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Abstract

This research work studies the criteria of rational choices being made by the decision-maker
under conditions of certainty or uncertainty and riskiness. With regard to these choices, a
same logical framework is shown. Indeed, the incompleteness of the state of information
and knowledge associated with a given decision-maker underlies it. The criteria of rational
choices being made by the decision-maker under claimed conditions of certainty focus
on non-negative and finitely additive masses, where each non-negative mass is associated
with a possible alternative whose nature is objective, and utility. This is because actual
situations, such as the total amount of money the decision-maker has to spend, are uncertain
at the time of choice, so possible alternatives are handled as a consequence. The criteria
of rational choices being made by the decision-maker under conditions of uncertainty and
riskiness focus on probability and utility. This research work is accordingly connected with
the international literature on the subject of probability viewed to be as a mass, where it is
moved in whatever coherent way the decision-maker likes, and on the one of preference.
We study choices subjected to budget constraint being made by the decision-maker who
is modeled as being a consumer. She chooses bundles of two marginal goods, where each
bundle operationally coincides with a bilinear measure of a metric nature. This measure is
obtained from a summarized nonparametric distribution of mass. It is a joint distribution
of mass. A bilinear measure is always decomposed into two linear measures obtained
from two summarized nonparametric marginal distributions of mass. A nonparametric
joint distribution of mass has always to reflect the knowledge hypothesis underlying each
evaluation concerning all joint masses characterizing it. This hypothesis is made clear by
the decision-maker from time to time. Our goal is to extend rational choice behaviors. Our
goal is to study multiple choices. They are associated with multiple goods. Each multiple
choice is based on different summarized joint distributions of mass. Each multiple choice is
rational if and only if all these summaries of joint distributions of mass are coherent.

In Chapter 1, we define the notion of random good as well as the one of prevision bundle.
We prove a theorem showing that there exists a full analogy between properties concerning
average quantities of consumption of random goods and well-behaved preferences. We
focus on axioms of revealed preference theory applied to average quantities of consumption
of goods. Revealed preference theory gives empirical meaning to the neoclassical economic
hypothesis according to which the best rational choice being made by the decision-maker
inside of her budget set has to be the one maximizing her utility. We show that the best
rational choice being made by the decision-maker inside of her budget set deals with average
quantities of consumption of goods. After decomposing the object of decision-maker
choice under conditions of uncertainty and riskiness inside of a subset of a two-dimensional
linear space over R, we define the decision-maker’s demand functions that give the average
consumption amounts associated with each random good under consideration. We show
that it is possible to unify the empirical content of specific theories referred to coherent
previsions of random goods in specific economic environments.

In Chapter 2, we prove a theorem showing how to transfer all the n states of the world
of a contingent consumption plan on a one-dimensional straight line on which an origin, a
unit of length, and an orientation are chosen. All the n states of the world of a contingent
consumption plan are possible alternatives. They are not studied inside of En only, where En

is an n-dimensional linear space over R having a Euclidean structure. This is because they
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are also transferred on a one-dimensional straight line on which an origin, a unit of length,
and an orientation are established. We do not consider an n-dimensional point referred to a
random good, where a random good identifies a contingent consumption plan, but we study
a finite set of n one-dimensional points. We do not deal with n masses associated with n
possible states of the world of a contingent consumption plan yet. We focus on the two-good
assumption, so X1 and X2 are two marginal random goods. Each of them has n possible
consumption levels. The n possible values for each good under consideration are transferred
on two one-dimensional straight lines on which an origin, a same unit of length, and an
orientation are established. Such lines are the two axes of a two-dimensional Cartesian
coordinate system. The space where the decision-maker chooses is her budget set. If we
take her budget set into account then all masses associated with all possible consumption
levels come into play. Her budget set is an uncountable subset of a two-dimensional linear
space over R. Her budget set contains points whose number is infinite. It is a right triangle
belonging to the first quadrant of a two-dimensional Cartesian coordinate system. The point
given by (0,0) identifies its right angle, whereas the budget line whose slope is negative
identifies its hypotenuse. Her budget set contains infinite coherent bilinear previsions
associated with a joint random good denoted by X1 X2 and infinite coherent linear previsions
associated with two marginal random goods denoted by X1 and X2. Two marginal random
goods always identify a joint random good. Each bilinear prevision is denoted by P(X1 X2),
where P(X1 X2) is always decomposed into two linear previsions denoted by P(X1) and
P(X2) respectively. The decision-maker chooses one bilinear prevision denoted by P(X1 X2)
among infinite coherent bilinear previsions. She chooses a bundle of two random goods
operationally identified with P(X1 X2). Since P(X1 X2) belongs to a two-dimensional convex
set, we express it in the form given by (P(X1), P(X2)). Accordingly, she also chooses P(X1)
and P(X2) because P(X1 X2) is always decomposed into P(X1) and P(X2) respectively. We
pass from P(X1 X2), where P(X1 X2) is found inside of a subset of a two-dimensional linear
space over R, to P(X1) and P(X2), where P(X1) and P(X2) are found on two different and
mutually orthogonal one-dimensional straight lines. A nonparametric joint distribution of
mass gives rise to a continuous subset of R×R. This is because all coherent previsions
of a joint random good are considered. They are obtained by taking all values between 0
and 1, end points included, into account for each mass associated with a possible value for
two random goods which are jointly considered. The number of these values is infinite.
Two nonparametric marginal distributions of mass give rise to two continuous subsets of
R, where each of them identifies a line segment belonging to one of the two axes of a
two-dimensional Cartesian coordinate system. This is because all coherent previsions of
marginal random goods are considered. All coherent previsions of two marginal random
goods identify the two catheti of the right triangle under consideration. Such previsions are
obtained by taking all values between 0 and 1, end points included, into account for each
mass associated with a possible consumption level concerning a random good. The number
of these values is infinite. We show that the continuous subset of R×R is a subset of the
direct product of R and R, where the latter is a two-dimensional linear space over R.

In Chapter 3, we define multiple goods of order 2 whose possible values are not necessar-
ily of a monetary nature. We show a numerical example referred to a multiple physical good
of order 2. Given the two-good assumption, the objects of decision-maker choice are studied
by using bilinear measures of a metric nature. Such measures are firstly decomposed into
two linear measures inside of the budget set of the decision-maker. We secondly establish
aggregate measures which are strictly connected with multiple goods. Aggregate measures
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are based on what the decision-maker chooses inside of her budget set. They are studied
outside of her budget set. The Cartesian product of two finite sets of possible quantities of
consumption associated with two goods which are separately considered can be released
from the notion of ordered pair of possible quantities of consumption connected with each
good under consideration. This implies that an extension of the notion of bundle of goods is
caught. Accordingly, we define the notion of consumption matrix. For the purpose, disag-
gregate and aggregate measures of a metric nature are considered. We calculate the average
consumption as well as the variability of it associated with a multiple good of order 2. The
variability of consumption is expressed by using the Bravais-Pearson correlation coefficient.
We use the Bravais-Pearson correlation coefficient because the variability of a nonparametric
joint distribution of mass is expressed by its numerator. This variability always depends on
how the decision-maker estimates all the joint masses under consideration. She estimates
them according to her variable state of information and knowledge. Accordingly, mean
quadratic differences connected with multiple goods of order 2 are shown. The Bravais-
Pearson correlation coefficient associated with each bundle of two goods being chosen by
the decision-maker inside of her budget set is used in order to check the weak axiom of
revealed preference. We refer ourselves to this axiom because it is the basic axiom of the
theory of decision-making whenever the decision-maker is modeled as being a consumer
whose choices are subjected to budget constraint. We realize that a marginal random good
can always be studied by using a particular joint distribution of mass. Consumption data are
dealt with by using metric measures. Disaggregate measures are obtained by using a linear
and quadratic metric. Aggregate measures are obtained by using a multilinear and quadratic
metric.

In Chapter 4, we define a multiple random good of order 2 denoted by X12 whose
possible values are of a monetary nature. A two-risky asset portfolio is a multiple random
good of order 2. It is firstly possible to establish its expected return by using a linear metric.
Given 1X and 2X , where 1X and 2X are the components of X12 = {1X , 2X}, whenever we
use a linear metric in order to establish the expected return on a two-risky asset portfolio,
we focus on the components of X12 only. We secondly establish the expected return on X12
denoted by P(X12) by using a multilinear metric. Whenever we use a multilinear metric
in order to establish the expected return on a two-risky asset portfolio, we focus on X12.
It is viewed to be as a stand-alone good. Whenever we use a multilinear metric, we are
not interested in studying separately the components of X12 denoted by 1X and 2X . If the
decision-maker is risk neutral then P(X12) is a subjective price coinciding with the certainty
which is judged to be equivalent to X12 by her. An extension of the notion of mathematical
expectation of X12 denoted by P(X12) is carried out by using the notion of α-norm of an
antisymmetric tensor of order 2. We prove a theorem about this. An extension of the
notion of variance of X12 denoted by Var(X12) is shown by using the notion of α-norm of
an antisymmetric tensor of order 2 based on changes of origin. We prove a theorem about
this. An extension of the notion of expected utility connected with X12 is considered. An
extension of Jensen’s inequality is shown as well. Whenever the decision-maker maximizes
the expected utility of X12, she maximizes the utility of average quantities of consumption.
We focus on how the decision-maker maximizes the expected utility connected with multiple
random goods of order 2 being chosen by her under conditions of uncertainty and riskiness.
What she actually chooses inside of her budget set underlies this.

In Chapter 5, we study m risky assets identifying a multiple random good of order m
whose possible values are of a monetary nature. Any two risky assets of m risky assets are
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always studied inside of the budget set of the decision-maker. Two or more than two risky
assets are also studied outside of her budget set. Whenever changes of origin are considered,
we go away from her budget set. Given m risky assets subjected to m changes of origin, we
study an m-dimensional linear manifold embedded in En. It is spanned by m basic risky
assets, where each of them is subjected to a change of origin. Each of them has n possible
values. Each linear combination of m basic risky assets identifies an n-dimensional vector
belonging to an m-dimensional linear manifold embedded in En, where this n-dimensional
vector is a risky asset. This n-dimensional vector identifies a nonparametric marginal
distribution of mass. The number of all linear combinations of m basic risky assets is infinite.
All risky assets belonging to an m-dimensional linear manifold embedded in En are dealt
with. We are also interested in knowing the starting possible values for each risky asset
under consideration as well as all marginal masses associated with them. We show that all
risky assets contained in an m-dimensional linear manifold embedded in En are intrinsically
related. In particular, we realize that any two risky assets of them are α-orthogonal, so their
covariance is equal to 0. We define the notion of α-metric tensor. It is used to study how all
risky assets contained in an m-dimensional linear manifold embedded in En are intrinsically
related. On the other hand, eigenvalues, eigenvectors, eigenequation, and eigenspaces derive
from the notion of α-metric tensor. We show that all principal components coincide with
basic risky assets. Constants of riskiness explain the variance of all risky assets belonging to
an m-dimensional linear manifold embedded in En. We show that all risky assets belonging
to a specific m-dimensional linear manifold embedded in En are proportional. Non-classical
inferential results are obtained. We realize that the price of risk is based on multilinear
indices. This price measures how risk and return can be traded off in making portfolio
choices.



ix

Acknowledgments

I wish to express my profound gratitude and sincere thanks to my Advisor Prof. Fabrizio
Maturo. My particular thanks go to Prof. Marco Alfò and Prof. Pier Luigi Conti. I express
my personal utmost gratitude to all professors at the Department of Statistical Sciences.
They have taught me a lot. I am grateful to my colleagues at the Department of Statistical
Sciences for the help that I have received.





xi

Contents

Introduction 1

1 Optimal choices based on bilinear and disaggregate measures 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 The real nature of the objects of decision-maker choice under
claimed conditions of certainty . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Logically independent random goods . . . . . . . . . . . . . . . . 9
1.1.3 Probability viewed to be as a mass . . . . . . . . . . . . . . . . . . 10
1.1.4 Reductions of dimension connected with random goods which are

jointly considered . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Single random goods and bundles of ordinary goods: their relationships

with the notion of prevision and utility . . . . . . . . . . . . . . . . . . . . 12
1.3 Bound choices being made by the decision-maker under conditions of

uncertainty and riskiness . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Coherence properties of the notion of average consumption of a

random good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 A projection of a bilinear and disaggregate measure identifying the

object of decision-maker choice onto two mutually orthogonal axes 15
1.3.3 A full analogy between properties concerning average consumption

of random goods and well-behaved preferences . . . . . . . . . . . 16
1.4 Metric aspects of the neoclassical decision-maker choice theory applied to

average quantities of consumption . . . . . . . . . . . . . . . . . . . . . . 20
1.4.1 General utilities whose arguments are average quantities of con-

sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 Additive separability of utility of prevision bundles . . . . . . . . . 22

1.5 Choices under risk: the case of random goods identifying average quantities
of consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Choices under uncertainty: the case of random goods identifying average
quantities of consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Intertemporal choices without exponential discounting and risk aversion:
the case of random goods identifying average quantities of consumption . . 26

2 Distributions of mass transferred on straight lines: reductions of dimension 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 A random good and its linear nature . . . . . . . . . . . . . . . . . . . . . 30



xii Contents

2.3 Two n-dimensional linear spaces which are superposed from a metric point
of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 How to obtain all possible consumption levels . . . . . . . . . . . . . . . . 32
2.5 Convex combinations of possible consumption levels . . . . . . . . . . . . 34
2.6 A reduction of dimension characterizing the budget set of the decision-maker 37

2.6.1 Contravariant and covariant components of vectors and tensors . . . 37
2.6.2 A metric notion: α-product . . . . . . . . . . . . . . . . . . . . . 39
2.6.3 Coherent summaries of nonparametric distributions of mass trans-

ferred on straight lines . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.4 The direct product of R and R . . . . . . . . . . . . . . . . . . . . 41

3 Disaggregate and aggregate measures identifying multiple goods 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Choices based on disaggregate and aggregate measures . . . . . . . 43
3.1.2 A finite partition of mutually exclusive states of the world of a

contingent consumption plan . . . . . . . . . . . . . . . . . . . . . 43
3.2 Goods demanded by the decision-maker under different conditions . . . . . 44

3.2.1 Random goods demanded under conditions of uncertainty and riskiness 44
3.2.2 One-dimensional and two-dimensional convex sets . . . . . . . . . 45
3.2.3 Ordinary goods demanded under claimed conditions of certainty . . 45

3.3 Unit of measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 An extension of the notion of bundle of goods: a consumption matrix . . . 47

3.4.1 Another consumption matrix: changes of origin . . . . . . . . . . . 48
3.5 How to check the weak axiom of revealed preference by using aggregate

measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.1 The Bravais-Pearson correlation coefficient associated with each

bundle of two goods being chosen by the decision-maker inside of
her budget set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 A violation of the weak axiom of revealed preference . . . . . . . . 51
3.5.3 Decision-maker choices that satisfy the weak axiom of revealed

preference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.4 A summary of consumption data based on subjective elements as well 52

3.6 Other variability measures: mean quadratic differences . . . . . . . . . . . 53
3.7 Multiple physical goods of order 2: a numerical example dealing with real

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Certainties equivalent to a multiple random good 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 A contingent consumption plan . . . . . . . . . . . . . . . . . . . 59
4.1.2 Contravariant and covariant indices associated with a contingent

consumption plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Logical and probabilistic aspects concerning an ordered pair of contingent

consumption plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Metric aspects concerning an ordered pair of contingent consump-

tion plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 The relative and subjective nature of the joint probabilities associ-

ated with an ordered pair of contingent consumption plans . . . . . 64



Contents xiii

4.3 Two contingent consumption plans jointly considered that are independent
of the notion of ordered pair . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 The budget set of the investor . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.1 To go away from the budget set of the investor: changes of origin . 70

4.5 Uncertainty and riskiness: probability and cardinal utility connected with
multiple random goods of order 2 . . . . . . . . . . . . . . . . . . . . . . 71
4.5.1 The criteria of rational choices being made by the investor: multiple

random goods of order 2 . . . . . . . . . . . . . . . . . . . . . . . 74

5 Principal components, eigenequation, and eigenspaces in the theory of decision-
making 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 The investor modeled as being a consumer . . . . . . . . . . . . . 77
5.1.2 The basic thing that is being chosen by the investor under conditions

of uncertainty and riskiness . . . . . . . . . . . . . . . . . . . . . 78
5.2 Risky assets viewed to be as elements of a linear manifold whose possible

values are subjected to changes of origin . . . . . . . . . . . . . . . . . . . 78
5.3 A multiple risky asset of order m and its probabilities . . . . . . . . . . . . 80

5.3.1 A symmetric tensor obtained by using joint probabilities . . . . . . 81
5.4 Eigenvectors connected with a symmetric tensor obtained by using joint

probabilities: their representation . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 The projection of a linear manifold onto another one: its reason . . . . . . . 83
5.6 An appropriate basis of a linear manifold: a definition of principal components 85

5.6.1 The projection of a linear manifold onto another one obtained by
choosing a particular basis of it . . . . . . . . . . . . . . . . . . . 86

5.7 A proportionality existing between risky assets: a particular case . . . . . . 86
5.7.1 The condition of invariance of the covariance of two risky assets . . 87

5.8 Non-classical inferential results . . . . . . . . . . . . . . . . . . . . . . . . 89
5.8.1 A two-dimensional linear manifold expressed as a direct sum of two

eigenspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.9 Mean-variance utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Conclusions 95

Appendix 97
.1 Proof of Proposition 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
.2 Proof of Proposition 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
.3 Proof of Proposition 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
.4 Proof of Theorem 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 103





1

Introduction

This research work is mostly placed in the field of studies connected with revealed preference
theory. The international literature on this subject is abundant (see also [43]). Revealed
preference theory is important because information associated with the choice being made by
the decision-maker can be used to derive information about her preferences. To discover the
preferences of those who decide it is necessary to observe their actual behavior. In general,
information about preferences can be essential in making policy decisions. Most economic
policy involves trading off one good for another. For example, if we put a tax on washing
machines and subsidize televisions then we will probably end up having more televisions
and fewer washing machines. In order to evaluate the desirability of this economic policy, it
is important to have some idea of what the decision-maker’s preferences between televisions
and washing machines look like. It is possible to use revealed preference and related
techniques in order to derive such information (see also [42]). Revealed preference theory
is meant as a branch of the theory of decision-making. The decision-maker is modeled as
being a consumer whose choices are subjected to budget constraint (see also [71]). She can
also choose prevision bundles consisting of random goods such as risky assets. We realize
that the logical framework used to study bound choices being made by the decision-maker
under claimed conditions of certainty is the same as the one used to study bound choices
being made by her under conditions of uncertainty and riskiness.

We use a quadratic metric, so it is not practically possible to consider more than two
goods at a time from a metric point of view (see also [64]). The two-good assumption is
not a restriction from a mathematical point of view. Such an assumption is not a restriction
from a conceptual point of view either. This assumption is more general than one might
think at first. This is because we can interpret one of the two goods under consideration as
representing everything else the decision-maker might want to choose.

The quantity of consumption actually demanded for each good into account by the
decision-maker under conditions of certainty or uncertainty and riskiness is an average
quantity. This quantity always depends on objective and subjective elements (see also [25]).
Such a quantity does not depend on objective elements only. Since what she actually chooses
is an average consumption, she uses masses expressing her expectations and subjective
sensations in order to estimate average quantities of consumption. Accordingly, an axiomatic
approach to the theory of decision-making is not alone sufficient to explain choices being
made by the decision-maker inside of her budget set. This approach does not sufficiently
explain all intrinsic elements of bound choices. The insufficiency of explanation is more
serious because the rational criterion of decision-making depends on two subjective notions.
Since the notion of average quantity connected with bound choices uses masses that are
subjectively chosen, it is possible to study it, together with utility, inside of linear spaces
and subspaces provided with a Euclidean metric. Bound choices can be studied inside of
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linear structures over R having different dimensions.
We put forward a unified approach to an integrated formulation of decision theory in its

two subjective components. The inability to imagine something extraneous to our mental
habits could sometimes appear to us as the criterion of a particular truth. It is a priori truth.
This truth is the stable foundation of a predicate science. It is a science that takes place on
a basis that is guaranteed once and for all. Such a basis is almost always of an axiomatic
nature. Nevertheless, economics is not a predicate science, but it is a dialectical science.
Accordingly, it is a science that, at every moment of its historical development, appears to
satisfy a set of intellectual and applicative needs. With regard to its evolution, economics
viewed to be as a dialectical science can even contain the elements of future crises. The
same is true with regard to mathematics and statistics on which economics is based.

Since there exist different extraneous factors that play a part in decision-making, if
we generically identify decisions being made by the decision-maker and her preferences
then we ignore them. Accordingly, in general it is not appropriate to identify decisions
and preferences. Indeed, nobody accepts all the opportunities that she judges favorable
as well as perhaps we all sometimes enter into situations that we judge unfavorable. To
reduce the influence of these extraneous factors, it is possible to observe the phenomena
under consideration in such a way that they are isolated in their most simple forms (see also
[46]). Accordingly, given a random good denoted by X whose possible values belonging
to I(X) = {x1,x2, . . . ,xn} are explicitly of a monetary nature, where it turns out to be
x1 < x2 < .. . < xn, we have to force the decision-maker to make her rational choices
releasing her from passivity and preserving her from fancy (see also [70]). This is possible
whenever she has to bet on single alternatives or events, where all these single alternatives
constitute a finite partition of mutually exclusive events. It follows that to bet on them means
to bet on the certain event denoted by Ω (see also [20]). Since the certain gain denoted by
p = P(Ω) and judged by the decision-maker to be equivalent to a unit gain conditional on the
occurrence of Ω is coherently equal to 1, the sum of all masses associated with all the single
alternatives into account has coherently to be equal to 1. Accordingly, a nonparametric
distribution of mass associated with X arises. Strictly speaking, we especially take p1 S1
equivalent to S1 conditional on E1, where E1 is a single event coinciding with the possible
consumption level for X given by x1. We arbitrarily choose a unit amount of money, so it
turns out to be S1 = 1. We especially take p2 S2 equivalent to S2 conditional on E2, where
E2 is a single event coinciding with the possible consumption level for X given by x2. We
arbitrarily choose a unit amount of money, so it turns out to be S2 = 1. Finally, we especially
take pn Sn equivalent to Sn conditional on En, where En is a single event coinciding with the
possible consumption level for X given by xn. We arbitrarily choose a unit amount of money,
so it turns out to be Sn = 1. Thus, it is possible to write

p1 + p2 + . . .+ pn = 1.

We say that the decision-maker actually chooses P(X), where

P(X) = x1 p1 + x2 p2 + . . .+ xn pn

is the prevision of X . It is the mathematical expectation of X or its mean value 1. If x1 = 0
and p1 = 0, where it turns out to be p2 + . . .+ pn = 1 as well as p1 + p2 + . . .+ pn = 1, then

1She chooses two mean values connected with two marginal goods studied inside of her budget set. Her
utility associated with these two goods has to be the highest.



Contents 3

nothing changes. This also holds if X is a random good whose possible values belonging to
I(X) = {x1,x2, . . . ,xn} are not of a monetary nature. This also holds if the decision-maker
chooses an ordinary good under claimed conditions of certainty. She always chooses a
weighted average inside of her budget set. In particular, given the two-good assumption, she
chooses two weighted averages inside of her budget set, where every weighted average is
associated with one of the two ordinary goods under consideration.

There also exist two extreme situations connected with the calmness and accuracy and
thus the reliability of the evaluations of probability connected with random goods being
made by the decision-maker. Such evaluations underlie every decision being made by her
inside of her budget set. On the one hand, the direct interest in decisions being made by the
decision-maker can both encourage and block the reliability in terms of coherence of her
evaluations of probability. On the other, the lack of a direct interest in decisions being made
by the decision-maker can do the same effect. It is also possible to consider an intermediate
case which is the one of a decision-maker who is consulted about a decision in which others
are actually interested. This case could be of interest because it leads to responsibility in the
judgment without influencing the calmness of the individual who decides. Moreover, the
accuracy of the evaluations of probability in terms of coherence could also be connected with
the self-respect of the decision-maker in some competitive situation characterized by prizes
which are materially meaningless, but they are intrinsically associated with the significance
of the competition. Probability evaluations being made by the decision-maker choosing
random goods are well-founded, reasonable, serious if and only if they are coherent (see also
[11]). Although they are of a subjective nature, they are not improvised. They are always
carried out with all the attention of those who consider them as objective. If necessary,
they are carried out with a greater sense of responsibility deriving from not having illusions
regarding their false objective nature. Probability evaluations can be based on symmetric
probabilities implying a judgment of equal probability being made by the decision-maker
who deals with all the single alternatives into account. They can be based on frequencies.
Nevertheless, they always exist according to her subjective judgment. If the decision-maker
chooses ordinary goods inside of her budget set then the evaluations of mass being made by
her underlie every choice. This is because she chooses weighted averages. The evaluations
of mass underlying average quantities of consumption associated with ordinary goods being
chosen by the decision-maker under claimed conditions of certainty have to be coherent as
well (see also [12]).

Given two random goods studied inside of the budget set of the decision-maker, one
of strengths of this research work is to establish which is the price that she is willing to
pay to purchase the right to participate in a bet that places her in the uncertain situation
denoted by X12, where X12 is a multiple random good of order 2 whose possible values
are explicitly of a monetary nature. Accordingly, we handle X12 = {1X , 2X}. We are able
to determine its mathematical expectation denoted by P(X12). We have to consider the
cardinal utility function associated with X12. It depends on her subjective attitude towards
risk. We have to go away from the budget set of the decision-maker after observing what
she chooses inside of it with respect to the two components of X12. The two components of
X12 are the two marginal random goods studied inside of her budget set. If we go away from
the budget set of the decision-maker then the criteria of rational decision-making consist
of the choice of any coherent evaluation of the probabilities being made by her and any
utility function having the necessary mathematical properties, where such properties have to
comply with her subjective attitude towards risk. She also fixes as her goal the maximization
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of the prevision or mathematical expectation of her cardinal utility. Accordingly, we are
able to extend to multiple random goods the notion of moral expectation which has been put
forward by Daniel Bernoulli and developed by John von Neumann and Oskar Morgenstern
at a later time. On the other hand, it is also possible to behave rationally with respect to
decisions being made by the decision-maker and her preferences without knowing anything
about probability and utility. However, in this case the decision-maker has to behave as
if she is acting in the above manner. In other words, she must behave as if obeying a
coherent evaluation of probability and a scale of utility underlying her way of thinking and
acting, although without realizing this thing. It could also be possible to individuate the two
subjective components on which the correct criterion of decision-making depends. For the
purpose, one should succeed in exploring in an appropriate way how the decision-maker
thinks and acts. Anyway, only the completely agnostic point of view is unacceptable. It
is not correct to think that every subjective attitude is a fact on which it is not possible
to express an objective judgment based on rational conditions made clear by economists,
mathematicians, and statisticians. It is true that everyone has her subjective attitude towards
risk caught by a specific utility function. It is true that everyone is able to evaluate all
probabilities under consideration according to one’s own subjective judgment. It is false that
everyone is able to choose which rational rules have to be complied with. Such rules cannot
arbitrarily be chosen by anyone. They are always the same. They are logical rules. In this
research work, we extend them.

We do not consider an infinite number of possible alternatives whose unique and well-
determined summary, if there exists, belongs to a set containing a finite number of elements.
We study a finite number of possible outcomes whose nature is objective. All their coherent
summaries belong to a set containing an infinite number of elements. It is the budget set of
the decision-maker. It follows that in order to study choices inside of her budget set it is
possible to compare a concrete distribution of mass with a model which is not a continuous
function such as the density function of a continuous random variable, but it is itself a
distribution of mass. We do not embed what is actually observed inside of a framework
characterized by a continuous function such as the density function of a continuous random
variable. On the other hand, what is actually observed is always characterized by a finite
number of elements. Only a finite number of possible alternatives it is natural to admit
into the formulation of any choice problem which is studied inside of the budget set of
the decision-maker and into the arguments required for its solution. These arguments are
basically connected with Bayes’ rule (see also [15]). It is not necessary to deal with a
σ -algebra defined on a nonempty set of outcomes. It is conversely necessary that each
measure obtained by summarizing a nonparametric distribution of mass complies with a
logical criterion.

A summary of a nonparametric joint distribution of mass coincides with each point of
the budget set of the decision-maker (see also [9]). One of strengths of this research work is
to realize what it implies that even this summary is subjected to a choice.

Prevision is not something which in itself can be known with certainty. If prevision can
be known with certainty then the decision-maker would be able to guess which alternative
will occur among the possible ones. In this case, prevision would be a prediction or prophecy
and the decision-maker developing it would be a magician. Prevision is not either something
which in itself can be not known. Prevision takes place in that it serves to express, for each
decision-maker inside of her budget set, her choice in her given state of ignorance. The same
is true by considering weighted averages of possible quantities of consumption of ordinary
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goods being chosen by the decision-maker under claimed conditions of certainty. Each
point of the budget set of the decision-maker is a weighted average of possible quantities of
consumption of two ordinary goods which are jointly considered. Such a weighted average
is always decomposed into two weighted averages, where each of them is of a linear nature
(see also [28]).

If we extend the preeminent role of linearity in the theory of decision-making then we
realize that average quantities obtained by using non-negative masses subjectively chosen
and utility are two instruments which conform themselves strictly to the exigencies of
the field where they turn out to be applied. Whenever the decision-maker chooses by
summarizing her information and knowledge, she will exercise great attention in not going
far beyond the consideration of alternatives immediately at hand and directly interesting
(see also [39]). It is not appropriate to impose axioms not required for essential reasons.
It is not absolutely correct to impose axioms which could even be in conflict with them.
However, we do not put in doubt anything. We do not put in doubt axioms that are widely
and authoritatively accepted. We simply limit ourselves to what serves the purpose and is of
interest according to a substantial approach having an operational nature.
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Chapter 1

Optimal choices based on bilinear
and disaggregate measures

1.1 Introduction

1.1.1 The real nature of the objects of decision-maker choice under claimed
conditions of certainty

The decision-maker is modeled as being a consumer. Bound choices being made by her
under conditions of certainty are intrinsically characterized by the incompleteness of her
state of information and knowledge. The conditions of certainty are not real, but they are
ideal. They are a simplification. Indeed, in almost all circumstances, and at all times, we
all find ourselves in a state of ignorance. Hence, average quantities of consumption are
treated. They are treated by the logic of prevision. Given the two-good assumption, the
objects of decision-maker choice are of a bilinear nature. Given two ordinary goods having
downward-sloping demand curves, (1y, 2y) represents what is actually demanded for each
of them by her inside of her budget set. We establish the following

Definition 1. The quantity of consumption associated with two ordinary goods actually
demanded by the decision-maker under claimed conditions of certainty is an average
quantity. We write

1y = y1
1 p1

1 + . . .+ yn
1 pn

1 (1.1)

and
2y = y1

2 p1
2 + . . .+ yn

2 pn
2, (1.2)

where {pi
1} and {p j

2} are two sets of n masses, with 0 ≤ p j
i ≤ 1, j = 1, . . . ,n, i = 1,2, whose

sum is always equal to 1 with regard to each of them. The possible quantities of consumption
for good 1 are expressed by {y1

1, . . . , y
n
1}, whereas the possible quantities of consumption for

good 2 are given by {y1
2, . . . , y

n
2}.

We are found inside of the budget set of the decision-maker. It is a right triangle
belonging to the first quadrant of a two-dimensional Cartesian coordinate system. The
point given by (0,0) identifies its right angle. The budget line whose slope is negative
coincides with its hypotenuse. We also deal with the weighted average of n2 possible
quantities of consumption for good 1 and good 2 that are jointly considered. They derive
from {y1

1, . . . , y
n
1}×{y1

2, . . . , y
n
2}, where n2 non-negative masses are associated with each
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pair of this Cartesian product. Given (1y, 2y), the weighted average of n2 possible quantities
of consumption for good 1 and good 2 is a synthesized element of the Fréchet class. We
establish the following

Definition 2. The set of all weighted averages of n2 possible quantities of consumption
for good 1 and good 2 that are jointly considered, with the same given marginal weighted
averages of n possible quantities of consumption for good 1 and n possible quantities of
consumption for good 2, constitutes the Fréchet class.

It is clear that 1y is the given marginal weighted average of n possible quantities of
consumption for good 1, whereas 2y is the given marginal weighted average of n possible
quantities of consumption for good 2 1. With regard to the two goods that are separately
considered, it is evident that every weighted average of n possible quantities of consumption
for each of them is always found between the lowest possible quantity of consumption and
the highest possible one for each good under consideration. The same is true with regard
to n2 possible quantities of consumption for the two goods into account that are jointly
considered, where each pair of n2 pairs is handled by taking the arithmetic product of its
corresponding elements into account. Notice that (1y, 2y) is a bilinear and disaggregate
measure belonging to a subset of R×R, where R×R is the direct product of R and R (see
Chapter 2). It is decomposed into two linear measures, where each of them belongs to a
subset of R. We observe reductions of dimension by passing from n2 to 2 (being equal to 2
the dimension of the plane) as well as from n to 1 (being equal to 1 the dimension of the
straight line). All coherent weighted averages of n2 possible quantities of consumption for
the two goods into account that are jointly considered identify a two-dimensional convex set
coinciding with a subset of R×R. They are obtained by taking all values lying between 0
and 1, end points included, into account with regard to each mass of n2 masses. The number
of these values is infinite. Moreover, all these averages also identify two one-dimensional
convex sets coinciding with two line segments belonging to the two mutually orthogonal
axes of a two-dimensional Cartesian coordinate system. They are obtained by taking all
values lying between 0 and 1, end points included, into account with regard to each mass
of n masses. The number of these values is infinite. Strictly speaking, we refer ourselves
to two half-lines, where each of them extends indefinitely in a positive direction from zero
before being restricted. Boundary points that are found on each restricted half-line identify
degenerate averages. The budget line identifying the budget set of the decision-maker is
nothing but a hyperplane embedded in a two-dimensional Cartesian coordinate system. Its
slope depends on the known and objective prices of the two goods under consideration. The
budget constraint of the decision-maker is written in the form

b1 (1y)+b2 (2y)≤ b,

1Given (1y, 2y), we firstly handle a closed neighborhood of 1y denoted by [1y−ε ; 1y+ε ′] on the horizontal
axis as well as a closed neighborhood of 2y denoted by [2y−ε ; 2y+ε ′] on the vertical one, where both ε and ε ′

are two small positive quantities. Since the state of information and knowledge associated with a given decision-
maker is assumed to be incomplete at the time of choice, n possible quantities of consumption for good 1 belong
to [1y − ε ; 1y + ε ′] and n possible quantities of consumption for good 2 belong to [2y − ε ; 2y + ε ′]. It is not
necessary that one of n possible alternatives coincides with 1y. The same is true with regard to 2y. It follows that
n2 possible quantities of consumption for good 1 and good 2 jointly considered are handled. After determining
{y1

1, . . . , yn
1}, {y1

2, . . . , yn
2}, and {y1

1, . . . , yn
1}×{y1

2, . . . , yn
2}, two nonparametric marginal distributions of mass

together with a nonparametric joint distribution of mass are estimated in such a way that (1y, 2y) is their chosen
synthesis.
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where the prices of good 1 and good 2 are (b1, b2), whereas the amount of money she has
to spend is given by b. Notice that b is assumed to be an uncertain or possible element
at the time of choice 2 (see Chapter 3). Given (b1, b2) and (1y, 2y), these two pairs are
consumption data. They are observed inside of the budget set of the decision-maker. The
decision-maker always chooses a point belonging to her starting budget set. If good 1
becomes more expensive then the budget line changes its negative slope. It becomes steeper.
This means that the budget set of the decision-maker changes. It becomes a right triangle
which is different from the starting one. If her starting budget set changes then she chooses
a point belonging to her changed budget set. Each point representing a choice being made
by the decision-maker is associated with a given budget set. Two points representing two
choices being made by the decision-maker are associated with two different budget sets. We
could also understand one of the two goods into account as representing everything else she
might want to choose.

We note the following

Remark 1. The prices of good 1 and good 2 are the two real coefficients identifying the
slope of a hyperplane embedded in a two-dimensional Cartesian coordinate system. Since
(1y, 2y) is a point belonging to a two-dimensional convex set, the budget line does not
separate (1y, 2y) from the set of possible points denoted by {y1

1, . . . , y
n
1}×{y1

2, . . . , y
n
2}. It

does not separate 1y from {y1
1, . . . , y

n
1}, nor 2y from {y1

2, . . . , y
n
2}. By definition, the budget

line is a hyperplane. Since there exists a hyperplane, possible alternatives rightly come
into play. It is appropriate to study possible consumption levels inside of the budget set of
the decision-maker for this reason. She summarizes them by means of masses subjectively
chosen.

1.1.2 Logically independent random goods

All possible quantitative states of the world of a contingent consumption plan coincide with
an n-dimensional consumption vector of En denoted by

x = (x1,x2, . . . ,xn), (1.3)

where En is an n-dimensional linear space over R provided with a quadratic metric. En has
a Euclidean structure. A located vector at the origin of En is completely established by its
end point. An ordered n-tuple of real numbers can be either a point of E n (affine space) or
a vector of En, where E n and En are isomorphic. Given an orthonormal basis of En, (1.3)
identifies the components of x with respect to it. They are uniquely established with respect
to it. They are the possible values for X . They are possible consumption levels. The true
value of X is unique, but it is unknown to the decision-maker at the time of choice. She is in
doubt between n possible values for it. The set of all possible values for X at a given time is
denoted by

I(X) = {x1,x2, . . . ,xn}, (1.4)

2Bound choice being made by the decision-maker is always relative to her state of information and knowledge.
It is assumed to be incomplete. If there is no ignorance any more because further information is later acquired
then it is possible to observe a parallel shift outward of the budget line. Its slope is accordingly unchanged. On
the other hand, it is also possible to observe its parallel shift inward. Moreover, it is possible that the budget line
does not shift.
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where it turns out to be x1 < x2 < .. . < xn. We have inf I(X) = x1 and sup I(X) = xn. We deal
with a finite partition of mutually exclusive states of the world of a contingent consumption
plan. Each element of (1.4) is an elementary event meant as a proposition susceptible of
being true or false at the right time. A probability is associated with each element of (1.4).
With regard to each probability of n probabilities connected with an element belonging to
I(X), it is possible to take all values lying between 0 and 1, end points included, into account.
The number of these values is infinite. It is possible to assign to each element belonging
to I(X) a probability lying between 0 and 1, end points included, because only absolutely
inadmissible probabilistic evaluations must be excluded. We obtain all coherent previsions
of X denoted by P(X) in this way. Each possible value for X belonging to I(X) can coincide
with a coherent prevision of X .

We establish the following

Definition 3. X is a random good such that the possible quantities of consumption associated
with it that can be actually chosen under conditions of uncertainty and riskiness by the
decision-maker inside of her budget set coincide with all coherent previsions of X denoted
by P(X). They are average quantities of consumption. X has an elastic demand. If the price
of X (coinciding with the one of P(X)) changes then X has an elastic demand with respect
to the new price.

If an n-dimensional consumption vector of En identifies the states of the world of
a contingent consumption plan then two n-dimensional consumption vectors of En that
are separately considered identify the states of the world of two contingent consumption
plans that are separately considered. It follows that a joint contingent consumption plan is
established by two n-dimensional consumption vectors of En that are separately considered
besides an affine tensor of order 2 belonging to En⊗En. It is uniquely established whenever a
joint contingent consumption plan is studied (see Chapter 4). The number of the components
of this tensor is overall equal to n2. Indeed, we write dim(En⊗En) = n2. Each component of
it is a mass of a joint distribution of mass. Each component of this tensor is associated with
an ordered pair of components of two n-dimensional consumption vectors of En separately
considered. Since the arithmetic product of two quantitative states of the world of two single
(marginal) contingent consumption plans is dealt with, it is not necessary that n2 states of
the world of a joint contingent consumption plan are all different. It is conversely necessary
that the sum of n2 joint masses is equal to 1. A joint contingent consumption plan is always
dealt with whenever we are found inside of the budget set of the decision-maker. Given
X1 and X2, let I(X1) = {x11, . . . ,x1n} and I(X2) = {x21, . . . ,x2n} be the sets of their possible
values. Since X1 and X2 are jointly considered inside of the budget set of the decision-maker,
they are logically independent if and only if there are n2 possible values for them. They
belong to the set denoted by I(X1)× I(X2).

1.1.3 Probability viewed to be as a mass

The probability of a state of the world of a contingent consumption plan is viewed to be
as a mass (see also [7]). It is always a non-negative and additive function whose value on
the whole space of states of the world of a single or joint contingent consumption plan
is equal to 1. Axiomatic probability theory is satisfied (see also [83]). Nevertheless, the
notion of probability associated with a state of the world of a contingent consumption plan
is not undefined. It is the degree of belief in the occurrence of it attributed by a given
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decision-maker at a given instant and with a given set of information and knowledge. The
unit mass of probability can freely be distributed without altering its geometric support and
the measure that appears more natural to consider inside of a subset of a linear space over
R. Symmetric probabilities as well as evaluations based on statistical frequencies can be
considered. Nevertheless, they never exist outside of the decision-maker’s judgment whose
nature is always subjective.

1.1.4 Reductions of dimension connected with random goods which are jointly
considered

Let X1 and X2 be two random goods (see also [84]). Given an orthonormal basis of En

denoted by B⊥
n = {e1, . . . ,en}, we consider two linearly independent vectors of En denoted

by x1 and x2. Since they are uniquely obtained by means of two linear combinations of n
basis vectors, we write

x1 = x11 e1 + . . .+ x1n en (1.5)

and
x2 = x21 e1 + . . .+ x2n en. (1.6)

All real coefficients of x1 coincide with I(X1)= {x11, . . . ,x1n}, whereas all real coefficients of
x2 coincide with I(X2) = {x21, . . . ,x2n}. These coefficients are respectively the components
of x1 and x2 with respect to B⊥

n .
Two marginal random goods, where each of them is characterized by n possible and

distinct values, always give rise to a joint random good denoted by X1 X2 inside of the budget
set of the decision-maker. We establish the following

Definition 4. The possible values for two logically independent random goods which
are jointly considered inside of the budget set of the decision-maker identify all possible
quantitative states of the world for a joint contingent consumption plan. A joint random
good denoted by X1 X2 is a function written in the form

X1 X2 : I(X1)× I(X2)→ R.

Each element of its codomain coincides with the arithmetic product of two values belonging
to two sets denoted by I(X1) and I(X2) respectively.

We note the following

Remark 2. All the n possible values for random good 1 identified with x1 ∈ En can be
transferred on a one-dimensional straight line on which an origin, a unit of length, and an
orientation are chosen. We observe a reduction of dimension in this way. We pass from n to
1. All the n possible values for random good 2 identified with x2 ∈ En can be transferred
on another one-dimensional straight line on which an origin, a same unit of length, and
an orientation are established. We observe a reduction of dimension in this way. We pass
from n to 1. Since x1 and x2 are assumed to be linearly independent, it is possible to admit
that these two one-dimensional straight lines are mutually orthogonal. The budget set of
the decision-maker deals with two mutually orthogonal straight lines. All the n2 possible
values for two random goods which are jointly considered identify a finite subset of a
two-dimensional Cartesian coordinate system. We observe n2 two-dimensional points inside
of it. Each point of them has two Cartesian coordinates telling us that we passed from n to 1
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with respect to every coordinate associated with a given axis. Accordingly, we pass from n2

to 2.

This remark is mathematically made clear by Theorem 2 (see Chapter 2).

1.2 Single random goods and bundles of ordinary goods: their
relationships with the notion of prevision and utility

Let X1 and X2 be two random goods which are separately considered outside of the budget
set of the decision-maker. We denote by I(X1) = {x11, . . . ,x1n} the set of the possible values
for X1, where it turns out to be x11 < .. . < x1n. We denote by I(X2) = {x21, . . . ,x2n} the set
of the possible values for X2, where it turns out to be x21 < .. . < x2n. In this section, X1
and X2 are two random goods such that their possible values are explicitly of a monetary
nature. Thus, x11 is the return on X1 if E11 occurs with probability denoted by p11, . . . , x1n

is the return on X1 if E1n occurs with probability denoted by p1n. It is evident that x11 is
the wealth that X1 yields and that can be spent by the decision-maker if E11 occurs with
probability denoted by p11, . . . , x1n is the wealth that X1 yields and that can be spent by
the decision-maker if E1n occurs with probability denoted by p1n. The same is true with
respect to the possible values for X2 identifying I(X2) (see also [45]). We are faced with
two different partitions of incompatible and exhaustive states of the world of two single
contingent consumption plans, where each of them is characterized by n states of the world
generically denoted by Ei j, with i = 1,2, j = 1, . . . ,n. It turns out to be |Ei j|= 1 or |Ei j|= 0
whenever uncertainty ceases.

Uncertainty about a state of the world of a contingent consumption plan depends on a
lack of information and knowledge by the decision-maker under consideration (see also
[13]). Uncertainty about a state of the world of a contingent consumption plan ceases, for
any given decision-maker, only when she receives certain information about it (see also
[62]).

It is possible that the decision-maker is only interested in the mathematical expectation
of her monetary wealth. Accordingly, she prefers X1 to X2 if and only if it turns out to be
P(X1) > P(X2), where P denotes the prevision or mathematical expectation of a random
good. P is a summary index. In this section, it also represents the price of a random
good whose possible values are explicitly of a monetary nature. This price is subjectively
established by the decision-maker. We accordingly write

P(X1) = x11 p11 + . . .+ x1n p1n (1.7)

as well as
P(X2) = x21 p21 + . . .+ x2n p2n, (1.8)

with
p11 + . . .+ p1n = 1 (1.9)

and
p21 + . . .+ p2n = 1, (1.10)

where we have 0 ≤ p1i ≤ 1, i = 1, . . . ,n, 0 ≤ p2 j ≤ 1, j = 1, . . . ,n. Among those decisions
leading to different random goods which are separately considered, the decision-maker



1.3 Bound choices being made by the decision-maker under conditions of uncertainty and
riskiness 13

chooses that random good with the highest prevision or price (see also [66]). The decision-
maker’s behavior is directly observable. It is based on the notion of prevision of a random
good. We note the following

Remark 3. Let X be a random good whose possible values belonging to I(X) = {x1, . . . ,xn}
are explicitly of a monetary nature. The certain gain that the decision-maker subjectively
judges to be equivalent to X is expressed by P(X). It is the price of X for her whenever her
cardinal utility function is the 45-degree line. P(X) coincides with the prevision of X being
made by her. Accordingly, the certain gain that the decision-maker subjectively judges to be
equivalent to a unit gain conditional on the occurrence of E j is denoted by P(E j) = p j, with
j = 1, . . . ,n. It is the probability of E j for her.

Given two bundles of ordinary goods denoted by A and B, if the decision-maker always
chooses A when B is available then she strictly prefers A to B inside of her budget set. The
decision-maker’s behavior is directly observable. It is based on her preference (see also
[85]). Choices being made by the decision-maker are rational if and only if the underlying
preference relations work in a coherent way. Some basic assumptions about coherence of
the decision-maker’s preferences coincide with completeness, reflexivity, and transitivity
of preferences. A preference ordering is summarized by using a utility function. If A is
preferred to B then in the scale of decision-maker’s preference the utility of A denoted by
u(A) is greater than the utility of B denoted by u(B). We write u(A)> u(B), where u is a
summary index expressing an ordinal utility within this context.

We note the following

Remark 4. Random goods and bundles of ordinary goods are ranked by the decision-maker
through two subjective measures, prevision (probability) and utility. They are the two
notions on which the rational criterion of decision-maker choice depends.

1.3 Bound choices being made by the decision-maker under
conditions of uncertainty and riskiness

1.3.1 Coherence properties of the notion of average consumption of a random
good

Given the two-good assumption, necessary and sufficient conditions for coherence of P
3 allow to deal with two half-lines, where each of them extends indefinitely in a positive
direction from zero before being restricted. Let X1 be a random good whose possible values
are found on the horizontal axis of a two-dimensional Cartesian coordinate system and let
X2 be another random good whose possible values are found on the vertical one. Since P is
linear, we write

P(aX1) = aP(X1) (1.11)

as well as
P(aX2) = aP(X2) (1.12)

for every real number denoted by a. More generally, we write

P(aX ′
1 +bX ′′

1 + cX ′′′
1 + . . .) = aP(X ′

1)+bP(X ′′
1 )+ cP(X ′′′

1 )+ . . . (1.13)
3Notice that P is both bilinear and linear. Whenever P is bilinear, we decompose it into two linear measures.

Each of them is still denoted by P.
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for any finite number of random goods X ′
1, X ′′

1 , X ′′′
1 , . . . that are considered on the horizontal

axis and
P(aX ′

2 +bX ′′
2 + cX ′′′

2 + . . .) = aP(X ′
2)+bP(X ′′

2 )+ cP(X ′′′
2 )+ . . . (1.14)

for any finite number of summands X ′
2, X ′′

2 , X ′′′
2 , . . . that are considered on the vertical

one, with a, b, c, . . . any real numbers. With respect to (1.11), if a is a real number then
a has to lie between a′ and a′′. This implies that aX1 has to lie between a′X1 and a′′X1.
Nevertheless, this is true when and only when all possible values for X1 are non-negative. If
all possible values for X1 are not non-negative then this is false. However, we can always
write X1 = Y1 −Z1, where we have Y1 = X1 (X1 ≥ 0) and Z1 =−X1 (X1 ≤ 0). The possible
values for Y1 and Z1 are always non-negative because it turns out to be Y1 = X1, if X1 > 0
and zero otherwise, as well as Z1 =−X1, if X1 < 0 and zero otherwise. The conclusion is
therefore valid for Y1 and Z1. It is consequently valid for X1 = Y1 −Z1. Thus, all possible
values for X1 are non-negative. The same is true with respect to (1.12). It follows that it is
sufficient to consider two half-lines, where the point at which they meet each other is given
by (0,0). We write

P(Y1 −Z1) = P(Y1)−P(Z1) (1.15)

by virtue of additivity property of P. This means that P(Y1 −Z1), P(Y1), and P(Z1) have the
same masses. Differently, (1.15) does not work. The number of the possible values for Y1
is the same as the one for Z1. We suppose that zero (whose probability can be equal to 0
because it is a possible value for a random good, so we write 0 ·0 = 0) always separates
them. Moreover, it turns out to be

inf I(Y1 −Z1)≤ P(Y1 −Z1)≤ sup I(Y1 −Z1), (1.16)

with Y1 −Z1 = X1, because P is convex. We similarly write

P(Y2 −Z2) = P(Y2)−P(Z2) (1.17)

as well as
inf I(Y2 −Z2)≤ P(Y2 −Z2)≤ sup I(Y2 −Z2). (1.18)

Any transgression of such properties of P leads to choices which are not rational (see also
[30]).

If we consider all coherent previsions of Y1 then the evaluation of the probability of
each state of the world of the contingent consumption plan under consideration permits the
choice of any value in the interval from 0 to 1, end points included. The number of these
values is infinite. Hence, we observe that P(Y1) geometrically identifies a line segment on
the horizontal axis because P is convex. One of the two end points of it coincides with
zero. If we consider all coherent previsions of (Y1 −Z1) then we observe that P(Y1 −Z1)
geometrically identifies a more extended line segment on the horizontal axis because the
absolute value of each element of the set I(Y1−Z1) is not lower than the one of each element
of I(Y1) (see also [29]). The same is true whenever we consider all coherent previsions of Y2
and (Y2 −Z2) on the vertical axis.

It is always possible to extend and, symmetrically, to restrict the absolute value of each
element belonging to the set of possible values for a random good. In particular, it is always
possible to extend and, symmetrically, to restrict the absolute value of the highest value
belonging to the set of possible values for a random good. This set depends on the state of
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information and knowledge associated with a given decision-maker at a certain instant, so it
is always of a relative nature. It depends on what she knows, or does not know, at a certain
instant, so it is of an objective nature. It does not depend on her opinion on what is uncertain
or possible for her, so it is never of a subjective nature.

1.3.2 A projection of a bilinear and disaggregate measure identifying the
object of decision-maker choice onto two mutually orthogonal axes

Two marginal random goods denoted by X1 and X2 are jointly considered by us. Hence,
they give rise to a joint random good denoted by X1 X2. Its coherent prevision is of a
bilinear nature (see also [87]). We denote it by P(X1 X2). By definition, it is linear with
regard to each marginal random good that is separately considered (see also [22]). We
denote by P the set of all coherent previsions denoted by P connected with two logically
independent random goods which are jointly considered. We summarize their intrinsic joint
distribution by means of P (see also [19]). We note that P is an uncountable subset of a
two-dimensional linear space over R. All pairs of real numbers denoted by (P(X1), P(X2))
are the Cartesian coordinates of all points of this subset. We always project (P(X1), P(X2))
onto the two mutually orthogonal axes of a two-dimensional Cartesian coordinate system
whose intersection is given by the point (0,0). We always decompose (P(X1), P(X2)) into
two linear measures denoted by P(X1) and P(X2) respectively. We are also interested in
knowing all coherent previsions of each marginal random good (see also [4]). The two-
dimensional set P of all coherent previsions P connected with two logically independent
random goods which are jointly considered is a convex set. It is the closed convex hull of
the set Q = I(X1)× I(X2) of all possible values for X1 and X2 respectively.

We analytically consider a linear inequality given by

c1X1 + c2X2 ≤ c, (1.19)

where c1, c2, c are strictly positive real numbers. It must also be satisfied by the correspond-
ing marginal previsions denoted by P(X1) and P(X2), so we have

c1P(X1)+ c2P(X2)≤ c. (1.20)

We are found inside of the budget set of the decision-maker. It obeys the rules of the logic
of prevision. Finite sets of possible consumption levels remain finite sets whenever they
are studied by ordinary logic characterized by the principle of bivalence 4. Finite sets of
possible consumption levels do not remain finite sets whenever they are studied by the logic
of prevision. It follows that we deal with uncountable sets of coherent previsions identifying
continuous goods whose average quantities of consumption are denoted by P(X1) and P(X2).
The expression given by

c1P(X1)+ c2P(X2) = c (1.21)

is an equation of a linear function expressed in an implicit form. It represents a line whose
slope is given by − c1

c2
. Its horizontal intercept is given by c

c1
, whereas its vertical intercept is

given by c
c2

. Such a line is a hyperplane embedded in a two-dimensional Cartesian coordinate
system. By definition, the line given by (1.21) does not separate any point P of P from the

4If the state of information and knowledge associated with a given decision-maker is assumed to be complete
at the time of choice then ordinary logic takes place.
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set Q of all possible points for X1 and X2. Also, it does not separate any point P of P from
I(X1), nor from I(X2). The point denoted by(

sup I(Y1), sup I(Y2)
)

(1.22)

always belongs to it, where we have Y1 −Z1 = X1 as well as Y2 −Z2 = X2. The line given by
(1.21) always passes through the point whose coordinates are expressed by (1.22) whenever
it changes its negative slope as the state of information and knowledge associated with a
given decision-maker changes. For instance, her state of information and knowledge changes
if one of the two objective prices expressed by c1 and c2 changes. This modifies her prevision
denoted by P conditional on her changed state of information and knowledge according to
Bayes’ theorem. In general, it is possible to say that rational choices being made by the
decision-maker inside of her budget set depend on her variable state of information and
knowledge according to Bayes’ rule.

1.3.3 A full analogy between properties concerning average consumption of
random goods and well-behaved preferences

There exists a dichotomy between I(X1) = {x11, . . . ,x1n} and P(X1). There exists a di-
chotomy between I(X2) = {x21, . . . ,x2n} and P(X2) as well as between Q and P(X1 X2),
where P(X1 X2) ∈ P is also a point whose coordinates are given by (P(X1), P(X2)). Indeed,
I(X1), I(X2), Q contain a finite number of possible points unlike P(X1), P(X2), P(X1 X2).
Within this context, we focus on P(X1 X2) as being a two-dimensional point. P is a right
triangle. Only one point of the ones of P , where P depends on (c1, c2, c), is the one
chosen by the decision-maker. Every point denoted by (P(X1), P(X2)) is a prevision bundle
viewed to be as a consumption bundle, with P(X1) and P(X2) that tell us how much the
decision-maker modeled as being a consumer is choosing to demand for X1 and how much
she is choosing to demand for X2. We are talking about average quantities of consumption.
The prices of P(X1) and P(X2) are respectively c1 and c2, whereas the amount of money she
has to spend is equal to c. The inequality given by (1.20) represents the budget constraint
of the decision-maker with respect to X1 and X2. Indeed, the amount of money spent on
P(X1) and on P(X2) must be no more than the total amount she has to spend. All affordable
prevision bundles are those that do not cost any more than c. The set of all affordable
prevision bundles at prices (c1, c2) and income c is her budget set with respect to X1 and X2.
The expression coinciding with (1.21) represents the budget line concerning X1 and X2. It is
the set of prevision bundles that cost exactly c.

We prove the following

Theorem 1. Let X1 and X2 be two logically independent random goods which are jointly
considered inside of the budget set of the decision-maker. Their possible values are expressed
by I(X1) = {x11, . . . ,x1n} and I(X2) = {x21, . . . ,x2n}, where it turns out to be x11 < .. . < x1n

and x21 < .. . < x2n. All coherent previsions of X1 X2 being established by the decision-maker
and denoted by P(X1 X2) are of a bilinear nature. Each prevision of X1 X2 is decomposed
into two linear previsions inside of her budget set. Their properties coincide with the ones
of well-behaved preferences, where the latter are monotonic and convex preferences.

Proof. The decision-maker ranks inside of her budget set various prevision possibilities for
which usual assumptions of completeness, reflexivity, and transitivity are valid. They are
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all formally admissible in terms of coherence. Additivity and convexity of P with respect
to two logically independent random goods which are jointly considered correspond to
monotonicity and convexity of well-behaved preferences considered inside of the budget
set of the decision-maker. Well-behaved preferences are monotonic because more of both
goods is better. They are also convex because averages are weakly preferred to extremes.
We are talking about goods, not bads. We imagine indifference curves which are parallel
lines restricted to the first quadrant of a two-dimensional Cartesian coordinate system. The
budget set of the decision-maker contains all indifference curves we graphically imagine.
They have the same slope as the one of the budget line concerning X1 and X2 given by (1.21).
We think of indifference curves representing perfect substitutes, so the weighted average of
two indifferent and extreme prevision bundles is not preferred to the two extreme prevision
bundles, but it is as good as the two extreme prevision bundles. Every prevision bundle is
getting a utility level and those prevision bundles on higher indifference curves are getting
larger utility levels. This kind of utility is referred to as ordinal utility. The direction of
increasing preference is up and to the right. It is towards the direction of increased random
good 1 average consumption and increased random good 2 average consumption. With
regard to (1.21), we write

∆P(X2)

∆P(X1)
=−c1

c2
(1.23)

because if the decision-maker increases P(X1) then she must decrease P(X2) and vice versa
in order to move along it. If she is choosing (P(X1), P(X2)) inside of her budget set then we
write

MU1 =
∆U

∆P(X1)
=

u(P(X1)+∆P(X1), P(X2))−u(P(X1), P(X2))

∆P(X1)
, (1.24)

where MU1 measures the rate of change in utility, denoted by ∆U , associated with a small
change in the amount of random good 1 expressed by ∆P(X1). MU1 is the marginal utility
with respect to random good 1. The amount of random good 2 is held fixed. We can multiply
the change in average consumption of random good 1 by the marginal utility with respect to
random good 1. This allows to calculate the change in utility associated with a small change
in average consumption of random good 1. We therefore write

∆U = MU1 ∆P(X1). (1.25)

On the other hand, the marginal utility with respect to random good 2 is defined in the
following form

MU2 =
∆U

∆P(X2)
=

u(P(X1), P(X2)+∆P(X2))−u(P(X1), P(X2))

∆P(X2)
. (1.26)

If we calculate the marginal utility with respect to random good 2 then we keep the amount
of random good 1 constant. We can evidently write

∆U = MU2 ∆P(X2). (1.27)

Marginal utility is used to calculate the marginal rate of substitution (MRS). It is the rate
at which the decision-maker is willing to substitute a small amount of random good 2 for
random good 1. We focus on that indifference curve imagined inside of the budget set of the
decision-maker whose utility level is larger. It coincides with the budget line. We consider a
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change in the average consumption of each random good such that it keeps utility constant.
It is denoted by (∆P(X1), ∆P(X2)). This change moves her along that indifference curve
imagined inside of her budget set whose utility level is larger. We write

MU1 ∆P(X1)+MU2 ∆P(X2) = ∆U = 0. (1.28)

If we solve for the slope of the indifference curve then we obtain

MRS =
∆P(X2)

∆P(X1)
=−MU1

MU2
. (1.29)

Since the MRS measures the slope of the indifference curve under consideration, if we
consider its algebraic sign then we should write

MRS =−∆P(X2)

∆P(X1)

because it is negative. Nevertheless, (1.29) tells us that we consider the absolute value of the
MRS by means of the ratio of marginal utilities. The ratio of marginal utilities is independent
of the particular way being chosen by the decision-maker to represent her preferences. Let
(P(X1), P(X2)) be a point belonging to the indifference curve whose utility level is larger.
After projecting (P(X1), P(X2)) onto the two mutually orthogonal axes of a two-dimensional
Cartesian coordinate system, we note that additivity and convexity of P with respect to
marginal previsions of X1 and X2 correspond to monotonicity and convexity of well-behaved
preferences referred to each axis of a two-dimensional Cartesian coordinate system. Hence,
whenever we say that more is better, we mean that a line segment is increasingly large on
the horizontal axis as well as a line segment is increasingly large on the vertical one. Also,
any line segment on the horizontal axis is a one-dimensional convex set in the same way as
any line segment on the vertical one. Since preferences for perfect substitutes are expressed
by a utility function whose form is additive, we observe that

u(P(X1), P(X2)) = P(X1)+P(X2) (1.30)

is constant along all indifference curves we graphically imagine. In particular, it is constant
along the budget line.

We note the following

Remark 5. The budget line contains those prevision bundles whose utility level is larger.
An optimal choice for the decision-maker modeled as being a consumer is her best rational
choice. Such a choice is where the indifference curve is tangent to the budget line. The
indifference curve is rounded. Its slope is negative. Since we are not interested in proving
that prevision (probability) and utility are the two sides of the same coin, it is not necessary
to think of indifference curves representing perfect substitutes.

In general, an optimal choice for the decision-maker is always of a relative nature. It
depends on her objective state of information and knowledge. Since we are handling random
goods, it is intrinsically incomplete at the time of choice.

We establish the following



1.3 Bound choices being made by the decision-maker under conditions of uncertainty and
riskiness 19

Definition 5. After decomposing P(X1 X2) inside of a subset of a two-dimensional linear
space over R, the decision-maker’s demand functions that give the average consumption
amounts of each of the two random goods under consideration are expressed by

P(X1) =
{

P(X1)[(c1,c2,c)]
}

(1.31)

and
P(X2) =

{
P(X2)[(c1,c2,c)]

}
, (1.32)

where P is additive and convex as a consequence of its coherence.

Since P(X1 X2), P(X1), P(X2) belong to convex sets, it is evident that the quantities
demanded denoted by P(X1) and P(X2) depend on the three objective elements identifying a
two-dimensional convex set inside of which P(X1 X2) is coherently decomposed into P(X1)
and P(X2). It follows that P(X1) and P(X2) depend on objective and subjective elements,
where the latter are given by all masses being subjectively chosen by the decision-maker.
They never depend on objective elements only. Accordingly, an axiomatic approach to the
theory of decision-making is not alone sufficient to explain all choices being made by the
decision-maker inside of her budget set.

We note the following

Remark 6. The decision-maker estimates both marginal probabilities associated with X1
and X2 and the joint ones associated with X1 X2. She is subjected to 2n−1 constraints only
in order to estimate all joint probabilities associated with X1 X2. Such constraints coincide
with 2n− 1 marginal masses. Marginal probabilities associated with X1 and X2 give rise
to P(X1) and P(X2), where P(X1) and P(X2) represent what is actually demanded for X1
and X2 by her inside of her budget set. Given (P(X1), P(X2)), a bilinear and disaggregate
measure coinciding with P(X1 X2), where P(X1 X2) is decomposed into P(X1) and P(X2), is
a synthesized element of the Fréchet class. Given (P(X1), P(X2)), the decision-maker also
chooses a synthesized element of the Fréchet class such that P(X1) and P(X2) never change.
A synthesized element of the Fréchet class established by the marginal distributions of X1
and X2 such that P(X1) and P(X2) do not change corresponds to each point of the budget set
of the decision-maker. In particular, she can choose a coherent summary of X1 X2 denoted
by P(X1 X2) and decomposed into P(X1) and P(X2) such that there is no linear correlation
between random good 1 and random good 2. She could also choose a coherent summary
of X1 X2 denoted by P(X1 X2) and decomposed into P(X1) and P(X2) such that there is an
inverse or direct linear relationship between random good 1 and random good 2.

Remark 7. Given c1, X1 is a random good such that the possible quantities of consumption
associated with it that can be demanded by the decision-maker inside of her budget set
coincide with all coherent previsions of X1 denoted by P(X1). They are average quantities
of consumption. X1 has an elastic demand. Given c2, X2 is a random good such that the
possible quantities of consumption associated with it that can be demanded by her inside
of her budget set coincide with all coherent previsions of X2 denoted by P(X2). They are
average quantities of consumption. X2 has an elastic demand. If the prices of X1 (coinciding
with the one of P(X1)) and X2 (coinciding with the one of P(X2)) change then X1 and X2
have an elastic demand with respect to the new prices identifying a different budget set of
the decision-maker.
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From now until the end of this chapter, we focus on axioms of revealed preference
theory applied to average quantities of consumption. It is clear that average quantities of
consumption can be referred to random or ordinary goods whenever the state of information
and knowledge associated with a given decision-maker is assumed to be incomplete at the
time of choice, in one way or another. Revealed preference theory viewed to be as a branch
of the theory of decision-making gives empirical meaning to the neoclassical economic
hypothesis according to which the best rational choice being made by the decision-maker
inside of her budget set has to be the one maximizing her utility. We realize that the best
rational choice being made by the decision-maker inside of her budget set deals with average
quantities of consumption. We show that it is possible to unify the empirical content of
specific theories referred to coherent previsions of random goods in specific economic
environments (see also [69]). This is possible because a coherent prevision of a joint random
good is always decomposed into two previsions of two marginal random goods inside of the
budget set of the decision-maker.

The idea of revealed preference has an operational nature. The same is true with regard
to the notion of prevision (probability) and utility.

1.4 Metric aspects of the neoclassical decision-maker choice the-
ory applied to average quantities of consumption

We consider a two-dimensional linear space over R denoted by E2 5. It has a Euclidean
structure. The set of all x ∈ E2, with x1 = P(X1) ≥ 0 and x2 = P(X2) ≥ 0, is denoted by
E2
+. The set of all x ∈ E2, with x1 = P(X1) > 0 and x2 = P(X2) > 0, is denoted by E2

++.
Each decision-maker’s prevision concerning a joint random good is chosen inside of her
budget set. In general, it is possible to observe a different budget set whenever the budget
line changes its negative slope. Each choice being made by the decision-maker is associated
with a budget set characterized by a budget line. All decision-maker’s previsions concerning
joint random goods that are chosen whenever the budget line changes its negative slope
identify a finite sequence belonging to E2 and denoted by

{xk|k = 1, . . . ,K}. (1.33)

For each k, it is possible to consider a pair of real numbers written in the form (xk
1, xk

2). If
we suppose, to fix ideas, that it turns out to be K = 2 then we are faced with a balanced
sequence of pairs given by

(x1
1, x1

2), (x
2
1, x2

2). (1.34)

The space where the decision-maker chooses is denoted by E2
+. It coincides with the first

quadrant of a two-dimensional Cartesian coordinate system. We consider a collection
denoted by U of utility functions written in the form

U : E2
+ → R. (1.35)

5The space of alternatives is an n-dimensional linear space over R denoted by En. Since we study two
marginal random goods at a time, two one-dimensional linear subspaces of En are considered. Each of them is
transferred on a one-dimensional straight line on which an origin, a same unit of length, and an orientation are
chosen. We do not handle two one-dimensional straight lines, but we deal with two half-lines. This is because
P is involved together with its coherence properties. We accordingly use n non-negative and finitely additive
masses with regard to each marginal random good, so E2 coincides with R×R. On the other hand, it turns out
to be dimE2 = dim(R×R) = 2.
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The elements of the pair expressed by

(E2
+,U), (1.36)

with U ∈ U , are said to be primitive members according to the neoclassical decision-maker
choice theory.

Each decision-maker’s prevision concerning a joint random good consists of a two-
dimensional vector x ∈ E2

+ obtained from her budget set denoted by

B(c, c) = {x ∈ E2
+|c ·x ≤ c}, (1.37)

where c = (c1, c2) is a price vector, whereas c is the amount of money she has to spend. We
observe that c ·x is a scalar or inner product characterizing E2 from a metric point of view.
Notice that (1.37) coincides with (1.20).

In general, if the line expressed by (1.21) changes its negative slope then it is possible to
observe both those quantities being actually chosen by the decision-maker and their prices.
The former coincide with coherent previsions of a joint random good which are decomposed
into two previsions of two marginal random goods, whereas the latter geometrically coincide
with the real coefficients identifying the negative slope of a hyperplane embedded in E2. A
generic pair denoted by

(x, c) ∈ E2
+×E2

++ (1.38)

represents all we need to know about a coherent prevision of a random good being made by
the decision-maker and about her budget. It follows that a finite collection of pairs written
in the form

{(x1, c1), . . . ,(xK , cK)} (1.39)

expresses a dataset 6 (see also [33]). The consumption data can pragmatically be obtained
from consumption surveys drawn from the field, from a laboratory experiment or from a
hybrid design.

All datasets that are coherent with revealed preference theory represent its empirical
content (see also [18]). Given a collection U of utility functions, it is possible to say that a
dataset expressed by (1.39) is U -rational if there exists U ∈ U such that we write, for each
k,

xk ∈ argmax{U(x)|x ∈ B(ck, ck ·xk)}. (1.40)

6Given n possible alternatives for random good 1, we obtain P(X1) by using n non-negative masses. A
nonparametric marginal distribution of mass is summarized only. The same is true with regard to random good
2. Conversely, if P(X1) is an element contained in the dataset under consideration then it is possible to identify
n possible alternatives belonging to a closed neighborhood of P(X1) denoted by [P(X1)− ε ; P(X1)+ ε ′] on
the horizontal axis, where both ε and ε ′ are two small positive quantities. The same is true with regard to a
closed neighborhood of P(X2) denoted by [P(X2)− ε ; P(X2)+ ε ′] on the vertical one. It follows that n possible
alternatives are summarized in such a way that P(X1) is actually chosen. A nonparametric marginal distribution
of mass is accordingly estimated. Solutions of a linear equation, whose unknowns are probabilities, can be
established. The same is true with regard to n possible alternatives associated with random good 2. It is not
necessary that one of n possible alternatives coincides with P(X1). The same is true with regard to P(X2). A
nonparametric joint distribution of mass derives from two marginal distributions of mass. They are all estimated
before being summarized.
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1.4.1 General utilities whose arguments are average quantities of consumption

Let (xk, ck)K
k=1 be a dataset.

It is possible to define two binary relations on E2
+. We firstly establish the following

Definition 6. It is possible to say that x is revealed preferred to y, that is xRP y, if there
exists k such that it turns out to be x = xk as well as ck ·y ≤ ck ·xk.

We secondly establish the following

Definition 7. It is possible to say that x is strictly revealed preferred to y, that is xPP y, if
there exists k such that it turns out to be x = xk as well as ck ·y < ck ·xk.

We observe that a dataset expressed by (xk, ck)K
k=1 satisfies the Weak Axiom of Revealed

Preference (WARP) if there is no pair of observations k and k′ such that it is possible to
observe xk RP xk′ , whereas it also turns out to be xk′ PP xk. If (xk, ck)K

k=1 does not satisfy the
WARP then it cannot be ULNS-rational, where ULNS denotes the set of locally non-satiated
utility functions.

We note that a dataset expressed by (xk, ck)K
k=1 satisfies the Generalized Axiom of

Revealed Preference (GARP) when, for any finite sequence (ki)
M
i=1 in {1, . . . ,K}, if we

observe xki RP xki+1 , with i = 1, . . . ,M−1, then it is false to observe xkM PP xk1 .
Hence, we observe that the empirical content of the rational behavior of a locally

non-satiated decision-maker maximizing her utility associated with a bundle of two goods
is the same as the one of a decision-maker with a strictly increasing and concave utility
function. The decision-maker is modeled as being a consumer. We note that the set of
strictly increasing and concave utility functions is denoted by UMC. Also, those datasets that
are coherent with revealed preference theory are those satisfying the GARP (see also [40]).

1.4.2 Additive separability of utility of prevision bundles

Let UAS be the set of utility functions denoted by U : E2
+ → R for which there exists a

concave and strictly increasing utility function denoted by u : R+ → R. Hence, it is possible
to write U(r)≥U(s) if and only if we observe

u(r1)+u(r2)≥ u(s1)+u(s2), (1.41)

where it turns out to be r1 = P(X1), r2 = P(X2) as well as s1 = P(X1), s2 = P(X2), with
r1 ̸= s1 and r2 ̸= s2. The decision-maker is consequently faced with the problem expressed
by

max
{

u(r1)+u(r2)|r ∈ B(c, c)
}
. (1.42)

If u is smooth then the first-order conditions of the maximization problem, where an interior
solution is assumed to exist, require that it turns out to be

u′(r1)

u′(r2)
=

c1

c2
. (1.43)

The first-order conditions, together with the concavity of u, involve that whenever it turns out
to be r1 > r2, it has then to be the case that c1

c2
≤ 1. This means that P(X1 X2) is decomposed

into P(X1) and P(X2) inside of a subset of a linear space over R in order that a larger
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consumption of the random good X1 expressed by P(X1) is only possible when it is cheaper
than P(X2). In other words, demand slopes down (see also [24]). We are talking about
average quantities of consumption.

Suppose that we are faced with a budget set where P(X1) is cheaper than P(X2). This
means that the budget set below the 45-degree line is larger than the one above. If a dataset
includes a coherent prevision of X1 X2 being made by the decision-maker that is found on
the budget line above the 45-degree line then it violates downward-sloping demand property
(see also [44]). It is possible to say that it is not UAS-rational. If a dataset conversely includes
a coherent prevision of X1 X2 being made by the decision-maker that is found on the budget
line below the 45-degree line then it does not violate downward-sloping demand property.
Such a prevision is then compatible with a UAS-rational decision-maker (see also [55]).

To fix ideas, let (rk, ck)3
k=1 be a dataset with three observations. If they violate the WARP

then such a dataset cannot be rationalized by any utility function. It is then evident that it
cannot even be rationalized by an element belonging to UAS. Given a balanced sequence of
pairs denoted by

(r1
1, r1

2), (r
2
1, r2

2), (r
3
1, r3

2), (1.44)

it is possible to say that (1.44) has the downward-sloping demand property if

r1
1 > r1

2, r2
1 > r2

2, and r3
1 > r3

2 imply that
c1

1

c1
2
· c2

1

c2
2
·

c3
1

c3
2
≤ 1. (1.45)

If any balanced sequence of pairs has the downward-sloping demand property then the
Strong Axiom of Revealed Additively Separable Utility is satisfied. Such an axiom is a test
for whether a dataset is UAS-rational (see also [26]).

We note the following

Remark 8. Let X1 and X2 be two marginal random goods studied inside of the budget set
of the decision-maker. Each point of it is a coherent summary of a joint distribution of X1
and X2. A joint distribution of X1 and X2 is coherently summarized by using a bilinear index
denoted by P(X1 X2). It is decomposed into two linear indices denoted by P(X1) and P(X2)
respectively. Since we are faced with all coherent previsions of X1 X2, each possible value
for X1 X2, X1, and X2 belonging to I(X1)× I(X2), I(X1), and I(X2) enables the choice of any
probabilistic value in the interval from 0 to 1, end points included. The number of these
probabilistic values is infinite. It follows that it is not necessary that all possible values
for X1 X2, X1, and X2 have only to be equally probable. Additive separability of utility of
prevision bundles is a decomposition of utility which is based on the decomposition of a
coherent prevision of a joint random good.

1.5 Choices under risk: the case of random goods identifying
average quantities of consumption

Let ∆++ = {µ∗ ∈ E2
++| ∑

2
s=1 µ∗

s = 1} be the set of strictly positive weights measuring the
relative importance of the two marginal previsions concerning the two marginal random
goods into account. Risk is common in experimental designs. It is possible to assume that
there exists a given, known, and objective measure associated with marginal previsions
identifying average quantities of consumption. On the other hand, data drawn from labora-
tory experiments can be considered by using known and objective measures denoted by µ∗
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associated with coherent previsions of single random goods identifying average quantities
of consumption. Let UEU be the class of utility functions denoted by U : E2

+ → R for which
there exists a concave and strictly increasing utility function denoted by u : R+ →R. Hence,
it is possible to write U(r)≥U(s) if and only if we observe

µ
∗
1 u(r1)+µ

∗
2 u(r2)≥ µ

∗
1 u(s1)+µ

∗
2 u(s2), (1.46)

where it turns out to be r1 = P(X1), r2 = P(X2) as well as s1 = P(X1), s2 = P(X2), with
r1 ̸= s1 and r2 ̸= s2. We are faced with a problem concerning the expected utility of the
decision-maker (see also [63]).

We note that the first-order conditions concerning the decision-maker’s optimization
problem are expressed by

u′(r1)

u′(r2)
=

ρ1

ρ2
, (1.47)

where risk-neutral prices appearing on the right-hand side of (1.47) are defined as

ρ
k
s =

ck
s

µ∗
s
, (1.48)

with k ∈ K and s ∈ I2 = {1,2}.
It is then possible to say that a dataset is UEU -rational if and only if it satisfies the Strong

Axiom of Revealed Objective Expected Utility (SAROEU). Given any balanced sequence of
pairs denoted by (r1

1, r1
2), . . . ,(r

K
1 , rK

2 ), if it has the downward-sloping demand property then
SAROEU is satisfied (see also [54]).

1.6 Choices under uncertainty: the case of random goods identi-
fying average quantities of consumption

Faced with uncertainty meant in a personalistic sense, the decision-maker feels a more or less
strong propensity to expect that a particular state of the world of a contingent consumption
plan rather than others will turn out to be true at the right time. She attributes to the various
possible quantitative states of the world of a contingent consumption plan a greater or
lesser degree of a subjective and psychological factor expressing such an attitude. In other
words, she distributes among all possible values for X1 X2 her sensations of probability
after distributing them among all possible values for X1 and X2. Hence, a nonparametric
joint distribution associated with X1 X2 arises after two nonparametric marginal distributions
associated with X1 and X2 arise. We do not assume a probability distribution as already
attached to a random good. Each random good can coherently be assigned a distribution of
mass as an expression of the attitude connected with the decision-maker under consideration.
We say that a distribution of mass can vary from individual to individual as well as it can
vary in accordance with the state of information and knowledge associated with a given
decision-maker (see also [74]). A distribution of mass has to be summarized, where its first
row moment and its second central moment always take place within this context. It has to
be summarized in a coherent way (see also [56]). We note the following

Remark 9. The decision-maker maximizes her utility associated with prevision bundles.
Her behavior is rational if and only if it obeys the underlying logical rules of coherence, so
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each mass under consideration is non-negative and their sum is finitely equal to 1. Such
rules have specific needs that must be satisfied. Specific needs of logical rules of coherence
are satisfied whenever a coherent prevision of a joint random good expressed by P(X1 X2)
is decomposed into two coherent previsions of two marginal random goods inside of the
budget set of the decision-maker.

Let USEU be the class of utility functions denoted by U : E2
+ → R for which there exists

a subjective measure denoted by µ ∈ ∆++ that goes into constructing the expected utility
of the decision-maker and a concave and strictly increasing utility function denoted by
u : R+ → R. Hence, it is possible to write U(r)≥U(s) if and only if we observe

µ1 u(r1)+µ2 u(r2)≥ µ1 u(s1)+µ2 u(s2), (1.49)

where it turns out to be r1 = P(X1), r2 = P(X2) as well as s1 = P(X1), s2 = P(X2), with
r1 ̸= s1 and r2 ̸= s2. It is possible to decompose both prevision of a joint random good and
utility of a two-dimensional vector.

The first-order condition of the maximization problem is expressed by

µ1 u′(r1)

µ2 u′(r2)
=

c1

c2
. (1.50)

Suppose that we are faced with a budget set where P(X1) is cheaper than P(X2). If a
dataset includes a coherent prevision being made by the decision-maker that is found on
the budget line above the 45-degree line then it is USEU -rational. This is because she could
choose of consuming more in the more expensive situation. It is then characterized by a
greater subjective weight than the other situation.

Suppose that we are faced with a dataset whose observations are two. We then consider
two budget lines. Each negative slope of one of them is different from the one of the other.
We note that there is no violation of subjective expected utility if and only if choices being
made by the decision-maker are found on the two budget lines where the 45-degree line
exactly crosses both of them. This is because it turns out to be r1 = r2 anywhere on the
45-degree line, so the tangent expressing the first-order conditions of the maximization
problem has slope given by

µ1 u′(r1)

µ2 u′(r2)
=

µ1

µ2
. (1.51)

The slope of the tangent is the same anywhere on the 45-degree line. We then write

µ1

µ2
=

c1

c2
, (1.52)

so we are also able to observe the real nature of µ ∈ ∆++.
Given a doubly balanced sequence of pairs denoted by (r1

1, r2
1),(r

1
2, r2

2), it has then the
downward-sloping demand property. In general, the Strong Axiom of Revealed Subjective
Expected Utility tells us that any doubly balanced sequence of pairs has the downward-
sloping demand property. It follows that a dataset is USEU -rational if and only if it satisfies
such an axiom.

On the other hand, all of this allows us to consider the theory of maxmin expected utility
as well (see also [50]). Let UMEU be the class of utility functions denoted by U : E2

+ → R
for which there exists a set denoted by M ⊆ ∆++ as well as a concave and strictly increasing
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utility function denoted by u : R+ → R. Hence, it is possible to write U(r)≥U(s) if and
only if we observe

min
{

µ1 u(r1)+µ2 u(r2)|µ ∈ M
}
≥ min

{
µ1 u(s1)+µ2 u(s2)|µ ∈ M

}
, (1.53)

where it turns out to be r1 = P(X1), r2 = P(X2) as well as s1 = P(X1), s2 = P(X2), with
r1 ̸= s1 and r2 ̸= s2.

The theory of maxmin expected utility tells us that it is absolutely natural to choose
different weights for different observations in order to rationalize a dataset. Thus, if it is
rk

1 ≤ rk
2, where we have k = 1, . . . ,K, then we have to observe a pessimistic weight about a

marginal prevision of X1 identifying an average consumption established by the decision-
maker. If it is conversely rk

2 ≤ rk
1 then we have to observe a pessimistic weight about a

marginal prevision of X2 identifying an average consumption established by her.
We note that many laboratory experiments operate with two outcomes only. To decom-

pose P(X1 X2) inside of the budget set of the decision-maker is more general than one could
think at first. On the other hand, it is not absolutely manageable to consider more than two
random goods at a time from a metric point of view. This is because we use a quadratic
metric.

A dataset is UMEU -rational if and only if it satisfies the Strong Axiom of Revealed
Maxmin Expected Utility according to which any balanced sequence of pairs identifying
average quantities of consumption established by the decision-maker has the downward-
sloping demand property.

1.7 Intertemporal choices without exponential discounting and
risk aversion: the case of random goods identifying average
quantities of consumption

In this section, we accept as pragmatically valid the hypothesis of rigidity in the face of risk
of the decision-maker. We accept the hypothesis according to which there exists the identity
of monetary value and utility within the limits of everyday affairs. Such an assumption is
realistic to an adequate degree enough whenever we consider all those transactions being
made by the decision-maker whose outcome has no significant effect on her fortune identified
with the monetary value of her assets. It is therefore possible to say that all outcomes we
consider do not give rise to remarkable improvements in her situation, nor to heavy losses.
On the other hand, since each point of the two-dimensional budget set of the decision-maker
is a synthesized element of the Fréchet class, she can choose a coherent summary of a joint
distribution of mass identifying a joint random good such that there is no linear correlation
between random good 1 and random good 2. They are stochastically independent.

We consider those prevision bundles being chosen by the decision-maker at two different
time periods (see also [2]). We want to compare how average consumption has changed
from one time period to the other by using an appropriate summary index. Let b be the
base time period. Let t be the other time period. We suppose that prices are (ct

1, ct
2) at

the time period denoted by t. The decision-maker chooses (rt
1, rt

2), where rt
1 and rt

2 are
two marginal previsions of the two random goods into account. We observe that prices are
(cb

1, cb
2) in the base time period denoted by b. She chooses (rb

1, rb
2), where rb

1 and rb
2 are

two marginal previsions of the two random goods under consideration. We wonder how
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the consumption has changed from one time period to the other (see also [5]). We have to
summarize it in order to answer such a question. We use two strictly positive weights such
that their sum is equal to 1. Also, we have to take her utility function into account as well.
The decision-maker is risk neutral. Her utility function is linear. It represents the identity
of monetary value and utility, so it coincides with the 45-degree line restricted to the first
quadrant of a two-dimensional Cartesian coordinate system.

Let w1 and w2 be two strictly positive weights. The following index given by

Iq =
w1 rt

1 +w2 rt
2

w1 rb
1 +w2 rb

2
(1.54)

expresses the ratio of an average consumption to another one. If Iq is greater than 1 then
average consumption has gone up when the decision-maker passes from b to t. If it is less
than 1 then average consumption has gone down when she passes from b to t.

If it turns out to be
U(rt

1, rt
2)>U(rb

1, rb
2) (1.55)

then it is possible to write
w1 rt

1 +w2 rt
2 > w1 rb

1 +w2 rb
2 (1.56)

because we use a utility function coinciding with the 45-degree line. We write u(x) = x
whenever u(x) represents the value of a function of x with respect to a two-dimensional
Cartesian coordinate system. With regard to a problem of exponential discounting, we
note that in addition to weights we also consider a discount function equal to 1 within this
context. We evidently number a constant among functions although it is in general possible
not to call a constant a function if there is no good reason (see also [21]). We note that Iq

is therefore greater than 1. We are able to say that average consumption representing the
expected utility of the decision-maker who is a risk-neutral expected-utility agent has gone
up in the movement from b to t.

After transforming the t time period prices, we choose them as weights. Hence, if we
substitute them for the weights contained in (1.56) then we write

ct
1

ct
1 + ct

2
rt

1 +
ct

2
ct

1 + ct
2

rt
2 >

ct
1

ct
1 + ct

2
rb

1 +
ct

2
ct

1 + ct
2

rb
2. (1.57)

The budget line does not change its slope. This is because changes of unit of measurement
concerning the decision-maker’s budget are inessential. It follows that all of this corroborates
that she is better off at the time period denoted by t than at the time period denoted by b. We
then say that (rt

1, rt
2) is revealed preferred to (rb

1, rb
2). The same is true if we choose the b

time period prices as weights contained in (1.56). We then write

cb
1

cb
1 + cb

2
rt

1 +
cb

2

cb
1 + cb

2
rt

2 >
cb

1

cb
1 + cb

2
rb

1 +
cb

2

cb
1 + cb

2
rb

2. (1.58)

On the other hand, if Iq is less than 1 then it turns out to be

U(rt
1, rt

2)<U(rb
1, rb

2). (1.59)

We consequently write
w1 rt

1 +w2 rt
2 < w1 rb

1 +w2 rb
2, (1.60)

so (rb
1, rb

2) is revealed preferred to (rt
1, rt

2).
We note the following



28 1. Optimal choices based on bilinear and disaggregate measures

Remark 10. The decision-maker is better off at the time period denoted by t than at the time
period denoted by b if and only if average consumption at the time period denoted by t is
greater than the one at the time period denoted by b. Conversely, she is better off at the time
period denoted by b than at the time period denoted by t if and only if average consumption
at the time period denoted by b is greater than the one at the time period denoted by t.

Remark 11. A balanced sequence of pairs denoted by (rb
1, rb

2),(r
t
1, rt

2) has the downward-
sloping demand property.
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Chapter 2

Distributions of mass transferred on
straight lines: reductions of
dimension

2.1 Introduction

The n states of the world of a contingent consumption plan are points (real numbers) in
the space of random goods (random quantities), where the latter is an n-dimensional linear
space over R denoted by En. In the case of states of the world (elementary events) of a
contingent consumption plan, the most useful arguments are not available if one thinks
in terms of the set of them without reference to the linear space (space of alternatives) in
which this set is naturally embedded and in which it is necessary to see it embedded. In this
chapter, two n-dimensional linear spaces are superposed by using an orthonormal basis of
En. All possible consumption levels associated with a random good are obtained by using
homogeneous linear combinations of a finite number of states of the world of a contingent
consumption plan.

If the two-good assumption holds then we deal with two marginal random goods denoted
by X1 and X2, where each of them has n possible values corresponding to n states of the
world of a contingent consumption plan that is separately considered. Each of them has n
possible alternatives. The n possible values for each good under consideration are transferred
on two one-dimensional straight lines on which an origin, a same unit of length, and an
orientation are established. Such lines are the two axes of a two-dimensional Cartesian
coordinate system. The space where the decision-maker chooses is an uncountable subset
of a two-dimensional linear space over R. It is her budget set. Her budget set contains
points whose number is infinite. It contains infinite coherent previsions, where each mass
is associated with a possible consumption level whose nature is objective. We say that the
budget set of the decision-maker contains infinite bilinear previsions associated with a joint
random good denoted by X1 X2 and infinite linear previsions associated with two marginal
random goods denoted by X1 and X2. We say that X1 and X2 always give rise to X1 X2.
Each bilinear prevision is denoted by P(X1 X2), where P(X1 X2) is steadily decomposed
into two linear previsions denoted by P(X1) and P(X2) respectively. After transferring
the n possible values for each good under consideration on two one-dimensional straight
lines, we observe a reduction of dimension inside of the budget set of the decision-maker
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as well. We pass from P(X1 X2) to P(X1) and P(X2) respectively. It is clear that P(X1 X2)
is a point of a two-dimensional convex set obtained by summarizing n2 two-dimensional
points, whereas P(X1) is a point of a one-dimensional convex set obtained by summarizing
n one-dimensional points. The same is true with respect to P(X2). Whenever we say that
P(X1 X2) is a point obtained by summarizing n2 two-dimensional points by means of n2

non-negative and finitely additive masses, we express it in the form given by (P(X1), P(X2)).

2.2 A random good and its linear nature

Let B⊥
n = {ei}, i = 1, . . . ,n, be an orthonormal basis of En, where En is an n-dimensional

linear space over R. En has a Euclidean structure. If x ∈ En then it is possible to write

x = xiei (2.1)

by using the Einstein summation convention. We note that {xi} is the set of all contravariant
components of x. They are uniquely determined with respect to B⊥

n . Given B⊥
n , they

uniquely identify x. If we write

x = (x1,x2, . . . ,xn) (2.2)

then (2.2) is an n-dimensional consumption vector belonging to En (where En is the space of
alternatives) whose contravariant components represent different and possible consumption
levels (see also [80]). A possible consumption level coincides with a state of the world
of a contingent consumption plan. Each contravariant component of x is a possible value
for X , where X is a random good. The set of all possible values for X is denoted by
I(X) = {x1, . . . ,xn}, where we have x1 < .. . < xn without loss of generality because a
finite partition of mutually exclusive states of the world of a contingent consumption plan is
considered. Let Ei, i = 1, . . . ,n, be the generic state of the world of a contingent consumption
plan. Since it is an unequivocally individuated proposition identified with a real number and
susceptible of being either true or false at the right time, we write

X = x1|E1|+ x2|E2|+ . . .+ xn|En|, (2.3)

where we have

|Ei|=

{
1, if Ei is true
0, if Ei is false

(2.4)

for every i = 1, . . . ,n. It is clear that X is linearly dependent on n states of the world, where
linear dependence is a special case of logical dependence. Indeed, linear dependence is more
restrictive than logical dependence. Logical dependence of one random entity on others
has the same meaning that it has in mathematical analysis with respect to a one-valued
function of several variables. Accordingly, X is also “a posteriori” logically dependent on
|Ei|, i = 1, . . . ,n. All possible linear combinations expressed by (2.3) give rise to different
random goods identifying a linear space denoted by En∗. It is dual to En. Such dual spaces
are superposed by means of a quadratic metric introduced by considering an orthonormal
basis of En. This is because we use the notion of scalar or inner product in order to say
that an orthonormal basis of En consists of unit vectors and orthogonal to each other. All
possible consumption levels of a contingent consumption plan are also “a priori” logically
independent because they are all uncertain or possible.
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If uncertainty about a state of the world of a contingent consumption plan does not cease
then it makes sense that the evaluation of probability associated with all possible consumption
levels is made by the decision-maker. Accordingly, a nonparametric distribution of mass
is associated with a contingent consumption plan. It is viewed to be as an expression of
the attitude characterizing a given decision-maker with regard to all uncertain consumption
levels belonging to I(X). We do not think of a distribution of mass as already attached to X .
Such a distribution can vary from decision-maker to decision-maker (see also [61]). It can
also vary with respect to her state of information and knowledge. We write it in the form of
a finite sequence expressed by

(x1, p1),(x2, p2), . . . ,(xn, pn).

X is a random good such that x1 is the possible consumption level associated with it if E1
occurs with probability denoted by p1, . . . , xn is the possible consumption level associated
with it if En occurs with probability denoted by pn. Since E1 occurs or does not occur only
when uncertainty ceases, . . ., En occurs or does not occur only when uncertainty ceases,
further consumption levels have to be taken into account in addition to the starting ones.
They are average consumption levels.

2.3 Two n-dimensional linear spaces which are superposed from
a metric point of view

Let Φ j be a linear function such that it is possible to write

Φ
j : En → R. (2.5)

If t ∈ En then we write
t = t je j. (2.6)

Hence, it turns out to be
Φ

j(t) = t j, j = 1, . . . ,n. (2.7)

It follows that we obtain
Φ

j(ei) = δ
j

i , (2.8)

where δ
j

i is the Kronecker delta, so we have δ
j

i = 1 if i = j and δ
j

i = 0 if i ̸= j. Thus, it is
possible to show that {Φ j}, j = 1, . . . ,n, is a basis of En∗, where En∗ is the dual space of En.
This means that we write

Φ = u1Φ
1 +u2Φ

2 + . . .+unΦ
n, (2.9)

with Φ ∈ En∗. Let F be a linear function such that we write

F : En → R. (2.10)

We consequently obtain

F(x) = F(x je j) = x jF(e j), x ∈ En. (2.11)
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Given (2.7), it turns out to be

F(x) = F(e j)Φ
j(x) =

[
F(e j)Φ

j](x), x ∈ En, (2.12)

where (2.12) is valid for every x ∈ En. It follows that F and F(e j)Φ
j are linear functions

that coincide, so we write
F = F(e j)Φ

j, (2.13)

where it turns out to be F(e j) = u j ∈ R. We therefore say that {Φ j}, j = 1, . . . ,n, is a basis
of En∗. Its elements span En∗. Indeed, we write

Φ(x) = u1Φ
1(x)+u2Φ

2(x)+ . . .+unΦ
n(x) = u1 x1+u2 x2+ . . .+un xn, x ∈ En, (2.14)

with Φ ∈ En∗, where (2.14) denotes the scalar or inner product of two n-dimensional
vectors. The former is denoted by x = (x1,x2, . . . ,xn) ∈ En, whereas the latter is denoted by
u = (u1,u2, . . . ,un) ∈ En∗.

We have to show that Φ1,Φ2, . . . ,Φn are linearly independent. We suppose that it is
possible to write

α jΦ
j = 0, (2.15)

where it turns out to be α j ∈ R. From (2.15) it follows that we can write

α jΦ
j(x) = 0, ∀x ∈ En. (2.16)

In particular, if we choose x = ek then we write

α jΦ
j(ek) = αk = 0 (2.17)

because we refer ourselves to the expression given by (2.8). Since (2.16) is valid for every
x ∈ En, we observe that (2.17) is true for every e j ∈ B⊥

n , j = 1, . . . ,n. This means that we
obtain

α1 = α2 = . . .= αn = 0, (2.18)

so we prove that all linear functions of the set {Φ j} are linearly independent. They represent
a basis of En∗. We then write

dimEn = dimEn∗ = n. (2.19)

2.4 How to obtain all possible consumption levels

Let B⊥
n be an orthonormal basis of En. In general, it is possible to study n quantitative states

of the world of a contingent consumption plan inside of En because they coincide with n real
numbers. These n real numbers are the contravariant components of an n-dimensional vector
of En. If there is no uncertainty about n states of the world of a contingent consumption
plan then the real coefficients of each linear combination of n basis vectors belonging to B⊥

n
coincide with 0 or 1 only (see also [32]). Let A ⊂ En be the set of elements denoted by a.
They are n-dimensional vectors having their contravariant components all equal to 0 or 1
only. We write

a = a je j, (2.20)
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where if a j = 1 and ai = 0 (∀i ̸= j) then E j corresponding to e j is true, whereas all others
are false. Given n states of the world of a contingent consumption plan generically denoted
by E1,E2, . . . ,En, we note that A ⊂ En contains all the constituents of E1,E2, . . . ,En whose
number is at most equal to k = 2n. In general, each constituent of E1,E2, . . . ,En is nothing
but a state of the world obtained through the logical product concerning E1 or its negation
denoted by Ē1, E2 or its negation denoted by Ē2, . . . , En or its negation denoted by Ēn. This
product having n factors coincides with the arithmetic one. For instance,

E1E2 . . .En,

Ē1Ē2 . . . Ēn,

and
Ē1E2 . . .En

are products identifying some constituents of E1,E2, . . . ,En. In general, all possible con-
stituents of E1,E2, . . . ,En, whose number is equal to k ≤ 2n, give rise to a finite partition
of incompatible and exhaustive states of the world of a contingent consumption plan. In
particular, if E1,E2, . . . ,En are incompatible and exhaustive consumption levels associated
with a random good denoted by X then it turns out to be k = n. Hence, with respect to the
elements of A ⊂ En, it is possible to define the following linear function

F(a) = u jΦ
j(a) = u1 a1 +u2 a2 + . . .+un an, (2.21)

where it turns out to be F(a)∈ En∗. It represents the possible value for X which is associated
with a. In particular, we denote by u j the possible value for X which is associated with
e j to which a reduces when and only when E j is true. In general, (2.21) tells us that
consumption levels which are associated with the occurrence of different states of the world
of a contingent consumption plan are additive. From (2.21) and (2.8) it follows that it is
possible to write

F(ek) = u jΦ
j(ek) = u jδ

j
k = uk, (2.22)

with uk ∈ R. On the other hand, F is a linear map, so it is determined whenever we know
its value on basis elements. Hence, u j is a real number being determined by the decision-
maker. It objectively depends on her state of information and knowledge. Since a ∈ A is a
random vector, F(a) is a scalar or inner product representing all possible values for X as
the contravariant components of a ∈ A vary by taking 0 and 1 only. The two dual spaces
denoted by En and En∗ are superposed, so F(a) identifies homogeneous linear combinations.
The number of the possible and different values for F(a), a ∈ A , is overall equal to n. Thus,
it turns out to be

u1 ̸= u2 ̸= . . . ̸= un. (2.23)

We denote them by b1,b2, . . . ,bn, so we write

(u1 = b1) ̸= (u2 = b2) ̸= . . . ̸= (un = bn). (2.24)

On the other hand, they exactly correspond to x1,x2, . . . ,xn, so we observe bi = xi, i= 1, . . . ,n.
This is because if an orthonormal basis of En is considered then the contravariant and
covariant components of a same vector of En coincide. Thus, we write

Sr = {a ∈ A |F(a) = br}, (2.25)



34 2. Distributions of mass transferred on straight lines: reductions of dimension

so it turns out to be

A =
n⋃

r=1

Sr (2.26)

as well as
Sr ∩St = /0, r ̸= t. (2.27)

If we extend A to En then (2.21) is an expression of a hyperplane embedded in En. We
rewrite it in the following form

u1 a1 +u2 a2 + . . .+un an,

so different n-dimensional vectors denoted by a ∈ En give rise to different values for it
denoted by b1,b2, . . . ,bn. Each bi, i = 1, . . . ,n, represents a hyperplane of consumption.

2.5 Convex combinations of possible consumption levels

The set of n possible values for X is embedded in an n-dimensional linear space over R
provided with a quadratic metric (see also [8]). All its possible values can be expressed
by means of two different and possible values for it in the form of a convex combination
after transferring them on a one-dimensional straight line on which an origin, a unit of
length, and an orientation are chosen. Given two points denoted by A and B belonging to a
one-dimensional straight line and identifying two different states of the world of a contingent
consumption plan, every point P belonging to the same one-dimensional straight line and
identifying another state of the world of the same contingent consumption plan is expressed
by

P = tA+(1− t)B, (2.28)

where it turns out to be 0 ≤ t ≤ 1. We deal with a linear combination of two different points
associated with two different states of the world of the same contingent consumption plan.
It is a convex combination, so we note

t +(1− t) = 1. (2.29)

How to transfer all the n possible values for X on a one-dimensional straight line on
which an origin, a unit of length, and an orientation are chosen is proved by the following

Theorem 2. Let B⊥
n = {e1, . . . ,en} be an orthonormal basis of En and let b1,b2, . . . ,bn

be the possible values for a random good denoted by X . If each possible value for it is
obtained by means of a homogeneous linear combination of n states of the world of a
contingent consumption plan then every possible value for X is expressed, with respect to a
one-dimensional straight line, as a convex combination of two different and possible values
for X .

Proof. We firstly note that an n-dimensional located vector at the origin of En is entirely
determined by its end point. It is then possible to call an ordered n-tuple of real numbers
either a vector of En or a point of E n (affine space). It follows that En and E n are isomorphic.
This means that there exists a one-to-one correspondence between the vectors of En and the
points of E n. If we write

F(x) = u jΦ
j(x) = br, x ∈ En, (2.30)
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then it turns out to be F(x) ∈ En∗. This means that (2.30) is a hyperplane embedded in En.
It is also a hyperplane embedded in E n. On the other hand, if we write

F(a) = u jΦ
j(a) = br, a ∈ A , (2.31)

then it turns out to be F(a) ∈ En∗. This means that (2.31) is a hyperplane embedded in En.
It is also a hyperplane embedded in E n. We observe that (2.30) and (2.31) are characterized
by the same possible value for X . Let

u = u je j ∈ En (2.32)

be an n-dimensional vector and let ρ0 ∈ E n be that straight line whose geometric nature is
given by

{λ u |∀λ ∈ R}. (2.33)

The straight line given by (2.33) is orthogonal to all hyperplanes established by (2.30). They
are obtained as br varies, r = 1, . . . ,n. In particular, (2.33) is orthogonal to the hyperplane
given by F(x) = 0. It passes through the point of E n whose coordinates are all equal to 0.
It follows that (2.30) identifies a sheaf of parallel hyperplanes. Given two vectors of En

expressed by
x′ = λ

′ u+x′0 (2.34)

and
x′′ = λ

′′ u+x′′0, (2.35)

we note that the parallel components to the vector u ∈ En of the vectors x′ and x′′ are
respectively λ ′ u and λ ′′ u, whereas x′0 and x′′0 are the orthogonal components to u ∈ En of
x′ and x′′. We observe that (2.34) and (2.35) can be viewed as two n-dimensional located
vectors at the origin of En whose end points belong to two hyperplanes, where each of them
is expressed by (2.30). Their value is respectively given by br′ and br′′ , so it turns out to be

F(x′) =
〈
u, x′

〉
= br′ (2.36)

as well as
F(x′′) =

〈
u, x′′

〉
= br′′ . (2.37)

We have evidently

F(x′) =
〈
u, x′

〉
=
〈
u, λ

′ u+x′0
〉
= λ

′ ∥u∥2 +
〈
u, x′0

〉
= br′ (2.38)

as well as

F(x′′) =
〈
u, x′′

〉
=
〈
u, λ

′′ u+x′′0
〉
= λ

′′ ∥u∥2 +
〈
u, x′′0

〉
= br′′ . (2.39)

Since it turns out to be ⟨u, x′0⟩= 0 as well as ⟨u, x′′0⟩= 0, we note that it is possible to write

λ
′ ∥u∥2 = br′ (2.40)

and
λ
′′ ∥u∥2 = br′′ . (2.41)
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In general, all points of a hyperplane characterized by the same value denoted by br can be
summarized by using the intersection of it and the straight line denoted by ρ0 ∈ E n. Such an
intersection coincides with the real number given by

λ =
br

∥u∥2 . (2.42)

This means that the orthogonal component of the vectors x ∈ En and a ∈ A is insignificant
with respect to the straight line denoted by ρ0 ∈ E n. Hence, we refer ourselves to such a
line instead of different hyperplanes. It is consequently evident that every point belonging to
ρ0 ∈ E n can be expressed as a convex combination of two different points belonging to it.
Given three different possible values for X denoted by br′ , br′′ , and br′′′ , we write

x′1 = λ
′ u, (2.43)

x′′1 = λ
′′ u, (2.44)

and
x′′′1 = λ

′′′ u. (2.45)

It is then clear that it turns out to be F(x′1) = br′ , F(x′′1) = br′′ , F(x′′′1 ) = br′′′ . We obtain the
following expression

λ
′′ u = t λ

′ u+(1− t)λ
′′′ u, (2.46)

with 0 ≤ t ≤ 1. We take (2.42) into account, so we write

br′′ u = t br′ u+(1− t)br′′′ u (2.47)

after multiplying by ∥u∥2 both sides of (2.46). After dividing by u both sides of (2.47), we
write

br′′ = t br′ +(1− t)br′′′ , (2.48)

so it turns out to be
t =

br′′ −br′′′

br′ −br′′′
. (2.49)

We note that (2.48) shows the stated property concerning the one-dimensional points identi-
fying the possible values for X .

We note the following

Remark 12. There exists a one-to-one correspondence between the elements of a sheaf
of parallel hyperplanes and the points of intersection of them and a straight line denoted
by ρ0 ∈ E n. Given X , since the decision-maker does not know which possible value for
it belonging to I(X) will be true at the right time, she focuses on one of n axes of an
n-dimensional Cartesian coordinate system. They are pairwise orthogonal. She considers
all collinear vectors with respect to one of n basis vectors. Such collinear vectors give rise
to ρ0 ∈ E n, where ρ0 is orthogonal to all parallel hyperplanes under consideration. The
points of intersection of all these parallel hyperplanes and a straight line denoted by ρ0 ∈ E n

are real numbers transferred on a one-dimensional straight line on which an origin, a unit
of length, and an orientation are established. They coincide with all possible values for X
belonging to I(X). After focusing on another axis of n axes of an n-dimensional Cartesian
coordinate system, if the decision-maker considers all collinear vectors with respect to
another vector of n basis vectors then the same possible values for X belonging to I(X) are
obtained.
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Remark 13. The dual space of En denoted by En∗ contains all those random goods obtained
by considering all possible homogeneous linear combinations of n states of the world
generically denoted by E1,E2, . . . ,En of a contingent consumption plan. If we write

X = b1|E1|+b2|E2|+ . . .+bn|En|,

where it turns out to be

|Ei|=

{
1, if Ei is true
0, if Ei is false

for every i = 1, . . . ,n, then X is that random good such that its possible and different values
coincide with I(X) = {b1,b2, . . . ,bn}. They are found on distinct hyperplanes expressed by

bi ai = constant,

where b1,b2, . . . ,bn are coordinates of points of En∗, whereas a1,a2, . . . ,an are components
of vectors of En, with the values identifying each ai, i = 1, . . . ,n, that coincide with 0 or 1
only.

Remark 14. Since En is a linear space over R having a Euclidean structure, En and En∗

coincide. The contravariant and covariant components of a same n-dimensional vector
coincide because an orthonormal basis of En is considered. Points of En∗ and vectors
of En can be identified because the origin given by the n-tuple denoted by (0,0, . . . ,0)
has meaning in both of them. After noting that it turns out to be ui = bi, i = 1, . . . ,n,
we write bi = xi, i = 1, . . . ,n. This means that all possible values for X are given by
I(X) = {b1, . . . ,bn}= {x1, . . . ,xn}.

2.6 A reduction of dimension characterizing the budget set of
the decision-maker

2.6.1 Contravariant and covariant components of vectors and tensors

If X1 and X2 are two random goods, where the number of the possible values for each of
them is equal to n, then they identify two contingent consumption plans. Each contingent
consumption plan is uniquely individuated by an n-dimensional vector of En, where we have
dim En = n. Two contingent consumption plans identify a joint contingent consumption
plan as well. A joint contingent consumption plan is uniquely individuated by an affine
tensor of order 2 belonging to En ⊗En, where we have dim(En ⊗En) = n2. It is clear that it
turns out to be

dim En ̸= dim(En ⊗En),

where n ≥ 2 is an integer. Given an orthonormal basis of En, the contravariant components
of (1)x expressed by

(1)x = (1)x
i ei

uniquely represent the possible values for X1. We use the Einstein notation. There exists one
and only one set of contravariant components of (1)x with regard to an orthonormal basis of
En. Even though we use a contravariant notation, the contravariant and covariant components
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of a same vector of En coincide whenever an orthonormal basis of En is considered. The
same is true with regard to the contravariant components of (2)x expressed by

(2)x = (2)x
j e j

whose number is overall equal to n. Given

(1)p = (1)pi ei,

where the covariant components of (1)p identify all the masses associated with all possible
values for X1, all coherent summaries of the possible values for X1 denoted by P(X1) are
expressed by

P(X1) = (1)x
i
(1)pi . (2.50)

Each mass associated with a possible value for X1 can take all values between 0 and 1, end
points included, into account. The number of these values is infinite. Even though we use
a covariant notation, the contravariant and covariant components of a same vector of En

coincide whenever an orthonormal basis of En is considered. Given

(2)p = (2)p j e j,

where the covariant components of (2)p identify all the masses associated with all possible
values for X2, all coherent summaries of the possible values for X2 denoted by P(X2) are
given by

P(X2) = (2)x
i
(2)pi . (2.51)

Each mass associated with a possible value for X2 can take all values between 0 and 1, end
points included, into account. The number of these values is infinite. We note that P(X1)
and P(X2) are two scalar or inner products of two n-dimensional vectors belonging to the
same linear space over R. This is because En and En∗ coincide. Given the two affine tensors
of order 2 expressed by

T = (1)x
i
(2)x

j ei ⊗ e j

and
P = pi j ei ⊗ e j,

where each of them has n2 components, all coherent summaries of the possible values for
X1 X2 denoted by P(X1 X2) are expressed by

P(X1 X2) = (1)x
i
(2)x

j pi j. (2.52)

Each mass associated with a possible value for X1 X2 belonging to I(X1)× I(X2) can take
all values between 0 and 1, end points included, into account. The number of these values
is infinite. Given an orthonormal basis of En, the contravariant and covariant components
of a same affine tensor of order 2 coincide whenever a basis of En ⊗En is considered.
Accordingly, if we use a covariant notation then the components of T are expressed by the
same numbers. If we use a contravariant notation then the components of P are expressed
by the same numbers.
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2.6.2 A metric notion: α-product

Two marginal random goods denoted by X1 and X2 always give rise to a joint random
good denoted by X1 X2. All its possible values are obtained by considering the Cartesian
product of the possible values for X1 and X2. They belong to I(X1) = {(1)x

1, . . . , (1)x
n}

and I(X2) = {(2)x
1, . . . , (2)x

n} respectively, so their Cartesian product is given by I(X1)×
I(X2). The values of I(X1) and I(X2) coincide with the contravariant components of two
n-dimensional vectors. The covariant components of an affine tensor of order 2 represent
the joint probabilities of the joint distribution of X1 and X2. Their number is overall equal to
n2. We pass from n2 ordered pairs of numbers to 1 ordered pair of numbers by using the
notion of α-product between (1)x and (2)x. It is a scalar or inner product obtained by using
the joint probabilities denoted by pi j of the joint distribution of X1 and X2 together with the
contravariant components of (1)x and (2)x. For instance, from the table

random good 1
random good 2

0 4 5 Sum

0 0 0 0 0
2 0 0.1 0.2 0.3
3 0 0.5 0.2 0.7
Sum 0 0.6 0.4 1

it follows that it turns out to be P(X1 X2) = 11.8. Given the contravariant components of

(2)x identifying the following column vector0
4
5

 ,

its covariant components are expressed by

0 ·0+4 ·0+5 ·0 = 0,

0 ·0+4 ·0.1+5 ·0.2 = 1.4,

0 ·0+4 ·0.5+5 ·0.2 = 3,

so it is possible to write the following result〈0
2
3

 ,

 0
1.4
3

〉= ⟨(1)x, (2)x⟩α = P(X1 X2) = 11.8.

On the other hand, after calculating the covariant components of (1)x in a similar way, we
write 〈 0

1.7
1

 ,

0
4
5

〉= ⟨(1)x, (2)x⟩α = P(X1 X2) = 11.8.

It is clear that P(X1 X2) is a notion of a metric nature. Since we pass from n2 ordered pairs
to 1 ordered pair after using n2 non-negative masses, we write

(P(X1), P(X2))
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in order to identify P(X1 X2). This is because P(X1 X2) is always decomposed into two linear
previsions. The notion of α-norm is a particular case of the one of α-product. From the
table

random good 1
random good 1

0 2 3 Sum

0 0 0 0 0
2 0 0.3 0 0.3
3 0 0 0.7 0.7
Sum 0 0.3 0.7 1

it follows that it turns out to be ∥(1)x∥
2
α = P(X1 X1) = 7.5, whereas from the table

random good 2
random good 2

0 4 5 Sum

0 0 0 0 0
4 0 0.6 0 0.6
5 0 0 0.4 0.4
Sum 0 0.6 0.4 1

it follows that it is possible to write ∥(2)x∥
2
α = P(X2 X2) = 19.6.

2.6.3 Coherent summaries of nonparametric distributions of mass transferred
on straight lines

All the n states of the world of a contingent consumption plan are transferred on a one-
dimensional straight line on which an origin, a unit of length, and an orientation are chosen.
We observe a reduction of dimension because we pass from n to 1. We do not consider an
n-dimensional point referred to a random good, but we study a finite set of n one-dimensional
points. We do not deal with n masses associated with n possible states of the world of a
contingent consumption plan yet. We focus on the two-good assumption, so X1 and X2
are two marginal random goods. Each of them has n possible consumption levels. The n
possible values for each good under consideration are transferred on two one-dimensional
straight lines on which an origin, a same unit of length, and an orientation are established.
Such lines are the two axes of a two-dimensional Cartesian coordinate system.

The space where the decision-maker chooses is her budget set. If we take her budget
set into account then all masses associated with all possible consumption levels come into
play. Her budget set is an uncountable subset of a two-dimensional linear space over R.
Her budget set contains points whose number is infinite. It is a right triangle belonging to
the first quadrant of a two-dimensional Cartesian coordinate system. The point given by
(0,0) identifies its right angle, whereas the budget line whose slope is negative identifies its
hypotenuse. Her budget set contains infinite coherent bilinear previsions associated with
a joint random good denoted by X1 X2 and infinite coherent linear previsions associated
with two marginal random goods denoted by X1 and X2. Each bilinear prevision is denoted
by P(X1 X2), where P(X1 X2) is always decomposed into two linear previsions denoted by
P(X1) and P(X2) respectively. The decision-maker chooses one bilinear prevision denoted
by P(X1 X2) among infinite coherent bilinear previsions. This is her rational choice. Indeed,
she chooses a bundle of two random goods operationally identified with P(X1 X2).
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Since P(X1 X2) belongs to a two-dimensional convex set, we express it in the form given
by (P(X1), P(X2)). Accordingly, the decision-maker also chooses P(X1) and P(X2) because
P(X1 X2) is always decomposed into P(X1) and P(X2) respectively. Hence, we secondly
observe a reduction of dimension because we pass from 2 to 1. Indeed, we pass from
P(X1 X2), where P(X1 X2) is found inside of an uncountable subset of a two-dimensional
linear space over R, to P(X1) and P(X2), where P(X1) and P(X2) are found on two different
and mutually orthogonal one-dimensional straight lines. A joint distribution of mass gives
rise to a continuous subset of R×R. This is because all coherent previsions of a joint random
good are considered. They are obtained by taking all values between 0 and 1, end points
included, into account for each mass associated with a possible value for two random goods
which are jointly considered. The number of these values is infinite. Two nonparametric
marginal distributions of mass give rise to two continuous subsets of R, where each of them
identifies a line segment belonging to one of the two axes of a two-dimensional Cartesian
coordinate system. This is because all coherent previsions of marginal random goods are
considered. All coherent previsions of two marginal random goods identify the two catheti
of the right triangle under consideration. Such previsions are obtained by taking all values
between 0 and 1, end points included, into account for each mass associated with a possible
consumption level concerning a random good. The number of these values is infinite.

Each point of the budget set of the decision-maker is a bilinear and disaggregate measure
coinciding with a synthesized element of the Fréchet class.

2.6.4 The direct product of R and R

We note that R×R is the direct product of R and R, so R×R is a two-dimensional linear
space over R. The two-dimensional budget set of the decision-maker is an uncountable
subset of R×R consisting of points whose number is infinite. Two half-lines are firstly
considered instead of two one-dimensional straight lines. Each of them extends indefinitely
in a positive direction from zero before being restricted. Two line segments belonging to
these two half-lines are obtained whenever all coherent previsions of two marginal random
goods are taken into account.

Formally, we observe the set of all pairs denoted by (P+
0 (X1), P+

0 (X2)) whose first
component is an element P+

0 (X1) ∈ R+
0 and whose second component is an element

P+
0 (X2) ∈ R+

0 , where it turns out to be P+
0 (X1) ≥ 0 as well as P+

0 (X2) ≥ 0. The addi-
tion of such pairs works componentwise. Accordingly, if (P+

0 (X
′
1), P+

0 (X
′
2)) ∈ R+

0 ×R+
0

and (P+
0 (X

′′
1), P+

0 (X
′′
2)) ∈ R+

0 ×R+
0 then it is possible to write

(P+
0 (X

′
1), P+

0 (X
′
2))+(P+

0 (X
′′
1), P+

0 (X
′′
2)) = (P+

0 (X
′
1)+P+

0 (X
′′
1), P+

0 (X
′
2)+P+

0 (X
′′
2)).
(2.53)

If k ∈R, the product given by k (P+
0 (X

′
1), P+

0 (X
′
2)) is written in the following form expressed

by
k (P+

0 (X
′
1), P+

0 (X
′
2)) = (k P+

0 (X
′
1), k P+

0 (X
′
2)). (2.54)
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Chapter 3

Disaggregate and aggregate measures
identifying multiple goods

3.1 Introduction

3.1.1 Choices based on disaggregate and aggregate measures

Given the two-good assumption, the objects of decision-maker choice are of a bilinear
nature. They are studied by using bilinear measures. Such measures are firstly decomposed
into two linear measures inside of an uncountable subset of a two-dimensional linear space
over R. They are disaggregate measures. We are not interested in knowing their objective
elements only. We are interested in knowing their subjective elements as well. The decision-
maker chooses ordinary or random goods inside of her budget set, so it is also possible to
establish aggregate measures in order to study choices connected with multiple goods under
conditions of certainty or uncertainty and riskiness. Aggregate measures are based on what
the decision-maker chooses inside of her budget set. Their nature is bilinear in the case of
multiple goods of order 2. They are studied outside of her budget set.

3.1.2 A finite partition of mutually exclusive states of the world of a contingent
consumption plan

Given a family of n states of the world of a contingent consumption plan for which it is
certain that one and only one of them will be true at the right time, a random good denoted
by X and written in the form expressed by

X = x1 |E1|+ x2 |E2|+ . . .+ xn |En|,

where |Ei|, i = 1, . . . ,n, coincides with 0 or 1, expresses a finite partition of mutually
exclusive states of the world of a contingent consumption plan (see also [51]). If all possible
and different numbers belonging to I(X)= {x1,x2, . . . ,xn}, where we have x1 < x2 < .. . < xn,
are subjected to a change of origin obtained by using a same real constant then X continues
to be the same object from a randomness point of view.

A state of the world of a contingent consumption plan is not a measurable set, but it is a
well-determined proposition coinciding with a real number. It is specified in such a way that
a possible bet based upon it can be decided without question. The probability of a state of
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the world of a contingent consumption plan is not a first principle, but it is a practical notion
of a relative and subjective nature. Indeed, it is firstly necessary to take all the circumstances
which are known to be relevant at the time into account. These circumstances are secondly
evaluated by the decision-maker considering them. The probability of a state of the world of
a contingent consumption plan can be moved in whatever coherent way the decision-maker
likes whenever she distributes a unit mass of probability among the different elements of
a finite partition of them. Each random good can be assigned a nonparametric probability
distribution expressing the attitude shown by a given decision-maker with regard to every
uncertain or possible state of the world (elementary event) of a contingent consumption plan.
We say that uncertainty about a state of the world of a contingent consumption plan stands
for ignorance by the decision-maker (see also [37]). It depends on her incomplete state of
information and knowledge, so it is of a personalistic nature. For any given decision-maker,
uncertainty about a state of the world of a contingent consumption plan ceases only when she
receives sure information about it. We consider concrete probability distributions measuring
uncertainty (see also [60]). They are distributions of mass. They are discrete distributions
referred to objects whose variability has an origin that is not random, but it depends on the
variable state of information and knowledge connected with a given decision-maker.

3.2 Goods demanded by the decision-maker under different con-
ditions

3.2.1 Random goods demanded under conditions of uncertainty and riskiness

Let 1X and 2X be two marginal random goods, where each of them has n (with n > 2
which is an integer) possible values denoted by I(1X) = {(1)x

1, . . . , (1)x
n} and I(2X) =

{(2)x
1, . . . , (2)x

n}. Each of them has n possible alternatives whose nature is objective. Indeed,
such a nature is based on the state of information and knowledge associated with a given
decision-maker. The possible values for a marginal random good are summarized by means
of n non-negative masses. It turns out to be (1)x

1 < .. . < (1)x
n as well as (2)x

1 < .. . < (2)x
n,

so it is clear that we deal with two finite partitions of incompatible and exhaustive states
of the world of two contingent consumption plans, where each state of the world of one of
them is expressed by a real number. We write inf I(1X) = (1)x

1 and sup I(1X) = (1)x
n. We

observe inf I(2X) = (2)x
1 and sup I(2X) = (2)x

n.
What is actually demanded by the decision-maker for 1X and 2X coincides with their

mathematical expectation or prevision denoted by

P(1X) = (1)x
1
(1)p1 + . . .+ (1)x

n
(1)pn

and
P(2X) = (2)x

1
(2)p1 + . . .+ (2)x

n
(2)pn,

where it turns out to be

(1)p1 + . . .+ (1)pn = 1,

with 0 ≤ (1)pi ≤ 1, i = 1, . . . ,n, as well as

(2)p1 + . . .+ (2)pn = 1,

with 0 ≤ (2)p j ≤ 1, j = 1, . . . ,n.
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3.2.2 One-dimensional and two-dimensional convex sets

The possible values for 1X and 2X are found on two mutually orthogonal axes of a two-
dimensional Cartesian coordinate system. In particular, they are found on two half-lines. Two
separately considered random goods are denoted by 1X and 2X . They are jointly considered
as well, so they give rise to a joint random good denoted by 1X 2X . Two random goods
are always jointly considered inside of the budget set of the decision-maker. A coherent
prevision of 1X 2X is denoted by P(1X 2X). We denote by P the set of all coherent previsions
denoted by P connected with two random goods which are jointly considered. This set is
a two-dimensional convex set. Possible pairs of real numbers denoted by (P(1X), P(2X))
are the Cartesian coordinates of possible points of P . We always project the point denoted
by (P(1X), P(2X)) onto the two mutually orthogonal axes of a two-dimensional Cartesian
coordinate system whose intersection is given by the point (0,0). This is because we are also
interested in knowing all coherent previsions of each marginal random good. All coherent
previsions of each marginal random good identify two one-dimensional convex sets. The
two-dimensional budget set of the decision-maker is a right triangle belonging to the first
quadrant of a two-dimensional Cartesian coordinate system. The point given by (0,0) is
the vertex of its right angle. The budget line whose slope is negative coincides with its
hypotenuse. Its catheti are the two one-dimensional convex sets under consideration.

3.2.3 Ordinary goods demanded under claimed conditions of certainty

Given two ordinary goods having downward-sloping demand curves, the quantity of con-
sumption actually demanded for each of them by the decision-maker under claimed condi-
tions of certainty is an average quantity. It is denoted by (x1, x2), where the two numbers of
the list under consideration could also be equal. We write

x1 = x1
1 p1

1 + . . .+ xn
1 pn

1 (3.1)

and
x2 = x1

2 p1
2 + . . .+ xn

2 pn
2, (3.2)

where {pi
1} and {p j

2} are two sets of n non-negative masses whose sum is always equal
to 1 with regard to each of them. It is clear that n non-negative masses of each set under
consideration are finitely additive. The possible quantities of consumption for good 1
are expressed by {x1

1, . . . , x
n
1}, whereas the possible quantities of consumption for good 2

are given by {x1
2, . . . , x

n
2}. Actual situations are uncertain. The state of information and

knowledge associated with a given decision-maker is assumed to be incomplete at the time
of choice, so she finds herself in a condition of real ignorance. Faced with her current state
of information and knowledge, a fictitious certainty is handled. It follows that the logic of
prevision is actually involved 1. (see also [33]).

The decision-maker chooses a bilinear and disaggregate measure inside of her budget
set such that x1 and x2 are two linear measures coinciding with (3.1) and (3.2). Even though
all the masses into account are subjectively chosen, every evaluation being made by her is
in general carried out with all the attention of those who consider them as objective and, if

1See Chapter 1 with regard to n possible quantities of consumption for good 1 belonging to a closed
neighborhood of x1 and n possible quantities of consumption for good 2 belonging to a closed neighborhood of
x2. Two nonparametric marginal distributions of mass are accordingly estimated together with a nonparametric
joint distribution of mass before being summarized in such a way that (x1, x2) is actually chosen.
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necessary, with a greater sense of responsibility deriving from not having illusions regarding
their false objective nature.

Two ordinary goods are always jointly considered inside of the budget set of the decision-
maker. Given (x1, x2), the weighted average of n2 possible quantities of consumption for
good 1 and good 2 that are jointly considered is a synthesized element of the Fréchet class.
The decision-maker also chooses this synthesized element in addition to (x1, x2). She is
subjected to 2n−1 constraints in order to synthesize this element. They coincide with 2n−1
marginal masses. Each point of the budget set of the decision-maker is a weighted average
of n2 possible quantities of consumption for good 1 and good 2 that are jointly considered.
Degenerate averages can be obtained with respect to boundary points.

We note the following

Remark 15. Given two ordinary goods having downward-sloping demand curves, the
quantity of consumption actually demanded for each of them by the decision-maker under
claimed conditions of certainty is an average quantity. It always depends on objective and
subjective elements. Prices and income are objective elements, whereas the masses which
are estimated by the decision-maker in order to summarize her incomplete information and
knowledge are subjective elements. The quantity of consumption actually demanded for
each good under consideration coincides with a linear index. It is obtained by decomposing
a bilinear measure into two linear measures inside of her budget set.

Remark 16. The possible quantities of consumption concerning each good under consid-
eration together with their masses identify nonparametric distributions of mass which are
estimated and summarized by the decision-maker inside of her budget set. Starting from a
decision-maker choice which is observed inside of the budget set of the decision-maker, we
can identify the possible quantities of consumption for good 1 and good 2 which have had an
effect on it. Whenever the possible quantities of consumption for each good are summarized
by means of n non-negative masses, we obtain what the decision-maker actually chooses
with respect to it inside of her budget set.

It is clear that the objects of decision-maker choice studied inside of her budget set have
to maximize her utility, where the latter is of a subjective nature (see also [49]). These
objects of decision-maker choice identify her optimal choices (see also [1]). They are
always relative to a specific state of information and knowledge associated with a given
decision-maker. It is assumed to be incomplete at the time of choice.

3.3 Unit of measurement

Since P is bilinear, it is linear with respect to each of its arguments. We denote them by
1X and 2X . After decomposing P into two linear measures, additivity and convexity of P
involve that P is linear. In particular, let 1X be a random good whose possible values are of
a monetary nature. It is possible to observe

P(a 1X) = aP(1X)

for every real number denoted by a, so P is a weighted average whose nature is linear. Given
this character of P, it is possible to extend the definition of P(1X) to the case in which 1X is
a random good whose possible values are not of a monetary nature. Indeed, it is possible to
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choose a coefficient denoted by a such that a 1X is a random good whose possible values are
of a monetary nature. For instance, in the case of weight expressed by means of kilogram,
we could take a = dollar/kg = $/kg into account. Since it turns out to be

P(1X) = (1/a)P(a 1X),

it is clear that P(1X) is well-defined. Indeed, P(1X) is invariant with respect to the choice of
a.

On the other hand, if 1X is a random good whose possible values are pure numbers then
it is possible to choose a coefficient denoted by a such that the possible values for a 1X are
of a monetary nature. For instance, we could take a = dollar = $ into account. The same is
true with regard to 2X . It is therefore possible to extend the definition of P(2X) to the case
in which 2X is a random good whose possible values are not of a monetary nature. It is also
possible to extend the definition of P(2X) to the case in which 2X is a random good whose
possible values are pure numbers.

With regard to a bundle of two ordinary goods being chosen by the decision-maker
inside of her budget set, any weighted average of n2 possible consumption levels is always
decomposed into two weighted averages of n possible consumption levels. The non-negative
weights associated with each of them have their sum being equal to 1. Possible consumption
levels for good 1 and good 2 can always be viewed as possible quantities whose nature is
monetary.

Since each point of the budget set of the decision-maker is a synthesized element of the
Fréchet class, it is possible to handle ordinal utility functions associated with bundles of two
random or ordinary goods whose form is concave or convex or linear. Accordingly, two
different scales can be considered. They are the monetary scale and the one of utility.

3.4 An extension of the notion of bundle of goods: a consumption
matrix

Given (x1, x2), (3.1) and (3.2) are obtained by decomposing inside of the budget set of the
decision-maker the following bilinear measure expressed by

x1 x2 = x1
1 x1

2 p11 + . . .+ xn
1 xn

2 pnn, (3.3)

where it turns out to be

p11 + p12 + . . .+ p1n + . . .+ pnn = 1, (3.4)

with 0 ≤ pi j ≤ 1, i, j = 1, . . . ,n. We deal with n2 joint masses characterizing (3.3). We can
think of putting them into a two-way table having the same number of rows and columns.
We consider a two-way table having n rows and n columns. Such masses are mathematically
the covariant components of an affine tensor of order 2. They identify, together with
{x1

1, . . . , x
n
1}×{x1

2, . . . , x
n
2}, a point belonging to a two-dimensional convex set. It is the

budget set of the decision-maker. Any rational choice being made by her is found inside
of this convex set. All the n2 joint masses are subjectively estimated in such a way that the
marginal masses identifying the sets {pi

1} and {p j
2} remain unchanged. It being understood

that the marginal masses always remain unchanged whenever (x1, x2) is chosen, we also
consider

x1 x1 = x1
1 x1

1 p11 + . . .+ xn
1 xn

1 pnn, (3.5)
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where all off-diagonal masses are equal to 0,

x2 x2 = x1
2 x1

2 p11 + . . .+ xn
2 xn

2 pnn, (3.6)

where all off-diagonal masses are equal to 0, and

x2 x1 = x1
2 x1

1 p11 + . . .+ xn
2 xn

1 pnn. (3.7)

It follows that we write a symmetric matrix of order 2 denoted by

C =

[
x1 x1 x1 x2
x2 x1 x2 x2

]
. (3.8)

We call it a consumption matrix. Whenever we deal with x1 x1 and x2 x2, the slope of the
corresponding budget line is equal to −1. Indeed, the two catheti of the right triangle under
consideration are equal.

We establish the following

Definition 8. Given two marginal goods, a consumption matrix is a square matrix of order
2 containing four bilinear measures, where each of them can be decomposed into two linear
measures inside of the budget set of the decision-maker.

We actually decompose x1 x2 into two linear measures inside of the budget set of the
decision-maker. Since we want to release the notion of bundle of two goods from the one of
ordered pair of quantities of consumption being demanded by the decision-maker, we obtain
four measures coinciding with all elements of the square matrix of order 2 denoted by C.
An aggregate measure of a bilinear nature is given by

x12 =

∣∣∣∣x1 x1 x1 x2
x2 x1 x2 x2

∣∣∣∣= x1 x1 x2 x2 − x1 x2 x2 x1. (3.9)

It represents the average quantity of consumption of a double and stand-alone good consisting
of good 1 and good 2, where good 1 and good 2 are expressed by using the same unit of
measurement. A double good is nothing but a multiple good of order 2, where good 1 and
good 2 are its components. By definition, a multiple good of order 2 is such that it has only
two marginal goods as its components. There accordingly exist multilinear relationships
between good 1 and good 2. We study them.

3.4.1 Another consumption matrix: changes of origin

Given x1, it is possible to consider a change of origin expressed by

d1 = (x1
1 − x1) p1

1 + . . .+(xn
1 − x1) pn

1, (3.10)

where it turns out to be (xi
1 − x1) = di

1, i = 1, . . . ,n. All deviations from x1 of the possible
quantities of consumption associated with good 1 are considered in this way. Given x2, it is
similarly possible to consider another change of origin given by

d2 = (x1
2 − x2) p1

2 + . . .+(xn
2 − x2) pn

2, (3.11)
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where it turns out to be (x j
2 − x2) = d j

2, j = 1, . . . ,n. All deviations from x2 of the possible
quantities of consumption associated with good 2 are considered in this way. It follows that
it is possible to obtain

d1 d2 = d1
1 d1

2 p11 + . . .+ dn
1 dn

2 pnn, (3.12)

where we have
p11 + p12 + . . .+ p1n + . . .+ pnn = 1, (3.13)

with 0 ≤ pi j ≤ 1, i, j = 1, . . . ,n. We also consider

d1 d1 = d1
1 d1

1 p11 + . . .+ dn
1 dn

1 pnn, (3.14)

d2 d2 = d1
2 d1

2 p11 + . . .+ dn
2 dn

2 pnn, (3.15)

d2 d1 = d1
2 d1

1 p11 + . . .+ dn
2 dn

1 pnn. (3.16)

It is clear that all marginal and joint masses do not change. They are the same masses that
have been established by the decision-maker inside of her budget set with regard to the
possible quantities of consumption connected with x1, x2, x1 x2. We write another symmetric
matrix of order 2 denoted by

C′ =

[
d1 d1 d1 d2
d2 d1 d2 d2

]
. (3.17)

It contains four bilinear measures. They are considered outside of the budget set of the
decision-maker. It follows that another aggregate measure of a bilinear nature expressing
the variability of consumption of a multiple good of order 2 is given by

d12 =

∣∣∣∣d1 d1 d1 d2
d2 d1 d2 d2

∣∣∣∣= d1 d1 d2 d2 −d1 d2 d2 d1. (3.18)

It is based on two changes of origin. A change of origin with regard to the possible quantities
of consumption associated with good 1 is considered. A change of origin with regard to the
possible quantities of consumption associated with good 2 is considered.

3.5 How to check the weak axiom of revealed preference by using
aggregate measures

3.5.1 The Bravais-Pearson correlation coefficient associated with each bundle
of two goods being chosen by the decision-maker inside of her budget
set

Given (x1, x2), we consider two aggregate measures based on changes of origin. The former
is expressed by (3.18), whereas the latter coincides with

d̂12 =

∣∣∣∣d1 d1 0
0 d2 d2

∣∣∣∣ . (3.19)

After some mathematical steps, we write

−1 ≤

1−

∣∣∣∣d1 d1 d1 d2
d2 d1 d2 d2

∣∣∣∣∣∣∣∣d1 d1 0
0 d2 d2

∣∣∣∣


1/2

≤ 1, (3.20)
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where it is possible to realize that the expression within the parentheses coincides with the
Bravais-Pearson correlation coefficient intrinsically referred to a double and stand-alone
good consisting of good 1 and good 2. We write it in the following form given by

r12 =
d1 d2√

d1 d1
√

d2 d2
. (3.21)

It is a measure of a linear correlation between two sets of possible quantities of consumption
for good 1 and good 2. It geometrically measures the angle between two n-dimensional
vectors of En, where the components of each of them represent all deviations from a mean
value. Since the budget set of the decision-maker does not change whenever we multiply all
prices and income by t > 0, her optimal choice from her budget set cannot change either.
Moreover, if we multiply all possible quantities of consumption for good 1 and good 2
connected with x1 and x2 by t > 0 then the Bravais-Pearson correlation coefficient does
not change either. It is possible to consider metric measures inside of linear spaces and
subspaces over R furnished with a measure in order to describe choices being made by the
decision-maker. Choices being made by her are studied by using disaggregate and aggregate
measures inside of linear spaces and subspaces over R. Such structures have different
dimensions. On the other hand, everything can vectorially be studied from a statistical and
economic point of view provided one takes a sufficient number of dimensions.

We note the following

Remark 17. Whenever we consider a bilinear measure that is decomposed into two linear
measures, we refer ourselves to a continuous subset of a two-dimensional linear space over R
coinciding with the budget set of the decision-maker. Such a bilinear measure is decomposed
into two linear measures inside of a convex set coinciding with her budget set. Her budget
set is generated by two one-dimensional straight lines on which an origin, a same unit of
length, and an orientation are established. They identify two mutually orthogonal axes of a
two-dimensional Cartesian coordinate system. With regard to two one-dimensional straight
lines, we consider two “reductions of dimension”. We firstly pass from 2 to 1. Indeed,
a point of a two-dimensional convex set is always decomposed into two points of two
one-dimensional convex sets. We secondly pass from n to 1. Indeed, if the decision-maker
synthesizes n possible quantities of consumption corresponding to n one-dimensional points
by using n non-negative masses subjectively chosen then she obtains a real number with
respect to each axis. Strictly speaking, she obtains a real number with respect to each line
segment belonging to each half-line.

Remark 18. Whenever we consider an aggregate measure referred to a multiple good of
order 2, we take four bilinear measures into account. Each of them derives from an element
belonging to a linear space that is a subset of an n2-dimensional linear space over R denoted
by En ⊗En. Each of them is obtained by considering the covariant components of an affine
tensor of order 2. Such components coincide with the n2 joint masses that are estimated
by the decision-maker. After establishing the marginal masses, she has to take them into
account in order to estimate n2 joint masses. The aggregate measure under consideration
coincides with the determinant of a square matrix of order 2. It is a real number obtained
by considering a bilinear function. The two columns of the matrix under consideration
are two column vectors, where each of them has two components expressed by two real
numbers. Whenever we consider an aggregate measure, we go away from the budget set of
the decision-maker.
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Remark 19. The Bravais-Pearson correlation coefficient is intrinsically based on the bilinear
object being chosen by the decision-maker inside of her budget set. Whenever we use the
Bravais-Pearson correlation coefficient, we go away from the budget set of the decision-
maker.

3.5.2 A violation of the weak axiom of revealed preference

We say that (x1, x2) is demanded by the decision-maker at prices (b1, b2). She is modeled as
being a consumer. We denote by r12 the Bravais-Pearson correlation coefficient associated
with (x1, x2). Such a coefficient is expressed by (3.21). To fix ideas, we say that the quantity
of consumption that is demanded by her for good 1 is found on the horizontal axis, whereas
the quantity of consumption that is demanded for good 2 is found on the vertical one. If
good 1 becomes more expensive and good 2 becomes less expensive then the budget line
changes its negative slope. We also say that the budget line changes its negative slope
because the state of information and knowledge associated with a given decision-maker
changes. The budget line becomes steeper. It follows that (y1, y2) is the bundle of goods
being demanded by her at prices (q1, q2), where it is evident that it turns out to be q1 > b1
and q2 < b2. The Bravais-Pearson correlation coefficient associated with (y1, y2), where we
have (y1, y2) ̸= (x1, x2), is denoted by

r′12 =
d′

1 d′
2√

d′
1 d′

1

√
d′

2 d′
2
. (3.22)

We have
d′

1 = (y1
1 − y1) p′11 + . . .+(yn

1 − y1) p′n1 (3.23)

as well as
d′

2 = (y1
2 − y2) p′12 + . . .+(yn

2 − y2) p′n2, (3.24)

where the possible quantities of consumption for good 1 at price q1 and connected with y1
are expressed by {y1

1, . . . , y
n
1}, whereas the possible quantities of consumption for good 2 at

price q2 and connected with y2 are given by {y1
2, . . . , y

n
2}. It is clear that {p′i1} and {p′ j

2} are
two sets of n non-negative masses whose sum is always equal to 1 with regard to each of
them 2.

If a violation of the weak axiom of revealed preference is observed then the quantity
of consumption that is demanded for good 1 and denoted by y1 does not decrease, but
it increases. Moreover, the quantity of consumption that is demanded for good 2 and
denoted by y2 does not increase, but it decreases. We observe a violation of the principle
according to which the demand curve for each of the two goods under consideration slopes
downwards. This implies that if a negative number is used to show r12 because there exists
an inverse relationship between quantity of consumption associated with a good and its
price then a positive number has to be used to show r′12. This is because we have to consider
a change of sign. On the other hand, each point of the budget set of the decision-maker
is a synthesized element of the Fréchet class. Accordingly, she can estimate all the joint
probabilities expressing the variability of consumption of the two marginal goods under
consideration based on her variable state of information and knowledge.

2See Chapter 1 with regard to n possible quantities of consumption for good 1 belonging to a closed
neighborhood of y1 and n possible quantities of consumption for good 2 belonging to a closed neighborhood of
y2. Two nonparametric marginal distributions of mass are consequently estimated together with a nonparametric
joint distribution of mass before being summarized in such a way that (y1, y2) is actually chosen.
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3.5.3 Decision-maker choices that satisfy the weak axiom of revealed prefer-
ence

We say that (x1, x2) is demanded by the decision-maker at prices (b1, b2). We denote by r12
the Bravais-Pearson correlation coefficient associated with it. Such a coefficient is expressed
by (3.21). If good 1 becomes less expensive and good 2 becomes more expensive then the
budget line changes its negative slope. It becomes flatter. Let (y1, y2) be the bundle of goods
being demanded by her at prices (q1, q2), where it is clear that it turns out to be q1 < b1
and q2 > b2. The Bravais-Pearson correlation coefficient associated with (y1, y2), where we
have (y1, y2) ̸= (x1, x2), is denoted by (3.22).

If the weak axiom of revealed preference is satisfied then the quantity of consumption
that is demanded for good 1 and denoted by y1 does not decrease, but it increases. Moreover,
the quantity of consumption that is demanded for good 2 and denoted by y2 does not increase,
but it decreases. Accordingly, we do not observe a violation of the principle according to
which the demand curve for each of the two goods under consideration slopes downwards.
This implies that if a negative number is used to show r12 then a negative number has to be
used to show r′12. This is because we do not need to consider a change of sign.

3.5.4 A summary of consumption data based on subjective elements as well

After observing several choices of bundles of goods at different prices, we obtain different
measures in order to check the weak axiom of revealed preference (see also [27]). We are
indirectly interested in knowing how much it costs the decision-maker to purchase each
bundle of two goods at each corresponding set of prices. This is because we want to consider
subjective elements as well. They are always connected with choices of bundles of two
goods being made by her at different prices. Thus, we are directly interested in knowing
the sign of each correlation coefficient associated with each observation characterized by a
given set of prices and quantities of consumption demanded by the decision-maker. Each
observation identifies a choice being made by her inside of her budget set.

In general, the chain of direct comparisons can be of any finite length. Assumptions
about how the decision-maker’s preferences work tell us that any two bundles of goods can
directly be compared. Hence, to say that any two bundles of goods can directly be compared
means that the decision-maker can choose between any two given bundles of goods. Any
two bundles of goods can directly be compared for a reason of a metric nature. For instance,
let (x1, x2) be the consumption bundle which is demanded when prices are (c1, c2). Let
(y1, y2) be another consumption bundle such that we write the following expression

c1 x1 + c2 x2 ≥ c1 y1 + c2 y2

having a metric nature. If the decision-maker is choosing the most preferred bundle she can
afford then (x1, x2) is strictly preferred to (y1, y2). It is strictly preferred to (y1, y2) for a
reason of a metric nature.

In particular, we observe the same sign expressed by the minus symbol referred to each
correlation coefficient whenever the decision-maker chooses the best things she can afford.
We conversely observe different signs referred to all correlation coefficients that have been
calculated whenever she does not choose the best things she can afford. All choices being
made by her are not coherent with revealed preference theory (see also [3]).
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3.6 Other variability measures: mean quadratic differences

A marginal distribution of 1X , where 1X is a random good, can be interpreted as a joint
distribution of 1X and 2X = ϕ. For instance, from the table

1X
2X = ϕ

1 1 1 Sum

0 0 0 0 0
2 0 0.3 0 0.3
3 0 0 0.7 0.7
Sum 0 0.3 0.7 1

it follows that it turns out to be P(1X) = P(1X 2X) = P(2X 1X) = 2.7. Since we have
P(1X 1X) = 7.5 and P(2X 2X) = 1, the variability of consumption of 1X can be expressed by

σ
2
1X =

∣∣∣∣P(1X 1X) = 7.5 P(1X 2X) = 2.7
P(2X 1X) = 2.7 P(2X 2X) = 1

∣∣∣∣= 0.21.

The variability of consumption of 1X is processed outside of the budget set of the decision-
maker, whereas P(1X) is actually chosen by her inside of her budget set. If P(1X) is chosen
by her inside of her budget set then 1X is associated with another random good whose
possible values are all different. This is because they identify a finite partition of states
of the world of a contingent consumption plan. 1X can also be associated with 1X itself.
The variability of consumption of 1X is processed on the basis of what is actually chosen
by her inside of her budget set. A nonparametric distribution of mass characterizing a
marginal random good denoted by 1X is summarized by using the notion of α-norm of an
antisymmetric tensor of order 2 denoted by (1) f (see Chapter 4). A measure of variability of
consumption of 1X is obtained by calculating the α-norm of (1) f denoted by ∥(1) f ∥2

α . The
relation between the mean quadratic difference of 1X given by

2
∆

2(1X) = ∥(1) f ∥2
α =

1
2

∣∣∣∣∣2∥(1)x∥2
α 2 (1)x̄

2 (1)x̄ 2

∣∣∣∣∣ ,
where (1)x̄ has all equal its contravariant components because it vectorially denotes the
expected value of 1X , and its standard deviation has been established by Corrado Gini. We
consider the square of it, so we write

2
∆

2(1X) = 2σ
2
1X .

The linear mean quadratic difference of X12 given by

2
L∆

2(X12) = ∥(1)d− (2)d∥
2
α = ∥(1)d∥

2
α +∥(2)d∥

2
α −2⟨(1)d, (2)d⟩α

is obtained by using a linear and quadratic metric (see also [14]). It is clear that X12 is a
multiple random good of order 2. The non-linear (multilinear) mean quadratic difference of
X12 expressed by

2
NL∆

2(X12) =
32

3!

[
∥(1)d∥

2
α ∥(2)d∥

2
α −

(
⟨(1)d, (2)d⟩α

)2
]
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is obtained by using a non-linear and quadratic metric (see also [48]). All possible values
identifying (1)d represent deviations from a mean value. All possible values identifying (2)d
represent deviations from a mean value. After observing that

r12 =
⟨(1)d, (2)d⟩α

∥(1)d∥α ∥(2)d∥α

is the measure of correlation with respect to X12 whose possible values for its components
denoted by 1X and 2X are subjected to changes of origin, it turns out to be

2
NL∆

2(X12) =
3
2
∥(1)d∥

2
α ∥(2)d∥

2
α

(
1− r2

12
)
.

3.7 Multiple physical goods of order 2: a numerical example
dealing with real data

For convenience, we consider a simplified dataset whose real observations are only two. The
state of information and knowledge associated with a given decision-maker is assumed to be
incomplete at the time of choice. From the following table

Observation c1 c2 x1 x2

1 4 5 2 3
2 6 3 1.5 4

we note that the prices of the two single physical goods under consideration are denoted by
c1 and c2, whereas the quantities actually chosen by the decision-maker inside of her budget
set are denoted by x1 and x2. These quantities are associated with two different kinds of
cheese. These two different kinds of cheese are respectively good 1 and good 2. With regard
to the first observation, a joint distribution of mass is estimated. We estimate it by taking into
account that our goal is also to check the weak axiom of revealed preference. We estimate it
by taking two logical criteria into account. They obey the rules of the logic of prevision as
well as the ones of ordinary logic. The logic of prevision is involved whenever the state of
information and knowledge associated with a given decision-maker is incomplete. Given
a finite number of possible alternatives, such a logic admits an infinite number of values
connected with each non-negative mass. Conversely, ordinary logic admits only two values
associated with each non-negative mass, either true = 1 or false = 0, whenever the state
of information and knowledge associated with a given decision-maker is assumed to be
complete. If ignorance ceases then a consumption level is not uncertain or possible any
more, but it is either true or false 3. From the following table

3Two types of logical reasoning can separately be handled. Given n possible consumption levels belonging
to a set whose nature is objective, if we want to obtain their coherent synthesis then a deductive reasoning takes
place. On the other hand, given an observed quantity contained in the dataset under consideration, if we pass
from n possible consumption levels (belonging to a closed neighborhood of the observed quantity into account)
to their coherent synthesis coinciding with this observed quantity then a deductive reasoning still takes place. In
general, a deductive reasoning always uses n non-negative and finitely additive masses, where each of them
can take infinite values between 0 and 1, end points included, into account. It is not necessary that one of n
possible alternatives coincides with their synthesis. Real situations where the state of information and knowledge
associated with a given decision-maker is incomplete at the time of choice are therefore dealt with by the logic
of prevision. Conversely, if we pass from an observed value contained in the dataset under consideration to n
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good 1
good 2

0 2 3 4 Sum

0 0 0 0 0 0
1 0 0 0 1/3 1/3
2 0 0 1/3 0 1/3
3 0 1/3 0 0 1/3
Sum 0 1/3 1/3 1/3 1

it turns out to be x1 x2 = x2 x1 = 5.33, x1 = 2, x2 = 3. From the following table

good 1
good 1

0 1 2 3 Sum

0 0 0 0 0 0
1 0 1/3 0 0 1/3
2 0 0 1/3 0 1/3
3 0 0 0 1/3 1/3
Sum 0 1/3 1/3 1/3 1

it is possible to write x1 x1 = 4.67. All off-diagonal elements have to be equal to 0. The
slope of the corresponding budget line is equal to −1. With regard to the budget set of the
decision-maker containing points whose number is infinite, each joint probability can take
all values from 0 to 1, end points included, into account. Conversely, how to estimate x1 x1
is constrained. From the following table

good 2
good 2

0 2 3 4 Sum

0 0 0 0 0 0
2 0 1/3 0 0 1/3
3 0 0 1/3 0 1/3
4 0 0 0 1/3 1/3
Sum 0 1/3 1/3 1/3 1

determined consumption levels (belonging to a closed neighborhood of the observed quantity into account) then
an inductive reasoning takes place. This reasoning does not characterize real situations, but it characterizes ideal
situations where the state of information and knowledge associated with a given decision-maker is assumed to
be complete at the time of choice. Thus, it always uses n masses such that n−1 masses are coherently equal
to 0, whereas only one mass of n masses is coherently equal to 1. Ordinary logic is consequently involved, so
degenerate distributions of mass to be summarized always appear. Since linear spaces and subspaces over R
are taken into account to study bound choices, infinite ordered n-tuples of real numbers (belonging to a closed
neighborhood of the observed quantity under consideration) can be determined by the decision-maker before
transferring them on a one-dimensional straight line on which an origin, a unit of length, and an orientation are
chosen. Each of them identifies n outcomes such that only one alternative expressed by a real number is true.
All others are false. It is true because it is objectively observed inside of her budget set under ideal conditions
of certainty. This number is therefore that value appearing in the dataset under consideration. Hence, it is
absolutely necessary that one of n alternatives coincides with the observed value contained in the dataset into
account. In this section, if the incompleteness of the state of information and knowledge associated with a given
decision-maker ceases then her bound choice does not change. This means that new piece of information later
acquired in such a way that there is no ignorance any more is unimportant with regard to her bound choice.
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it is possible to obtain x2 x2 = 9.67, so we write

x12 =

∣∣∣∣4.67 5.33
5.33 9.67

∣∣∣∣= 16.75.

Our simplified dataset contains pure numbers, so 16.75 represents the average quantity of
consumption referred to a multiple physical good of order 2. The two single physical goods
which are the components of this multiple physical good of order 2 are not fused together
from a physical point of view. If this happens then we obtain another single physical good.
Conversely, we want to obtain a multiple physical good of order 2 whose components are
two single physical goods. A multiple physical good of order 2 is a portfolio containing
two single physical goods which give rise to an aggregate good. It is viewed to be as a
stand-alone good from a conceptual point of view. It does not live from a material point of
view. Conversely, its components live from a material point of view.

With regard to the second observation, a joint distribution of mass is estimated. We
estimate it by taking two logical criteria into account. We estimate it by taking into account
that our goal is also to check the weak axiom of revealed preference. From the following
table

good 1
good 2

0 3 4 5 Sum

0 0 0 0 0 0
0.5 0 0 0 1/3 1/3
1.5 0 0 1/3 0 1/3
2.5 0 1/3 0 0 1/3
Sum 0 1/3 1/3 1/3 1

it turns out to be x1 x2 = x2 x1 = 5.33, x1 = 1.5, x2 = 4. From the following table

good 1
good 1

0 0.5 1.5 2.5 Sum

0 0 0 0 0 0
0.5 0 1/3 0 0 1/3
1.5 0 0 1/3 0 1/3
2.5 0 0 0 1/3 1/3
Sum 0 1/3 1/3 1/3 1

it is possible to write x1 x1 = 2.917. All off-diagonal elements have to be equal to 0. From
the following table

good 2
good 2

0 3 4 5 Sum

0 0 0 0 0 0
3 0 1/3 0 0 1/3
4 0 0 1/3 0 1/3
5 0 0 0 1/3 1/3
Sum 0 1/3 1/3 1/3 1



3.7 Multiple physical goods of order 2: a numerical example dealing with real data 57

it is possible to obtain x2 x2 = 16.67, so we write

x12 =

∣∣∣∣2.917 5.33
5.33 16.67

∣∣∣∣= 20.21749.

It is clear that 20.21749 represents the average quantity of consumption referred to a multiple
physical good of order 2. This quantity has been obtained by considering the quantities
actually chosen by the decision-maker inside of her budget set characterized by a specific
pair of prices. If we consider changes of origin then it is possible to study the variability of
consumption referred to a multiple physical good of order 2. It is also possible to check the
weak axiom of revealed preference. From the following table

Observation c1 c2 x1 x2 x12 d12 r12

1 4 5 2 3 16.75 0 - 1
2 6 3 1.5 4 20.21749 0 - 1

it follows that it is possible to consider aggregate measures as well. We calculate some
aggregate measures. They are x12, d12, and r12. The weak axiom of revealed preference is
satisfied. Choices connected with two single physical goods are rational. They are optimal
choices of a relative nature 4. Accordingly, multiple choices connected with a multiple
physical good of order 2 are rational as well. They are optimal choices of a relative nature
as well.

4Optimal choices are always referred to the variable state of information and knowledge associated with a
given decision-maker. Their nature is therefore relative. Since actual situations are uncertain, a less arbitrary
origin is considered. By studying average quantities, the possibility that bound choices are relative to a specific
state of information and knowledge associated with a given decision-maker is handled. Indeed, variations in
the total amount of money the decision-maker has to spend could happen. On the other hand, risks of external
origin determining variations in her income could occur as well. Hence, optimal choices coincide with average
quantities. They intrinsically depend on the notion of prevision consisting in distributing among all the possible
alternatives into account subjective expectations and sensations identified with non-negative and finitely additive
masses. Every marginal prevision treated inside of the budget set of the decision-maker is not less than the
lower bound of the set of possible values under consideration, nor greater than the upper bound. Every marginal
choice studied inside of her budget set is intrinsically a value that is found between these two bounds.
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Chapter 4

Certainties equivalent to a multiple
random good

4.1 Introduction

4.1.1 A contingent consumption plan

In this chapter, the investor is modeled as being a consumer. It is not money alone that
matters, but it is the average consumption that money can buy that is the ultimate good
being chosen by her. A state of the world of a contingent consumption plan is a proposition
identified with a real number such that, by betting on it, it is possible to establish whether it
is true or false (see also [35]).

Let X be a random good. Let I(X) = {x1,x2, . . . ,xm} be the set of the possible values for
X , where we have x1 < x2 < .. . < xm because I(X) identifies a finite partition of m mutually
exclusive states of the world of a contingent consumption plan. We write inf I(X) = x1

and sup I(X) = xm. The elements of I(X) are of a monetary nature. They give rise to an
m-dimensional consumption vector denoted by

(x1,x2, . . . ,xm).

It expresses all possible quantitative states of the world of a contingent consumption plan.
It expresses m possible alternatives. It is possible to verify that it is contained in a closed
structure coinciding with an m-dimensional linear space over R (see also [86]). It is a space
(space of alternatives) furnished with a measure. We denote it by Em. It has a Euclidean
structure. A located vector at the origin of Em is entirely determined by its end point.
Accordingly, an ordered m-tuple of real numbers can be called either a point of E m or a
vector of Em, where E m and Em are isomorphic. It is clear that E m is an affine space whose
elements are m-dimensional points.

Uncertainty about a state of the world of a contingent consumption plan is of a personal-
istic nature in the sense that it ceases only when the investor receives sure information about
it (see also [23]).

It is clear that m possible alternatives whose nature is objective have to be summarized
by using m non-negative masses. The probability associated with a state of the world of a
contingent consumption plan is the degree of belief in the occurrence of it attributed by a
given investor at a given instant and with a given set of information and knowledge. We
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think of probability as being a mass. It does not exist independently of the evaluations the
investor makes of it mentally or instinctively. Such evaluations can be based on objective
elements such as a judgment of equal probability expressing symmetry or a judgment based
on statistical frequencies (see also [36]). Nevertheless, they do not exist outside of the
investor’s judgment whose nature is always subjective.

A function defined on the set of all possible quantitative states of the world of a con-
tingent consumption plan coincides with X . Its domain expressed by I(X) is a finite
collection of possible and elementary events, where each of them is generically denoted by
Ei, i = 1, . . . ,m. We write

X = x1|E1|+ x2|E2|+ . . .+ xm|Em|,

where we have

|Ei|=

{
1, if Ei is true
0, if Ei is false

for every i = 1, . . . ,m.
One and only one of all possible quantitative states of the world of a contingent con-

sumption plan belonging to I(X) will be true at the right time (see also [34]). We establish
the following

Definition 9. Let idR : R→ R be the identity function on R, where R is a linear space over
itself. Given m incompatible and exhaustive states of the world of a contingent consumption
plan, a random good denoted by X is the restriction of idR to I(X) = {x1,x2, . . . ,xm} ⊂ R
such that it turns out to be idR|I(X) : I(X)→ R.

We consider the finest possible partition into elementary events. They are not further
subdivisible for the purposes of the problem under consideration. We do not consider other
events. That alternative which will turn out to be verified “a posteriori” is nothing but
a random point contained in I(X). It expresses everything there is to be said whenever
uncertainty ceases (see also [58]).

We say that a nonparametric probability distribution can vary from investor to investor.
It can vary in accordance with the state of information and knowledge associated with each
investor. Each investor is faced with m masses denoted by p1, p2, . . . , pm such that it is
possible to write p1 + p2 + . . .+ pm = 1, where we have 0 ≤ p j ≤ 1, j = 1, . . . ,m. They are
located on m real numbers denoted by x1,x2, . . . ,xm.

Each single state of the world of a contingent consumption plan could uniquely be
expressed by infinite real numbers, so we could also write

{x1 +a, x2 +a, . . . , xm +a},

where a ∈ R is an arbitrary constant. We consider infinite changes of origin in this way.
It is possible to consider different quantities from a geometric point of view. They are
nevertheless the same quantity from a randomness point of view because states of the world
and probabilities associated with them do not change.

4.1.2 Contravariant and covariant indices associated with a contingent con-
sumption plan

Let Ei, i = 1, . . . ,m, be a generic state of the world of a contingent consumption plan. We
establish the following
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Definition 10. Let X be a random good whose possible values are of a monetary nature.
The investor is in doubt between m values for X, so x1 is the return on X if E1 occurs with
probability denoted by p1, . . . , xm is the return on X if Em occurs with probability denoted
by pm, that is, x1 is the wealth that X yields and that can be spent by her if E1 occurs with
probability denoted by p1, . . . , xm is the wealth that X yields and that can be spent by her if
Em occurs with probability denoted by pm.

We write
(x1, p1),(x2, p2), . . . ,(xm, pm)

in order to identify a nonparametric probability distribution associated with the possible
values for X . We use covariant indices together with contravariant ones. We wish to
distinguish possibility from probability in this way. We use contravariant indices to identify
the possible values for X whose nature is objective. We use covariant indices to denote the
corresponding probabilities that are subjectively assigned to them.

The conditions of coherence impose no limits on the probabilities that the investor may
assign, except that the sum of all non-negative masses under consideration has to be equal to
1 (see also [10]).

4.2 Logical and probabilistic aspects concerning an ordered pair
of contingent consumption plans

Let B⊥
m =

{
ei | i ∈ Im = {1, . . . ,m}

}
be an orthonormal basis of Em. Two random goods

denoted by 1X and 2X always give rise to a joint random good denoted by 1X 2X . All its
possible monetary values are obtained by considering the Cartesian product of the possible
values for 1X and 2X belonging to I(1X) and I(2X) respectively. Two random goods are
logically independent if and only if there are m2 possible values for 1X 2X . Let (1X , 2X) be
an ordered pair of random goods (see also [67]). We are faced with two different partitions,
where each of them is characterized by m incompatible and exhaustive events. After
considering I(1X) = {(1)x

1, . . . , (1)x
m} and I(2X) = {(2)x

1, . . . , (2)x
m}, where it is possible

to put (1)x
1 = (2)x

1 = 0, we establish the following

Definition 11. All states of the world of an ordered pair of contingent consumption plans
are obtained by considering the Cartesian product of the possible values for two logically
independent random goods denoted by 1X and 2X. Such random goods give rise to a joint
random good denoted by 1X 2X. It is a function written in the form 1X 2X : I(1X)× I(2X)→
R, where it turns out to be 1X 2X((1)x

i, (2)x
j) = (1)x

i
(2)x

j, with i, j = 1, . . . ,m.

We are evidently faced with

1X 2X = (1)x
1
(2)x

1|(1)E1||(2)E1|+ . . .+ (1)x
m
(2)x

m|(1)Em||(2)Em|, (4.1)

where it is possible to write

|(1)Ei||(2)E j|=

{
1, if (1)Ei and (2)E j are both true

0, otherwise
(4.2)

for every i, j = 1, . . . ,m.
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We geometrically consider (1)x ∈ Em as well as (2)x ∈ Em. We write

(1)x = (1)x
iei

and

(2)x = (2)x
iei,

where we use the Einstein summation convention. We note that (1)x and (2)x are uniquely
represented with respect to B⊥

m . There exists one and only one m-tuple of real numbers
coinciding with the set {(1)x

i} and satisfying the first linear combination appearing. There
also exists one and only one m-tuple of real numbers coinciding with the set {(2)x

i} and
satisfying the second linear combination appearing. We associate the contravariant com-
ponents of (1)x and (2)x with the possible values for 1X 2X expressed in the same unit of
measurement (see also [75]). We note that 1X and 2X are two marginal random goods with
regard to 1X 2X .

The covariant components of an affine tensor of order 2 represent the joint probabilities
of the joint distribution of 1X and 2X . We associate in an orderly manner the covariant
components of an affine tensor of order 2 with the joint probabilities of the joint distribution
of 1X and 2X . Their number is overall equal to m2. We write

p = pi j, (4.3)

with p ∈ Em ⊗Em. Since it turns out to be
m

∑
i=1

m

∑
j=1

pi j = 1, (4.4)

all probabilistic evaluations being made by the investor are coherent. Conditions of coherence
pertain to the meaning of probability. They do not pertain to motives of a mathematical
nature (see also [72]).

We note the following

Remark 20. Given an orthonormal basis of Em, the contravariant and covariant components
of a same vector of Em coincide. They represent the same numbers. Accordingly, we could
use lower indices instead of upper ones and vice versa.

4.2.1 Metric aspects concerning an ordered pair of contingent consumption
plans

We say that an ordered pair of random goods denoted by (1X , 2X) is represented by an
ordered triple of geometric entities denoted by(

(1)x, (2)x, pi j

)
, (4.5)

with (i, j) ∈ Im × Im.
We consider the notion of α-product between (1)x and (2)x in order to establish a

quadratic metric on Em. It is a scalar or inner product obtained by using the joint probabilities
of the joint distribution of 1X and 2X together with the contravariant components of (1)x and

(2)x. We write
⟨(1)x, (2)x⟩α = (1)x

i
(2)x

j pi j = (1)x
i
(2)xi, (4.6)
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where

(2)x
j pi j = (2)xi (4.7)

is a vector homography by means of which we pass from (2)x
j to (2)xi by using pi j. For

instance, from the table

random good 1
random good 2

0 10 11 Sum

0 0 0 0 0
6 0 0.3 0.1 0.4
7 0 0.1 0.5 0.6
Sum 0 0.4 0.6 1

it follows that it turns out to be P(1X 2X) = 70.1. Given the contravariant components of

(2)x identifying the following column vector

 0
10
11

 ,

its covariant components are expressed by

0 ·0+10 ·0+11 ·0 = 0,

0 ·0+10 ·0.3+11 ·0.1 = 4.1,

0 ·0+10 ·0.1+11 ·0.5 = 6.5,

so it is possible to write the following result

〈0
6
7

 ,

 0
4.1
6.5

〉= ⟨(1)x, (2)x⟩α = P(1X 2X) = 70.1.

On the other hand, after calculating the covariant components of (1)x in a similar way, we
write 〈 0

2.5
4.1

 ,

 0
10
11

〉= ⟨(1)x, (2)x⟩α = P(1X 2X) = 70.1.

From the notion of α-product it follows the one of α-norm of an m-dimensional vector. We
write

∥(1)x∥
2
α = ⟨(1)x, (1)x⟩α = (1)x

i
(1)x

i pii = (1)x
i
(1)xi (4.8)

as well as
∥(2)x∥

2
α = ⟨(2)x, (2)x⟩α = (2)x

i
(2)x

i pii = (2)x
i
(2)xi (4.9)

because the joint probabilities of the particular joint distributions under consideration whose
covariant indices are not equal coincide with 0. For instance, from the table
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random good 1
random good 1

0 6 7 Sum

0 0 0 0 0
6 0 0.4 0 0.4
7 0 0 0.6 0.6
Sum 0 0.4 0.6 1

it follows that it turns out to be〈0
6
7

 ,

 0
2.4
4.2

〉= ⟨(1)x, (1)x⟩α = ∥(1)x∥
2
α = 43.8.

Also, it is possible to show two metric inequalities. The Schwarz’s α-generalized inequality
is given by ∣∣∣⟨(1)x, (2)x⟩α

∣∣∣≤ ∥(1)x∥α∥(2)x∥α , (4.10)

whereas the α-triangle inequality is expressed by

∥(1)x+ (2)x∥α ≤ ∥(1)x∥α +∥(2)x∥α . (4.11)

From (4.10) it follows the notion of α-cosine, so it is possible to write

cos((1)x, (2)x)α =
⟨(1)x, (2)x⟩α

∥(1)x∥α∥(2)x∥α

. (4.12)

4.2.2 The relative and subjective nature of the joint probabilities associated
with an ordered pair of contingent consumption plans

The covariant components of an affine tensor of order 2 belonging to Em ⊗Em are joint
probabilities whose nature is relative (see also [17]). They depend on the variable group
of circumstances supposed to be of interest to the occurrence of a specific state of the
world characterizing 1X 2X . Such circumstances are known at the time. They generally
vary from instant to instant. It follows that probabilities vary according to the state of
information and knowledge associated with a given investor which can be enriched by the
flow of information and results that are learned or observed with respect to more or less
similar cases. We note that each new piece of information is able to modify the evaluations
of probability being made by the investor according to Bayes’ rule. The nature of the
joint probabilities is also subjective in the sense that a probability concerning a state of
the world of a contingent consumption plan and depending on the state of information and
knowledge associated with a given investor is intrinsically personalized. It follows that
different investors having the same state of information and knowledge could give a greater
attention to certain circumstances than to others. The state of information and knowledge
associated with a given investor can also modify the set of all possible quantitative states
of the world of a contingent consumption plan, where each state of the world of it is a real
number. Accordingly, the absolute value of each real number can change.

Since it turns out to be
dim(Em ⊗Em) = m2,
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there exists an isomorphism between Em ⊗Em and Em2
. We can think of locating m2 non-

negative masses on m2 points, where each point of them expressed by ((1)x
i, (2)x

j) is a real
number denoted by (1)x

i
(2)x

j, i, j = 1, . . . ,m. We write

(x, p)⊂ Em2
,

where x and p are two m2-dimensional vectors.
If we write

⟨(1)x, (2)x⟩α = (1)x
i
(2)x

j pi j = P(1X 2X)

then we observe a “reduction of dimension” because we pass from m2 points to 1 point, where
the latter is always studied together with its Cartesian coordinates. After transferring the
possible values for 1X and 2X on two one-dimensional straight lines, each coherent prevision
of 1X 2X denoted by P(1X 2X) is a point of a two-dimensional convex set coinciding with
the budget set of the investor (see also [16]). This point is denoted by (P(1X), P(2X)). The
budget set of the investor is a continuous subset of R×R. All coherent previsions of 1X 2X
are obtained by taking all the values between 0 and 1, end points included, into account
for each mass of m2 masses. The number of such values is infinite. P(1X 2X) is always
decomposed into two linear measures, P(1X) and P(2X) respectively. Each of them shows a
“reduction of dimension” because we pass from m one-dimensional points which are found
on a one-dimensional straight line to 1 one-dimensional point which is found on the same
line. All coherent previsions of 1X and 2X are obtained by taking all the values between 0
and 1, end points included, into account for each mass of m masses. The number of such
values is infinite.

4.3 Two contingent consumption plans jointly considered that
are independent of the notion of ordered pair

We note the following

Remark 21. Let 1X and 2X be two marginal random goods, where each of them is char-
acterized by m possible values whose nature is objective. The two m-dimensional vectors,
whose contravariant components represent the possible values for two random goods which
are separately considered, are assumed to be linearly independent. The possible values for
two logically independent random goods which are jointly considered have to be represented
by the contravariant components of a tensor of order 2. It is an antisymmetric tensor of order
2 whenever we are interested in handling a multiple random good of order 2 denoted by X12,
where its components are expressed by 1X and 2X respectively.

We pass from an ordered pair of contingent consumption plans to two contingent
consumption plans which are jointly considered regardless of the notion of ordered pair. We
have to consider a multiple random good of order 2 (double random good) denoted by

X12 = {1X , 2X} (4.13)

whose possible values coincide with the contravariant components of an antisymmetric
tensor of order 2. Given the marginal probabilities of 1X and 2X , after choosing m2 joint
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probabilities connected with 1X 2X , it is necessary to consider four joint distributions
characterizing 1X 1X , 1X 2X , 2X 1X , 2X 2X , with

1X 1X : I(1X)× I(1X)→ R, (4.14)

2X 2X : I(2X)× I(2X)→ R, (4.15)

2X 1X : I(2X)× I(1X)→ R, (4.16)

in order to release X12 from the notion of ordered pair of contingent consumption plans.
We note that 1X and 2X are not put near unlike what happens when we jointly consider iX
and jX , where we have i, j = 1,2. We can think of putting the m2 joint probabilities into a
two-way table having m rows and m columns. Each nonparametric probability distribution
of a marginal random good is viewed to be as a particular joint distribution. This is because
all off-diagonal joint probabilities of the two-way table under consideration coincide with 0.
It is possible to show that the mathematical expectation of iX jX , with i, j = 1,2, is always
bilinear. This is because it is separately linear in each marginal random good. We prove the
following

Theorem 3. The mathematical expectation of X12 = {1X , 2X} denoted by P(X12) coincides
with the determinant of a square matrix of order 2. Each element of such a determinant
is a real number coinciding with the mathematical expectation of iX jX , where we have
i, j = 1,2.

Proof. An affine tensor of order 2 representing the possible values for 1X 2X , where 1X 2X
corresponds to (1X , 2X), is written in the form

T = (1)x⊗ (2)x = (1)x
i
(2)x

jei ⊗ e j. (4.17)

An affine tensor of order 2 representing the possible values for 2X 1X , where 2X 1X corre-
sponds to (2X , 1X), is conversely written in the form

T = (2)x⊗ (1)x = (2)x
j
(1)x

ie j ⊗ ei. (4.18)

We wrote a same affine tensor of order 2 denoted by T whose m2 contravariant components
are not the same. If we pass from (4.17) to (4.18) then we note that the contravariant
components whose upper indices are equal do not change. If we pass from (4.17) to (4.18)
then we note that the contravariant components whose upper indices are not equal change.
It follows that we write an antisymmetric tensor of order 2 in the form

T = ∑
i< j

(
(1)x

i
(2)x

j − (1)x
j
(2)x

i
)

ei ⊗ e j (4.19)

because we have to consider (4.17) and (4.18) together. We wrote i < j under the summation
symbol because if it turns out to be i = j then every contravariant component inside paren-
theses is equal to 0. Hence, we denote by 12x an antisymmetric tensor of order 2 identifying
X12. We write

12x(i j) =

∣∣∣∣∣∣(1)x
i

(1)x
j

(2)x
i

(2)x
j

∣∣∣∣∣∣= (1)x
i
(2)x

j − (1)x
j
(2)x

i (4.20)
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in order to identify the strict contravariant components of it. We have i < j. The number of
such components is overall equal to (

m
2

)
.

The corresponding strict covariant components of 12x are given by

12x(i j) =

∣∣∣∣∣∣(1)xi (1)x j

(2)xi (2)x j

∣∣∣∣∣∣=
∣∣∣∣∣∣(1)x

j p ji (1)x
i pi j

(2)x
j p ji (2)x

i pi j

∣∣∣∣∣∣ , (4.21)

where we have i < j. We do not compute the scalar value of (4.21). The number of the strict
contravariant and covariant components of 12x is absolutely unimportant. We always obtain
the same outcome independently of such a number. We put together (4.20) and (4.21), where
(4.20) and (4.21) contain all strict contravariant and covariant components of 12x at the same
time. We always put together (4.20) and (4.21) in the same way. We always associate (1)x

i

with (1)xi, (1)x
j with (2)x j, (2)x

i with (1)xi, (2)x
j with (2)x j. After putting together (4.20) and

(4.21), whose structure is evidently the one of two determinants because we are considering
multilinear matters, we obtain different single terms (monomials). It follows that a variable
index appearing twice in a monomial implies summation of it over all values of the index
(hence, every time it is possible to obtain a polynomial by using the Einstein notation). On
the other hand, all strict contravariant and covariant components of 12x are simultaneously
identified with two determinants because, in general, the determinant of a square matrix is
the most exemplary multilinear relationship as well as a linear combination of basis vectors
is the most exemplary linear relationship. We obtain the mathematical expectation of X12
given by

∥12x∥2
α =

∣∣∣∣∣∣ ∥(1)x∥
2
α ⟨(1)x, (2)x⟩α

⟨(2)x, (1)x⟩α ∥(2)x∥
2
α

∣∣∣∣∣∣= ∥(1)x∥
2
α∥(2)x∥

2
α −

(
⟨(1)x, (2)x⟩α

)2
, (4.22)

where we observe
⟨(1)x, (2)x⟩α = ⟨(2)x, (1)x⟩α . (4.23)

By putting together (4.20) and (4.21), we are always faced with four joint distributions
characterizing 1X 1X , 1X 2X , 2X 1X , and 2X 2X that are all summarized. We write

∥12x∥2
α = P(X12)> 0, (4.24)

where it turns out to be

P(X12) =

∣∣∣∣∣∣ ∥(1)x∥
2
α ⟨(1)x, (2)x⟩α

⟨(2)x, (1)x⟩α ∥(2)x∥
2
α

∣∣∣∣∣∣
=

∣∣∣∣∣∣(1)x
i
(1)x

i p(11)
ii = (1)x

i
(1)xi (1)x

j
(2)x

i p(12)
i j = (1)x

j
(2)x j

(2)x
i
(1)x

j p(21)
ji = (2)x

i
(1)xi (2)x

j
(2)x

j p(22)
j j = (2)x

j
(2)x j

∣∣∣∣∣∣ .
(4.25)

We note that p(11) is the tensor of all joint probabilities associated with ((1)x, (1)x). The
same is true for all others contained in (4.25). It is possible to observe that in general it turns
out to be

P(1X 2X) ̸= P(X12). (4.26)
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We finally write

P(X12) =

∣∣∣∣∣∣P(1X 1X) P(1X 2X)

P(2X 1X) P(2X 2X)

∣∣∣∣∣∣ , (4.27)

where the determinant of the square matrix of order 2 under consideration is a bilinear
function of the columns of it.

Given 1X and 2X and their coherent previsions denoted by

P(1X) = (1)x
1
(1)p1 + . . .+ (1)x

m
(1)pm

and
P(2X) = (2)x

1
(2)p1 + . . .+ (2)x

m
(2)pm,

where it turns out to be

(1)p1 + . . .+ (1)pm = 1

as well as

(2)p1 + . . .+ (2)pm = 1,

with 0 ≤ (1)pi ≤ 1, 0 ≤ (2)p j ≤ 1, i, j = 1, . . . ,m, it is possible to consider all deviations
from P(1X) and P(2X) of the possible values for 1X and 2X . We are evidently faced with
the marginal distributions of the joint distribution of 1X and 2X (see also [78]). We prove
the following

Theorem 4. The variance of X12 = {1X , 2X} denoted by Var(X12) coincides with the
determinant of a square matrix of order 2. Each element of such a determinant is a real
number coinciding with the variance of 1X and 2X , and with their covariance.

Proof. All deviations from P(1X) and P(2X) of the possible values for 1X and 2X are
translations. They are changes of origin. It is possible to write

∥12d∥2
α =

∣∣∣∣∣ ∥(1)d∥
2
α ⟨(1)d, (2)d⟩α

⟨(2)d, (1)d⟩α ∥(2)d∥
2
α

∣∣∣∣∣= ∥(1)d∥
2
α∥(2)d∥

2
α −

(
⟨(1)d, (2)d⟩α

)2
,

(4.28)

where 12d is an antisymmetric tensor of order 2 representing X12 from a logical point of
view. We are faced with changes of origin of the possible values for 1X and 2X . We write

∥12d∥2
α = Var(X12) = σ

2
X12

. (4.29)

We note that it turns out to be

⟨(1)d, (2)d⟩α = ⟨(2)d, (1)d⟩α = Cov(1X , 2X) = Cov(2X , 1X), (4.30)

so it is possible to write

Var(X12) =

∣∣∣∣ Var(1X) Cov(1X , 2X)
Cov(2X , 1X) Var(2X)

∣∣∣∣ . (4.31)

If we are faced with the variance of X12 then 1X and 2X are fused together. In general, if we
compute only the covariance of 1X and 2X (in addition to the variance of each of them) then
they are simply put near.
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We note the following

Remark 22. Given X12, P(X12) is coherent in the same way as P(1X), P(2X), P(1X 2X) =
P(2X 1X), where P(X12) and P(1X 2X) = P(2X 1X) are both of them bilinear indices. P(X12)
is an aggregate index, whereas P(1X 2X) = P(2X 1X) is a disaggregate index.

Remark 23. The origin of the variability of X12 is not standardized, but it depends on the
variable state of information and knowledge associated with a given investor. All deviations
from P(1X) and P(2X) of the possible values for 1X and 2X depend on her variable state of
information and knowledge.

4.4 The budget set of the investor

Given the two-good assumption, the objects of investor choice are of a bilinear nature. We
consider two mutually orthogonal axes of a two-dimensional Cartesian coordinate system on
which an origin, a same unit of length, and an orientation are established. All the m2 possible
states of the world of two contingent consumption plans which are jointly considered belong
to a finite subset of a two-dimensional Cartesian coordinate system, where each axis of it
contains m possible states of the world of a contingent consumption plan. It is possible
to consider two half-lines, where each of them extends indefinitely in a positive direction
from zero before being restricted. Only a joint distribution at a time is considered inside
of the budget set of the investor. We obtain a bilinear measure whenever we summarize
it. It is a synthesized element of the Fréchet class. We consider all coherent previsions of
a joint random good. All coherent previsions of a joint random good denoted by 1X 2X
are expressed by P(1X 2X). They are disaggregate and bilinear measures, so P(1X 2X) is
always decomposed into two coherent previsions of two marginal random goods denoted by
P(1X) and P(2X) respectively. All coherent previsions of a joint random good identify a
two-dimensional convex set denoted by P ⊂ R×R. It is a right triangle belong to the first
quadrant of a two-dimensional Cartesian coordinate system. Its catheti meet at the point
denoted by (0,0). Its hypotenuse is the budget line identifying the budget set of the investor.
It is a hyperplane embedded in a two-dimensional Cartesian coordinate system. It does not
separate any point P of P from the set Q = I(1X)× I(2X) of all possible points for 1X and
2X belonging to I(1X) and I(2X) respectively. Also, it does not separate P(1X) from I(1X),
nor P(2X) from I(2X). Given the marginal previsions of 1X and 2X denoted by P(1X) and
P(2X), the budget constraint of the investor is an inequality expressed by

c1 P(1X)+ c2 P(2X)≤ c.

It is characterized by three strictly positive real numbers. They are the two objective prices, c1
and c2, of the two goods under consideration besides the amount of money she has to spend.
The latter is denoted by c. The two objective prices of the two goods under consideration
identify the negative slope of the budget line. The two objective prices identify the two real
coefficients expressing the slope of a hyperplane embedded in a two-dimensional Cartesian
coordinate system. This means it makes sense to consider the possible values for 1X , 2X ,
and 1X 2X . Their nature is objective. We deal with two continuous goods because what the
investor actually chooses inside of her budget set is an average quantity of consumption
associated with each of them. Two one-dimensional convex sets are identified because the
two-dimensional convex set coinciding with the budget set of the investor contains infinite
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coherent previsions of a bilinear nature, where each of them is always decomposed into
two previsions of a linear nature. Two one-dimensional convex sets coincide with two line
segments belonging to the two axes of a two-dimensional Cartesian coordinate system. Each
average quantity of consumption associated with random good 1 and random good 2 does
not depend on objective elements only, but it depends on subjective elements as well.

We multiply c1, c2, c by a positive number. The investor divides her relative monetary
wealth given by

c1

c1 + c2
(4.32)

and c2

c1 + c2
(4.33)

between the two random goods denoted by 1X and 2X . It follows that it turns out to be

c1

c1 + c2
+

c2

c1 + c2
= 1. (4.34)

The budget set of the investor does not change. She always chooses one and only one of the
points of P from her budget set. All points of P are admissible in terms of coherence of P.
We write c1

c1 + c2
P(1X)+

c2

c1 + c2
P(2X)≤ c

c1 + c2
(4.35)

whenever we deal with a bilinear measure that is decomposed into two linear measures. The
left-hand side of (4.35) is a weighted average of the two expected returns on 1X and 2X .

4.4.1 To go away from the budget set of the investor: changes of origin

Let 1X and 2X be two random goods coinciding with two risky assets. Given

y = µ1 (1)d+µ2 (2)d, (4.36)

with µ1 =
c1

c1+c2
∈ R and µ2 =

c2
c1+c2

∈ R, it is possible to obtain, outside of the budget set
of the investor, the following expression given by

∥y∥2
α = ∥µ1 (1)d+µ2 (2)d∥

2
α = (µ1)

2 ∥(1)d∥
2
α +2µ1 µ2⟨(1)d, (2)d⟩α +(µ2)

2 ∥(2)d∥
2
α .

(4.37)
We focus on the riskiness of the components of X12 only, where 1X and 2X are the compo-
nents of X12. This is because we use a linear metric.

We establish the following

Definition 12. We call linear metric the expression given by (4.37). Since it is also possible
to write ∥(1)d− (2)d∥

2
α = ∥(1)d∥

2
α +∥(2)d∥

2
α −2⟨(1)d, (2)d⟩α , it derives from the notion of

α-distance between the two components of X12 denoted by 1X and 2X whose possible values
are subjected to two changes of origin.

We note the following

Remark 24. Whenever we consider a linear and quadratic metric, we are faced with a
joint distribution only. Such a distribution depends on the notion of ordered pair of random
goods.
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We establish the following

Definition 13. We call non-linear (multilinear) metric the expression given by (4.28). It is
the area of a 2-parallelepiped whose edges are two marginal random goods having their
possible values that are subjected to two changes of origin. The strict components of 12d
are the coordinates of such edges denoted by (1)d and (2)d.

By using (4.28), where (4.28) is an aggregate measure of a bilinear nature, it is possible
to obtain the Bravais-Pearson correlation coefficient. We firstly write

∥12d̂∥2
α =

∣∣∣∣∣∥(1)d∥2
α 0

0 ∥(2)d∥
2
α

∣∣∣∣∣ . (4.38)

After some mathematical steps, we obtain

−1 ≤

(
1− ∥12d∥2

α

∥12d̂∥2
α

)1/2

≤ 1, (4.39)

where it is possible to realize that the expression within the parentheses coincides with
the Bravais-Pearson correlation coefficient intrinsically referred to X12. We write it in the
following form expressed by

r12 =
⟨(1)d, (2)d⟩α

∥(1)d∥α ∥(2)d∥α

. (4.40)

4.5 Uncertainty and riskiness: probability and cardinal utility
connected with multiple random goods of order 2

Since Em ⊗Em is isomorphic to Em2
, it is possible to transfer all the m2 possible states

of the world of two contingent consumption plans jointly considered identifying a joint
random good on a one-dimensional straight line on which an origin, a unit of length, and an
orientation are established. We deal with four joint random goods. We deal with four joint
distributions, where each of them can be considered inside of the budget set of the investor.
We go away from the budget set of the investor. We transfer four joint distributions on a
one-dimensional straight line on which an origin, a unit of length, and an orientation are
chosen.

Any distribution of mass is completely characterized by its mathematical expectation
and variance, where the latter is a measure of the riskiness of the wealth distribution under
consideration (see also [41]). Both mathematical expectation and variance of X12 have
been obtained by means of the notion of α-norm of an antisymmetric tensor of order 2.
Accordingly, in general, they are both of them greater than zero. If the investor estimates
all joint probabilities of 1X 2X in such a way that there exists an inverse linear relationship
between random good 1 and random good 2 then a higher mathematical expectation of
X12 is good in her opinion, other things being equal, and a higher variance or standard
deviation is bad. She is averse to risk. Her continuous utility function denoted by u(x) is
a strictly increasing and concave function, where its slope gets flatter as wealth increases
(see also [38]). The form and extent of the aversion to risk which is caught by the utility
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function under consideration will depend on her temperament, her current mood, and some
other circumstance. This function is graphically represented outside of the budget set of the
investor by using two mutually orthogonal axes of a two-dimensional Cartesian coordinate
system on which an origin, a same unit of length, and an orientation are established (see
also [88]). It follows that we have (1)x

i
(2)x

j, i, j = 1, . . . ,m, together with their masses
on the horizontal axis. We have consequently u((1)x

i
(2)x

j) together with their masses on
the vertical one. We are evidently faced with m2 masses located on u(x) as well as on
two mutually orthogonal axes. We have also to consider (1)x

i
(1)x

i and u((1)x
i
(1)x

i) together
with m2 masses as well as (2)x

i
(2)x

i and u((2)x
i
(2)x

i) together with m2 masses. It is clear
that (2)x

j
(1)x

i, j, i = 1, . . . ,m, together with their masses on the horizontal axis as well as
u((2)x

j
(1)x

i) together with their masses on the vertical one give rise to the same values as

(1)x
i
(2)x

j and u((1)x
i
(2)x

j). Each possible value that is considered on the horizontal axis of a
two-dimensional Cartesian coordinate system is expressed by using the arithmetic product
of two values associated with two contingent consumption plans which are separately
considered. Accordingly, all coherent arithmetic means are considered. They transfer on a
one-dimensional straight line all coherent α-products.

We note the following

Remark 25. Let u(x) be the utility function identifying a risk-averse investor. It is considered
outside of the budget set of the investor. This function lives inside of a two-dimensional
Cartesian coordinate system. All masses characterizing each joint distribution which is
considered in order to release X12 from the notion of ordered pair of contingent consumption
plans are located on some points of its diagram. They identify different one-dimensional
convex sets as joint probabilities of every joint distribution vary in the interval from 0 to 1
by taking all the values between 0 and 1, end points included, into account. The number of
these values is infinite. There are different one-dimensional convex sets on the horizontal
axis as well as different one-dimensional convex sets on the vertical one. All marginal
probabilities of every marginal distribution under consideration vary in the interval from 0
to 1 by taking all the values between 0 and 1, end points included, into account. The number
of these values is infinite. We note that

(P(X12), P[u(X12)])

is a point of a two-dimensional Cartesian coordinate system belonging to the union of
different one-dimensional convex sets. Such one-dimensional convex sets are found on the
horizontal axis to which P(X12) belongs as well as on the vertical one to which P[u(X12)]
belongs. If u(x) identifies a risk-loving investor or a risk-neutral decision-maker then
all of this continues to be valid. If X is a random good having m possible values then
(P(X), P[u(X)]) is a two-dimensional point expressing two barycenters of two nonpara-
metric distributions of mass, where it turns out to be P(X) = xk pk and P[u(X)] = u(xk) pk
respectively (k ∈ Im = {1,2, . . . ,m}).

We observe that X12 has been constructed in such a way that the marginal distributions
of 1X and 2X never change with respect to the starting ones. The marginal distributions
of the joint distribution connected with 1X 1X coincide with the probability distribution
of 1X . The marginal distributions of the joint distribution connected with 2X 2X coincide
with the probability distribution of 2X . The marginal distributions of the joint distribution
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connected with 1X 2X coincide with the probability distribution of 1X and 2X respectively.
The marginal distributions of the joint distribution connected with 2X 1X coincide with the
probability distribution of 2X and 1X respectively.

The investor estimates all joint probabilities of 1X 2X inside of her budget set in such a
way that there exists an inverse linear relationship between 1X and 2X . She is risk averse.
For a risk-averse investor, the utility of the mathematical expectation of X12 is greater than
the expected utility of X12 given by

P[u(X12)] =

∣∣∣∣∣u((1)xi
(1)x

i)pii u((1)x
i
(2)x

j)pi j

u((2)x
j
(1)x

i)p ji u((2)x
i
(2)x

i)pii

∣∣∣∣∣
=
[
u((1)x

i
(1)x

i)pii u((2)x
i
(2)x

i)pii −u((1)x
i
(2)x

j)pi j u((2)x
j
(1)x

i)p ji

]
> 0,

(4.41)

where (4.4) holds with regard to each factor characterizing the minuend and the subtrahend of
(4.41). We consider an extension of Jensen’s inequality connected with a discrete probability
distribution. We denote by

x12 = Pu(X12) (4.42)

the certainty equivalent to X12 given by

Pu(X12) = u−1{P[u(X12)]}. (4.43)

We note that (4.43) represents an associative mean. It is an increasing transform of the
arithmetic mean considered by means of u and obtained by using a bilinear function of the
columns of a square matrix of order 2 (see Theorem 3). Since it turns out to be x12 < P(X12)
on the horizontal axis, it is possible to say that X12 is not preferred to x12 in opinion of a
risk-averse investor. In all cases she will prefer the certain alternative to the uncertain one.
She would content herself with receiving with certainty x12 which is less than P(X12) in
exchange for the hypothetical gain given by 2P(X12) whose probability is judged to be equal
to 1/2 by her. In the scale of utility in which her judgments of indifference are based, it is
possible to observe equal levels on the vertical axis in passing from 0 to x12 and from x12 to
2P(X12) on the horizontal axis, where 0 and 2P(X12) express two equiprobable events of a
partition of two incompatible and exhaustive events. The possibility of inserting the degree
of preferability of X12 into the scale of the certain amounts is a necessary condition of all
rational decision-making criteria that can be followed (see also [82]).

The investor estimates all joint probabilities of 1X 2X inside of her budget set in such a
way that there exists a direct linear relationship between 1X and 2X . She is risk lover. For a
risk-loving investor, the expected utility of X12 is greater than the utility of the mathematical
expectation of X12. Her continuous utility function is a strictly increasing and convex
function, where its slope gets steeper as wealth increases. The form and extent of this
attitude towards risk which is caught by the utility function under consideration will depend
on her temperament, her current mood, and some other circumstance.

The investor estimates all joint probabilities of 1X 2X inside of her budget set in such
a way that 1X and 2X are stochastically independent. She is risk neutral. Accordingly,
it is possible to observe that among those decisions leading to different joint contingent
consumption plans her best choice under conditions of uncertainty and riskiness must be
the one leading to the plan with the highest mathematical expectation denoted by P(X12).
Her continuous utility function is an increasing linear function. It is the 45-degree line. Its
graphical form is always the same unlike the previous cases.
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4.5.1 The criteria of rational choices being made by the investor: multiple
random goods of order 2

We establish the following

Definition 14. The certain amount that the investor subjectively judges to be equivalent to a
double random good denoted by X12 is expressed by P(X12) whenever she is only interested
in the mathematical expectation of X12. It is the price of X12 for her whenever her utility
function coincides with the 45-degree line. It coincides with its coherent prevision given by

P(X12) =

∣∣∣∣P(1X 1X) P(1X 2X)
P(2X 1X) P(2X 2X)

∣∣∣∣
= P(1X 1X)P(2X 2X)−P(1X 2X)P(2X 1X)> 0.

(4.44)

It represents the price that the investor is willing to pay in order to purchase the right to
participate in a bet that places her in the uncertain situation denoted by X12 = {1X , 2X}.

The slope of the budget line is equal to −1 whenever two random goods are the same.
We note the following

Remark 26. A choice being made by the investor under conditions of uncertainty and
riskiness is rational if and only if she chooses any coherent evaluation of the marginal
probabilities together with the joint ones characterizing m2 possible quantitative states of
the world of two contingent consumption plans that are jointly considered. She chooses a
continuous and strictly increasing utility function in accordance with her subjective attitude
towards risk. She fixes as her goal the maximization of the expected value of her cardinal
utility, where the nature of such an expected value is firstly bilinear.

Given a concave utility function denoted by u(x), where x coincides with the monetary
wealth of a risk-averse investor, it is possible to say that X12 is preferred to another double
random good denoted by X34 if and only if it turns out to be

P[u(X12)]> P[u(X34)] (4.45)

on the vertical axis of a two-dimensional Cartesian coordinate system. It follows that it turns
out to be

Pu(X12)> Pu(X34) (4.46)

on the horizontal axis, where Pu(X12) is less than P(X12), whereas Pu(X34) is less than
P(X34). If a risk-averse investor is firstly faced with X34 then to pass from X34 to X12 is
an advantageous transaction to her because Pu increases. Given a convex utility function
denoted by u(x), it is possible to say that X12 is preferred to X34 by a risk-loving investor if
and only if (4.45) and (4.46) hold. We observe that Pu(X12) is greater than P(X12) as well
as Pu(X34) is greater than P(X34) on the horizontal axis. Given the 45-degree line denoted
by u(x) identifying the identity of monetary value and utility, it is possible to say that X12
is preferred to X34 by a risk-neutral investor if and only if (4.45) and (4.46) continue to be
valid. We note that it turns out to be Pu(X12) = P(X12) as well as Pu(X34) = P(X34) on the
horizontal axis.

It is also possible to compare more than two joint contingent consumption plans. If the
investor prefers X12 to X34 then it turns out to be P[u(X12)]> P[u(X34)]. If she prefers X34
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to X56, where X56 is different from X12 and X34, then we observe P[u(X34)]> P[u(X56)]. It
follows that she rationally prefers X12 to X56, so we note P[u(X12)]> P[u(X56)].

A choice is optimal if and only if there exists a utility function whose maximum expected
value is firstly bilinear (see also [81]). An extension of Daniel Bernoulli’s approach to the
notion of expected utility is carried out. All rational choices under conditions of uncertainty
and riskiness can be ranked by the investor inside of a linear space over R provided with
a quadratic metric. Accordingly, she is able to establish which is her best choice (see also
[65]).

Even if we jointly study three or more than three contingent consumption plans, it is
never practically possible to consider more than two contingent consumption plans at a time
from a metric point of view (see also [47]). This is because we use a quadratic metric. It can
be a linear or multilinear metric.
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Chapter 5

Principal components, eigenequation,
and eigenspaces in the theory of
decision-making

5.1 Introduction

5.1.1 The investor modeled as being a consumer

Given the two-good assumption, let X1 and X2 be two random goods coinciding with two
risky assets. We denote by (P(X1), P(X2)) the list of two numbers representing the average
consumption of X1 and X2. Such a list is analogous to the one characterizing the consumer’s
consumption bundle whose goods are two. The two numbers of this list could also be equal.

In general, the objects of investor choice are of a multilinear nature. In particular, they
are of a bilinear nature whenever we consider the two-good assumption. It is more general
than one could think at first, since it is always possible to interpret one of the two goods
under consideration as identifying everything else the investor might want to choose. The
objects of investor choice are studied by using bilinear and multilinear indices of a metric
nature. They are firstly of a bilinear nature whenever they are determined inside of a subset
of a two-dimensional linear space over R coinciding with the investor’s choice space. Such
a space is furnished with a quadratic metric.

The investor is modeled as being a consumer. The ultimate good being chosen by her is
the average consumption that money can purchase. The set of all possible alternatives for
each random good under consideration consists of a finite number of single points, where
every single point is a real number identifying a well-determined proposition. The latter will
be true or false at the right time. We are not interested in combining such points to form new
events. On the other hand, since we deal with finite partitions of mutually exclusive events,
this has no meaning for our purposes. We are interested in attributing to all single points of
the set of all possible alternatives for each random good into account all those probabilities
generating a coherent prevision of it. It follows that we summarize discrete probability
distributions inside of a subset of a linear space over R. What the investor actually chooses
inside of her budget set is a coherent summary of a nonparametric distribution of mass. In
this chapter, we focus on nonparametric distributions of mass as well. We do not focus on
coherent summaries of them only.
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5.1.2 The basic thing that is being chosen by the investor under conditions of
uncertainty and riskiness

The basic thing that is being chosen by the investor under conditions of uncertainty and
riskiness is a nonparametric distribution of mass connected with a random good. A risky
asset is a random good whose possible values are of a monetary nature. It is studied inside of
the budget set of the investor. Since the investor does not know its true value, she is in doubt
between at least two possible values. She is in doubt between n possible values whenever a
risky asset is characterized by n possible and distinct values. We consider a finite partition
of n incompatible and exhaustive elementary events connected with n possible values for a
risky asset. They are points in the space of random goods, where the latter is a linear space
over R provided with a quadratic metric. By considering m risky assets, we suppose that
it always turns out to be n > m. We say that m risky assets are logically independent, so
there are nm possible values for a multiple risky asset of order m. They coincide with the
Cartesian product of the sets of possible values for every risky asset which is the component
of a multiple risky asset of order m. A multiple risky asset of order m is a multiple random
good of order m.

Let Xi be a risky asset. We write Im = {1, . . . ,m}, so it turns out to be i ∈ Im. The generic
and possible value for Xi is denoted by Xβ i , where we have βi ∈ In = {1, . . . ,n}. It follows
that if Eβ 1 . . .Eβ m is an event of a finite partition of nm elementary events then we consider
an ordered m-tuple of corresponding values denoted by (Xβ 1 ,Xβ 2 , . . . ,Xβ m). A multiple risky
asset of order m is denoted by

X{m} = {(Xβ 1 ,Xβ 2 , . . . ,Xβ m); pβ 1 ...β m | (β1,β2, . . . ,βm) ∈ I(m)
n }, (5.1)

where we have coherently
n

∑
β 1...β m=1

pβ 1...β m = 1. (5.2)

In particular, if we deal with a joint risky asset then we write
n

∑
β rβ s=1

pβ rβ s = 1, ∀(r, s) ∈ I(2)m . (5.3)

If the generic and possible value for a risky asset is denoted by rXβ
then it is also possible to

write
n

∑
βγ=1

rs p
βγ

= 1, ∀(r, s) ∈ I(2)m (5.4)

instead of (5.3). In this chapter, we focus on mathematical, statistical, and economic aspects
characterizing a set of m risky assets.

5.2 Risky assets viewed to be as elements of a linear manifold
whose possible values are subjected to changes of origin

Let En be a linear space over R and let nB⊥
e = {eβ ;β ∈ In} be an orthonormal basis of it.

We say that En is provided with a Euclidean metric. This is because we are able to consider
a metric tensor with respect to nB⊥

e . It belongs to En ⊗En. We write

eg
βγ

=
〈
eβ ,eγ

〉
= δβγ , (5.5)
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where δβγ is the Kronecker delta. It is clear that (5.5) represents the generic component of
a tensor of order 2. All components of it are scalars. They give origin to an n×n identity
matrix expressed by 

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 . (5.6)

The possible values for a risky asset are uniquely expressed by the contravariant components
of an n-dimensional vector of En with respect to nB⊥

e . We write

xi = xβ

i eβ ∈ En (5.7)

by using the Einstein notation. We consider m risky assets, so we write

xi = xβ

i eβ , ∀i ∈ Im.

We suppose that all vectors expressed by (5.7) are linearly independent without loss of
generality.

We observe that
I[x]m = {xi; i ∈ Im} (5.8)

represents a basis of an m-dimensional linear manifold embedded in En and denoted by
xM

m. All linear combinations of the basis vectors contained in (5.8) give origin to the
elements of xM

m. We consider all their translations with respect to an n-dimensional vector
of En coinciding with the one whose elements are all equal to 0. We write

x = xixi ∈ xM
m, ∀xi ∈ R, (5.9)

where we have i = 1, . . . ,m. We note the following

Remark 27. Let Xi be a risky asset whose possible monetary values are denoted by I(Xi) =
{x1

i ,x
2
i , . . . ,x

n
i }, i= 1, . . . ,m. It follows that x1

i is the return on Xi if Ei1 occurs with probability
denoted by pi1, x2

i is the return on Xi if Ei2 occurs with probability denoted by pi2, . . . , xn
i is

the return on Xi if Ein occurs with probability denoted by pin. It is possible to note that Ei1,
. . . , Ein are elementary events of a finite partition of events. It is possible to say that x1

i is
the wealth that Xi yields and that can be spent by the investor if Ei1 occurs with probability
denoted by pi1, x2

i is the wealth that Xi yields and that can be spent by her if Ei2 occurs with
probability denoted by pi2, . . . , xn

i is the wealth that Xi yields and that can be spent by her if
Ein occurs with probability denoted by pin.

We observe that xi, i = 1, . . . ,m, represents a vector of En having all its contravariant
components equal to the expected return on Xi denoted by P(Xi), i = 1, . . . ,m. If the sum of
all probabilities connected with the possible values for Xi, i = 1, . . . ,m, is equal to 1 then
P(Xi) is coherent. We write

xi =


x1

i = P(Xi)
x2

i = P(Xi)
...

xn
i = P(Xi)

 , (5.10)
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where we have i = 1, . . . ,m. We write

xi = xβ

i eβ , ∀i ∈ Im.

We observe that every xi, i = 1, . . . ,m, represents an n-dimensional vector of En with respect
to which it is possible to consider an m-dimensional linear manifold denoted by xM

m. The
m-dimensional linear manifold denoted by dM

m
(O) is expressed by

dM
m
(O) = xM

m ⊖ xM
m. (5.11)

It is obtained by considering the direct difference of two m-dimensional linear manifolds.
Every vector denoted by di ∈ dM

m
(O) represents all deviations of the possible and distinct

values for Xi from its expected return vectorially expressed by xi, i = 1, . . . ,m (see also [79]).
Every vector denoted by di ∈ dM

m
(O) represents a basic risky asset whose possible values

are subjected to a change of origin. We consequently write

(O)I
[d]
m = {xi −xi; i ∈ Im}= {di; i ∈ Im}. (5.12)

We observe that (5.12) represents a basis of dM
m
(O). We denote it by mBd. All linear

combinations of the basic risky assets contained in (5.12) span dM
m
(O), so we write

d = didi ∈ dM
m
(O), ∀di ∈ R, (5.13)

where it turns out to be i = 1, . . . ,m. The number of all these linear combinations is infinite.
We denote by D{m} a multiple risky asset of order m whose components are m risky assets.
The first component of D{m} is a risky asset whose possible and distinct values coincide with
all deviations of the possible values for X1 from P(X1), . . . , the m-th component of D{m} is a
risky asset whose possible and distinct values coincide with all deviations of the possible
values for Xm from P(Xm) (see also [53]). We say that D{m} is defined with respect to X{m}.

5.3 A multiple risky asset of order m and its probabilities

Let yh be a vector representing a risky asset (see also [52]). It is obtained by considering a
linear combination of m basic risky assets, where the possible values for each of them are
subjected to a change of origin. We write

yh = yi
hdi ∈ dM

m
(O). (5.14)

We say that {yi
h} is the set of m contravariant components of yh with respect to mBd. If we

want to obtain one of the vectors of mBd then only one contravariant component of yh has to
be equal to 1. All other contravariant components of yh have to be equal to 0.

Since dM
m
(O) is embedded in En, it is possible to write the same vector with respect to

nB⊥
e . We obtain

yh = yi
hxβ

i eβ ∈ En, (5.15)

where {yi
hxβ

i } is the set of n contravariant components of yh with respect to nB⊥
e .
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We deal with a multiple risky asset of order m, so we have to take association probabilities
into account (see also [31]). A multiple risky asset of order m is then characterized by an
affine tensor of order m whose components identify association probabilities. A basis of

m times︷ ︸︸ ︷
En ⊗En ⊗ . . .⊗En

is denoted by Bnm = {eβ 1 ⊗ . . .⊗ eβ m}, so we write

p1...m = 1...m pβ 1...β meβ 1 ⊗ . . .⊗ eβ m , (5.16)

where (5.16) is the generic component of an affine tensor of order m representing association
probabilities whose sum has coherently to be equal to 1 on the whole partition of nm events.
We note that yh ∈ En is nothing but a tensor of order 1. We suppose that all contravariant
components of an n-dimensional vector of En denoted by ϕ are equal to 1 with respect to
nB⊥

e , so it is possible to construct an affine tensor of order m−1 expressed by

ϕ
β 1...β m
β i

=
m

∏
j=1
j ̸=i

ϕβ j . (5.17)

We construct (5.17) with respect to ϕ. The following pair of expressions{
Y β 1...β m

h = yi
hxβi

i ϕ
β 1...β m
β i

1...m p
β 1...β m

(5.18)

allows us to represent all deviations concerning all single risky assets of a multiple risky
asset of order m together with their association probabilities. We note that the tensor product
between a tensor whose order is equal to 1 and a tensor whose order is equal to m− 1
coincides with a tensor whose order is equal to 1+m− 1 = m. Moreover, by using an
orthonormal basis of En, we could represent the generic component of an affine tensor of
order m identifying association probabilities by means of contravariant or covariant indices.
We choose a covariant notation with regard to them.

5.3.1 A symmetric tensor obtained by using joint probabilities

If we deal with two risky assets which are jointly considered then we need to take the tensor
product of two n-dimensional linear spaces over R into account (see also [6]). We prove the
following

Proposition 1. Let En ⊗En be a linear space over R containing affine tensors of order 2
and let Bn2 = {eβ ⊗ eγ} be a basis of it. Let (di,d j) be an ordered pair of basic risky assets,
where every risky asset of it belongs to dM

m
(O). All possible ordered pairs of basic risky

assets of dM
m
(O) give rise to an α-metric tensor whose components are symmetric. They

give origin to an m×m symmetric matrix.

Proof. If we consider an ordered pair of basic risky assets then we have to take their
nonparametric joint distribution into account. Association probabilities are now joint
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probabilities. The affine tensor of order 2 whose components represent all joint probabilities
under consideration is expressed by

pi j = i j p
βγeβ ⊗ eγ , (5.19)

where i j p
βγ is the generic component of it. It is a joint probability. We write

d;αgi j = dgi j =
〈
di,d j

〉
α
= dβ

i dγ

j i j pβγ
(5.20)

with respect to mBd, where we use covariant indices with regard to a generic joint probability.
We observe that (5.20) represents a tensor of order 2 called α-metric tensor with respect to
an m-dimensional linear manifold denoted by dM

m
(O). It is a symmetric tensor. Indeed, its

components are symmetric. If it turns out to be m > 2 then different comparisons between
two risky assets of mBd are necessary. Only pairwise comparisons are possible. This is
because we use a quadratic metric. An m×m symmetric matrix is then generated by all
possible pairwise comparisons. The number of its distinct elements is given by

Cr
m,2 =

1
2

m(m+1). (5.21)

From (5.20), it is possible to derive the notion of α-norm. Accordingly, we write

dgii = ∥di∥2
α = dβ

i dβ

i i pβ
. (5.22)

We therefore obtain the following m×m matrix
dg11 dg12 . . . dg1m

dg21 dg22 . . . dg2m
...

...
. . .

...

dgm1 dgm2 . . . dgmm

 (5.23)

whose structure is evidently symmetric.

The Schwarz’s α-generalized inequality is considered in order to complete the α-metric
structure of dM

m
(O). It is given by ∣∣

dgi j

∣∣≤√
dgii

√
dg j j. (5.24)

We observe that (5.5) and (5.20) are two tensors of order 2. The former is defined with
respect to an orthonormal basis of En without considering joint probabilities, whereas the
latter is defined with respect to an ordered pair of basic risky assets of dM

m
(O). We note

that an affine tensor of order 2 whose components represent all joint probabilities under
consideration always corresponds to this pair of basic risky assets of dM

m
(O). It must be used

to obtain (5.20). It follows that (5.5) and (5.20) are conceptually different.
We note the following

Remark 28. If m = 2 then we obtain the following 2×2 matrix[
dg11 dg12

dg21 dg22

]
whose structure is symmetric. The determinant of this matrix allows us to obtain an aggregate
measure based on changes of origin. We obtain it outside of the budget set of the investor.
Such a measure is itself based on what the investor chooses inside of her budget set. What the
investor chooses inside of her budget set is a bilinear measure which is always decomposed
into two linear measures, P(X1) and P(X2). It is evidently a disaggregate measure.
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5.4 Eigenvectors connected with a symmetric tensor obtained by
using joint probabilities: their representation

We prove in the appendix the following

Proposition 2. Let dgi j be an α-metric tensor connected with dM
m
(O) whose components

identify an m×m symmetric matrix. Suppose that all entries of it outside of its main diagonal
are equal to zero. Suppose that all its main diagonal entries are different. Since dgi j identifies
an eigenequation and all eigenvectors associated with dgi j are pairwise α-orthogonal, such
eigenvectors can be represented with regard to two distinct orthonormal bases of dM

m
(O).

We consider the following eigenequation(
dgkh − dλ(k) δkh

)
vk
(k) = 0.

We deal with m different values characterizing the main diagonal entries of an m×m
symmetric matrix. It is an m×m diagonal matrix. Given a basis of dM

m
(O) consisting of m

basic risky assets identifying m nonparametric marginal distributions of mass, whenever
we jointly consider two different basic risky assets of it, we observe that the property of
α-orthogonality is satisfied. This means that the covariance of these two risky assets is
equal to 0, so a pairwise non-correlation takes place. All of this is possible because each
point of the budget set of the investor is a synthesized element of the Fréchet class. Since
we consider changes of origin outside of her budget set, marginal and joint masses do not
change. The state of information and knowledge associated with a given investor is taken
into account. Accordingly, a pairwise non-correlation has never an absolute meaning. Its
meaning is always of a relative and subjective nature.

5.5 The projection of a linear manifold onto another one: its
reason

Any evaluation of probability referred to an event always depends on the variable group of
circumstances assumed to be relevant to its occurrence. Such circumstances are known at
the time. In general, they vary from moment to moment. This means that any evaluation of
probability referred to an event can vary according to the state of information and knowledge
associated with a given investor. Her state of information and knowledge even affects the set
of all possible alternatives concerning every risky asset under consideration.

Accordingly, it is possible to consider d′M m
(O) for all above reason. It is an m-dimensional

linear manifold embedded in En. It is therefore a translation of an m-dimensional linear
subspace of En with respect to the zero vector of En. Such a linear manifold is spanned by
m linearly independent vectors, where each of them represents ordered deviations from a
mean value which are subjectively and coherently determined by a given investor. They
identify m basic risky assets which are the components of a multiple risky asset of order
m denoted by D′

{m}. They identify m nonparametric marginal distributions of mass. All
linear combinations of these m basic risky assets span risky assets which are intrinsically
related. They belong to d′M m

(O). If we consider two risky assets of them together with their
joint probabilities then we observe that they are α-orthogonal, so their covariance is equal
to 0. The marginal masses of two single risky assets are always the same, so the investor
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estimates their joint probabilities in such a way that their covariance is equal to 0. All of this
is possible because each point of the budget set of the investor where two risky assets are
studied is a synthesized element of the Fréchet class.

Given D{m}, we suppose that every risky asset belonging to D{m} is associated with
every risky asset belonging to D′

{m}. This means that we consider two multiple risky assets
of order m denoted by D{m} and D′

{m} as well as a set of m2 joint risky assets whose generic
element is denoted by (Di, D′

j). We also consider the α-orthogonal projection of d′M m
(O)

onto dM
m
(O). It is denoted by d̂M

m
(O). All vectors belonging to dM

m
(O) represent the starting

risky assets, where the possible values for each of them are subjected to changes of origin.
All vectors belonging to d̂M

m
(O) express a logical and formal hypothesis with respect to

a given structure of the nonparametric distributions of mass identifying all risky assets
under consideration. The condition of invariance of the covariance of any two risky assets
expresses this knowledge hypothesis.

We prove the following

Proposition 3. Let d′
j be an element of d′M m

(O). Let d̂ j be the corresponding element

of d̂M
m
(O), where we have j = 1, . . . ,m. Hence, the covariant components of d̂ j with

respect to mBd are expressed by d ji =
〈
d̂ j,di

〉
α . Its contravariant components are given by

dk
j = d ji dgki.

Proof. It is possible to write

d∗
j = d′

j − d̂ j, ∀ j ∈ Im. (5.25)

We construct d̂M
m
(O) by solving the following system of m linear equations for every value

of j ∈ Im. It is given by 〈
d∗

j ,di
〉

α = 0, ∀i ∈ Im. (5.26)

We consider m systems expressed by (5.26). It is evident that we can write〈
d′

j,di
〉

α −
〈
d̂ j,di

〉
α = 0, ∀i ∈ Im. (5.27)

We note that (5.27) tells us that the covariance of two risky assets is invariant. We observe
that it is possible to write

d̂ j = dh
j dh, (5.28)

where we have d̂ j ∈ d̂M
m
(O), j = 1, . . . ,m. We note that it turns out to be dh ∈ mBd. We put

(5.28) into (5.27) as well as we remind how the α-metric tensor concerning dM
m
(O) has been

defined. Hence, we write〈
d′

j,di
〉

α −dh
j dghi =

〈
d′

j,di
〉

α −d ji = 0. (5.29)

It follows that we obtain
d ji =

〈
d′

j,di
〉

α . (5.30)

We note that the covariant components of d̂ j with respect to mBd are expressed by (5.30).
Since the subtrahend of (5.27) is given by〈

d̂ j,di
〉

α = dh
j ⟨dh,di⟩α = dh

j dghi = d ji, (5.31)
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we note that the covariant components of d′
j and d̂ j with respect to mBd are obtained in the

same way. We have to establish the contravariant components of d̂ j in order to complete the
α-orthogonal projection of d′M m

(O) onto dM
m
(O). We therefore write

dh
j dghi dgki = d ji dgki, (5.32)

so we obtain
dk

j = d ji dgki, (5.33)

where the contravariant components of the α-metric tensor under consideration denoted by

dgki are given by 
1

dg11
0 . . . 0

0 1
dg22

. . . 0
...

...
. . .

...
0 0 . . . 1

dgmm

 . (5.34)

They form a square matrix of order m. It is a diagonal matrix.

We note that m linear combinations of the basic risky assets of dM
m
(O) give origin to

m risky assets of d̂M
m
(O) represented by m vectors belonging to d̂M

m
(O) according to (5.28).

The contravariant components of each d̂ j, j = 1, . . . ,m, coincide with the coefficients of
each linear combination of m linear combinations of the basic risky assets of dM

m
(O). Given

such components, it is possible to obtain the covariant components of the risky assets of

d̂M
m
(O) by using the covariant components of dgi j expressed by (5.23). Given the covariant

components of the risky assets belonging to d̂M
m
(O), it is conversely possible to obtain their

contravariant components by using the contravariant components of dgi j expressed by (5.34).
It is clear that all of this is possible by using the covariant or contravariant components of
the α-metric tensor identifying an m×m symmetric matrix.

5.6 An appropriate basis of a linear manifold: a definition of
principal components

Let {dλ(k); (k) ∈ Im} be the set containing all eigenvalues of the α-metric tensor which
has been constructed with respect to dM

m
(O). We suppose that they are all distinct. Let

{v(k); (k) ∈ Im} be the corresponding set containing all normalized eigenvectors (see also
[59]). They are pairwise α-orthogonal. We establish the following

Definition 15. Given D{m}, the principal components with respect to D{m} and denoted by
w(h), (h) = 1, . . . ,m, are all linear combinations of vectors, where each of them represents a
basic risky asset of D{m}, whose coefficients are the components of a normalized eigenvector.
We write

w(h) = vi
(h)di, ∀(h) ∈ Im. (5.35)

All principal components represent a basis of dM
m
(O). All principal components represent

basic risky assets. Such a basis is denoted by mBwd
.

We prove in the appendix the following
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Proposition 4. All principal components representing a basis of dM
m
(O) denoted by mBwd

identify an α-metric tensor which is a diagonal tensor.

By putting together (.85) and (.88) we write

wg(k)(h) wg(k)(h) = λ(k) δ(k)(h) λ
(k)

δ
(k)(h) = λ(k) λ

( j)
δ
( j)
(k) . (5.36)

We say that (5.36) identifies a mixed and α-metric tensor whose generic component can be
denoted by wg( j)

(k). It follows that it turns out to be wg(k)(k) = m. This is because we consider
a product of matrices by means of which we obtain an m×m identity matrix of which we
compute its trace.

5.6.1 The projection of a linear manifold onto another one obtained by choos-
ing a particular basis of it

If we project d′M m
(O) onto dM

m
(O) then we obtain an m-dimensional linear manifold embedded

in En denoted by d̂M
m
(O). We observe that mBwd

is a basis of it. We therefore prove in the
appendix the following

Proposition 5. If it is possible to write d̂ j = d(i)
j w(i), ∀ j ∈ Im, then the covariant components

of d̂ j are given by d j(k) =
〈
d̂ j,w(k)

〉
α . The contravariant components of d̂ j are given by

d(h)
j =

⟨d′
j,w(h)⟩α

λ(h)
.

5.7 A proportionality existing between risky assets: a particular
case

Every risky asset whose possible values are subjected to a change of origin coincides with
an n-dimensional vector of En identifying a nonparametric marginal distribution of mass.
An n-dimensional vector of En is isomorphic to a point expressed by an ordered n-tuple of
real numbers. This is because a located vector at the origin of En is entirely determined
by its end point. Accordingly, an ordered n-tuple of real numbers can be called either a
point of an affine space containing points or a vector of a linear space containing vectors.
If we consider m risky assets then we deal with m ordered sets of real numbers. We say
that two ordered sets of two nonzero real numbers denoted by {d1

A, d2
A} and {d1

B, d2
B} are

proportional if it is possible to write

d1
A : d1

B = d2
A : d2

B. (5.37)

This means that there exists a constant of proportionality denoted by h such that we have

d1
A

d1
B
=

d2
A

d2
B
= h. (5.38)

In general, given two ordered sets of n real numbers denoted by {d1
A,d

2
A, . . . ,d

n
A} and

{d1
B,d

2
B, . . . ,d

n
B}, we say that they are proportional if it is possible to write

d1
A = hd1

B

d2
A = hd2

B
...

dn
A = hdn

B

 . (5.39)
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It follows that we can write 
d1

A −d1
B = (h−1)d1

B

d2
A −d2

B = (h−1)d2
B

...

dn
A −dn

B = (h−1)dn
B

 . (5.40)

Given the direct difference between {d1
A,d

2
A, . . . ,d

n
A} and a homothetic transformation of

{d1
B,d

2
B, . . . ,d

n
B}, if we say that such a difference is proportional to a third set of n real

numbers denoted by {d1
C,d

2
C, . . . ,d

n
C} then we write

d1
A − xd1

B = yd1
C

d2
A − xd2

B = yd2
C

...

dn
A − xdn

B = ydn
C

 . (5.41)

We note that y is an average constant of proportionality. We suppose that all equalities
expressed by (5.41) do not hold. We consequently establish a criterion by means of which
it is possible to construct an ordered set of n real numbers whose elements are given by
{d1

C′ ,d2
C′ , . . . ,dn

C′}. We note that {d1
C′ ,d2

C′ , . . . ,dn
C′} must have pre-established characteristics

with respect to {d1
C,d

2
C, . . . ,d

n
C}. The following equalities

d1
A − xd1

B = yd1
C′

d2
A − xd2

B = yd2
C′

...

dn
A − xdn

B = ydn
C′

 (5.42)

must then be satisfied.

5.7.1 The condition of invariance of the covariance of two risky assets

In this subsection, we suppose that it turns out to be m = 2. All risky assets belonging to

d̂M
2
(O) are nothing but units of measurement with respect to which a given investor can

measure and characterize all risky assets belonging to dM
2
(O). We write

d∗
1 = d′

1 − d̂1 (5.43)

and
d∗

2 = d′
2 − d̂2. (5.44)

It follows that we have to consider two systems of two linear equations in order to construct

d̂M
2
(O). We have 

⟨d∗
1,d1⟩α = 0

⟨d∗
1,d2⟩α = 0

(5.45)
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as well as 
⟨d∗

2,d1⟩α = 0

⟨d∗
2,d2⟩α = 0

. (5.46)

If we consider (5.43) and (5.44) then we write
⟨d′

1,d1⟩α =
〈
d̂1,d1

〉
α

⟨d′
1,d2⟩α =

〈
d̂1,d2

〉
α

(5.47)

as well as 
⟨d′

2,d1⟩α =
〈
d̂2,d1

〉
α

⟨d′
2,d2⟩α =

〈
d̂2,d2

〉
α

. (5.48)

Given two basic risky assets of dM
2
(O) denoted by d1 and d2, it is possible to consider

d1 − xd2 = y d̂1 (5.49)

and
d1 − x′d2 = y′d̂2, (5.50)

where d̂1 and d̂2 are two basic risky assets of d̂M
2
(O). We note that y and y′ are average

constants of proportionality because they are referred themselves to distributions of mass,
whereas x and x′ are coefficients of adjustment. They adjust the difference of d1 and d2
to distributions that should exist with respect to a probabilistic and economic hypothesis
identifying the invariance of the covariance of two risky assets.

We note the following

Remark 29. We deal with a Bayesian adjustment because d1 and d2 can be viewed as two
prior distributions of mass, whereas d̂1 and d̂2 can be viewed as two posterior distributions
of mass characterizing a specific hypothesis. A distance between two prior distributions of
mass is proportional to a posterior distribution of mass characterizing the right-hand side
of (5.49). A distance between two prior distributions of mass is similarly proportional to a
posterior distribution of mass appearing on the right-hand side of (5.50).

We note that d̂1 in (5.49) and d̂2 in (5.50) are obtained by means of linear combinations
of d1 and d2. We can refer ourselves to (5.28). The condition of invariance of the covariance
of two risky assets expressed by (5.47) and (5.48) is equal to the condition according to
which d∗

1 = d′
1 − d̂1 and d∗

2 = d′
2 − d̂2 are orthogonal to a hyperplane embedded in En. It

is described by using a linear equation satisfied by d1 and d2. It is possible to show that
two risky assets identify a parallelogram (2-parallelepiped) with two pairs of parallel sides,
where every risky asset is a side of it. Such a parallelogram (2-parallelepiped) recognizes a
multiple risky asset of order 2. We observe that d̂1 coincides with the orthogonal projection
of d̂1 onto d′

1 given by

projd′1(d̂1) =
d′

1 · d̂1

∥d′
1∥2 d′

1 (5.51)
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as well as d̂2 coincides with the orthogonal projection of d̂2 onto d′
2 expressed by

projd′2(d̂2) =
d′

2 · d̂2

∥d′
2∥2 d′

2. (5.52)

On the other hand, d′
1 coincides with the orthogonal projection of d′

1 onto d̂1 as well as d′
2

coincides with the orthogonal projection of d′
2 onto d̂2.

5.8 Non-classical inferential results

We say that (5.43) and (5.44) are orthogonal vectors with respect to the hyperplane embedded
in En described by d1 and d2. It follows that it turns out to be{

d1
1 f1 + d2

1 f2 + . . .+ dn
1 fn = 0

d1
2 f1 + d2

2 f2 + . . .+ dn
2 fn = 0

(5.53)

as f = ( f1, f2, . . . , fn) varies over R. We note that the possible values for d1 and d2 are given
by

{d1
1 , d

2
1 , . . . , d

n
1} (5.54)

and
{d1

2 , d
2
2 , . . . , d

n
2}. (5.55)

In particular, one of the ordered n-tuples denoted by f = ( f1, f2, . . . , fn) has to be written in
such a way that the following expression

f1 + f2 + . . .+ fn = 1 (5.56)

holds, with 0 ≤ fi ≤ 1, i = 1, . . . ,n. This means that (5.56) tells us that the sum of n
non-negative masses must coherently be equal to 1 whenever they are associated with n
incompatible and exhaustive events of a finite partition of elementary events (see also [77]).
We write {

⟨d′
1 − d̂1, f⟩ = 0

⟨d′
2 − d̂2, f⟩ = 0

(5.57)

to denote the orthogonality of d∗
1 and d∗

2.
We note the following

Remark 30. We suppose that it turns out to be m = 2. Given all deviations from P(X1) and
P(X2) of the starting possible values for two basic risky assets of dM 2

(O), we denote by d1
and d2 the corresponding n-dimensional vectors. We go back to the possible values for X1
and X2 by using the marginal masses of the nonparametric marginal distributions of mass of
X1 and X2. If we deal with d̂1 and d̂2 then they are obtained by considering two different
linear combinations of d1 and d2. We observe that it is possible to go back to the starting
values of which d̂1 and d̂2 represent deviations by using that n-dimensional vector denoted
by f such that it turns out to be equal to 1 the sum of all non-negative masses expressed by
fi, i = 1, . . . ,n. We refer ourselves to (5.56).
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Remark 31. All probabilities associated with the possible values for the risky assets be-
longing to d̂M

m
(O) and obtained by considering linear combinations of basic risky assets

constituting mBd can be determined by using f. The same is true with regard to all probabili-
ties associated with the possible values for the risky assets belonging to dM

m
(O) and obtained

by considering linear combinations of basic risky assets constituting mBd.

Similar results can be obtained by considering the α-orthogonal projection of dM
m
(O)

onto d′M m
(O).

5.8.1 A two-dimensional linear manifold expressed as a direct sum of two
eigenspaces

We prove in the appendix the following

Theorem 5. Given (5.28), suppose that it turns out to be I2 = {1,2}. If the condition
expressed by ⟨d̂1, d̂2⟩α = 0 is satisfied then d̂1 and d̂2 identify the principal components
connected with D{2}.

We note the following

Remark 32. The above theorem can be extended by considering an m-dimensional linear
manifold. It is decomposed into two complementary linear manifolds. The former is a one-
dimensional linear manifold, whereas the latter is an (m−1)-dimensional linear manifold.
It is possible to consider the following conditions given by

⟨d̂i, d̂ j⟩α = 0, ∀i < j ∈ Im = {1,2, . . . ,m}, (5.58)

whose number is overall equal to (
m
2

)
.

We write
dM

m
(O) = Zi ⊕Z∗

i , ∀i < j ∈ Im = {1,2, . . . ,m}, (5.59)

to denote one of the possible direct sums. The number of the principal components connected
with D{m} is overall equal to m.

Remark 33. If we refer ourselves to (.103) then d̂1 and d̂2 can be led back to d1 and d2. The
variance of each risky asset under consideration is characterized by a constant of riskiness.
All different eigenvalues do not change. They are constants of riskiness. The possible values
for each risky asset change. We use specific probabilities in order to lead back them to the
starting possible values expressed without considering deviations. The same is true if we
refer ourselves to (5.59). We therefore write

G(v) = λv, (5.60)

where G is the square matrix of order m whose elements coincide with the covariant
components of the α-metric tensor defined with regard to dM

m
(O). Such a matrix is identified

with (5.23). We note that λ ∈ R is an eigenvalue of G, whereas v is an eigenvector of G that
uniquely identifies an element of dM

m
(O). All eigenvectors of G are nonzero and column

vectors spanning a linear subspace of Em. It is the eigenspace corresponding to λ ∈ R.
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Remark 34. We refer ourselves to (.103). We write µ1 d̂1, µ1 ∈ R, and µ2 d̂2, µ2 ∈ R. We
calculate ∥µ1 d̂1∥2

α as well as ∥µ2 d̂2∥2
α by using f = ( f1, f2, . . . , fn) such that it turns out to

be f1 + f2 + . . .+ fn = 1, with 0 ≤ fi ≤ 1, i = 1, . . . ,n. We have firstly to solve for the value
of x, where x is an unknown, that satisfies the following expression written in the form

x

(
λ1

0

)
=

(
∥µ1 d̂1∥2

α

0

)
. (5.61)

Two column vectors meant as eigenvectors characterize both sides of (5.61). We observe
that λ1 ∈ R is that eigenvalue obtained by using d1 together with its starting marginal
probabilities. It follows that it is possible to write

∥µ1 d̂1∥2
α

λ1

(
λ1

0

)
, (5.62)

so we calculate
∥∥∥∥√∥µ1 d̂1∥2

α

λ1
d1

∥∥∥∥2

α

by using the starting marginal probabilities associated with

d1. In particular, it turns out to be∥∥∥∥∥∥
√

∥µ1 d̂1∥2
α

λ1
d1

∥∥∥∥∥∥
2

α

= ∥µ1 d̂1∥2
α (5.63)

whenever all probabilities associated with d1 and d̂1 coincide. In all cases, the left-hand
side of (5.63) is proportional to a constant of riskiness denoted by λ1. Given µ1 d̂1, µ1 ∈ R,
we go back to the starting and basic risky asset denoted by d1. Since a real constant is

considered together with d1, we write
√

∥µ1 d̂1∥2
α

λ1
d1. It is clear that it is also possible to solve

for the value of x that satisfies the following expression written in the form

x

(
0

λ2

)
=

(
0

∥µ2 d̂2∥2
α

)
. (5.64)

The same is true if we refer ourselves to (5.59).

Remark 35. The possible values for each risky asset under consideration can be subjected
to infinite translations. The finite partition of mutually exclusive events to which the
possible values for each risky asset under consideration correspond is the same from a
randomness point of view. All probabilities associated with them do not change. All
probabilities into account can also be based on a judgment of equal probability. Anyway,
such a judgment is always of a subjective nature. All probabilities into account can also
be based on an opinion shared by all reasonable people. However, such an opinion always
remains of a subjective nature. All probabilities into account can even be based on statistical
frequencies. Nevertheless, the investor has subjectively to specify the meaning and all
conditions associated with relating probability back to frequency. Differently, to relate
probability back to frequency has no meaning.
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5.9 Mean-variance utility

Given a portfolio consisting of two different types of assets, we suppose that one of them is
not a risky asset, but it is a risk-free asset. It always pays an amount of money denoted by r f

regardless of what happens. Its return is a positive constant, whereas its standard deviation
is equal to 0 because there is no riskiness.

The other asset is a set of m risky assets. They give origin to a multiple risky asset of
order m denoted by X{m} = X12 ...m. A set of m risky assets is a multiple random good of
order m. The mean-variance model assumes that the subjective utility of a nonparametric
distribution of mass referred to X12 ...m can be expressed as a function of the mean and
variance of it. It is appropriate to make the natural assumption that a higher expected return
on X12 ...m is good when all other things do not change. A higher variance is conversely bad.
This evidently means that the natural assumption of aversion to risk holds (see also [68]). It
is possible to assume that an investor’s preferences depend only on the mean and variance
of the nonparametric distribution of mass referred to X12 ...m. It is possible to consider
indifference curves illustrating an investor’s preferences for return and risk. If she is overall
a risk-averse investor then a higher expected return on X12 ...m makes her better off as well as
a higher standard deviation makes her worse off. Riskiness identified with the variance of
the nonparametric distribution of mass referred to X12 ...m is bad, so the indifference curves
characterizing her subjective utility function must have a positive slope (see also [89]).

We describe the nonparametric distribution of mass of a multiple risky asset of order m
by using a few parameters. We are interested in summarizing the nonparametric distribution
of mass of a multiple risky asset of order m. This is because the subjective utility function
characterizing the mean-variance model must be defined over those parameters concerning
such a distribution. An investor’s preferences can be described by considering just a few
summary statistics about a nonparametric distribution of mass of a multiple risky asset of
order m. We decompose it inside of a linear space over R provided with a quadratic metric.
We write

P(X12 ...m) =

∣∣∣∣∣∣∣∣∣∣∣

P(X1 X1) P(X1 X2) . . . P(X1 Xm)

P(X2 X1) P(X2 X2) . . . P(X2 Xm)
...

...
. . .

...

P(Xm X1) P(Xm X2) . . . P(Xm Xm)

∣∣∣∣∣∣∣∣∣∣∣
, (5.65)

where P denotes the expected return on m risky assets identifying a multiple risky asset of
order m. It coincides with the coherent prevision or mathematical expectation of a multiple
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random good of order m. We also write

Var(X12 ...m) =

∣∣∣∣∣∣∣∣∣∣∣

Var(X1) Cov(X1, X2) . . . Cov(X1, Xm)

Cov(X2, X1) Var(X2) . . . Cov(X2, Xm)
...

...
. . .

...

Cov(Xm, X1) Cov(Xm, X2) . . . Var(Xm)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∥d1∥2
α ⟨d1,d2⟩α

. . . ⟨d1,dm⟩α

⟨d2,d1⟩α
∥d2∥2

α . . . ⟨d2,dm⟩α

...
...

. . .
...

⟨dm,d1⟩α
⟨dm,d2⟩α

. . . ∥dm∥2
α

∣∣∣∣∣∣∣∣∣∣∣

(5.66)

in order to obtain the variance of a multiple risky asset of order m. We note that the variability
of X12 ...m is not standardized, but it depends on the state of information and knowledge
associated with a given investor. This means that the origin of the variability of X12 ...m is not
random. Moreover, any two risky assets of m risky assets are supposed to be stochastically
independent. This thing is possible because each point of the budget set of the investor
where two risky assets at a time are studied is a synthesized element of the Fréchet class.
Since we consider changes of origin outside of her budget set, marginal and joint masses do
not change. She is able to estimate all joint probabilities under consideration in such a way
that the covariance of any two risky assets, where the possible values for each of them are
subjected to two changes of origin, is equal to 0. She is subjected to 2n−1 constraints only.
They coincide with 2n−1 marginal masses whenever she estimates all joint probabilities
into account.

At the optimal choice of mean return and standard deviation of return we observe that
the slope of the indifference curve must be equal to the slope of the budget line. Such a line
measures the cost of obtaining a larger expected return in terms of the increased standard
deviation of the return. It describes the market trade-off between return and risk. Its vertical
intercept coincides with the return associated with the risk-free asset under consideration
denoted by r f . It follows that the price of risk, whose nature is always characterized by
objective and subjective elements, is given by

p =
P(X12 ...m)− r f√

Var(X12 ...m)
, (5.67)

where P(X12 ...m) and
√

Var(X12 ...m) are two multilinear indices. They are two determinants
of two square matrices of order m. Such indices deal with two tensors identifying the same
multiple random good of order m. In this chapter, we especially focus on the α-metric tensor
whose components coincide with the elements of the determinant given by (5.66).
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Conclusions

A multilinear approach to the theory of decision-making consists in establishing disaggregate
and aggregate measures based on what the decision-maker actually chooses inside of her
budget set. Aggregate measures obtained by using a multilinear metric allow to identify
multiple choices connected with multiple goods. A multilinear approach to the theory of
decision-making shows that an evolution towards a synthesis is intentionally tried. This
evolution is necessary. A conceptually unsatisfactory attitude consists in breaking knowledge
up into self-contained compartments. For instance, the justification of any distinction of
principle concerning ignorance, risk, and uncertainty as supported by Frank Knight is based
on the possibility, or not, of bringing a probability evaluation back to the special classical or
statistical definitions. If this conceptually unsatisfactory distinction is got over then there
is a gain in the meaning of the conclusions as well as in the possibility of their extension.
On the other hand, everything can vectorially be studied from a statistical and economic
point of view provided one takes a sufficient number of dimensions. An adequate number
of dimensions is necessary in order to study multiple goods. Mistaken ideas are avoided
such as the attempts to study decisions under conditions of uncertainty forcing everything
to intervene except the evaluation of probability being made by the decision-maker. It is a
fundamental element. It is a basic and unavoidable result associated with specific conditions
identifying decisions where sure elements are absent. It is not helpful to disconnect the
theory of decision-making from properties of the notion of average quantity obtained by
using non-negative masses subjectively chosen. These properties are the same as the ones
characterizing the intuitive notion of probability whose nature is intrinsically subjective.
Bound choices being made by the decision-maker under conditions of uncertainty and
riskiness have to be studied by considering all elements characterizing them. They are
not of an objective nature only, but they are also of a subjective nature. Accordingly, an
evolution towards a unitary vision in which it appears that a place and a link are found for
theories previously viewed as unconnected parts must intentionally be tried. It is possible to
recompose these parts in an organized way by using the properties of the notion of average
quantity obtained by using non-negative masses subjectively chosen. The budget set of the
decision-maker coincides with infinite coherent average quantities obeying the rules of the
logic of prevision.

The variability of a nonparametric joint distribution of mass depends on how the decision-
maker estimates all the joint masses under consideration. These masses are estimated by
her according to her variable state of information and knowledge at the time of choice. It
follows that the origin of the variability of any nonparametric distribution of mass is not
random. It is not standardized because the decision-maker makes explicit, from time to time,
the knowledge hypothesis underlying it. The origin of the variability of any nonparametric
distribution of mass is not connected with the theory of measurement errors, where such
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errors are of a random nature. Different measures based on this origin can be used outside
of the budget set of the decision-maker in order to process real data.

The decision-maker also expresses, from time to time, the knowledge hypothesis un-
derlying the principal components. It is always up to her to establish which is the most
appropriate instrument in connection with the hypotheses and the knowledge purposes.
Accordingly, it is a question of investigating a system of knowledge hypotheses leading to
many solutions and identifying the one among them that allows to find the framework and
all instruments associated with principal component analysis.

All alternatives referred to ordinary or random goods are firstly well-determined propo-
sitions coinciding with real numbers. Hence, they have to be considered within the ambit
of ordinary logic where only two values, either true or false, are involved whenever un-
certain elements are ultimately absent. The variable state of information and knowledge
associated with a given decision-maker permits her to exclude an enormous number of
outcomes as impossible. All the others remain possible for her at the time of choice. They
are possible alternatives whose number is finite. Since each point of the budget set of
the decision-maker obeys the rules of the logic of prevision, the decision-maker rationally
behaves if she obeys them. They are characterized by logical needs that must be satisfied.
Logical needs characterizing rules of the logic of prevision are satisfied whenever an average
quantity of consumption associated with a joint good is decomposed into two coherent
average quantities of consumption associated with two marginal goods. With regard to the
necessary evolution towards a synthesis of the theory of decision-making, logical aspects
of decision-making could also be fused together by means of a many-valued logic such as
fuzzy logic. On the other hand, aggregate measures can be used outside of decision theory
in order to study multilinear relationships between variables. It is possible to consider such
measures together with parametric probability distributions such as normal distributions to
solve specific inference problems.
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Appendix

.1 Proof of Proposition 2.

Let mB⊥
e = {ei; i ∈ Im} and mB⊥

e() = {e( j); ( j) ∈ Im} be two distinct orthonormal bases of

dM
m
(O). We therefore write 〈

ei,e j
〉
= δi j (.68)

as well as 〈
e(i),e( j)

〉
= δ(i)( j). (.69)

If the set of the contravariant components of ei with respect to mB⊥
e() is denoted by {A( j)

i ; ( j)∈
Im} then we write

ei = A( j)
i e( j), (.70)

where we have i = 1, . . . ,m. We evidently consider m linear combinations identifying a
nonsingular matrix denoted by A = {A( j)

i ; ( j) ∈ Im, i ∈ Im}. We can also write

e(k) = Ai
(k)ei, (.71)

where we have (k) = 1, . . . ,m. We obtain A−1 = {Ai
(k); i ∈ Im, (k) ∈ Im}. This means that it

turns out to be
A( j)

i Ai
(k) = δ

( j)
(k) (.72)

as well as
A( j)

i Ah
( j) = δ

h
i . (.73)

Let v(k) be an eigenvector of the α-metric tensor whose components identify an m×m
symmetric matrix. It is then associated with the eigenvalue denoted by dλ(k) (see also [73]).
Hence, v(k) is expressed by

v(k) = vi
(k)ei (.74)

with respect to mB⊥
e . Let vk be an eigenvector of the α-metric tensor whose components

identify an m×m symmetric matrix. It is then associated with the eigenvalue denoted by

dλk. Hence, vk is expressed by

vk = v( j)
k e( j) (.75)

with respect to mB⊥
e(). We observe that {dλ(k); (k) ∈ Im} as well as {dλk; k ∈ Im} are two

different enumerations identifying the same eigenvalues. The same eigenvalues are contained
in both sets. We cannot pass from a set to another one because we deal with different
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enumerations. If v(k) and vk are normalized, with (k) = 1, . . . ,m as well as k = 1, . . . ,m,
then it turns out to be〈

v(k),v(h)
〉
= ⟨vi

(k) ei, v j
(h) e j⟩= vi

(k) v j
(h)⟨ei, e j⟩= vi

(k) v j
(h) δi j = δ(k)(h) (.76)

and
⟨vk,vh⟩= δkh. (.77)

All these eigenvectors are orthonormal. They identify an orthogonal matrix (see also [57]).
All eigenvectors associated with dgi j are pairwise α-orthogonal. Since they are associated
with dgi j, we refer ourselves to the property of α-orthogonality.

.2 Proof of Proposition 4.

Every risky asset belonging to dM
m
(O) can be expressed as a linear combination of the basic

risky assets belonging to mBwd
. In particular, we can write

di = v(h)i w(h), ∀i ∈ Im. (.78)

We consequently consider the following eigenequation(
dgkh −λ(k) δkh

)
vk
(k) = 0. (.79)

From (.79), it follows

dgkh vk
(k) = λ(k) δkh vk

(k). (.80)

If we use the contravariant components of vh in both sides of (.80) then we obtain

vk
(k) vh

(h) dgkh = λ(k) vk
(k) vh

(h) δkh. (.81)

On the other hand, it is also possible to write

dgkh = v( j)
k v(i)h

〈
w( j),w(i)

〉
α (.82)

after considering (.78). We observe that it turns out to be

vk
(k) vh

(h) δkh = δ(k)(h), (.83)

so we obtain 〈
w(k),w(h)

〉
α = λ(k) δ(k)(h). (.84)

We obtain (.84) after putting (.82) into (.81). If (k) and (h) vary over Im then we note that
(.84) identifies an α-metric tensor with respect to a basis of dM

m
(O) whose elements are the

principal components concerning D{m}. We therefore write

wg(k)(h) =
〈
w(k),w(h)

〉
α = λ(k) δ(k)(h). (.85)

The generic covariant component of a diagonal tensor is expressed by (.85). We define
to be mBwd

an α-orthogonal basis of dM
m
(O), so its elements are pairwise α-orthogonal.

Also, every eigenvalue corresponding to the normalized eigenvector whose components are
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contained in (5.35) coincides with the α-norm of a principal component belonging to mBwd
(see also [76]). Since we write

wg(1)(1) wg(1)(2) . . . wg(1)(m)

wg(2)(1) wg(2)(2) . . . wg(2)(m)
...

...
. . .

...

wg(m)(1) wg(m)(2) . . . wg(m)(m)

 , (.86)

we denote by wa(k)(h) the cofactor of wa(k)(h), where both wa(k)(h) and wa(k)(h) are contained
in (.86). Moreover, we denote by wg the determinant of (.86). The generic contravariant
component of the α-metric tensor under consideration is therefore given by

wg(k)(h) = wa(k)(h)

wg
. (.87)

If we write
1

λ(k)
= λ

(k)

then it is possible to obtain
wg(k)(h) = λ

(k)
δ
(k)(h), (.88)

where we write δ (k)(h) = 1 if and only if it turns out to be (k) = (h).

.3 Proof of Proposition 5.

We remind (5.29). The following condition〈
d′

j,w(k)
〉

α −d(h)
j wg(h)(k) =

〈
d′

j,w(k)
〉

α −d j(k) = 0 (.89)

allows us to compute the covariant components of d̂ j ∈ d̂M
m
(O) with respect to mBwd

. Given
(.89), it turns out to be

d j(k) =
〈
d′

j,w(k)
〉

α . (.90)

We take (.88) into account, so we write

d j(k) wg(h)(k) = d j(k) λ
(h)

δ
(h)(k) = d j(h) λ

(h). (.91)

We observe that the h index in the third side of (.91) is a free index unlike the k index in the
second side of it. The contravariant components of d̂ j ∈ d̂M

m
(O) with respect to mBwd

are
then expressed by

d j(h) λ
(h) =

⟨d′
j,w(h)⟩α

λ(h)
= d(h)

j . (.92)

We lastly observe that the covariant components of d̂ j and d′
j with respect to mBwd

are
obtained in the same way. This means that it is possible to write

d j(k) =
〈
d̂ j,w(k)

〉
α (.93)

in order to obtain them.
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.4 Proof of Theorem 5.

Firstly, we establish a bilinear relationship between two α-metric tensors of order 2 defined
with regard to 2Bd̂ and 2Bd. Such a relationship is studied with respect to dM

2
(O). It follows

that, after writing

d̂g12 =
〈
d̂1, d̂2

〉
α
, (.94)

it is possible to obtain

d̂g12 =
〈
d̂1, d̂2

〉
α
= dk

1dh
2 dgkh, (.95)

where we note that (5.28) has taken the place of the two vectors considered into (.94). This
means that we refer ourselves to the definition of α-metric tensor with respect to 2Bd in
order to obtain (.95). Hence, the condition expressed by ⟨d̂1, d̂2⟩α = 0 becomes

d̂g12 = dk
1dh

2 dgkh = 0. (.96)

We are only interested in it. Secondly, we refer ourselves to the eigenequation given by (.79).
We consequently write

dM
m
(O) =

m⊕
(k)=1

N(k), (.97)

where we denote by N(k) the eigenspace corresponding to the eigenvalue expressed by λ(k).
Such an eigenspace contains all the eigenvectors associated with λ(k). In particular, since it
turns out to be m = 2, we write

dM
2
(O) =

2⊕
(k)=1

N(k), (.98)

where N(1) and N(2) are α-orthogonal because the eigenvalues under consideration are
supposed to be all different. Accordingly, each element of dM

2
(O) can uniquely be expressed

as a direct sum of elements, where each of them belongs to an eigenspace only. Thirdly, we
define two vectors written in the form

z1 = µ1 d̂1 (.99)

and
z2 = µ2 d̂2. (.100)

Two one-dimensional and complementary linear manifolds are therefore spanned as µ1 and
µ2 vary over R, so we denote them by

Z1 : z1 = µ1 d̂1, µ1 ∈ R, (.101)

as well as
Z∗

1 : z2 = µ2 d̂2, µ2 ∈ R. (.102)

Since Z1 and Z∗
1 are α-orthogonal, it turns out to be

dM
2
(O) = Z1 ⊕Z∗

1 . (.103)
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If we write d̂1 ∈ Z1 and µ2 d̂2 ∈ Z∗
1 , where µ2 ∈ R is arbitrarily chosen, then (.96) can be

rewritten in the form
dk

1 µ2dh
2 dgkh = 0, (.104)

where {dk
1} is the set of the contravariant components of d̂1 ∈ Z1 with regard to 2Bd, whereas

{µ2dh
2} is the set of the contravariant components of µ2 d̂2 ∈ Z∗

1 with regard to the same
basis denoted by 2Bd. On the other hand, the set of the covariant components of d̂1 ∈ Z1 with
regard to 2Bd is given by {dk

1 dgkh}, whereas the covariant components of z1 are expressed
by z1h = µ1 d1h, with h ∈ I2. It follows that the vectors whose covariant components are
given by dk

1 dgkh and µ1 d1h belong to the same eigenspace denoted by Z1, so there exists one
and only one scalar denoted by τ1 ∈ R such that it turns out to be

dk
1 dgkh = τ1 µ1 d1h. (.105)

From (.105) it is therefore possible to derive the following eigenequation(
dgkh − τi µi δkh

)
dk

i = 0. (.106)

We note that it turns out to be δkhdk
i = dih, so d1h appearing on the right-hand side of

(.105) is intrinsically of a contravariant nature. Fourthly, we compare (.79) with (.106). We
consequently note that dgkh is the same, so (.79) and (.106) admit the same eigenvalues.
Moreover, (.79) and (.106) admit the same normalized eigenvectors. This means that
λi = τi µi are different from the ones contained in (.79) with regard to their enumeration
only. The same is true with regard to the normalized eigenvectors denoted by v(k) and di.
We lastly say that the condition given by ⟨d̂1, d̂2⟩α = 0 characterizes d̂1 and d̂2 to be the
principal components connected with D{2}. Both of them are obtained by means of a linear
combination. Such principal components are α-orthogonal and the α-norm of each of them
coincides with an eigenvalue identifying a specific eigenspace.





103

Bibliography

[1] M. Abdellaoui, H. Bleichrodt, O. l’Haridon, and C. Paraschiv. Is there one unifying
concept of utility? an experimental comparison of utility under risk and utility over
time. Management Science, 59(9):2153–2169, 2013.

[2] A. Adams, L. Cherchye, B. De Rock, and E. Verriest. Consume now or later? time
inconsistency, collective choice, and revealed preference. American Economic Review,
104(12):4147–4183, 2014.

[3] S. N. Afriat. The construction of utility functions from expenditure data. International
Economic Review, 8(1):67–77, 1967.

[4] D. Ahn, S. Choi, D. Gale, and S. Kariv. Estimating ambiguity aversion in a portfolio
choice experiment. Quantitative Economics, 5(2):195–223, 2014.

[5] J. Andreoni and C. Sprenger. Estimating time preferences from convex budgets.
American Economic Review, 102(7):3333–3356, 2012.

[6] P. Angelini. A reinterpretation of principal component analysis connected with linear
manifolds identifying risky assets of a portfolio. International Journal of Applied
Mathematics, 33(4), 2020.

[7] P. Angelini and F. Maturo. Non-parametric probability distributions embedded inside
of a linear space provided with a quadratic metric. Mathematics, 8(11), 2020.

[8] P. Angelini and F. Maturo. The consumer’s demand functions defined to study con-
tingent consumption plans. Quality & Quantity, https://doi.org/10.1007/s11135-021-
01170-2, 2021.

[9] P. Angelini and F. Maturo. Summarized distributions of mass: a statistical approach to
consumers’ consumption spaces. Journal of Intelligent & Fuzzy Systems, 41(2):3093–
3105, 2021.

[10] F. J. Anscombe and R. J. Aumann. A definition of subjective probability. The Annals
of Mathematical Statistics, 34(1):199–205, 1963.

[11] J. Baron. Second-order probabilities and belief functions. Theory and Decision,
23(1):25–36, 1987.

[12] J. Baron and I. Ritov. The role of probability of detection in judgments of punishment.
Journal of Legal Analysis, 1(2):553–590, 2009.



104 Bibliography

[13] P. Battigalli and M. Siniscalchi. Rationalization and incomplete information. The B. E.
Journal of Theoretical Economics, 3(1), 2003.

[14] M. Berkhouch, G. Lakhnati, and M. Brutti Righi. Extended Gini-type measures of risk
and variability. Applied Mathematical Finance, 25(3):295–314, 2018.

[15] P. Berti, E. Dreassi, and P. Rigo. A notion of conditional probability and some of its
consequences. Decisions in Economics and Finance, 43(1):3–15, 2020.

[16] P. Berti, E. Regazzini, and P. Rigo. Strong previsions of random elements. Statistical
Methods and Applications (Journal of the Italian Statistical Society), 10(1):11–28,
2001.

[17] P. Berti and P. Rigo. On coherent conditional probabilities and disintegrations. Annals
of Mathematics and Artificial Intelligence, 35(1):71–82, 2002.

[18] R. W. Blundell, M. Browning, and I. A. Crawford. Nonparametric Engel curves and
revealed preference. Econometrica, 71(1):205–240, 2003.

[19] P. Bossaerts, P. Ghirardato, S. Guarnaschelli, and W. R. Zame. Ambiguity in asset
markets: theory and experiment. Review of Financial Studies, 23(4):1325–1359, 2010.

[20] J. Bröcker. Reliability, sufficiency, and the decomposition of proper scores. Quarterly
Journal of the Royal Meteorological Society, 135(643):1512–1519, 2009.

[21] M. Browning. A nonparametric test of the life-cycle rational expectations hypothesis.
International Economic Review, 30(4):979–992, 1989.

[22] C. Camerer and M. Weber. Recent developments in modeling preferences: uncertainty
and ambiguity. Journal of Risk and Uncertainty, 5(4):325–370, 1992.

[23] A. Capotorti, G. Coletti, and B. Vantaggi. Standard and nonstandard representability
of positive uncertainty orderings. Kybernetika, 50(2):189–215, 2014.

[24] A. Carvajal, I. Ray, and S. Snyder. Equilibrium behavior in markets and games: testable
restrictions and identification. Journal of Mathematical Economics. Part of special
issue: aggregation, equilibrium and observability in honor of Werner Hildenbrand,
40(1–2):1–40, 2004.

[25] G. Cassese, P. Rigo, and B. Vantaggi. A special issue on the mathematics of subjective
probability. Decisions in Economics and Finance, 43(1):1–2, 2020.

[26] C. P. Chambers and F. Echenique. Supermodularity and preferences. Journal of
Economic Theory, 144(3):1004–1014, 2009.

[27] C. P. Chambers, F. Echenique, and E. Shmaya. The axiomatic structure of empirical
content. American Economic Review, 104(8):2303–2319, 2014.

[28] C. P. Chambers, F. Echenique, and E. Shmaya. General revealed preference theory.
Theoretical Economics, 12(2):493–511, 2017.

[29] L. Cherchye, T. Demuynck, and B. De Rock. Normality of demand in a two-goods
setting. Journal of Economic Theory, 173:361–382, 2018.



Bibliography 105

[30] S. Choi, S. Kariv, W. Müller, and D. Silverman. Who is (more) rational? American
Economic Review, 104(6):1518–1550, 2014.

[31] T. Chudjakow and F. Riedel. The best choice problem under ambiguity. Economic
Theory, 54(1):77–97, 2013.

[32] G. Coletti, D. Petturiti, and B. Vantaggi. When upper conditional probabilities are
conditional possibility measures. Fuzzy Sets and Systems, 304:45–64, 2016.

[33] I. Crawford and B. De Rock. Empirical revealed preference. Annual Review of
Economics, 6:503–524, 2014.

[34] B. de Finetti. The role of “Dutch Books” and of “proper scoring rules”. The British
Journal of Psychology of Sciences, 32:55–56, 1981.

[35] B. de Finetti. Probability: the different views and terminologies in a critical analysis.
In L. J. Cohen, J. Łoś, H. Pfeiffer, and K.-P. Podewski, editors, Logic, Methodology
and Philosophy of Science VI, pages 391–394. North-Holland Publishing Company,
Amsterdam, 1982.

[36] B. de Finetti. The proper approach to probability. In G. Koch and F. Spizzichino, editors,
Exchangeability in Probability and Statistics, pages 1–6. North-Holland Publishing
Company, Amsterdam, 1982.

[37] B. de Finetti. Probabilism: a critical essay on the theory of probability and on the value
of science. Erkenntnis, 31(2-3):169–223, 1989.

[38] G. Debreu. Stochastic choice and cardinal utility. Econometrica, 26(3):440–444, 1958.

[39] T. Denti, M. Marinacci, and L. Montrucchio. A note on rational inattention and rate
distortion theory. Decisions in Economics and Finance, 43(1):75–89, 2020.

[40] W. E. Diewert. Afriat and revealed preference theory. Review of Economic Studies,
40(3):419–425, 1973.

[41] S. Drapeau and M. Kupper. Risk preferences and their robust representation. Mathe-
matics of Operations Research, 38(1):28–62, 2013.

[42] P. Dziewulski. Revealed time preference. Games and Economic Behavior, 112:67–77,
2018.

[43] F. Echenique. New developments in revealed preference theory: decisions under risk,
uncertainty, and intertemporal choice. Annual Review of Economics, 12(1):299–316,
2020.

[44] F. Echenique and K. Saito. Savage in the market. Econometrica, 83(4):1467–1495,
2015.

[45] L. G. Epstein. Are probabilities used in markets? Journal of Economic Theory,
91(1):86–90, 2000.

[46] C. A. T. Ferro and T. E. Fricker. A bias-corrected decomposition of the Brier score.
Quarterly Journal of the Royal Meteorological Society, 138(668):1954–1960, 2012.



106 Bibliography

[47] M. Friedman and L. J. Savage. The expected-utility hypothesis and the measurability
of utility. Journal of Political Economy, 60(6):463–474, 1952.

[48] C. Gerstenberger and D. Vogel. On the efficiency of Gini’s mean difference. Statistical
Methods & Applications, 24(4):569–596, 2015.

[49] P. Ghirardato, F. Maccheroni, and M. Marinacci. Certainty independence and the
separation of utility and beliefs. Journal of Economic Theory, 120(1):129–136, 2005.

[50] I. Gilboa and D. Schmeidler. Maxmin expected utility with a non-unique prior. Journal
of Mathematical Economics, 18(2):141–153, 1989.

[51] A. Gilio and G. Sanfilippo. Conditional random quantities and compounds of condi-
tionals. Studia logica, 102(4):709–729, 2014.

[52] B. Grechuk, A. Molyboha, and M. Zabarankin. Mean-deviation analysis in the theory
of choice. Risk Analysis: An International Journal, 32(8):1277–1292, 2012.

[53] B. Grechuk and M. Zabarankin. Inverse portfolio problem with mean-deviation model.
European Journal of Operational Research, 234(2):481–490, 2014.

[54] R. C. Green and S. Srivastava. Expected utility maximization and demand behavior.
Journal of Economic Theory, 38(2):313–323, 1986.

[55] Y. Halevy, D. Persitz, and L. Zrill. Parametric recoverability of preferences. Journal
of Political Economy, 126(4):1558–1593, 2018.

[56] J. D. Hey and N. Pace. The explanatory and predictive power of non two-stage-
probability theories of decision making under ambiguity. Journal of Risk and Uncer-
tainty, 49(1):1–29, 2014.

[57] H. Hotelling. Relations between two sets of variates. Biometrika, 28(3-4):321–377,
1936.

[58] E. J. Johnson and J. W. Payne. Effort and accuracy in choice. Management Science,
31(4):395–414, 1985.

[59] I. T. Jolliffe and J. Cadima. Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 374(2065), 2016.

[60] K. Jurado, S. C. Ludvigson, and S. Ng. Measuring uncertainty. American Economic
Review, 105(3):1177–1216, 2015.

[61] W. Kip Viscusi and W. N. Evans. Behavioral probabilities. Journal of Risk and
Uncertainty, 32(1):5–15, 2006.

[62] S. Krasa and N. C. Yannelis. The value allocation of an economy with differential
information. Econometrica, 62(4):881–900, 1994.

[63] F. Kubler, L. Selden, and X. Wei. Asset demand based tests of expected utility
maximization. American Economic Review, 104(11):3459–3480, 2014.



Bibliography 107

[64] R. La Haye and P. Zizler. The Gini mean difference and variance. Metron, 77(1):43–52,
2019.

[65] M. J. Machina. Choice under uncertainty: problems solved and unsolved. Journal of
Economic Perspectives, 1(1):121–154, 1987.

[66] M. J. Machina and D. Schmeidler. A more robust definition of subjective probability.
Econometrica, 60(4):745–780, 1992.

[67] H. Markowitz. The utility of wealth. Journal of Political Economy, 60(2):151–158,
1952.

[68] H. M. Markowitz. The optimization of a quadratic function subject to linear constraints.
Naval Research Logistics Quarterly, 3(1-2):111–133, 1956.

[69] R. L. Matzkin and M. K. Richter. Testing strictly concave rationality. Journal of
Economic Theory, 53(2):287–303, 1991.

[70] E. C. Merkle and R. Hartman. Weighted Brier score decomposition for topically
heterogenous forecasting tournaments. Judgment and Decision Making, 13(2):185–
201, 2018.

[71] H. Nishimura, E. A. Ok, and J. K.-H. Quah. A comprehensive approach to revealed
preference theory. American Economic Review, 107(4):1239–1263, 2017.

[72] R. J. Nunke and L. J. Savage. On the set of values of a nonatomic, finitely additive,
finite measure. Proceedings of the American Mathematical Society, 3(2):217–218,
1952.

[73] G. Pasini. Principal component analysis for stock portfolio management. International
Journal of Pure and Applied Mathematics, 115(1):153–167, 2017.

[74] J. Pfanzagl. Subjective probability derived from the Morgenstern-von Neumann utility
theory. In M. Shubik, editor, Essays in mathematical economics in honor of Oskar
Morgenstern, pages 237–251. Princeton University Press, Princeton, 1967.

[75] G. Pompilj. On intrinsic independence. Bulletin of the International Statistical Institute,
35(2):91–97, 1957.

[76] C. R. Rao. The use and interpretation of principal component analysis in applied
research. Sankhya: the Indian Journal of Statistics, Series A, 26(4):329–358, 1964.

[77] E. Regazzini. Finitely additive conditional probabilities. Rendiconti del Seminario
Matematico e Fisico di Milano, 55(1):69–89, 1985.

[78] R. T. Rockafellar, S. Uryasev, and M. Zabarankin. Generalized deviations in risk
analysis. Finance and Stochastics, 10:51–74, 2006.

[79] R. T. Rockafellar, S. Uryasev, and M. Zabarankin. Optimality conditions in portfolio
analysis with general deviation measures. Mathematical Programming, 108(2-3):515–
540, 2006.



108 Bibliography

[80] P. A. Samuelson. Consumption theory in terms of revealed preference. Economica,
15(60):243–253, 1948.

[81] D. Schmeidler. Subjective probability and expected utility without additivity. Econo-
metrica, 57(3):571–587, 1989.

[82] P. Slovic, B. Fischhoff, and S. Lichtenstein. Behavioral decision theory. Annual Review
of Psychology, 28:1–39, 1977.

[83] W. D. Sudderth. Optimal markov strategies. Decisions in Economics and Finance,
43(1):43–54, 2020.

[84] H. R. Varian. The nonparametric approach to demand analysis. Econometrica,
50(4):945–973, 1982.

[85] H. R. Varian. Non-parametric tests of consumer behaviour. The Review of Economic
Studies, 50(1):99–110, 1983.

[86] J. von Neumann. Examples of continuous geometries. Proceedings of the National
Academy of Sciences of the United States of America, 22(2):101–108, 1936.

[87] D. von Rosen. Maximum likelihood estimators in multivariate linear normal models.
Journal of Multivariate Analysis, 31(2):187–200, 1989.

[88] H. Wold, G. L. S. Shackle, and L. J. Savage. Ordinal preferences or cardinal utility?
Econometrica, 20(4):661–664, 1952.

[89] M. E. Yaari. The dual theory of choice under risk. Econometrica, 55(1):95–115, 1987.


	Introduction
	Optimal choices based on bilinear and disaggregate measures
	Introduction
	The real nature of the objects of decision-maker choice under claimed conditions of certainty
	Logically independent random goods
	Probability viewed to be as a mass
	Reductions of dimension connected with random goods which are jointly considered

	Single random goods and bundles of ordinary goods: their relationships with the notion of prevision and utility
	Bound choices being made by the decision-maker under conditions of uncertainty and riskiness
	Coherence properties of the notion of average consumption of a random good
	A projection of a bilinear and disaggregate measure identifying the object of decision-maker choice onto two mutually orthogonal axes
	A full analogy between properties concerning average consumption of random goods and well-behaved preferences

	Metric aspects of the neoclassical decision-maker choice theory applied to average quantities of consumption
	General utilities whose arguments are average quantities of consumption
	Additive separability of utility of prevision bundles

	Choices under risk: the case of random goods identifying average quantities of consumption
	Choices under uncertainty: the case of random goods identifying average quantities of consumption
	Intertemporal choices without exponential discounting and risk aversion: the case of random goods identifying average quantities of consumption

	Distributions of mass transferred on straight lines: reductions of dimension
	Introduction
	A random good and its linear nature
	Two n-dimensional linear spaces which are superposed from a metric point of view
	How to obtain all possible consumption levels
	Convex combinations of possible consumption levels
	A reduction of dimension characterizing the budget set of the decision-maker
	Contravariant and covariant components of vectors and tensors
	A metric notion: -product
	Coherent summaries of nonparametric distributions of mass transferred on straight lines
	The direct product of R and R


	Disaggregate and aggregate measures identifying multiple goods
	Introduction
	Choices based on disaggregate and aggregate measures
	A finite partition of mutually exclusive states of the world of a contingent consumption plan

	Goods demanded by the decision-maker under different conditions
	Random goods demanded under conditions of uncertainty and riskiness
	One-dimensional and two-dimensional convex sets
	Ordinary goods demanded under claimed conditions of certainty

	Unit of measurement
	An extension of the notion of bundle of goods: a consumption matrix
	Another consumption matrix: changes of origin

	How to check the weak axiom of revealed preference by using aggregate measures
	The Bravais-Pearson correlation coefficient associated with each bundle of two goods being chosen by the decision-maker inside of her budget set
	A violation of the weak axiom of revealed preference
	Decision-maker choices that satisfy the weak axiom of revealed preference
	A summary of consumption data based on subjective elements as well

	Other variability measures: mean quadratic differences
	Multiple physical goods of order 2: a numerical example dealing with real data

	Certainties equivalent to a multiple random good
	Introduction
	A contingent consumption plan
	Contravariant and covariant indices associated with a contingent consumption plan

	Logical and probabilistic aspects concerning an ordered pair of contingent consumption plans
	Metric aspects concerning an ordered pair of contingent consumption plans
	The relative and subjective nature of the joint probabilities associated with an ordered pair of contingent consumption plans

	Two contingent consumption plans jointly considered that are independent of the notion of ordered pair
	The budget set of the investor
	To go away from the budget set of the investor: changes of origin

	Uncertainty and riskiness: probability and cardinal utility connected with multiple random goods of order 2
	The criteria of rational choices being made by the investor: multiple random goods of order 2


	Principal components, eigenequation, and eigenspaces in the theory of decision-making
	Introduction
	The investor modeled as being a consumer
	The basic thing that is being chosen by the investor under conditions of uncertainty and riskiness

	Risky assets viewed to be as elements of a linear manifold whose possible values are subjected to changes of origin
	A multiple risky asset of order m and its probabilities
	A symmetric tensor obtained by using joint probabilities

	Eigenvectors connected with a symmetric tensor obtained by using joint probabilities: their representation
	The projection of a linear manifold onto another one: its reason
	An appropriate basis of a linear manifold: a definition of principal components
	The projection of a linear manifold onto another one obtained by choosing a particular basis of it

	A proportionality existing between risky assets: a particular case
	The condition of invariance of the covariance of two risky assets

	Non-classical inferential results
	A two-dimensional linear manifold expressed as a direct sum of two eigenspaces

	Mean-variance utility

	Conclusions
	Appendix
	Proof of Proposition 2. 
	Proof of Proposition 4. 
	Proof of Proposition 5. 
	Proof of Theorem 5. 

	Bibliography

