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Semiclassical bounds for spectra of biharmonic operators

Davide Buoso, Luigi Provenzano and Joachim Stubbe

Abstract. We provide complementary semiclassical bounds for the Riesz means R1(z) of the

eigenvalues of various biharmonic operators, with a second term in the expected power of z.

The method we discuss makes use of the averaged variational principle (AVP), and yields two-

sided bounds for individual eigenvalues, which are semiclassically sharp. The AVP also yields

comparisons with Riesz means of different operators, in particular Laplacians.

1. Introduction

Let Ω ⊂ Rd be a bounded domain with boundary ∂Ω. We consider the eigenvalue
problem for the biharmonic operator with various boundary conditions:{

∆2u = ωu, on Ω,
A1(u) = A2(u) = 0, on ∂Ω.

(1.1)

The biharmonic operator ∆2 = ∆∆ is the first iteration of the Laplace operator
−∆, and A1(u), A2(u) represent two linear operators which we shall specify for
each problem. These operators are generated from self-adjoint representations of
various quadratic forms defined on a suitable dense closed subspace of the Sobolev
space H2(Ω), see Section 2.

The interest of studying problem (1.1) is motivated by several applications as
the modelling of vibrations of a thin elastic plate subject to different constraints
or the static loading of a slender beam, and models for suspension bridges. We
refer the reader to [8, 9, 16, 17, 27, 35, 38] for more details on the applications
related with problem (1.1).

We always suppose that the spectrum of (1.1) consists of an ordered sequence
of eigenvalues ωj tending to infinity,

0 ≤ ω1 ≤ ω2 ≤ ω3 ≤ · · ·

This assumption holds, for example, when Ω has finite Lebesgue measure and
the boundary conditions in (1.1) are given by the so-called Dirichlet boundary
conditions

A1(u) = u, A2(u) = |∇u|,
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(where ∇ denotes the gradient operator) emerging from the study of the oscilla-
tions of a clamped plate. For other boundary conditions and precise definitions
we refer to Section 2.

An important issue in the spectral theory of partial differential operators is
the asymptotic expansion of the eigenvalues ωj as j →∞ and eigenvalue bounds
in terms of the asymptotic expansion, called semiclassical estimates, which is the
main subject of the present paper for the eigenvalue problem (1.1). To this end,
it is convenient to consider the counting function

N(z) = Card{ωj : ωj < z, ωj is an eigenvalue},

and, in a tradition due to Berezin [4], Riesz means,

Rσ(z) =
∑
j

(z − ωj)σ+,

with σ > 0 (here x+ denotes the positive part of x). N(z) can be interpreted as
the limit of Rσ(z) when σ → 0. The Riesz means Rσ(z) are related to N(z) via
the integral transform

Rσ(z) = σ

∫ ∞
0

(z − t)σ−1
+ N(t)dt, (1.2)

and in particular the behavior of ωj as j →∞ is given by the asymptotic expansion
of the counting function N(z) as z →∞. There is a large literature dealing with
the asymptotic expansion of the counting function or other spectral quantities, we
refer to the books by Ivrii [22] and Safarov and Vassiliev [37], that present the
state of the art as well as the key references.

The leading term in the asymptotic expansion is known as the Weyl limit,
going back to the fundamental work of H. Weyl [40] on the asymptotic behavior
of Dirichlet Laplacian eigenvalues{

−∆u = ωu, on Ω,
u = 0, on ∂Ω.

It is now known that the Weyl limit depends on the principal symbol of the partial
differential operator which is connected to the Fourier transform and equals |p|2
for the Laplace operator, and |p|4 for biharmonic operator.

We may summarize the Weyl law for an operator with principal symbol |p|2m
as

lim
z→∞

N(z)

z
d

2m

= (2π)−d
∫

Ω

∫
Rd

(1− |p|2m)0
+dpdx = (2π)−dBd|Ω|, (1.3)

where the right hand side corresponds to the normalized phase space volume of
the operator. Here m = 1, 2, but (1.3) remains true for higher iterations of the
Laplacian on a bounded domain Ω under suitable boundary conditions (see e.g.,
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[37]). Here Bd = πd/2

Γ(1+d/2) is the volume of the d-dimensional unit ball. The

equivalent statement for the eigenvalues ωj is

lim
j→∞

ωj

j
2m
d

= Cmd |Ω|−
2m
d , (1.4)

where Cd = (2π)2B
− 2
d

d is the so-called classical constant.
The Weyl law (1.3) or (1.4) is of striking simplicity. The limit depends only on

the volume of the domain and a universal dimensional constant and is independent
of the boundary conditions. In particular, we infer from the Weyl law that at least
asymptotically the eigenvalues of the biharmonic problem (1.1) equal the squares
of Laplacian eigenvalues.

One may then ask whether the counting function is bounded by its Weyl law,
that is whether it is possible to establish sharp semiclassical bounds of the type

N(z)z−
d

2m ≤ (2π)−dBd|Ω|, or N(z)z−
d

2m ≥ (2π)−dBd|Ω|,

for all z ≥ 0. Even in the simpler case of Laplacian eigenvalues (m = 1) this is,
apart from special domains, still an open problem known as Polya’s conjecture
where it is conjectured that the first inequality should hold for Dirichlet boundary
conditions. However, for Riesz means R1(z) =

∫ z
0
N(t)dt, sharp bounds have

been obtained both for Laplace and biharmonic operators since there are plenty
of variational techniques which can be applied, see e.g., Berezin [4], Li-Yau [33],
Kröger, [23] and Laptev [30, 31].

Combining the Weyl law (1.3) for N(z) and the integral relation (1.2), one
obtains

lim
z→∞

R1(z)

z1+ d
2m

= (2π)−d
∫

Ω

∫
Rd

(1− |p|2m)+dpdx =
2m

2m+ d
(2π)−dBd|Ω|,

and the corresponding sharp semiclassical bounds are of the form

R1(z) ≤ 2m

2m+ d
(2π)−dBd|Ω|z1+ d

2m , or R1(z) ≥ 2m

2m+ d
(2π)−dBd|Ω|z1+ d

2m .

When m = 1 (Dirichlet Laplacian eigenvalues) the first inequality is the celebrated
Berezin–Li–Yau bound and when m = 2 it has been shown for biharmonic Dirichlet
eigenvalues by Levine and Protter [32].

The effect of boundary conditions on the spectrum is already seen in the second
term of the asymptotic expansion, i.e., that following the Weyl law. As shown in
[22, 37], at least for smooth domains Ω ⊂ Rd there is a two terms asymptotic
expansion of the form

N(z) = (2π)−dBd|Ω|z
d

2m + ad,m|∂Ω|z
d−1
2m + o

(
z
d−1
2m

)
, (1.5)

where ad,m is a real constant depending on the dimension d, the order m of the
differential operator (where as before m = 1 corresponds to Laplacian eigenvalues
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and m = 2 to biharmonic eigenvalues), and on the boundary conditions. Ap-
plying these techniques we compute (1.5) for various boundary conditions of the
biharmonic eigenvalue problem (1.1).

We remark that all the classical strategies to get two-term expansions for
eigenvalues of elliptic operator, as shown in [22, 37], involve the extensive use of
microlocal analysis, that requires a number of regularity conditions on the domain
Ω that are not yet well understood in simple geometrical terms. However, recently
Frank and Larson [15] (see also [13, 14]) have proved a two-term expansion for
Riesz means of Laplacian eigenvalues without using microlocal analysis and with
low regularity assumptions on Ω.

The asymptotic expansion (1.5) suggests to look for bounds of N(z) (or R1(z))
in terms of (1.5). In this work we show that in some circumstances the Levine-
Protter bound can be reversed, so that there is a kind of “Kröger” lower bound for
Dirichlet Bilaplacian Riesz means (i.e., an upper bound for eigenvalue averages).
Reversing the inequalities requires lower-order correction terms, which, as will
be seen, include information about the boundary of the domain. As in [20] an
essential tool will be the averaged variational principle first introduced in [19] (see
also [11]), which gives an efficient derivation of Kröger’s inequality and has been
used to derive various other upper bounds for averages of eigenvalues.

Moreover, since the techniques for the two term asymptotic expansion do not
apply to the eigenvalue problem (1.1) on an interval (that is, d = 1) we study sep-
arately the one dimensional problems and exhibit a remarkable common similarity
of the different spectra, see Section 7. In particular, two terms asymptotics for
one dimensional problems are a consequence of asymptotically sharp upper and
lower bounds of the corresponding Riesz means which we provide in Section 7

The paper is organized as follows. In Section 2 we introduce the biharmonic
eigenvalue problems we study and we present the main results of the paper. In
Section 3 we prove some inequalities between biharmonic eigenvalues and then
compute the respective semiclassical asymptotic expansions. Section 4 is dedicated
to the semiclassical estimates for Dirichlet Bilaplacian eigenvalues, while Navier
and Kuttler–Sigillito eigenvalues are treated in Section 5. Section 6 contains a few
remarks on Neumann Bilaplacian eigenvalues. Finally, Section 7 is devoted to the
one dimensional biharmonic eigenvalue problems.

2. Biharmonic eigenvalue problems and main results

In this section we introduce the eigenvalue problems of the form (1.1) that we will
study in the sequel and present the main results of the paper. Unless differently
specified, we assume Ω ⊂ Rd to be a bounded domain with Lipschitz boundary
∂Ω.

In the following we will denote by 1A the characteristic function of A ⊆ Rd.
For a function f ∈ L1(Rd) we will denote by f̂(ξ) its Fourier transform defined

by f̂(ξ) = (2π)−d/2
∫
Rd f(x)eiξ·xdx, and with abuse of notation, for a function

f ∈ H2
0 (Ω) we will still denote by f̂(ξ) the Fourier transform of its extension by
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zero to Rd. We will also denote by B(x,R) the d-dimensional ball (in Rd) of radius
R centered at the point x.

The Dirichlet Laplacian eigenvalue problem is{
−∆uj = λjuj , in Ω,
uj = 0, on ∂Ω,

and the eigenvalues are variationally characterized by

λj = min
V⊂H1

0 (Ω)
dim V=j

max
u∈V \{0}

∫
Ω
|∇u|2∫
Ω
u2

.

The Neumann Laplacian eigenvalue problem is{
−∆vj = µjvj , in Ω,
∂vj
∂ν = 0, on ∂Ω,

and the eigenvalues are variationally characterized by

µj = min
V⊂H1(Ω)
dim V=j

max
u∈V \{0}

∫
Ω
|∇u|2∫
Ω
u2

.

The biharmonic eigenvalue equation we will consider is

∆2u = ωu, in Ω, (2.1)

complemented with four different sets of boundary conditions:

• Dirichlet boundary conditions:

u =
∂u

∂ν
= 0; (2.2)

• Navier boundary conditions:

u = (1− a)
∂2u

∂ν2
+ a∆u = 0; (2.3)

• Kuttler–Sigillito boundary conditions:

∂u

∂ν
=
∂∆u

∂ν
+ (1− a)div∂Ω

(
∂

∂ν
∇∂Ωu

)
= 0; (2.4)

• Neumann boundary conditions:

(1− a)
∂2u

∂ν2
+ a∆u =

∂∆u

∂ν
+ (1− a)div∂Ω

(
∂

∂ν
∇∂Ωu

)
= 0. (2.5)
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Here ν is the outer unit normal vector defined on ∂Ω, div∂Ω and ∇∂Ω are the
tangential divergence and the tangential gradient on ∂Ω, respectively, and a is the
Poisson ratio, a ∈ (−(d − 1)−1, 1). Note that the quadratic form associated with
all these problems is

Q(u, v) =

∫
Ω

(1− a)D2u : D2v + a∆u∆v, (2.6)

but this form is set in H2
0 (Ω) for Dirichlet boundary conditions, in H2(Ω)∩H1

0 (Ω)
for Navier boundary conditions, in H2

ν (Ω) = {u ∈ H2(Ω) : ∂u
∂ν = 0 on ∂Ω} for

Kuttler–Sigillito boundary conditions, and in H2(Ω) for Neumann boundary con-
ditions. In particular, the Dirichlet problem does not see the Poisson ratio, as∫

Ω

D2u : D2v =

∫
Ω

∆u∆v

for any u, v,∈ H2
0 (Ω). Here and in the sequel, the Frobenius product is defined as

D2u : D2v =

d∑
α,β=1

∂2u

∂xα∂xβ

∂2v

∂xα∂xβ
.

Furthermore, we will denote by Uj ,Λj the eigenfunctions and the eigenvalues of

the Dirichlet problem (2.1), (2.2). Similarly, we will use Ũj , Λ̃j(a) for the Navier

problem (2.1), (2.3), Ṽj , M̃j(a) for the Kuttler–Sigillito problem (2.1), (2.4), and
Vj ,Mj(a) for the Neumann problem (2.1), (2.5). We will not write explicitly the
dependence on the Poisson ratio a for eigenfunctions, but we will for eigenvalues
(with the exception of Dirichlet eigenvalues that do not depend on a). When we
consider these problems in general without specifying the boundary conditions, we
will use instead u, ω as a generic eigenfunction with its associated eigenvalue.

Note that the eigenvalues can be characterized via the minimax formulation
as

Λj = min
V⊂H2

0 (Ω)
dim V=j

max
u∈V \{0}

∫
Ω

(∆u)2∫
Ω
u2

,

Λ̃j(a) = min
V⊂H2(Ω)∩H1

0 (Ω)
dim V=j

max
u∈V \{0}

∫
Ω

(1− a)|D2u|2 + a(∆u)2,∫
Ω
u2

,

M̃j(a) = min
V⊂H2

ν(Ω)
dim V=j

max
u∈V \{0}

∫
Ω

(1− a)|D2u|2 + a(∆u)2,∫
Ω
u2

,

and

Mj(a) = min
V⊂H2(Ω)
dim V=j

max
u∈V \{0}

∫
Ω

(1− a)|D2u|2 + a(∆u)2,∫
Ω
u2

.
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It is worth observing that, when a = 1, the Navier problem (2.1), (2.3) becomes{
∆2Ũ = Λ̃(1)Ũ , in Ω,

Ũ = ∆Ũ = 0, on ∂Ω.
(2.7)

If the domain Ω is only Lipschitz, in principle the quadratic form (2.6) is not coer-
cive in H2(Ω)∩H1

0 (Ω) and the spectrum of problem (2.7) may be not variationally
characterizable. However, the form is coercive as soon as Ω also satisfies the so-
called uniform outer ball condition (see [1]; see also [18, Section 2.7]). In particular,
in this case the domain of the Dirichlet Laplacian is precisely H2(Ω)∩H1

0 (Ω) and
the following identification becomes immediate

Ũj = uj , Λ̃j(1) = λ2
j ,

for all j ∈ N. Note that, in the literature, problem (2.7) is known to be the classical
Navier problem, whereas problem (2.1), (2.3) is a more recent generalization (see
also [6, 18] and the references therein for a discussion on the physical meaning of
the problem). Analogously, when a = 1, the Kuttler–Sigillito problem (2.1), (2.4)
becomes {

∆2Ṽ = M̃(1)Ṽ , in Ω,
∂Ṽ
∂ν = ∂∆Ṽ

∂ν = 0, on ∂Ω.
(2.8)

Again, if Ω is only Lipschitz, the problem (2.8) may not be variationally charac-
terizable, but for Ω smooth enough we recover that the domain of the Neumann
Laplacian is precisely H2

ν (Ω) and then

Ṽj = vj , M̃j(1) = µ2
j ,

for all j ∈ N. We point out that problem (2.1), (2.4) has not been widely studied
yet, although it is appearing as an important problem in a number of different
situations (see e.g., [7, 26, 25]). We remark though that it was first stated as a
Steklov-type problem by Kuttler and Sigillito in [24].

On the other hand, the Neumann problem (2.1), (2.5) with a = 1 becomes
instead {

∆2V = M(1)V, in Ω,
∆V = ∂∆V

∂ν = 0, on ∂Ω,

so that the boundary conditions do not satisfy the complementing conditions (see
e.g., [18]), and in particular it has a kernel consisting of the harmonic functions
in H2(Ω), which is infinite dimensional when d ≥ 2. It was shown in [36] that
the remaining part of the spectrum consists of the eigenvalues of the biharmonic
Dirichlet problem (2.1), (2.2).

The main results of the present paper are inequalities related to the eigenvalues
of problem (1.1), both for the eigenvalues and for Riesz means R1(z). To this end,
we first provide inequalities between the eigenvalues of the different problems (see
Theorem 3.1).

Theorem A. The following inequalities hold.
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• For any j ∈ N, and for any a ∈ (−(d− 1)−1, 1),

Mj ≤ M̃j , Λ̃j ≤ Λj .

• For any j ∈ N,
λ2
j ≤ Λj .

• If in addition Ω is convex, then for any j ∈ N and a ∈ (−(d− 1)−1, 1),

Mj(a) ≤ µ2
j .

In order to understand when our bounds are sharp with respect to the semi-
classical asymptotic expansion, we first compute it for all the boundary conditions
(see Theorem 3.4). We remark that, while our assumptions are enough to ensure
the validity of the first term in expansions (2.9) and (2.10) (see e.g., [12] and the
references therein), the derivation of the second term requires additional regularity
on the domain Ω. In particular, the domain has to be at least piecewise C∞ and
the so-called nonperiodicity and nonblocking conditions have to be satisfied. We
refer to [37, Chapter 1] for the description of all the necessary smoothness con-
ditions, in particular to [37, Definition 1.3.7] for the definition of nonperiodicity
condition and to [37, Definition 1.3.22] for the definition of nonblocking condition.
Roughly speaking, the nonperiodicity condition states that the periodic trajec-
tories of the billiard flow Gt : T ∗Ω → T ∗Ω form a set of zero measure in T ∗Ω,
the unit cotangent bundle; the nonblocking conditions states that the dead-end
trajectories (i.e., trajectories which experience an infinite number of reflections in
a finite time) of the billiard flow form a set of zero measure as well.

Theorem B. Let Ω be piecewise C∞ satisfying the nonperiodicity and nonblock-
ing conditions, and let d ≥ 2. We have

N(z) = (2π)−dBd|Ω|z
d
4 + c1z

d−1
4 + o(z

d−1
4 ), (2.9)

where the geometrical constant c1 involving the measure of the boundary is given
by (3.14)–(3.17). In particular,

R1(z) =
4

d+ 4
(2π)−dBd|Ω|z

d+4
4 +

4c1
d+ 3

z
d+3

4 + o(z
d+3

4 ). (2.10)

Our third main result concerns lower bounds for Riesz means of Dirichlet
eigenvalues (see Theorem 4.1).

Theorem C. Let Ω be a domain in Rd of finite measure. Then for any φ ∈
H2

0 (Ω) ∩ L∞(Ω) and z > 0 the following inequality holds

∑
j

(z − Λj)+ ‖φUj‖
2
2 ≥

4

d+ 4
(2π)−dBd‖φ‖22

(
z − ‖∆φ‖

2
2

‖φ‖22

) d
4 +1

+

− 2(2π)−dBd‖∇φ‖22
(
z − ‖∆φ‖

2
2

‖φ‖22

) d
4 + 1

2

+

.
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Moreover, for all positive integers k

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

ρ(φ)−
4
d + 2

‖∇φ‖22
‖φ‖22

Cd

(
k

|Ω|

) 2
d

ρ(φ)−
2
d +
‖∆φ‖22
‖φ‖22

,

for ρ(φ) < 1, where ρ(φ) is defined in (4.4).

Theorem C implies two-terms, asymptotically sharp lower bounds for Riesz
means compatible with the two-term asymptotics given by Theorem B (see The-
orem 4.5). Analogous results hold for the Navier (2.1),(2.3), and the Kuttler–
Sigillito (2.1),(2.4) problems.

These results are obtained by an extensive application of the averaged varia-
tional principle (AVP), that we recall here in the formulation available in [11].

Lemma 2.1. Consider a self-adjoint operator H on a Hilbert space H, the spec-
trum of which is discrete at least in its lower portion, so that −∞ < ω0 ≤ ω1 ≤
· · · . The corresponding orthonormalized eigenvectors are denoted {ψ(j)}. The
closed quadratic form corresponding to H is denoted Q(ϕ,ϕ) for vectors ϕ in the
quadratic-form domain Q(H) ⊂ H. Let fp ∈ Q(H) be a family of vectors indexed
by a variable p ranging over a measure space (M,Σ, σ). Suppose that M0 is a
subset of M. Then for any z ∈ R,∑

j

(z − ωj)+

∫
M

∣∣∣〈ψ(j), fp〉
∣∣∣2 dσ ≥ ∫

M0

(
z‖fp‖2 −Q(fp, fp)

)
dσ, (2.11)

provided that the integrals converge.

3. Comparison of eigenvalues and eigenvalue asymptotics

In this section we provide some new results concerning the eigenvalues of problems
(2.1)–(2.5). First, we provide inequalities between eigenvalues of the problems we
introduced in the previous section. Then, we complete the section by computing
their asymptotics up to the second term.

3.1. Comparison of eigenvalues

We start with the following

Theorem 3.1. Let Ω be a bounded domain in Rd with Lipschitz boundary. Then
the following inequalities hold.

• For any j ∈ N, and for any a ∈ (−(d− 1)−1, 1),

Mj ≤ M̃j , Λ̃j ≤ Λj . (3.1)

• For any j ∈ N,
λ2
j ≤ Λj . (3.2)
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• If in addition Ω is convex, then for any j ∈ N and a ∈ (−(d− 1)−1, 1),

Mj(a) ≤ µ2
j . (3.3)

We observe that all the quantities in (3.1)–(3.3) have the same Weyl limit, while
the respective second terms already agree with these inequalities, see Theorem 3.4
below.

We also remark that inequality (3.2) holds under the milder assumption that
Ω is an open set of finite measure. On the other hand, if the boundary ∂Ω is
assumed to be at least C2, then it becomes a strict inequality. For a proof of this
fact we refer to [34, Theorem 1.1], where the author also provides a good survey
on this type of inequalities.

Proof. Inequality (3.1) follows directly from the respective minimax characteriza-
tions. As for inequality (3.2), we start with the Cauchy–Schwarz inequality(∫

Ω

|∇u|2
)2

≤
(∫

Ω

u2

)(∫
Ω

(∆u)2

)
,

which is valid for all u ∈ H2(Ω) ∩H1
0 (Ω). From this, we get(∫

Ω
|∇u|2∫
Ω
u2

)2

≤
∫

Ω
(∆u)2∫
Ω
u2

for all u ∈ H2(Ω) ∩H1
0 (Ω), in particular for u ∈ H2

0 (Ω). From this inequality, if
we choose a linear, finite dimensional subspace V ⊂ H2

0 (Ω), we get

max
u∈V \{0}

(∫
Ω
|∇u|2∫
Ω
u2

)2

≤ max
u∈V \{0}

∫
Ω

(∆u)2∫
Ω
u2

,

irrespective of the choice of V . At this point, we may think of this as an inequality
between two functions of V :

F (V ) = max
u∈V \{0}

(∫
Ω
|∇u|2∫
Ω
u2

)2

, G(V ) = max
u∈V \{0}

∫
Ω

(∆u)2∫
Ω
u2

,

and
F (V ) ≤ G(V ),

where V varies among all the finite dimensional subspaces of H2
0 (Ω). We may as

well fix a natural j and restrict our attention to subspaces of dimension j, which
is a subset of all the finite dimensional subspaces. So, it makes sense to consider
the infimum, namely

inf
V⊂H2

0 (Ω)
dim V=j

F (V ) ≤ inf
V⊂H2

0 (Ω)
dim V=j

G(V ),
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the inequality holding since it holds pointwise. If we now analyze both sides of
the inequality, we recover that

inf
V⊂H2

0 (Ω)
dim V=j

G(V ) = min
V⊂H2

0 (Ω)
dim V=j

max
u∈V \{0}

∫
Ω

(∆u)2∫
Ω
u2

= Λj ,

since the min-max is always achieved by the corresponding eigenfunctions (i.e.,
the infimum is achieved choosing V as the space generated by the first j eigen-
functions), while

inf
V⊂H2

0 (Ω)
dim V=j

F (V ) = inf
V⊂H2

0 (Ω)
dim V=j

max
u∈V \{0}

(∫
Ω
|∇u|2∫
Ω
u2

)2

.

Now note that, if we consider sets A ⊂ R+ (meaning that if α ∈ A then α ≥ 0),
then

inf
A
α2 = (inf

A
α)2, min

A
α2 = (min

A
α)2, sup

A
α2 = (sup

A
α)2, max

A
α2 = (max

A
α)2,

since f(x) = x2 is an increasing continuous function of the positive real numbers
onto themselves. Hence

inf
V⊂H2

0 (Ω)
dim V=j

max
u∈V \{0}

(∫
Ω
|∇u|2∫
Ω
u2

)2

=

 inf
V⊂H2

0 (Ω)
dim V=j

max
u∈V \{0}

∫
Ω
|∇u|2∫
Ω
u2


2

.

The final step is increasing the space on which the infimum is taken:

inf
V⊂H2

0 (Ω)
dim V=j

max
u∈V \{0}

∫
Ω
|∇u|2∫
Ω
u2

≥ inf
V⊂H1

0 (Ω)
dim V=j

max
u∈V \{0}

∫
Ω
|∇u|2∫
Ω
u2

= λj .

This proves (3.2).
Regarding (3.3), we assume first that Ω is smooth (C∞). We note that for any

smooth function u on Ω we have∫
Ω

|D2u|2dx =

∫
Ω

(∆u)2dx+
1

2

∫
∂Ω

∂

∂ν
(|∇u|2)dσ −

∫
∂Ω

∆u
∂u

∂ν
dσ, (3.4)

where dσ the measure element of ∂Ω. Equality (3.4) follows from the pointwise
identity |D2u|2 = 1

2∆(|∇u|2)−∇∆u · ∇u. Now we note that, on ∂Ω,

1

2

∂

∂ν
|∇u|2 = ∇∂u

∂ν
· ∇u−∇uT ·Dν · ∇u

= ∇∂Ω
∂u

∂ν
· ∇∂Ωu+

∂2u

∂ν2

∂u

∂ν
− II(∇∂Ωu,∇∂Ωu). (3.5)
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Here II(·, ·) denotes the second fundamental form on ∂Ω (in fact II = Dν). The
quadratic form II(·, ·) defined on the tangent space to ∂Ω is symmetric and its
eigenvalues are the principal curvatures of ∂Ω.

Assume now that u is such that ∂u
∂ν = 0 on ∂Ω and that II ≥ 0 in the sense of

quadratic forms (this holds e.g., for smooth convex domains). Then ∇u = ∇∂Ωu
on ∂Ω (the gradient of u restricted on the boundary belongs to the tangent space
to the boundary). This fact combined with (3.4) and (3.5) implies that for such u
and Ω ∫

Ω

|D2u|2dx ≤
∫

Ω

(∆u)2dx.

Since we assumed Ω smooth, then all eigenfunctions of the Neumann Laplacian
belong to C∞(Ω) ∩ H2(Ω) and satisfy ∂u

∂ν = 0 on ∂Ω. Hence, taking the space
generated by the first j eigenfunctions of the Neumann Laplacian as j-dimensional
subspace of H2(Ω) of test functions into the min-max formula for Mj(a), we obtain
(3.3), which is then proved in the case of a smooth convex domain. Since any
convex domain can be approximated uniformly by smooth convex domains, we
have pointwise convergence of eigenvalues (see e.g., [3]). Therefore, we deduce the
validity of (3.3) for any convex set.

3.2. Semiclassical asymptotics

In this section, the domain Ω ⊂ Rd will always be a bounded domain, smooth
enough in order to apply the arguments in [37, 39] (see Theorem B). In particular,
smooth convex sets and piecewise smooth domains with non positive conormal
curvature (such as polyhedra) are admissible. Moreover, the dimension d will
always be such that d ≥ 2.

We parametrize Ω locally in such a way that Ω = {(x1, . . . , xd) : xd > 0} and
∂Ω = {(x1, . . . , xd−1, 0)}. We also denote by (x, ξ) the elements of the cotangent
bundle T ∗Ω, ξ = (ξ1, . . . , ξd) being the coordinates on the fiber T ∗xΩ. Setting
x′ = (x1, . . . , xd−1) and ξ′ = (ξ1, . . . , ξd−1), we have that (x′, ξ′) are coordinates
for the cotangent bundle T ∗∂Ω.

The operator ∆2 is represented by the symbol

A(ξ) = |ξ|4 =

(
d∑
k=1

ξ2
k

)2

,

and the operator can be recovered from the symbol by substituting ξk with Dk =
−i ∂∂xk . Note that this operator coincides with its principal part, i.e., the symbol
only contains monomials of the same degree.

Regarding the boundary operators, we recall that, because of the parametriza-
tion we have chosen, in this case the normal derivative is

∂

∂ν
= − ∂

∂xk
(on ∂Ω).

Let us now discuss the various boundary conditions one by one.
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• B0(D)u = u. Its symbol is B0(ξ) = 1.

• B1(D)u = ∂u
∂ν . Its symbol is B1(ξ) = −iξd.

• B2(D)u = (1 − a)∂
2u
∂ν2 + a∆u. Its symbol is B2(ξ) = −ξ2

d − iaKξd − a|ξ′|2
(where K is the sum of the principal curvatures). Note that its principal
part is B̃2(ξ) = −ξ2

d − a|ξ′|2.

• B3(D)u = ∂∆u
∂ν + (1− a)div∂Ω

(
∂
∂ν∇∂Ωu

)
. Writing the symbol for this oper-

ator is quite complicated, but using the equality

div∂Ω

(
∂

∂ν
∇∂Ωu

)
= ∆∂Ω

∂u

∂ν
− div∂ν(∇∂Ωu ·Dν)

we can easily write the principal part B̃3(ξ) = iξ3
d + i(2− a)ξd|ξ′|2.

Now we introduce an auxiliary problem related with problems (2.1)–(2.5):{
A(ξ′, Dd)v(xd) = ηv(xd), xd ∈ (0,+∞),

B̃j(ξ
′, Dd)v|xd=0 = 0,

(3.6)

where the boundary conditions will be: j = 0, 1 for the Dirichlet case,

v(0) = v′(0) = 0,

j = 0, 2 for the Navier case,

v(0) = v′′(0) = 0,

j = 1, 3 for the Kuttler–Sigillito case,

v′(0) = v′′′(0) = 0,

or j = 2, 3 for the Neumann case,

v′′(0)− a|ξ′|2v(0) = v′′′(0)− (2− a)|ξ′|2v′(0) = 0.

Note that problem (3.6) depends on ξ′ ∈ Rd−1.
We are interested in the spectrum of problem (3.6). We start by observing

that there are no eigenvalues, with the sole exception of the Neumann case with
a 6= 0, where there is a simple eigenvalue

η = η(ξ′) = f(a)|ξ′|4,

where
f(a) = 4a− 1− 3a2 + 2(1− a)

√
2a2 − 2a+ 1. (3.7)

Notice that 0 < f(a) ≤ 1 for a ∈ (−(d − 1)−1, 1), with f(a) = 1 only for a = 0.
We remark that the case a = 0 does not have eigenvalues, hence neither is |ξ′|4
(differently from the case a 6= 0).
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In addition, problem (3.6) is known to have as essential spectrum the strip
[|ξ′|4,+∞[ (see e.g., [37, Appendix A]). Moreover, the essential spectrum has only
one threshold with one double root. A threshold ηst is a point in the essential
spectrum for which the equation

A(ξ′, ζ) = ηst

has a multiple real root. It is clear that, in our case, the only threshold is ηst =
|ξ′|4. At this point we search for generalized eigenfunctions in the strip ]ηst,+∞[.
To do so, we have first to solve the equation

A(ξ′, ζ) = η, (3.8)

for any η ∈]ηst,+∞[. Equation (3.8) always has four roots:

ζ−1 = −
√√

η − |ξ′|2, ζ+
1 =

√√
η − |ξ′|2, ζ−2

= −i
√√

η + |ξ′|2, ζ+
2 = i

√√
η + |ξ′|2.

We then search for generalized eigenfunctions (associated with η) of the form

v(xd) = a−1 e
iζ−1 xd + a+

1 e
iζ+

1 xd + a+
2 e

iζ+
2 xd . (3.9)

Note that these generalized eigenfunctions are not proper eigenfunctions (because
they are not L2-functions), nevertheless they are bounded solutions. We search for

generalized eigenfunctions because we need to compute the quantity arg
(
i
a+

1

a−1

)
,

where arg is the standard complex argument of a number.

• Dirichlet problem. Through the boundary conditions we get{
a−1 + a+

1 + a+
2 = 0,

ζ−1 a
−
1 + ζ+

1 a
+
1 + ζ+

2 a
+
2 = 0,

hence
a+

1

a−1
= −ζ

−
1 − ζ

+
2

ζ+
1 − ζ

+
2

= −|ξ
′|2
√
η

+ i

√
η − |ξ′|4
√
η

,

from which we obtain

arg

(
i
a+

1

a−1

)
= arctan

|ξ′|2√
η − |ξ′|4

− π + 2kπ = arcsin
|ξ′|2
√
η
− π + 2kπ, (3.10)

for some k ∈ Z.

• Navier problem. Through the boundary conditions we get{
a−1 + a+

1 + a+
2 = 0,

(ζ−1 )2a−1 + (ζ+
1 )2a+

1 + (ζ+
2 )2a+

2 = 0,
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that yields a+
1 /a

−
1 = −1, hence

arg

(
i
a+

1

a−1

)
= −π

2
+ 2kπ, (3.11)

for some k ∈ Z.

• Kuttler–Sigillito problem. Through the boundary conditions we get{
ζ−1 a

−
1 + ζ+

1 a
+
1 + ζ+

2 a
+
2 = 0,

(ζ−1 )3a−1 + (ζ+
1 )3a+

1 + (ζ+
2 )3a+

2 = 0,

that yields a+
1 /a

−
1 = 1, hence

arg

(
i
a+

1

a−1

)
=
π

2
+ 2kπ, (3.12)

for some k ∈ Z.

• Neumann problem. Through the boundary conditions we get{
−(ζ−1 )2a−1 − (ζ+

1 )2a+
1 − (ζ+

2 )2a+
2 − a|ξ′|2(a−1 + a+

1 + a+
2 ) = 0,

−i(ζ−1 )3a−1 − i(ζ
+
1 )3a+

1 − i(ζ
+
2 )3a+

2 − i(2− a)|ξ′|2(ζ−1 a
−
1 + ζ+

1 a
+
1 + ζ+

2 a
+
2 ) = 0,

that yields

ζ+
2

(
(ζ+

1 )2 + a|ξ′|2
) (

(ζ+
2 )2 + (2− a)|ξ′|2

)(a+
1

a−1
+ 1

)
= ζ+

1

(
(ζ+

2 )2 + a|ξ′|2
) (

(ζ+
1 )2 + (2− a)|ξ′|2

)(a+
1

a−1
− 1

)
.

Therefore
a+

1

a−1
=
A+ iB

A− iB
=

(A+ iB)2

A2 +B2
,

where

A =
√√

η − |ξ′|2
(√
η + (1− a)|ξ′|2

)2
, B =

√√
η + |ξ′|2

(√
η − (1− a)|ξ′|2

)2
.

In particular

arg

(
i
a+

1

a−1

)
= arg (i) + 2arg (A+ iB) = −π

2
− 2 arctan

A

B
+ 2kπ, (3.13)

for some k ∈ Z.

We now recall the following theorem ([37, Theorem 1.6.1]).
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Theorem 3.2. Let Ω be piecewise C∞ and satisfying the nonperiodicity and non-
blocking conditions, and let d ≥ 2. Let N(z) be the counting function associated
with the biharmonic operator with either Dirichlet, Navier, or Neumann boundary
conditions, i.e., the problem given by equation (2.1) coupled with (2.2), (2.3), or
(2.5), respectively. Then, for z → +∞ we have

N(z) = c0z
d
4 + c1z

d−1
4 + o

(
z
d−1

4

)
,

where

c0 = (2π)−d
∫
|ξ|4≤1

dxdξ, c1 = (2π)1−d
∫
T∗∂Ω

shift+(1, ξ′)dx′dξ′.

Here shift+ is the shift function associated with problem (3.6), and there exists an
analytic branch arg0 of the argument arg such that we have

shift+(η, ξ′) = N+(η, ξ′) +
arg0det(iR(η, ξ′))

2π
,

where N+ is the counting function of problem (3.6), and R is the reflection matrix
associated with problem (3.6), in particular

det(iR(η, ξ′)) =

{
0, if η ≤ ηst,
i
a+

1

a−1
, otherwise,

with a±1 defined in (3.9).
In addition, the function arg0 is a suitable branch of the complex argument

satisfying the following condition

lim
η→|ξ′|4

∣∣∣∣arg0

(
i
a+

1

a−1

)∣∣∣∣ =
π

2
.

We stress the fact that the function arg0 depends on the particular problem
that is considered, and not a function chosen once and for all.

Corollary 3.3. Let Ω be piecewise C∞ and satisfying the nonperiodicity and non-
blocking conditions, and let d ≥ 2. If ωj is the j-th eigenvalue of the biharmonic
operator with either Dirichlet, Navier, or Neumann boundary conditions, then we
have

ωj =

(
j

c0

) 4
d

− 4c1

dc
d+3
d

0

j
3
d + o

(
j

3
d

)
,

or equivalently

ω
1
4
j =

(
j

c0

) 1
d

− c1
dc0

+ o(1),

as j → +∞.
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Now we compute the coefficients c0, c1. As for c0, it depends only on the
equation and therefore will be the same for both Dirichlet, Navier, and Neumann
boundary conditions, and it is

c0 = (2π)−d
∫
|ξ|4≤1

∫
Ω

dxdξ = (2π)−dBd|Ω|.

As for c1, its definition sensitively depends on the boundary conditions, so we split
the discussion.

• Dirichlet boundary conditions. We have seen that problem (3.6) has no
eigenvalue, and it is easy to check that the function arg0 is given by formula
(3.10) with k = 0. Hence

c1 = (2π)−d|∂Ω|

(∫
|ξ′|<1

arcsin |ξ′|2dξ′ − πBd−1

)

= −Bd−1|∂Ω|
4(2π)d−1

(
1 +

Γ
(
d+1

4

)
√
πΓ
(
d+3

4

)) . (3.14)

• Navier boundary conditions. We have seen that problem (3.6) has no
eigenvalue, and it is easy to check that the function arg0 is given by formula
(3.11) with k = 0. Hence

c1 = (2π)1−d|∂Ω|
∫
|ξ′|<1

(
−1

4

)
dξ′ = −Bd−1|∂Ω|

4(2π)d−1
. (3.15)

• Kuttler–Sigillito boundary conditions. We have seen that problem
(3.6) has no eigenvalue, and it is easy to check that the function arg0 is
given by formula (3.12) with k = 0. Hence

c1 = (2π)1−d|∂Ω|
∫
|ξ′|<1

1

4
dξ′ =

Bd−1|∂Ω|
4(2π)d−1

. (3.16)

• Neumann boundary conditions. Let us start with the case a 6= 0. Here
we have seen that problem (3.6) has a simple eigenvalue

η = f(a)|ξ′|4,

so that

N+(λ, ξ′) =

{
1, if |ξ′| < f(a)−

1
4 ,

0, otherwise.

It is also easily checked that the function arg0 is given by formula (3.13) with
k = 0, therefore

c1 =
Bd−1|∂Ω|
4(2π)d−1

(
4f(a)

1−d
4 − 1− 4

d− 1

π

∫ 1

0

td−2 arctan g(t, a)dt

)
, (3.17)
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where

g(t, a) =

√
1− t2

(
1 + (1− a)t2

)2
√

1 + t2 (1− (1− a)t2)
2 . (3.18)

If instead we consider the case a = 0, we recall that there are no eigenvalues,
however now the function arg0 is given by formula (3.13) but with k = 1, so
that here

c1 =
Bd−1|∂Ω|
4(2π)d−1

(
3− 4

d− 1

π

∫ 1

0

td−2 arctan g(t, 0)dt

)
,

and in particular, as f(0) = 1, we have that formula (3.17) still holds.

We observe that, by using the equality

arctanx+ arctan
1

x
=
π

2
, ∀x > 0,

as g(t, a) > 0 for all t ∈ (0, 1) and for all a, we obtain the equivalent formula

c1 =
Bd−1|∂Ω|
4(2π)d−1

(
4f(a)

1−d
4 − 3 + 4

d− 1

π

∫ 1

0

td−2 arctan(g(t, a)−1)dt

)
.

Summing up, we have the following

Theorem 3.4. Let Ω be piecewise C∞ and satisfying the nonperiodicity and

nonblocking conditions, and let d ≥ 2. Let Cd = (2π)2B
− 2
d

d . For any a ∈
(−(d− 1)−1, 1), the following expansions hold:

Λj = C2
d

(
j

|Ω|

) 4
d

+
C2
dBd−1

dB
1− 1

d

d

(
1 +

Γ
(
d+1

4

)
√
πΓ
(
d+3

4

)) |∂Ω|
|Ω|

(
j

|Ω|

) 3
d

+ o
(
j

3
d

)
, (3.19)

Λ̃j(a) = C2
d

(
j

|Ω|

) 4
d

+
C2
dBd−1

dB
1− 1

d

d

|∂Ω|
|Ω|

(
j

|Ω|

) 3
d

+ o
(
j

3
d

)
, (3.20)

M̃j(a) = C2
d

(
j

|Ω|

) 4
d

− C2
dBd−1

dB
1− 1

d

d

|∂Ω|
|Ω|

(
j

|Ω|

) 3
d

+ o
(
j

3
d

)
, (3.21)

and

Mj(a) = C2
d

(
j

|Ω|

) 4
d

− C
2
dBd−1

dB
1− 1

d
d

(
4f(a)

1−d
4 − 1− 4

d− 1

π

∫ 1

0

td−2 arctan g(t, a)dt

)
|∂Ω|
|Ω|

(
j

|Ω|

) 3
d

+o
(
j

3
d

)
,

as j →∞, for any a ∈ (−(d−1)−1, 1), where f is defined in (3.7) and g is defined
in (3.18).
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We conclude this discussion with a few remarks.

Remark 3.5. It is interesting to see that, contrary to what happens with the
Laplacian, in the case of the biharmonic operator the quantity |c1| is not the same
for Dirichlet and Neumann eigenvalues. In fact, this is the case even for a = 0.
In addition, the dependence on the dimension is even stronger, and it is actually
worth noticing that, as the dimension grows, the asymptotics of (the square root)
of the eigenvalues of the Dirichlet Bilaplacian converge to that of the eigenvalues
of the Dirichlet Laplacian, because

lim
d→∞

1 +
Γ
(
d+1

4

)
√
πΓ
(
d+3

4

) = 1,

and hence the inequality
λj ≤

√
Λj

is, in a sense, “squeezing” towards an equality, asymptotically in j and in d. On
the other hand, the Dominated Convergence Theorem tells us that

lim
d→∞

4
d− 1

π

∫ 1

0

td−2 arctan(g(t, a)−1)dt = 0

for all a ∈ ((d− 1)−1, 1). However,

lim
d→∞

f(a)
1−d

4 =

{
1, a = 0,
+∞, otherwise,

telling us that the asymptotics of (the square root) of the Neumann Bilaplacian
eigenvalues converge to that of the Neumann Laplacian eigenvalues only for a = 0,
while in the other cases the asymptotic expansions blow up. This can be inter-
preted as the fact that, when the dimension increases, the control of the Hessian
matrix on the Laplacian (expressed by the Poisson ratio in the quadratic form
(2.6)) weakens significantly, making the asymptotics blow up.

Remark 3.6. We observe that, if Ω satisfies the uniform outer ball condition (see
[1, 18]), then the expansion (3.20) holds also for a = 1. The same remark applies
to (3.21). On the other hand, even though the Neumann problem (2.1), (2.5) does
not satisfy the complementing condition (see [18]) when a = 1 and the operator
does not have compact resolvent, and therefore all the discussion in this section
does not apply, it is nevertheless interesting to see what happens to c1 as a→ 1−.
We observe that

−1− 4
d− 1

π

∫ 1

0

td−2 arctan g(t, a)dt

∣∣∣∣
a=1

= −1−
Γ
(
d+1

4

)
√
πΓ
(
d+3

4

) ,
while

lim
a→1−

f(a)
1−d

4 = +∞.

This is coherent with what we know about the spectrum of this operator: apart
from an infinite dimensional kernel, the remaining part of the spectrum consists
of the eigenvalues of the Dirichlet Bilaplacian, see [36].
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Remark 3.7. It is striking that the asymptotics for the Navier and the Kuttler–
Sigillito problems are the same as those of the Dirichlet Laplacian and the Neu-
mann Laplacian, respectively. In particular, the dependence on the Poisson ratio is
not visible in those expansions, and the link with the respective Laplacian counter-
part becomes evident. However, apart from the case a = 1 where the identification
becomes immediate, it is not clear at all what are the relations between the re-
spective Laplacian and Bilaplacian eigenvalues.

4. The biharmonic Dirichlet operator

In this section we focus our attention to the biharmonic Dirichlet problem (2.1),
(2.2). In particular, the quadratic form (2.6) will be set into H2

0 (Ω). Through
all this section, Ω ⊂ Rd will be a domain with finite Lebesgue measure, unless
otherwise specified. In fact, since the embedding H1

0 (Ω) ⊂ L2(Ω) is compact under
the sole assumption that the measure of Ω is finite, it is standard to see that the
spectrum is discrete and consists of an ordered sequence of positive eigenvalues
tending to infinity.

Note that the quadratic form (2.6) is now equal to

Q(u, v) =

∫
Ω

D2u : D2v =

∫
Ω

∆u∆v,

so the dependence upon the Poisson ratio disappears.

We also observe here that, directly from (3.19), we have the following asymp-
totic law for averages of eigenvalues, holding if we require suitable assumptions on
Ω (see Theorem 3.4)

1

k

k∑
j=1

Λj =
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
d

d+ 3

C2
dBd−1

dB
1− 1

d

d

(
1 +

Γ
(
d+1

4

)
√
πΓ
(
d+3

4

)) |∂Ω|
|Ω|

(
k

|Ω|

) 3
d

+ o
(
k

3
d

) (4.1)

as k → +∞, where Cd = (2π)2B
− 2
d

d .

4.1. Lower bounds for Riesz means

In this section we will apply the averaged variational principle to obtain lower
bounds for Riesz means (respectively, upper bounds for averages) of eigenvalues
of ∆2

D on Ω.

Applying the AVP (2.11) with test functions fp(x) = (2π)−d/2eip·xφ(x), with
φ(x) ∈ H2

0 (Ω) ∩ L∞(Ω), we obtain the following
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Theorem 4.1. Let Ω be a domain in Rd of finite measure. For any φ ∈ H2
0 (Ω)∩

L∞(Ω) and z > 0 the following inequality holds

∑
j≥1

(z − Λj)+ ‖φUj‖
2
2 ≥

4

d+ 4
(2π)−dBd‖φ‖22

(
z − ‖∆φ‖

2
2

‖φ‖22

) d
4 +1

+

− 2(2π)−dBd‖∇φ‖22
(
z − ‖∆φ‖

2
2

‖φ‖22

) d
4 + 1

2

+

. (4.2)

Moreover, for all positive integers k

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

ρ(φ)−
4
d + 2

‖∇φ‖22
‖φ‖22

Cd

(
k

|Ω|

) 2
d

ρ(φ)−
2
d +
‖∆φ‖22
‖φ‖22

,

(4.3)
for ρ(φ) < 1, where

ρ(φ) =
||φ||22

|Ω| · ||φ||2∞
. (4.4)

Proof. We take in (2.11) trial functions of the form fp = (2π)−d/2eip·xφ(x) with
φ ∈ H2

0 (Ω) ∩ L∞(Ω) real valued. After averaging over p ∈ Rd and using the
unitarity of the Fourier transform we get, for any R > 0,∑
j≥1

(z − Λj)+

∫
Ω

φ2(x)U2
j (x)dx ≥ (2π)−d

∫
|p|≤R

(
z‖φ‖22 −

∫
Ω

∣∣∆(φeip·x)
∣∣2 dx) dp.

(4.5)
Now we note that∫

Ω

∣∣∆(φeip·x)
∣∣2 =

∫
Ω

∣∣∆φ− |p|2φ+ 2ip · ∇φ
∣∣2 dx

=

∫
Ω

(∆φ− |p|2φ)2 + 4 |p · ∇φ|2 dx

=

∫
Ω

(∆φ)2 + |p|4φ2 − 2|p|2φ∆φ+ 4 |p · ∇φ|2 dx

=

∫
Ω

(∆φ)2 + |p|4φ2 + 2|p|2|∇φ|2 + 4 |p · ∇φ|2 dx,

which implies∑
j≥1

(z − Λj)+

∫
Ω

φ2(x)U2
j (x)dx

≥ (2π)−d
∫
|p|≤R

(
(z − |p|4)‖φ‖22 − 2|p|2‖∇φ‖22 − ‖∆φ‖22 − 4

∫
Ω

|p · ∇φ|2dx2

)
dp

= (2π)−dBd‖φ‖22
((

z − ‖∆φ‖
2
2

‖φ‖22

)
Rd − d

d+ 4
Rd+4 − 2

‖∇φ‖22
‖φ‖22

Rd+2

)
. (4.6)
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Choosing

R4 =

(
z − ‖∆φ‖

2
2

‖φ‖22

)
+

,

we obtain (4.2).

Now we can consider (4.5) with the evaluation z = Λk+1, so that the sum at
the left-hand side is taken over the first k positive integers. Hence, as in (4.6), we
get

‖φ‖2∞
k∑
j=1

(Λk+1 − Λj) ≥
k∑
j=1

(Λk+1 − Λj)

∫
Ω

φ2(x)U2
j (x)dx

≥ (2π)−d
∫
|p|≤R

(
(Λk+1 − |p|4)‖φ‖22 − 2|p|2‖∇φ‖22 − ‖∆φ‖22 − 4

∫
Ω

|p · ∇φ|2dx
)
dp

= (2π)−dBd‖φ‖22
((

Λk+1 −
‖∆φ‖22
‖φ‖22

)
Rd − d

d+ 4
Rd+4 − 2

‖∇φ‖22
‖φ‖22

Rd+2

)
, (4.7)

for any R > 0, where the first inequality follows from
∫

Ω
φ2(x)U2

j (x)dx ≤ ‖φ‖2∞.
We choose now

R4 = C2
d

(
k

|Ω|

) 4
d

ρ(φ)−
4
d .

Standard computations show that with this choice inequality (4.7) implies (4.3).

Remark 4.2. The right side of inequality (4.3) provides a good relation between
the upper bound and the semiclassical behaviour of the average of the first k
eigenvalues, which is known to be a lower bound for the average, see [30] (see also
[4, 33]).

As a corollary, we have a lower bound for the partition function (the trace of
the heat kernel).

Corollary 4.3. For any φ ∈ H2
0 (Ω) ∩ L∞(Ω) and t > 0,

∞∑
j=1

e−Λjt‖φUj‖22 ≥
4

d+ 4
(2π)−dBdΓ

(
2 +

d

4

)
‖φ‖22e

− ||∆φ||
2
2

||φ||22
t
t−

d
4

− 2(2π)−dBdΓ

(
3

2
+
d

4

)
‖∇φ‖22e

− ||∆φ||
2
2

||φ||22
t
t

1
2−

d
4 . (4.8)
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Moreover,

∞∑
j=1

e−Λjt ≥ 4

d+ 4
(2π)−dBdΓ

(
2 +

d

4

)
t−

d
4 |Ω|

− 4

d+ 4
(2π)−dBdΓ

(
2 +

d

4

)
t−

d
4

(
t‖∆φ‖22 + |Ω|‖φ‖2∞ − ‖φ‖22

‖φ‖2∞

)
− 2(2π)−dBdΓ

(
3

2
+
d

4

)
‖∇φ‖22
‖φ‖22

t
1
2−

d
4 .

(4.9)

Proof. Laplace transforming (4.2) yields inequality (4.8) for all t > 0. In view of
the semiclassical expansion, we are interested in bounds for small t and therefore
we apply the inequality 1− x ≤ e−x ≤ 1 for all x ≥ 0 to (4.8) and the inequality
‖φUj‖22 ≤ ‖φ‖2∞ and we get (4.9).

We prove now more explicit bounds presenting a first term which is sharp and
a second term of the correct order in k with respect to (4.1). As we shall see, the
more regular the domain Ω is, the more information is contained in the bounds.
We note that formula (4.3) with φ = 1Ω is a “reverse Berezin–Li–Yau inequality”
for the biharmonic operator. Clearly, such an inequality does not hold and in fact
we cannot use φ ≡ 1 in (4.3). However, the form of inequality (4.3) suggests that
a suitable choice of φ is a function in H2

0 (Ω) ∩ L∞(Ω) which approximates the
constant function 1.

We construct now functions φh ∈ H2
0 (Ω) ∩ L∞(Ω) depending on h > 0 which

approximate 1Ω as h→ 0+ and with controlled L2(Ω)-norm of their gradients and
Laplacians. For x ∈ Rd we denote by δ(x) the function δ(x) := dist(x, ∂Ω). Let
h > 0 and let ωh ⊂ Ω be defined by

ωh := {x ∈ Ω : δ(x) ≤ h} .

We note that ωh = Ω whenever h ≥ rΩ, where rΩ denotes the inradius of Ω

rΩ := max
x∈Ω

min
y∈∂Ω

|x− y|.

We define a function φh ∈ H2
0 (Ω) such that φh ≡ 1 in Ω \ ωh and 0 ≤ φh ≤ 1

on Ω as follows. Let f : [0,+∞[→ R be defined by

f(r) =

{
d2+6d+8

8Bd
(r2 − 1)2, if r ∈ [0, 1[,

0, if r ∈ [1,+∞[.

By construction f ∈ C1,1([0,+∞)), f ′(0) = 0, and f(r) > 0 on ]0, 1[.
Let now ηh : Rd → [0,+∞[ be defined by

ηh(x) :=
1

hd
f

(
|x|
h

)
.
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By construction ∫
Rd
ηh(x)dx = 1,

for all h > 0 and ηh is supported on B(0, h).
Let h < rΩ and consider 1h := 1Ω\ωh . We set

φh :=
(

1h
2
∗ ηh

2

)
|Ω. (4.10)

By construction, φh ∈ C1,1(Rd). Moreover, for any x ∈ Rd \ Ω,

φh(x) =

∫
Rd

1h
2
(y)ηh

2
(x− y)dy =

∫
B(x,h2 )

1h
2
(y)ηh

2
(x− y)dy = 0.

In the same way one has that, for any x ∈ Rd \ Ω,

∇φh(x) = 0.

This means that φh is a continuously differentiable function on Ω with φh|∂Ω =
|∇φh|∂Ω| = 0 and with Lipschitz continuous first partial derivatives, in other
words, φh ∈ H2

0 (Ω).
Moreover, for any x ∈ Ω \ ωh, we have

φh(x) =

∫
B(x,h2 )

1h
2
(y)ηh

2
(x− y)dy =

∫
B(x,h2 )

ηh
2
(x− y)dy = 1,

and, for any x ∈ ωh,

0 ≤ φh(x) =

∫
B(x,h2 )

1h
2
(y)ηh

2
(x− y)dy ≤

∫
B(x,h2 )

ηh
2
(x− y)dy = 1.

We estimate now the L∞(Ω)-norm of∇φh and ∆φh (note that, since φh ∈ C1,1(Ω),
then ∆φh ∈ L∞(Ω)). We have

|∇φh|2 =

d∑
i=1

∣∣∣1h
2
∗ ∂xiηh

2

∣∣∣2 ≤ ‖1h
2
‖2∞

d∑
i=1

(∫
B(0,h2 )

|∂xiηh
2
|dx

)2

≤ ‖∇ηh
2
‖22
∣∣∣∣B(0,

h

2

)∣∣∣∣ =
8d(d+ 2)(d+ 4)

d+ 6
· 1

h2
,

hence

‖∇φh‖2∞ ≤
8d(d+ 2)(d+ 4)

d+ 6
· 1

h2
.

Moreover

|∆φh|2 =
∣∣∣1h

2
∗∆ηh

2

∣∣∣2
≤ ‖1h

2
‖2∞

(∫
B(0,h2 )

|∆ηh
2
|dx

)2

= 64d2(d+ 4)2

(
d

d+ 2

)d
· 1

h4
,
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hence

‖∆φh‖2∞ ≤ 64d2(d+ 4)2

(
d

d+ 2

)d
· 1

h4
.

We set

A2
d :=

8d(d+ 2)(d+ 4)

d+ 6
, Ã2

d := 64d2(d+ 4)2

(
d

d+ 2

)d
. (4.11)

We have proved the following

Lemma 4.4. Let Ω be a domain in Rd of finite measure. Let rΩ > 0 denote the
inradius of Ω. Then, for all h ∈]0, rΩ] there exists a function φh ∈ H2

0 (Ω)∩L∞(Ω)
such that

i) 0 ≤ φh(x) ≤ 1 for all x ∈ Ω;

ii) φh ≡ 1 on Ω \ ωh;

iii) ‖∇φh‖∞ ≤ Adh−1, with Ad depending only on d;

iv) ‖∆φh‖∞ ≤ Ãdh−2, with Ãd depending only on d.

We note that, once we are able to estimate the size of ωh, by choosing a suitable
h into (4.2), then inequalities (4.3) and (4.8) become asymptotically sharp. A
suitable choice will be h ∼ k−1/d in the case of sufficiently smooth domains. This
is made clear in the next theorem,which is stated for averages of eigenvalues only.
We remark though that analogous computations allow to prove related estimates
for Riesz means and the partition functions as well.

Theorem 4.5. Let Ω be a domain in Rd of finite measure.

i) For all positive integers k

1

k

k∑
j=1

Λj ≤
1

r4
Ω

(
d

d+ 4
C2
d (ad|Ω|)

4
d

(
k

|Ω|

) 4
d

+ 2Cd (bd|Ω|)
2
d

(
k

|Ω|

) 2
d

+ cd

)
,

(4.12)
where ad, bd, cd are constants which depend only on the dimension and are
given by (4.15).

ii) Let Ω be such that limh→0+
|ωh|
h = |∂Ω| <∞. Then, for k ≥ |Ω|

( √
dAd

2C
1/2
d rΩ

)d
,

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+Md
|∂Ω|
|Ω|

C
3
2

d

(
k

|Ω|

) 3
d

+R(k), (4.13)

where Md depends only on d and is given by (4.22). Here R(k) = o(k3/d)
as k → +∞, and it depends explicitly on k, d, |Ω|, |∂Ω| and |ωh(k)| with h(k)
given by (4.21).
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iii) If Ω is convex or if Ω is of class C2 and bounded, then ii) holds. Moreover
there exists C = C(d,Ω) > 0 such that (4.13) holds with

R(k) ≤ C
(
k

|Ω|

) 2
d

. (4.14)

Finally, there exists k0 which depends only on d and Ω such that, for all k ≥
k0, R(k) depends explicitly on k, d, |Ω|, |∂Ω| if Ω is convex and on k, d, |Ω|, |∂Ω|
and integrals of the mean curvature H of ∂Ω if Ω is of class C2.

Proof. We start by proving i). We construct a test function in H2
0 (Ω) supported

in a ball BrΩ of radius rΩ contained in Ω (by definition of rΩ such a ball exists).
Let then

ψrΩ(x) :=

(
|x|2

r2
Ω

− 1

)2

.

Explicit computations show that

‖ψrΩ‖22 =
384rdΩBd

(d+ 2)(d+ 4)(d+ 6)(d+ 8)
,

‖ψrΩ‖2∞ =1,

‖∇ψrΩ‖22
‖ψrΩ‖22

=
d(d+ 8)

3r2
Ω

,

‖∆ψrΩ‖22
‖ψrΩ‖22

=
(8 + d(d− 2))(d+ 6)(d+ 8)

6r4
Ω

.

We set

ad =
(d+ 2)(d+ 4)(d+ 6)(d+ 8)

384Bd
,

bd =ad

(
d(d+ 8)

3

) d
2

,

cd =
(8 + d(d− 2))(d+ 6)(d+ 8)

6
.

(4.15)

Formula (4.12) now follows from (4.3) with φ = ψrΩ and standard computations.
This proves point i).
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We prove now ii). From (4.3) it follows that, for d ≥ 4,

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

ρ(φ)−
4
d

+ 2
‖∇φ‖22
‖φ‖22

Cd

(
k

|Ω|

) 2
d

ρ(φ)−
2
d +
‖∆φ‖22
‖φ‖22

=
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
d

d+ 4
C2
d

(
k

|Ω|

) 4
d (

ρ(φ)−4/d − 1
)

+ 2
‖∇φ‖22
‖φ‖22

Cd

(
k

|Ω|

) 2
d

ρ(φ)−
2
d +
‖∆φ‖22
‖φ‖22

≤ d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
4

d+ 4
C2
d

(
k

|Ω|

) 4
d (
ρ(φ)−1 − 1

)
+ 2
‖∇φ‖22
‖φ‖22

Cd

(
k

|Ω|

) 2
d

ρ(φ)−
2
d +
‖∆φ‖22
‖φ‖22

=
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
4

d+ 4
C2
d

(
k

|Ω|

) 4
d
(
|Ω|‖φ‖2∞ − ‖φ‖22

‖φ‖22

)
+ 2
‖∇φ‖22
‖φ‖22

Cd

(
k

|Ω|

) 2
d
(
|Ω|‖φ‖2∞
‖φ‖22

) 2
d

+
‖∆φ‖22
‖φ‖22

,

(4.16)

where ρ(φ) is defined in (4.4). We have used Bernoulli’s inequality in the fifth line
of (4.16). If d = 2, 3, we use the following fact

ρ(φ)−4/d−1 = (ρ(φ)2−1+1)−2/d−1 ≤ 2

d
(ρ(φ)−2−1) =

2

d
(ρ(φ)−1+1)(ρ(φ)−1−1),

so that, for d = 2, 3 we have

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
2

d+ 4
C2
d

(
k

|Ω|

) 4
d
(
|Ω|‖φ‖2∞ + ‖φ‖22

‖φ‖22

)(
|Ω|‖φ‖2∞ − ‖φ‖22

‖φ‖22

)
+ 2
‖∇φ‖22
‖φ‖22

Cd

(
k

|Ω|

) 2
d
(
|Ω|‖φ‖2∞
‖φ‖22

) 2
d

+
‖∆φ‖22
‖φ‖22

.

(4.17)

For each positive integer k, we choose φ = φh defined by (4.10) into (4.16) and
(4.17). Thanks to Lemma 4.4 and to the fact that |Ω| − |ωh| ≤ ‖φh‖22 ≤ |Ω|, we
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have

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
4

d+ 4
C2
d

(
k

|Ω|

) 4
d
(

|ωh|
|Ω| − |ωh|

)

+ 2
A2
d|ωh|

h2(|Ω| − |ωh|)
Cd

(
k

|Ω|

) 2
d
(

|Ω|
|Ω| − |ωh|

) 2
d

+
Ã2
d|ωh|

h4(|Ω| − |ωh|)
. (4.18)

if d ≥ 4, and

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
2

d+ 4
C2
d

(
k

|Ω|

) 4
d
(

2|Ω|
|Ω| − |ωh|

)(
|ωh|

|Ω| − |ωh|

)

+ 2
A2
d|ωh|

h2(|Ω| − |ωh|)
Cd

(
k

|Ω|

) 2
d
(

|Ω|
|Ω| − |ωh|

) 2
d

+
Ã2
d|ωh|

h4(|Ω| − |ωh|)
, (4.19)

if d = 2, 3. In both cases, since limh→0+
|ωh|
h = |∂Ω|, we can write

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
4

d+ 4
C2
d

(
k

|Ω|

) 4
d
(
h|∂Ω|
|Ω|

)

+ 2
A2
d|∂Ω|
h|Ω|

Cd

(
k

|Ω|

) 2
d

+
Ã2
d|∂Ω|
h3|Ω|

+R(k, h), (4.20)

where R(k, h) is defined in (4.23) and the constants Ad, Ãd are as in (4.11). Here
we could optimize with respect to h and find the optimal h which is given by an

explicit dimensional constant times C
− 1

2

d

(
k
|Ω|

)− 1
d

. We set

h = h(k) =

√
d+ 4

4
AdC

− 1
2

d

(
k

|Ω|

)− 1
d

ε, (4.21)

so that inequality (4.20) becomes

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+

√
4

d+ 4
AdC

3
2

d

(
k

|Ω|

) 3
d |∂Ω|
|Ω|

(
ε+

2

ε
+

4

d+ 4

Ã2
d

A4
d

ε−3

)
+R(k, h(k)).

For simplicity we choose ε =
√

2 which optimizes the first two terms depending
on ε since the goal is not to get best constants here (already the constants Ad, Ãd

are not optimal). It follows that, for any k ≥ |Ω|A
d
d

rdΩ

(
d+4
2Cd

)d/2
(we need h ≤ rΩ),

we obtain

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+Md
|∂Ω|
|Ω|

C
3
2

d

(
k

|Ω|

) 3
d

+R(k, h(k)),
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where

Md = 8

(
d(d+ 2)

d+ 6

) 1
2

(
2 +

(d+ 6)2

(d+ 2)2(d+ 4)

(
d

d+ 2

)d)
. (4.22)

We also note that the remainder function R(k, h(k)) in (4.20) with h = h(k) given
by (4.21) is o(k3/d) as k → +∞. This concludes the proof of ii).

Now, let us pass to iii). It is known that limh→0+
|ωh|
h = |∂Ω| if Ω is Lipschitz

(see e.g., [2]). In particular this is true for convex sets (which are Lipschitz) and
for sets with C2 boundaries. Hence ii) holds for these classes of domains. Let us
now write explicitly the remainder R(k, h) in (4.20). For simplicity we consider
the case d ≥ 4, the case d = 2, 3 being similar. We have that

R(k, h) =
d

d+ 4
C2
d

(
k

|Ω|

) 4
d
(

|ωh|
|Ω| − |ωh|

− h|∂Ω|
|Ω|

)

+ 2
A2
d

h2
Cd

(
k

|Ω|

) 2
d

 |ωh|(
1− |ωh||Ω|

)2/d

(|Ω| − |ωh|)
− h|∂Ω|
|Ω|


+
Ã2
d

h4

(
|ωh|

|Ω| − |ωh|
− h|∂Ω|
|Ω|

)
. (4.23)

Consider Ω convex first. We note that for convex domains and for all h ≤ rΩ, then
|ωh| ≤ h|∂Ω|. This follows from the co-area formula and from the fact that the
measure of the sets ∂Ωh := {x ∈ Ω : dist(x, ∂Ω) = h} is a non-increasing function
of h, for h ∈ [0, rΩ]. Hence, from (4.23) we deduce that

R(k, h) ≤ d

d+ 4
C2
d

(
k

|Ω|

) 4
d h2|∂Ω|2

|Ω|(|Ω| − h|∂Ω|)

+ 2
A2
d

h2
Cd

(
k

|Ω|

) 2
d

h|∂Ω|

 1

|Ω|
(

1− h|∂Ω|
|Ω|

)1+2/d
− 1

|Ω|


+
Ã2
d

h4

h2|∂Ω|2

|Ω|(|Ω| − h|∂Ω|)

≤ d

d+ 4
C2
d

(
k

|Ω|

) 4
d h2|∂Ω|2

|Ω|(|Ω| − h|∂Ω|)

+ 2
A2
d

h2
Cd

(
k

|Ω|

) 2
d

(
1 + 2

d

)
h2|∂Ω|2

|Ω|
(
|Ω| − h|∂Ω|

(
1 + 2

d

))
+
Ã2
d

h4

h2|∂Ω|2

|Ω|(|Ω| − h|∂Ω|)
,

where the second inequality follows from Bernoulli’s inequality. Choosing h = h(k)
as in point ii) (see (4.21)) we immediately deduce the validity of iii) in the case
that Ω is convex.
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Let now Ω be of class C2 and bounded. In this case, we note that there exists
h̄ ∈]0, rΩ[ such that any point in ωh has a unique nearest point on ∂Ω, for all
h ∈ (0, h̄). Let us take the supremum of such h̄ (still denoted h̄). It is standard to
see that for all h ∈]0, h̄[

|ωh| ≤ h|∂Ω|+ h2

d

d∑
j=2

(
d

j

)
(−1)j−1hj−2

∫
∂Ω

H(s)j−1dσ(s), (4.24)

where H(s) denotes the mean curvature of ∂Ω at s ∈ ∂Ω. We refer to [21, Theorem
2.19] for a proof of (4.24). We choose again h = h(k) as in (4.21) and insert it
into (4.20). Therefore, we are allowed to implement the upper bound (4.24) into
(4.23). This confirms the claim of iii) for bounded domains of class C2.

We conclude this discussion with a few remarks.

Remark 4.6. Point i) of Theorem 4.5 provides a bound which is not asymptoti-
cally sharp in k and which shows a dependence on rΩ. The presence of the term

r
−1/4
Ω is somehow natural for lower eigenvalues. For example, for d = 2 it is known

that

λ1 ≥
1

2γr2
Ω

,

if γ ≥ 2, where γ denotes the number of connected components of ∂Ω (see [10]),
while

λ1 ≥
1

4r2
Ω

,

if γ = 1. Since Λ1 ≥ λ2
1, the exponent 4 on rΩ in (4.12) is sharp. However, for

larger eigenvalues the bound (4.12) is not good, and in fact asymptotically sharp
bounds hold starting from a given positive integer k0 depending on d and Ω, as in
(4.13) (cf. (4.26)).

Remark 4.7. Point ii) of Theorem 4.5 holds if Ω is such that MΩ(∂Ω) = |∂Ω|,
where

MΩ(∂Ω) = lim
h→0+

|ωh|
h
. (4.25)

The limit (4.25) is usually called the Minkowski content of ∂Ω relative to Ω (see
e.g., [28, 29]). There are some sufficient conditions which assure that MΩ(∂Ω) =
|∂Ω|, for example if Ω has a Lipschitz boundary (see [2] for the proof and for a more
detailed discussion on Minkowski content and conditions ensuring MΩ(∂Ω) =
|∂Ω|).

Remark 4.8. The estimate (4.14) of point iii) can be proved also for Lipschitz
domains with piecewise C2 boundaries. In addition, more refined estimates for
the remainder in the case of smooth, mean convex or convex sets can be obtained
by means of a deeper (though long and technical) analysis (see e.g., [21]). In
dimension d = 2 we can find explicit dependence of the remainder R(k) in terms
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of the number of connected components of the boundary (for C2 domains) or in
terms of the angles (in the case of polygons), see [21]. We don’t enter here into
the details of more refined estimates, which require more careful but standard
computations. However, we remark that Theorem 4.1 gives a general recipe to
obtain asymptotically sharp upper bounds for averages with explicit dependence
on the geometry of Ω (via a suitable choice of test functions φ).

We also remark that asymptotically sharp estimates with a well-behaved sec-
ond term can be obtained for Riesz means and for the partition function by plug-
ging into (4.2) and (4.3) the same test functions φh used in the proof of Theorem
4.5.

Remark 4.9. We note that the second term in the upper bound (4.13) coincides
with the second term of the semiclassical asymptotic expansion of the average of
biharmonic Dirichlet eigenvalues (4.1), up to a multiplicative dimensional constant.

Remark 4.10. We observe that formula (4.19) holds for any Ω ⊂ Rd of finite
measure (it need not be bounded), hence upper bounds depend on information of
|ωh|. In a general situation we can only say that |ωh| → 0 as h → 0+. This is
a simple consequence of the Dominated Convergence Theorem. We deduce that
|ωh| = ω(h) where ω : ]0,+∞[→ R is such that limh→0+ ω(h) = 0. As in the proof
of point ii) of Theorem 4.5, we can prove that, for any Ω of finite measure (we

take for simplicity h = h(k) = C
−1/2
d

(
k
|Ω|

)−1/d

into (4.18)-(4.19))

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+
M ′d
Ω
C2
d

(
k

|Ω|

) 4
d

ω

(
C
−1/2
d

(
k

|Ω|

)−1/d
)

+ o

((
k

|Ω|

) 4
d

ω

(
C
−1/2
d

(
k

|Ω|

)−1/d
))

, (4.26)

as k → +∞, for all k ≥ |Ω|C−d/2d r−dΩ . Here M ′d is a constant which depends only
on the dimension and which can be computed explicitly as in the proof of point
ii) of Theorem 4.5. Combining (4.26) with the Berezin–Li–Yau inequality

1

k

k∑
j=1

Λj ≥
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

proved in [30] for all domains of finite measure, we deduce the validity of (1.4) for
ωj = Λj on domains of finite measure.

Remark 4.11. Now, let us denote by D the Minkowski dimension of ∂Ω relative
to Ω, which is defined by

D := inf

{
β ∈ [d− 1, d] : lim

h→0+

|ωh|
hd−β

< +∞
}
.
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Let the D-dimensional Minkowski content of ∂Ω relative to Ω be defined by

MD(∂Ω) := lim
h→0+

|ωh|
hd−D

.

Assume now that Ω is such that the Minkowski dimension of ∂Ω relative to Ω is
D ∈]d−1, d[ (for example, if Ω is a fractal set) and letMD(∂Ω) be the Minkowski
content of ∂Ω relative to Ω. From (4.26) we immediately see that

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+M ′d
MD(∂Ω)

|Ω|
C
D−d+4

2

d

(
k

|Ω|

)D−d+4
d

+ o

((
k

|Ω|

)D−d+4
d

)
,

as k → +∞, for all k ≥ |Ω|C−d/2d r−dΩ . Hence the second term of the upper bound
for the average depends only on k, d,D, |Ω| and MD(∂Ω). Analogous inequalities
have been proved for the eigenvalues of the Dirichlet Laplacian (see [21]), and are
related to the so-called Weyl-Berry conjecture (see [5, 29]).

4.2. Asymptotically Weyl-sharp bounds on eigenvalues

Assume that Ω is such that

1

k

k∑
j=1

Λj ≥
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

(4.27)

and

1

k

k∑
j=1

Λj ≤
d

d+ 4
C2
d

(
k

|Ω|

) 4
d

+A

(
k

|Ω|

) 3
d

(4.28)

for some constant A independent of k, for all k ≥ k0 (this is for example the case
of point ii) of Theorem 4.5). Then

Λk ≥ C2
d

(
k

|Ω|

) 4
d

−
(

6(d+ 1)

d(d+ 4)

C2
d

|Ω| 4d
+ 2

A

|Ω| 3d

)
k

7
2d

+

(
C2
d

d(d+ 4)|Ω| 4d
+
d+ 3

d

A

|Ω| 3d

)
k

3
d − 3

2

(
9 + 12d

4d2

)
k

5
2d

|Ω| 3d
+

9A

16d2

k
2
d

|Ω| 3d
, (4.29)

and

Λk+1 ≤ C2
d

(
k

|Ω|

) 4
d

+

(
6(d+ 1)

d(d+ 4)

C2
d

|Ω| 4d
+ 2

A

|Ω| 3d

)
k

7
2d

+

(
9C2

d

d(d+ 4)|Ω| 4d
+
d+ 3

d

A

|Ω| 3d

)
k

3
d +

3

2

(
9 + 12d

4d2

)
k

5
2d

|Ω| 3d
+

81A

16d2

k
2
d

|Ω| 3d
. (4.30)
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In particular, for all k ≥ k0 there exists a constant C(d, |Ω|, A) such that∣∣∣∣∣Λk − C2
d

(
k

|Ω|

) 4
d

∣∣∣∣∣ ≤ C(d, |Ω|, A)k
7
2d . (4.31)

Inequalities (4.29) and (4.30) follow from (4.27) and (4.28) by observing that

Λk ≥
1

l

k∑
j=k−l+1

Λj

and

Λk+1 ≤
1

l

k+l∑
j=k+1

Λj ,

and by choosing l ∈ N such that

l = k1− 1
2d + b

with b ∈
[
− 1

2 ,
1
2

]
. In particular, with this choice,

1

2
k

1−
1

2d ≤ l ≤ 3

2
k

1−
1

2d , (4.32)

and k − 1 ≤ l ≤ k + 1. For example, we see that

Λk ≥
1

l

k∑
j=k−l+1

Λj =
1

l

(
k∑
j=1

Λj −
k−l∑
j=1

Λj

)

≥

(
d

d+ 4

C2
d

|Ω| 4d
1

l

(
k1+ 4

d − (k − l)1− 4
d

)
− A

|Ω| 3d
(k − l)1+ 3

d

l

)

=
d

d+ 4
C2
d

(
k

|Ω|

) 4
d k

l

(
1−

(
1− l

k

)1+ 4
d

)
−A

(
k

|Ω|

) 3
d k

l

(
1−

(
1− l

k

)1+ 3
d

)
.

(4.33)

We also have

k

l

(
1−

(
1− l

k

)1+ 4
d

)
=
k

l

1−
(

1− l

k

)((
1− l

k

) 2
d

)2


≥ k

l

(
1−

(
1− l

k

)(
1− 2l

dk

)2
)

=
d+ 4

d
− 4(d+ 1)l

d2k
+

4l2

d2k2
, (4.34)

and similarly

k

l

(
1−

(
1− l

k

)1+ 3
d

)
≤ k

l
− 3 + d

d
+

(9 + 12d)l

4d2k
− 9l2

4d2k2
. (4.35)

Bound (4.29) follows by plugging (4.34) and (4.35) into (4.33) and by (4.32). The
upper bound (4.30) is proven similarly.
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5. The biharmonic Navier and Kuttler–Sigillito operators

In this section we focus our attention to the Navier (2.1),(2.3), and Kuttler–
Sigillito (2.1),(2.4) problems. In particular, the quadratic form (2.6) will be set into
H2(Ω) ∩H1

0 (Ω) for the Navier problem, and into H2
ν (Ω) for the Kuttler–Sigillito

problem, for Ω ⊂ Rd a bounded open set. We observe that for the eigenvalues of
the biharmonic operator with Navier and Kuttler–Sigillito boundary conditions,
the very same lower bounds on Riesz means (upper bounds on averages) of the
Dirichlet case hold. In particular we have the following result, which is valid for
any domain Ω with finite Lebesgue measure (for the Navier problem) and with
Lipschitz boundary (for the Kuttler–Sigillito problem).

Theorem 5.1. Let a ∈ (−(d− 1)−1, 1).

i) Theorem 4.1, Corollary 4.3 and Theorem 4.5 hold with Λj , Uj replaced by

Λ̃j(a), Ũj or M̃j(a), Ṽj.

ii) Formulas (4.29), (4.30) and (4.31) hold with Λj replaced by Λ̃j(a) or M̃j(a).

Proof. As for point i), the proofs of Theorem 4.1, Corollary 4.3 and Theorem 4.5
in the case of Navier or Kuttler–Sigillito conditions can be carried out exactly in
the same way as in the Dirichlet case by using test functions φ ∈ H2

0 (Ω). Also,
those arguments yield the same results for the Navier case when using φ ∈ H2(Ω)∩
H1

0 (Ω). Alternatively, the results immediately follow by pointwise comparison of
eigenvalues:

M̃j(a), Λ̃j(a) ≤ Λj ,

for all positive integers j, see (3.2). Point ii) follows from point i) as in the
Dirichlet case.

We also have the following inequalities relating Navier eigenvalues to Lapla-
cian eigenvalues. Note that, if Ω satisfies the uniform outer ball condition, the
inequalities are valid also for a = 1.

Theorem 5.2. Let a ∈ (−(d− 1)−1, 1). For all positive integers m,n,N

n∑
j=1

(λn+1 − λj) ≥
N∑
k=1

(λn+1 −
∫

Ω

|∇Ũk|2 dx), (5.1)

m∑
j=2

(µm+1 − µj)µj ≥
N∑
k=1

(µm+1

∫
Ω

|∇Ũk|2 dx−
∫

Ω

|D2Ũk|2). (5.2)
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Consequently,µm+1

n∑
j=1

(λn+1 − λj) +

m∑
j=2

(µm+1 − µj)µj

 (1− a)

≥
N∑
k=1

(1− a)µm+1λn+1 + a

λn+1 −
1

N

n∑
j=1

(λn+1 − λj)

2

− Λ̃k(a)

 .

Moreover,

(1− a)
∑
j

(z(z − λj)+ + (z − µj)+µj)

≥
N∑
k=1

(1− a)z2 + a

z − 1

N

∑
j

(z − λj)+

2

− Λ̃k

 ,

and in particular for a = 0

z
∑
j

((z − λj)+ − (z − µj)+) +

m∑
j=2

(z2 − µ2
j ) ≥

∑
j

(z2 − Λ̃j)+.

Proof. Inequality (5.1) is obtained from (2.11) with ωj = λj , ψj = uj , fp = Ũk,

and Q(f, f) =
∫

Ω
|∇f |2, while for (5.2) we used ωj = µj , ψj = vj , fp = ∂αŨk, and

then we summed over α = 1, . . . , d. Moreover, inequality (5.1) also yields

n∑
j=1

(λn+1 − λj) ≥
N∑
k=1

(
λn+1 −

t

2
− 1

2t

∫
Ω

(∆Ũk)2 dx

)
,

which coupled with (5.2) provides the appearance of Λ̃k.

6. The biharmonic Neumann operator

In this section we focus our attention to the biharmonic Neumann problem (2.1),
(2.5). In particular, the quadratic form (2.6) will be set into H2(Ω), for Ω ⊂ Rd a
bounded set with continuous boundary.

Our result is an improvement of the Kröger–Laptev bound using a refinement
of Young’s inequality for real numbers, which not only improves the estimates for
Riesz means and sums, but also provides a bound on individual eigenvalues. It
will be useful to introduce the following notation:

mk := C2
d

(
k

|Ω|

)4/d

, Sk(a) :=
d+4
d

1
k

∑k
j=1Mj(a)

mk
.

Note that mk is the Weyl expression, and the Kröger–Laptev inequality is ex-
pressed as Sk ≤ 1. We prove the following refinement of this inequality.
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Theorem 6.1. For all k ≥ 0, and for all a ∈ (−(d − 1)−1, 1), the Neumann
eigenvalue Mk+1(a) satisfies

mk(1− Sk(a)) ≥ (
√
Mk+1(a)−

√
mk)2,

or equivalently

mk

(
1−

√
1− Sk(a)

)2

≤Mk+1(a) ≤ mk

(
1 +

√
1− Sk(a)

)2

.

Proof. The trial functions f(x) = eip·x are admissible, so choosing them in (2.11)
(see also [23, 30]) leads after a calculation to the following bound for the eigenvalues
of the Neumann biharmonic operator, where the set M is chosen as {p ∈ Rd} with
Lebesgue measure, and M0 is the ball of radius R in Rd (see [11, 23] for details of
the calculation):

µk+1R
d − d

d+ 4
Rd+4 ≤ md/4

k

(
Mk+1(a)− 1

k

k∑
i=1

Mi(a)

)
,

for all R > 0. Putting Rd = m
d/4
k x

d/4
k with xk = Mk+1

mk
we get the bound

d+ 4

d

1

k

k∑
i=1

Mi(a)−mk ≤ mk
4

d

(
d+ 4

4
xk −

d

4
− x

d+4
4

k

)
.

Applying the refinement of Young’s inequality given by Lemma 6.2 with p = d/4,
we obtain

d+ 4

d

1

k

k∑
i=1

Mi(a)−mk ≤ −mk (
√
xk − 1)2,

which strengthens the Kröger–Laptev estimate

d+ 4

d

1

k

k∑
i=1

Mi(a) ≤ mk = C2
d

k4/d

|Ω|4/d

and yields the desired bound on Mk+1(a).

Lemma 6.2. For any p, x ≥ 0, let yp(x) = (p+ 1)x− p− xp+1. Then

yp(x) ≤ −p(1−
√
x)2.

Proof. From Young’s inequality we know that yp(x) ≤ 0 (see [20]). The assertion
follows from the identity

yp(x) = −p(1−
√
x)2 +

√
xy2p(

√
x).
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7. One dimensional biharmonic eigenvalue problems

On the interval [0, 1] we consider the fourth-order eigenvalue value problems:{
u

(4)
n (x) = Λ

(i,j)
n un(x), x ∈ (0, 1),

u(i)(0) = u(j)(0) = u(i)(1) = u(j)(1) = 0,
(7.1)

where i, j ∈ {0, 1, 2, 3}, i 6= j and u
(j)
n denotes the j-th derivative of the function

un. There are six eigenvalue problems beginning with the Dirichlet problem corre-
sponding to (0, 1) up to the Neumann problem corresponding to (2, 3). It is easy
to see that problem (7.1) is a Sturm–Liouville problem for any choice of i, j, and
in particular the spectrum consists of an increasing sequence of simple eigenvalues
(with the possible exception of the kernel) diverging to infinity. In order to further
analyze the eigenvalues, we need to study the equation

cos γ cosh γ = 1. (7.2)

Let γ0 = 0 and γn be the positive roots (in increasing order) of (7.2). Then

γn = π

(
n+

1

2

)
+ (−1)n+1rn, 0 < rn <

π

2
(7.3)

where rn is strictly decreasing in n and satisfies the following bounds.

Proposition 7.1. For all odd positive integers

1

2
arcsinh

(
2

coshπ
(
n+ 1

2

)) ≤ rn ≤ arcsin

(
1

coshπ
(
n+ 1

2

)) , (7.4)

and for all even positive integers

arcsin

(
1

coshπ
(
n+ 1

2

)) ≤ rn ≤ arcsin

 2

coshπ
(
n+ 1

2

) · 1

1 +
√

1− 4

coshπ(n+ 1
2

)

 .

(7.5)

Therefore, as n→∞,

rn = (−1)n+1 1

coshπ(n+ 1
2 )

+O

(
1

cosh2 π(n+ 1
2 )

)
. (7.6)

Proof. The cosine is positive between the zeros
(
2m− 1

2

)
π and

(
2m+ 1

2

)
π, where

equation (7.2) always has two roots by the intermediate value theorem applied to
the continuous function γ 7→ cos γ cosh γ, since cos 2mπ cosh 2mπ = cosh 2mπ > 1.
Therefore, we may label the positive roots γ as in (7.3), where rn verifies the
condition

1 = sin rn cosh

(
π

(
n+

1

2

)
+ (−1)n+1rn

)
, (7.7)

from which we easily derive the inequalities (7.4) and (7.5), having the asymp-
totic expansion (7.6) as a consequence. From the equations cosh γn+1 sin rn+1 =
cosh γn sin rn and γn+1 > γn we see that rn is strictly decreasing.
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We now present the spectra and the associated (non-normalized) eigenfunctions
of the different eigenvalue problems.

• Biharmonic Dirichlet eigenvalue problem. The eigenfunctions are of the form

un(x) = A
(

cosh(γnx)− cos(γnx)
)
− sinh(γnx) + sin(γnx),

with A = sinh(γn)−sin(γn)
cosh(γn)−cos(γn) and

Λ(0,1)
n = γ4

n.

• Navier eigenvalue problem. The operator is the square of the Dirichlet Lapla-
cian and therefore

Λ(0,2)
n = π4n4.

• Dirichlet–Neumann mixed eigenvalue problem. There is one zero eigenvalue
with eigenfunction u1(x) = x(1− x). For the positive eigenvalues the eigen-
functions are of the form

un(x) = A
(

cosh(γnx)− cos(γnx)
)
− sinh(γnx)− sin(γnx),

with A = sinh(γn)+sin(γn)
cosh(γn)−cos(γn) and

Λ(0,3)
n = γ4

n−1.

• Neumann–Dirichlet mixed eigenvalue problem. There is one zero eigenvalue
with eigenfunction u1(x) = 1. For the positive eigenvalues the eigenfunctions
are of the form

un(x) =
(

cosh(γnx) + cos(γnx)
)
−A

(
sinh(γnx)− sin(γnx)

)
,

with A = sinh(γn)−sin(γn)
cosh(γn)−cos(γn) and

Λ(1,2)
n = γ4

n−1.

• Kuttler–Sigillito eigenvalue problem. The operator is the square of the Neu-
mann Laplacian and therefore

Λ(1,3)
n = π4(n− 1)4.

• Biharmonic Neumann eigenvalue problem. The eigenvalue 0 has multiplicity
2 with corresponding eigenfunctions 1, x. For the positive eigenvalues the
eigenfunctions are of the form

un(x) = A
(

cosh(γnx) + cos(γnx)
)
−
(

sinh(γnx)− sin(γnx)
)
,

with A = sinh(γn)−sin(γn)
cosh(γn)−cos(γn) and

Λ
(2,3)
1 ,Λ

(2,3)
2 = 0, Λ(2,3)

n = γ4
n−2, n ≥ 3.
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Remark 7.2. We note that the Dirichlet–Neumann and the Neumann–Dirichlet
eigenvalue problems have not been described in Section 2 and in fact they have a
completely different nature from the Dirichlet, Navier, Kuttler–Sigillito and Neu-
mann problems. They can not be associated with the quadratic form (2.6), how-
ever, they can be understood as a “reduction” of a buckling-type eigenvalue prob-
lem of sixth order which has a standard variational formulation, namely problem

{
u(6)(x) = ωu′′(x) , x ∈ (0, 1),

u(0) = u′′′(0) = u(4)(0) = u(1) = u′′′(1) = u(4)(1) = 0.
(7.8)

The weak formulation of this problem reads

∫ 1

0

u′′′(x)φ′′′(x)dx = ω

∫ 1

0

u′(x)φ′(x)dx , ∀φ ∈ H3((0, 1)) ∩H1
0 ((0, 1)),

in the unknowns ω ∈ R, u ∈ H3((0, 1)) ∩H1
0 ((0, 1)). It is standard to recast this

problem to an eigenvalue problem for a compact self-adjoint operator on a Hilbert
space.

It is easy to prove that any solution of u(6)(x) = ωu′′(x) is of the form

u(x) = a0 + a1x+ a2 sin(ω1/4x) + a3 cos(ω1/4x) + a4e
ω1/4x + a5e

−ω1/4x,

for some a0, ..., a5 ∈ R. Imposing boundary conditions it is possible to prove that
ω1 = 0 is an eigenvalue of multiplicity one with corresponding (non-normalized)
eigenfunction x(1 − x), while all the other eigenvalues ωn, n ≥ 2, are simple and
positive, and are given implicitly by the equation cos(ω1/4) cosh(ω1/4) = 1. This

means that ωn = γ4
n−1, i.e., the eigenvalues of (7.8) coincide with Λ

(0,3)
n and Λ

(1,2)
n .

Also the eigenfunctions coincide. We claim that an eigenpair (u, ω) of (7.8)
is also an eigenpair of the Dirichlet–Neumann problem, and vice-versa. In fact,
let (u, ω) be an eigenpair of (7.8). Then we have that (u(4)(x) − ωu(x))′′ = 0
for x ∈ (0, 1) and from the boundary conditions we also have that u(4)(0) −
ωu(0) = u(4)(1) − ωu(1) = 0, thus u(4)(x) − ωu(x) = 0 for x ∈ (0, 1). Moreover,
u′′′(0) = u′′′(1) = 0. This implies that u is a solution to the Dirichlet–Neumann
problem. Vice-versa, let (u, ω) an eigenpair of the Dirichlet–Neumann problem.
Thus u(6)(x) = ωu′′(x) for x ∈ (0, 1), and clearly u(0) = u′′′(0) = u(1) = u′′′(1) =
0. Moreover u(4)(0) = ωu(0) = 0 and u(4)(1) = ωu(1) = 0.

Analogous arguments allow to deduce that, given an eigenpair (u, ω) of problem
(7.8), then (u′′, ω) is an eigenpair of the Neumann–Dirichlet problem. Vice-versa,
given an eigenpair (v, ω) of the Neumann–Dirichlet problem, then (u, ω) is an
eigenpair of problem (7.8), where u is the solution to the boundary value problem
u′′(x) = v(x) for x ∈ (0, 1), u(0) = u(1) = 0.
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Summarizing, for n ≥ 1 we have

Λ(0,1)
n = γ4

n

Λ(0,2)
n = π4n4

Λ(0,3)
n = γ4

n−1

Λ(1,2)
n = γ4

n−1

Λ(1,3)
n = π4(n− 1)4

Λ(2,3)
n = γ4

n−2

with the convention γ−1 = 0. Since n < γn < n+ 1, the spectra are in decreasing
order and the eigenvalues of two “neighbored” operators in the table are interlacing

with strict inequalities for all positive eigenvalues (with the only exception Λ
(0,3)
n =

Λ
(1,2)
n ). In particular, for all positive integers n we have the following identities

Λ(0,1)
n = Λ

(0,3)
n+1 = Λ

(1,2)
n+1 = Λ

(2,3)
n+2 .

We note that the Neumann eigenvalues satisfy the sharp Weyl-type bound of the

form Λ
(2,3)
n ≤ π4(n− 1)4 and not Λ

(2,3)
n ≤ π4(n− 2)4

+ where the shift is made by
the dimension of the kernel.

With respect to semiclassical limits, while there is no two-term asymptotic
expansion of the form (2.9) for the counting function N(z), the expansion (2.10)
for the Riesz means R1(z) is still valid. This is a corollary of the following asymp-

totically sharp two-term upper and lower bounds. We shall denote by R
(i,j)
1 (z)

the Riesz means corresponding to the eigenvalues Λ
(i,j)
n , i, j ∈ {0, 1, 2, 3}, i 6= j. A

crucial ingredient in the proof of the following theorem is Lemma 7.5 on polyno-
mial bounds for one dimensional Riesz means, which is proved at the end of this
section.

Theorem 7.3. For any z > 0 we have the following inequalities

• Biharmonic Dirichlet eigenvalue problem.

4

5π
z

5
4 − z − 11π

6
z

3
4 − 3π2

2
z

1
2 − 127π3

240
z

1
4 − c

≤
∑
n≥1

(z − Λ(0,1)
n )+

≤ 4

5π
z

5
4 − z +

π

6
z

3
4 +

3π2

2
z

1
2 +

1π3

30
z

1
4 +

1π4

8
+ c.
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• Navier eigenvalue problem.

4

5π
z

5
4 − 1

2
z − π

3
z

3
4

≤
∑
n≥1

(z − Λ(0,2)
n )+

≤ 4

5π
z

5
4 − 1

2
z +

π

6
z

3
4 +

π2

12
z

1
2 .

• Dirichlet–Neumann and Neumann–Dirichlet mixed eigenvalue problem.

4

5π
z

5
4 − 11π

6
z

3
4 − 3π2

2
z

1
2 − 127π3

240
z

1
4 − c

≤
∑
n≥1

(z − Λ(0,3)
n )+ =

∑
n≥1

(z − Λ(1,2)
n )+

≤ 4

5π
z

5
4 +

π

6
z

3
4 +

3π2

2
z

1
2 +

1π3

30
z

1
4 +

1π4

8
+ c.

• Kuttler–Sigillito eigenvalue problem.

4

5π
z

5
4 +

1

2
z − π

3
z

3
4

≤
∑
n≥1

(z − Λ(1,3)
n )+

≤ 4

5π
z

5
4 +

1

2
z +

π

6
z

3
4 +

π2

12
z

1
2 .

• Biharmonic Neumann eigenvalue problem.

4

5π
z

5
4 + z − 11π

6
z

3
4 − 3π2

2
z

1
2 − 127π3

240
z

1
4 − c

≤
∑
n≥1

(z − Λ(2,3)
n )+

≤ 4

5π
z

5
4 + z +

π

6
z

3
4 +

3π2

2
z

1
2 +

1π3

30
z

1
4 +

1π4

8
+ c.

Here c ∈]2, 3[ is defined by (7.9).

Proof. Let us start with the Dirichlet eigenvalues Λ
(0,1)
n = γ4

n. We have

R
(0,1)
1 (z) =

∑
n≥1

(
z −

(
π

(
n+

1

2

)
+ (−1)n+1rn

)4
)

+

.
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We set R := z
1
4π−1 and ρn = rnπ

−1. With this notation we ave

∑
n≥1

(z − γ4
n)+ = π4

∑
n≥1

(R4 − γ4
nπ
−4)+ = π4

N∑
n=1

(
R4 −

(
n+

1

2
+ (−1)n+1ρn

)4
)

for some N satisfying R− 2 < N ≤ R. Expanding the sum we get

N∑
n=1

(
R4 −

(
n+

1

2
+ (−1)n+1ρn

)4
)

=

N∑
n=1

(
R4 −

(
n+

1

2

)4
)

− 4

N∑
n=1

(−1)n+1

(
ρn

(
n+

1

2

)3

+ ρ3
n

(
n+

1

2

))

−
N∑
n=1

(
6ρ2
n

(
n+

1

2

)2

+ ρ4
n

)
.

The sums containing ρn lead to absolutely converging series as N tends to infinity.
In order to have explicit bounds on these sums we need simpler bounds on rn.
From condition (7.7) we deduce that, for odd n

sin rn =
1

cosh
(
π
(
n+ 1

2

)
+ rn

) ≤ 1

coshπ
(
n+ 1

2

) ≤ 2e−πn.

Using the fact that sinx ≥ 2
πx for all x ∈ [0, π2 ] we deduce that rn ≤ πe−πn. For

even n we use the fact that 0 < rn <
π
2 and deduce that

sin rn =
1

cosh
(
π
(
n+ 1

2

)
− rn

) ≤ 1

cosh
(
π
(
n+ 1

2

)
− π

2

) =
1

cosh (πn)
≤ 2e−πn.

As in the odd case, we deduce that rn ≤ πe−πn. Then∣∣∣∣∣
N∑
n=1

4(−1)n+1

(
ρn

(
n+

1

2

)3

+ ρ3
n

(
n+

1

2

))
+

(
6ρ2
n

(
n+

1

2

)2

+ ρ4
n

)∣∣∣∣∣
≤
∞∑
n=1

4

(
πe−πn

(
n+

1

2

)3

+ π3e−3πn

(
n+

1

2

))

+ 6π2e−2πn

(
n+

1

2

)2

+ π4e−4πn =: c, (7.9)

where c can be explicitly computed (c ≈ 2.51272 . . .). In particular the previous
estimates imply that 2 < c < 3. Therefore

−c ≤
∑
n≥1

(
z − γ4

n

)
+
− π4

N∑
n=1

(
R4 −

(
n+

1

2

)4
)
≤ c.
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We shall prove in Lemma 7.5 asymptotically sharp upper and lower bounds on∑N
n=1

(
R4 − n4

)
, see (7.10), and on

∑N
n=1

(
R4 −

(
n+ 1

2

)4)
, see (7.11). In partic-

ular, upper and lower bounds on R
(0,1)
1 (z) follow from (7.11) .

The bounds on R
(2,3)
1 (z) follow from those on R

(0,1)
1 (z) by observing that

R
(2,3)
1 (z) = R

(0,1)
1 (z) + 2z, where the additional term is due to the kernel. In

the same way, the bounds on R
(0,3)
1 (z) and R

(1,2)
1 (z) follow from those on R

(0,1)
1 (z)

by observing that R
(0,3)
1 (z) = R

(1,2)
1 (z) = R

(0,1)
1 (z) + z.

The Riesz means R
(0,2)
1 (z) for the Navier problem is instead explicitly com-

putable and

R
(0,2)
1 (z) =

∑
n

(
z − π4n4

)
+

= π4
∑
n

(
R4 − n4

)
+
.

Upper and lower bounds follow then from (7.10). Finally, upper and lower bounds

for R
(1,3)
1 (z) follow from those on R

(0,2)
1 (z) by noting that R

(1,3)
1 (z) = R

(0,2)
1 (z) +

z.

From Theorem 7.3 we deduce the following

Corollary 7.4. The following expansion holds

R
(i,j)
1 (z) =

4

5π
z

5
4 + c

(i,j)
1 z +O(z

3
4 ),

where c
(i,j)
1 = i+j−3

2 .

We conclude by proving the following polynomial upper and lower bounds on
one dimensional Riesz means.

Lemma 7.5. For all R ≥ 0 the following inequalities hold:

− 1

3
R3 ≤

∑
n≥1

(
R4 − n4

)
+
− 4

5
R5 +

1

2
R4 ≤ 1

6
R3 +

1

12
R2. (7.10)

and

− 11

6
R3 − 3

2
R2 − 127

240
R ≤

∑
n≥1

(
R4 −

(
n+

1

2

)4
)

+

− 4

5
R5 +R4

≤ 1

6
R3 +

3

2
R2 +

1

30
R+

1

8
. (7.11)

In particular (7.11) holds if we replace
∑
n≥1

(
R4 −

(
n+ 1

2

)4)
+

by
∑N
n=1

(
R4 −

(
n+ 1

2

)4)
with N ∈ N, R− 2 ≤ N ≤ R.
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Proof. We start by proving (7.10) for R ≥ 1. We have that

∑
n≥1

(
R4 − n4

)
+

=

N∑
n=1

(
R4 − n4

)
where N = [R] and therefore R − 1 < N ≤ R. Expanding and re-arranging the
sum in a suitable way we get

N∑
n=1

(
R4 − n4

)
− 4

5
R5 +

1

2
R4 = −1

5
N5− 1

2
N4− 1

3
N3 +

(
1

30
+R4

)
N+

1

2
R4− 4

5
R5.

We set

fR(x) := −1

5
x5 − 1

2
x4 − 1

3
x3 +

(
1

30
+R4

)
x+

1

2
R4 − 4

5
R5

and we estimate its maximum and minimum for x ∈ [R − 1, R], R ≥ 1. We
have that f ′′R(x) = −2x(x + 1)(2x + 1) < 0 for all x ≥ 1. We also note that

f ′R(R− 1
2 ) = R2

2 −
7

240 > 0 and f ′R(R− 1
3 ) = − 2

3R
3 + 1

3R
2 + 4

27R−
13
810 < 0, for all

R ≥ 1. Hence the maximum is attained in between these two points at some N0.
By concavity

fR(N0) = fR

(
R− 1

2

)
+

∫ N0

R−1/2

f ′R(y) dy

≤ fR
(
R− 1

2

)
+

(
N0 −R+

1

2

)
f ′R

(
R− 1

2

)
≤ fR

(
R− 1

2

)
+

1

6
f ′R

(
R− 1

2

)
which implies

fR(N0) ≤ 1

6
R3 +

1

12
R2 − 7

240
R− 7

1440
≤ 1

6
R3 +

1

12
R2.

We deduce the bound∑
(R4 − n4)+ ≤

4

5
R5 − 1

2
R4 +

1

6
R3 +

1

12
R2

which holds for all R ≥ 0.
By concavity we also deduce that

fR(x) ≥ min{fR(R− 1), fR(R)} = min

{
−1

3
R3 +

1

30
R,−1

3
R3 +

1

30
R

}
= −1

3
R3 +

1

30
R,
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for all R ≥ 1. This implies the bound∑
(R4 − n4)+ ≥

4

5
R5 − 1

2
R4 − 1

3
R3 (7.12)

which holds for all R ≥ 0. This concludes the proof of (7.10).

It is possible to obtain upper and lower bounds for
∑
n≥1

(
R4 −

(
n+ 1

2

)4)
+

as in the proof of (7.10), however computations become involved. Instead, we
proceed as follows. We have

∑
n≥1

(
R4 −

(
n+

1

2

)4
)

+

=

N∑
n=1

(
R4 −

(
n+

1

2

)4
)

where N ∈ N satisfies R− 2 ≤ N ≤ R. Expanding and re-arranging the sum in a
suitable way we get

N∑
n=1

(R4 − (n+
1

2
)4)

=
4

5
R5−R4 +(

1

6
−2t2)R3 +(2t3− t

2
)R2 +(

t

2
−t4− 7

240
)R+

t5

5
− t

3

6
+

7t

240
+

1

16
,

(7.13)

where t := R − 1 − N so that t ∈ [−1, 1]. Minimizing and maximizing each
coefficient we find

− 11

6
≤ 1

6
− 2t2 ≤ 1

6
, −3

2
≤ 2t3 − t

2
≤ 3

2
,

− 127

240
≤ t

2
− t4 − 7

240
≤ 1

30
, 0 ≤ t5

5
− t3

6
+

7t

240
+

1

16
≤ 1

8
.

This implies that

− 11

6
R3 − 3

2
R2 − 127

240
R ≤

N∑
n=1

(
R4 −

(
n+

1

2

)4
)
− 4

5
R5 +R4

≤ 1

6
R3 +

3

2
R2 +

1

30
R+

1

8
.

This concludes the proof of the lemma.
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