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Abstract

This survey aims to present a comprehensive and systematic synthesis of concepts and results on the minimal state space
realization problem for positive, linear, time-invariant systems. Positive systems are systems for which the state and the output
are always non-negative for any non-negative initial state and input. They are used to model phenomena in which the variables
must take non-negative values due to the nature of the underlying physical system. Restricting the state-space realization
to positive systems makes the problem extremely different and much more difficult than that for ordinary systems. Indeed,
a minimal positive realization may have a dimension even much larger than the order of the transfer function it realizes.
Although the problem of finding a finite-dimensional positive state-space realization of a given transfer function has been
solved, the characterization of minimality for positive systems is still an open problem. This survey introduces the reader to
different aspects of the problem and presents the mathematical approaches used to tackle it as well as some relevant related
problems. Moreover, some partial results are presented. Finally, a comprehensive bibliography on positive systems, organized
by topics, is provided.
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1 Introduction

Positive systems are dynamical systems in which the
state and output variables assume positive (or at least
non-negative) values for all times, for any non-negative
initial state and non-negative input. This feature makes
positive systems an appropriate modeling tool for
dynamic phenomena whose describing variables cor-
respond to the quantities or concentrations of any
possible type of resource or substance. Consider, for
example, the Leontief model used by economists for
predicting productions and prices (Leontieff, 1951), the
Leslie model used to study age-structured population
dynamics (Leslie, 1945), and the compartmental mod-
els commonly used in physiology (Jacquez, 1985) and
epidemiology (Anderson & May, 1991), just to cite the
most known. Moreover, positive systems are commonly
used to model stochastic phenomena as well. To get a
sense of how relevant they are, it suffices to mention
the Markov Chains (Bhat, 1972), the Hidden Markov
Models (HMMs) (Rabiner, 1989), and the phase-type
distributions (O’Cinneide, 1990).

Positive systems are also remarkably useful in several
applications in very different fields of science, ranging
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from biology and medicine to civil and electronic engi-
neering. HMMs, for example, have been used in some
problems in computational biology, such as identifying
the genes of an organism from its DNA and classifying
proteins into a small number of families (see the refer-
ences in the survey by Vidyasagar (2011). Moreover, a
key issue in modeling genetic regulatory networks is the
positivity constraints on the state variables that repre-
sent the amount or concentration of some gene prod-
ucts (proteins and RNAs) (de Jong, 2002). Similarly,
the design of digital filters using technologies such as
optical components (Moslehi, Goodman, Tur, & Shaw,
1984) and Charge Coupling Devices (CCDs) (Gersho &
Gopinath, 1979) needs to take into account the positivity
constraints on the state variables of the filter that rep-
resent light intensity levels and electrical charge quanti-
ties, respectively. Finally, positive systems have shown
to be a central topic in the design of state-feedback con-
trollers to avoid over and under-shooting since a common
way to obtain this behavior is to design a closed-loop
system with a non-negative impulse response (Darbha,
2003; Bement & Jayasuriya, 2004). For example, in intel-
ligent vehicle/highway systems, traffic congestion is re-
duced by managing traffic in platoons, that is, groups of
automated vehicles following each other at a very small
distance and high-velocity (Varaiya, 1993). It has been
shown that safety, that is collision avoidance between
cars in the platoon, is guaranteed if and only if each
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controlled vehicle has a non-negative impulse response
(Lunze, 2019; Schwab & Lunze, 2022).

The systematic study of positive systems has been ini-
tiated by Luenberger (1979) who devoted an entire
chapter of his book on dynamic systems to such a class
of systems. From that time on, several contributions
dealing with the study of classic topics of system the-
ory in the positive systems setting have appeared. For
example, reachability and controllability (Bru, Coll,
Hernandez, & Sanchez, 1997; Coxson & Shapiro, 1987;
Fanti, Maione, & Turchiano, 1989, 1990; Murthy, 1986;
Rumchev & James, 1989; Valcher, 1996, 2009; Za-
slavsky, 1993; Maeda & Kodama, 1980; Ohta, Maeda,
& Kodama, 1984), observability (Back & Astolfi, 2008;
Dautrebande & Bastin, 1999; van den Hof, 1998), sta-
bility and stabilizability (De Leenheer & Aeyels, 2001,
2002; Fischer, 1997; Hinrichsen & Son, 1998a, 1998b;
Hinrichsen & Plischke, 2007; Muratori & Rinaldi, 1991;
Roszak & Davison, 2009; Son, 1995; Son & Hinrichsen,
1996), just to cite the main ones. The interested reader is
referred to the tutorial paper (Rantzer & Valcher, 2018)
for a general overview. The growing interest in positive
systems research and its pervasiveness in very different
fields of science and technology is also proved by the
multidisciplinary symposium “Positive systems: Theory
and applications (POSTA)” that was established in 2003
and has now reached its sixth edition (Benvenuti, De
Santis, & Farina, 2003; Commault & Marchand, 2006;
Bru & Romero-Vivo, 2009; Cacace, Farina, Setola, &
Germani, 2016; Lam, Chen, Liu, Zhao, & Zhang, 2018).

One of the most challenging problems investigated in the
context of positive systems is certainly the Positive Re-
alization Problem (PRP) (Benvenuti & Farina, 2004),
which consists of determining the conditions for a given
transfer function to be that of a positive system and a
positive realization when these conditions are fulfilled.
The PRP is of interest, for example, to the identification
of compartmental models and HMMs, and the design of
digital filters using optical fibers or CCDs. In more de-
tail, an important problem in the analysis of compart-
mental systems (Haddad, Chellaboina, & Hui, 2010) is
the determination of the internal structure of a com-
partmental model - specifically, the number of compart-
ments - from the impulse response obtained through an
input-output experiment (Benvenuti, De Santis, & Fa-
rina, 2002; De Santis & Farina, 2002; Maeda, Kodama,
& Kajiya, 1977). An immediate application of this prob-
lem in clinical medicine is the determination of the num-
ber of organs involved in a given tracer kinetics experi-
ment. Moreover, Picci (1978) showed that the approach
to the stochastic realization problem for HMMs, that is
the problem of determining an HMM that reproduces
the statistics of a given stationary stochastic process, is
analogous to that of a finite-dimensional linear system
and it is just a complication of the PRP. A solution can
then be found by exploiting the technique used to solve
the PRP (Anderson, 1999b; Vidyasagar, 2011). Further-

more, the implementation of a given transfer function
using optical fibers or CCDs calls for a positive real-
ization of it, since the state variables of the filter may
assume only non-negative values (Benvenuti & Farina,
1996, 2001). In general, the PRP is highly relevant in
data-driven modeling for all the dynamic phenomena in
which one wants the identified system’s variables to as-
sume only non-negative values. Indeed, it is not known
how to customize the existing identification methods to
deal with positive systems. Finally, the positive realiza-
tion theory has recently been used to investigate the
so-called Hessenberg forms of non-negative and Metzler
matrices (Grussler & Rantzer, 2022).

Although the problem of determining the existence of
a positive realization and computing it has been solved
by Anderson, Deistler, Farina, and Benvenuti (1996)
and Farina (1996), the characterization of minimality
for positive systems is still an open problem. Note that
minimality is often a key issue in applications. For ex-
ample, when implementing a filter, one wishes to reduce
space occupation and power consumption, and hence a
positive realization with minimal dimension is desirable.
Even in the case of HMMs identification, an interesting
open problem is that of determining the minimum num-
ber of states needed to realize the collection of proba-
bilities (Vidyasagar, 2011). In general, when a positive
system has to be identified from its transfer function, its
dimension (when a positive realization does exist) may
be much larger than the order of the transfer function
itself making its use impractical. In this case, identify-
ing the minimum dimension of a positive realization of
the transfer function becomes a fundamental issue.

The characterization of minimality for positive systems
is inherently different from that for general systems. In-
deed, positive systems are defined on cones rather than
linear spaces: for example, the reachable set of a pos-
itive system, that is the set of all the states that can
be reached from the origin using positive inputs, is a
cone (Farina & Rinaldi, 2000). Consequently, the well-
established methods for general linear systems cannot
be used for positive systems. In more detail, when con-
sidering linear systems, a minimal state-space realiza-
tion is both reachable and observable and its dimension
corresponds to the order of the corresponding transfer
function, and the rank of the Hankel matrix, as well. A
minimal positive realization, in contrast, may have a di-
mension larger than the order of the transfer function of
the system, i.e., it may be not jointly reachable and ob-
servable, according to the usual definition. In (Benvenuti
& Farina, 1999; Nagy & Matolcsi, 2003b) examples are
provided in which the minimal dimension of a positive
realization of a transfer function is much “larger” than
the order of the transfer function itself. Moreover, the
non-negative rank of the Hankel matrix 1 is only a lower

1 The non-negative rank of a non-negative matrix is defined
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bound for the dimension of a minimal positive realiza-
tion, and, as shown in (Benvenuti & Farina, 1998, 2006),
there are systems for which the dimension of any mini-
mal positive realization is larger than the non-negative
rank of the Hankel matrix.

Conditions for a positive realization to be minimal have
been given only for special classes of positive systems
such as the tree compartmental systems considered in
(Maeda et al., 1977) and the positive reachable systems
in (Farina, 1996b). Results for even more specific classes
of positive systems are given in (Astolfi & Colaneri, 2004;
Halmschlager & Matolcsi, 2005; Nagy & Matolcsi, 2005).
Moreover, in (Benvenuti, Farina, Anderson, & Bruyne,
2000; Benvenuti, 2013), the necessary and sufficient con-
ditions for a third-order transfer function with real poles
to have a third-order (minimal) positive realization are
given.

In general, only lower and upper bounds for the dimen-
sion of a minimal positive realization have been given to
date. Some of these bounds can be found in (Benvenuti,
2020a, 2020b; Czaja, Jaming, & Matolcsi, 2008; Had-
jicostis, 1999; Halmschlager & Matolcsi, 2005; Nagy &
Matolcsi, 2003b).

This survey aims to present a comprehensive and sys-
tematic synthesis of concepts and results on the mini-
mal positive realizations. Some other reviews on posi-
tive systems are available but they present only basic or
dated results on minimality. More precisely, some results
regarding the stability, the positive realization, and the
positive stabilization through state-feedback are sum-
marized in (Rantzer & Valcher, 2018). However, only
some very basic results on minimality are there pre-
sented. The tutorial paper (Benvenuti & Farina, 2004)
is instead devoted to illustrating in detail the results on
the PRP but only one section deals with the minimality
problem. Finally, the survey paper (Benvenuti & Farina,
2003) aimed to present specifically some results on the
minimality problem for positive realizations available at
that time. The aim of the current review is then to re-
new and increase interest in this problem by deepening
and integrating the presentations given in these previ-
ous review papers taking into account the development
of the research and results during the last twenty years.
Moreover, some hints on problems related to the char-
acterization of minimality for positive systems, such as
the NIEP and the nonnegative rank computation, will
be given.

Most of the results on minimality available in litera-
ture are related to discrete-time single input-single out-
put (SISO) systems, but a corresponding continuous-
time formulation can be easily derived (Anderson et al.,

as the smallest inner size of a factorization of the matrix as
the product of two non-negative matrices (Cohen & Roth-
blum, 1993).

1996; Benvenuti & Farina, 2002; Ohta et al., 1984; van
den Hof, 1997b). Therefore, the results for discrete-time
SISO systems are presented and discussed throughout
this paper, while those for continuos-time systems and
multi-input-multi-output (MIMO) systems are provided
in dedicated sections.

The paper is organized as follows. In Section 2, the prob-
lem is formally stated together with two examples illus-
trating the main two reasons for a minimal positive re-
alization to possibly have a dimension greater than the
order of the corresponding transfer function. Section 3
summarizes some results for low-dimensional cases and
special classes of positive systems. The results on the
possible location of the eigenvalues of non-negative real
matrices are presented in Sections 4 and 5. These re-
sults can be exploited to determine lower and upper
bounds on the minimum dimension of a positive realiza-
tion. Such bounds are provided in Section 6. The rela-
tion between the non-negative rank of the Hankel ma-
trix and the minimum dimension of a positive realiza-
tion is deepened in Section 7 and the results for the case
of continuos-time systems and MIMO systems are pre-
sented in Sections 8 and 9, respectively. A discussion on
the possible research directions is addressed in Section
10. The bibliographic section contains references related
to the general area of positive systems theory and appli-
cations. In particular, it refers to basic results on pos-
itive systems theory and their application in different
fields (economy, biology, electronics, ...), contributions
related to non-negative matrices and the non-negative
inverse eigenvalue problem, and results on the existence
and minimality of positive realizations.

2 On minimality of positive realizations

A discrete-time, time-invariant, SISO linear system of
the form

xk+1 = Axk + buk (1)

yk = cxk,

is said to be a positive system if the state and output
sequences xk and yk are non-negative at any time for
any non-negative input sequence uk and non-negative
initial state x0. In particular, positive systems exhibit a
non-negative impulse response

hk = cAk−1b, k ≥ 1. (2)

As shown in (Farina & Rinaldi, 2000; Luenberger, 1979),
the non-negativity constraint on the sequences xk and
yk is equivalent to the non-negativity constraint on the
entries of the system’s matricesA, b, and c. By definition,
The PRP consists then of the following question: given
a system with a non-negative impulse response hk, find
necessary and sufficient conditions for the existence of a
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positive system realizing it, that is of non-negative real
matrices A, b, and c satisfying (2) or, equivalently,

H(z) =
∑
k≥0

hkz
−k = c(zI −A)−1b,

where H(z) is the transfer function of the system. The
PRP has been solved by Anderson et al. (1996) and
Farina (1996) using a geometric approach. This ap-
proach is based on the result presented by Ohta et al.
(1984) and Farina and Benvenuti (1995) for continuous
and discrete-time systems, respectively. The existence
of a positive realization is cast in terms of the exis-
tence of a polyhedral cone with certain properties. In
more detail, a strictly proper rational transfer function
H(z) with a minimal (i.e., jointly reachable and observ-
able) realization {A, b, c} of dimension n has a positive
realization if and only if there exists an A-invariant
polyhedral proper cone K such that

R ⊆ K ⊆ O (3)

where 2

R = cone
([
b Ab A2b . . .

])
and

O = {x ∈ Rn|cAk−1x ≥ 0, k = 1, 2, . . .}

are the reachability and observability cone, respectively.
Knowledge of a cone K immediately yields a positive re-
alization of a dimension equal to the number of the ex-
treme rays of the cone. The necessary and sufficient con-
ditions are awkward and the interested reader is referred
to the tutorial paper (Benvenuti & Farina, 2004) for a
detailed description of the solution. The following are
“simple to state” sufficient conditions for the existence
of a positive realization 3 (Benvenuti & Farina, 2004):

Theorem 1 LetH(z) be a strictly proper rational trans-
fer function with a non-negative impulse response. Then
H(z) has a positive realization of some finite dimension
if every pole pi of the transfer function has the property
that pi/ |pi| is a root of unity. �

The problem of determining the minimum dimension of a
positive realization of a given transfer function is still an
open problem. In general, the minimum dimension may
be larger than the order of the transfer function, that is
a positive realization may not be jointly reachable and

2 The notation cone(M) indicates the closed convex cone
consisting of all non-negative linear combinations of the
columns of the matrix M .
3 The case of transfer functions with not all the poles equal
to zero is considered. In fact, as proved in (Benvenuti &
Farina, 2004), a strictly proper rational transfer function of
order n with a non-negative impulse response and with all
the poles equal to zero has a positive realization of order n.

observable. As far as is known, this may depend mainly
on two different reasons.

1) The first reason relies on the fact that the poles of
the transfer function are a subset of the eigenvalues of
the matrix A of any of its positive realizations. Hence,
the poles must be a subset of the eigenvalues of a non-
negative real matrix. As it will be clear hereinafter, the
non-negativity constraints on the entries of a matrix im-
pose some limitations on the location of its eigenvalues
and, roughly speaking, these limitations are weaker as
the dimension of the matrix increases. As a consequence,
just the location of the poles may require the dimension
of a positive realization to be larger than a minimum
threshold. The following example illustrates this point:

Example 1 Consider a transfer function with three
simple real poles equal to 1, −0.8, and −0.4, and with
a corresponding impulse response that is non-negative.
Any positive realization of such a transfer function has
necessarily a dimension not smaller than four since there
does not exist a three-dimensional non-negative real ma-
trix having those poles as eigenvalues. Indeed, the sum
of the eigenvalues of a non-negative real matrix is equal
to its trace and hence must be non-negative while the
sum of the three given poles is not. On the other hand,
there exist non-negative real matrices of size four hav-
ing the three poles among their four eigenvalues, as, for
example, the following one:

A =


0.1 0.7 0 0.2

0.7 0.1 0.2 0

0 0.2 0.1 0.7

0.2 0 0.7 0.1


�

This kind of mechanism takes into consideration only
the poles of the transfer function and allows to deter-
mine a lower bound on the minimum dimension of a pos-
itive realization, if any. To this aim, however, it is neces-
sary to know the admissible locations for the eigenvalues
of non-negative real matrices. The complete character-
ization of the spectra of non-negative real matrices is a
long-standing problem initiated at the beginning of the
20th-century with the celebrated theorem by Perron and
Frobenius (Frobenius, 1912; Perron, 1907). This prob-
lem has proved to be very difficult and it is still unsolved.
Some results on this topic, together with their applica-
tion to the minimality problem for positive realizations,
will be presented in Sections 4 and 5.

2) The second reason for which a minimal positive real-
ization may possibly have a dimension larger than the
order of the transfer function it realizes is related not
only to the non-negativity of the matrix A but also to
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that of the vectors b and c. The next example illustrates
this point:

Example 2 Consider the system with the transfer
function

H(z) =
1

z − 1
+ 4 · z + 1

z2 + 1/4
whose corresponding impulse response

hk = 1 + 8 ·
(

1

2

)k
·
(

sin
kπ

2
− 2 cos

kπ

2

)
has positive samples apart from h3 and h4 that are equal
to zero. The poles of the transfer function are equal to
1 and ± i

2 , and there exist non-negative real matrices
of size three having such poles as eigenvalues, as, for
example, the following one:

A =
1

6


2 2 +

√
3 2−

√
3

2−
√

3 2 2 +
√

3

2 +
√

3 2−
√

3 2

 .

Nevertheless, there does not exist a positive realization
of dimension three of the given transfer function. To
prove this, assume the opposite. In this case the sim-
ilarity transformation T between the positive realiza-
tion and a minimal realization {A, b, c} defines a cone
K = cone(T ) with three extreme rays. This cone should
be A-invariant and should satisfy conditions (3). Since
cA2b = h3 = 0 and cA3b = h4 = 0, the following hold:

c(b) > 0

cA(b) > 0

cA2(b) = 0

cA3(b) = 0

cAk(b) > 0

c(Ab) > 0

cA(Ab) = 0

cA2(Ab) = 0

cA3(Ab) > 0

cAk(Ab) > 0

c(A2b) = 0

cA(A2b) = 0

cA2(A2b) > 0

cA3(A2b) > 0

cAk(A2b) > 0

for k = 4, 5, . . .. Consequently, the three vectors b, Ab,
and A2b of the reachability cone R lie on different ex-
treme rays of the observability cone O. The conesR and
O are depicted in Figure 1. Then, from conditions (3),
these three vectors are necessarily extreme rays of K,
that is

K = cone
(
b, Ab,A2b

)
.

Since A3b 6∈ K, then K is not A-invariant, thus arriving
at a contradiction. Therefore, the following fourth-order
positive realization

A =


0 0 0 1/4

1 0 0 0

0 1 0 3/4

0 0 1 0

 , b =


1

0

0

0

 , cT =


5

5

0

0



Figure 1. The containment relation between the reachability
cone R = cone

(
b, Ab,A2b, A3b

)
(gray) and the observability

cone O (blue) for the system considered in Example 2.

is minimal as a positive system. This property remains
true for all the third-order transfer functions with an im-
pulse response that is always positive apart from h3 =
h4 = 0. For example, the same result has been proved
for a transfer function with three positive real poles in
(Benvenuti & Farina, 1999). This last example has been
generalized by Nagy and Matolcsi (2003b) using a di-
graph approach by considering non-negative impulse re-
sponses for which there exists a time instant at which the
impulse response is equal to zero and becomes strictly
positive from that time on. �

The first reason, which relies only on the location in the
complex plane of the poles of the transfer function, has
been studied by exploiting the results on the eigenval-
ues of non-negative real matrices. The results of these
studies consist mainly in lower and upper bounds on the
minimum dimension of a positive realization. They are
illustrated in Section 6. As expected, the second reason
has proved to be harder to analyze and only partial re-
sults are available. To date, no general method to deter-
mine the minimum dimension of a positive realization
exists. As a consequence, the available results mainly
consist of evaluating the circumstances under which a
given transfer function of order n has a positive realiza-
tion of dimension n, which is then minimal. Since even
this problem proved to be very difficult, only seemingly
small results have been obtained for n ≤ 3 or by consid-
ering particular classes of transfer functions and systems.
These results are presented in the following section.

3 Special results

In the next subsection, some results on the positive min-
imality problem are given by restricting to the case of
transfer functions up to the third-order. To this end,
note that the non-negativity of the impulse response hk
implies some limitations on the location of the poles of
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Figure 2. Planar section of the sets σ1, σ2, σ3, and of the set
σ = σ1 ∪ σ2 ∪ σ3.

the corresponding transfer function H(z). In particular,
non-negativity in the long term implies that one of the
dominant poles ofH(z), i.e., the poles of maximum mod-
ulus, is positive real and has the maximal multiplicity
among all the dominant poles.

3.1 Low dimensional results

The case of transfer functions of degree one or two has
been solved by Ohta et al. (1984). In these cases, the
non-negativity of the impulse response is the necessary
and sufficient condition for the existence of a (minimal)
positive realization of a dimension equal to the order of
the transfer function itself.

Consider then the case of a third-order transfer function
with distinct real poles, i.e.,

H(z) =
r1

z − p1
+

r2
z − p2

+
r3

z − p3
(4)

with r1, r2, r3 6= 0. As stated above, when looking for
a (minimal) three-dimensional positive realization of
H(z), there is no loss of generality in assuming one of
the poles of maximum modulus, say p1, to be positive
real and the sum of the poles to be non-negative. These
are effectively the necessary and sufficient conditions
for the three poles to be the spectrum of a non-negative
real matrix of dimension three (see Section 5.2). The set
σ defined by these conditions is a polyhedral cone and
can be divided into three subsets as follows:

(1) σ1 = {{p1, p2, p3} ∈ σ | p2 + p3 ≥ 0}
(2) σ2 = {{p1, p2, p3} ∈ σ | (p2 + p3 < 0) ∧ (p2p3 ≥ 0)}
(3) σ3 = {{p1, p2, p3} ∈ σ | (p2 + p3 < 0) ∧ (p2p3 < 0)}

The subsets σi are solid and pointed cones and their
sections with the plane p1 = const are shown in Figure
2.

The next two theorems provide necessary and sufficient
conditions for a transfer function H(z) as in (4) with
poles in the sets σ1 or σ2 to have a (minimal) positive
realization of dimension three. These conditions are ex-
pressed in terms of lower bounds for the first three sam-
ples of the impulse response and therefore are very easy
to check. Moreover, the a priori knowledge about non-
negativity of the whole impulse response is not required
so that there is no need to check such condition before
applying the theorems. Indeed, the satisfaction of the
conditions of the theorems implies the non-negativity of
the whole impulse response. These results are presented
in (Benvenuti, 2013) and are an extension of a previous
result for transfer functions with distinct real positive
poles by Benvenuti et al. (2000).

Theorem 2 Let H(z) be a strictly proper rational third-
order transfer function as in (4) with distinct real poles
{p1, p2, p3} ∈ σ1. Then, H(z) has a third-order positive
realization if and only if the following conditions hold:

(1) h1 ≥ 0
(2) h2 ≥ θh2(h1)
(3) h3 ≥ θh3(h1, h2)

where

θh2
(h1)=

Kh1, if p21 + p22 + p23 < 2(p1p2 + p1p3 + p2p3)

0, otherwise

θh3(h1, h2)=


(p2 + p3)h2 − p2p3h1, if

h2
h1
≥ min(p2, p3)

h22
h1

otherwise

with

K =
p1 + p2 + p3 − 2

√
(p2 − p3)2 + (p1 − p2)(p1 − p3)

3

�

Theorem 3 Let H(z) be a strictly proper rational third-
order transfer function as in (4) with distinct real poles
{p1, p2, p3} ∈ σ2. Then, H(z) has a third–order positive
realization if and only if the following conditions hold:

(1) h1 ≥ 0
(2) h2 ≥ 0
(3) h3 ≥ 0 �

The case of transfer functions with poles lying in the
set σ3 is still open but sufficient conditions for the ex-
istence of a (minimal) third-order positive realization
are given in (Benvenuti, 2013). The case of third-order
transfer functions with a pair of complex poles is open as
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well. However, some results can be found in (Benvenuti,
2020b; Sun, Yu, Yu, & Wang, 2006; Wang, Wang, Yu, &
Liu, 2004). In particular, some sufficient conditions for
the existence of a (minimal) third-order positive realiza-
tion are given in (Sun et al., 2006; Wang et al., 2004)
while an upper bound on the dimension of a positive re-
alization is provided in (Benvenuti, 2020b) (see Theorem
11 hereinafter).

3.2 Classes of systems with a minimal positive realiza-
tion

Some results of the minimality problem for transfer func-
tions of order greater than three have been obtained by
considering particular classes of transfer function or by
restricting the set of realizing positive systems.

The case of discrete-time positive linear systems having
the non-negative orthant reachable from the origin in a
finite time interval with non-negative inputs is consid-
ered by Farina (1996b). In this case, the minimum di-
mension of a positive realization may be larger than the
order of the transfer function and can be obtained us-
ing a simple iterative procedure and by solving a set of
linear equalities with non-negativity constraints.

The class of discrete-time positive systems having a di-
agonal matrix A is considered by Astolfi and Colaneri
(2004). The necessary and sufficient conditions for a
transfer function to have such kind of positive realization
are that it is minimum phase and with non-negative real
and interlaced poles and zeros. In this case, the trans-
fer function describes a system composed of the paral-
lel interconnection of one-dimensional subsystems with
distinct poles. Moreover, the number of subsystems is
equal to the order of the transfer function, and hence the
positive realization results to have minimal dimension.
Further results, presented in (Astolfi & Colaneri, 2004),
are related to transfer functions of the form

H(z) =
1

(z − p1)(z − p2) · · · (z − pn)
,

with n non-negative real distinct poles. In this case, the
transfer function admits a (minimal) positive realization
of dimension n. The same result holds if the transfer
function is asymptotically stable, has only one zero ζ
such that

0 ≤ ζ < min
i=1,...,n

pi

and has a positive high frequency gain.

Halmschlager and Matolcsi (2005) consider the class of
transfer functions with non-negative real distinct poles
of the form:

H(z) =
r1

z − p1
+

r2
z − p2

+ . . .+
rn

z − pn

where 0 ≤ pi < p1 and ri < 0, for i = 2, . . . , n. The
necessary and sufficient condition for H(z) to have a
(minimal) positive realization of dimension n is that

r1 + r2 + . . .+ rn ≥ 0

This result has been extended in (Nagy & Matolcsi,
2005) to the case of transfer functions with non-negative
real distinct multiple poles. In particular, the class of
transfer functions of the form

H(z) =
r1

z − p1
+

h∑
i=2

li∑
k=1

ri,k
(z − pi)k

with r1 > 0, and 0 ≤ pi < p1 for i = 2, . . . , h, is con-
sidered. If r1 is sufficiently large, then H(z) has a (mini-
mal) positive realization of dimension equal to the order
n = 1 + l2 + l3 + . . .+ ln of the transfer function.

4 Dominant poles do matter

In this section, some results related to the eigenvalue
locations for non-negative real matrices are presented.
Since the matrix A of a positive system is non-negative,
these results can be used to characterize the eigenvalue
locations for positive systems and, as discussed in Sec-
tion 2, may give reasons for a minimal positive real-
ization to be not jointly reachable and observable. As
noted above, the non-negativity of the impulse response
hk implies one of the dominant poles of the correspond-
ing transfer function H(z) to be positive real. Moreover,
as shown in (Anderson, 1997), if the transfer function
has a positive realization, its poles of maximum modulus
must be a subset of the allowed eigenvalues of maximum
modulus of a non-negative real matrix. Finally, the pos-
itive real dominant pole must coincide with the spectral
radius ρ(A) of the matrix A of any minimal positive re-
alization, (Anderson et al., 1996). Then, a lower bound
on the dimension of a minimal positive realization of a
transfer function, if any, is given by the minimum size
of a non-negative real matrix A having the poles of the
transfer function in its spectrum and with a spectral ra-
dius ρ(A) equal to the positive real dominant pole of the
transfer function itself.

The first result on the eigenvalues of non-negative real
matrices is due to Perron and Frobenius (Frobenius,
1912; Perron, 1907). It concerns non-negative irre-
ducible matrices, that is matrices that cannot be writ-
ten in an upper-triangular block form by simultaneous
row/column permutations. This result mainly defines
some properties of the dominant eigenvalues and the
corresponding eigenvectors of the matrix. The following
formulation disregards the properties of the eigenvec-
tors:

Theorem 4 The dominant eigenvalues of an irreducible
non-negative real matrix A of size n are all the roots of

7



(a) (b) (c)

Figure 3. Admissible configurations of the dominant eigen-
values (black dots) of an irreducible non-negative real ma-
trix of size three. All the eigenvalues are simple roots of the
characteristic polynomial.

λk − ρ(A)k = 0 for some positive value k ≤ n. Each of
the dominant eigenvalues is a simple root of the char-
acteristic polynomial and, in particular, one of them is
positive real. Moreover, the spectrum of the matrix is in-
variant under the rotation of the complex plane by the
angle 2π/k. �

Figure 3 shows the admissible configurations of the dom-
inant eigenvalues of an irreducible non-negative real ma-
trix of size three. These configurations correspond, for
example, to the following matrices with unitary spectral
radius:

(a) :


0 1 0

0 0 1

1/4
3/4 0

, (b) :


0 1 0

0 0 1

1/2
1/2 0

, (c) :


0 1 0

0 0 1

1 0 0

.

The Perron–Frobenius theorem does not apply directly
to general non-negative real matrices. Nevertheless, any
non-negative real matrix A may be written in an upper-
triangular block form where each block is a square non-
negative matrix that is either irreducible or zero. Hence,
the spectrum of A is just the union of the spectra of
the blocks. Therefore, the following limitations on the
location of the dominant eigenvalues hold:

Theorem 5 The dominant eigenvalues of a non-
negative real matrix A of size n are all the roots of
λki − ρ(A)ki = 0 for some positive values ki ≤ n such
that

∑
i ki ≤ n. In particular, if A is not nilpotent, one

of the dominant eigenvalues is positive real and has max-
imal multiplicity among all the dominant eigenvalues. �

For example, a non-negative real matrix of size three
may have more admissible configurations for the domi-
nant eigenvalues than those depicted in Figure 3. These
additional configurations refer to the case in which the
matrix is reducible and are depicted in Figure 4. In this
case, the dominant eigenvalues can be multiple roots of
the characteristic polynomial. The configurations corre-
spond, for example, to the following matrices with uni-

(d) (e) (f)

Figure 4. Further admissible configurations of the dominant
eigenvalues (black dots) of a non-negative real matrix of size
three. Numbers indicate the multiplicity of the eigenvalues
as roots of the characteristic polynomial.

tary spectral radius:

(d) :


0 1 ∗
1 0 ∗
0 0 1

 , (e) :


1 ∗ ∗
0 1 ∗
0 0 1



(f) :


0 1 ∗

1/2
1/2 ∗

0 0 1

 or


1 ∗ ∗
0 1 ∗
0 0 1/2


where the asterisk denotes a non-negative entry. Note
that the dominant eigenvalues of a reducible non-
negative real matrix may have the configurations (a)
and (b) of Figure 3 as well, but not the configuration (c).

From Theorem 5, it follows that if a transfer function
has a positive realization, then its dominant poles are
among the r-th roots of ρr for some positive integer r,
where ρ is the modulus of the dominant poles.

The limitation on the location of the dominant eigenval-
ues may “raise” the dimension of minimal positive real-
izations as illustrated in the following example (Förster
& Nagy, 1998):

Example 3 Consider a transfer function with three
simple poles equal to 1 and e±2πi/q, and with a corre-
sponding impulse response that is non-negative. From
Theorem 4 it follows that any non-negative matrix hav-
ing these poles as eigenvalues must have also as eigen-
values all the q-th roots of unity. Hence, any minimal
positive realization of such a transfer function has a di-
mension not lesser than q. �

Based on the above results, it is possible to determine the
minimum size of a non-negative real matrix A having all
the dominant poles of a given transfer function among
its dominant eigenvalues. To this end, denote by Rk the
set of all the k–th roots of unity and by Pk that of all
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Figure 5. The set Rk of all the k-th roots of unity (both
black and white dots) and the set Pk of all the primitive
ones (black dots only) for k = 2, . . . , 7.

the primitive ones 4 . These sets are depicted in Figure 5
for k = 2, . . . , 7.

The next theorem is given in (Benvenuti, 2020c):

Theorem 6 LetH(z) be a strictly proper rational trans-
fer function with a non-negative impulse response. Let
D be the set of its dominant poles p1, . . . , pn with cor-
responding multiplicity m(p1), . . . ,m(pn). Denote by ρ
their modulus and assume that they are among the r-th
roots of ρr for some positive integer r. Then the mini-
mum size ND of a non-negative real matrix with a spec-
tral radius equal to ρ and having all the dominant poles
among its dominant eigenvalues is equal to 5 :

ND =
∑
h|r

h ·mRh

where mRh
is recursively defined as follows:

- if h = r, then mRr = mPr ;
- if h is a proper divisor of r, then

mRh
= max{0,mPh

−
∑
h|k|r
k 6=h

mRk
}

with

mPh
=

{
0, if @pi ∈ D : pi/ρ ∈ Ph
max{m(pi) : pi ∈ D and pi/ρ ∈ Ph}, otherwise

4 A k–th root of unity z is said to be primitive if it is not
an h–th root of unity for some smaller h, that is if zk = 1
and zh 6= 1 for h = 1, 2, . . . , k − 1.
5 As usual, the notation h|k means that h goes through all
the positive divisors of k, including 1 and k. Similarly, the
notation h|k|r means that k goes through all the positive
divisors of r that are multiples of h.

�

The following examples illustrate the result given in The-
orem 6:

Example 4 Consider a transfer function with (domi-
nant) simple poles equal to 1, −1, and e±2πi/3. The lo-
cation of the poles in the complex plane is depicted in
the left picture of Figure 6. The minimum size of an ir-
reducible non-negative real matrix having all the given
poles among its dominant eigenvalue is six. But when
considering reducible matrices, this size reduces to five,
as, for example,

A =

(
C2 0

0 C3

)

where Ch is the basic circulant matrix of dimension h.
In fact, in this case, r = 6, mP6

= 0, and mP3
= mP2

=
mP1

= 1. Hence,

mR6
= mP6

= 0;

mR3 = max{0,mP3 −mR6} = 1;

mR2
= max{0,mP2

−mR6
} = 1;

mR1 = max{0,mP1 −mR2 −mR3 −mR6} = 0.

Consequently, a non-negative real matrix with unitary
spectral radius and having all the given poles as domi-
nant eigenvalues must have a size at least equal to 5. �

A more elaborated example is the following:

Example 5 Consider a transfer function with (domi-
nant) poles equal to 1 with multiplicity 6, e±2πi/3 with
multiplicity 3, ±i with multiplicity 2, and −1, e±πi/3,
e±πi/4 with multiplicity 1. The location of the poles in
the complex plane, together with their multiplicities,
is depicted in the right picture of Figure 6. To com-
pute the size of the matrix A provided by Theorem 6
note that, in this case, r = 24 and mP24 = mP12 = 0,
mP8 = mP6 = 1, mP4 = 2, mP3 = 3, mP2 = 1, and
mP1 = 6. Hence, the values of the mRh

’s can be recur-
sively computed, for h|24, as follows:

mR24 = mP24 = 0;

mR12
= max{0,mP12

−mR24
} = 0;

mR8 = max{0,mP8 −mR24} = 1;

mR6
= max{0,mP6

−mR12
−mR24

} = 1;

mR4
= max{0,mP4

−mR8
−mR12

−mR24
} = 1;

mR3
= max{0,mP3

−mR6
−mR12

−mR24
} = 2;

mR2
= max{0,mP2

−mR4
−mR6

−mR8
−mR12

−mR24
} = 0;

mR1
= max{0,mP1

−mR2
−mR3

−mR4
−mR6

−
mR8 −mR12 −mR24} = 1;

9



Figure 6. Pole locations for the transfer functions in Exam-
ples 4 and 5.

Consequently, a non-negative real matrix with unitary
spectral radius and having all the given poles as domi-
nant eigenvalues must have a size at least equal to

ND =
∑
h|24

h ·mRh
= 25

Such a matrix is, for example, the following one:

A =



C8 0 0 0 0 0

0 C6 0 0 0 0

0 0 C4 0 0 0

0 0 0 C3 0 0

0 0 0 0 C3 0

0 0 0 0 0 C1


.

�

5 Non–dominant poles matter too

It is interesting to note that also the non-dominant poles
of the transfer function may play a role in increasing
the size of the matrix A, for example, due to the rota-
tional symmetry of the spectrum defined in the Perron–
Frobenius theorem:

Example 6 Consider a transfer function with three
simple poles equal to 1, −1, and −0.5, and with a cor-
responding impulse response that is non-negative. Also
in this case, any minimal positive realization of such
a transfer function has a dimension not smaller than
four. In fact, from Theorem 4, the spectrum of any non-
negative real matrix having these poles as dominant
eigenvalues must be invariant under the rotation of the
complex plane by the angle π and, consequently, must
also contain an eigenvalue equal to 0.5 6 . �

6 This result, in this case, can be obtained also by using the
same argument of Example 1.

The limitations imposed by the non-negativity of a ma-
trix on its whole spectrum have been completely charac-
terized only for matrices of small dimensions. A partial
characterization is given by the solution of the so-called
Stochastic Inverse Single Eigenvalue Problem, that is
the determination of which individual complex numbers
occur in the spectra of non-negative real matrices. The
complete characterization is instead known as the Non-
negative Inverse Eigenvalue Problem (NIEP) and con-
sists of determining which lists of n complex numbers
occur as the eigenvalues of some n-dimensional non-
negative real matrix. A solution to this problem is known
only for n ≤ 4, although there have been important re-
sults for several variations of the problem that consider
special classes of matrices or lists of numbers. For ex-
ample, the doubly stochastic NIEP (DS-NIEP) restricts
the question to matrices with both row and column uni-
tary sums, while the real NIEP (R-NIEP) to real spec-
tra. Some results related to these problems are presented
hereinafter.

5.1 The Stochastic Inverse Single Eigenvalue Problem

Kolmogorov (1937) posed the problem of characterizing
the subset of the complex plane, denoted by Θn, con-
sisting of the individual eigenvalues of all n-dimensional
stochastic matrices. Such a characterization implies that
of the region Θn(ρ), consisting of the eigenvalues of n-
dimensional non-negative real matrices with a spectral
radius equal to ρ. In fact, as shown in (Minc, 1987),

Θn(ρ) = ρ ·Θn = {ρz : z ∈ Θn}.

The sets Θn were characterized by Karpelevič (1951) af-
ter a partial result by Dmitriev and Dynkin (1946). The
Karpelevič result is unwieldy, but simplifications were
given by Dokovič (1990) and Ito (1997). Moreover, re-
cently, Johnson and Paparella (2017) provided parame-
terized stochastic matrices realizing the borders of these
regions. The interested reader may refer to (Mirsky,
1963) for references to the earlier literature on this topic
and Chapter XIII of (Gantmacher, 1959). The following
theorem (Ito, 1997) is the characterization of the sets
Θn:

Theorem 7 The region Θn is symmetric relative to the
real axis, is included in the disc |z| ≤ 1, and intersects the
circle |z| = 1 at points e2πia/b, where a and b run over the
relatively prime integers satisfying 0 ≤ a ≤ b ≤ n. The
boundary of Θn consists of these points and of curvilinear
arcs connecting them in circular order. Let the endpoints
of an arc be e2πia1/b1 and e2πia2/b2 (b1 ≤ b2). Each of
these arcs is given by the following parametric equation:

zb2(zb1 − s)[n/b1] = (1− s)[n/b1]zb1 [n/b1]

where the real parameter s runs over the interval 0 ≤ s ≤
1 and [x] denotes the nearest integer to x. �
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Figure 7. The Karpelevič regions Θ3 (upper left), Θ4 (upper
right), Θ5 (lower left), and Θ6 (lower right).

For the sake of illustration, the regions Θ3, Θ4, Θ5, and
Θ6 are depicted in Figure 7.

The following example shows how these regions may play
a role in increasing the minimum dimension of a positive
realization:

Example 7 Consider a transfer function with three
simple poles equal to 1 and ±0.9 i, and with a corre-
sponding impulse response that is non-negative. As one
can easily check from Figure 7, the poles ±0.9 i lie out-
side Θ3, and hence any minimal positive realization of
such a transfer function has a dimension not smaller
than four. Note that, in this case, the sum of the poles
is positive and the dominant pole is unique so that no
symmetry of the dominant spectrum is required by the
Perron–Frobenius theorem. �

As the example makes clear, the location of the poles
of the transfer function must be consistent with the
Karpelevič regions and this allows to define the follow-
ing basal lower bound for the minimum dimension of a
positive realization (Benvenuti & Farina, 2004):

Theorem 8 LetH(z) be a strictly proper rational trans-
fer function of order n with non-negative impulse re-
sponse and n poles p1, . . . , pn. Denote by ρ the modulus
of the dominant poles of the transfer function. Then, the
minimum dimension of a positive realization of H(z) is
not less than max{n,N} where N is the minimal value
such that pi ∈ ΘN (ρ) for any i = 1, . . . , n. �

5.2 The Non-negative Inverse Eigenvalue Problem

The NIEP is the problem of characterizing all possible
spectra of non-negative real matrices, that is, determin-
ing the necessary and sufficient conditions for a given list
of n complex numbers, λ1, . . . , λn, to be the spectrum
of a non-negative real matrix A of size n. This prob-
lem was formulated in its present form by Sulěımanova
(1949) and a complete solution is known only for matri-
ces of dimension n ≤ 4. Some necessary conditions on
the numbers of the list can be derived by the Perron-
Frobenius theorem and by the fact that the matrix is
real and non-negative 7 :

1) the list has to be closed under complex conjugation;
2) it must contain a positive real number greater than or

equal to the modulus of any other number of the list;
3) the k-th moment sk of the list, defined as

sk =

n∑
i=1

λki ,

must be non-negative for all k ≥ 1.

Further necessary conditions are more subtle. It is worth
citing those noticed independently by Johnson (1981)
and Loewy and London (1978) that follow from the
fact that every power of a non-negative matrix is non-
negative and that positive diagonal entries must con-
tribute to positive diagonal entries in powers:

smk ≤ nm−1skm, k,m = 1, 2, . . .

It is easy to prove that, in some cases, some necessary
conditions result to be also sufficient. This is the case of
conditions 1 and 2 for lists of two numbers, and condi-
tions 2 and 3 with k = 1, for lists of three or four real
numbers (Perfect, 1952; Loewy & London, 1978). The
case of lists of three numbers (not all real) was solved
by Loewy and London (1978). The geometric interpreta-
tion of this result corresponds to the result of Dmitriev
and Dynkin (1946), that is the region Θ3(ρ).

The solution to the case n = 4 for a list of not all real
numbers is presented by Torre Mayo, Abril-Raymundo,
Alarcia-Estévez, Marijuán, and Pisonero (2007) using in-
equalities on the coefficients of the characteristic polyno-
mial of the matrix. The conditions are very unwieldy, but
their geometrical representation was recently given by
Benvenuti (2014). This representation provides the sets
N (λ) of possible locations in the complex plane of the
pair of complex numbers that together with 1 and λ, with
−1 ≤ λ ≤ 1, are the spectrum of some four-dimensional

7 In what follows the trivial case of a list of n zeros, which
is the spectrum of a nilpotent non-negative real matrix of
dimension n, is not considered
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Figure 8. The sets N (−0.5) (left) and N (0.5) (right) and the
set Θ4 (grey)

non-negative matrix with unitary spectral radius. For
the sake of illustration, the setsN (−0.5) andN (0.5) are
depicted in Figure 8. By definition N (λ) ⊂ Θ4 for all
λ ∈ [−1, 1] and ⋃

λ∈[1,1]

N (λ) = Θ4

The available solutions of the NIEP provide further in-
sight into the minimality problem for positive realiza-
tions. The following example illustrates this point:

Example 8 Consider a transfer function with four sim-
ple poles equal to 1, 0.5, and ±0.7 i, and with a cor-
responding impulse response that is non-negative. Al-
though the sum of the poles is non-negative and all of
them lie in the Karpelevič region Θ4, any minimal posi-
tive realization of such a transfer function has a dimen-
sion not smaller than five. In fact, as Figure 8 makes
clear, the pair of complex poles ±0.7 i lie outside the
region N (0.5), and hence there does not exist a non-
negative real matrix of size four having these four poles
as eigenvalues. On the contrary, if the poles were equal to
1, −0.5, and ±0.7 i one could not exclude the existence
of a positive realization of dimension four, being the pair
of complex poles ±0.7 i inside the region N (−0.5). In-
deed, a non-negative real matrix of size four with the
given eigenvalues is, for example, the following:

A =


0 1 0 0

0 0 1 0

0 0 0 1

0.245 0.245 0.01 0.5


�

Several sufficient conditions together with a map of in-
clusion or independence relations between them can be
found in (Marijuan, Pisonero, & Soto, 2007, 2017). The
interested reader may find more details and references

on the NIEP in the survey paper (Johnson, Marijuán,
Paparella, & Pisonero, 2018).

6 Bounds on the dimension

As illustrated in the previous sections, even considering
only the limitations imposed by the non-negativity of
the matrix A of a positive realization, determining its
minimum dimension seems to be a very hard task. In-
deed, this problem results to be a variant of the NIEP
(Benvenuti, 2020c) that is a long-standing, hard, and
sought-after problem, perhaps the hardest in matrix
analysis (Johnson et al., 2018).

A lower bound to the dimension of a minimal positive
realization was proposed by Hadjicostis (1999). The key
idea is that of determining the minimum number of
eigenvalues that the matrix A must have, beyond the
poles of the transfer function, to fulfill the necessary con-
dition 3) of the NIEP for k = 1. This bound has been
recently refined by Benvenuti (2020a) by adding the con-
dition on the minimum number of dominant eigenvalues
given in Theorem 6:

Theorem 9 LetH(z) be a strictly proper rational trans-
fer function with a non-negative impulse response and
having n poles p1, . . . , pn, with corresponding multiplicity
m(p1), . . . ,m(pn). Denote by ρ the modulus of the dom-
inant poles of the transfer function and assume they are
among the r-th roots of ρr for some positive integer r.
Then, the minimum dimension of a positive realization
of H(z), if any, is not less than

ND +
∑
|pi|<ρ

m(pi) + ζ

with

ζ =

⌈
−
∑
|pi|<ρ

pi/ρ ·m(pi)−mR1

⌉
if ∑

|pi|<ρ

pi ·m(pi) + ρ ·mR1
< 0,

and ζ = 0 otherwise, and where ND and mR1 are those
defined in Theorem 6. �

The following example illustrates the result of the theo-
rem:

Example 9 Consider the strictly proper rational trans-
fer function

H(z) =
1

z − 1
+

0.1

z + 1
+

0.2z + 0.1

z2 + z + 1
+

0.4

z − 0.3
− 1

z − 0.1

− 0.3

z − 0.2
+

0.1

z + 0.5
+

−0.1z + 0.1

z2 + 1.141z + 0.36
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whose impulse response is non-negative. The dominant
poles of H(z) are equal to 1, −1 and e±2πi/3. Conse-
quently, as shown in Example 4, ND = 5 and mR1 = 0.
Moreover, ζ = 2 given that∑
|pi|<1

pi·m(pi) = 0.3+0.1+0.2−0.5−2·0.5706 = −1.0412.

Hence, any minimal positive realization of H(z) has a
dimension not less than

ND +
∑
|pi|<ρ

m(pi) + ζ = 5 + 6 + 2 = 13.

�

Another lower bound is given in (Nagy & Matolcsi,
2003b) for a very special class of transfer functions, i.e.,
those for which there exists a time instant at which the
non-negative impulse response is equal to zero and is
strictly positive from that instant onward. This bound
is obtained by using digraph techniques and extends a
previous result by Benvenuti and Farina (1999) by using
a geometric approach. An improvement on this result is
given by Czaja et al. (2008).

Bounding from above the dimension of a minimal pos-
itive realization of a given transfer function is a more
difficult task than defining a lower bound. Indeed, while
a lower bound may be determined by taking into ac-
count only the non-negativity constraints on the entries
of the matrix A of the realization, the definition of an
upper bound requires the construction of a positive real-
ization and hence must consider also the non-negativity
constraints on the vectors b and c.

An upper bound on the dimension of a minimal realiza-
tion of a transfer function with only real and simple poles
was provided by Hadjicostis (1999). This result was im-
proved by Halmschlager and Matolcsi (2005) as follows:

Theorem 10 Let H(z) be a strictly proper rational
transfer function of the form:

H(z) =
r1

z − ρ
+

N1+N2+N3∑
j=1

rj
z − pj

with a simple dominant real pole of modulus ρ, N1 non-
negative real and simple non-dominant poles with positive
residue, N2 non-negative real and simple non-dominant
poles with negative residue, and N3 negative real and
simple non-dominant poles. Assume thatH(z) has a non-
negative impulse response. Then H(z) has a minimal
positive realization of dimension not greater than

N + 1 +N1 +N2 + 2N3

Figure 9. The Karpelevič regions Θ4 (left) and Θ5 (right)

and the corresponding approximations Θ̃4 = Π3 ∪ Π4 and

Θ̃5 = Π3 ∪Π4 ∪Π5.

where N denotes the smallest positive integer such that

N1+N2+N3∑
j=N1+1

|rj | · |pj |N ≤ r1 · ρN

�

The key idea is that of decomposing the impulse response
into the sum of appropriate non-negative sequences for
which a positive realization of “reduced” dimension is
known and then combine these realizations. The next
theorem (Benvenuti, 2020b) is used to deal with the pairs
of complex poles. In this theorem, the Karpelevič regions
Θn are approximated from below through the polygons
Πk, i.e., regular polygons with k edges, having one vertex
in the point (1, 0) and center in the origin of the complex
plane, as follows:

Θn ⊃ Θ̃n =

n⋃
k=3

Πk.

Note that Θ̃3 = int(Θ3) while the accuracy of the ap-
proximation for k > 3 is shown, for example, in Figure
9 for n = 4 and 5.

Theorem 11 Let

H(z) =
r1

z − p1
+

r11z + r12
z2 − (2σ cos θ) z + σ2

be a third-order strictly proper rational transfer function
with a pair of complex poles ρe±iθ, with 0 < σ ≤ p1 and
0 < θ < π. Denote by m a positive integer such that the
complex poles of H(z) satisfy σ/p1 ∈ Πm. If

ξ1 =

√
r211σ

2 + r212 + 2r11r12σ cos θ

σ sin θ
≤ r1,

then H(z) has a positive realization of dimension m. �
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The following theorem, which is a restatement of a re-
sult provided in (Benvenuti, 2020b), makes use of the
previous result and Theorem 6 to extend the result of
Theorem 10 to the case of transfer functions with pos-
sibly complex poles. It provides an upper bound on the
dimension of a minimal positive realization of a given
transfer function with simple poles:

Theorem 12 Let H(z) be a strictly proper rational
transfer function of the form:

H(z) =
r1

z − ρ
+

r′1
z + ρ

+

N1∑
k=1

rk1z + rk2
z2 − (2ρ cos θk) z + ρ2

+

N2+N3+N4∑
j=1

rj
z − pj

+

N1+N5∑
h=N1+1

rh1z + rh2
z2 − (2σh cos θh) z + σ2

h

with 2 + 2N1 (or 1 + 2N1 if r′1 = 0) simple dominant
poles of modulus ρ, N2 non-negative real and simple
non-dominant poles with positive residue, N3 non-
negative real and simple non-dominant poles with nega-
tive residue, N4 negative real and simple non-dominant
poles, N5 pairs of complex and simple non-dominant
poles. Assume that H(z) has a non-negative impulse re-
sponse and its dominant poles are among the r-th roots
of ρr for some positive integer r. If

|r′1|+
N1∑
k=1

ξk < r1, (5)

then H(z) has a minimal positive realization of dimen-
sion not greater than

ND +N + 1 +N2 +N3 + 2N4 +

N1+N5∑
N1+1

mh

where ND is that defined in Theorem 6, ξk is that defined
in Theorem 11, mh denotes the minimum value of m for
which the non-dominant complex poles σhe

±iθh belong

to the set Θ̃m(ρ), and N denotes the smallest positive
integer such that

N2+N3+N4∑
j=N2+1

|rj | · |pj |N+

N1+N5∑
h=N1+1

σNh ξh ≤ (6)(
r1 − |r′1| −

N1∑
k=1

ξk

)
· ρN .

�

The following example illustrates the result of Theorem
5:

Example 10 Consider the transfer function in Exam-
ple 9. For this transfer function, the following relations

Figure 10. The location of the poles of the transfer function
considered in Examples 9 and 10.

hold: N1 = N2 = 1, N3 = 2, N4 = 1, and N5 = 1. The
dominant poles of H(z) have unitary modulus and are
equal to 1, −1, and e±i2πi/3. Consequently, as shown in
Example 4, ND = 5. The non-dominant complex poles

of H(z), which are equal to 0.6e±9πi/10, lie in the set Θ̃4

but not in the set Θ̃3. This is made clear in Figure 10
where the poles ofH(z) are shown together with the sets
Π3 and Π4. Consequently m2 = 4. Condition (5) of The-
orem 12 holds and condition (6) holds true for N = 2.
Hence, the transfer function has a positive realization of
dimension equal to 17. Such a positive realization can
be found in (Benvenuti, 2020b). Taking into account the
result in Example 9, the dimension of any minimal pos-
itive realization of H(z) is between 13 and 17. �

7 Hankel matrix factorization

A well-known result from system theory states that the
rank of the semi-infinite Hankel matrix H correspond-
ing to a given impulse response is the minimal dimen-
sion of a state-space realization of the impulse response
itself (Ho & Kalman, 1965). This rank corresponds to
the minimal inner size of a factorization of the Hankel
matrix. Since the impulse response hk of a positive sys-
tem is non-negative, then the Hankel matrix H has non-
negative entries. Moreover, given a minimal positive re-
alization {A, b, c} of dimension n, the Hankel matrix can
be factorized as the product of two non-negative matri-
ces R and S, with inner size n, as follows:

H =


cT b cTAb . . .

cTAb cTA2b . . .

cTA2b
. . .

...
. . .

 =

14




cT

cTA

cTA2

...


(
b Ab . . .

)
= RS

Hence, the Hankel matrix has a non-negative rank
(Cohen & Rothblum, 1993) equal to n. It is then in-
teresting to study whether the converse is true, that
is, if the non-negative rank of the Hankel matrix is, in
general, equal to the minimum dimension of a positive
realization of the impulse response. The following exam-
ple (Benvenuti & Farina, 1998) gives a negative answer
to this question:

Example 11 Consider the system

xk+1 =


1 0 0

0 0 −1

0 1 0

xk +


8

1

1

uk

yk =
(

1 1 1
)
xk,

whose impulse response is cyclic and non-negative be-
cause it is equal to h1+4i = 10, h2+4i = 8, h3+4i = 6,
h4+4i = 8 for i = 0, 1, . . .. The matrix A of the system
has eigenvalues equal to 1 and ±i so that a positive re-
alization of dimension three does not exist (see Exam-
ple 3). Nevertheless, a non-negative factorization of the
Hankel matrix having an inner size equal to three does
exist. In fact, the Hankel matrix of the system can be
written as:

H =


H̃ H̃ . . .

H̃
. . .

...
. . .

 , H̃ =


10 8 6 8

8 6 8 10

6 8 10 8

8 10 8 6

 .

Moreover, the matrix H̃ can be factorized as

H̃ =


5 3 3

4 2 6

3 5 5

4 6 2




2 1 0 1

0 1 1 0

0 0 1 1

 = PQ,

and consequently the following is a non-negative factor-
ization of H with an inner size equal to three:

H =


P

P
...

(Q Q . . .
)

�

A sufficient condition for a given positive system to be
minimal, expressed in terms of the non-negative rank of
the associated Hankel matrix, is given by van den Hof
(1997b):

Theorem 13 Given a MIMO positive linear system
{A,B,C} of dimension n, if there exist p, q ≥ 1 such
that the non-negative rank of the Hankel matrix H(p, q)
is equal to n then {A,B,C} is a minimal positive linear
system. �

Moreover, a reformulation of minimality of a positive
realization in terms of a non-negative factorization of
the Hankel matrix is provided by van den Hof (1996)
by adding a further constraint on such a factorization,
but the condition involves an infinite test. To date, in
this context, a procedure to evaluate the minimum or-
der of a positive realization is not available. Moreover,
Vavasis (2009) proved that the non-negative rank r of a
non-negative matrix H of dimension p× q is NP-hard to
compute, i.e., an exact algorithm that runs in time poly-
nomial in p, q, and r does not exist. Arora, Ge, Kannan,
and Moitra (2012) gave an exact algorithm for deciding
if the non-negative rank is at most r which is doubly ex-
ponential in r but runs in a polynomial–time algorithm
for any fixed r. This result was recently improved by
(Moitra, 2016) who provided an algorithm that runs in
singly exponential time as a function of r.

8 The case of MIMO systems

It is well known that a strictly proper rational transfer
function matrix H(z) has a non-negative realization if
and only if each one of its entries has a non-negative
realization (Förster & Nagy, 2000). Moreover, even in
the MIMO case, the existence of a positive realization
can be cast in terms of the existence of an A-invariant
polyhedral cone with properties (3), where, in this case,

R = cone
([
B AB A2B . . .

])
,

O = {x ∈ Rn|CAk−1x ≥ 0, k = 1, 2, . . .},
and {A,B,C} denotes a minimal (i.e., jointly reachable
and observable) realization of H(z). Even in this case,
knowledge of a cone K immediately yields a positive re-
alization of a dimension equal to the number of the ex-
treme rays of the cone.

The minimality of positive realization in the MIMO case
was studied in particular by Förster and Nagy (1998).
They provided the following example showing that, at
least in the MIMO case, the dimension of any minimal
positive realization not only may be larger than the di-
mension of any minimal realization but it may also be
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smaller than the minimum of the number of extreme rays
of all the A-invariant polyhedral cones satisfying condi-
tions (3).

Example 12 Consider the strictly proper rational
transfer function matrix

H(z) =



z2

z3−1
1

z3−1
z

z3−1
z2

z3−1
1

z3−1
z

z3−1
z

z3−1
z2

z3−1
1

z3−1
z

z3−1
z2

z3−1
1

z3−1
1

z3−1
z

z3−1
z2

z3−1
1

z3−1
z

z3−1
z2

z3−1

0 0 0 1
z−1

1
z−1

1
z−1

1
z−1

1
z−1

1
z−1 0 0 0


and its minimal realization:

A=


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

, B=


1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

, C=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 −1


The reachability cone, which by definition isA-invariant,
is equal toR = cone (B) and has six extreme rays. More-
over, the observability cone is defined as:

O = {x ∈ R4|x1+x2+x3−x4 ≥ 0, xi ≥ 0, i = 1, . . . , 4},

The edges of this cone can be determined using the tech-
nique described in (Goldman & Tucker, 1957) and this
results in O = R. As a consequence, the cone K = O =
R is the single A-invariant cone satisfying conditions (3)
and a positive realization of dimension 6 can be easily
computed:

A =



0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0


, B = I6, C =



1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

1 1 1 0 0 0


.

On the other hand, the following is a fifth-order positive
realization of H(z):

A =



0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1


, B =



1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

1 1 1 0 0 0


, C = I5

Further, this realization is minimal as a positive one. In
fact, if there was a fourth-order positive realization, the
similarity transformation matrix T between such a pos-
itive realization and the minimal realization would de-
fine an A-invariant polyhedral proper cone K = cone(T )
having four extreme rays and satisfying conditions (3),
which is impossible by the above result. �

This example suffices to indicate that the geometric ap-
proach is not an appropriate tool to address the mini-
mal positive realization problem for MIMO systems, i.e.,
minimizing the number of extreme rays of anA-invariant
polyhedral cone satisfying conditions (3), does not guar-
antee the minimality of the corresponding positive re-
alization. Nevertheless, this approach has been used by
Matolcsi and Nagy (2004) to compute an upper bound
on the dimension of a minimal positive realization of
a strictly proper rational transfer function matrix as a
function of the number of the extreme rays of the poly-
hedral cones associated with the positive realizations of
the entries of the transfer function matrix.

Finally, also a lower bound on the dimension of a minimal
positive realization for a MIMO system can be provided.
To this aim, it is first necessary to note that the spectral
radius of the matrix A of any minimal positive realiza-
tion of a given transfer function matrix H(z) must coin-
cide with the positive real dominant pole of the transfer
function matrix itself 8 . Then, Theorem 9 can be used
to provide a lower bound to a minimal positive realiza-
tion taking into consideration that, in the MIMO case,
the multiplicity of a pole is defined as its multiplicity as
a root in the characteristic polynomial of a minimal re-
alization of H(z), which is the least common multiple of
the denominators of all possible minors in H(z).

9 Special results for continuous-time systems

As shown in (Anderson et al., 1996; Benvenuti & Farina,
2002; Ohta et al., 1984; van den Hof, 1997b), the results
on the PRP for the discrete-time case have in general
a corresponding continuous-time formulation. Neverthe-
less, this is not always true when the results on min-
imality are considered. This is mainly due to the fact
that a continuous-time positive system is characterized
by a matrix A which is a Metzler matrix A and not, in
general, non-negative matrix (Farina & Rinaldi, 2000).
As a consequence, all the results on the minimality for
discrete-time positive systems that specifically rely on
some properties of non-negative matrices cannot be di-
rectly extended to the continuous-time case. In particu-
lar, the dominant eigenvale of a Metzler matrix, that is
the eigenvalue with maximal real part, is unique (possi-
bly multiple) and real (Berman & Plemmons, 1994) so

8 This result easily follows as an extension of Theorem 3.2
in (Anderson et al., 1996)
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that all the considerations about dominant eigenvalue
locations, underlying the lower bounds on a positive re-
alization for a discrete-time system, cannot be extended
to the continuous-time case.

Similarly to the discrete-time case, some results for the
continuous-time case have been obtained for transfer
functions of third order or by considering particular
classes of transfer functions and systems.

The first result on minimality for continuous-time sys-
tems is due to Maeda et al. (1977) and is related to com-
partmental systems. In more detail, the class of compart-
mental systems having a tree-compartmental matrix A,
that is a matrix whose corresponding non-oriented graph
has no closed path, is considered. Two compartmental
systems of such a class that are widely used in the field of
clinical medicine are, for example, the catenary and the
mammillary systems. The authors provide the necessary
and sufficient conditions for a transfer function to have
a compartmental realization with a tree-compartmental
matrix and show that, in this case, the minimal dimen-
sion of the positive realization equals the order of the
transfer function itself.

In (Benvenuti & Farina, 2002), the equivalent of The-
orem 2 for compartmental systems is provided, i.e.,
the necessary and sufficient conditions for a third-
order transfer function H(s) with positive distinct real
poles to have a (minimal) positive realization of dimen-
sion three. Further results are provided in (Astolfi &
Colaneri, 2004) and are the counterpart of those de-
scribed in Section 3. For example, it is there shown that
a system with a transfer function of the form

H(s) =
1

(s− p1)(s− p2) · · · (s− pn)

with real distinct poles, admits a (minimal) positive real-
ization of dimension n. Moreover, the same result holds
if the transfer function is asymptotically stable, has only
one zero ζ such that

ζ > min
i=1,...,n

pi

and has a positive high frequency gain.

10 Discussion

The issues discussed in this survey paper show that the
characterization of minimality for positive realizations
proved to be a very difficult problem in which the tools
seem not yet clearly defined or, at least, limited. The re-
sults are only partial or seemingly weak and new results,
or improvements over what is already available, do not
appear as often. To underline the difficulty of the prob-
lem, it suffices to note that the related problems such

as the NIEP (Johnson et al., 2018) and the nonnega-
tive rank computation (Cohen & Rothblum, 1993) are
among the most prominent and hard problems in ma-
trix analysis and have proved to be NP-hard (Borobia
& Canogar, 2017; Vavasis, 2009). Hence, the solution to
the minimality problem for positive systems appears to
be still far away.

A major issue is to understand what kind of mathemat-
ical “tool” is more suited to tackle it. In fact, the ge-
ometric approach has proved to be a fundamental tool
for determining the existence of a positive realization
but, with regards to minimality, it has led exclusively
to some results for the case of third-order transfer func-
tions with real poles (see Theorems 2 and 3). Moreover,
in the case of MIMO systems, it has been shown (see Ex-
ample 12) that finding a cone with the minimum num-
ber of extreme rays does not guarantee the minimality
of the corresponding positive realization. Nevertheless,
this has not been proved nor disproved yet, in the case
of SISO systems. Hence, a decisive step to make the ge-
ometric approach useful in solving the minimality prob-
lem in the case of SISO systems is that of determining
if, at least in this case, the dimension of any minimal
positive realization is equal to the minimum of the num-
ber of extreme rays of the A-invariant polyhedral cones
satisfying conditions (3).

Another interesting geometric interpretation of the pos-
itive realization problem is given in (Picci, van den Hof,
& van Schuppen, 1998; van den Hof, 1997a, 1996, 1997b).
This interpretation refers to cones defined from the im-
pulse response hk instead of the transfer function H(z).
The main features of this approach is that the minimality
problem is reformulated directly for MIMO systems and
in terms of the non-negative factorization of the Hankel
matrix. In particular, sufficient conditions for a positive
realization to be minimal are given in terms of the non-
negative rank of the Hankel matrix (see Theorem 13).
However, these conditions are not necessary, as shown
in Example 11. Further, as shown in Section 7 such a
result is to date mainly theoretical since it involves an
infinite test. It could become more interesting as the re-
sults in (rank-revealing/exact) non-negative matrix fac-
torization algorithms increase.

A promising approach is the graph-theoretical one used
by Nagy and Matolcsi (2003b) to provide a lower bound
on the minimum dimension of a positive realization of
a given transfer function. Even if the case there consid-
ered is related to a very special class of transfer func-
tions, the approach proved to be useful in different prob-
lems related to positive systems and hence it is certainly
worth investigating the possibilities of such an approach
for the study and understanding of the minimality prob-
lem in the general framework. In more detail, it proved
to be useful in revealing reachability and controllabil-
ity properties of positive linear systems (Bru, Caccetta,
Romero, Rumchev, & Sanchez, 2020; Caccetta & Rum-
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chev, 2000). Moreover, it has been used to find the last
available solutions to the NIEP, which, as shown in this
survey, is strictly related to the minimality problem of
positive systems. Indeed, the case n = 4 of the NIEP
is solved by Torre Mayo et al. (2007) by introducing
some graph-theoretical tools to study the coefficients
of the characteristic polynomials of non-negative matri-
ces, being they closely related to the cyclic structure of
the weighted digraph with adjacency matrix A. Further-
more, when n = 5, a solution to the NIEP for matri-
ces with trace zero is provided by Laffey and Meehan
(1999) using again graph-theoretical tools and the New-
ton’s identities.

Another important issue related to minimality is the
improvement of the bounds on the minimal dimension
of a positive realization. This improvement may occur
in several directions:

- find “tighter” bounds;
- extend the class of transfer functions for which the

bounds can be computed;
- extend some results to the case of MIMO systems.

Tighter lower bounds could be obtained by exploiting
the results of the NIEP. To date, only the conditions
on the location of the dominant eigenvalues and that
on the non-negativity of the sum of all the eigenvalues
have been considered (see Theorem 9). On the other
hand, the class of transfer functions for which the upper
bounds are defined can be extended by considering the
case of multiple poles. Some results in this direction are
presented in (Kim, 2012; Nagy & Matolcsi, 2005) where
the case of transfer functions with non-negative multiple
poles is considered.

There are many other arguments related to the PRP
and the problem of minimality. Two of them, together
with the corresponding results, deserve to be illustrated
in more detail.

10.1 Checking non-negativity of the impulse response

Not only the non-negativity of the impulse response is
a necessary condition for the existence of a positive re-
alization of the systems, but it is also a required fea-
ture in many applications such as congestion control
systems, machine tool axis control, trajectory following
in robotics or level control. In fact, this property cor-
responds, in the linear case, to a non-overshooting (or
monotone non-decreasing) step response. Checking the
non-negativity of the impulse response showed to be a
very hard problem since necessary and sufficient condi-
tions for a general SISO linear system to have this prop-
erty are still not available. To date, an algorithm to per-
form this check from the coefficients of the correspond-
ing transfer function is not yet known and, in general,

it is not possible to know how many values of the im-
pulse response must be checked to be sure that the im-
pulse response is non-negative for all times (Blondel &
Portier, 2002; Farina & Rinaldi, 2000). The existence
of a positive realization is a sufficient condition for the
impulse response to be non-negative but this may re-
quire computing an arbitrarily large number of extreme
generators. Moreover, not all the systems with a non-
negative impulse response possess a positive realization.
However, in the case of third-order transfer functions
with real poles, it is possible to infer the non-negativity
of the whole impulse response from only the three val-
ues that it assumes for k = 1, 2, 3 (see Theorems 2 and
3). Recently, Grussler and Rantzer (2021) proposed an-
other sufficient condition that requires the definition of
a second-order cone avoiding that of any special state-
space realization.

Some sufficient conditions, as well as necessary con-
ditions, are available in terms of zero–pole patterns
(Jayasuriya & Franchek, 1991; Leon de la Barra &
Salazar, 2002; Liu & Bauer, 2008, 2009). In more de-
tail, sufficient conditions for a transfer function with
only real poles and zeros to have a non-negative im-
pulse response are given in (Liu & Bauer, 2008). These
conditions have been extended to the case of complex
conjugate zeros and poles in (Liu & Bauer, 2009) result-
ing in an interesting geometric pole-zero pattern, i.e.,
poles and zeros evenly distributed on different concen-
tric circles centered at the origin. Simpler conditions,
involving only the poles of the transfer function, can be
given by assuming the non-negativity of the first values
of the impulse response. These conditions follow from
the result of Benvenuti and Farina (2017) 9 , as shown
in (Förster & Nagy, 2000).

Theorem 14 Let H(z) be a strictly proper rational
transfer function of order n and assume that the val-
ues hk of the corresponding impulse response are non-
negative for k = 1, . . . , n. The whole impulse response
is non-negative if the following conditions are satisfied:
either H(z) has no positive poles, or else

1) it has a positive real dominant pole ρ,
2) the dominant poles are among the r-th roots of ρr for

some positive integer r,
3) all the dominant poles are simple,
4) taking the minimal value of r, no non-dominant pole

has an argument that is an integer multiple of 2π/r.

�

9 This result is the correct formulation of a theorem pro-
posed by Roitman and Rubinstein (1992) on the character-
ization of linear recursions which imply a linear recursion
with non-negative coefficients.
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10.2 Finding approximate realizations

When a positive realization does not exist or its minimal
dimension is much larger than the order n of the cor-
responding transfer function, it has been recently pro-
posed to consider approximated models with reduced-
order by introducing some suitable approximating cri-
teria. Basically, two general criteria can be considered:
Either determining positive realizations whose transfer
function is as close as possible to that to be realized
or determining non-positive realization with an internal
behavior “similar” to that of a positive system.

The first approach was recently proposed by Sato and
Takeda (2020). In particular, the authors propose some
algorithms to compute the nearest n-dimensional pos-
itive system, that is, for example, the positive system
whose eigenvalues are as close as possible to the poles of
the transfer function to be realized.

The second approach considers the so-called quasi-
positive realizations (Guidorzi, 2014, 2016) or eventu-
ally positive realizations (Altafini, 2016). The quasi-
positive realizations are, in general, non-positive but
assure non-negativity of the state and output sequences
at any time for any non-negative input sequence but
only for all the initial states that are reachable with a
non-negative input sequence. In particular, the Markov
canonical realization (Farina & Rinaldi, 2000) is, by
construction, an n dimensional quasi-positive realiza-
tion of a transfer function of order n with a non-negative
impulse response.
The eventually positive realizations are, in general,
non-positive as well. They assure that the state se-
quence is eventually non-negative, i.e., it may fail to be
non-negative, but only transiently. In more detail, in
(Altafini, 2016) an algorithm is given that, when termi-
nates successfully, provides an n-dimensional eventually
positive realization of a transfer function of order n with
a non-negative impulse response and with one single
dominant pole. While some of the properties of positive
systems are retained, analysis of and certificates for
eventually positive systems are much harder than for
positive systems. Nevertheless, the theoretical develop-
ment of this class of systems can offer simpler analysis
and control tools (Sootla, 2019).
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