real robot.
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Appendix A

Dynamic Model

The dynamics of a robot can be derived using the Lagrange formulation, starting
from the choice of a set of variables q, called the generalized coordinates, to describe
all the link positions of a manipulator. In order to compute the lagrangian, defined
as

L = T − U (A.1)

we need first to compute the kinetic energy T and the potential energy U of the
robot. For a single rigid body, T is composed by two terms

T = 1
2mv

T
c vc + 1

2Iq̇
2 (A.2)

where m, vc are respectively the mass of the link and the velocity of its center of
mass and I the body inertia. The first term in eq. (A.2) represents the absolute
velocity of the center of the mass (CoM), while the second is the absolute velocity of
the whole link. The potential energy U instead can be written as

U = −mg>p

where g = (0, 0,−g) is the gravity vector with g the force of gravity, and p is the
position of the CoM. Once we have written the energy of the system, we can proceed
computing the euler-lagrange equations, which are defined as following

d

dt

∂L
∂q̇i
− ∂L
∂qi

= ξi i = 1, . . . , n (A.3)

where n is the number of joints and ξi groups the generalized forces acting on the
system, e.g. torque and friction. The final model of a manipulator, after computing
the energy of the robot and eq. (A.3), will assume the general form

M(q)q̈ + c(q, q̇) + g(q) = τ − τ f (q, q̇), (A.4)

where M is the mass matrix, that depends only on the generalized coordinates,
c is the summation of the Coriolis and centrifugal forces while g is the gravity
vector. Finally, τ f (q, q̇) comprises the friction forces that can be dependant both
on the position and on the velocity of the chosen coordinates (viscous friction)
or just proportional to their velocity (static friction), and τ is the torque vector
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which can have some zero elements inside. If the torque inputs are less than the
generalized coordinates we talk about underactuated systems, otherwise the system
is fully-actuated or even over-actuated, e.g. as in the case of a redundant manipulator
such as the Kuka LBR iiwa used as a testbench in Ch. 4.

A.1 Pendubot model
The Pendubot is a 2R underactuated robot, with the first joint actuated while
the second passive. We can write the dynamical model choosing as generalized
coordinates q = (q1, q2) represented in Fig. 5.3, with q1 taken with respect to the
downwards vertical axis while q2 relative to the first joint. The kinetic energy of the
system takes the form of

T1 = 1
2I1q̇

2
1

T2 = 1
2m2v

T
c2vc2 + 1

2I2q̇
2
2

where Ii,mi and li are, respectively, the moment of inertia, the mass and the length
of the i-th link. Furthermore, vc2 is derivative of the position pc2 of the center of
mass of the second link, equal to

pc2 =
(
l1 sin(q1) + d2 sin(q2 + q1)
−l1 cos(q1)− d2 cos(q2 + q1)

)

vc2 =
(
l1 cos(q1)q̇1 + d2 cos(q2 + q1)(q̇2 + q̇1)
l1 sin(q1)q̇1 + d2 sin(q2 + q1)(q̇2 + q̇1)

)
where di is the distance of the center of mass of the i-th link from the center of the
i-th joint, while the potential energy is instead

U1 = −m1gd1 cos(q1)
U2 = −m2g (l1 cos(q1) + d2 cos(q2))

Computing the euler-lagrange equations (A.3) we finally arrive to the Pendubot
dynamical model below

M(q) =
(
a1 + 2a2c2 a3 + a2c2
a3 + a2c2 a3

)
c(q, q̇) =

(
a2s2q̇2(q̇2 + 2q̇1)

a2s2q̇
2
1

)

g(q) =
(
a4s1 + a5s12

a5s12

)
where we have set si = sin(qi), ci = cos(qi) and sij = sin(qi + qj) for simplicity, and
where the ai coefficients that appear in the dynamical model above are

a1 = I1 +m1d
2
1 + I2 +m2

(
l21 + d2

2

)
a2 = m2l1d2

a3 = I2 +m2d
2
2

a4 = g (m1d1 +m2l1)
a5 = gm2d2
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Finally, the dynamic and kinematic parameters of the Pendubot are listed in
Table A.1.

Table A.1. Physical parameters for the Pendubot

Parameter Value Description
m1 0.193 kg total mass of link 1
l1 0.1483 m length of link 1
d1 0.1032 m distance to the center of mass of link 1
I1 3.54 ·10−4 kg·m2 inertia moment of link 1
m2 0.073 kg total mass of link 2
l2 0.1804 m length of link 2
d2 0.1065 m distance to the center of mass of link 2
I2 2 ·10−4 kg·m2 inertia moment of link 2
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