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Chapter 1

Introduction

Many problems that arise in the fields of engineering, economics, and natural
sciences can be represented as nonlinear optimization problems. This drives an ever-
increasing technical and scientific interest in the study and development of methods
capable of tackling and resolving this class of difficult mathematical problems.
Among the various types of nonlinear optimization problems, we consider the general
optimization problem with this structure:

min
x∈S

f(x) (1.1)

where S ⊆ Rn and f : Rn 7→ R.
In this thesis, we focus on problems in which the derivative of the objective

function is either unavailable or unreliable, which can occur in a variety of situations
including the presence of legacy codes (codes written in the past but not main-
tained), problems of parameter tuning for simulation or optimization algorithms
and engineering problems where the objective functions are the output of black-box
simulation software.

Despite the absence or the unreliability of the derivatives, our interest is in the
resolution of the optimization problem using gradient-based methods, which take
advantage of the rich and relevant information normally included in the gradient of
the objective function.

We address the lack of derivatives considering two different scenarios. In the first
one, we consider smooth problems with additive noise affecting objective function
evaluations. We assume that objective function evaluations can be obtained in
a cheap and fast way and we focus on gradient approximation methods that use
objective function evaluations to somehow filter the noise and build an estimate of
the gradient.

In the second scenario, we consider potentially non-smooth simulation-based
optimization problems in which neither the objective function nor its (eventual)
derivative have an explicit expression. Assuming the expensiveness of the evaluations
of objective functions, we enable the usage of gradient-based methods by following
an approach that is based on the creation of a neural network model that replaces
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the simulation software used for computing the objective function. In this way,
the smooth function obtained with the neural network model and its gradient are
considered in the optimization procedure.

The thesis is structured as follows. In Chapter 2 we report some well known
concepts about unconstrained optimization algorithms, with a special focus on
gradient-based methods that are used in the numerical experiments of subsequent
chapters.

In Chapter 3 we introduce the concept of function evaluations affected by noise
and provide an overview of the most popular gradient approximation algorithms,
showing their structure and some of their theoretical properties. We also report some
known concepts about neural networks and their role as universal approximators.

In Chapter 4 we present the analysis that led to the development of a novel
scheme for approximating the gradient of a function, that we name Normalized Mixed
Finite Difference Scheme, or NMXFD for short. After providing its description, we
present its theoretical properties and report two sets of numerical experiments in
which we compare it to other approximation methods. In the first one, we perform
a point-wise comparison between the gradient estimates produced by NMXFD and
the ones obtained with other methods. The impact of different gradient approx-
imation estimates on the performance of gradient-based optimization algorithms
is investigated in the second set of experiments. A synthesis of the results of this
chapter is published in [21].

Finally, in Chapter 5 we consider a case study concerning the operation of the
Emergency Department of a large Italian hospital in Rome, with a focus on the
Major Injury Units optimal resource allocation problem. This problem is modelled as
a multi-objective simulation-based optimization problem that we reduce to a single
objective one with a scalarization approach. To use gradient-based methods for its
resolution, we propose a strategy based on the creation of a neural network model
that replaces the simulation-based objective function and compare its performance
with the ones obtained with a Derivative-Free approach. This chapter is based
on a paper submitted by the author for publication and co-authored by Tommaso
Giovannelli, Massimo Roma and Stefano Lucidi.
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Chapter 2

Gradient methods for
unconstrained optimization
problems

In this chapter, we report some well known concepts about unconstrained opti-
mization algorithms. In particular, we focus on gradient-based methods, showing
their convergence properties and highlighting the importance of the information
contained in the gradient. The algorithms, theorems and propositions presented
in this chapter are well known. Readers interested in a more detailed analysis
can refer to [20, 57, 99], and the references therein. The chapter is structured as
follows: in Sect. 1 we introduce the general unconstrained optimization problem
and provide a broad classification of solving algorithms. In Sect. 2 we focus on the
Gradient Descent method and report its convergence properties. The analysis of the
convergence rate in the case of quadratic functions considering different choices of
the stepsize is the argument of Sect. 3. Finally, in Sect. 4 we consider the general
case of non-quadratic functions and we report a nonmonotone algorithm which is
based on the Barzilai-Borwein (BB) method and is proven to be globally convergent.

2.1 Generalities

Let us consider the following unconstrained optimization problem:

min
x∈Rn

f(x) (2.1)

where f : Rn 7→ R is a function with continuous derivative, i.e. f ∈ C1(Rn).
Generally speaking, optimization algorithms can be classified both on the base of
the characteristics of the problem they attempt to solve – i.e. depending on the
objective function, the feasible set and the features of the variable space we can have
continous or integer problems, constrained or unconstrained problems, differentiable
and non-differentiable problems – and on the set of points that they accept as
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solutions, denoted by Ω.
In particular, we can distinguish between global optimization algorithms and local
optimization algorithms. The former try to tackle one of the hardest problems in the
optimization field, since their set Ω is constituted by all the global minima of problem
(2.1). The latter, produce a sequence of points {xk} satisfying some convergence
properties towards local minima (or, more commonly in practice, stationary points)
of the problem.

In Chapter 3 and 4 of this thesis, we focus on continuously differentiable problems
in which the gradient of the objective function f exists. We denote it by ∇f :
Rn 7→ Rn such that, for any x ∈ Rn:

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 . (2.2)

We also focus on local optimization algorithms whose general scheme is reported
in Algorithm 1.

Algorithm 1 General algorithm for unconstrained optimization
1: Choose x0 ∈ Rn , set k = 0
2: while ∇f(xk) ̸= 0 do
3: Compute sk ∈ Rn

4: Set xk+1 = xk + sk

5: Set k = k + 1
6: end while

These methods try to use the local information that can be extracted from the
problem (e.g., evaluating the objective function in points close to the current point
xk, computing the first or second derivatives of the objective function) and they try
to exploit the fact that any function can be locally approximated pretty well by a
linear or quadratic function.

In absence of specific properties of the objective function, the sequences of points
generated by these methods have to converge, in some sense, towards points that
satisfy the first order optimality conditions and whose value of the objective function
is smaller or equal than the one at the starting point, as in

Ω = {x∗ ∈ Rn : f(x∗) ≤ f(x0), ∇f(x∗) = 0} (2.3)

2.1.1 Convergence properties of local optimization algorithms

We can classify local algorithms based on their convergence properties, both in
terms of reliability and efficiency. The reliability is normally linked to the concept of
global convergence of the algorithm, while the efficiency to the concept of convergence
rate.
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Global convergence

Globally convergent algorithms are the ones that, for any initial point, produce
a sequence of points {xk} that converges to a point of Ω.

The strongest condition that globally convergent algorithms can guarantee is
the termination in a finite number of iterations. It is not common to find such
algorithms, since they are limited to some peculiar class of problems, such as those
with a convex quadratic objective function.

In the majority of cases, we have globally convergent algorithms that can only
guarantee weaker conditions, such as the existence of a limit point of the sequence
{xk} that belongs to the set Ω.
These algorithms are weaker than those that terminate in a finite number of steps,
but they are still sufficient to guarantee that on a practical level they can produce a
good estimate of a point of Ω after a sufficiently large number of iterations.

If an algorithm can only guarantee the termination in a finite number of steps or
the existence of a limit point of the sequence {xk} that belongs to the set Ω only
for starting points in a specific neighborhood of the optimal point x∗, we call it a
locally convergent algorithm.

convergence rate

The other aspect normally analyzed in an algorithm is its convergence rate,
a measure of the speed with which the produced sequence {xk} converges to a
stationary point. Assuming the convergence of the sequence {xk} ⊆ Rn to a point
x∗ ∈ Ω, as in:

lim
k→∞

xk = x∗,

the convergence rate of an algorithm is determined by the analysis of the asymptotic
rate at which the error ek defined as

ek = ||xk − x∗||

converges to zero. This error term measures the distance between the point obtained
at the k-th iteration and the point x∗. It is worth underlying that authors sometimes
characterize an algorithm convergence rate in terms of the error ek = {f(xk)−f(x∗)},
thus measuring the distance between the value assumed by the objective function at
the k-th iteration and at the point x∗.

It is possible to find two main criteria in the literature for the analysis of the
convergence rate of an algorithm:

• the R-rate, that is computed analysing the sequence of the roots of the error;

• the Q-rate, determined by the analysis of the sequence { ek+1
ek

}.

The “R-” in the prefix stands for root and “Q-” stands for quotient because the
terms are defined using the quotient between the errors of two successive iterations.
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In the rest of the chapter we refer to the R-rate of convergence, for which we
provide the following definitions:

Definition 1. Given a sequence {xk} ⊆ Rn converging to x∗ ∈ Rn , we say that:

• if there exists c ∈ [0, 1) such that, for sufficiently large k, we have:

||xk+1 − x∗||1/k ≤ c,

then {xk} converges to x∗ (at least) R-linearly;

• {xk} converges to x∗ (at least) R-superlinearly if:

lim
k→∞

||xk+1 − x∗||1/k = 0;

• if there exists p > 1 and c ∈ [0, 1) such that, for sufficiently large k, we have:

||xk+1 − x∗||1/pk ≤ c,

then {xk} converges to x∗ R-superlinearly with R-rate (at least) p.

2.1.2 Different types of converging algorithms

There are numerous ways to classify globally convergent algorithms that have
the goal of finding stationary points. One of the most noticeable differences between
algorithms is the information used to calculate sk in the iteration

xk+1 = xk + sk.

Some algorithms only use the information contained in the objective function
values, while others exploit the information contained in first and eventually second
derivatives.

If the information about the first order derivative is available, we can further
distinguish between the following classes of methods that use different strategies to
update of point xk at every iteration.:

• methods where the generic iteration can be described by

xk+1 = xk + αkdk

where dk ∈ Rn is called search direction and αk ∈ R is the step-size.

These methods, known as linesearch algorithms, can generate the search
direction dk either by using only the information at the current point xk

or exploiting the information obtained at the previous iterations (i.e. by
considering dk−1, xk−1 and αk−1). They are also known as gradient-based
algorithms when information about the gradient is used.
The step-size αk is normally determined through a linesearch technique, a
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procedure that gives the name to this class of algorithms, where the value
of the objective function and the eventual information about the gradient is
used to determine the magnitude of the movement along the direction dk. The
choice of both dk and αk is crucial in these algorithms and is designed in order
to guarantee their global convergence.

• trust region methods, where the updates at each iteration are based on the
creation of a model (often quadratic) that works as a surrogate of the objective
function. This model is built in a region around the current point xk, and the
choice of sk depends on the resolution of a constrained minimization problem
where the objective function is given by such model. The mathematical models
can be of different kinds: surrogate models, quadratic approximation models or
trust-region models, and the precision with which they can locally approximate
the function f is the first criterion used to evaluate their quality.

If the only information available is the value of the objective function, besides
trust region and linesearch algorithms we find direct methods, which use only the
comparison between function values in different points to determine candidate points,
without attempting to develop a model of the function or an approximation of the
gradient [140]. In particular, a local search to find a point where the objective
function diminishes is implemented at any iteration [84, 102]. Among the various
algorithms belonging to this family, the Nelder–Mead simplex algorithm [97] is
probably the most renowned.

In the rest of this chapter we focus on some of the most popular gradient-
based methods, namely algorithms for unconstrained minimization that exploit the
information contained in the gradient of the objective function they try to minimize.

2.2 Gradient Descent

This section deals with the Gradient Descent method, which is one of the
algorithms commonly used to solve unconstrained optimization problems. It has
grown in popularity over the last few decades, becoming the most common way to
optimize neural networks (especially in its stochastic version, specifically designed
to deal with the abundance of data that characterize large-scale machine learning
problems [22]).

2.2.1 The descent direction

The distinguishing feature of the Gradient Descent method is the computation
of the direction dk that is obtained considering an approximation of the objective
function. The method deals with a linear approximation of f(xk + d), that is a
function of the single variable d. Hence, under the hypothesis of f continuously
differentiable, it is possible to write:

f(xk + d) = f(xk) + ∇f(xk)Td+ β1(xk, d),
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where
lim

||d||→0

β1(xk, d)
||d||

= 0.

Thus, the idea behind the Gradient Descent method is that of approximating the
function f(xk + d) with the function ψk(d) obtained as:

ψk(d) := f(xk) + ∇f(xk)Td

and to choose as the search direction dk the one that minimizes ψk(d) in the unit
sphere. In other words, dk is the solution of the following optimization problem:

min ψk(d),
s.t. ||d|| = 1,

that is equivalent to
min ∇f(xk)Td,

s.t. ||d|| = 1.
(2.4)

Thanks to the Schwarz inequality we can write:

|∇f(xk)Td| ≤ ||d|| ||∇f(xk),

where there is the equals sign if and only if

d = λ∇f(xk)

with λ ∈ R. The solution of problem (2.4) is therefore given by

dk = − ∇f(xk)
||∇f(xk)|| (2.5)

that defines the anti-gradient direction in xk. This is the reason why Gradient
Descent method is also known as Steepest Descent.

Taking into account (2.5), it is possible to describe Gradient Descent method
with the following:

xk+1 = xk − α̃k ∇f(xk)
||∇f(xk)|| , (2.6)

that can be rewritten as:

xk+1 = xk − αk∇f(xk)

defining the step along the direction as αk := α̃k

||∇f(xk)|| .
It is worth highlighting that the local optimality of the direction −∇f(xk) de-

pends on the choice of the norm, and that, given a point xk every descending
direction could be interpreted as the steepest descent direction for an appropriate
norm [57].
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Algorithm 2 Gradient Descent algorithm
1: Choose an initial point x0 ∈ Rn and set k = 0
2: while ∇f(xk) ̸= 0 do
3: Compute the search direction dk ∈ Rn as dk = −∇f(xk)
4: Compute the step αk ∈ R along dk

5: Set xk+1 = xk + αkdk

6: Set k = k + 1
7: end while

The scheme of the Gradient Descent algorithm is reported in Algorithm 2. Once
the direction dk is determined, we have the computation of the step αk. Depending
on the way αk is determined, we distinguish between inexact linesearch and exact
linesearch. In the former case, αk is an approximation of a minimum of the function
ϕ(α) := f(xk +αdk) which depends only on the scalar variable α ∈ Rn. In the latter
case, α is determined as to find the minimum of ϕ(α).

When dealing with an inexact linesearch, we can further distinguish between
monotone methods, that ensure a reduction of the objective function f at every
iteration, and nonmonotone methods, where occasional increase of the objective
function are allowed.

As we show in the next section, to ensure the global convergence of Algorithm 2,
the stepsize αk needs to be chosen carefully.

2.2.2 Conditions on the stepsize for global convergence

The interest in the direction −∇f(xk) depends on the fact that, if the gradient
is continuous, it represents a continuous descent direction with respect to x, and
it assumes value zero if and only if x is a stationary point. This property is very
important since it assures that, with an appropriate choice of the step αk it is
possible to prove the global convergence of the algorithm.

The following proposition shows a first set of conditions on the stepsizes αk that
guarantee the global convergence of the Gradient Descent algorithm:

Proposition 2.2.1. Let f : Rn → R be a continuously differentiable function in Rn

and let us assume that the gradient ∇f(x) is L-Lipschitz continuous for all x ∈ Rn.
Let {xk} be the sequence generated by Algorithm 2 where the stepsizes αk satisfy:

∞∑
k=0

αk = ∞,
∞∑

k=0
(αk)2 < ∞. (2.7)

Then, either limk→∞ f(xk) = −∞ or every limit point x̄ of {xk} is a stationary
point of f.

One potential choice of the stepsize that satisfies conditions (2.7) is the following:

αk = 1
1 + k

(2.8)
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where k indicates the iterations of Algorithm 2.
The noticeable benefit of this particular choice of the stepsize αk is that it does not

necessitate the evaluation of the objective function in any iteration. The drawback
is that the stepsize goes to zero independently of the value of the objective function
and might therefore go to zero too quickly, resulting in low rates of convergence.

From these considerations it follows that it makes sense to choose the stepsize
according to (2.8) in all the instances where the computation of function evaluations
is significantly expensive and that, in all other cases, it is preferable to choose a
stepsize value that depends on the value of the objective function and that can yield
to faster convergence rates.

Generally speaking, the stepsize αk is required to produce a sufficent decrease of
f, while producing at the same time a sufficient shift from the current point xk (or
αk would go to zero too quickly).

Before showing the conditions on the the stepsize that guarantee the global con-
vergence of the Gradient Descent algorithm, both in its monotone and nonmonotone
version, we introduce the definition of forcing function and the definition of level set.

Definition 2. A function σ : R+ → R+ is a forcing function if for any sequence of
numbers tk ⊆ R+

lim
k→∞

σ(tk) = 0 implies lim
k→∞

tk = 0.

Definition 3. With respect to the starting point x0 of a minimization problem, we
define the level set L0 in the following way:

L0 = {x ∈ Rn : f(x) ≤ f(x0)}

We now report three different sets of conditions on the values of αk that guarantee
the global convergence of Algorithm 2, both in its monotone and nonmonotone
version. The proof can be found in [57].

Global convergence conditions for monotone methods

Proposition 2.2.2. Let f : Rn → R be a continuously differentiable function in
Rn and let us assume that the level set L0 is compact. Let {xk} be the sequence
generated by Algorithm 2. We also assume that the following hold:

(i) f(xk+1) ≤ f(xk) for all k;

(ii) if ∇f(xk) ̸= 0 for all k, then

lim
k→∞

∇f(xk)Tdk

∥dk∥
= 0;

Then, either an index ν ≥ 0 such that xν ∈ L0 and ∇f(xν) = 0 exists, or an infinite
sequence is generated such that:

(a) xk ∈ L0 for all k and {xk} admits limit points;
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(b) every limit point of {xk} belongs to L0;

(c) sequence {f(xk)} converges;

(d) limk→∞ ∇f(xk) = 0;

(e) every limit point x̄ of {xk} satisfies ∇f(x̄) = 0.

As mentioned before, once the direction dk is set as the direction of the anti-
gradient, the choice of the stepsize αk becomes crucial for the satisfaction of the
conditions described in Prop. 2.2.2.

In particular, since the direction dk = −∇f(xk) is a descent direction, it must
exists a stepsize ᾱ > 0 such that:

f(xk + αdk) < f(xk), ∀α ∈ (0, ᾱ].

A proper linesearch technique to find the stepsize α at each iteration is therefore
crucial to satisfy condition (i), and is it also shown to play a role for the satisfaction
of (ii).

In Prop. 2.2.2 it was assumed that the set L was compact, but there are situations
where this assumption is false or cannot be known in advance. The proposition can
be reformulated without including this assumption as follows.

Proposition 2.2.3. Let f : Rn → R be a continuously differentiable function in
Rn. Let {xk} be the sequence generated by Algorithm 2. We also assume that the
following holds:

(i) f(xk+1) ≤ f(xk) for all k;

(ii) if ∇f(xk) ̸= 0 for all k, then

lim
k→∞

∇f(xk)Tdk

∥dk∥
= 0;

Then, either an index ν ≥ 0 such that xν ∈ L0 and ∇f(xν) = 0 exists, or an infinite
sequence {xk} with xk ∈ L0 for all k is generated, such that one of the following is
valid:

(a) we have
lim

k→∞
f(xk) = −∞;

(b) the sequence {f(xk)} is inferiorly limited and, in this case, we have that:

(b.1) sequence {f(xk)} converges;
(b.2) limk→∞ ∇f(xk) = 0;
(b.3) every limit point x̄ ∈ L0 (if any) satisfies

∇f(x̄) = 0.
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One of the simplest ways to ensure the satisfaction of hypotheses i) and ii) of both
Prop. 2.2.2 and 2.2.3 is to impose that the value αk satisfies the Armijo condition:

f(xk + αkdk) ≤ f(xk) + γαk∇f(xk)Tdk. (2.9)

where γ ∈ (0, 1) and dk is a descent direction.
Such stepsize can be obtained with the Armijo line search method, one of the most
popular line search algorithms that we report in the following scheme:

Algorithm 3 Armijo line search method
1: Given ∆k > 0, δ ∈ (0, 1), γ ∈ (0, 1/2)
2: Set α = ∆k

3: while f(xk + αdk) > f(xk) + γα∇f(xk)Tdk do
4: Set α = δα

5: end while
6: Set αk = α

Determining a stepsize αk with the Armijo Line search is sufficient to satisfy
the conditions (i) and (ii) in Prop. 2.2.2 and 2.2.3, thus guaranteeing the global
convergence of Algorithm 2.

In both propositions it is assumed that the objective function monotonically
decreases, and the lineasearch procedure described in Algorithm 3 is based on the
concept of a “sufficiently reduction” of the objective function. There are several
instances, though, where forcing monotonicity can have negative consequences on the
behavior of the optimization algorithms, such as when an ideal value of the stepsize
∆k is required to guarantee some properties about the convergence rate, but it does
not yield to a monotone decrease of the objective function. In this scenario, the
stepize obtained with the monotone line search of Algorithm 3 might be significantly
smaller than the ideal ∆k, producing smaller movements along the descent direction
and ultimately yielding to a lower convergence rate.

In the following section report the conditions that guarantee the global conver-
gence of the Gradient Descent algorithm without requiring the objective function
to decrease at each iteration. In Sect. 2.4. we then provide an example of a
nonmonotone, globally convergent, algorithm.

Global convergence conditions for nonmonotone methods

The following proposition holds.

Proposition 2.2.4. Let f : Rn → R be a continuously differentiable function in
Rn and let us assume that the level set L0 is compact. Let {xk} be the sequence
generated by Algorithm 2. We also assume that the following hold:

(i) limk→∞
∥∥∥xk+1 − xk

∥∥∥ = 0;
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(ii) there exists a subsequence {xk}K with 0 ∈ K such that:

(ii-1) for every k there exists j(k) ∈ K such that

0 < j(k) − k ≤ M,

(ii-2) {f(xk)}K is non-increasing monotone, namely

k1, k2 ∈ K and k2 > k1 imply f(xk2) ≤ f(xk1),

(ii-3) if ∇f(xk) ̸= 0 for k ∈ K, then

lim
k∈K,k→∞

∇f(xk)Tdk

∥dk∥
= 0,

Then, either an index ν ≥ 0 such that xν ∈ L0 and ∇f(xν) = 0 exists, or an infinite
sequence is generated such that:

(a) {xk} admits limit points;

(b) every limit point of {xk} belongs to L0;

(c) sequence {f(xk)} converges;

(d) limk→∞ ∇f(xk) = 0;

(e) every limit point x̄ of {xk} satisfies ∇f(x̄) = 0.

To satisfy hypotheses i) and ii) of Prop. 2.2.4 it is sufficient to choose a value of
αk that satisfies the following condition:

f(xk + αkdk) ≤ max
0≤j≤min(k,M)

{f(xk−j)} + γαk∇f(xk)Tdk. (2.10)

where γ ∈ (0, 1), dk is a descent direction and M is an integer. The idea here is
that it is not requested that the objective function decreases at every iteration, but
it is sufficient that at each iteration it is smaller than the maximum value of the
previous M iterations.
The linesearch procedure described in Algorithm 3 can be adapted to guarantee the
satisfaction of (2.10) as shown in Algorithm 4.

Let us emphasize that the linesearch methods presented in this section are only
two of several options that ensure the satisfaction of global convergence conditions.
Interested readers can find several other algorithms for determining the appropriate
stepsize in the literature [57, 99].

After focusing on the global convergence, in the next section we show how
different choices for the stepsize αk yield to different rates of convergence and,
ultimately, to evolutions of the Gradient Descent method.
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Algorithm 4 Nonmonotone Armijo line search method
1: Given ∆k = a, δ ∈ (0, 1), γ ∈ (0, 1),M > 1
2: Set α = a

3: while f(xk + αdk) > max
0≤j≤min(k,M)

{f(xk−j)} + γα∇f(xk)Tdk do

4: Set α = δα

5: end while
6: Set αk = α

2.3 On the convergence rate with different stepsizes

In this section we show how the choice of the step-size affects the convergence
rate of the Gradient Descent algorithm. To simplify the discussion we will focus
on the unconstrained minimization problem where the objective function is stricly
convex quadratic as in:

min
x∈Rn

f(x) = 1
2 x

TQx− bTx (2.11)

where Q ∈ Rn×n is a real symmetric positive definite matrix and b ∈ Rn.
We show that stepsize that produces the largest decrease in the objective function

does not necessarily yield to the best convergence rate, and that a stepsize computed
considering second order derivatives can improve the efficiency of the method.

We then present the Barzilai-Borwein method, where the choice of the stepsize
incorporates information of the second order derivatives without requiring their
computation.

2.3.1 The “optimal” choice of the stepsize

In the ideal implementation of the Gradient Descent method, the direction dk is
computed as the anti-gradient direction, as shown in (2.5). Along this direction, the
(seemingly) best stepsize αk is the one obtained by solving the following unconstrained
minimization problem:

min
α
ϕ(α) = f(xk + αdk),

or, in other words, by finding the value of α that produces the largest decrease of
the value of the objective function along the descent direction dk.

From an intuitive point of view, this ideal choice of dk and αk should be the one
associated to the best performances of this method. However, this is not always the
case. In fact, there are several examples in which this choice leads to sub-optimal
convergence rate of the method and this represents one of the main downsides of
the Gradient Descent method.

The following proposition, whose demonstration can be found in [57], shows that
in the ideal scenario where the function to be minimized is strictly convex quadratic
and the step αk is computed minimizing exactly the function ϕ(α) = f(xk + αdk),
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there are some initial points from which the Gradient Descent method produces a
sequence of points {xk} whose rate of convergence is linear.

Proposition 2.3.1. Consider the function f of problem (2.11).
If αk is obtained by exactly minimizing the function f(xk − αdk), i.e:

αk = −∇f(xk)Tdk

(dk)TQdk
= ||∇f(xk)||2

∇f(xk)TQ∇f(xk) ,

the Gradient Descent method converges to the minimum of f , x∗ = 0, and the
following holds:

||xk+1 − x∗|| ≤
(
λM

λm

) 1
2
(
λM − λm

λM + λm

)
||xk − x∗||

where λM and λm are the maximum and minimum eigenvalue of Q, respectively.

Prop. 2.3.1 shows that, when dealing with convex quadratic functions, Gradient
Descent Method has a convergence rate that is at least linear and depends on the
ratio λM/λm between the maximum and minimum eigenvalue of the Hessian matrix
of f(x). It is therefore possible to expect that the convergence rate of Gradient
Descent method becomes worst as the difference between λM and λm increases, i.e.
as the ill-conditioning of the matrix Q increases.

The following section shows an alternative way to compute the stepsize αk that
yields to better convergence properties of the method when the function to be
minimized is quadratic.

2.3.2 A different choice criterion for the stepsize

The choice of αk in the previous proposition was obtained by exactly minimizing
the function f(xk −α∇f(xk)) i.e. by choosing the step αk in what seemed to be the
best possible way. The following proposition shows the implications of a different
choice of the step αk .

Proposition 2.3.2. Consider the function f of problem (2.11). The Gradient
Descent method where the choice of the step is given by:

αk = 1
λk+1

(2.12)

where λi, i = 1, . . . , n are the eigenvalues of the matrix Q, converges to the
minimum of f(x) x∗ at most in n steps.

The proof of this proposition can be found in [57].
Differently from Prop. 2.3.1, with this choice of αk, the convergence of the

algorithm in a finite number of steps is guaranteed for every starting point. The
difference between the results obtained with different choices of the step αk yields
to the following considerations:
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• choosing αk by trying to minimize the function f(xk − α∇f(xk)) might not
represent the best possible choice;

• different choices of the stepsize that contain information of the second derivative
can improve the efficiency of the Gradient Descent method;

• since computing the eigenvalues can be extremely expensive, the particular
choice of αk in (2.12) is not feasible in most real-world applications.

In the following section, we describe the Barzilai-Borwein method, an improve-
ment of the Gradient Descent method in which the choice of αk is neither linked to
the minimization along the search direction nor to the computation of the eigenvalues.
This method manages to include the information of second order derivatives in the
choice of αk and has a better convergence rate than the Gradient Descend method.

2.3.3 The Barzilai-Borwein method: a new stepsize

The Barzilai-Borwein gradient method can be seen as a Gradient Descent method
where the choice of the stepsize along the negative gradient direction is obtained by
approximating the secant equation underlying Quasi-Newton methods.
The intuition was that the choice of the value of the stepsize αk can be improved
by exploiting the information of the second order, without having to compute the
expensive second derivative of the function.

Newton’s method for the resolution of unconstrained minimization problems can
be described by the following iteration:

xk+1 = xk − [∇2f(xk)]−1∇f(xk)

Conversely, Quasi-Newton methods can be described by:

xk+1 = xk − αk[Bk]−1∇f(xk)

where Bk is a suitable iteratively updated matrix that approximates (in some sense)
the Hessian matrix.

Considering the same function of Prop. 2.3.1 and 2.3.2, namely:

f(x) = 1
2x

TQx− bTx,

where Q ∈ Rnxn is a positive definite symmetric matrix and b ∈ Rn . We have that:

∇f(x) = Qx− b

and, for any points x and y, we can write:

∇f(y) − ∇f(x) = Q(y − x),

or, equivalently:
Q−1[∇f(y) − ∇f(x)] = y − x,
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When the function is quadratic, it is therefore possible to describe the Quasi
Newton method as the attempt to find a symmetric positive definite matrix such
that the following equation holds:

Bk s = y

where
s = xk − xk−1, y = ∇f(xk) − ∇f(xk−1).

This is equivalent to solve the following minimization problem:

min
B

||Bs− y||2 (2.13)

or, in other words, to find all the matrices Bk such that ||Bks− y||2 = 0.
Until now, we have just described the general Quasi Newton method. The

innovation proposed by Barzilai and Borwein in their paper in 1988 [13] was trying
to solve problem (2.13) not for all the potential matrices Bk, but just for the ones
that satisfy either Bk = αI or B−1

k = 1
αI, in order not to deal with matrices.

Solving the problem for α allows to find a stepsize that is not linked to the value
of the objective function, does not require the computation of eigenvalues and still
manages to contain information that derive from the Hessian matrix.
In particular, the two stepsizes identified by the authors, and that can be found in
the scheme of the Barzilai-Borwein method adescribed in Algorithm 5, are

αk = α1 = sT y

sT s
,

obtained by minimizing ||Bk s− y|| when Bk = αI and

αk = α2 = yT y

sT y
,

obtained by setting (Bk)−1 = 1
αI and minimizing the quantity ||s− 1

αy|| [56].

When proposing it in 1988, Barzilai and Borwein showed that the BB method is
faster than the classic Gradient descent method on an example with a quadratic
function, and they proved the R-superlinear convergence rate of the BB method
when the function is quadratic and the number of dimensions is equal to two [13].
Subsequent works proved the global convergence of the BB method in the case of
strictly convex quadratic functions with any number of variables [111] and provided
the following proposition, whose proof can be found in [37]:

Proposition 2.3.3. Let f be a strictly convex quadratic function. Let {xk} be the
sequence generated by Algorithm 5. Then, either ∇f(xk) = 0 for some finite k, or
the sequence {||∇f(xk)||2} converges to zero R-linearly.
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Algorithm 5 Barzilai-Borwein Scheme
1: Choose an initial point x0 ∈ Rn, an initial stepsize α0 and set d0 = −∇f(x0).
2: Produce a new point

x1 = x0 + α0d0,

and set k = 1.
3: If xk is a stationary point, stop.
4: Select dk = −∇f(xk).
5: Select the scalar αk either by

αk = α1 = sT y

sT s

or by

αk = α2 = yT y

sT y

with
s = xk − xk−1, y = ∇f(xk) − ∇f(xk−1).

6: Produce a new point
xk+1 = xk + αkdk,

set k = k + 1 and go back to Step 3.

In the general case of non-quadratic functions, however, it is not possible to
prove the convergence of the BB. In fact, α1 and α2 could assume both extremely
big and extremely small values, thus requiring the stepsize αk computed at Step 4
to be adjusted in order to satisfy the following condition:

0 < αℓ ≤ αk ≤ αu for all k

where αℓ and αu are predetermined numbers.

In the next section, we show how the BB method can be modified to guarantee
the global convergence in the general case of non-quadratic functions.

2.4 A globally convergent versione of the BB method

In this section we present the globalization strategy for the Barzilai-Borwein
method proposed in 2002 by Grippo and Sciandrone in [56]. We then describe
the NonMonotone Stabilization (NMS) algorithm that embeds the nonmonotone
globalization strategy and is proven to be globally convergent.

The idea behind this algorithm is that of trying to combine two things: the
preservation of the satisfaction of the conditions that guarantee the global convergence
of local optimization algorithms and the willingness to perform as many iterations as
possible with the BB stepsize. As we discussed in Sect. 2.3.3, indeed, implementing



2.4 A globally convergent versione of the BB method 19

the Gradient Descent method where the value of the stepsize αk is linked to the
secant equation underlying Quasi-Newton methods, makes it extremely efficient
in the strictly convex quadratic case since it guarantees the convergence of the
algorithm in n steps. It also appears that allowing a sequence of steps from the
unmodified method improves the behavior of globalization approaches for the BB
method in the nonconvex case.
At the same time, using such stepsize does not yield to the decrease of the objective
function at each iteration and does not guarantee the convergence of the BB algorithm
in the nonconvex case. Hence, when necesary, a procedure to change the step length
is required.

The globalization strategy proposed in the NMS algorithm does exactly this.
The algorithm tries to perform several iterations of the Gradient Descent method
where the stepsize αk is the one of the Barzilai-Borwein method, unless it is too
small or too big - and in this case it is modified so to assume a value included in a
pre-determined acceptable range. Since this choice of the stepsize does not yield to
a constant decrease of the objective function, it is impossible to know the quality of
the points produced by this choice without going through several iterations. The
number of such iterations is denoted by N , which represents the patience (or budget)
granted to the BB method and is determined at the beginning of the algorithm.

We now briefly describe the nonmonotone stabilization strategy of the NMS
algorithm, before showing its scheme in Algorithm 7. In the article proposed by
Grippo and Sciandrone, the authors present two different versions of this algorithm:
NMS1 and NMS2, conceptually very similar. We describe both of them and report
only the scheme of NMS2 for brevity.

2.4.1 The nonmonotone stabilization strategy

Indicating by xk the point considered at the major iteration, the algorithm NMS1
computes a descent direction dk satisfying a suitable condition and performs N steps
using the BB stepsize, reaching a tentative point zk

N . If this point turns out to be
acceptable, it is set as the point xk+1 and the algorithm continues. Otherwise the
new point is rejected, the algorithm goes back to xk and computes the stepsize λk

along the descent direction using a nonmonotone linesearch technique. The NMS2
version of this algorithms consists in performing the check of whether the point is
acceptable or not for each of the N tentative point obtained using the BB stepsize,
not limiting this check to the last of these points.

Thus, the rationale behind this algorithm is trying to take advantage of the BB
stepsize which does not require the resolution of any minimization problem or the use
of a linesearch technique, and is not time consuming. If, after some iterations, this
easy way of finding new points has not yielded to an acceptable point, the algorithm
returns to the starting point of the beginning of the iteration and uses a linesearch
method to determine the stepsize.
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It is now worth specifying what the expression acceptable point means. A point is
considered to be acceptable if it satisfies some conditions that are the ones normally
requested to guarantee the global convergence of local optimization algorithms. In
the proposed algorithm, the points are requested to asymptotically get close to each
other. In other words, it is requested that the new points produced at each iteration
become closer and closer to each other as the number of iteration grows, as shown
in Sect. 2.2.2. At the same time, the conditions requested ensure the convergence of
the method to a stationary point.

Denoting with k the current iteration, zi the tentative point, σ the forcing
function and with N and M two integers, the condition that needs to be satisfied to
accept the tentative point is the following:

if f(zi) ≤ max
0≤j≤min(k,M)

{f(xk−j)} − max
1≤h≤i

{σ(||zk
h − xk||)} then

you can accept the tentative point.

We can give the following interpretation to this condition: if the tentative points
obtained using the BB stepsize are close from the starting point xk, a small decrease
of the objective function can be considered sufficient in order to accept the tentative
point considered. If, on the other end, using the BB stepsize the algorithm has
moved to points that are far from the one at the beginning of the iteration, the
tentative point can be accepted only if it guarantees a significant decrease of the
objective function. In particular, the condition considers the points that is furthest
from xk, hence the max in the second term on the right side of the condition. Since
the method is nonmonotone, the objective function of the tentative point is not
compared to the one of the point at the beginning of the iteration, but to the
maximum objective function of the last M iteration, thus allowing for small increases
of the objective function between different iterations.

We can think of the NMS algorithm as if made up of two parts. The first part is
the one where, starting from a point xk, several tentative points - whose number
depends on the budget allocated to this exploration phase - are obtained using the
BB stepsize, and for each of them the acceptance test is performed. If none of the
points satisfies the acceptance test, the algorithm moves to its second phase. This
second, standard in way, phase consists in determining a descent direction dk that
satisfies some suitable condition and in performing a nonmonotone linesearch. The
conditions imposed on the choice of the descent direction and the acceptance criteria
of the stepsize inside the linesearch are the elements that guarantee the convergence
of the algorithm.

The description and scheme of this “standard” part of the algorithm are provided
in the following section.
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2.4.2 The nonmonotone linesearch

The choice of direction dk used in the standard algorithm is linked to the
satisfaction of the following condition:

Condition 1. There exists positive numbers c1, c2 such that, for all k it is true that:

(i) ||dk|| ≤ c1||∇f(xk)||;

(ii) ∇f(xk)Tdk ≤ −c2||∇f(xk)||2.

It is easy to see that any direction dk that satisfies Condition 1 is a descent
direction.

Starting from the point xk, once the descent direction dk is determined, the
nonmonotone linesearch take place. The sequence produced by the linesearch needs
to satisfy the following condition:

Condition 2. Let {xk} be a sequence of points and let {dk} be a sequence of search
directions. Assume that K ⊆ {0, 1, . . . } is a subset such that xk+1 = xk + λkdk for
all k ∈ K, where λk ∈ R is computed through the linesearch procedure. Then:

(i) for every k ∈ K we have

f(xk + λkdk) ≤ max
0≤j≤min(k,M)

{f(xk−j)} − σl(λk||dk||),

where M ≥ 0 is a prefixed integer, and σl : R+ → R+ is a forcing function;

(ii) if K is an infinite subset, if the sequence {f(xk)} converges and the subsequence{xk}K

is bounded, it follows that

lim
k→∞,k∈K

∇f(xk)Tdk

||dk||
= 0.

We can see that Condition 2(i) is the one that guarantees a sufficient decrease of
f and at the same time ensures that the stepsize is bounded so that, in the case
of convergence, the following holds: λk||dk|| → 0. Condition 2(ii) expresses the
convergence properties of the linesearch procedure, and implies that the procedure
produces “sufficiently large” stepsizes.

Algorithm 6 describes the nonmonotone linesearch procedure.
In this linesearch, the first attempted stepsize is λ = 1. What happens next

depends on the satisfaction of the condition on the sufficient decrease of the objective
function. If the new point obtained by moving along the descent direction with the
initial stepsize does not yield to a sufficient decrease of the objective function (Step
2 ), the stepsize is decreased until the condition is satisfied. If, on the other end, for
λ = 1 there is already a sufficient decrease of f with respect to a reference value,
there is another crossroad: if the norm of the direction is too big, or if the value of
the new objective function is greater than the one of the point xk, the algorithm
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Algorithm 6 Nonmonotone linesearch algorithm
Data: γ1 and γ2 that satisfy:

0 ≤ γ1 < 1, 0 ≤ γ2, 0 < γ1 + γ2

and
F k = max

0≤j≤min(k,M)
[f(xk−j)], ∆k = Ψ

( |∇f(xk)Tdk|
||dk||

)
where M > 0 is an integer and Ψ : R+ → R+ is a forcing function
Step 0. if γ2 = 0 then

Choose a number λ̄ ≥ 1
else

Set λ̄ = +∞
end if

Step 1. Set λ = 1
Step 2. while f(xk) + λdk > F k + γ1λ∇f(xk)Tdk − γ2λ

2||dk||2 do
Choose 0 ≤ θ ≤ 1
Set λ = θλ

end while
Step 3. if λ < 1 then

Set λk = λ and exit
end if

Step 4. if ||dk|| ≥ ∆k or f(xk + dk) ≥ f(xk) then
Set λk = 1 and exit

else
Choose σ > 1

end if
Step 5. while σλ ≤ λ̄ and

f(xk+σλdk) < min{f(xk+λdk), f(xk)+γ1σλ∇f(xk)Tdk−γ2(σλ)2||dk||2} do

Set λ = σλ

Choose σ > 1
end while

Step 6. Set λk = λ and exit
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accepts the stepsize λ = 1 and exits (Step 4). If none of this happens, the direction
dk is seen as a “promising” direction, and the algorithm tries to achieve a bigger
reduction of the objective function by iteratively increasing the value of the stepsize
until the condition is no longer satisfied (Step 5 ).

In [56] the authors demonstrate that this algorithm satisfies Condition 2 described
above, thus guaranteeing its convergence properties.

In the following section we describe how the NMS algorithm combines the
principle of trying to exploit the BB stepsize whenever possible with the linesearch
algorithm that has just been described.

2.4.3 NonMonotone Stabilization Algorithm 2 (NMS2)

The scheme of the NMS2 algorithm is presented in Algorithm 7.

Algorithm 7 NMS2 algorithm
Data: x0 ∈ Rn, integers N ≥ 1,M ≥ 0, k = 0 and a forcing function σ : R+ → R+

while ∇f(xk) ̸= 0 do
Step 1. Compute a direction dk satisfying Condition 1

Set linesearch = true
Step 2(a). Set zk

0 = xk

Step 2(b). for i = 1, . . . , N do
zk

i = zk
i−1 + pk

i where pk
i is a suitable search direction

if f(zk
i ) ≤ max

0≤j≤min(k,M)
{f(xk−j)}− max

1≤h≤i
{σ(||zk

h −xk||)} then

Set xk+1 = zk
i

Set linesearch = false and exit from Step 2.
end if

end for
Step 3. if linesearch = true then

Compute the stepsize λk along dk by means of a linesearch
algorithm ensuring Condition 2
Set xk+1 = xk + λkdk

end if
Step 4. Set k = k + 1

end while

The algorithm starts with an initial point x0, a given forcing function σ and with
the integers N and M that represent the “budget” allocated to the exploration of
the BB stepsize and the “memory term” that appears in Condition 2, respectively.

The algorithm stops as soon as the obtained point xk is a stationary point. To
generate new points the algorithm does the following: firstly, it generates a descent
direction dk that satisfies Condition 1. It then produces a finite number of tentative
points using the BB method. In particular, pk

1 is defined as the descent direction dk
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defined at the previous step (i.e. dk = pk
1) and the scaled steepest descent directions

derived using the BB equations make up the rest of the pk
i .

For each of the tentative points the satisfaction of the criterion at Step 2(b) is
tested. This criteria assesses the objective function’s decrease in comparison to a
reference value. As soon as one of the points satisfies the test, the algorithm sets
xk+1 as the tentative point zk

i that can be accepted. If the test fails for all the
N points obtained with the BB method, the algorithm backtracks to xk and then
proceeds with the generation of the new point xk+1 by employing the nonmonotone
linesearch that we described in the previous section (Step 4 ). In the NMS1 version
of the NonMonotone Stabilization Algorithm that has the exact same convergence
properties of NMS2, only the last of the N points obtained using the BB stepsize
(Step 2 of the algorithm) is considered as a potential, tentative point, and is the
only one for which the acceptance test is performed.

Both NMS1 and NMS2 are globally convergent algorithms. The following two
proposition, whose proof can be found in [56], show the converging properties of
the produced sequence of points. Prop. 2.4.1 indicates the converging properties of
the sequence xk, whereas Prop. 2.4.2 establishes the converging properties of the
sequence of the tentative points. The latter refers specifically to algorithm NMS2,
but it can easily be extended to algorithm NMS1 by always setting j = N .

Proposition 2.4.1. Let {xk} be the sequence generated by either Algorithm NMS1
or algorithm NMS2 and suppose that the algorithm does not terminate. Then, every
limit point of {xk} is a stationary point of f , which is not a maximum point.

Proposition 2.4.2. Let {xk} be the sequence generated by algorithm NMS2 and
suppose that the algorithm does not terminate. Let zk

i , for i = 1, . . . , N be the points
generated at Step 2(b) when the test at Step 2(b) is satisfied for some 1 ≤ j ≤ Nso
that xk+1 = zk

j . Then, every limit point of each sequence {zk
i } is a limit point of

{xk} and hence a stationary point of f, which is not a local maximizer.
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Chapter 3

Optimization with noisy function

In this Chapter we consider the optimization problem introduced in Chapter 2:

min
x∈Rn

f(x) (2.1)

in the situation where function evaluations are affected by noise. There are
several sources of noise that affect many real-world optimization problems, like the
use of stochastic simulation models in place of the objective function [42], or the use
of stochastic differential equations to model phenomena in various fields, ranging
from financial risk [88] to the electrophoretic separation of DNA molecules [27].
Sometimes noise is generated because of physical measurement limitations or when
function evaluations involve the approximate solution of a numerical problem [6].
Deterministic simulation models could also be noisy because of the occurrence of
various numerical errors.
We model the noisy scenario considering the presence of an additive noise affecting
the sampled function values f(x). We have that:

f(x) = ϕ(x) + ϵ(x) (3.1)

where f(x) indicates the perceived objective function value, ϕ(x) represents the
real objective function value and the error term {ϵ(x)} denotes a discrete random
field modeling the additive noise on the sampled function values with the following
properties: ϵ(x) ∼ N(0, λ2) and E[ϵ(xi) ϵ(xj)] = 0 for xi ̸= xj . 1

In absence of noise we have that f(x) = ϕ(x) and we will often refer to the real
objective function using the common notation f(x) instead of the less used ϕ(x).

Fig. 3.1 shows the example of a function affected by noise of varying magnitude
in each subplot. The standard deviation λ of the noise is reported in the legend of
each plot.

Solving optimization problems in the presence of noise is not an easy task and
is a popular research topic. The impact of noise in convex optimization has been

1The noise is modeled on the sampled function values for an easier characterization in the discrete
domain of uncorrelated noise values.
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studied in [96], while algorithms to estimate the numerical noise can be found in
[91, 92]. Finally, adaptations of Taylor based methods when function evaluations
are affected by noise are provided in [15].

Figure 3.1. Example of the function f(x) = ex2(1−x2) affected by noise.

In this chapter - and in the rest of this thesis - we distinguish between two
different case studies regarding function evaluations affected by noise that require
two different approaches:

• situations where objective function evaluations can be obtained in a cheap and
fast way;

• instances in which evaluating the objective function is very expensive in terms
of time and resources, such as when it requires the use of an external simulation
software (e.g. in simulation-based optimization problems).

In the former scenario, we can try to use objective function evaluations to
somehow filter the noise and build an estimate of the gradient 2.2. This enables
the use of gradient-based methods for solving problem 1.1 despite not having the
possibility of computing the real value of ∇f(x).

When the the evaluation of the objective function is significantly expensive, this
approach would not be feasible. In this case, the effort will be in the creation of a
model that approximates the objective function and gradient-based methods will
be used considering the gradient of such model. In particular, we will focus on the
employment of neural networks for the creation of the approximating model.

The remainder of the chapter is organized as follows: Sect. 3.1 focuses on the
review of well-known methods from the literature for building gradient approxima-
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tions, whereas in Sect. 3.2 we introduce the basic theory behind neural networks
and their role as universal approximators.

3.1 Gradient Approximation methods: an overview

In this section we focus on several methods proposed in the literature for con-
structing a good approximation of the gradient 2.2 using only information from the
objective function. All of these methods use function values of points that are in the
neighborhood of x and differ in three ways: the number of points used, how these
points are chosen and how they are used to build the gradient approximation.

In the following sections a description of various, widely adopted, methods is
provided, along with some of their theoretical properties.

We denote with g(x) any estimate of ∇f(x) and with gi(x) its ith component.
We choose not to use a different subscript for every approximation since we believe
it would make the notation too heavy. We also believe that it will be easy for the
reader to understand what scheme g(x) is referring to.

3.1.1 The Finite Difference scheme

One of the approaches to the computation of a gradient estimate derives from
Taylor’s theorem and is known as finite differencing [99]. The idea behind this
method is intuitive: to estimate the derivative of a function in a point x you can
compute small and finite perturbation of the values of x and then observe the
differences in the function values. The approximation of the derivative, that is
known to measure of the sensitivity to change of a function determined by extremely
small changes of the independent variable, is then obtained by computing the ratio
between such difference and the magnitude of the perturbation of x.

The finite differences method exists in two forms: the forward finite difference
approximation, or FFD, and the central finite difference approximation - CFD, both
of which are described in this section.

Forward Finite Difference scheme

Indicating with {ei} the canonical base of Rn, we can write the approximation
of the gradient obtained with FFD in the following way:

gi(x) = f(x+ σei) − f(x)
σ

, i = 1, . . . , n. (3.2)

It has been stated that this estimate derives from Taylor’s theorem. We now
justify this claim and find a bound of the distance between g(x) and ∇f(x).

Proposition 3.1.1. If the function f : Rn 7→ R is continuously differentiable and
its Gradient is L-Lipschitz continuous for all x ∈ Rn we have that:
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||g(x) − ∇f(x)|| ≤
√
n
Lσ

2 . (3.3)

where g(x) =
∑n

i=1 gi(x) ei.

Proof. Under the assumptions of Prop. 3.1.1, Taylor’s theorem with remainder in
the integral form in the case of k=1 states that:

f(x) = f(a) + (x− a)f ′(a) +
∫ x

a
(x− t)f ′′(t)dt

We can therefore write:

f(x+ σei) = f(x) + σ∇f(x)T ei + σ2
∫ 1

0
(1 − t)eT

i ∇2f(x+ tσei)ei dt

The distance between gi(x) computed as 3.2 and ∂f
∂xi

(x) can be written as

∣∣∣gi(x) − ∇f(x)T ei

∣∣∣ =
∣∣∣∣f(x+ σei ) − f(x)

σ
− ∇f(x)T ei

∣∣∣∣
=
∣∣∣∣σ ∫ 1

0
eT

i ∇2f(x+ tσei)ei (1 − t) dt
∣∣∣∣ ≤ 1

σ

∫ 1

0

∣∣∣eT
i ∇2f(x+ tσei)ei

∣∣∣ (1 − t)dt

≤ 1
σ
L

(
−1

2 (1 − t)2
∣∣∣∣1
0

)
= Lσ

2 . (3.4)

In Rn, remembering that ||x|| = (
∑n

i=1 x
2
i )

1
2 we have:

||g(x) − ∇f(x)||2 =
n∑

i=1

(
gi(x) − ∇f(x)T ei

)2
≤

n∑
i=1

(
Lσ

2

)2
= n

(
Lσ

2

)2
. (3.5)

From which derives 3.3:

||g(x) − ∇f(x)|| ≤
√
n
Lσ

2 .

When looking at (3.3), the reader may be tempted to choose a step-size σ as
small as possible, but should keep in mind the numerical limitations that are faced
if this algorithm is to be implemented on a real computer.

In fact, obtaining the gradient estimate with the finite difference formula requires
the computer to calculate sums and differences of floating-point numbers and then
dividing the result by a small number, σ. This is the same as multiplying the result
by a huge number, with the consequence that any rounding errors in the numerator
will be magnified by the multiplication. Since this amplification increases as σ



3.1 Gradient Approximation methods: an overview 29

decreases, its value should be chosen to minimize the total error, which includes
both the truncation error (which is decreasing in σ) and the round-off error that is
generated when computing arithmetic operations with floating-point integers (and
is increasing in σ). In [99], Chapter 7, the author proposes a reasonable way to
choose the value of σ based on this trade-off, but it is worth noticing that in practice
the value of the Lipschitz constant L that appears in the truncation error is rarely
known. When it is not, the user is left to the choice of either trying to estimate the
value of the Lipschitz constant, or to manually adjust the value of σ based on the
results of his experiments.

As if this were not enough, the choice of the step-size σ becomes even more
critical when function evaluations are affected by noise, as we discuss in the following
section.

FFD in the presence of noise

If function evaluations are affected by noise as modelled in (3.1), we can write
the approximation of the gradient g(x) obtained with FFD in the following way:

g(x) =
[
g1(x), g2(x) . . . gn(x)

]T
where:

gi(x) = ϕ(x+ σei) + ϵ(x+ σei) − ϕ(x) − ϵ(x)
σ

. (3.6)

Let us now analyze the estimation error in presence of noise in terms of accuracy
(mean value) and precision (variance). The accuracy evaluates the estimate bias, i.e.
the systematic source of the error, like the limited number of function realizations
available to build the estimate, whereas the precision is the dispersion of the
estimation error around its mean value and evaluates the variability of the statistic
source of the error.
Let

eFFD(x) = g(x) − ∇ϕ(x)

be the estimation error and let {ei} be the canonical base of Rn. We then have that:

E[eFFD(x)] =
n∑

i=1

ϕ(x+ σei) − ϕ(x)
σ

ei − ∇ϕ(x) (3.7)

since the expected value of every noisy term ϵ(·) is zero, and

var[eFFD(x)] = n
(2λ)2

σ2 (3.8)

where var[z], z ∈ Rn with E[z] = 0, indicates the trace of the covariance matrix
E[z zT ].
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Now, for functions f as in Prop. (3.1.1),we have that

∥E[eFFD(x)]∥ ≤
√
n
Lσ

2 .

Therefore, as the step-size σ → 0 the expected value of error goes to zero as well
on average, but its variance increases without bound as O

(
1/(σ)2). This trade-off

between precision and accuracy shows with even more clarity that the choice of the
value of the step-size is anything but simple, especially in the presence of noise.

While in the noise-free setting it was possible to put a deterministic bound on the
estimation error eFFD(x), in the presence of noise we can only provide a statistical
analysis of it. The following proposition holds:

Proposition 3.1.2. If the function f : Rn 7→ R is twice continuously differentiable
and its Gradient is L-Lipschitz continuous for all x ∈ Rn, if function evaluations
are affected by noise as modelled in (3.1) we have that, with probability α:

||g(x) − ∇ϕ(x)|| ≤
√
n
Lσ

2 + P(α)
√
n (2λ)
σ

. (3.9)

where g(x) =
∑n

i=1 gi(x) ei and P(α) is the α-quantile of the standard gaussian
distribution.

The proof can be derived directly from the one of Prop. 3.1.1 and basic statistical
theory and is not reported here for brevity.

In other words, Prop. 3.1.2 states that we can bound the norm of the difference
between the real gradient and the estimate with the sum of the expected value of the
error and its standard deviation multiplied by a factor that depends on the desired
confidence.
For example, we could say that with probability 95%

||g(x) − ∇ϕ(x)|| ≤
√
n
Lσ

2 + 1.645
√
n (2λ)
σ

.

From this formula we can see that, if the information on the Lipschitz constant
of the gradient L and the value of the standard deviation λ were available, one
could choose the right value of σ that allows to control the bound on ||g(x)−∇ϕ(x)||.

In the next two sections we will extend the analysis performed for the FFD
scheme to the Central Finite Difference Scheme, which is more precise and more
expensive in terms of function evaluations, and we will discuss its features both in
the noise-free and in the noisy settings.

Central Finite Difference scheme

A more accurate way of computing the gradient approximation using the Finite
Difference scheme is the CFD formula.
Denoting with gi(x) the ith component of the estimate, the CFD approximation is:
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gi(x) = f(x+ σei ) − f(x− σei)
2σ , i = 1, . . . , n. (3.10)

The number of function evaluations used by this scheme is 2n, almost twice as
big as the one of the FFD scheme that uses a budget of n+ 1 function evaluations.
On the other hand, it guarantees a higher accuracy, as we show in this section.
The trade-off between the number of function evaluations and the precision of the
estimate is something that exists for all the gradient estimation schemes that can
use a varying number of function evaluations.

Let us now derive a bound on the distance between this estimate and the real
value of the gradient, under the assumption of f twice continuously differentiable
and the H-Lipschitz continuity of its Hessian for all x ∈ Rn.

Proposition 3.1.3. If the function f : Rn 7→ R is twice continuously differentiable
and its Hessian is H-Lipschitz continuous for all x ∈ Rn we have that:

||g(x) − ∇f(x)|| ≤
√
n
Mσ2

6 . (3.11)

where g(x) =
∑n

i=1 gi(x) ei.

Proof. Under the assumptions of Prop. 3.1.3, Taylor’s theorem with remainder in
the integral form in the case of k=2 states that:

f(x) = f(a) + (x− a)f ′(a) + (x− a)2 1
2f

′′(a) + 1
2

∫ x

a
(x− t)2f ′′′(t)dt

We can therefore write:

f(x+σei) = f(x)+σ∇f(x)T ei + 1
2σ e

T
i ∇2f(t)ei σ+ 1

2

∫ 1

0

∂3f(x+ σtei)
∂x3

i

σ3(1−t)2dt

and

f(x−σei) = f(x)−σ∇f(x)T ei +
1
2σ e

T
i ∇2f(t)ei σ− 1

2

∫ 1

0

∂3f(x− σtei)
∂x3

i

σ3(t−1)2dt.

The distance between gi(x) computed as 3.10 and ∂f
∂xi

(x) can be written as
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∣∣∣gi(x) − ∇f(x)T ei

∣∣∣ =
∣∣∣∣f(x+ σei ) − f(x− σei)

2σ − ∇f(x)T ei

∣∣∣∣
=
∣∣∣∣∣ 1
4σ

∫ 1

0

∂3f(x+ σtei)
∂x3

i

σ3(1 − t)2dt+ 1
4σ

∫ 1

0

∂3f(x− σtei)
∂x3

i

σ3(t− 1)2dt

∣∣∣∣∣
≤ σ2

4

∫ x+σei

x

∣∣∣∣∣∂3f(x+ σtei)
∂x3

i

∣∣∣∣∣ (1 − t)2dt+ σ2

4

∫ 1

0

∣∣∣∣∣∂3f(x− σtei)
∂x3

i

∣∣∣∣∣ (t− 1)2dt

≤ Hσ2

4

(
−1

3 (1 − t)3
∣∣∣∣1
0

+ 1
3 (t− 1)3

∣∣∣∣1
0

)
(3.12)

≤ Hσ2

4
2
3 = H σ2

6 . (3.13)

where in 3.12 we exploited the H-Lipschitz continuity of the Hessian of f .
In Rn, remembering that ||x|| = (

∑n
i=1 x

2
i )

1
2 we have:

||g(x) − ∇f(x)||2 =
n∑

i=1

(
gi(x) − ∇f(x)T ei

)2
≤

n∑
i=1

(
Hσ2

6

)2
= n

(
Hσ2

6

)2
. (3.14)

From which derives 3.11:

||g(x) − ∇f(x)|| ≤
√
n
Hσ2

6 .

The considerations about the difficulty of choosing the right value of the step-size
σ and the fact that the optimal choice depends on the knowledge of the constant H
that appears in the bound are the same discussed for the FFD scheme.

We conclude this section by noticing that the higher cost of the CFD scheme
with respect to its cheaper counterpart, the FFD scheme (2n function evaluations
against n+ 1) is followed by a much lower bound on he estimation error. In fact,
not only the denominator in the bound of the CFD scheme is three times bigger,
but the estimation error goes to zero much faster as the step-size σ tends to zero –
O
(
σ2) insted of O (σ).
In the next section, we describe the behaviour of the CFD scheme in the presence

of noise.

CFD in the presence of noise

When function evaluations are affected by noise we can write the approximation
of the gradient g(x) obtained with the CFD formula in the following way:

g(x) =
[
g1(x), g2(x) . . . gn(x)

]T
where:
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gi(x) = ϕ(x+ σei) + ϵ(x+ σei) − ϕ(x− σei) − ϵ(x− σei)
2σ . (3.15)

With the same lines of reasoning of FFD we now analyze the estimation error in
presence of noise.
Let

eCFD(x) = g(x) − ∇ϕ(x)

be the estimation error and let {ei} be the canonical base of Rn. We then have that:

E[eCFD(x)] =
n∑

i=1

ϕ(x+ σei) − ϕ(x− σei)
2σ ei − ∇ϕ(x) (3.16)

and

var[eCFD(x)] = n
2λ2

4σ2 = nλ2

2σ2 (3.17)

If the function f : Rn 7→ R is twice continuously differentiable and its Hessian is
H-Lipschitz continuous for all x ∈ Rn we have that

∥E[eCFD(x)]∥ ≤
√
n
H σ2

6 .

Therefore as the step-size σ → 0, the error goes to zero on average as O
(
σ2) -

thus faster than FFD , but its variance increases without bound as O
(
1/σ2), just

like FFD. There is again the trade-off between precision and accuracy that depends
on the difficult choice of the parameter σ.

We provide a non-deterministic bound on the estimation error when function
evaluations are affected by noise, similar to what was done in the FFD section. The
following proposition is true:

Proposition 3.1.4. If the function f : Rn 7→ R is twice continuously differentiable
and its Hessian is H-Lipschitz continuous for all x ∈ Rn, under the assumption of
function evaluations are affected by noise as modelled in (3.1) we have that, with
probability α:

||g(x) − ∇ϕ(x)|| ≤
√
n
Hσ2

6 + P(α)
√
n

2
λ

σ
. (3.18)

where g(x) =
∑n

i=1 gi(x) and P(α) is the α-quantile of the standard gaussian distri-
bution.

The proof can be derived directly from the one of Prop. 3.1.3 and basic statistical
theory and is not reported here for brevity.

This proposition concludes the section on the Finite Difference scheme, one of the
most well-known and widely used gradient estimation schemes due to its simplicity
and high accuracy. Its importance stems from the fact that it allows for deterministic
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bounds on the approximation error between the gradient estimate and its real value.
The presence of noise has been shown to affect this scheme on several levels: it
leads to higher bounds on the estimation error, makes choosing the step-size σ more
difficult, and only allows for a statistical characterization of the estimation error.

In the following section we describe another popular scheme for approximating
the gradient of a function: the Gaussian Smoothing scheme.

3.1.2 Gaussian Smoothing scheme

Another popular method for approximating an unknown gradient using only func-
tion values is the Gaussian Smoothing scheme, often used when function evaluations
are affected by noise [85] and in several recent papers [117, 127, 136, 145].

Gaussian smoothing is defined as the convolution of the function f : Rn 7→ R
with a kernel φ(s) : Rn 7→ R

Gσ(x) := 1
σ

∫
Rn
f(x+ σs) sφ(s) ds (3.19)

where φ(s) is the probability density function (pdf) for the multivariate normal
distribution with mean 0 and covariance matrix Σ = I, i.e.

φ(s) ∼ N (0, In) = 1
(
√

2π)n
exp {−1

2

n∑
i=1

si
2} =

n∏
i=1

φ(si) (3.20)

This convolution can be seen as a smoothed version of the underlying function
f , where the degree of smoothing depends on the smoothing parameter σ > 0.
We will now work out formula (3.19) to provide a better understanding of this
method.

Let us consider this further notation: for any x ∈ Rn denote by x̄i ∈ Rn−1 the
following vector

[
x1, x2 . . . , xi−1, xi+1, . . . , xn

]T
. With some abuse of notation, but

for sake of simplicity in the use of formulas, when addressing a given coordinate xi in
a vector x let us write x as [xi x̄i]T and denote f(x) as f(xi, x̄i) and φ(s) = φ(si)φ(s̄i),
with φ(s̄i) =

∏n
j ̸=i φ(sj); consistently, the volume element becomes ds = dsi · ds̄i. In

case of a vector function f(z), to address explicitly its i− th entry we write it as
[(f(z))i (f(z))i]T .
Then, estimate (3.19) can be rewritten as follows

Gσ(x) = 1
σ

∫
Rn
f(x1 + σs1, . . . , xn + σsn)


s1
...
sn

 n∏
i=1

φ(si) ds (3.21)

=



1
σ

∫
Rn f(x1 + σs1, x̄1 + σs̄1) s1 φ(s1)φ(s̄1) ds1 ds̄1

...
1
σ

∫
Rn f(xi + σsi, x̄i + σs̄i) si φ(si)φ(s̄i) dsi ds̄i

...
1
σ

∫
Rn f(xn + σsn, x̄n + σs̄n) sn φ(sn)φ(s̄n) dsn ds̄n


(3.22)
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Let us consider the generic entry of vector (3.22)

(Gσ(x))i = 1
σ

∫
Rn
f(xi + σsi, x̄i + σs̄i)siφ(si)φ(s̄i)dsi ds̄i (3.23)

By the Fubini theorem we can compute it as follows

(Gσ(x))i =
∫
Rn−1

φ(s̄i)
(

1
σ

∫ +∞

−∞
f(xi + σsi, x̄i + σs̄i)siφ(si)dsi

)
ds̄i (3.24)

The expression in parentheses is the estimate of the directional derivative of f(x)
along the i-th coordinate xi and computed at the point (xi, x̄i + σs̄i), i.e.

gσ(xi, x̄i + σs̄i) := 1
σ

∫ +∞

−∞
f(xi + σsi, x̄i + σs̄i)siφ(si)dsi. (3.25)

Hence expression (3.23) becomes

(Gσ(x))i = 1
σ

∫
Rn−1

gσ(xi, x̄i + σs̄i)φ(s̄i) ds̄i. (3.26)

Therefore, the generic entry of the gradient estimate Gσ(x) in formula (3.22) is
the average of function (3.25) weighted by a (n− 1)-dimensional Gaussian kernel
φ(s̄i) = N (0, In−1) over the subspace Rn−1 of Rn. As a consequence, the computation
of any entry of vector Gσ(x) implies an integration over Rn, that clearly represents
something not easy to compute.

This problem is overcome in Gaussian Smoothing methods, as in papers [12, 16]
by considering that (3.19) is indeed an ensemble average of function f(x+ σs)s over
all the directions s ∈ Rn weighted by the Gaussian distribution φ(s) ∼ N (0, In). It
is in fact possible to rewrite (3.19) in the following way:

Gσ(x) = 1
σ
Eφ[f(x+ σs)s]. (3.27)

From this expression, it is possible to derive some bounds for the distance between
Gσ(x) and ∇f(x), depending on the assumptions on the function f. If the gradient
of the function f is L-Lipschitz continuous, we have that

||Gσ(x) − ∇f(x)|| ≤
√
nLσ. (3.28)

Instead, if the Hessian of the function f is H -Lipschitz continuous, we have that

||Gσ(x) − ∇f(x)|| ≤
√
nH σ2. (3.29)

Proofs of (3.28) and (3.28) can be found in [17], for the special case of absence of
noise.

From [17] we also report the bounds on the distance between Gσ(x) and ∇f(x) in
presence of an additive noise and most of the prepositions of the following sections.
Differently from the characterization of the noise described in (3.1), the authors
assume that the value of the noise is bounded above by a constant λf , i.e. |ϵ(x)| ≤ λf
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for all x ∈ Rn. 2 The two bounds on the error between Gσ(x) and ∇f(x) in this
setting change in the following way:
if the gradient of the function f is L-Lipschitz continuous, we have:

||Gσ(x) − ∇ϕ(x)|| ≤
√
nLσ +

√
nλf

σ
. (3.30)

If instead the Hessian of the function f is H -Lipschitz continuous, we have:

||Gσ(x) − ∇ϕ(x)|| ≤
√
nH σ2 +

√
nλf

σ
. (3.31)

We again are facing a trade-off: the choice of the parameter σ affects the two
components of this bound in the opposite way, thus representing a choice that has
to be handled with care.
The interpretation of (3.19) as the ensemble average (3.27) is the proper starting
point of the Gaussian Smoothing scheme, that exists in its Gaussian Smoothing
Gradient (GSG) and central Gaussian Smoothing Gradient (cGSG) forms. The
proofs of the propositions reported in the following sections can be found in [17].

Gaussian Smoothing Gradient

The ensemble average (3.27) can be well approximated by sampling a set of M
independent directions {si} in Rn according to N (0, In), and considering the sample
average approximation of Eφ[f(x+ σs)s]. In the GSG method, the approximation
g(x) of the gradient is obtained by:

g(x) = 1
M

M∑
i=1

(f(x+ σsi) − f(x))si

σ
. (3.32)

This sample average is an unbiased estimator of ∇f(x) and its accuracy increases
with increasing M . We can see that the approach of this method is somewhat similar
to that of the finite difference scheme with two major differences:

• the perturbation of the point x occurs along directions sampled from a Gaussian
distribution in the GSG method, and not along the canonical vector as in the
finite difference scheme. (3.32) can in fact be interpreted as the average of
several forward finite difference versions of the directional derivative of f at x
along si [98].

• The number of direction sampled, and consequently of function evaluations, in
the GSG method is independent of the dimension n of the function f : M + 1
function computations in case of (3.32), whilst you need exactly n+ 1 function
evaluations for the FFD scheme.

2Let us note that modeling the noise as in (3.1) we can obtain the same bounds (3.28) and (3.29)
in a probabilistic (instead of deterministic) fashion.
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In [98] the analysis of the properties of (3.19) and (3.32) can be found for the special
case M = 1. In [17] the analysis is extended for the case of M > 1 and bounds on
the variance of g(x) and on the distance between g(x) and ∇f(x) are derived.

The variance of (3.32) can be written as:

V ar{g(x)} = 1
M

Es∼N (0,I)

[(
f(x+ σs) − f(x)

σ

)2
s sT

]
− 1
M
Gσ(x)Gσ(x)T ,

and the following proposition holds:

Proposition 3.1.5. Being g(x) the gradient estimate obtained according to (3.32), if
the function f : Rn 7→ R is continuously differentiable and its Gradient is L-Lipschitz
continuous for all x ∈ Rn we have that:

V ar{g(x)} ⪯ κ(x)I, where κ(x) = 36||∇f(x)||2 + 3L2σ2(n+ 2)(n+ 4)
4M .

The analysis of the distance between g(x) and ∇f(x) for the GSG method is
trickier than that of FFD. Because of the randomness introduced by the random
sampling of Gaussian directions ui, the error can only be described statistically, as
shown in the following theorem:

Theorem 3.1.6. If the function f : Rn 7→ R is continuously differentiable with
a L-Lipschitz continuous Gradient for all x ∈ Rn, if g(x) is the gradient estimate
obtained according to (3.32) with sample size:

M ≥ 9n||∇f(x)||2

δ r2 + 3n(n+ 2)(n+ 4)L2 σ2

4 δ r2

then, for all x ∈ Rn and any r > 0, ||g(x) − ∇f(x)|| ≤
√
nLσ + r with probability

at least 1 − δ, with 0 < δ < 1.

Despite the fact that this is an intriguing result, it is difficult to put into practice.
In fact, to calculate the sample size needed to obtain the desired bound on the norm
of distance between the gradient approximation and the real gradient, one should
know two information rarely available: the value of the norm of the gradient in the
point of interest, and the value of the Lipschitz constant. Furthermore, the number
of function evaluations required to obtain the desired bound is likely to be quite
large.

In the following section, we show how Prop. 3.1.5 and Thm. 3.1.6 change if the
sampling of the function is affected by additive noise.

GSG in the presence of noise

If an additive noise affects the sampled function values f(x), as in 3.1, assuming
that the value of the noise is bounded above by a constant λf , i.e. |ϵ(x)| ≤ λf for
all x ∈ Rn, the following proposition holds:
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Proposition 3.1.7. Being g(x) the gradient estimate obtained according to (3.32), if
the function ϕ : Rn 7→ R is continuously differentiable and its Gradient is L-Lipschitz
continuous for all x ∈ Rn we have that:

V ar{g(x)} ⪯ κ(x)I, where κ(x) = 36||∇ϕ(x)||2 + 3L2σ2(n+ 2)(n+ 4)
4M + 12λf

Mσ2 .

Theorem 3.1.8. If the function ϕ : Rn 7→ R is continuously differentiable with
a L-Lipschitz continuous Gradient for all x ∈ Rn, if g(x) is the gradient estimate
obtained according to (3.32) with sample size:

M ≥ 9n||∇ϕ(x)||2

δ r2 + 3n(n+ 2)(n+ 4)L2 σ2

4 δ r2 +
12nλ2

f

δ r2σ2

then, for all x ∈ Rn and any r > 0, ||g(x) − ∇ϕ(x)|| ≤
√
nLσ + r with probability

at least 1 − δ, with 0 < δ < 1.

With respect to the noise-free setting, we can notice that both the upper bound
on the variance and and the lower bound on M (the sufficient sample size for
guaranteeing a high accuracy in the estimate) have one more term that is directly
proportionate to the bound on the maximum value of the noise and inversely
proportionate to the step-size σ.

Both Prop. 3.1.7 and Thm. 3.1.8 highlight again the difficulty of choosing the
right value of σ, that becomes even harder when function evaluations are affected
by noise, as described before for other approximation schemes.

In the following section we describe the central Gaussian Smoothing Gradient
(cGSG), a more accurate version of the GSG scheme that we can think of as the
equivalent of the CFD scheme to its FFD counterpart.

Central Gaussian Smoothing Gradient

Similarly to the Finite Difference scheme, there is also a more accurate version
of the Gaussian Smoothing Gradient that requires more function evaluations per
sampled direction: its cGSG form, that computes the approximation g(x) of the
gradient in the following way:

g(x) = 1
M

M∑
i=1

(f(x+ σsi) − f(x− σsi))si

2σ . (3.33)

This sample average is also an unbiased estimator of ∇f(x) and its accuracy
increases with increasing M . The computation of (3.33) requires 2M function
evaluations, where again M is independent of the dimension n of the function,
against the 2n function evaluations required by the CFD method.
Similarly to the GSG section, we report now the variance of this method and its
bound, along with a theorem that links the sample size to the desired bound on the
approximation error.
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The variance of (3.33) can be written as:

V ar{g(x)} = 1
M

Es∼N (0,I)

[(
f(x+ σs) − f(x− σs)

2σ

)2
s sT

]
− 1
M
Gσ(x)Gσ(x)T .

and the following proposition holds:

Proposition 3.1.9. Being g(x) the gradient estimate obtained according to (3.33),
if the function f : Rn 7→ R is twice continuously differentiable and its Hessian is
H-Lipschitz continuous for all x ∈ Rn we have that:

V ar{g(x)} ⪯ κ(x)I, whereκ(x) = 9||∇f(x)||2

M
+ H2σ4(n+ 2)(n+ 4)(n+ 6)

12M .

(3.34)

At this point we can report the analogous for the cGSG of Thm. 3.1.6, where the
sample size is linked to the desired bound on the norm between the approximation
of the gradient and the real one.

Theorem 3.1.10. If the function f : Rn 7→ R is twice continuously differentiable
with a H-Lipschitz continuous Hessian for all x ∈ Rn, if g(x) is the gradient estimate
obtained according to (3.33) with sample size 2M where

M ≥ 9n||∇f(x)||2

δ r2 + n(n+ 2)(n+ 4)(n+ 6)H2 σ4

12 δ r2

then, for all x ∈ Rn and any r > 0, ||g(x) − ∇f(x)|| ≤
√
nM σ2 + r with probability

at least 1 − δ with 0 < δ < 1..

The considerations about the usefulness of this theorem from a practical point
of view are the same reported after Thm. 3.1.6.

cGSG in the presence of noise

Let us now report how the results shown in Sect. 3.1.2 change when function
evaluations are affected by noise, as in 3.1, with |ϵ(x)| ≤ λf for all x ∈ Rn.

Proposition 3.1.11. Being g(x) the gradient estimate obtained according to (3.32),
if the function ϕ : Rn 7→ R is continuously differentiable and its Gradient is L-
Lipschitz continuous for all x ∈ Rn we have that:

V ar{g(x)} ⪯ κ(x)I, where κ(x) = 9||∇ϕ(x)||2

M
+H2σ4(n+ 2)(n+ 4)(n+ 6)

12M + 3λf

Mσ2 .

Theorem 3.1.12. If the function ϕ : Rn 7→ R is continuously differentiable with
a L-Lipschitz continuous Gradient for all x ∈ Rn, if g(x) is the gradient estimate
obtained according to (3.32) with sample size:

M ≥ 9n||∇ϕ(x)||2

δ r2 + n(n+ 2)(n+ 4)(n+ 6)H2 σ4

12 δ r2 +
3λ2

f

δr2σ2 (3.35)

then, for all x ∈ Rn and any r > 0, ||g(x) − ∇ϕ(x)|| ≤
√
nLσ + r with probability

at least 1 − δ, with 0 < δ < 1.
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This theorem concludes the section on the Gaussian Smoothing Gradient scheme,
another popular method for approximating the gradient using only function values.

Compared with the Finite Difference scheme, it has both some advantages and
disadvantages. Its main advantage is the fact that the number of function evaluations
required to compute the gradient approximation is independent of the number of
variables n. In fact, while the Finite Difference scheme requires either n + 1 or
2n function evaluations to build the gradient estimate, the Gaussian Smoothing
Gradient scheme requires a minimum of two function evaluations to build a gradient
estimate, e.g. by using M = 1 in (3.32). It is worth noting that this is rarely - if
ever - done in practice, because the gradient estimate produced with such a small
number of function evaluations would be inaccurate, and that the number of function
evaluations required for accurate gradient approximation is frequently higher than n
as shown in the numerical experiments in the following chapter.

The other advantage of this scheme is the filtering effect of the convolution
between the objective function f and the Gaussian Kernel, that makes the scheme a
little more robust to the noise affecting function evaluations. The interpretation of
the integral (3.19) as the ensemble average (3.27) and its subsequent sample average
approximation, implies that this robustness to the noise diminishes as the precision
of the approximation decreases.

As for the downsides, the Gaussian Smoothing scheme only allows for a statistical
characterization of the estimation error also in the noise free setting. The reason for
this lies in the randomicity that comes from the random sampling of the directions
from the gaussian distribution.

The other downside is the poor accuracy of this scheme with respect to the
finite difference scheme in the noise-free setting, when both methods use the same
number of function evaluations. Because of the convoluted way the bounds on the
estimation error of the gaussian smoothing scheme are expressed, it is hard to justify
this claim on a theoretical level. However, numerical results in the following chapter
will highlight this downside.

We conclude this section by briefly describing other gradient approximation
methods, before moving to the next chapter where we describe a new proposed
scheme for building gradient approximations.

3.1.3 Brief outline of other methods

Despite being the most popular, the finite difference scheme and the Gaussian
smoothing scheme are not the only existing gradient approximation methods.

Another method that is conceptually similar to the Gaussian smoothing scheme
is the one proposed by A. Flaxman in [47], where the function f is smoothed with a
uniform distribution on a ball, as in:

Gσ(x) := n

σ
Es∼U(Σ(0,1)[f(x+ σs)s]. (3.36)
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where Σ(0, 1) represents a unit sphere of radius 1 centered at 0. Similarly to the
Gaussian Smoothing case, the ensemble average (3.36) can be approximated with
the following sample average approximation:

g(x) = n

M

M∑
i=1

f(x+ σsi) − f(x)
σ

si (3.37)

where the vectors ui are M independently and identically distributed random
vectors following a uniform distribution on the unit sphere. Using twice the number
of function evaluations, it is also possible to approximate (3.36) with the following:

g(x) = n

M

M∑
i=1

f(x+ σsi) − f(x− σsi)
σ

si. (3.38)

In [17] it is possible to find bounds on the variance of this estimate and the
lower bound on the number of sampled direction M sufficient for guaranteeing the
desired accuracy with a certain probability δ, similar to those shown in Sect. 3.1.2.
In particular, the authors show an advantage that this method has over gaussian
smoothing, namely that when deriving the lower bound on M the structure of this
method allows the use of Bernstein’s inequality instead of Chebychev’s, thus resulting
in a bound with an improved dependence on the probability δ.

This method is similar to the estimate proposed by Spall [124] and Granich [54]
in two different, independent works, where a perturbation vector p in which every
component is an independent random variable with zero mean, is used to build the
gradient estimate according to the following formula:

g(x) = f(x+ σp)
σ

[ 1
p1
,

1
p2
, · · · 1

pn

]T

. (3.39)

Another interesting method for producing gradient estimates is the one proposed
in [16], built around the concept of interpolation models that are popular in the
world of Derivative Free Optimization (see for example [31, 109, 137]). The authors
focus on the simplest interpolation model, the linear one, around a point x ∈ Rn, as
in:

m(y) = f(x) + g(x)T (y − x). (3.40)

They then consider the directions ui, i = 1, . . . , n and define the matrix Qχ ∈
Rnxn as the matrix with rows ui. Defining the vector Fχ ∈ Rn as the vector with
entries f(x+ σui) − f(x) for i = 1, . . . , n, the linear interpolation model satisfying
the interpolation condition f(x+σui) = m(x+σui) for each direction can be written
as:

σQχg(x) = Fχ. (3.41)
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If the determinant of the matrix Qχ is not zero, it is possible to write g(x) =
1
σQ

−1
χ Fχ. When the directions ui are orthonormal, Q−1

χ = QT
χ and the gradient

estimate g(x) can be written as:

g(x) =
n∑

i=1

f(x+ σui) − f(x)
σ

ui. (3.42)

We can notice the similarities between estimate (3.42) and (3.32), where the
former can be interpreted as a scaled version of the latter, the difference being in
the expected length of the sampled directions when they are orthonormal and when
they come from a Gaussian distribution.

This gradient estimate method concludes this section, where we described several
gradient approximation schemes, with a special focus on the Finite Difference scheme
and the Gaussian Smoothing one. We described their origins and described some of
their properties, both in the noise-free and in the noisy setting. In the next chapter
we describe the origin and the properties of a new scheme for approximating the
gradient of a function, and we show how it performs in comparison to the main
methods described in this section.

3.2 Introduction to neural networks

Estimating the gradient of a function at each iteration of any algorithm in charge
of the resolution of a minimization problem would be hardly feasible in a reasonable
time when the evaluations of the objective function are very expensive in terms of
time and resources, such as when they require the use of an external simulation
software. In this scenario, it might be wiser to use function evaluations to directly
create a metamodel (or surrogate model) that approximates the objective function.

There are a variety of approaches that can be used to build a metamodel,
including but not limited to:

• smoothing splines [55];

• radial basis functions [25];

• Kriging approximators, [105];

• neural networks.

As far as the authors know, there are no results in the literature that support the
choice of one approach over the others and, since the objective is that of studying the
feasibility of the metamodel creation, the in-depth analysis about which approach
works better is left to future studies.

In this section, and in the rest of this thesis, we focus on the employment of
neural networks for the creation of the approximating model, given the growing
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amount of interest around this topic and the availability of several open source
software.

The objective of this section is to introduce some basic concepts about neural
networks. In particular, after describing the simple Perceptron, we introduce the
class of Feedforward Neural Networks (FNN) known as Multi-Layer Perceptron
(MLP), and we report some results on their approximation capabilities. We also
introduce the problem of training a neural network, whose details will be provided
in the case study reported in Chapter 5.

We begin by introducing the concept of the neural neuron, also referred to simply
as neuron. The neuron, originally presented in 1943 by McCulloch e Pitts [87] and
later on by Rosenblatt [113], allegedly simulates the behaviour of the human nervous
system. It is a mathematical function that takes as input a generic vector xp ∈ Rn ,
performs a nonlinear transformation of it and returns a scalar output ȳp. For the
analogy between the artificial neurons and the biological ones see [2]. The nonlinear
transformation consists of the application of a nonlinear function g(·) to the sum of
a value b ∈ R known as bias term and the scalar product between the input vector
xp and the vector w ∈ Rn, known as weights vector, as in equation (3.43)

ȳp = g(wTxp + b) = g

(
n∑

i=1
wixi + b

)
. (3.43)

Function g(·) in (3.43) is known as activation function. Thus, activation functions
are applied by the neuron in order to introduce non-linearities in the model. From
the introduction of the Perceptron throughout the incredible development of the
Machine Learning field until today, several dozens of activation functions have been
proposed. In Appendix A the reader can find a description of some of the most
popular ones.

3.2.1 Perceptron

The neuron is the central element of the single-layer Perceptron, also known as
Perceptron. It consists of two layers (i.e. L = 2) of nodes:

• n input nodes that are used to transmit input values to the output node and
don’t perform any type of computation.

• the output node, or neuron, described above.

A visualization of the Perceptron is reported in Fig. 3.2.
The interpretation of the Perceptron proposed by Rosenblatt is quite interesting

since he considers the Perceptron a linear classifier. Indeed, given a set of inputs

{xp, yp}P
p=1, xp ∈ Rn, yp ∈ {−1,+1},
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Figure 3.2. Scheme of a Perceptron with P = 4

the output ȳp of the Perceptron for a given input xp is either −1 or +1 depending
on the sign of wTxp + b.
The objective will therefore be that of finding the values of (w, b) such that

wTxp + b ≥ 0 if yp = +1
wTxp + b < 0 if yp = −1

and these values can be found by performing a training process.
Furthermore, note that finding the values of w and b that satisfy the equations

above is possible only if the set of input {xp, yp}P
p=1 is linearly separable. This fact

helps thinking at the geometrical interpretation of the Perceptron as a separating
hyperplane

H = {x ∈ Rn : wTx+ b = 0}

that strictly separates the sets

A = {xp : (xp, yp) ∈ T, yp = +1} and B = {xp : (xp, yp) ∈ T, yp = −1}.

To summarize, the Perceptron is the most basic type of a neural network, with
only one input and one output layer. The function learnt by the Perceptron is
extremely simple, and not sufficient for the majority of applications, being used in
practice only for linear separation problems [107]. As a result, multi-layer neural
networks were developed, which are more complex models that can be thought of as
an evolution or extension of the simple Perceptron. One of these more complicated
models is the MLP.

3.2.2 Multi-Layer Perceptron

As suggested by the name, MLP is characterized by the presence of L ≥ 2 layers.
The neural units, or neurons, are organized in them in this fashion:
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• the input nodes connects the input variables (xp)i ∈ R, i = 1, . . . , n to the
first layer without performing any computation;

• the first L - 1 layers are called hidden layers, and neurons belonging to them
don’t have any direct connection with the output;

• the last layer is called output layer, and is formed by K different neural units,
each of which represents the output ȳi ∈ R, i = 1, . . . ,K of the network.

• each neuron in a given layer l is connected by weighted arcs to the outputs
of each neurons of the layer l − 1. Conversely, the output of each neuron
in a layer l is connected to all the neurons of the layer l + 1. Finally, there
are no connections between neurons of the same layer. The characteristic of
having connections between all the neurons of adjacent layers makes the MLP
a fully connected architecture. There are also types of artificial neural networks
where this does not happen, or where other type of connections - such as those
between the output of a neuron and the neuron itself - exist, like in the case of
Recurrent Neural Networks (RNN).

An example of the MLP, that can be also seen as a directional acyclical graph where
nodes represent neural units and edges represent connections between neurons, is
represented in Fig. 3.3.

Figure 3.3. Scheme of a MLP with P = 3, four neurons in the first hidden layer, three
neurons in the second and one neuron in the output layer

As indicated by this figure and the description above, the generic neuron k of the
layer l (l > 1) produces the output zl

j in the following way

zl
j = gl

j(al
j)

where

al
j =

N l−1∑
i=1

wl
jiz

l−1
i + bl

j , zl−1
j = gl−1

j (al−1
j ). (3.44)
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and N l denote the number of neurons of the layer l.
Therefore, the expression of the output computed by the first layer is the following

z1
j = g1

j (a1
j ), a1

j =
n∑

i=1
w1

jixi + b1
j , (3.45)

whereas for l = L we have

NL = K and zL
j = aL

j := ȳj , j = 1, . . . ,K.

3.2.3 Neural networks as universal approximators

To simplify the analysis we refer in this section to a MLP characterized by
one-dimensional output (K = 1), one hidden layer and the same activation function
g(·) for all the neurons of the hidden layer. We also assume that the output neuron
does not apply any nonlinear transformation to its computation, i.e. there is no
activation function on the output neuron.
Let us also introduce the following notation:

• N: number of neurons of the hidden layer;

• wji: weight of the arc connecting input node i with neuron j of the hidden
layer layer;

• bj : threshold of hidden neuron j;

• vj : output weight of the arc connecting hidden neuron j to the output node;

• g: activation function of the hidden neurons;

With the notation described above, for a given input xp ∈ Rn, the two-layer MLP
computes the value ȳp(xp) in the following way:

ȳp(xp) =
N∑

j=1
vj g

(
n∑

i=1
wji(xp)i + bj

)
(3.46)

where (xp)j indicates the jth component of vector xp.

Given a set of points X = {xp ∈ Rn, p = 1, . . . , P} and the corresponding set
of scalars y = {yp ∈ R, p = 1, . . . , P}, the interpolation problem is the problem of
finding a function s : Rn → R, in some given class of real functions, that satisfies
the following

s(xp) = yp, p = 1, . . . , P.

The well known theorem that follows, shows that the function obtained with a two-
layer MLP, with N neurons in the hidden layer and under appropriate assumptions
on the activation function g, can solve the interpolation problem.
Let us now report this theorem from [107]:
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Theorem 3.2.1. Let g be a continuous function in R and assume g is not polynomial.
Then, given P distinct vectors xp ∈ Rn and P scalars yp ∈ R, for p = 1, . . . , P there
exist P vectors wj ∈ Rn and 2P scalars vj , bj ∈ R, for j = 1, . . . , P , such that:

N∑
j=1

vj g
(
wT

j x
p + bj

)
= yp, p = 1, . . . , P (3.47)

This theorem implies that, given a function f ∈ C(X,R) defined on the compact set
X ⊂ Rn, for every ϵ > 0 a 2-layer MLP with a non-polynomial activation function
can be constructed so that:

|f(x) − ȳ(x)| < ϵ, for all x ∈ X. (3.48)

where ȳ(x) represents the output of the network obtained with (3.47).

Thm. 3.2.1 echoes the 1989 universal approximation theorem [36, 66] that states
that a FFN with a linear output layer and at least one hidden layer with any
“squashing” activation function (such as the logistic sigmoid activation function)
can approximate any Borel measurable function from one finite-dimensional space
to another with any desired nonzero amount of error, provided that the network is
given enough hidden units [52].

3.2.4 The training problem

Despite being universal approximators, MLPs and neural networks in general
are seldom used to solve interpolation problems. In fact, given a set of observations
{xp, yp}P

p=1 known as “training data”, they are normally implemented to learn the
underlying distribution of the data in order to create a model that can successfully
predict new, unseen, data.

Taking into account equation (3.46), the aim of the training consists in finding
the values of the vectors w, v, b – that will be indicated by the symbol θ that
represents all the learnable parameters of the model – so that the distance between
the predicted ȳp computed as f(xp, θ) and the real yp is small.
There are different ways to measure this distance and they mainly depend on the
goal of the model. At a very high level, under the umbrella of supervised learning,
we can distinguish between classification and regression problems. 3 The former are
problems where the output variable has discrete values, whereas in the latter the
model is asked to output a function f : Rn → R.
In the case study in Chapter 5 the focus will be on regression problems and the
loss function used for the training will be one of the most popular for this class of
problems: the Mean Squared Error (MSE), defined as

L(yp, f(xp, θ)) = (f(xp, θ) − yp)2. (3.49)
3For a description of the differences between supervised and unsupervised learning, and on the

details about classification problems see Chapter 5 in [52].
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The training of an MLP requires solving the following optimization problem:

min
θ

1
P

P∑
p=1

L(yp, f(xp, θ)) + ρ||θ||2 (3.50)

where the second term represents a regularization term, with ρ > 0 being a hyperpa-
rameter whose value needs to be set.

The optimization problem (3.50) is unconstrained and bounded below by zero
and its regularization term is important as it makes the function coercive, thus
guaranteeing the existence of at least one optimal solution.
Solving this optimization problem requires the computation of the gradient of the
objective function. Because of the potential multi-layer structure of the network,
this computation is not easy and the difficulty of solving the optimization problem
is the reason behind the limited research around multi-layer networks until 1985.
This is the year when Back-Propagation algorithm, that is still the algorithm used
for training ML models today, was proposed by Rumelhart et al. [114, 115]. It is an
algorithm that updates the gradient of the error function with respect to the neural
network’s weights. The name “backwards” is related to the efficient calculation
of the gradient that proceeds from the deepest to the shallowest layer, where the
gradient computations from one layer are reused in the gradient computation for
the previous layer.

Problem (3.50) can be seen as a realization of the Empirical Risk Minimization
inductive principle (ERM principle) for the particular choice of the loss function
(3.49). Learning problems can in fact be interpreted as a particular case of the
general problem of minimizing the risk functional on the basis of empirical data.
For details on the problem of risk minimization and its link with the training of
ML models we recommend the renowned book published from Vapnik in 1999 [132].
The relationship between problem (3.50) and the theory of Risk Minimization not
only is interesting from a knowledge point of view, but it also has some practical
consequences. Differently from what happens with “classic” optimization problems,
where the goal is that of finding the global minimum, the ultimate interest of
training a machine learning model is to learn how to predict unseen data. The
difference between a learning process and an optimization process stands in the
purpose: optimizing the ML model until the convergence to a global minimum is
not beneficial, as the network tends to memorize the data seen during the training
phase, thus predicting them extremely accurately, whereas the focus should be on
the ability of network to generalize. Indeed, the capacity of the model to perform
well on inputs not seen during the training phase is called generalization and it
provides insight into how well the model will perform when applied in the real world.

As a consequence of this, although the training of the model is performed using
a set of data called training set and by minimizing the loss function on this set, a
bigger interest is placed on the performance measures that are normally evaluated
on a different set of data, called test set.
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In order for the test error to be useful for predicting the behaviour of the network
on new data, training and test data must satisfy the so called i.i.d. assumptions,
which require that the samples in the dataset are independent from each other and
the training set and test set are identically distributed and drawn from the same
probability distribution.

Since the final parameters of the model are found by minimizing the loss function
of the training data, it is reasonable to expect the test error to be greater or equal
than the training error if the i.i.d. assumptions are satisfied. The relation between
the two errors is of crucial importance in machine learning applications. Ideally,
one should try to obtain a small training error whilst keeping the gap between the
training and test error small. Two terms are often used when this does not happen:

– underfitting indicates that the model is not able to obtain a sufficiently small
error on the training set (i.e. has an high empirical risk and will predict poorly
on new data);

– overfitting is used when the model does not have generalization capabilities,
i.e. the gap between the training and test error is too big and the model
will perform poorly on unseen data [63]. For some strategies on how to avoid
overfitting see [119, 125].

We have now all the elements to describe at a very high level the procedure
for training a Multi-Layer Perceptron as the successive application of the following
operations:

1. Data set preparation: it is needed to reduce biases in the distribution of input
data and consists in the creation of the training and test sets;

2. Choice of the metrics to evaluate the performance of the trained model;

3. Definition of the architecture of the network: choice of the number of layers,
the number of neurons in each layer and of eventual other hyperparameters
(e.g. dropout rate [125]);

4. Identification of the parameters for the training procedure: choice of the
loss function to minimize and of the optimization algorithm and its eventual
parameters (e.g. learning rate and momentum for the Stochastic Gradient
Descent (SGD) algorithm [126]).

5. Training of the network.

In Chapter 5, we consider a case study about a simulation-based optimization
problem in which we replace the objective function with a metamodel obtained with
an artificial neural network. In Sect. 5.4, in particular, we provide more details
about the steps (1-5) described above.
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Chapter 4

A new scheme for Gradient
Approximation

In this Chapter, we present the analysis that led to the development of a new
scheme for approximating the gradient, that we named Normalized Mixed Finite
Difference Scheme, or NMXFD.

Two main motivations were behind the exploration of a new gradient approxi-
mation scheme: on one side we were looking for a scheme that would exploit the
filtering power of the kernel that appears in the linear functionals commonly used
for building gradient approximations. On the other hand we wanted to derive an
approximation scheme for linear functionals approximating the gradient whose error
of approximation could be characterized by a deterministic point of view in the
case of noise-free data, and not in a stochastic way as in the case of the schemes
presented in Sect. 3.1.2.

The Chapter is organized as follows: In Sect. 4.1 we explain the reasoning that led
to the development of the new scheme. We propose the new gradient approximation in
Sect. 4.2 and we show its theoretical properties. Numerical experiments are covered
in two sections: Sect. 4.3 presents the point-wise comparison between NMXFD and
other gradient approximation methods, whereas in Sect. 4.4, the estimate of the
gradient obtained with the various schemes is used inside unconstrained optimization
algorithms when function evaluations are affected by noise. Finally, in Sect. 4.5 we
discuss the main points of the Chapter and we consider potential future works.

4.1 Origin of the new scheme

The proposed scheme has its roots in integral 3.19:

Gσ(x) := 1
σ

∫
Rn
f(x+ σs) sφ(s) ds.

that has the following property

lim
σ→0

Gσ(x) = ∇f(x).
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as we can see from (3.28) and (3.29).
In Sect. 3.1.2 we showed that the integral can be rewritten in the following way:

Gσ(x) = 1
σ

∫
Rn
f(x1 + σs1, . . . , xn + σsn)


s1
...
sn

 n∏
i=1

φ(si) ds

=



1
σ

∫
Rn f(x1 + σs1, x̄1 + σs̄1) s1 φ(s1)φ(s̄1) ds1 ds̄1

...
1
σ

∫
Rn f(xi + σsi, x̄i + σs̄i) si φ(si)φ(s̄i) dsi ds̄i

...
1
σ

∫
Rn f(xn + σsn, x̄n + σs̄n) sn φ(sn)φ(s̄n) dsn ds̄n


and that its i− th component is given by (3.26):

(Gσ(x))i =
∫
Rn−1

φ(s̄i)
(

1
σ

∫ +∞

−∞
f(xi + σsi, x̄i + σs̄i)siφ(si)dsi

)
ds̄i

where (3.25)

gσ(xi, x̄i + σs̄i) := 1
σ

∫ +∞

−∞
f(xi + σsi, x̄i + σs̄i)siφ(si)dsi (4.1)

is the estimate of the directional derivative of f(x) along the i-th coordinate xi

and computed at the point (xi, x̄i + σs̄i).
We showed that the computation of each generic entry of Gσ(x) would be

expensive, since it would require calculating the average of function (4.1) weighted
by a (n− 1)-dimensional Gaussian kernel over the subspace Rn−1 of Rn. We also
discussed how Gaussian Smoothing schemes overcome this problem by rewriting
Gσ(x) as an ensemble average, and by computing its sample average approximation
either using formula (3.32) or (3.33).

Instead of considering Gσ(x) as an ensemble average, the proposed scheme starts
from the following gradient estimate:

Gσ(x) :=
[
gσ(x1, x̄1), . . . , gσ(xi, x̄i), . . . , gσ(xn, x̄n)

]T
where

gσ(xi, x̄i) = 1
σ

∫ +∞

−∞
f(xi + σsi, x̄i) si φ(si) dsi

is obtained from (4.1) with s̄i = 0, i = 1, . . . , d. This is a different result from
(Gσ(x))i and appears to be more practical since only line integrals are involved in
the formula.
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Despite drastically reducing the complexity if compared to the original Gσ(x), this
estimate is still a good approximation of the gradient.

The following theorem shows that estimate Gσ(x) is close to Gσ(x) and converges
to it as σ tends to zero.

Theorem 4.1.1. Let ∇f(x) be Lipschitz continuous with constant L for all x ∈ Rn.
Then we have that

||Gσ(x) −Gσ(x)|| ≤ Lσ
√
n(15 + 7(n− 1)).

Proof : See Appendix B for the proof.

Next theorem shows that Gσ(x) is indeed a good approximation of the true
gradient ∇f(x) and converges to it as σ tends to zero.

Theorem 4.1.2. Let f(x) be continuously differentiable for all x ∈ Rn. The
following holds:

lim
σ→0

Gσ(x) = ∇f(x) (4.2)

Proof. We prove (4.2) component-wise. By integration by parts we have

gσ(xi, x̄i) = 1
σ

∫ +∞

−∞
f(xi + σsi, x̄i) si φ(si) dsi

= 1
σ

∫ +∞

−∞

∂f(zi, x̄i)
∂zi

nzi

dsi
φ(si) dsi

=
∫ +∞

−∞

∂f(zi, x̄i)
∂zi

φ(si) dsi, (4.3)

where zi = xi + σsi. By changing of variable, si = zi−xi
σ we obtain that

gσ(xi, x̄i) =
∫ +∞

−∞

∂f(zi, x̄i)
∂zi

1
σ
φ(zi − xi

σ
) dzi (4.4)

and therefore, taking into account that a series of Gaussians 1
σn
φ( zi−xi

σn
) with σn → 0

defines a δ-dirac distribution centered in xi [50], we have that

lim
σ→0

gσ(xi, x̄i) = ∂f(x)
∂xi

.

Any entry of (4.1) is a weak definition of the derivative of f(x) along xi [50].
Note that (4.3) is well defined even though f(x) is not differentiable at (xi, x̄i)1.

The last two theorems supports the choice of Gσ(x) as the starting point for
an approximation scheme. Still, it is clear that it can’t represent an actual way to

1Any L1 function satisfying (4.3), in place of ∂f(zi,x̄i)
∂zi

, is a weak derivative of f(x) along xi.
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approximate the gradient of a function. In fact, although the computation of a line
integral is clearly cheaper than an integration over Rn, it is still significantly more
expensive than the computation cost of the other existing methods described in
Chapter 3. In the following subsection we will show the line of reasoning and the
steps that bring us from Gσ(x) to the actual new proposed method for computing a
gradient approximation.

4.2 The NMXFD approximation scheme

We consider the functional gσ(xi, x̄i) which is the i−th component of the gradient
estimate (4.1) and, for the sake of simplicity, we write in a single formula the result
of (4.3) and (4.4).

gσ(xi, x̄i) = 1
σ

∫ +∞

−∞
f(xi + σsi, x̄i) si φ(si) dsi

=
∫ +∞

−∞

∂f(zi, x̄i)
∂zi

1
σ
φ(zi − xi

σ
) dzi (4.5)

Note that 1
σφ( zi−xi

σ ) is N (xi, σ
2). Our goal consists in finding a numerical approxi-

mation of the first integral in (4.5). To do that, we compute the integral in a finite
range, namely between -S and S

g̃σ(xi, x̄i) := 1
σ

∫ +S

−S
f(xi + σsi, x̄i) si φ(si) dsi

= − 1
σ

∫ +S

−S
f(xi + σsi, x̄i)φ′(si) dsi. (4.6)

For S sufficiently big the error between (4.5) and (4.6) is negligible due to the
fast decreasing of the Gaussian to infinity, as visible from Fig. 4.1, that shows the
behaviour of φ′(s) in the range [−5, 5], and Table 4.1, that shows the actual values
assumed by φ′(s) for some discrete values of s.

Table 4.1. Values assumed by φ′(s)

s -6 -5 -4 -3 -2 -1 0

φ′(s) 3.65E-08 7.43E-06 0.000535 0.013296 0.107982 0.241971 0

The definite integral in (4.6) can be approximated by any quadrature formula,
e.g. Trapezoidal Rule [9]. Dividing the interval [−S, S] in 2m sub-intervals, each of
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Figure 4.1. Behaviour of the Gaussian derivative

size h = S
m we obtain:

g̃σ(xi, x̄i) = h

2σ

[(
f(xi − σS, x̄i)φ′(−S) + f(xi + σS, x̄i)φ′(S)+

2
2m−1∑
j=1

f(xi + σ(−S + jh), x̄i)φ′(−S + jh)
)]

+

+h2 S

6σ
d

dτ2 f(xi + στ, x̄i)φ′(τ) τ ∈ [−S, S]. (4.7)

It is well known that, under very general conditions, the trapezoidal quadrature
formula (4.7) has an error that is O(1/m2) [23]. Indeed, once σ and S are chosen,
we can easily check this property in our case. Let

ϵσ(τ,m) = h2 S

6σ
d

dτ2 f(xi + στ, x̄i)φ′(τ) τ ∈ [−S, S].

= S3

6σm2
d

dτ2 f(xi + στ, x̄i)φ′(τ) τ ∈ [−S, S].

Note that the derivatives of a guassian kernel |φ(k)(τ)|, up to the third order, are all
less than 1 in absolute value for any τ , and decrease rapidly as τ increases. Therefore,
for f sufficiently smooth in (xi ± σ S), let

K(xi) = max

(
|f(xi + στ, x̄i)|, |

d
dτ f(xi + στ, x̄i)|, |

d2

dτ2 f(xi + στ, x̄i)|
)
.
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We can write:

|ϵσ(τ,m)| ≤ h2 S

6σ K(xi) = S3

6σm2K(xi), τ ∈ [−S,+S]

Let us rewrite (4.7) as follows

g̃σ(xi, x̄i) = ḡσ(xi, x̄i) + ϵσ(τ,m)

The larger the number of function evaluation m, the smaller the error term ϵσ(τ,m).
On the other hand, ḡσ(xi) can be interpreted as a combination of finite differences
with some coefficients. Keeping in mind that φ′(t) = −φ′(−t) and that φ′(0) = 0,
after some simple algebra we can write:

ḡσ(xi, x̄i) = − h

2σ

[
|φ′(mh)|

(
f(xi − σmh, x̄i) − f(xi + σmh, x̄i)

)

+2
m−1∑
j=1

|φ′(jh)|
(
f(xi − σjh, x̄i) − f(xi + σjh, x̄i)

)]

from which

ḡσ(xi, x̄i) = h

2σ

[
|φ′(mh)| 2σmh

f(xi + σmh, x̄i) − f(xi − σmh, x̄i)
2σmh

+2
m−1∑
j=1

|φ′(jh)| 2σ j h f(xi + σjh, x̄i) − f(xi − σjh, x̄i)
2σ j h

]
. (4.8)

It is clear that ḡσ(xi, x̄i) is a linear combination of finite difference approximations,
with different step sizes; for σh → 0, each one converges to the true value of the
partial derivative ∂f(xi, x̄i)/∂xi. Therefore, the estimate ḡσ(xi, x̄i) converges to
the true value only if the sum of its coefficients equals one. For this reason, it is
advisable to normalize the coefficients of the linear combination in (4.8) to eliminate
the estimate bias for σ finite.
To this aim, let C be the sum of all the coefficients:

C =
∑m

j=1 a
′
j ,

a′
j = 2 j h2 |φ′(jh)|, j = 1, . . . ,m− 1,

a′
m = mh2 |φ′(mh)|


(4.9)

We can then write the normalized version of (4.8) as:

ḡσ(xi, x̄i) =
m∑

j=1
aj
f(xi + σ j h, x̄i) − f(xi − σ j h, x̄i)

2σ j h (4.10)
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where
aj =

a′
j

C
,

m∑
j=1

aj = 1. (4.11)

For σ small enough the normalization of the coefficients may not be necessary, the
distorsion of the estimate being negligible. Let us now evaluate the error bound
corresponding to estimate (4.10), from here on referred to as NMXFD (Normalized
Mixed Finite Difference).

Theorem 4.2.1. Let f(x) be twice continuously differentiable and its Hessian be
H-Lipschitz for all x ∈ Rn. Consider the gradient approximation obtained by (4.10)

Ĝσ(x) = [ ĝσ(x1), . . . ĝσ(xn) ]T (4.12)

We have that
∥Ĝσ(x) − ∇f(x)∥ ≤

√
n
Hσ2 S2

6 (4.13)

Proof. Any single finite difference term in (4.10) has an error with respect to the
true value ∂f(xi, x̄i)/∂xi whose bound depends on the step size and on the regularity
properties of function f . From [17], we have that∣∣∣∣f(xi + σ j h, x̄i) − f(xi − σ j h, x̄i)

2σ j h − ∂f(xi, x̄i)
∂xi

∣∣∣∣ ≤ Hσ2(jh)2

6

for j = 1, . . . ,m. Therefore, since
∑m

j=1 aj = 1, and aj > 0, j = 1, . . . ,m, we can
write∣∣∣∣ĝσ(xi) − ∂f(xi, x̄i)

∂xi

∣∣∣∣ =

∣∣∣∣∣∣ĝσ(xi) −
m∑

j=1
aj
∂f(xi, x̄i)

∂xi

∣∣∣∣∣∣
≤

m∑
j=1

aj

∣∣∣∣f(xi + σ j h, x̄i) − f(xi − σ j h, x̄i)
2σ j h − ∂f(xi, x̄i)

∂xi

∣∣∣∣
≤ Hσ2 h2

6

 m∑
j=1

aj j
2

 ≤ Hσ2 h2m2

6 = Hσ2 S2

6 .

which, applied to all entries of Ĝσ(x) − ∇f(x), proves the theorem.

Here we used the equality mh = S that implies that the error bound does not
depend on the number of function evaluations.
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4.2.1 NMXFD with noisy data

Let us now evaluate how the performance of the gradient estimate NMXFD
(4.12) – here referred to as ĜMXF

σ (x) – compares with that of the CFD, taking also
into account the presence of an additive noise affecting the sampled function values
f(x).

Let {ei} be the canonical basis of Rn, then we can write:

ĜMXF
σ (x) =

n∑
i=1

ĝσ(xi) ei. (4.14)

With the same notation, denoting with σh the step-size, we can easily write the
gradient estimate according to the CFD scheme, here denoted as ĜCFD

σ (x):

ĜCFD
σ (x) =

n∑
i=1

f(xi + σ h, x̄i) − f(xi − σ h, x̄i)
2σ h ei (4.15)

We assume that the sampled function values are affected by additive noise, as
modelled in (3.1).
We now compute the estimation errors for the two schemes and compare them in
terms of accuracy (mean value) and precision (variance).

The NMXFD scheme
In the presence of noise, according to (4.14), a number N = 2mn of function
evaluations is considered to obtain

ĜMXF
σ (x) =

n∑
i=1

n∑
i=1

ĝσ(xi) ei +
n∑

i=1

 m∑
j=1

aj

ϵ+i,j − ϵ−i,j
2σ j h

 ei

with ϵ±i,j denoting the error terms on the function values ϕ(xi ±σ jh, x̄i), i = 1, . . . , n,
j = 1, . . . ,m. For the estimation error

eMXF(x) = ĜMXF
σ (x) − ∇f(x),

we readily obtain that

E [eMXF(x)] =
n∑

i=1

n∑
i=1

ĝσ(xi) ei − ∇f(x),

var [eMXF(x)] = nλ2

2σ2h2

 m∑
j=1

a2
j

j2

 . (4.16)

Under the assumptions of Thm. (4.2.1), and taking into account (4.13), we obtain

∥E [eMXF(x)] ∥ ≤
√
n
Hσ2m2 h2

6 . (4.17)

The CFD scheme



4.2 The NMXFD approximation scheme 58

In the presence of noise, according to (4.15), a number N = 2n of function
evaluations is needed to obtain the gradient estimate:

ĜCFD
σ (x) =

n∑
i=1

ϕ(xi + σ h, x̄i) − ϕ(xi − σ h, x̄i)
2σ h ei +

n∑
i=1

ϵ+i − ϵ−i
2σ h ei

with ϵ±i denoting the error terms on the function values ϕ(xi ± σ h, x̄i), i = 1, . . . , n.
Let

eCFD(x) = ĜCFD
σ (x) − ∇f(x)

be the estimation error. Recalling the results shown in subsection 3.1.1, we have
that, for functions f that are twice continuously differentiable with a H-Lipschitz
continuous Hessian

E[eCFD(x)] =
n∑

i=1

ϕ(xi + σ h, x̄i) − ϕ(xi − σ h, x̄i)
2σ h ei,

var[eCFD(x)] = n
2λ2

4σ2 h2 = nλ2

2σ2 h2 ,

∥E[eCFD(x)]∥ ≤
√
n
H σ2 h2

6 .

As for the error variance, two interesting results can be proved.

Proposition 4.2.2. For any m > 1, the variance of the estimation error of the
NMXFD scheme is strictly lower than the variance of the estimation error of the
CFD scheme, i.e,.

var [eMXF(x)] < var [eCFD(x)]

in any x ∈ Rn and for any σ, h.

Proof. The sum of squares
∑m

j=1 a
2
j is strictly less then 1 since the coefficients aj ,

j = 1, . . . ,m, are all positive and their sum is 1. Therefore from (4.16) we obtain
that

var [eMXF(x)] = nλ2

2σ2 h2

m∑
j=1

a2
j

j2 <
nλ2

2σ2 h2 = var [eCFD(x)] .

Now we further show that var [eMXF(x)] goes to zero as N increases.

Proposition 4.2.3. For any x ∈ Rn, the variance of the estimation error of the
NMXFD scheme has the following asymptotic behavior

var [eMXF(x)] ∼ O
( 1
N

)
. (4.18)
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Proof. By taking into account relations (4.9), we have that

C =mh2

|φ′(mh)| + 2
m−1∑
j=1

j

m
|φ′(jh)|


≤ 2mh

h

2

|φ′(mh)| + 2
m−1∑
j=1

|φ′(jh)|

 . (4.19)

Let us denote with I
(1)
φ′ (m) the following quantity

I
(1)
φ′ (m) = h

2

|φ′(mh)| + 2
m−1∑
j=1

|φ′(jh)|


that is the trapezoidal quadrature formula for the integral∫ S

0
|φ′(t)| dt = 1√

2π

(
1 − e− S2

2

)
.

Due to the O(1/N2) property of the error of the trapezoidal rule, we have that∣∣∣∣I(1)
φ′ (m) − 1√

2π

(
1 − e− S2

2

) ∣∣∣∣ = O(1/N2).

Therefore, from (4.19), we easily obtain that∣∣∣∣C − 2mh√
2π

(
1 − e− S2

2

) ∣∣∣∣ ≤ 2mh

∣∣∣∣I(1)
φ′ (m) − 1√

2π

(
1 − e− S2

2

) ∣∣∣∣ = O(1/N2) (4.20)

so that C is a bounded quantity as N = 2mn increases (by increasing m), taking
into account that mh = S. Now, according to the relations (4.11) we can write

m∑
j=1

a2
j

j2 = 1
C2

m2 h4|φ′(mh)|2

m2 +
m−1∑
j=1

4 j2 h4 |φ′(jh)|2

j2


= h4

C2

|φ′(mh)|2 + 2
m−1∑
j=1

2|φ′(jh)|2


≤ 2h3

C2
h

2

2|φ′(mh)|2 + 2
m−1∑
j=1

2|φ′(jh)|2
 .

Define now I
(2)
φ′ (m) as follows

I
(2)
φ′ (m) = h

2

2|φ′(mh)|2 + 2
m−1∑
j=1

2|φ′(jh)|2
 .

It is the trapezoidal quadrature rule for the integral

2
∫ S

0
|φ′(t)|2 dt =

√
π erf(S) − Se−S2 = Φ(S),
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where erf(z) = 2√
π

∫ z
0 e

−t2
dt is the Gauss error function. Hence, for the usual

property of the error, we can write∣∣∣∣I(2)
φ′ (m) − Φ(S)

∣∣∣∣ = O(1/N2).

Therefore, we obtain that

var [eMXF(x)] = nλ2

2σ2 h2

 m∑
j=1

a2
j

j2

 ≤ nλ2

2σ2 h2
2h3

C2 I
(2)
φ′ (m)

≤nλ2

σ2
h

C2

(∣∣I(2)
φ′ (m) − Φ(S)

∣∣+ ∣∣Φ(S)
∣∣) .

Now recalling that mh = S, and that N = 2mn, we can write

var [eMXF(x)] ≤nλ2

σ2
S

mC2

(∣∣I(2)
φ′ (m) − Φ(S)

∣∣+ ∣∣Φ(S)
∣∣)

≤ 2
N

n2 λ2 S

σ2C2

(∣∣I(2)
φ′ (m) − Φ(S)

∣∣+ ∣∣Φ(S)
∣∣)

which, along with (4.20), proves the proposition.

This result suggests that performing a combination of finite differences in the
noisy setting yields to improvement in the quality of the gradient estimation. The
reader might wonder how the variance of NMXFD compares with the one of a
method that uses the same budget of function evaluations, and not just 2n like the
CFD scheme. In the following subsection, we will show this comparison with a very
simple method: the average of several CFDs.

Comparison with multiple CFDs

The simplest combination of finite differences possible is the average of a number
m of multiple CFDs (mCFD) computed over repeated measures

ĜmCFD
σ (x) = 1

m

m∑
k=1

ĜCFD
σ,k (x) (4.21)

where ĜCFD
σ,k (x) is the CFD in (4.15) computed at the same points, but with a

different independent realization k of the noise. This formula, obviously, reduces the
error variance of CFD by 1/m. It then becomes interesting to see if

var [eMXF(x)] = nλ2

2σ2 h2

m∑
j=1

a2
j

j2 <
1
m

nλ2

2σ2 h2 = var [emCFD(x)] . (4.22)

Because of the complicated structure of the coefficients aj a formal proof of (4.22)
can be involved. In Fig. 4.2 we show a visual verification of (4.22) for increasing
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values of m, with a uniform sampling within the range [-S, S] with S = mh = 3 to
compute coefficients aj . In Table 4.2 we also report the numerical values associated
to each value of m. For each value of m, we highlight in bold the smaller coefficient,
the one that yields to a greater reduction of the error variance.

Figure 4.2. Coefficients effect on variance reduction: NMXFD vs mCFD, S = 3

For m = 1 the reduction of the variance of the two methods is the same. For all
m > 2, we can see that the reduction of the error variance of NMXFD is greater
than that of mCFD.

Similar results can be obtained for different values of the parameter S. Fig.
4.3 shows the visual verification of (4.22) for increasing values of m, when we set
S = mh = 2 as the value for the range [-S, S] used to compute coefficients aj .

We also report the associated Table 4.3 with the numerical values associated to
each value of m. The table has the same structure of Table 4.2.

In the second scenario reported, when S = 2, we can see that for m = 2 the
variance reduction obtained using the NMXFD method is almost the same as the
one of the mCFD method. This is different from what happens in the case of S = 3,
where the variance reduction obtained with the mCFD is significantly smaller that
that of NMXFD.

This make sense from an intuitive point of view, if we focus on the role of the
parameter S in the computation of the gradient estimate using the proposed NMXFD
approach. Using a smaller value of S means truncating the integral (4.5) in a smaller
range. Therefore, fewer points are needed to obtain an accurate approximation of
the integral value.
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Table 4.2. Variance reduction coefficient on increasing m for NMXFD (1st column) and
mCFD (2nd column), when S = mh = 3.

m
∑m

j=1
a2

j

j2
1
m

1 1 1
2 0.877023 0.5
3 0.307637 0.333333
4 0.128374 0.25
5 0.065331 0.2
6 0.037682 0.166667
7 0.023683 0.142857
8 0.015845 0.125
9 0.011119 0.111111

10 0.008101 0.1

Table 4.3. Variance reduction coefficient on increasing m for NMXFD (1st column) and
mCFD (2nd column), when S = mh = 2.

m
∑m

j=1
a2

j

j2
1
m

1 1 1
2 0.501889 0.5
3 0.145629 0.333333
4 0.061182 0.25
5 0.031303 0.2
6 0.018119 0.166667
7 0.011415 0.142857
8 0.007651 0.125
9 0.005376 0.111111

10 0.003921 0.1
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Figure 4.3. Coefficients effect on variance reduction: NMXFD vs mCFD, S = 2

4.3 Numerical experiments – point-wise comparison

We tested our method for estimating the gradient by comparing its performance
with those of other methods on 69 functions from the Schittkowski test set [120].
For each function, we did the following: we generated a random starting point x0

and minimized the function using the quasi-Newton method of Broyden, Fletcher,
Goldfarb and Shanno (BFGS) [100], finding the optimal point x∗ with ∇f(x∗) ≈ 0.
We then identified the first instance of a point xk where

∥∇f(xk)∥
∥∇f(x0)∥ ≤ α

for each of the following values of α: 100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6. In this
way, we generated seven different buckets, one for each α, of 69 different points, one
for each function. Bucket i indicates the one associated to α = 10−i. Bucket 0 is
therefore the one with the points that are farther from the optimal solution and
bucket 6 is the one with points closer to the optimal solution.
Then, for each point we computed the gradient approximations obtained with the
Normalized MiXed Finite Differences scheme (NMXFD) and with those considered
benchmarks by the literature, namely: Forward Finite Differences (FFD), Central
Finite Differences (CFD), Gaussian Smoothed Gradient (GSG), Central Gaussian
Gmoothed Gradient (cGSG) as defined in Sect. 3.1.2. Different tables will summa-
rize the results of this comparison.

The tables show, for different values of the number of function evaluations (N)
and different buckets (B), the median value of the log of the relative approximation
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error over all the 69 points in each bucket.
We define relative approximation error as

η = ∥g(x) − ∇f(x)∥
∥∇f(x)∥

where g(x) is the generic gradient estimate.
The number of function evaluations N is expressed in the following tables as a

function of the number of dimensions n. FFD and CFD schemes only allow for a
specific value of N (n+ 1 and 2n, respectively). In GSG and in cGSG, N is linked to
the number of direction sampled to build the gradient approximation (N = (M + 1)
in (3.32) and N = 2M in (3.33)). In the NMFXD scheme, the value of N is linked
to the value of m in formula (4.10). In particular, we have that N = 2mn. In each
table, the lowest entry for every bucket is highlighted in bold, and the second lowest
is italicized. Finally, we will show the results obtained both in the noise-free scenario
and in the noisy one.

4.3.1 Noise free setting

For the noise-free setting we report three different tables obtained using a different
value of σ (shared by all the schemes) to compute the gradient approximation.

Table 4.4. Median log of relative error with σ = 10−2

Scheme N B0 B1 B2 B3 B4 B5 B6

FFD n+1 0.08 1.22 2.20 3.43 4.43 5.47 6.52

CFD 2n -2.26 -1.13 -0.32 0.69 1.60 2.41 3.58

2n+1 1.84 1.92 2.52 3.57 4.69 5.63 6.92

GSG 4n+1 1.70 1.78 2.34 3.41 4.50 5.46 6.82

8n+1 1.54 1.66 2.10 3.31 4.49 5.38 6.67

2n 1.97 1.96 1.96 1.99 2.08 2.44 3.46

cGSG 4n 1.86 1.82 1.86 1.90 2.06 2.95 4.01

8n 1.71 1.69 1.74 1.81 2.13 3.14 4.28

2n -1.66 -0.53 0.28 1.29 2.26 3.06 4.18

NMXFD 4n -1.98 -0.84 -0.03 0.97 1.92 2.71 3.87

8n -1.99 -0.86 -0.05 0.96 1.90 2.68 3.85
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Table 4.5. Median log of relative error with σ = 10−5

Scheme N B0 B1 B2 B3 B4 B5 B6

FFD n+1 -2.92 -1.78 -0.80 0.43 1.43 2.47 3.51

CFD 2n -8.17 -6.99 -6.14 -4.87 -3.75 -3.07 -1.73

2n+1 1.84 1.84 1.85 1.84 2.00 2.64 3.92

GSG 4n+1 1.69 1.71 1.71 1.74 1.90 2.48 3.80

8n+1 1.53 1.57 1.56 1.57 1.77 2.41 3.67

2n 1.96 1.96 1.96 1.96 1.96 1.97 1.93

cGSG 4n 1.86 1.82 1.85 1.85 1.85 1.85 1.83

8n 1.71 1.68 1.70 1.68 1.71 1.71 1.71

2n -7.66 -6.47 -5.58 -4.43 -3.24 -2.75 -1.21

NMXFD 4n -7.90 -6.74 -5.85 -4.67 -3.55 -2.79 -1.45

8n -7.95 -6.76 -5.87 -4.73 -3.57 -2.84 -1.54
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Table 4.6. Median log of relative error with σ = 10−8

Scheme N B0 B1 B2 B3 B4 B5 B6

FFD n+1 -5.56 -4.73 -3.74 1.43 -1.50 -0.44 0.67

CFD 2n -6.00 -6.20 -6.23 -3.75 -6.20 -6.25 -6.23

2n+1 1.84 1.84 1.84 2.00 1.82 1.83 1.91

GSG 4n+1 1.69 1.71 1.72 1.90 1.70 1.69 1.79

8n+1 1.53 1.57 1.56 1.77 1.55 1.55 1.66

2n 1.96 1.96 1.96 1.96 1.96 1.96 1.93

cGSG 4n 1.86 1.82 1.85 1.85 1.84 1.85 1.82

8n 1.71 1.68 1.70 1.71 1.71 1.71 1.71

2n -6.48 -6.36 -6.52 -3.24 -6.41 -6.42 -6.09

NMXFD 4n -6.17 -6.29 -6.41 -3.55 -6.43 -6.48 -6.20

8n -6.42 -6.44 -6.44 -3.57 -6.50 -6.51 -6.15
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It is possible to notice that in a noise-free setting, lower values of σ tend to yield
to better results, as one would expect from the theory. The closer the point is to the
minimum value of a function, the harder it is to obtain an accurate estimate of its
gradient, unless σ is very small. As a matter of fact, for points belonging to lower
index buckets–thus far from the minimum of the function, the value σ = 10−5 yields
the better performances, while accurate estimates of the gradient of points closer to
the minimum value of a function require using of a lower value of σ. We can also see
that the error of the proposed method, NMXFD, is of the same order of magnitude
of that of CFD, and almost always better than that of the other methods.

In our experiments, we have also produced gradient estimates using two more
methods:

• by removing the normalization of the coefficients in the computation of NMXFD,
i.e., implementing the gradient approximation as in (4.8).

• by computing the estimate as the raw average of central finite differences at
different stepsizes, that is (4.10) with aj = 1

m .

Both of these methods performed consistently worse than NMXFD, and they have
not been reported in the tables for brevity. Still, the better performances of NMXFD
over the raw average of central finite differences seem to confirm that the rationale
behind the choice of coefficients used to weight the CFDs in the proposed approach
is promising from a computational point of view.

4.3.2 Noisy setting

In this subsection we report the results obtained in the noisy scenario, where
the noise term is described at the beginning of Chapter 3 and has λ = 0.001. The
estimation procedure is slightly different from the one of the noise-free setting. In
Table 4.7, the median log of the relative errors ηi of the 69 different Schittkowski
function is reported. Each ηi is computed as the average of 100 relative approximation
errors, resulting from 100 independent noise realizations. The rationale behind this
choice was to mitigate the dependence of the results from one particular noise
realization. Results are shown in Table 4.7, where the gradient estimates are
obtained with σ = 0.01.

Table 4.7 shows that NMXFD performs better than the other schemes in presence
of noise, although reasonably low relative approximation errors are obtained only
for the first three buckets. For the other ones the error η increases significantly.
This is due to the fact that the denominator of η gets smaller as we move to points
close to the minimum value of the function, while the variance of the approximation
error does not change across different buckets. Just like in the noise-free setting,
increasing the number of function evaluations allows to increase the precision of all
the schemes, as expected from the theory.
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Table 4.7. Median log of relative error with σ = 10−2, noisy setting.

Scheme N B0 B1 B2 B3 B4 B5 B6

FFD n+1 0.22 1.45 2.46 3.57 4.86 5.74 6.86

CFD 2n -1.06 0.10 1.34 2.23 3.50 4.32 5.49

4n+1 1.72 1.79 2.56 3.66 4.82 5.69 6.84

GSG 8n+1 1.56 1.66 2.43 3.51 4.67 5.56 6.70

12n+1 1.47 1.56 2.35 3.43 4.59 5.48 6.61

4n 1.85 1.85 1.86 2.39 3.61 4.33 5.65

cGSG 8n 1.71 1.71 1.73 2.29 3.55 4.28 5.61

12n 1.62 1.63 1.65 2.24 3.52 4.25 5.58

4n -1.22 0.00 1.17 2.23 3.43 4.24 5.52

NMXFD 8n -1.31 -0.09 1.08 2.15 3.40 4.19 5.42

12n -1.36 -0.15 1.05 2.11 3.39 4.15 5.38
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Different values of σ for estimating the gradient (10−1 , 10−3, 10−4) have also been
used. The associated tables have not been reported for brevity, since they yielded to
the same conclusions and since the performances for almost every method and every
bucket with those values of σ are significantly worse. This can be inferred from the
theory, since the value of σ influences the bias and the variance of the estimate error
in opposite directions, as we can see from (4.16) and (4.17) in Sect. 4.2.1.

The numerical experiments show the good performances of the proposed method
when compared with those of the standard methods commonly used in the literature.
In particular, the performances of NMXFD are comparable with those of CFD in
absence of noise and better with noisy data and are better than those of other
schemes in both scenarios.

The results seem to confirm the idea that performing a combination of finite
differences in the noisy setting increases the quality of the gradient estimation.

In Table 4.8 we finally report the comparison of the median log of relative
error between NMXFD and ĜmCFD

σ (the combination of CFDs defined in (4.21) )
on increasing noise levels λ, all computed with a value σ of 0.01 and always using
the same function evaluation budget. We do not report the performances of other
methods for brevity, since they confirm the same conclusions provided by Table 4.7.

Table 4.8. Median log of relative error with σ = 10−2, different values of λ

Scheme N B0 B1 B2 B3 B4 B5 B6

λ = 0.001 4n -1.22 -0.05 1.17 2.13 3.35 4.18 5.39
mCFD 8n -1.36 -0.19 1.02 2.05 3.2 4.07 5.32

12n -1.43 -0.23 0.94 1.99 3.16 4.01 5.28

4n -1.22 0 1.17 2.23 3.43 4.24 5.52
NMXFD 8n -1.31 -0.09 1.08 2.15 3.4 4.19 5.42

12n -1.36 -0.15 1.05 2.11 3.39 4.15 5.38

λ = 0.01 4n -0.24 0.93 2.1 3.04 4.33 5.14 6.31
mCFD 8n -0.37 0.78 2.02 2.92 4.17 4.99 6.16

12n -0.47 0.71 1.93 2.82 4.09 4.91 6.08

4n -0.3 0.89 2.09 3 4.27 5.09 6.25
NMXFD 8n -0.39 0.78 2.01 2.92 4.16 4.97 6.16

12n -0.48 0.67 1.91 2.82 4.07 4.88 6.06

λ = 0.1 4n 0.76 1.93 3.05 4.03 5.32 6.03 7.29
mCFD 8n 0.6 1.78 2.9 3.89 5.16 5.87 7.15

12n 0.52 1.7 2.8 3.8 5.08 5.79 7.06

4n 0.69 1.88 2.97 3.98 5.26 5.97 7.23
NMXFD 8n 0.58 1.77 2.89 3.88 5.15 5.86 7.12

12n 0.49 1.66 2.77 3.79 5.05 5.77 7.03
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Table 4.8 shows that the basic combination ĜmCFD
σ is indeed a good gradient ap-

proximation due to the effect of the average that reduces the error variance. As
the noise level increases, ĜMXF

σ tends to be better than ĜmCFD
σ . This supports the

idea that a good gradient approximation depends on both the coefficients of the
linear combination and the sampling points where the differences are computed. In
this respect, the analysis developed in Sect. 4.2 to define the new gradient estimate,
provides a guide to design a more efficient estimate, depending on the following
points:

– the parameter S that determines the range of integration in integral (4.6);

– the integration formula used to approximate integral (4.6);

– the filter parameter σ;

– the sampling strategy of the function within the integration range (−S, S).

In this early investigation, we heuristically tried several values for the parameters S
and σ, without trying different integration formulas or sampling criteria. The choice
of σ may be difficult and affects the quality of the approximation. When the noise
level is known, there are some strategies to make a proper choice of σ as in [122].
When the noise level is not known, the choice of this parameter becomes harder and
represents an open question to be further investigated, along with the other points
in the list above, to improve the performances of NMXFD.
In the next section, we show two experiments where we analyze the impact of the
obtained gradient approximation on optimization algorithms in the noisy setting.

4.4 Numerical experiments – impact on optimization
algorithms

In this section, we describe two experiments in which the estimate of the gradient
obtained with different schemes is used inside unconstrained optimization algorithms
– Gradient Descent with a decreasing stepsize and the Nonmonotone stabilization
algorithm – when function evaluations are affected by noise.
In both experiments, we consider ten functions from the Schittowski test set [120]
that are associated to the test problems with the following IDs : (201, 203, 205, 208,
256, 271, 275, 276, 290, 291).
The decision to consider only a portion of the functions is based on two key factors:
the first, and most important, is the significant computational effort necessary to
execute the experiment (almost 385 hours of computation on the set of selected
functions). The second reason is that, because this is a preliminary study, we wanted
to investigate and display the results for each objective function, which can only be
done if the set of functions is limited in size.
We consider these experiments as a first attempt to understand the behaviour of
different gradient approximation schemes in optimization algorithms. More extended
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experiments - in terms of functions considered, replicas and tested approximation
schemes - will be run in future studies.
In Table 4.9 we show the features of the objective functions involved in the experiment.
Each row represents a different objective function and the following data are reported
in the columns: the dimensions n of the function; the value of the function f(x0)
at the suggested starting point and the value of the true global minima f(x∗) as
indicated in [120].

Table 4.9. Features of the objective functions

function n f(x0) f(x∗)
201 2 45 0
203 2 0.52 0
205 2 14 0
208 2 24 0
256 4 215 0
271 6 750 0
275 4 33 0
276 6 38 0
290 2 9 0
291 10 3025 0

4.4.1 Gradient Descent with a decreasing stepsize

In the first experiment, we consider the Gradient Descent algorithm described in
Algorithm 2 (Chapter 2) where the value of the stepsize is determined according to
the following rule:

αk = min
( 1

1 + k
, 1

||∇f(xk)||

)
(4.23)

We decided to use the stepsize (4.23) instead of the one described in (2.8) because we
noticed that, with the latter, there were several occasions in which the minimization
of a function would fail for numerical issues. This would happen when, in the noisy
setting, the stepsize (2.8) caused abrupt movements along the poorly estimated
direction dk, yielding in the following iteration to numerical issues during the
computation of the objective function or of the derivatives. This was especially true
when the inaccurate estimated direction dk had a large norm.
The issue could be solved by changing the stepsize (2.8) with

αk = α0

1 + α0 k
(4.24)

and by tuning the parameter α0. Setting ad hoc values of α0 for different functions
and for different magnitude of the noise level λ would in fact solve this issue.
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To avoid performing this fine-tuning for all the functions and noise levels, we opted
for the choice of the stepsize as in (4.23) that performs a sort of autotuning without
requiring manual intervention. In fact, when the norm of the gradient assumes
extremely large values because poorly estimated, the second term becomes smaller
than the first one, thus forcing the algorithm to perform an iteration with a small
stepsize αk. With this choice, we did not encounter any numerical issue with any of
the considered functions.
We also changed the original stopping condition of the Gradient Descent algorithm,
∇f(x) = 0, with the following:

||∇f(x)|| ≤ 10−2, (4.25)

and we added a condition for which the algorithm stops when it reaches a pre-
determined maximum number of iterations without satisfying (4.25).
Algorithm 8 shows the Gradient Descent algorithm with this implementation choices.

Algorithm 8 Gradient Descent algorithm with decresing stepsize
1: Data x0 ∈ Rn, α0 > 0, k = 0 and the maximum number of iterations R > 0
2: for k = 0, . . . , R do
3: Set dk = −∇f(xk) and αk = min

(
1

1+k
, 1

||∇f(xk)||

)
4: Set xk+1 = xk + αkdk

5: if ||∇f(xk+1)|| ≤ 10−2 then
6: stop
7: end if
8: end for

In this experiment, we run Algorithm 8 on the set of selected functions replacing
∇f(xk) with the estimate of the gradient obtained with the following set of gradient
approximation schemes: FFD, CFD, GSG, cGSG, NMXFD. 2

We now summarize the settings of the experiment:

• the following values of the standard deviation of the noise λ: (10−3, 10−2) and
the following values of the stepsize σ that is shared across all the schemes:
(1, 10−1, 10−2, 10−3) are considered;

• similarly to Sect. 4.3.2, 100 replicas for each combination of (approximation
scheme, f , λ, σ) are executed because of the randomicity that is due to the
presence of the noise;

• the methods GSG, cGSG, and NMXFD are given N = 8n function evaluations
to build the gradient estimate at each iteration;

2Inspired by [17], we let the stopping criterion be determined by the evaluation of the true
gradient norm, rather than the one of the estimated gradient.
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• the maximum number of iterations R is set to 5000 3 for all the functions;

Tables [4.11, 4.12] show the results obtained with different values of λ. On the
columns we reported the median value of the objective function in correspondence
of the final point x̄ across 100 replicas and the median number of iterations needed
by the algorithm to reach x̄. In each row we report the values associated to the
best stepsize for each method. To clarify this point, consider the example of Table
4.10: we can see that the performances of NMXFD on function 208 differ as the
value of the stepsize σ changes. To avoid reporting four rows for each combination
of (scheme, function) – the resulting table would be gigantic – and to avoid cherry
picking the value of σ (e.g. σ = 0.001 yields to the best performance of NMXFD on
this function, but σ = 0.01 is the one for which GSG perform better), we decided
to display only one row for each (function, scheme), the one associated to the best
performance in terms of minimum value of median f∗ and highlighted in bold in the
table. For each function, we highlight in bold the best value of objective function
and the lowest number of iterations and we italicize the second best.

Table 4.10. Example with NMXFD - function 208

function scheme σ f∗ iterations

208 NMXFD
0.001 0.006 5000
0.01 0.01 5000
0.1 0.62 5000
1 0.95 5000

We can notice that, despite the noise, for almost all the functions the differente
schemes manage to reach points whose objective function value is close to the
one of the global minimum of the function 4. This confirms the goodness of the
proposed stepsize (4.23) since it mitigates the negative effects of iterations with
poorly estimated gradients.
A part from the FFD method that seems to generally perform worse than the other
ones, it is not possible to identify a clearly better performing scheme from this
experiment.
With respect to the GSG method, for λ = 10−3, we have that the NMXFD scheme
performs better – either in terms of value of the objective function or on the number
of iterations needed to reach the final point – on six functions, equal on three and
there is only one function where it performs worse.
For the same value of λ = 10−3, NMXFD performs better than cGSGin five occasions,
equal in three and worse in two of them.

3Because FFD and CFD use N = n+1 and N = 2n function evaluations to compute the gradient
estimate, we set for them R to 40000 and 20000, respectively, to ensure that each scheme has the
same budget of function evaluations in the experiment.

4The value 0 in the tables indicates values that are smaller than 10−4.
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Table 4.11. Algorithm 8 with λ = 10−3

function scheme f∗ iter function scheme f∗ iter
201 271

FFD 0 82 FFD 0 40000
CFD 0 51 CFD 0 189
GSG 0 56 GSG 0 5000
cGSG 0 56 cGSG 0 194
NMXFD 0 51 NMXFD 0 189

203 275

FFD 0 40000 FFD 0.012 40000
CFD 0 20000 CFD 0.015 20000
GSG 0 5000 GSG 0.023 5000
cGSG 0 5000 cGSG 0.021 5000
NMXFD 0 5000 NMXFD 0.022 5000

205 276

FFD 0 22305 FFD 0 40000
CFD 0 20000 CFD 0 2770
GSG 0 5000 GSG 0.001 5000
cGSG 0 5000 cGSG 0.001 5000
NMXFD 0 5000 NMXFD 0 2862

208 290

FFD 0.04 40000 FFD 0 16
CFD 0 20000 CFD 0 14
GSG 0.01 5000 GSG 0 10
cGSG 0.01 5000 cGSG 0 13
NMXFD 0.01 5000 NMXFD 0 11

256 291

FFD 0 40000 FFD 0 164
CFD 0 210 CFD 0 66
GSG 0 5000 GSG 0 84
cGSG 0 727 cGSG 0 57
NMXFD 0 177 NMXFD 0 62
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Table 4.12. Algorithm 8 with λ = 10−2

function scheme f∗ iter function scheme f∗ iter
201 271

FFD 0 463 FFD 0.005 40000
CFD 0 52 CFD 0 219
GSG 0 98.5 GSG 0.001 5000
cGSG 0 55 cGSG 0 196
NMXFD 0 52 NMXFD 0 191

203 275

FFD 0 40000 FFD 0.012 40000
CFD 0 18035 CFD 0.015 20000
GSG 0 5000 GSG 0.023 5000
cGSG 0 5000 cGSG 0.023 5000
NMXFD 0 3480 NMXFD 0.022 5000

205 276

FFD 0 40000 FFD 0.002 40000
CFD 0 7777 CFD 0 2767
GSG 0 5000 GSG 0.001 5000
cGSG 0 5000 cGSG 0.001 5000
NMXFD 0 5000 NMXFD 0 2861

208 290

FFD 0.04 40000 FFD 0 15
CFD 0 20000 CFD 0 14
GSG 0.01 5000 GSG 0 9
cGSG 0.01 5000 cGSG 0 11
NMXFD 0.01 5000 NMXFD 0 11

256 291

FFD 0 40000 FFD 0 19586
CFD 0 211 CFD 0 65
GSG 0 5000 GSG 0 83
cGSG 0 737 cGSG 0 54
NMXFD 0 178 NMXFD 0 63
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With CFD there is almost a perfect tie. The two methods have better performances
on three functions each, and have the same performances on four functions.
When the noise level increases, NMXFD performs better than GSG on seven functions
and worse on one, and it performs better than cGSG on six functions and worse
on one. Finally, with respect to CFD, NMXFD reaches better solutions or requires
less iterations to reach the same points in six occasions, performing worse on three
functions.
It appears that the NMXFD scheme performs at least as well as the other ones,
and that it shows improvements as the noise level increases. Because of the small
number of functions considered, and because the differences between the different
methods are often minor, both in terms of the value of the objective function
found and the number of iterations required to reach the solution, these conclusions
should be carefully pondered. Nonetheless, it appears that the NMXFD method is
never outperformed by the other schemes, making it a viable method for estimating
gradients in an optimization framework.
In the next section, we describe the numerical experiments where the estimate of
the gradient is used inside the Nonmonotone stabilization algorithm.

4.4.2 Nonmonotone stabilization algorithm

In this experiment, we consider the NonMonotone Stabilization Algorithm 2 described
in Sect. 2.4.3.
Similarly to the experiment described in the previous section, we run the algorithm
on the set of functions shown in Table 4.9, replacing ∇f(xk) with the estimate of the
gradient obtained with the following set of gradient approximation schemes: FFD,
CFD, GSG, cGSG, NMXFD.
In particular, we implemented the NMS2 algorithm with the following implementation
choices:

– we set the number of iterations to 5000 5;

– we set N , that represent the “budget” allocated to the exploration of the BB
stepsize, to 10;

– we set M , the “memory term” that appears in Condition 2, to 5;

– we use the stopping criterion ||∇f(x)|| ≤ 10−2 based on the value of the true
gradient;

The setting of the experiments is almost identical to the one described in Sect. 4.4.1,
and is reported here again for the convenience of the reader:

• we consider the values of λ: (10−3, 10−2) and the values of the stepsize σ:
(1, 10−1, 10−2, 10−3);

5With the same reasoning of Sect. 4.4.1, we set this value to 40000 and 20000 for the FFD and
CFD methods, respectively
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• we provide the methods GSG, cGSG, and NMXFD with N = 8n function
evaluations to build the gradient estimate;

• we run 100 replicas for each combination of (approximation scheme, f , λ, σ)
and we report the median values of the results.

Tables [4.13, 4.14] show the results obtained for the values of λ 10−3 and λ 10−2,
respectively. For each function, we report the results obtained by each scheme with
the value of σ that yields to the solutions with the lowest value of the objective
function.
As a general comment, we can observe without surprise that this algorithm is much
faster than the gradient descent with a decreasing stepsize regardless of the scheme
used for the gradient estimate.
In terms of the performance of the various methods, we can see from Table 4.13
that the NMXFD scheme is faster than GSG at finding the optimal solution in six
instances, and is slower two times. When comparing the method to the cGSG scheme,
the situation is similar, with the method performing better on seven occasions and
worse only once. We treated function 205 as a draw because NMXFD finds the
solution after only three iterations, but the objective function value is slightly higher
than that of the other methods.
The comparison with the CFD is more balanced, with the NMXFD method being
faster on four occasions and slower on two. Let us note that, despite the higher
number of iterations provided to the CFD scheme, it manages to satisfy the stopping
criterion way before reaching the maximum number of iterations, thus using a fewer
number of function evaluations than the NMXFD scheme overall.
The experiment with the level of noise λ = 10−3 therefore suggests that, if the
user trying to minimize a function wants to perform as few function evaluations as
possible, he could use the CFD method. If his interest is in reaching the optimal
solution in a fewer number of iterations possible, than considering other schemes,
included the NMXFD, can bring benefits. It is also worth noting that, because
NMXFD is a scheme with different parameters, it always possible to set N = 2n
as the number of function evaluations used to build the gradient estimate, thus
obtaining the same exact performance as the CFD method.
As the noise level increases to λ = 10−2, the NMXFD scheme performs better than
both the cGSG, GSG and CFD schemes on seven functions and worse on one.

4.5 Discussion and and future works

In this chapter, a novel scheme to estimate the gradient of a function is proposed. It
is based on linear functionals defining a filtered version of the objective function.
Unlike standard methods for which the approximation error can only be characterized
from a statistical point of view, one advantage of the proposed scheme relies on a
deterministic characterization of the approximation error in the noise-free setting.
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Table 4.13. Nonmonotone stabilization algorithm with λ = 10−3

function scheme f∗ iter function scheme f∗ iter
201 271

FFD 0 148 FFD 0.001 170
CFD 0 10 CFD 0 9
GSG 0 112 GSG 0 147
cGSG 0 40 cGSG 0 24
NMXFD 0 11 NMXFD 0 9

203 275

FFD 0.001 74 FFD 0.002 193
CFD 0 118 CFD 0 18
GSG 0 45 GSG 0.001 123
cGSG 0 35 cGSG 0.001 61
NMXFD 0 99 NMXFD 0 17

205 276

FFD 0.001 156 FFD 0.001 148
CFD 0 175 CFD 0 7
GSG 0 105 GSG 0.001 97
cGSG 0 118 cGSG 0.001 46
NMXFD 0.001 3 NMXFD 0 6

208 290

FFD 0.002 77 FFD 0 11
CFD 0.001 163 CFD 0 6
GSG 0.001 141 GSG 0 16
cGSG 0.001 163 cGSG 0 16
NMXFD 0.001 146 NMXFD 0 6

256 291

FFD 0.003 62 FFD 0.002 137
CFD 0 50 CFD 0 24
GSG 0.002 186 GSG 0 108
cGSG 0 291 cGSG 0 33
NMXFD 0 45 NMXFD 0 27



4.5 Discussion and and future works 79

Table 4.14. Nonmonotone stabilization algorithm with λ = 10−2

function scheme f∗ iter function scheme f∗ iter
201 271

FFD 0.005 183 FFD 0.008 166
CFD 0 9 CFD 0 13
GSG 0.002 168 GSG 0.003 151
cGSG 0 40 cGSG 0 25
NMXFD 0 10 NMXFD 0 10

203 275

FFD 0.004 71 FFD 0.007 177
CFD 0.002 133 CFD 0.001 31
GSG 0.002 73 GSG 0.004 166
cGSG 0.001 60 cGSG 0.001 65
NMXFD 0.002 96 NMXFD 0.001 22

205 276

FFD 0.004 179 FFD 0.003 149
CFD 0.003 192 CFD 0 10
GSG 0.002 152 GSG 0.002 161
cGSG 0.002 163 cGSG 0.001 50
NMXFD 0.003 2 NMXFD 0 9

208 290

FFD 0.008 95 FFD 0 30
CFD 0.002 168 CFD 0 6
GSG 0.005 158 GSG 0 18
cGSG 0.003 174 cGSG 0 15
NMXFD 0.002 144 NMXFD 0 6

256 291

FFD 0.01 89 FFD 0.013 126
CFD 0 135 CFD 0 28
GSG 0.004 210 GSG 0.002 176
cGSG 0.001 243 cGSG 0 32
NMXFD 0 123 NMXFD 0 28
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The other advantage lies in its behavior when function evaluations are affected by
noise. In fact, the variance of the estimation error of the proposed method is showed
to be strictly lower than that of the Central Finite Difference scheme and diminishes
as the number of function evaluations increases. The suitable linear combination of
finite differences seems to have a filtering role in the case of noisy functions, thus
resulting in a more robust estimator.
Numerical experiments on a significant benchmark given by the 69 Schittkowski
functions show the good performances of the proposed method when compared with
those of the standard methods commonly used in the literature. In particular, the
performances of NMXFD are comparable with those of CFD in absence of noise and
better with noisy data and seem to be better than those of other schemes in both
scenarios. Moreover, we also show the comparison with NMXFD and the average of
repeated CFD, thus using the same budget of function evaluations. As the noise
level increases, NMXFD tends to perform better than all the other schemes.
This supports the idea that the theory developed to propose this new scheme can be
a suitable framework to design gradient estimates with noisy data. The gradient
estimate proposed in this chapter can be seen as a first design attempt. A future
study could be dedicated to the investigation of the best gradient estimates in this
framework.
The results obtained with the preliminary experiments described in Sect. 4.4.1 and
4.4.2 suggest that the NMXFD method is indeed a valid method for estimating
gradients in an optimization framework when function evaluations are affected by
noise. In a one-to-one comparison with all the schemes that use the same budget of
function evaluations to build the gradient estimate, it outperforms them in most of
the occasions.
The level of noise used in the experiment had a limited magnitude, the standard
deviation of the noise λ assuming values 10−3 and 10−2.
In other works that explore the impact of noise in the resolution of optimization
problems, similar magnitudes of noise have been used. For example, in [17] the
additive noise used in the numerical experiments assumes the following possible
values: [0, 10−4, 10−2]. In the numerical experiments in [15], where the noise is
modelled as a uniform random variable ϵ(x) ∼ U(−ξ, ξ), the following value of ξ are
considered: [10−8, 10−6, 10−4, 10−2].
It therefore appears that the impact of the noise on the resolution of optimization
problem has been studied by the research community in the the cases where the
value of the noise is limited in magnitude. The CFD is almost unbeatable when
the noise is zero or close to zero, and still represents a valid scheme when the noise
level is small. It is now perhaps the moment to start research activities that expand
the analysis to situations in which the value of the noise is larger than the ones
considered so far.
When the level of the noise increases significantly, it becomes harder to come to
conclusions about the impact of the different gradient approximation schemes. In
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fact, it often happens that the minimization of different functions fails when the
noise level is high. Often, the reasons behind the failing are independent of the
quality of the gradient estimate: the value of the stepsize, whose “correct” value
is hard to determine in presence of noise, might be the responsible of the failing;
the optimization algorithm could fail to reach an optimal point if provided with a
small number of maximum iterations; the value of the noise could be so high in some
points that the gradient estimates produced by the different methods are nothing
but random guesses. These are perhaps some of the reasons why, at the best of our
awareness, high level of noise have not been studied extensively.
A future study could therefore be dedicated to the investigation of the impact of
different gradient estimates on the performance of optimization algorithms when
high levels of noise are present.

Let us now describe a preliminary experiment that gave us some ideas for other
potential future works. Let us consider the function 276 that has also been used in
the previous experiments. We tried to minimize this function using the Gradient
Descent algorithm described in Sect. 4.4.1, setting σ = 0.1 and running 100 replicas
of the experiment for the noise levels λ = 10−1 and λ = 1.
The median value of the objective function and of the number of iterations required
to reach the solution are reported in Table 4.15.

Table 4.15. Algorithm 8 - function 276

scheme f∗ iter
λ = 0.1

FFD 0.005 40000
CFD 0.001 18223
GSG 0.001 5000
cGSG 0.001 5000

NMXFD 0.000 3144
λ = 1

FFD 0.066 40000
CFD 0.031 20000
GSG 0.008 5000
cGSG 0.005 5000

NMXFD 0.016 5000

From the table it is possible to see that the NMXFD scheme performs better than the
other schemes for λ = 10−1 and that, for an higher value of λ it finds a better solution
than the CFD scheme and a worse one than the GSG and cGSG schemes. We were
a little surprised by this result since, for the same function, the NMXFD scheme
had performed better than the Gaussian Smoothing schemes for both λ = 10−3 and
λ = 10−2, and the results of the numerical experiments of Sect. 4.3 showed a better
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behaviour of the NMXFD scheme on the quality of the produced gradient estimates
also for higher values of the noise. Trying to better understand what happened as
the noise level increased, we designed this small experiment:
we minimize function 276 with Algorithm 8 using the gradient estimate obtained
with the cGSG scheme. At each iteration, we save the real gradient and the gradient
estimate obtained with cGSG, as well as the real value of the objective function
and the gradient estimate that we would have obtained using the NMXFD scheme
from the same point. In other words, at each iteration we start from the same point
xk, we build the gradient estimate with both the methods, we save quantities that
measure the quality of the estimate for both the schemes, then we generate the point
xk+1 according to the cGSG scheme and we move to the next iteration. The idea
behind this was that of trying to answer the question: what would have happened if
we had used the estimate of NMXFD at each iteration instead of the cGSG one?
We found something that we think is worth investigating in future works: at the
beginning of the minimization procedure the NMXFD method find noticeably better
gradient estimates (the angle between the real and estimated gradient is smaller,
and the objective function of the point that would be reached using the estimated
direction has a lower value) than the cGSG scheme. After some iterations though,
the NMXFD seems to lose its advantage, finding better estimates only around half
of the times.
We noticed that the number of iterations after which this starts to happen, depends
on the noise level. As the noise level increases, the NMXFD methods starts to lose
its advantage over the cGSG more rapidly.
For λ = 10−3 the NMXFD method produces better estimates of the gradient in
100% of the first 15 iterations. For λ = 10−2 this happens 80% of the times, and it
happens 62% and 37.5% of the times for λ = 10−1 and λ = 1, respectively. Over
the entire 5000 iterations, the amount of times in which NMXFD method finds
better estimates than its counterpart ranges between 34.4% and 49.27% for the four
different values of the noise that we have considered.
We saw the same behaviour also for a couple of other functions that we tried
experimenting with.
In future works, it would be interesting to try to identify the threshold after which
the advantage of NMXFD fades. This threshold could be computed as the ratio
between the noise level and other quantities (e.g. the value of the objective function,
or the norm of the gradient), but this is only an idea. It would also be interesting to
study if different methods can interact with each other to generate better results.
We report in Table 4.16 an example of the data produced with this experiment
consisting of the first 15 iterations of the algorithm with λ = 10−1. The first column
indicates the iterations, the second and third column the angle between ∇f(xk) and
the estimated obtained with the NMXFD and cGSG schemes, respectively. In the
last two columns we reported the ratio between the value of λ and the values of
f(xk) and ||∇f(xk)||, two potential quantities that can be used to determine the
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threshold discussed before.

Table 4.16. Details of the preliminary experiment

k NMXFD cGSG
f(xk) ||g(xk)|| λ/f(xk) λ/||g(xk)||angle angle

1 2.1 24.8 38.140 15.700 0.003 0.006
2 4.7 16.9 25.268 12.745 0.004 0.008
3 4.6 16.0 14.551 9.654 0.007 0.010
4 5.7 33.0 6.763 6.549 0.015 0.015
5 10.4 35.0 2.485 3.797 0.040 0.026
6 26.1 26.6 0.547 1.509 0.183 0.066
7 44.5 33.6 0.360 1.067 0.278 0.094
8 36.5 42.5 0.290 0.868 0.345 0.115
9 78.7 17.6 0.238 0.709 0.419 0.141
10 76.7 19.5 0.176 0.477 0.567 0.209
11 28.7 37.4 0.153 0.409 0.653 0.244
12 67.6 38.3 0.137 0.363 0.731 0.275
13 35.1 65.5 0.128 0.352 0.783 0.284
14 59.1 69.3 0.123 0.353 0.811 0.283
15 144.5 17.3 0.121 0.344 0.828 0.291
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Chapter 5

Simulation-Based Optimization:
a neural network approach

After introducing the Emergency Department (ED) problem, often addressed with
the so called Simulation-Based Optimization (SBO) approach, this chapter will
focus on the description and application of an approach to solve SBO problems that
involves the use of Neural Networks as an approximating model of the objective
function obtained by the simulation software.
This approach, that enables the usage of gradient-based methods for the resolution
of the optimization problem, is justified by the fact that function evaluations are
significantly expensive and that the only time-consuming phase of the neural network
approach is in the generation of the dataset which can be parallelized over whatever
number of processing systems at disposal.
We compare the performance of the neural network approach with the results
obtained by a globally convergent Derivative Free algorithm.

The Chapter is organized as follows. Sect. 5.1 introduces the ED problem. In Sect. 5.2
a review of the literature devoted to ED management is reported, highlighting the
most commonly adopted approaches for studying ED operation. Sect. 5.3 deals
with the formal statement of the MIU optimal resource allocation problem and
Sect. 5.4 describes the methodologies we propose for tackling it, that include an
approach based on the usage of artificial neural networks. In Sect. 5.5 a real case
study is reported and the related MIU management problem is stated in Sect. 5.6.
Experimental results on the case study are included in Sect. 5.7. Finally, in Sect. 5.8
some concluding remarks are drawn.

5.1 Introduction

Emergency Medical Services play a central role among healthcare services since they
are devoted to provide timely medical treatments to people needing urgent care [8].
In particular, Emergency Department (ED) is usually considered the most important,
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since hospital EDs usually provide the first care to urgent patients transported by
ambulance or arriving autonomously. Unfortunately, the worldwide phenomenon of
the overcrowding may significantly affect the quality and promptness of the care
delivered. Indeed, this phenomenon often gives rise to long waiting times that
may endanger the life of critical patients by increasing the risk of deterioration
in the health conditions. Besides visit and treatment delay (especially for low
acuity patients), overcrowding generates unpleasant phenomena such as an excessive
number of patients in the ED, patients treated in the hallways, an increasing number
of patients who leave without being visited (LWBS), ambulance diversion, reduced
patient satisfaction, and overloaded ED staff. Moreover, even an increase of patient
mortality can be directly related to the ED crowding problem.
Causes of overcrowding can be traced back to both exogenous factors as flue season,
requests of non–urgent visits and endogenous factors as ED internal resources
shortage (observation units, beds), undersized staffing.
Several Key Performance Indicators (KPIs) can be adopted to assess ED performance
(see the recent paper [131]) and, in particular, to estimate the level of overcrowding.
The most common are the Length Of Stay (LOS) in the ED, the waiting time before
the first medical visit (Door-to-Doctor time – DTDT), the percentage of LWBS
patients. Moreover, some more elaborate measures have been proposed to quantify
crowding and staff workload in an ED in order to possibly prevent the ED from
reaching critical conditions by adopting solutions in advance. Some examples are
NEDOCS, READ, EDWIN, and the Work Score, [3, 18, 133–135]; however, none of
them proved to be able to timely provide warnings at low rates of false alarms [65].
An efficient management of the ED resources (both physical and human ones)
along with the adoption of strategies to better handle patient flow trough an ED
is at the basis of any attempt to tackle the overcrowding problem. In particular,
specific Fast–Tracks (FTs) are often adopted to reduce this phenomenon. FTs
consist in separate specific pathways for patients with non–urgent complaints and
uncomplicated diseases, identified by the triage nurse and directed to a dedicated
unit or area, where they are treated and possibly discharged in short time.
FTs were introduced in the late 1980s in North American hospitals and later in
the United Kingdom and Australia. Today they are adopted in hospitals around
the world, and the advantages of using FTs have been highlighted in many case
studies (see, e.g., the review article [141]). A significant reduction of the ED LOS is
usually observed as well as a decrease of the percentage of LWBS patients and of the
average number of patients in the ED. As a direct consequence, more timely care
can be delivered along with an higher quality of care and hence an improved patient
satisfaction and safety are obtained. This motivates the rapid spread of FTs, which
nowadays are often adopted in most of the EDs. However, one of the main issues to
be considered when creating FTs is an efficient allocation of the resources required
by the units devoted to receive FT patients. Indeed, such units, generally called
Minor Injuries Units (MIUs), require: a dedicated staff, usually senior medical and
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nursing personnel, not shared with other ED units, that can possibly make quick
discharge decision; a number of observation units, namely armchairs, stretchers and
beds to be used for patient stay. These human and physical resources must be
defined in advance, as well as the MIU opening hours. In fact, MIUs usually provide
a diurnal service whose working hours commonly coincide with greatest overall ED
patient daily influx. Of course, the usage of such resources strictly depends on the
percentage of patients directed to the FT by the triage nurse. Note that too prudent
behaviour of the triage nurse, namely a conservative attitude to maintain within
the ED most of the patients, would nullify the FT goal, so that an enhanced triage
should be associated with the adoption of FT.
Of course, management costs of a MIU are related to the quantity of allocated
resources and to the opening hours. Therefore, taking into account the variability in
time of operations and the constraints on the availability of dedicated personnel and
specific observation units, the use of a Decision Support System (DSS) should be
desirable to allow ED managers to efficient manage the FT. As far as the authors
are aware, such a specific DSS system is rarely adopted and managers usually rely
on their own experience to decide the resources to be allocated for the MIU and
its working hours. Note that the same reasoning applies also for specialist clinical
pathways (like ophthalmologist, orthopedist ones and many others), which are often
employed in EDs to direct patients with specific pathologies (clearly identifiable
during the triage) straight to a specific unit.
In this paper we deal with MIU optimal resource allocation problem as a strategy
to manage ED low–complexity patients within a FT system. In particular, we
formulate this problem as a Multiobjective Optimization (MO) problem 1 aiming
at minimizing both the expected value of the overall patient waiting time (FT and
non-FT patients) and MIU management costs, measured in terms of working hours
of the MIU. Note that these are two conflicting goals, since by increasing MIU
working hours (which implies costs grow), a reduction of patient waiting time is
expected. This approach can be easily generalized by considering further objectives
which reflect other resource usage, too.
A major issue concerns such an MO optimization problem: it cannot be stated in
analytical form, since the KPIs of interest, i.e. patient waiting times and costs,
are not available in closed form. In fact they cannot be computed by means of an
analytical function of the variables which represent the ED settings. It is imperative
to resort to a simulation model representing the ED operation, obtaining the KPIs
of interest as response of simulation runs. Therefore, actually, the problem at hands
belongs to the class of Simulation–Based Optimization (SBO) problems and, as
a direct consequence, it is normally solved using black–box and derivative–free
optimization methods.
In this work, we reduce the MO problem to a series of single objective problems
with the scalarization approach described in Appendix C.

1We refer the reader to Appendix C for some brief notes on MO.
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When solving each problem, runs of a simulation model are used for evaluating
objective and constraints functions of the problem and the overall optimization
procedure results very computational expensive. This drawback is even more serious
whenever a high number of replications in the simulation runs is necessary to ensure
accurate responses of the simulation model. This is a well known big minus, common
to SBO approaches.
To overcome this drawback, in this paper we propose a novel approach based on the
use of an Artificial Neural Network. In particular, we build a machine learning model
which allows us to evaluate an approximation of the problem functions without
resorting to a simulation model. More precisely, the simulation model is only used
for generating a dataset needed for training a Multi–Layer Perceptron network
under the supervised learning paradigm. Then, at each iteration of the optimization
algorithm, function evaluations are performed by means of the machine learning
model, in place of the simulation model.
Besides a great reduction of the computational time, this new approach has some
important advantages: gradient–based methods can be adopted for solving the
MO problem, since the approximate model consists of continuously differentiable
functions; parallel computing techniques can be adopted for further improving
the overall efficiency; additional constraints, not involving KPIs computed via the
simulation model, can be possibly introduced in a simple way, avoiding re–building
the model from scratch.
A real case study is considered for testing the novel methodology we propose. In
particular, the operation of the ED of a large Italian hospital in Rome, Italy is
studied, focusing on the MIU optimal resource allocation problem. After formulating
the problem on the basis of the available data, both the approach based on simulation–
based MO derivative–free optimization and that based on a artificial neural network
are experimented and the obtained results compared. The results show that the
latter approach is promising, not only because it allows to significantly reduce the
computation time needed to obtain the Pareto front, but also because it allows for
the generation of more non-dominated points that are better distributed than those
obtained with the simulation–based MO derivative–free optimization approach.

5.2 Literature review

The literature dedicated to the ED overcrowding is really very wide. The reader
is referred to the review paper (and to the references reported therein) [64], where
the main overcrowding causes and effects are highlighted along with some possible
solutions. Some other examples of papers dealing with the overcrowding phenomenon
are [39, 67, 94, 104, 106, 138].
An efficient management of the resources is usually indicated as possible tool
for reducing ED overcrowding. Analytical methods and modeling approaches for
achieving an optimal resource allocation are reviewed in [5]. This paper points out
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that strategies like fast tracking and enhanced triage models are commonly adopted
against the overcrowding, requiring additional resources. The review article [141]
discusses strategies like team triage, streaming and fast tracking that have proven
to reduce ED overcrowding along with some ideal ED patient journey models. It is
important to remark that diverting patients with low–acuity illnesses and injuries
is a strategy analyzed in many studies aiming at assessing its impact on reducing
the waiting times and, accordingly, the ED overcrowding [33, 68, 70, 93, 104, 121].
Generally speaking, the aim of adopting such a diversion policy, like the FT system,
is to reduce the ED overcrowding by discharging the patients earlier. In particular,
[104] points out that the expected benefits of using FT systems are observed in
every ED, regardless of the single case studies considered. In [121], the authors
show that reducing the number of low–complexity patients does not significantly
affect the waiting times of the high–complexity patients. This result is supposed to
hold when the resources in charge of the visit and treatment of low–acuity patients
are dedicated. Contrarily, when such resources are shared with critical patients, a
worsening in the total average waiting times of the most urgent patients may be
experienced [77]. Moreover, the authors in [77] show that most benefits of the FT
system are observed in EDs with a considerable number of urgent patients. Indeed,
the improvement in terms of waiting time is higher when the low–complexity patients
can bypass a larger number of patients. In the interesting case study reported in
[1], the effect of FT services on ED performance of Australian hospital EDs are
clearly analyzed, concluding that FTs enable providing an effective care to patients
with minor illnesses without negatively affect treatments on other non-FT patients.
The results of another case–controlled study are reported in [32], where the several
benefits of adopting FT are clearly highlighted.
However, most of the published papers use simulation modeling to assess the
effectiveness of the diversion policy towards FT. Sometimes, simulation is combined
with other techniques (see, e.g., [62] where simulation is combined with the system
dynamics approach) but, to the best of our knowledge, papers using optimization
are still very few. Indeed, many papers examine the impact of the adoption of
these strategies through scenario–based analyses and only a few of them aim at
finding the settings providing an effective diversion policy by optimizing some KPIs.
For instance, in [123], a multi-criteria method is proposed to determine the best
configuration for the FT system in terms of five performance indicators. In [38], a
mixed–integer linear programming problem is proposed to minimize the number of
waiting patients by focusing on the management of human and material resources.
In [4], the final goal is to assess how different staffing levels affect the performance in
terms of patient throughput when budget restrictions are considered; for this purpose,
a discrete stochastic optimization problem concerning an ED in Kuwait is considered.
In [144], the total average patient waiting time is minimized through a simulation–
based metamodeling approach, which is used to determine the optimal ED resource
allocation by considering also budget and capacity constraints; the computationally
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expensive simulation model is replaced by a suitable metamodel, chosen among
several alternatives. Recently, [142] has dealt with a resource allocation problem
by analyzing the impact of human errors due to the increase in workload within
the EDs; the approach proposed in this paper combines several techniques, such as
simulation and artificial neural networks.
As regards approaches commonly used for analyzing ED operation, several Opera-
tions Research methodologies are usually adopted, namely Analytical Models [116],
Statistical Analysis [41, 71] and Simulation. Simulation turns out to be the best
suited for dealing with the complex and stochastic processes emerging in healthcare
systems, like the ED (see [24] for an analysis of the literature related to simulation
and modeling in the healthcare contexts). In particular, Discrete Event Simulation
(DES) (see, e.g., [14, 45, 58, 68, 76, 78, 139, 144]) and Agent–Based Simulation (ABS)
(see, e.g., [7, 70, 80]) are very frequently used for studying patient flow through an
ED. We refer the reader to the recent paper [118] (and to the references reported
therein) for a complete review on simulation modeling applied to EDs, along with a
discussion of current patterns and trends.
Recently, some papers dealing with ED management have proposed approaches
combining a simulation model with an optimization algorithm [4, 40, 59, 60], resulting
in the so–called Simulation–Based Optimization [49, 53]. Approaches based on SBO
allow optimizing the values of some KPIs of interest, hence determining the optimal
settings of the system considered. For the state of the art on SBO applied to EDs,
we refer the reader to [143]. Since in the SBO approach DES models are used for
representing the ED operation, the objective function and the constraints values
corresponding to a specific ED setting have to be evaluated by running a simulation
model. Therefore, the use of black–box and derivative–free optimization algorithms is
mandatory for solving optimization problems within the SBO approach. Furthermore,
[143] evidences the frequent need for SBO approaches to address MO problems,
which require suited efficient solution algorithms. In [129, 130], the multiobjective
genetic algorithm NSGA-II [43] is used to find the optimal configuration of a Swedish
ED in order to minimize several objectives, such as DTDT and LOS, meeting the
national guidelines. A multiobjective analysis is described in [79] to determine the
bed capacity allocation in order for the Italian hospital considered to efficiently
manage both elective patients, coming from the waiting lists, and ED patients;
the optimization algorithm embedded in the simulation software is based on the
simulated annealing method. In [146], a multiobjective tabu search is developed for
solving an ED layout problem, where closeness among departments and patient’s
travel distance and time are the objectives to be minimized. Finally, in [46] and
[26], optimal computing budget allocation is combined with genetic algorithm and
particle swarm optimization, respectively, to determine the optimal allocation of
personnel and medical equipment in order to minimize LOS and resource waste cost.
It is important to remark that the problem formulation as a MO problem has a very
important practical advantage: the optimal solution is provided in terms of a set of
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non–dominated points, the Pareto front, thus allowing the ED managers to select
the best point according to their preferences.

5.3 Problem statement

In order to state the problem we are dealing with, we first briefly recall some
structural and operational elements which characterize an ED. As well known, the
triage process is the first activity a patient is subjected to when arriving in the ED.
In this phase, a first assessment is performed by a triage nurse and a severity tag is
assigned to each patient. Such assignment corresponds to a prioritization of patients
on the basis of acuity. Different scales can be adopted; an example is the five–level
Emergency Severity Index (ESI) adopted in the USA, providing a stratification of
patients into five groups from 1 (most urgent) to 5 (least urgent) [51]. For simplicity,
tags are often associated with colors, e.g., red, yellow, green and white, used in a
four–level scale (listed according to severity decrease). National Health Systems
guidelines usually provide a threshold value that should not be exceeded by average
waiting time DTDT and stay time LOS, for each triage tag. We will denote by T
the set of the severity tags.
From the structural point of view, an ED is usually made up of a number of units
which are ED areas (rooms) where patients are directed after the triage, based on
the pathology observed (e.g., surgical unit, resuscitation area, etc). In the sequel we
will indicate by U the set of ED units. More precisely, for each severity tag t ∈ T ,
we denote by U(t) the set of ED units where a t-tagged patient can be directed. This
is necessary to take into account that, being ED units usually different equipped,
patients can only be assigned to some of them, on the basis of their triage tag.
We consider the problem of defining FT systems within EDs, aiming at providing
prompt and effective care to low–complexity patients. The strategy consists in
diverting such patients towards a dedicated ED unit (MIU) in order to visit, treat
and discharge them in short time, without crowding standard clinical pathways of the
ED. An overall decrease of the number of patients in the ED and the patient waiting
times and LOS are expected, and consequently a reduction of ED overcrowding. We
remark that, two key issues underlie the success of such a FT strategy:

– a suited allocation of the physical and human MIU resources;

– an enhanced triage, which should allow promptly identifying patients with
low–acuity illnesses and injuries to be directed to MIU via FT.

The first issue concerns the resources to be allocated in the MIU. Indeed, MIU
usually consists of a number of rooms equipped with armchairs, stretchers and beds
where dedicated personnel (physicians and nurses) visit and treat patients. Moreover,
since MIU is usually a diurnal service, its opening and closing hours must be defined
for each day of a prefixed time period of interest.
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The second issue regards the percentage of patients that are directed to the FT by
the triage nurse. Of course, nurse decision is based on patient clinical assessment,
however a too prudential attitude of the triage nurse would imply a too low percentage
of patients diverted to the MIU, hence making the establishment of FTs useless. In
this work, we consider percentage of patients that are directed to the FT by the
triage nurse as fixed, with the value set to 30%.
We can now formally introduce the problem. Let D = {1, . . . , n} be the set of the
days of the chosen time period (for instance, D = {1, . . . , 7} if a weekly schedule
is adopted). We assume that each MIU room is equipped by a prefixed number of
observation units (armchairs, stretchers and beds) and that a physician and a nurse
are assigned at each room. This is a simplifying assumption, but actually this is the
real situation often encountered in an ED.
Under this assumption, the MIU optimal resource allocation problem consists in
deciding the number of rooms to be open and their working hours in each day of
the period D. Note that, due to changes in patient flow, the number of MIU rooms
to open, as well as opening and closing times, may be different for each day.

5.3.1 The decision variables

To formulate the problem we introduce the following decision variables:

– let xd ∈ Z+ be the opening time of MIU on day d ∈ D;

– let yd ∈ Z+ be the closing time of MIU on day d ∈ D;

– let rd ∈ Z+ be the number of rooms used in MIU on day d ∈ D;

Therefore, we have three n-dimensional integer valued vector variables, namely

x = (x1, . . . , xn)⊤, y = (y1, . . . , yn)⊤, r = (r1, . . . , rn)⊤. (5.1)

Therefore, (x,y, r) ∈ Zn × Zn × Zn represent a MIU setting for the time period D.
Note that variables xd and yd are assumed to be integer since usually opening and
closing hours refer to exact hours (e.g., 8.00 a.m.–8.00 p.m.)

5.3.2 The sample response function and the sample average approx-
imation

Given a time period D, for each tag t ∈ T and for each u ∈ U(t), we define sample
response function the function

SRFt u(x,y, r; ξ(ω))

which takes two inputs: the MIU setting (x,y, r) and ξ(ω), being the latter a random
vector defined on a probability space. More precisely, the random realizations of ξ(ω)
correspond to different flow patients through the ED. Sample response functions are
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often related to waiting times or stay time in the ED, like DTDT or LOS, or they
can be defined in correspondence with some counters, like number of patients in the
ED or waiting in a queue.
Sample average approximation method, also called sample path method (see, e.g.,
[72],[74], [108], [112]) consists in approximating the expected values (mathematical
expectation) of a sample response function with deterministic averages. By using
this approach, the expected value E [SRFt u(x,y, r; ξ(ω))] is approximated by a
deterministic average sample response function, namely

E [SRFt u(x,y, r; ξ(ω))] ≈ 1
N

N∑
i=1

SRFt u(x,y, r; ξi), (5.2)

where ξi is a realization of ξ(ω) and N is the number of samples. Since a DES model
is adopted for generating such realizations, actually, each sample corresponds to
the output of a single replication of the simulation runs and the r.h.s. of (5.2) is
computed as average over N independent replications.

5.3.3 The objective functions

Now we define the functions of the MIU optimal resource allocation problem. The
first one considers the average of the waiting times DTDT for all the patients over
the time period D, namely

f1(x,y, r) =
∑
t∈T

αt

∑
u∈U(t)

βu E [DTDTt u(x,y, r; ξ(ω))] , (5.3)

where αt > 0 and βu > 0 are suited scalars and DTDTt u(x,y, r; ξ(ω)) denotes the
door-to-doctor time of a t-tagged patient assigned to the ED unit u when the ED
setting during the period D is given by (x,y, r). Therefore, the real valued function
f1 is computed by taking an expectation over the sample response function and
hence, even if the sample average approximation is used, it has no explicit form.
The second one counts the MIU working hours over the time period D, namely

f2(x,y) =
∑
d∈D

γd(yd − xd) (5.4)

where γd > 0 are suited scalars.
Finally, we consider the number of MIU rooms which are open for each day over the
time period D,

f3(r) =
∑
d∈D

δdrd, (5.5)

where δd > 0 are suited scalars.
Note that all the scalars introduced (5.3), (5.4), and (5.5) aim at possibly differently
weighting the single terms of the functions. Moreover, observe that each MIU
working hour implies operating costs as well as the more MIU rooms open, the higher
the costs. Therefore, since the goal is that of minimizing the average patient waiting
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time along with MIU operating costs, we formulate the optimization problem as the
simultaneous minimization of function f1, f2 and f3, thus leading to a MO problem
with conflicting objectives (see Sect. 5.3.5).

5.3.4 The constraints

Simple box constraints on the variables must be introduced, namely

lxd
≤ xd ≤ uxd

lyd
≤ yd ≤ uyd

lrd
≤ rd ≤ urd

,

(5.6)

for all d ∈ D, where lxd
, lyd

, lrd
and uxd

, uyd
, urd

are non–negative integer prefixed
lower and upper bounds, respectively. Moreover, the constraints

yd − xd ≥ hd (5.7)

for all d ∈ D must be considered, where hd ≥ 0 is a prefixed integer lower bound on
the minimum number of hours for MIU to be open. Indeed, it could be necessary to
impose that MIU is open on some day week for a number of hours greater than a
suited threshold value.
Another constraint regards a lower bound on the overall number of MIU working
hours in the time period D, namely∑

d∈D

(yd − xd) ≥ g, (5.8)

where g is a prefixed non–negative integer. This is necessary to guarantee that MIU
is open for an appropriate time during the whole period D.
We denote by F the feasible set, i.e., the set of points satisfying all the constraints.

5.3.5 The multiobjective Simulation–Based Optimization problem

The MIU optimal resource allocation problem we are dealing with can be stated as

min
(x,y,r)∈F

(f1(x,y, r), f2(x,y), f3(r))⊤ , (5.9)

i.e., as a multiobjective integer optimization problem. The aim is to find a trade–off
between the conflicting objectives of reducing the management cost and guaranteeing
patients timely treatments according to their urgency code.
A major issue must be taken into account when tackling problem (5.9). In fact, the
complex and stochastic processes within the ED prevent us from using analytical
models to represent the ED operation and, as we already observed, simulation models
are commonly adopted to this aim. In particular, we refer to DES models which
proved to be a flexible and robust tool for modeling patient flow through an ED. By
using this approach, after building and validating an ED DES model, the patient
waiting time sample response function is evaluated via simulation runs. Therefore,
the problem we are considering is actually a Mutiobjective Integer Simulation–Based
Optimization problem.
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5.4 Methodology

In this section we describe the methodologies we are going to use for the solution of
the SBO problem (5.9). In particular, we propose:

– the use of Derivative-Free optimization algorithms within a method for multi-
objective optimization;

– a novel methodology based on the use of Artificial Neural Networks.

A description of both the methodologies is reported in the following two subsections.

5.4.1 Solution of the multiobjective SBO problem via Derivative–
Free methods

For an SBO problem, the objective and constraint functions have no analytic form
and are subject to the random random noise in their evaluation. This leads to the
impracticability of using optimization algorithms based on first–order information
(or their approximation). In particular, in problem (5.9), objective function f1 is
evaluated by running a DES model. Therefore, a methodology suited for solving
this class of problems is Black–Box and Derivative–Free Optimization (DFO) (see,
e.g., [30], [10]). In particular, we focus on direct–search methods of directional type
and, to the best of our knowledge, this is the first time that a globally convergent
DFO algorithm is used to solve a resource allocation problem in an ED.
Moreover, problem (5.9) is also a multiobjective problem, hence requiring suited
solution algorithms (see, e.g. [11, 81, 89]). We briefly recall that MO methods are
usually classified on the basis of the articulation of the decision maker preferences2.
More precisely, we have: i) methods with a priori articulation of preferences, requiring
that the decision maker has to state additional preferences, prior to the optimization,
and a single optimal point is then returned as a result of such preferences; ii)
methods with a posteriori articulation of preferences, requiring that the decision
maker provides the preferences a posteriori, that is after being informed about
non–dominated solutions.
In the first case, objective functions are combined into a single one according to a
suited aggregation criterion before the optimization procedure starts (e.g., weighted
sum method), hence, a single non–dominated point is obtained. Instead, methods
belonging to the second class try to obtain the Pareto front of the MO problem,
giving the decision maker the choice of selecting the best point according to his/her
preferences We also point out that this is a common classification also in the DFO
literature [29, 35, 82].
We adopt the first approach recalled above to deal with the presence of multiple
objectives in (5.9) and we focus on the use of weighted sum method (scalarization

2For the sake of completeness, we note that methods without preferences can be adopted as well
[86], but we do not consider them.
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technique) [44, 89]. Namely the objective functions are weighted into a single
objective, i.e., the following function

F (x,y, r) = η1f1(x,y, r) + η2f(x,y) + η3f3(r), (5.10)

is defined, with η1 ≥ 0, η2 ≥ 0, η3 ≥ 0 and η1 + η2 + η3 = 1. Then several
functions F obtained by considering different combinations of the weights η1, η2,
η3 are minimized, obtaining an approximate Pareto front [11]. Therefore, although
scalarization techniques are originally included among the methods using a priori
articulation of preferences, the approach we adopt is actually an a posteriori strategy
since it allows recovering a subset of points in the Pareto front. To perform these
several single objective minimizations, we adopt Algorithm DFLINT proposed in [83],
which has been proved to have, under some assumptions, finite convergence to a
suitably defined local minimum, and to be very efficient for solving integer black–box
constrained problems. This is due to the use of particular search directions and a
suitable nonmonotone linesearch, guaranteeing a high level of freedom to cover all
the feasible points.
As far as the authors are aware, the adoption of such a globally convergent DFO
methods represents an important novelty in tackling optimization problems arising
in ED management contexts, where heuristics are the most commonly adopted
approaches.

5.4.2 Solution of the multiobjective SBO problem via Artificial
Neural Networks

The fact that, in the SBO approach, runs of a DES model are needed to evaluate
objective and constraint functions implies that the overall optimization procedure is
very time consuming. Of course, the required computational effort depends on the
complexity of the simulation model and on the length and number of replications of
each run. However, to ensure a good accuracy of the results, usually such runs are
very time expensive. This leads to a long CPU time required to solve SBO problems
by means of approaches based on a direct use of a DES model.
To overcome this drawback, we introduce the use of an ANN in order to efficiently
determine a subset of points in the Pareto front of the multiobjective SBO problem
under study. The key idea is to construct a machine learning model that “emulates”
the DES model enabling the computation of the value of the objective function (5.3)
in a significantly cheaper way, albeit less precise. On the other hand, if we assume
that a fixed “budget” of function evaluations is available, by using the approaches
described in Sect. 5.4.1, the quality of the obtained solution strictly depends on
this budget. In particular, in the scalarization approach, such budget would be
distributed in the solution of the several problems corresponding to different choices
of the weights; thus, as the number of these problems grows, the budget for each
problem and, consequently, the quality of their solution decreases significantly.
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As well known and already discussed in Sect. 3.2 ANNs are computing systems that
are inspired by the biological neural networks that compose animal brains (for a
detailed description of ANNs we refer, e.g., to [48, Chapter 11] and [61, Chapter 2]).
These computing systems have the ability to capture the complex interactions among
inputs via their hidden neurons. The neurons are units of computation that receive
input from other neurons, make computations on these inputs (such as performing a
weighted sum before applying a nonlinear function, commonly known as activation
function), and feed them into other neurons. In Sect. 3.2 we showed that, if the ANN
has the structure of a Multi-Layer Perceptron (MLP), the network is known to have
universal approximation properties. Our belief is that a sufficiently precise machine
learning model that captures the essential behavior and relationships between the
input and the output variable can be efficiently used as alternative to a DES model.
Moreover, this approach also allows the solution of the SBO problem by means of
gradient–based methods, since, in this case, an analytic expression of the objective
function is available. The complexity of this function depends on the number of
hidden layers, the number of neurons and the activation functions of the MLP, but,
regardless of the complexity, it will always be possible to compute its gradient.
We now describe the ANN–based approach we propose for tackling the SBO problem
(5.9). It is characterized by the following sequential steps:

1. generation of the dataset that will be used by the MLP;

2. identification of good hyperparameters for the training problem;

3. training of the MPL;

4. generation of a Pareto front for the SBO problem (5.9) using the MPL for
evaluating the objective function f1 in (5.3).

In the following subsections we provide a detailed description of these steps.

Generation of the dataset

To train the model under the supervised learning paradigm, a dataset with the
following structure is needed: {vp, wp}P

p=1 where vp represents the input vector and
wp a scalar representing the target variable. For the problem under investigation,
each vector vp consists in the concatenation of the n-dimensional integer vectors x,
y and r defined in (5.1). Therefore, the vector vp is a (3n)-dimensional vector

vp = (x1, . . . , xn, y1, . . . , yn, r1, . . . , rn)⊤ (5.11)

representing the ED setting during the whole period D = {1, . . . , n}.
After creating P random vectors v1, . . . ,vP satisfying constraints (5.6), (5.7) and
(5.8), the associated target values w1, . . . , wP , necessary for the training of the MLP,
are obtained by means of runs of the DES model. In particular, from the simulation
output we extract the sample average approximation of the time-to-doctor time
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DTDT corresponding to each ED setting vp and store it in the scalar wp. It is worth
highlighting that by generating the dataset in this way, we do not encounter many
of the issues commonly faced when dealing with ML models, like the presence of
missing values, the presence of outliers and the fact that sometimes samples do not
come from the same probability distribution. In fact, the use of runs of the DES
model for generating data ensures high quality data, enabling the control of the size
of the dataset (that can be adjusted depending on the performance of the model),
and helping train a reliable ML model. Note that, due to the presence of high degree
of nonlinearity and complex relationships between the vectors vp and the target
variables wp, a MLP with a sufficiently large number of hidden layers and neurons
is usually identified as a good ANN model to learn this relationship [61].
It is important to observe that the procedure now described for the generation of
the dataset is the only time–consuming phase of the ANN approach we propose and
it can be easily parallelized.

Identification of the hyperparameters

Before training a MLP, it is necessary to decide the values of the hyperparameters
involved in the training process. They consist of parameters that define the architec-
ture of the network, like the number of layers, the number of neurons of each layer,
the dropout rate, and of the parameters that play a role in the training process, like
the parameters of the optimizing algorithm, the number of epochs and the batch
size. For the importance of the hyperparameters in the model’s performance and for
an overview of different selection strategies we refer to [28].
To choose a good configuration of the hyperparameters we implemented a random
search with a K–fold Cross-Validation, a resampling procedure commonly used to
choose the values of the hyperparameters without affecting the assessment of the
generalization capabilities of the model [19]. It works as follows: the training set is
split into K groups (folds). Then, K iterations are performed and, at each iteration
k = 1, . . .K, K − 1 folds are used as training sets excluding the k-th one and using
this latter as validation set. The network is trained with a given configuration
of the hyperparameters and an evaluation metric (e.g., the mean absolute error)
is computed on the validation set. After the last iteration, the average values of
the metric across the K different validation sets are computed and stored. Then,
the configuration of the hyperparameters is chosen as the one which minimizes the
average values of the chosen metric.

Training of the MLP

Training a machine learning model consists in finding the values of all the model
parameters so that the model error is minimized, in other words, the distance
between the value of a certain indicator of interest predicted by the model and the
corresponding real value is small. The training procedure is performed by means of
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the solution of an optimization problem using Stochastic Gradient Descent algorithm
[22]. Once the model is trained, we then have an analytical formula for computing
the value of function f1 in (5.3) of the MIU optimal resource allocation problem
(5.9).

Generation of the Pareto frontier

We can obtain a Pareto front or a subset of non–dominated points approximating
the front by using the weighted sum methods tacking into account that the function
f1 is now replaced by its approximation obtained via the machine learning model.
In this regard, some major important issues are worth highlighting:

– the evaluation of the objective function f1 is extremely faster than its simulation–
based alternative;

– unlike the approach based on DFO methods, since the function f1 is replaced
by its approximated model, all the problems functions are now continuously
differentiable. This enables using gradient–based optimization methods and
hence a great efficiency improvement is achieved;

– parallel or distributed computing techniques can be used. In fact, the use of
concurrent processes can be adopted for generating the dataset, and hence
different minimizations can be performed simultaneously;

– if needed, further constraints which do not involve KPIs computed via the
simulation model can be easily added to the initial problem formulation without
re–building the model from scratch.

Therefore, following the approach based on ANN we propose, once the data set has
been generated, each single objective minimizations can be performed in a really
short computational time. Thus, a great number of such minimizations can be
carried out, leading to the generation of more points in the approximate Pareto
front.
Note that, an additional (optional) final step of the procedure can be considered.
In fact, the value of the objective function f1 corresponding to each point in the
Pareto front actually is an approximation of the expected value of the door-to-doctor
DTDT patient waiting time. Therefore, in order to have a greater accuracy of this
value, each obtained point of the Pareto front can be selected as input of the DES
model and the DTDT computed via a simulation run. We will adopt this additional
step in our computational experiences reported in Sect. 5.7, in order to perform
a fair comparison between the results obtained via the ANN approach and those
resulting from the use of a DFO algorithm within the weighted sum method.

5.5 The case study

In order to experiment the approaches we propose in this paper, and in particular
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the one based on ANN described in Sect. 5.4.2, we consider a real case study, namely
the ED of a large Italian hospital which is significantly affected by the problem of
overcrowding: the ED of Policlinico Umberto I in Rome, Italy, one of the largest
EDs in Europe with about 140,000 patients arriving each year. It is composed of
several areas addressing medical specialties that range from ophthalmology and
hematology to obstetrics, pediatrics, and dentistry. In this paper, we focus on
the central area, which provides treatments to patients suffering from diseases and
disorders within the scope of internal medicine and general surgery. The real data
used in our computational experiments was collected during 2018, when more than
50,000 patients used the emergency services offered by the central area of this ED.
Note that, in 2018, a four–level (color–based) triage scale were used, namely red,
yellow, green and white tags (listed in decreasing order of severity) were assigned3.
Some important aspects of this case study have been already deeply analyzed in the
papers [41] and [40]. In particular, in [41] patient arrivals process is examined in
depth in order to determine the optimal piecewise constant approximation for the
nonhomogeneous Poisson process arrival rate. Paper [40] deals with the problem of
missing data, which affects many processes within the ED; in particular, a model
calibration procedure is proposed to obtain a DES model which produces an accurate
output. We refer to these two papers for a detailed description of the ED operation.
In the sequel, for the sake of completeness, we briefly report those aspects that are
more relevant with respect to the problem we are dealing with.

5.5.1 The ED units

Two main units are used to visit and treat the patients from all the triage categories:
a Medical Unit (MU), which is specific for diseases and disorders related to internal
medicine, and a Surgical Unit (SU), which provides treatments to patients needing a
surgical operation. Within these units, fully–equipped areas, denoted as MURed and
SURed, are dedicated to red–tagged patients. Moreover, a Resuscitation Area (RA)
is available when the health conditions require increasing level of attention due to
life–threatening diseases. In contrast, yellow–tagged and green–tagged patients do
not have dedicated rooms and share the same resources within MU and SU. Finally,
a Minor Injuries Unit (MIU) is devoted to the visit and treatment of the least urgent
patients, namely, the least critical green–tagged patients and all the white–tagged
patients which are directed to the MIU by the triage nurse via a FT. Usually, MIU
is open Monday through Saturday 8:00 a.m.–8:00 p.m., and green tag is assigned in
place of the white one when MIU is closed. All the other units are open 24 hours a
day, 7 days a week. As regards the number of rooms used for the medical visit and
treatment of red–tagged patients, RA has 2 rooms always available, while MU and
SU have 1 and 2 rooms, respectively. With regard to the other patients, the rooms
used in MU and SU are 3 and 2 in the day time (8:00 a.m.–8:00 p.m.) and 2 and 1
at night (8:00 p.m.–8:00 a.m.), respectively. Finally, 2 rooms are typically used in

3More recently, a five–level based scale has been adopted
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MIU.

5.5.2 The patient flow

Several diagnostic and therapeutic pathways can be identified within the ED on
the basis of the severity tag assigned to patients. In Fig. 5.1 we report a simplified
scheme of the patient flow, highlighting the major blocks. In particular, in the ED

Figure 5.1. Scheme of ED patient flow and related timestamps. A green tick is used to
indicate that a timestamp is available from data.

under study red–tagged patients can be directed to MURed or SURed on the basis
of the medical specialty required, or to RA in case of critical health conditions.
Yellow–tagged patients are visited and treated only in MU and SU, where resources
are shared with green–tagged patients that are not sent to MIU. The latter decision,
which is made by the nurse in charge of triage, depends on two conditions: on
the one hand, whether MIU is open or closed; on the other hand, the severity of
the patient’s disease. In the MIU, the green–tagged patients share the available
resources with the white–tagged patients. After the medical visit and treatment,
the subsequent stage is composed of exams (CT scans, X-rays, and so forth) and
reassessments. Some patients may be also required observation periods among the
different exams or before the discharge. A complete description of all the clinical
pathways adopted in this ED can be found in [40].

5.5.3 Data collection

Data collection represents a key point in order to develop an accurate ED model.
For the purpose of this study, we consider the data collected in January, since
this month is considered to be particularly critical in terms of overcrowding level
by the ED managers (of course, different months or time periods can be easily
considered). In January 2018, 4192 patients arrived in the central area of the ED of
Policlinico Umberto I. Table 5.1 reports their distribution among severity tags and
ED units assigned, excluding LWBS and deceased patients, and those directed to
the orthopedic unit which is not considered in this study, since it concerns a specific
dedicated pathway, not involving MIU. The table clearly evidences that the majority
of patients are yellow-tagged. Moreover, most of these patients are directed to MIU,
highlighting a sharp difference when compared with green-tagged patients, which
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Table 5.1. Distribution of patients among ED units and color tags

White Green Yellow Red

MU - 248 (21.83 %) 1316 (65.51 %) 191 (75.79 %) 1755
SU - 628 (55.28 %) 693 (34.49 %) 45 (17.86 %) 1366
RA - - - 16 (6.35 %) 16
MIU 47 (100 %) 260 (22.89%) - - 307

47 (100 %) 1136 (100 %) 2009 (100 %) 252 (100 %)

are mostly sent to SU. Finally, most of the red-tagged patients require visit and
treatment in MU, thus showing a similar behaviour as yellow-tagged ones.
While data concerning tags assigned and resources scheduled are usually sufficiently
complete (assigned tags, physician and nurse shifts, room available etc. are usually
recorded), data regarding the timestamps of each process inside an ED are often
lacking. This is a well known problem in the literature on EDs (see [40] and
the references reported therein). As regards our case study, Fig. 5.1 reports the
timestamps of the main processes in the patient flow, highlighting those available
and unavailable. For a detailed description of all the timestamps and the motivations
of unavailability of some of them, we refer to the paper [40]. We just recall here
that, since timestamps t2, t4, t5, and t6 are unavailable, we cannot directly compute
the service times of triage, medical visit, and examinations and reassessments from
the data and we use the procedure described in [40] to estimate these service times.

5.5.4 The Discrete Event Simulation model

A DES model of the patient flow within the ED has been implemented by using
the R package Simmer [128], which allows building process-oriented DES models
based on trajectories. For a complete description of the DES model of the ED under
study, we refer to paper [40]. Here we just recall that the model entities are patients
which enter the model according to a proper arrival process, namely a piecewise
constant approximation of a nonhomogeneous Poisson process (see [41] for a detailed
description of this process).
After the triage, entities follow different trajectories according to the severity tag
received (which is stored as an attribute) and to the ED unit assigned. The
combination given by the color tag and the ED unit determines the different patient
flows.
The resources used in the model represent the rooms for the medical visit and
treatment. While the room of MURed SURed and RA have a fixed capacity, the
rooms of MU, SU and MIU are based on a schedule that reflects the change in the
capacity between the day and the night shifts.
For the model validation and the design of experiments we refer to the paper [40]
and we adopt here the same choices, namely 38 days as simulation length, 1 week as
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warm up period and the number of replications fixed to 30.

5.6 Statement of the problem for the case study

The simulation model of the ED of Policlinico Umberto I is used to achieve the
final goal of finding a setting that allows reducing the level of overcrowding, which
is measured through the waiting times at each ED unit. By interviewing the ED
managers, a great interest emerged about exploring the existence of a margin for
visiting and treating in MIU a significantly larger number of green-tagged patients.
This request is motivated by the fact that triage nurses in charge of assigning the
color tag at triage usually tend to assume a precautionary behavior, thus sending
fewer patients to MIU (via FT), than its actual capacity. Indeed, they would be
deemed responsible in case of worsening of the patient health conditions caused
by a wrong choice of the ED unit at triage. However, reducing the overcrowding
by leveling out the workload within the ED units requires to carefully monitor the
overall number of patients to avoid that the benefit achieved in one unit gives rise to
long waiting times in other segments of the ED. Sending more patients to MIU is only
one of the options available to achieve the final goal of reducing the overcrowding.
A further tool considered by the ED managers is a proper choice of the working
hours of MIU, which is currently open from 8:00 a.m. to 8:00 p.m., Monday through
Saturday. Due to the high flexibility of the ED staff, every combination of opening
and closing time for MIU on each day of the week is considered feasible by the
managers if an improvement in the current status is guaranteed, provided that the
working hours are not out of the time window 7:00 a.m.–8:00 p.m. (only an early
opening of one hour is possible with respect to the current setting). Of course, the
largest reduction in the waiting times is expected for low-complexity patients, namely
patients with green or white triage tag, since these are the categories assigned to
MIU. As observed in [121], more critical patients may experience a lower reduction in
the waiting times since their priority guarantees a shorter waiting time. In particular,
some benefits are expected for yellow-tagged patients, who will share resources with
a lower number of low-complexity patients. In contrast, red-tagged patients rely on
dedicated resources and, accordingly, no improvement is expected for them.
Now let us formally state the optimal resource allocation problem for MIU of the
ED of Policlinico Umberto I. By using the notation introduced in Sect. 5.3, we have
T = {R, Y,G,W}, the set of severity (color) tags, red (R), yellow (Y ), green (G)
and white (W ). Moreover for each t ∈ T , U(t) ⊆ {MU,SU,RA,MIU}, namely

U(t) =



{MIU} if t = W,

{MU,SU,MIU} if t = G,

{MU,SU} if t = Y,

{MU,SU,RA} if t = R.

Since a weekly planning is adopted, we have D = {1, . . . , 7}. The decision variables
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are opening and closing hours for each week day, namely xd and yd, d ∈ D. The
variables rd and the objective function f3 in (5.5) are not introduced, since in the
ED under examination, the number of rooms used in MIU is prefixed. The resulting
SBO problem for the optimal resources allocation for MIU of the ED under study is
then formulated as

min
(x,y)∈F

(f1(x,y), f2(x,y))⊤ , (5.12)

where the feasible set F is defined by the constraints (5.6), (5.7) and (5.8) and the
function f1 and f2 are defined in (5.3) and (5.4), respectively. It is a simulation–based
bi–objective integer optimization problem, with 14 variables and 21 constraints. The
sample average approximation method is used, as described in Sect. 5.3.5, to handle
the expected value in function f1. In particular, runs of the ED DES model recalled
in Sect. 5.5.4 are used to computed the average sample response function of the
waiting time of interest, namely the door-to-doctor time DTDT given by t3 − t0
in Fig. 5.1. Actually, we approximate such time, with the time difference between
the start of the triage and the start of the medical visit, namely t3 − t1. This is
due to the fact that, as we already noticed, arrival time t0 is unavailable from data,
hence it can not be considered in the implementation of the ED DES model. On the
other hand, by assuming that (as patient would expect) the triage starts when a
patient arrives in the ED (i.e., t0 = t1), the difference between DTDT and the time
difference t3 − t1 can be considered negligible.

5.7 Experimental results

In this section we report the results of an experimentation of the approaches we
propose for solving the MIU optimal resource allocation problem arising in the case
study described in Sect. 5.5. In this experimentation, we consider the problem (5.12)
where the function f1 is defined in (5.3) with αt = 1 for all t ∈ T and βu = 1 for
all u ∈ U(t); the function f2 is defined in (5.4) with γd = 1, for d = 1, . . . , 7. This
choice is motivated by the will of not differently weighting the terms that make
up the functions. As regards the problem constraints, in the box constraints (5.6),
lower and upper bounds on the variables xd and yd are set to 7 (7:00 a.m.) and 20
(8:00 p.m.), respectively, namely,

lxd
= lyd

= 7, uxd
= uyd

= 20, d = 1, . . . , 7.

In the constraints (5.7) we set hd = 0 for d = 1, . . . , 7, to allow possible closing of
the MIU for some day week. In (5.8) we choose g = 21 to ensure a certain number
of MIU open hours during the week, as suggested by ED managers.
In the sequel, we report the results obtained by applying both the methodologies we
propose, as described in Sect. 5.4. All the tests were performed on a PC with an
Intel Core i7-4790K Quad–Core 4.00 GHz Processor with 32 GB RAM. We assume
that the maximum number of function evaluations allowed is set to 10, 000.
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5.7.1 Results from the application of DFO methods

We consider the weighted sum method and an approximate Pareto front for problem
(5.12) is computed by means of several minimizations of the function η1f1(x,y) +
η2f2(x,y) over the feasible set F , considering different combinations of the weights
η1 ≥ 0, η2 ≥ 0, with η1 + η2 = 1. In particular, we consider the following 11 combi-
nations of the weights (η1, η2): {(1, 0), (0.9, 0.1), (0.8, 0.2), · · · , (0.1, 0.9), (0, 1)}.
Each single objective minimization is performed by means of the DFLINT algorithm
[83]. This algorithm is available with GNU GPL license on the web4. The starting
point of each minimization corresponds to the “as–is” status, namely to the current
MIU opening and closing times x0 and y0. The value of each component of this
starting point is reported in Table 5.2 (note that MIU is currently closed on Sunday).
From a run of the DES model we obtain f1(x0,y0) = 724, 04 minutes and a simple

x0
1 x0

2 x0
3 x0

4 x0
5 x0

6 x0
7 y0

1 y0
2 y0

3 y0
4 y0

5 y0
6 y0

7

8 8 8 8 8 8 8 20 20 20 20 20 20 8
Table 5.2. Starting point of the optimization algorithms corresponding to the “as–is” status

computation gives f2(x0,y0) = 72 hours (see the green square in Fig. 5.2).
As regards the parameters of the DFLINT algorithm, the default ones are adopted.
The stopping criterion is based on the maximum number of function evaluations, so
that the overall prefixed “budget” of 10,000 function evaluations is equally divided
into the 11 applications of the DFLINT algorithm, leading to the stopping criterion
of 909 function evaluations allowed for each minimization. The values of functions f1
and f2 corresponding to the optimal point of the single objective minimizations are
reported in Table 5.3, removing those corresponding to coinciding and dominated
points. The approximate Pareto front consisting of such points is reported in Fig. 5.2

f⋆
1 f⋆

2

A 714.84 58
B 721.52 54
C 724.19 51
D 755.73 40
E 785.49 23
F 786.83 21

Table 5.3. Results for the weighted sum method: optimal values obtained in the single
objective minimizations (f⋆

1 in minutes, f⋆
2 in hours)

with blue triangle.
Results in Table 5.3 clearly highlight the fact that, as expected, high values of the
weight η2 leads to a setting for which opening hours during the week are very reduced,

4See the DFL Library at http://www.iasi.cnr.it/∼liuzzi/DFL
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with a corresponding increase of the waiting times. It also worth noting that, in
general, to the same value of weekly opening hours may correspond different settings
and, as a consequence, different waiting times. For the same reason, larger value of
opening hours not necessarily imply a decrease of the waiting times. The ED setting
corresponding to these solution points, are reported in Table 5.4. Of course, some

x⋆
1 x⋆

2 x⋆
3 x⋆

4 x⋆
5 x⋆

6 x⋆
7 y⋆

1 y⋆
2 y⋆

3 y⋆
4 y⋆

5 y⋆
6 y⋆

7

A 9 9 7 9 10 9 9 15 17 19 20 20 16 13 30
B 10 8 8 9 10 8 9 18 17 19 16 16 19 11
C 8 7 7 11 7 10 10 13 15 15 14 20 15 19
D 19 9 7 7 7 7 8 20 13 15 7 18 20 11
E 19 7 9 20 12 8 10 20 10 13 20 15 19 11
F 19 20 10 20 7 11 20 20 20 19 20 15 14 20

Table 5.4. Results for the weighted sum method

settings, even if feasible, could be improper for ED managers to adopt in practice.
However, once managers are provided with a set of solutions points belonging to the
Pareto front, they can choose those more suited to their need and this is a really
significant advantage of the approach we propose. As a consequence, it is important
to generate a sufficiently large number of these non–dominated points. However, as
we already discussed, the application of DFO methods within the SBO approach
requires a great computational effort since function evaluations are performed by
means of runs of the DES model. This prevents us from considering a greater number
of combinations of the weights η1 and η2 in the weighted sum method. In fact, to
avoid exceeding the prefixed overall maximum number of function evaluations, an
increase of the number of minimizations would lead to a decrease of the maximum
number of function evaluations allowed for each single objective minimization, and
this compromises a good accuracy of the results. This is the rationale behind our
choice to also propose an alternative approach based on ANN whose results are
reported in the following section.

5.7.2 Results from the application of ANN approach

As already pointed out in Sect. 5.4.2, the only time–consuming phase of the ANN
approach is the generation of the dataset. The time needed for the training phase
and the resolution of the different optimization problems is in the order of seconds
or a few minutes at most, and is negligible compared to time required for the data
generation, which takes approximately 240 seconds for each function evaluation.
In the dataset generation phase we use the whole “budget” of 10,000 function
evaluations performed by means of runs of the DES model. We divide our data into
a training set with 80% of the available data and a test set with the remaining 20%.
To find the best configuration of hyperparameters we execute a random search with
a 5-fold cross validation. After trying 250 different combinations of hyperparameters
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the one that leads to the lowest average mean absolute error on the five different
folds is the following: 1 hidden layer, 95 neurons, a ReLU activation function and a
dropout rate of 0 regarding the features of the model; the Adam optimizer ([73]) with
a learning rate of 10−3 for what concerns the hyperparameters of the optimization
phase.
Training the network on the 8000 samples results in a MAE of 4.38 on the training
set whereas the MAE computed on the test set is equal to 4.67. Considering that
the y values in the dataset range between values of 708.6 and 828.9, this confirms
that we did not incur neither in an underfitting nor an overfitting situation.
Once the function f1 is replaced by the approximate model, we can consider
a much bigger number of combinations of the weights η1 and η2, and this al-
lows us generating many more non–dominated points approximating the Pareto
front. In particular, we consider the 101 combinations of the weights (η1, η2):
{(1, 0), (0.99, 0.01), (0.98, 0.02), · · · , (0.01, 0.99), (0, 1)}. Of course, we are aware
that in few cases, the use of very similar weights could lead to the same minimizer.
All the steps of the ANN–based approach have been implemented in Python by using
the library PyTorch. We then used a gradient–based method, namely the algorithm
SLSQP [75] available in the SciPy library for the single objective minimizations,
performing a rounding to the nearest integer optimal point.
The values of functions f1 and f2 corresponding to the optimal point of the single
objective minimizations are reported in Table 5.5, removing those corresponding to
coinciding and dominated points. The approximate Pareto front consisting of such

f⋆
1 f⋆

2

A 712,53 91
B 718,44 62
C 721,80 60
D 723,96 59
E 724,08 52
F 726,27 50
G 726,28 47
H 735,66 43
I 766,70 23
L 770,90 22
M 774,55 21

Table 5.5. Results for the ANN approach: optimal values obtained in the single objective
minimizations (f⋆

1 in minutes, f⋆
2 in hours)

points is reported in Fig. 5.2 with red circles. The ED settings corresponding to
these solution points, are reported in Table 5.6.
We can see that the approximated Pareto Frontier obtained with the ANN approach
has more distinct points than the one obtained with the DFO approach. Furthermore,
these points are more evenly distributed, allowing ED managers to have a wider
range of options from which they can choose the solutions that are best suited to
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x⋆
1 x⋆

2 x⋆
3 x⋆

4 x⋆
5 x⋆

6 x⋆
7 y⋆

1 y⋆
2 y⋆

3 y⋆
4 y⋆

5 y⋆
6 y⋆

7

A 7 7 7 7 7 7 7 20 20 20 20 20 20 20
B 7 7 7 8 8 7 11 16 14 19 15 20 17 16
C 9 7 7 9 7 7 10 18 14 18 17 18 18 13
D 9 7 7 8 7 7 10 17 14 18 17 18 17 13
E 8 7 7 9 9 10 9 16 14 14 17 20 17 13
F 9 7 7 7 9 10 10 16 14 14 14 19 16 16
G 9 7 8 8 9 10 10 16 14 14 14 19 16 15
H 9 7 7 8 9 13 10 15 13 14 13 20 16 15
I 11 9 10 10 10 14 19 15 14 14 13 15 15 20
L 11 11 10 9 8 11 19 14 15 13 13 13 13 20

M 10 11 10 12 8 10 19 14 15 13 14 13 12 20

Table 5.6. Results for the ANN approach

Figure 5.2. Approximated Pareto front obtained by the weighted sum method (blue
triangles) and by the use the ANN approach (red bullet). The green square represents
the current “as–is” status
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their needs.
As for the quality of these points, we can see from Fig. 5.2 that there are three
points of the DFO pareto frontier that are dominated by points obtained with the
ANN approach, and three points for which the opposite happens. Overall, the Pareto
frontier obtained replacing the simulator with the metamodel seems to be better
than the other.
Let us also highlight another advantage of the ANN approach: the lower computation
time. In the DFO approach, for each single objective minimization problem the
function evaluations can only be computed sequentially, with each iteration waiting
for the previous one to end, without the possibility for them to be parallelized. In the
ANN approach, however, there is no constraint on the sequentiality of the generation
of the dataset. This means that, the higher the number of processing systems
available, the lower the elapsed time required for the computation of the same
“budget” of function evaluations. In particular, the lowest elapsed time that can be
achieved by the DFO approach corresponds to the time necessary for the resolution
of one single problem, if all the problems can be solved in parallel. Considering the
eleven problems of the DFO approach, the approximate time for the resolution is
the time required to perform 909 iterations - i.e. the time necessary for 909 function
evaluations.
In the ANN approach, instead, the 10,000 function evaluations can be parallelized on
whatever the number of processing systems available is, thus allowing to drastically
reduce the elapsed time of the experiment.

5.8 Conclusions

In this chapter, we considered a resource allocation problem related to the ED of
Policlinico Umberto I in Rome. The goal of the problem is to determine the optimal
settings of the ED unit devoted to the medical visit of low-complexity patients in
order to reduce the overcrowding level without an excessive increase in the operating
cost. Therefore, a multiobjective formulation of the problem is adopted to find a
trade-off between the conflicting goals of reducing the working hours of the ED unit
in hand and guaranteeing patients timely treatments according to their urgency
code.
Two strategies are adopted to deal with the resulting bi-objective problem, in both of
which the two objective functions are weighted into a single function and the resulting
optimization problem is repeatedly solved by using a single-objective algorithm in
order to determine the approximate Pareto front.
In the first strategy, a globally convergent DFO algorithm is employed. In the
second strategy, the usage of a gradient-based algorithm is enabled by replacing the
objective function that requires the usage of a simulation software with a metamodel
that has the structure of a MLP.
Real data from the patient flow of the Italian hospital are used in the experimental
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results. The proposed approaches are able to provide the ED managers with effective
tools to determine and assess different settings for reducing the patient waiting times
by choosing the desired level of effort. In particular, the ANN approach provides
several advantages over the DFO one:

• it enables the resolution of a higher number of single objective optimization
problems, thus producing a Pareto Frontier with more distinct points and
better distributed;

• it allows to drastically reduce the computation time parallelizing the generation
of the dataset on all the processing systems available;

• it is extremely robust to changes in the statement of the problem. If new
constraints or objective functions that do not involve the simulation software
were to be added to the problem, it would possible to generate a new Pareto
frontier rapidly, since it would not be necessary to use the simulation software
and the only time necessary would be the one for solving the multiple single-
objective minimization using gradient-based methods. The same would also
happen if the existing constraints and objective functions were subject to
modifications. The DFO approach, instead, requires executing the whole
procedure (including the repeated use of the simulation software) even for the
slightest change in the statement of the problem.

Future directions of research concern the development of a posteriori simulation-
based multiobjective algorithms which appropriately tackle the discrete variables
without relying on the rounding step and the explorations of different models for
approximating the simulation model.
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Appendix A

Neural networks activation
functions

This Appendix reports some of the activation functions that can be used in neural
network models, as discussed in Sect. 3.2.

Among the most popular activation functions we can find:

• the Heaviside step function, or step function, whose value is zero for negative
arguments and one for positive arguments (see Fig. A.1):

step(z) =

1, if z ≥ 0
0, if z < 0;

Figure A.1. Heaviside step activation function
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• the sigmoid function, that prevents the output from being too big by squashing
it between 0 and 1 (see Fig. A.2):

sigmoid(z) = 1
1 + e−z

;

Figure A.2. Sigmoid activation function

• the Hyperbolic Tangent Function, often referred to as tanh, that is a smoother
zero-centred function whose range lies between -1 and 1 [101] (see Fig. A.3):

tanh(z) = ez − e−z

ez + e−z
;

• the Rectified Linear Unit (ReLU ), first proposed in 2010 in [95] and probably
the most widely used activation function for deep learning application since
(see Fig. A.4):

ReLU(z) = max(0, z) =

z, if z ≥ 0
0, if z < 0.

These are only a small subset of the numerous activation functions that have been
proposed and used by the Machine Learning community. For more examples and a
deeper discussion on the topic we recommend the followings: [69, 101, 110].
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Figure A.3. Hyperbolic tangent activation function

Figure A.4. Rectified Linear Unit activation function
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Appendix B

Proof of Theorem 4.1.1

This Appendix we report the Proof of Thm. 4.1.1.

We have that

||Gσ(x) −Gσ(x)||2 =
n∑

i=1

(
(Gσ(x))i − (Gσ(x))i

)2

where (Gσ(x))i is given by (3.26)

(Gσ(x))i =
∫
Rn−1

gσ(xi, x̄i + σs̄i)φ(s̄i) ds̄i

and (Gσ(x))i = gσ(xi, x̄i), by (4.1). We can write

(
(Gσ(x))i − (Gσ(x))i

)2
=
(∫

Rn−1
gσ(xi, x̄i + σs̄i)φ(s̄i) ds̄i − gσ(xi, x̄i)

)2

=
(∫

Rn−1
(gσ(xi, x̄i + σs̄i) − gσ(xi, x̄i))φ(s̄i) ds̄i

)2
(B.1)

where the last equality holds since
∫
Rn−1 φ(s̄i) ds̄i = 1. Now, the integrand in (B.1)

has the following expression

gσ(xi, x̄i + σs̄i) − gσ(xi, x̄i) =
1
σ

∫ ∞

−∞
(f(xi + σsi, x̄i + σs̄i) − f(xi + σsi, x̄i)) si φ(si) dsi, (B.2)

and for the argument of the integral we can write

f(xi + σsi, x̄i + σs̄i) − f(xi + σsi, x̄i) =
= (f(xi + σsi, x̄i + σs̄i) − f(xi, x̄i)) − (f(xi + σsi, x̄i) − f(xi, x̄i))
= ∇f(x′)T σs− (∇f(x′′

i , x̄i))i σ si

= (∇f(x′))i σ si + (∇f(x′))T

i σ s̄i − (∇f(x′′
i , x̄i))i σ si (B.3)
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with x′ ∈ (x, x+ σs) and x′′
i ∈ (xi, xi + σsi).

We further have that

(∇f(x′))i = (∇f(x′))i − (∇f(x))i + (∇f(x))i (B.4)

Now substituting (B.3) and (B.4) into (B.2) we obtain that

gσ(xi, x̄i + σs̄i) − gσ(xi, x̄i) =

=
∫ ∞

−∞

[
(∇f(x′))i − (∇f(x′′

i , x̄i))i
]
s2

i φ(si) dsi+

+
∫ ∞

−∞

(
(∇f(x′))i − (∇f(x))i + (∇f(x))i

)T
s̄i si φ(si) dsi. (B.5)

By the Lipschitz property of the gradient, and recalling that∫ ∞

−∞
(∇f(x))T

i s̄i si φ(si) dsi = 0

we have:

(gσ(xi, x̄i + σs̄i) − gσ(xi, x̄i))2 ≤∫ ∞

−∞
L2σ2 ∥s∥2 s4

i φ(si) dsi+∫ ∞

−∞
L2σ2 ∥s∥2 ∥s̄i∥2 s2

i φ(si) dsi (B.6)

We can finally substitute (B.6) into (B.1) obtaining:(
(Gσ(x))i − (Gσ(x))i

)2
≤

L2σ2
∫
Rn−1

∫ ∞

−∞
(s2

i + ∥s̄i∥2) s4
i φ(si) dsi φ(s̄i) ds̄i+

+ L2σ2
∫
Rn−1

∫ ∞

−∞
(s2

i + ∥s̄i∥2) s̄i
2 φ(si) dsi φ(s̄i) ds̄i. (B.7)

For the first term in (B.7) we obtain that∫
Rn−1

∫ ∞

−∞
(s2

i + ∥s̄i∥2) s4
i φ(si) dsi φ(s̄i) ds̄i

=
∫
Rn−1

∫ ∞

−∞
s6

i φ(si) dsi φ(s̄i) ds̄i

+
∫
Rn−1

∫ ∞

−∞
∥s̄i∥2 s4

i φ(si) dsi φ(s̄i) ds̄i

= 15 + 3(n− 1). (B.8)

By similar computations the second term in (B.7) becomes∫
Rn−1

∫ ∞

−∞
(s2

i + ∥s̄i∥2) ∥s̄i∥2 φ(si) dsi φ(s̄i) ds̄i

=
∫
Rn−1

∫ ∞

−∞
s2

i ∥s̄i∥2 φ(si) dsi φ(s̄i) ds̄i

+
∫
Rn−1

∫ ∞

−∞
∥s̄i∥4 φ(si) dsi φ(s̄i) ds̄i

= (n− 1) + 3(n− 1) = 4(n− 1). (B.9)
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In (B.8) and (B.9) we used the property (page 208 in [34]) that for a zero mean
Gaussian z with variance σ2:

E[zd] =

(d− 1)!!σ2, for d even
0, for d odd

where (d− 1) !! = (d− 1)(d− 3) · · · 3 · 1 and that for any z ∼ N (0, In−1)

∫
Rn−1

∥z∥2φ(z) dz =
∫
Rn−1

n−1∑
i=1

z2
i φ(z) dz = n− 1.

By substituting (B.8) and (B.9) in (B.7) we finally obtain that(
(Gσ(x))i − (Gσ(x))i

)2
≤ L2 σ2 (15 + 3(n− 1) + 4(n− 1)),

which, applied to all the entries, proves the theorem.
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Appendix C

Brief notes on multi-objective
optimization

In this Appendix we provide a very brief introduction on multi-objective optimization.

The main focus of this thesis is on single objective optimization problems like (2.1).
There are some instances, though, where the objective function is constituted by
multiple objectives, and the field that studies this kind of problems has the name
of multi-objective (MO) optimization. For details on the algorithms and methods
to approach this kind of problems the reader can refer to [90] and the references
therein. Here we just give the definition of a multi-objective optimization problem
and we outline two potential approaches to its solution.
A typical multi-objective optimization problem has the following structure:

min
x∈F

(f1(x), f2(x), . . . , fk(x))T (C.1)

with k ≥ 2 and fi : Rn → R for i = 1, . . . , k.
The general goal when solving problem (C.1) is the minimization of all the objective
function fi(x) simultaneously. We indicate by zi, i = 1, . . . k a general solution to
this problem.
If there were no conflicts between the objective functions, a trivial solution of the
problem would be the one obtainable by solving k optimization problems separately
(one for each objective function). In this scenario it would therefore not be necessary
to apply any specific solution techniques. In most of the applications, though,
this approach is infeasible, since the functions f1(x), f2(x), . . . , fk(x) are, at least
partially, in contrast with each other.
In this scenario, it becomes critical to understand what is an optimal solution of
a multi-objective optimization problem. Let’s start by reporting Pareto’s 1896
definition [103]:

Definition 4. Given two vectors z1 ∈ Rk and z2 ∈ Rk, we say that z1 Pareto
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dominates z2 (z1 ≤p z
2) if:

z1
i ≤ z2

i ∀i ∈ {1, 2, . . . , k} and
z1

j ≤ z2
j for at least one index j ∈ {1, 2, . . . , k}.

From this, the definition of Pareto optimal solution follows:

Definition 5. A decision vector x∗ ∈ F is a Pareto optimal solution if it does not
exist another vector x ∈ F such that

f(x) ≤p f(x∗).

In other words, a solution is Pareto optimal if none of the objective functions can be
improved without degrading some of the other objective values.
The set of the Pareto optimal solutions of a multi-objective optimization problem
(MO) is called Pareto frontier.
We can now describe two different approaches for dealing with the presence of
multiple objectives:

• algorithms with “a posteriori articulation of preferences”, where the optimal
solution is provided in terms of Pareto front;

• scalarization techniques, that consist in reducing the multi-objective optimiza-
tion problem to a single objective one by considering the weighted sum of the
objective functions and by performing several minimizations, with different
combinations of the weights, thus obtaining an approximate Pareto front.

The vast world of the multi-objective optimization is outside the scope of this thesis.
It is sufficient to say that it is always possible to reduce any MO optimization
problem to a series of single objective problems, each of which can be solved using
the standard algorithms and techniques for this class of problems. Clearly, the higher
the number of combinations of weights considered, the higher the computation cost
for the resolution of the problem.
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