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ABSTRACT 
Infrastructures play a key role in society. Recent collapses of bridges have underlined their importance 
for the road functionality, causing disruptions to commuters and emergency vehicles. Major issues arise 
on rural roads, where the lack of redundancy led to the isolation of entire communities. Actual 
approaches to assess the resilience of countryside streets rely on the availability of specific datasets, 
limiting the practical applications; this issue is typically related to traffic data. This research aims to 
propose innovative algorithms to assess the road network’s vulnerability in rural areas, including a 
novel traffic data collection process and its calibration. The aggregate metric is called Detour-Impact 
Index (DII) and compares the users’ costs before and after a disruptive event. The method uses 
traditional network-impact metrics in combination with a new algorithm that allows to gather 
quantitative traffic data starting from qualitative information. Users’ travel time showed good 
agreement between the proposed procedure and traditional web-based methods. Furthermore, the paper 
provides users’ delay costs functions accounting for traffic composition, trips’ purposes, vehicles’ 
operative costs, nonlinear volume-capacity relation, and average daily traffic. A significant aspect is the 
adaptability of this framework, as it is designed to be coupled with existing approaches. The method is 
demonstrated on a case study in Tuscany (Italy). 
Keywords: Transportation Network, Traffic Engineering, Risk Management, Bridge Failure, 
Transportation Management   



Pucci, A., Puppio, M. L., Sousa, H. S., Giresini, L., Sassu, M., Matos, J. C.  

3 
 

INTRODUCTION 
Civil infrastructures play a vital function in the management of crisis and commuters’ daily 

trips (1). The vulnerability to bridges from hazardous events has been extensively investigated (2). Both 
businesses and rescue activities are affected by infrastructures’ collapses. One important issue concerns 
the connection between strategic buildings (i.e. hospitals, collective shelters) and countryside’ 
settlements (3). In those areas, a road link failure might cause the isolation of entire communities. The 
problem arises mostly due two aspects: (i) the maintenance of secondary infrastructures and (i) the lack 
of network redundancy (4). This introduces the problem of quantifying the vulnerability of secondary 
infrastructures. Several authors over the last two decades looked at disruptions on roads, usually by 
defining a performance indicator. Reviews of such metrics are given in (5), (6). The body of work 
revealed that one metric above all has been widely applied: the Network Robustness Index (NRI) 
developed by Scott et al. (7). The study was the first to demonstrate the importance of network 
connectivity beside the traditional volume-capacity ratio. In his pioneering work, Scott et al. (7) 
associated the travel-time cost to the link performance. This was the key to prove how a local disruption 
has a system-wide impact. The concept was taken over by Nagurney and Qiang (8). The network 
efficiency introduced the ratio between travel demand and the minimum time associated to an origin-
destination pair. Furthermore, the drop of efficiency is assessed comparing the pre- and post-disruption 
conditions. Nevertheless, both metrics cannot account for trips’ purposes. Sullivan et al. (9) tried to 
overcome this limitation proposing a modified NRI, known as Network Trip Robustness (NTR). A 
further approach, that combines local and global metrics has been proposed by Rupi et al. (10). The 
links are ranked based on a local and a global importance index. The former refers to the Average Daily 
Traffic (ADT), while the latter to the variation in trips’ costs. The authors drew the attention on the 
possibility of having a poor dataset and its implications on the analysis’ outcome. Although researchers 
proposed different methods, the impact of a closed link on the network is always assessed based on the 
difference in performance before and in the aftermath of a disruption. The main variation relies upon 
the alternative metrics adopted. The generalised travel cost is one of the most used (11). A different 
approach highlighted the missed cascade effect on traditional path-based scenarios (12). The single link 
closure might hide the combined losses of multiple link disruption at a time. To account for multi-roads 
failure, several authors have recently tried to link the hazard simulation (e.g. floods, earthquakes) with 
network disruption scenarios (13). An example of such integrated approaches can be found in Arrighi 
et al. (14). The main difference to classical transportation approaches is the direct dependence of the 
accessibility index on the hazard return period. Despite the existence of such advanced methods, there 
is still the research need to propose new algorithms to account for datasets availability in rural areas. 
Typically, road network analysis problems can be implemented if traffic data is known. For densely 
populated areas, there is often the availability of traffic information collected by cameras and traffic 
sensors, whereas the countryside’ scenario is quite different (15). The budget constraint is a decisive 
factor to local authorities in collecting the traffic data (16), leaving the statistical analysis the most used 
in practice, despite its limitations (17). More recently, the use of web-based traffic data was found to be 
a valid alternative to the abovementioned methods. Since the release of Google maps API, it was 
possible to gather traffic data without the disadvantages of the statistical models (18). Most of these 
tools rely on the public version of the API, which represents one of its advantages as it is an open access 
resource (19). The image processing technique applied to Google maps is of particular interest (20), as 
a specific algorithm was designed to extract the value of congestion of several streets using a histogram 
of colours. In the present study, the idea is repeated with the major purpose of combining the image 
analysis with engineering theory to quantitatively estimate the traffic on roads. This work presents a 
parallel approach compared to the newest ones, that usually rely on the use of crowdsourced data (21). 
In here, the methodology is focused on the use of a web image-based algorithm to gather qualitative 
data and using traffic engineering theory to transform it into quantitative information. Furthermore, this 
work directly answers to the research need of specifically addressing the combination of the following 
issues: (i) account for trips’ purposes; (ii) estimate the percentage of heavy vehicles on traffic flow; (iii) 
estimate the vehicles’ operative costs related to cars and trucks; (iv) explicitly account for the speed 
reduction based on the nonlinear volume-capacity ratio. Although some of these parameters have been 
investigated, as the willingness to pay for each extra-minute of driving (22), there is still the need to 
merge different approaches and disciplines to assess the disruption on rural roads. Whereas there are 
more complex approaches that account both for traffic and hazard simulation methods (23), the present 
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study is focused to demonstrate a possible strategy to the mentioned research needs. The method has 
been conceived in modules: each step can be further improved or adjusted, including for example a 
disruption management module (23) as well as a human-made or natural hazard simulation module 
(24). The paper shows how to practically assess the performance of a road network by comparing users’ 
costs in the aftermath of a disruptive event versus stationary pre-event conditions. The framework is 
also focused on data availability issues, by developing an innovative quantitative traffic gathering 
method from qualitative information. The applicability of the method is tested on a real network located 
in Tuscany (Italy). The paper is organized in four main sections. This section introduces the problem 
examining past literature regarding road network performance indicators and traffic data availability. 
In Methods the proposed framework is described, whereas in Application a case study is presented. The 
resulting implications are discussed in the Conclusions. 

 
METHOD 

The most vulnerable component of the infrastructure system is represented by bridges (25). 
This has been demonstrated in case of inundations, in which the bridge collapse caused a longer 
downtime compared to temporary flooded road links (26). In addition to this challenge, in rural areas 
traffic data is often unavailable, leaving the bridge manager to deal with both local and network issues. 
Hence, the proposed framework is focused on providing a tool with a wide applicability, especially for 
those areas in which data availability represents a serious issue. The output of the model consists in a 
performance indicator called Detour-Impact Index (DII). It is defined in Equation 1 as the ratio of the 
increased users’ costs in the aftermath of a disruption to the pre-event condition. It is distinguished from 
existing metrics as it explicitly accounts for cost-specific functions rather than generalised ones. Thus, 
the DII considers the sum of a delay-cost function (DC) and a vehicle’s operational cost (VOC). These 
depend on: (i) traffic average speed based on a non-linear volume-capacity relation; (ii) Average Daily 
Traffic (ADT) along each link; (iii) driver’s time cost function (DTC) and (iv) traffic composition (i.e. 
percentage of trucks), see Equations 3, 4. The DII is also explained through the graphical support of 
Error! Reference source not found.. 

 
Figure 1. Flowchart of the Detour – Impact Index Method 
 
𝐷𝐼𝐼௜ = ∆𝐻௜/𝑁𝐻௝  (1) 

 
Being i = 1, …, n the alternative paths; j the path closed due to the failure of a network 

component; ΔH is the increment of costs (in €) related to the post-hazard scenario; NH the costs (in €) 
assessed in the no-hazard scenario. The greater is DII, the higher is the impact of the traffic-related 
costs. It should be highlighted that in Equation 1 the increased cost on alternative paths is normalised 
to that of closed route, during normal operations. This allows for the estimation of the impact of the 
detour, useful for regular users in case of closed path. Three types of expenditures must be appraised 
for each i-th alternative: (i) The normal-operational costs in the j-th path and (ii) in the i-th one; (iii) 
The post-hazard costs in the i-th path. Hence, the parameter ΔH can be evaluated for each link by 
subtracting the costs obtained in the post-hazard scenario (DCk + VOCk) on the i-th path, to the ones in 
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the normal condition (NCk + NVOCk) as in Equation 2; where, k = 1, …, m are the links of the selected 
i-th path connecting the O-D for the selected i-th path, as in Error! Reference source not found.. 

  
Figure 2.  Failures and alternative paths. Overall network for OD pairs (left) in which i=1 is taken as 
the j-th path. Links for costs computation on the alternative path i = 2 (right) 

 
∆𝐻௜ = ∑ (𝐷𝐶௜௞ + 𝑉𝑂𝐶௜௞) − (𝑁𝐶௜௞ + 𝑁𝑉𝑂𝐶௜௞)௠

௞ୀଵ  (2) 
 

It is not possible to compute ΔH looking only at the post-hazard scenario, since in that case the 
information presented by the previous Equation 2 without the (NCk + NVOCk) term, would have 
provided the total expenditures including the component of traffic during the normal-operational 
conditions; this concept is clearer looking at the daily delays’ costs, DCk as in Equation 3. 

 
𝐷𝐶௜௞ = 𝑇௔௜௞ ∙ 1𝑑𝑎𝑦 ∙ 𝐴𝐷𝑇௜௞ ∙ ∑ (𝐷𝑇𝐶௜௥ ∙ 𝑝௜௥)ସ

௥ୀଵ  (3) 
 
Being Taik=Lik/Saik the k-th link traversal time; Saik is the reduced speed obtained through the 

updated volume-capacity ratio of the street; Lik is the k-th link length; ADTik is the average daily traffic 
on the k-th link of the i-th alternative path. The traffic assignment problem is based on a system optimal 
management, even though other assignments can be performed, as shown in the section “Collapse 
Scenario”. The DTCir is the cost per unit of time (hours) associated to the users’ trip purpose, namely a 
person having a work or non-work trip and driving a r-class vehicle, according to Gervásio and Simões 
(27). The most common scenario in rural areas is represented by commuters’ journeys (i.e. work trips), 
while for more refined analyses, the ADTik can be splitted between work and non-work trips based on 
census data and local surveys. In this more complex setup, the indirect costs’ computation shall be 
performed separately and added before computing the DII. The percentage of vehicle’s type in traffic 
composition is indicated with the symbol pir. The equivalent parameter NCjk is evaluated accordingly, 
but including the ADTj term and the normal operation speed Snk. The vehicle’s operational cost (VOC) 
is computed according to (27) changing the equation syntax for a better application to the proposed 
framework. Hence, the VOCik is evaluated as in Equation 4. 

 

𝑉𝑂𝐶௜௞ = −
ௌ೛೔ೖ

ௌ೙೔ೖ
∙ 𝐿௜௞ ∙ 1𝑑𝑎𝑦 ∙ 𝐴𝐷𝑇௜௞ ∙ ∑ (𝐷𝑇𝐶௜௥ ∙ 𝑝௜௥)ସ

௥ୀଵ  (4) 

 
In both parameters, namely VOCik and NVOCik, the present speed Spik is introduced. In VOCik, 

Spik = Saik, while during normal conditions, Spik = Snik. This distinction is made jointly with a negative 
value VOC terms, because the vehicle’s operative cost is maximum when (Lik – Spik/Snik*Lik) attains the 
lagerst value, i.e. when Spik = Saik. Hence, VOCik – NVOCik in Equation 2 returns (Lik – Saik/Snik*Lik) 
which is the difference between operative expenditures of vehicles at normal speed Snik and reduced 
one, Saik. The parameter NVOCj is assessed accordingly, with the same recommendation about the ADTj 
term and without the minus sign, because no difference is appraised but only the operative costs due to 
the volume of traffic ADTjk.The DII is just the output of the framework, while the whole methodology 
involves five steps: (i) delimitation of the area under study; (ii) acquisition of road network’s and 
bridges’ maps; (iii) identification of settlements and build an Origin Destination (O-D) matrix to 
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generate the paths; (vi) use of the developed Traffic tool algorithm to analyse congestion scenarios; (v) 
assumption of a collapse scenario for each infrastructure and assessment of DII. The flowchart of the 
methodology is illustrated in Figure 2 and theoretically discussed in this Section whereas it is used in 
a case study in the Application Section. 
 
Setting up of the GIS environment and preliminary analysis of the area under study 

The selection of the area under study is made using a GIS tool. Administrative boundaries 
delimitate the portion of territory. As the framework is tailored on rural areas, other contexts were not 
investigated. Despite this assumption, the theoretical model of the framework is still valid also on urban 
areas. In cities only a higher computational effort is required, due to the increased density of bridges, 
roads and thus, alternative paths. This issue cannot be taken for granted, but on urban areas the 
availability of more data justifies the adoption of existing methods. Hence, the proposed framework 
demonstrates its usefulness in rural contexts. The second step consists in gathering the road network’s 
map and the bridge location vector, within the area under study. This task can be performed by using 
GIS maps. The data-availability issue is highlighted as a possible missed dataset of bridges’ location. 
Two procedures are proposed to overcome this problem. The road network map can be considered as a 
graph G(S, N), made up by links (S) and nodes (N), being nS the number of links and nN the number of 
nodes. The bridges’ location vector B has nB elements. The following two procedures are applicable in 
case of missing B. Procedure 1: Consider S in which each link has an elevation attribute, that on Jedlička 
et al. (28) assumes the following values: Zi = {-1, 0, 1}. A bridge b  Rn

B can be identified using the 
following expression: B = Z0  Z1, given Z0  S and Z1  S. The second method allows to find b  Rn

B 
on watercourses. Procedure 2: Given a river network map W made up of nW segments, then B = (W  
Z0)  (W  Z1). The study also requires knowledge about the strategic buildings position. These data 
can be found in Emergency Limit Condition (ELC) maps (29). It is crucial to note that either bridges, 
strategic structures and infrastructure links, as a design purpose, can be reduced in number depending 
if a hazard simulation scenario is run in parallel to this analysis. Then, settlements are identified with 
the destination vector D, where D  N. In such way, the arrival point is part of the graph G, and routing 
algorithms as Dijkstra can be used (30). The next step concerns the origin-destination (O-D) matrix 
design. Each small town is linked to the Civil Protection headquarters, connecting one Origin to several 
Destinations. Each O-D pair P includes nP paths, each p  Rn

P can be created using existing routing 
algorithms (31).  Each path is made up by a set of links k = 1…m (Figure 1), each characterized by a 
traffic volume vk. Theoretically one can assume that the volume of vehicles is known, but on practical 
applications, data availability on rural roads is an issue. Thus, an innovative web-based method has 
developed to gather traffic data, and is illustrated in the next section. 

 
Traffic data acquisition 

The new method, shown in Figures 3-6, starts looking at web-based traffic layers as the Google 
Maps’ one. These layers are qualitative, but it is the Authors’ conviction that they can be considered as 
an immediate, simple and effective tool to gather information on traffic conditions in absence of 
counters. Indeed, the proposed method is not intended to substitute the more reliable traditional in-situ 
counting techniques, but instead to give a first estimation of the traffic quality. The main idea behind 
the proposed procedure is to populate each vk vector with a quantitative information gathered using a 
two-step method: (i) use of Traffic Tool script to gather qualitative data; (ii) use an algorithm to 
transform qualitative traffic information into volumes of vehicles. 
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Figure 3. Traffic Tool script flowchart 

 
Traffic script 

Firstly, the qualitative data visualized in the web map traffic layer is collected using a script 
named Traffic Tool developed by the Authors. The script has been developed using ImageJ software 
(32). The algorithm’s flowchart is highlighted in Figure 3 and its code can be found in the Appendix 
of this paper. The script captures single web-images as from Google Maps, at different 
latitude/longitude coordinates and appropriately merges them into a single (bigger) image. In this way 
the final picture looks like a single high-definition image. The merging phase is conducted using a 
matricial order, by performing two nested loops: one for latitude calculation (rows of the matrix) and 
the other for longitude (columns of the matrix). Figure 4 shows a practical example of the assembly 
process. Then, one raster per each web-based traffic color is generated by means of another IJ1 script, 
provided together with the Traffic Tool. Each image is then overlaid with the road network shapefile 
on GIS. This can be done by importing the raster that comes with the tfw companion file, which is also 
created by the Traffic Tool. Hence, by employing GIS plugins, the properties of each raster can be 
included into the shapefile. An additional column is created on the attribute table of each p  Rn

P. User 
supervision is always required along these automated steps, as sporadic manual adjustments might be 
necessary. The traffic colours from web-based maps as Google’s one, are labelled as follows: green = 
AB; orange = CD; red = E; dark red = F. The labels are used to populate the newly created column on 
each p vector file. The result is a road network shapefile with qualitative traffic information. As the 
simulations are performed by using web-based traffic, multiple simulations can be performed at local 
peak hours, or at specific time, depending on the aim of the analysis. 

 
Figure 4. Assembly process – image from Google Maps© 
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From qualitative to quantitative traffic data 

The qualitative information is transformed into quantitative one, using a new algorithm that 
incorporates equations included in the Highway Capacity Manual (HCM) (33). The process is described 
in Figure 5. The qualitative traffic obtained using Traffic Tool is compared to the Level Of Service 
(LOS) defined by the HCM. The criterion is established according to Figure 6. The motivations for 
such a choice can be explained from the definition of each qualitative metric.  For example, Google 
stated that the traffic colours represent the delay due to various grades of congestion (34). On the other 
side, the LOS is a traffic performance indicator. Hence, the qualitative relationship between the two 
indices can be based on the expected-delay level. Since there are four levels in Google traffic and six 
in the LOS, a clustering of the HCM index is proposed. A further innovation relies on the use of LOS 
as input, while traditionally is an output. A reverse-phased method is then adopted. This allows for the 
computation of quantitative traffic volumes. Each LOS is associated to an interval of traffic speed. The 
mean value of each speed range SLOS is assumed. Then, the link traversal time Rt can be calculated, with 
the simple relation Rt=L/SLOS, where L is the link length. Similarly, the link traversal time at free-flow 
speed R0 can be evaluated by using the HCM. Hence, the quantitative traffic volume, which is based on 
road links’ LOS, can be found using the following Equation 5. More in detail, the volume of vehicles 
is derived from the images acquired using the script provided in the Appendix of this paper. This script 
is also included in GIS environment through the procedures described in the previous subsection. 

 

𝑣 = ቄ
ൣ்∙(ோ೟ିோబ)ାଶ(ோ೟ିோబ)మ൧

[ଶ௃௅మା்(ோ೟ିோబ)]
ቅ 𝑐 (5) 

 
Where J is a calibration parameter whose values are specified in the HCM, c is the capacity of 

the street (vehicles/hour) obtained from OTM maps (28), T is the reference period (typically 1 hour). It 
should be noticed that the previous equation does not consider the delay due to signalized intersections. 
This can be an issue in an urban area with many traffic lights, but not in rural areas. The traffic volume 
obtained through Equation 5 is related to the ADT term on Equation 3, 4, and thus is directly linked 
to the DII. To obtain the ADT, the volume in veh/h has to be divided by the hourly volume factor that 
can be assumed equal to 0.10. The traffic volume computation sets the stage for the next step which 
introduces the collapses. 
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Figure 5. Quantitative traffic assessment flowchart 
 

 
Figure 6. Example of LOS levels reduction to the corresponding web-based map classification (in this 
case Google Traffic) 
 
Collapse scenario 

All data collected and elaborated until this point is employed to simulate the consequences of 
a failure in a road. Firstly, the road network is converted to a routable graph. Briefly, in each crossing 
a node is generated according to the map’s topology. Directions properties are introduced in the network 
and edges act as connectors between nodes. Then, all the paths between an O-D couple are generated 
using a routing plugin. To this end, existing algorithms with a GIS interface can be employed (35). This 
aspect is crucial when alternative paths are considered. Each route contains information on traffic 
volumes calculated with Equation 5. Then, for each O-D path, the following Equation 6 (adapted from 
HCM) is assumed to evaluate the traversal time Rc expressed in hours, during the collapse scenario. 

 

𝑅௖ = 𝑅଴ + 0.25 ቈ
௩ೠ೛೏

௖
− 1 + ටቀ

௩ೠ೛೏

௖
− 1ቁ

ଶ
+

ଵ଺௃∙௩ೠ೛೏

௖
𝐿ଶ቉ (6) 

 
where vupd/c is the volume-capacity ratio that received the detoured traffic from the collapsed 

link, as demonstrated below. The total travel time of a specified O-D path is the sum of all computed 
Rc values for each link of length L. To generate the failure scenario, all the paths for each O-D pair are 
considered. The DII computation is demonstrated according to the design in Figure 7, in which bridges’ 
position is determined by the intersection between the links a, b, c,  S and the river w  W. The failure 
of a bridge is taken as a Boolean event in this study, whereas the collapse probability can be appraised 
using existing hazard simulation models coupled with an appropriate structural analysis (36). The 
collapse scenario has the effect of detouring the traffic volume of one path to the alternative one using 
a system-optimal assignment. Nevertheless, the proposed method can also accommodate other traffic 
assignments such as the user equilibrium. To briefly demonstrate this capability and summarise the 
workflow, an example is presented on a simple 3-links network, according to Figure 7.  Once that R has 
been calculated using Equation 6, the economic costs can be computed, to determine which alternative 
path is the most critical. The computation for the network in Figure 7 is done according to the following 
workflow: 

For p = 1 to np do #np = number of paths (3 in the network of Figure 7) 
 Vdetour = Vp #the volume to detour (Vdetour) is the traffic on the closed path (Vp) 
 For iteration = 0 to Vb do 

For i = 1 to nb do #nb = number of bridges (3 in the network of Figure 7) 
If i = p then 

i = i +1 
else 

Traffic Assignment computation 
compute DIIi 

According to the example, the input parameters are shown in Table 1. 
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Figure 7. Network intersecting a river to highlight bridges' locations 
 
TABLE 1. Example parameters and their source for the network of Figure 7. 

Source: Dijkstra on GIS Traffic Tool OTM HCM HCM Equation 5 
Route Length LOS Capacity Av. Speed FFS Volume 
a 2 km E 800 veh/h 20 km/h 55 km/h 800 veh/h 
b 3 km CD 500 veh/h 33 km/h 65 km/h 420 veh/h 
c 4 km AB 600 veh/h 50 km/h 55 km/h 270 veh/h 

 
During the collapse scenario task, the volume of the closed path is detoured to the remaining 

ones according to the selected traffic assignment method. From the point of view of the infrastructure 
manager, it would be appropriate to minimize the overall system’s disruption, while in a scenario 
without any supervisory intervention, the user optimum assignment offers a more realistic behaviour of 
drivers. In compliance with the data of Table 1 and to the network configuration of Figure 7, the results 
in terms of DII are presented in Table 2. 
 
TABLE 2. DII results for the parameters of Table 1, network of Figure 7 and two traffic 
assignment methods. 

Closed: Path “a”. Detoured = 800 
veh/h 

Sys. Opt. Assignment Usr. Equil. Assignment 

Alternative Paths: b c b c 
Volume/capacity in post-hazard 
condit. 

1.13 1.54 1.54 1.2 

DII 1.1 4.0 2.4 2.3 
Closed: Path “b”. Detoured = 420 
veh/h 

 

Alternative Paths: a c a c 
Volume/capacity in post-hazard 
condit. 

1.30 0.75 1.30 0.75 

DII 2.6 1.3 2.6 1.3 
Closed: Path “c”. Detoured = 270 
veh/h 

 

Alternative Paths: a b a b 
Volume/capacity in post-hazard 
condit. 

1.31 0.90 1.21 1.03 

DII 3.8 1.1 2.6 1.6 
 

From this simple example, it is evident that the system optimum assignment enhances the 
differences between alternatives, highlighting critical situations that might arise during a network 
disruption. On the contrary, this is not well understandable by local managers if the user equilibrium is 
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employed instead, as no greater differences are observed in terms of DIIs. Nevertheless, this example 
highlighted the flexibility of the proposed method, which can successfully accomodate various traffic 
assignment models. The framework, in this version, can handle a disruption at time, for each p  Rn

p; 
multi-link failures might generate higher DIIs, whereas in such case, the probability of having multiple 
disruptions will be included in an updated version of the model. The Detour-Impact Index (DII) has 
been proposed here to summarize the influence that the closure of a certain path has on its users, by 
looking at the disruptions generated on other routes and compared to the initial conditions of the 
network, which might be already in a congested state, being not properly managed. The performance 
indicator is applied to a real-world scenario in the following section. 

 
APPLICATION 

The framework was tested in the municipalities of Massa and Carrara in Tuscany, Italy. This 
province suffered from high damages in the last decade, with two major disasters. One occurred in 
October 2011, where severe rainstorms caused the collapse of 11 bridges and damages up to 100 million 
euro (37), and another inundation in 2012 on the coastal area, with the collapse of several bridges and 
24 million euro damages. In line with this scenario, and apart from major bridge collapses occurred in 
the last years (38), several failures on secondary road bridges revealed an unknown problem with a 
potential high impact (39), (40). A recent work developed by Puppio (41) has shown that 70% of the 
bridges is located on secondary infrastructures (with an average density of one bridge for each km) and 
among these, only 20% are found on official maps. Hence, it is not surprising if such collapses cause 
severe consequences for the population, leaving entire communities isolated. Thus, the proposed 
method has been applied to the Italian territory due to its vulnerability. The superimposition of road and 
hydraulic networks showed 756 crossings in the municipalities of Massa and Carrara, located in 
Northern Italy. The intersection with the O-D paths reduced the number of crossings to 123, as only the 
infrastructures on these routes are considered. Each settlement of these municipalities is connected to 
the civil protection headquarter, located in the city of Massa. The framework is here applied to three 
zones: (i) area of Avenza (Carrara), connected with suburban freeways to (ii) the city of Massa, (iii) 
mountain villages in Massa’s municipality. The traffic composition, according to the average number 
of cars and trucks registered to the driving bureau, is 90% of cars and 10% of trucks in the municipality 
of Massa, 85% of cars and 15% of trucks in Carrara. In the following analyses, for each path the farthest 
village is assumed as Destination. 

 
DII Computation 

Between the first and the second zone, seven paths have been identified from the Civil 
Protection Headquarter of Massa to Avenza. The analysis showed that only five of them involve a 
possible bridge collapse as shown in Figure 8. The results in terms of DII are shown in Figure 9. When 
Path 1 is closed, path 4 is the most convenient alternative, with a saving of costs of 44% to path 5, 66% 
to path 2 and 100% compared to path 3. Conversely, when path 4 is closed, path 1 is the most 
economical alternative. Hence, path 1 and 4 can be considered strategic infrastructures, as the collapse 
of any infrastructure on other paths (2, 3, 5) can be dealt by means of these two routes. Furthermore, 
path 3 and 4 are those causing the overall major disruptions. Therefore, interventions could be planned 
to reduce the indirect costs on these two routes. Matrices as that displayed in Figure 9 can be useful as 
support tool for specific improvements on the network, in order to reduce the higher impacts on detoured 
users. Thus, after a disruptive event, the connection between the cities of Massa and Avenza can be 
assured by several alternatives, with the DII’s matrix as a practical tool for assessing the consequences 
on detoured users. A different situation is shown on the second case, where only one alternative path is 
available for each O-D pair. From the Civil Protection Headquarter to Massa’s mountain area (zone 2 
to zone 3) there are four destinations: Antona, Resceto, Casette and Forno. The last three have almost 
all routes in common, so that the collapse scenario is the same. All the other settlements in the area are 
located on the way to these three villages. For each destination, the analysis revealed only one 
alternative path as shown in Figure 10. The computation of the DII returns the following: DII = 1.7 
when path A is closed and DII = 2.6 when path B is closed. In order to choose which is the most critical, 
a comparison between DIIs leads to the following statement: closing path B would cause costs 53% 
higher than closing path A. Even though this comparison seems to be unreasonable since the 
destinations are different, the alternative paths are mutually exclusives as visible in Figure 10. Thus, 
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since the costs are computed on each k-th link and, in this particular case, the diverted traffic volume is 
equal in both paths, B is more critical than A since path B corresponds to a greater DII. 

 
Figure 8. Paths from Civil Protection Headquarter to Avenza (Carrara)  
 

 
Figure 9. Detour-Impact Index for paths between zones 1 and 2 
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Figure 10. Paths from Civil Protection Headquarter to Antona (left), Forno (right) 
 
Model validation 

The validation of the model compares the travel time obtained from the proposed procedure in 
the no-hazard scenario to the travel time provided from Google Maps. The traffic analysis is computed 
using the same set of traffic data record. Statistical descriptive analysis of the sample returns that the 
error variability ranges from 0% to 40% for the lower bound interval, and from 0% to 33% for the upper 
bound. Dividing the sample between suburban and mountainous paths, the two measurements can be 
treated as independent. Equation 7 was used to compare the error between the Estimated Time of 
Arrival (ETA) calculated using the proposed procedure (ETAmethod) and the same quantity using web-
based maps (ETAweb). 

 
𝐸𝑟𝑟𝑜𝑟 = | 𝐸𝑇𝐴௠௘௧௛௢ − 𝐸𝑇𝐴௪௘௕| (7) 
 

TABLE 3. Errors between the ETAs of the proposed method and the web-based maps 
estimates. 

 Statistics of errors Suburban Mountainous 

Compared to 
Lower bound of 
Google Maps 

Upper 95% confidence interval 39.4% 12.1% 
Mean error 32.1% 5.6% 
Lower 95% confidence interval 24.9% 0.9% 

Compared to Upper 
bound of Google 
Maps 

Upper 95% confidence interval 8.3% 32.0% 
Mean error 4.3% 27.2% 
Lower 95% confidence interval 0.3% 22.4% 

 
The results in Table 3 showed that the lowest errors (4.3% and 5.6%) appear in different 

boundaries of Google Maps ETA. This implies that the percentage of traffic explained by the model is 
considerably different between suburban and mountainous areas. The average ETA in suburban areas 



Pucci, A., Puppio, M. L., Sousa, H. S., Giresini, L., Sassu, M., Matos, J. C.  

14 
 

is closer to the Google Maps ETA upper bound, while the opposite occurs for mountainous areas. This 
indicates that the indirect costs are underestimated on highlands compared to suburban ones. Taking 
these limitations into account, the results are satisfactory, with low errors (below 5.7%) in both areas. 

 
CONCLUSIONS 

Lessons learnt from past events highlight the key role of the road network usability after a 
bridge collapse. This aspect is particularly important for countryside and suburban areas, where the 
disruption of just one apparently secondary infrastructure might cause the isolation of entire 
communities.  Moreover, the availability of data on rural areas can limit existing approaches. This is 
particularly relevant for traffic data. Furthermore, road performance indicators rely on generalised 
users’ costs functions, while the combination of trip’s purpose, traffic composition and vehicles’ 
operative costs should be explicitly accounted for. This paper addressed these issues proposing a new 
aggregate metric, known as Detour-Impact Index (DII). The performance indicator combines traditional 
impact metrics with innovative algorithm to address challenges on rural contexts. Indeed, traffic data 
availability has been solved using a new web-based method, able to transform qualitative information 
into quantitative volumes of vehicles. Furthermore, the method introduced a delay-cost function (DC) 
and a vehicle’s operational cost (VOC). This allowed to explicitly account for the driver’s time cost 
function, the trip’s purpose and the traffic composition. The method is the first attempt to combine data 
availability issues, roads’ disruptions and include the evaluation of users’ specific consequences. As 
such, the method is limited by several assumptions, which are critically addressed. These include the 
mean LOS velocity as the traffic speed during the conversion from qualitative to quantitative data. 
Despite this high-handed decision, the experimental results were found in good agreement with the 
predicted values. The validation of the model was verified by a statistical analysis where the error was 
4.3% for suburban roads and 5.6% for mountainous ones. Thus, there is evidence to suggest that 
assuming the mean speed for each LOS as the mean speed of vehicle’s flow, is an acceptable decision. 
It can also be inferred that the street class is a critical parameter to the mean speed assumption. Indeed, 
each street category has distinctive values of speed range, and these are summarized in specific tables 
in the HCM. Thus, since these are based on semi-empirical studies, it is reasonable to think that the 
distribution of speed values on streets follows a normal distribution. Thus, the mean value is also the 
most frequent one. This can explain why the method works in good agreement with real-case scenarios. 
This procedure is not substitutive of the more reliable traffic counters, but it allows to produce a first 
quantitative estimate of the traffic on roads where no traffic data is available. Each path is classified as 
being more or less critical to the network, based on a single-link failure. This feature may lead to the 
underestimation of DIIs, since a multi-link disruption would lead to higher values. Although this issue 
is not for granted, in this situation a different method (i.e. a probabilistic approach) should be assumed 
when several disruptions occur at time. This is because in a multi-link failure the worst-case scenario 
should be reasonably supported by a probability of occurrence. Future challenges are being made 
incorporating a capacity-reduction likelihood. A further expansion might include a refined traffic 
volumes calculation applying the same method on other datasets. The proposed framework, in this first 
version, might be a useful tool to prevent situations in which the detour implies a significant increase 
of users’ costs. The lack of network redundancy on rural areas and critical scenarios can be also 
highlighted. 
 
ACKNOWLEDGMENTS 

The first, third and sixth authors acknowledge that, this work was partly financed by FEDER 
funds through the Competitivity Factors Operational Programme - COMPETE and by national funds 
through FCT Foundation for Science and Technology within the scope of the project POCI-01-0145-
FEDER-007633. This work was supported by the FCT Foundation for Science and Technology under 
Grant SFRH/BD/145478/2019. 
 
AUTHOR CONTRIBUTIONS 

The authors confirm contribution to the paper as follows: study conception and design: A. 
Pucci, H. S. Sousa, J. C. Matos; data collection: A. Pucci; analysis and interpretation of results: A. 
Pucci, H. S. Sousa, L. Giresini; draft manuscript preparation: A. Pucci, M. L. Puppio, M. Sassu. All 
authors reviewed the results and approved the final version of the manuscript. 



Pucci, A., Puppio, M. L., Sousa, H. S., Giresini, L., Sassu, M., Matos, J. C.  

15 
 

 
REFERENCES 
1.  Wisetjindawat W, Derrible S, Kermanshah A. Modeling the Effectiveness of Infrastructure and 

Travel Demand Management Measures to Improve Traffic Congestion during Typhoons. 
Transportation Research Record. 2018 Aug 27;2672(1):43–53. Available from: 
https://doi.org/10.1177/0361198118791909 

 
2.  Capacci L, Biondini F, Titi A. Lifetime seismic resilience of aging bridges and road networks. 

Structure and Infrastructure Engineering. 2020;16(2):266–86. Available from: 
https://doi.org/10.1080/15732479.2019.1653937 

 
3. Porta S, Crucitti P, Latora V. The network analysis of urban streets:a primal approach. Envir. 

and Plann. B: Plann. and Design. 2006;33:705-725. https://doi.org/10.1068/b32045 
 
4.  Inkoom S, Sobanjo JO. Reliability Importance as a Measure of Bridge Element Condition 

Index for Deteriorating Bridges. Transportation Research Record. 2019 Jul 11;2673(12):327–
38. Available from: https://doi.org/10.1177/0361198119862627 

 
5.  Mattsson L, Jenelius E. Vulnerability and resilience of transport systems – A discussion of 

recent research. Transportation Research Part A. 2015;81:16–34. 
  
6.  Jiang Y, Wang Y, Szeto WY, Chow AHF, Nagurney A. Probabilistic assessment of transport 

network vulnerability with equilibrium flows. International Journal of Sustainable 
Transportation. 2020;1–12. Available from: https://doi.org/10.1080/15568318.2020.1770904 

 
7.  Scott DM, Novak DC, Aultman-Hall L, Guo F. Network Robustness Index : A new method for 

identifying critical links and evaluating the performance of transportation networks. Journal of 
Transport Geography. 2006;14:215–27. 

  
8.  Nagurney A, Qiang Q. A network efficiency measure for congested networks. Europhysics 

Letters. 2007;79(3):38005. 
  
9.  Sullivan JL, Novak DC, Aultman-Hall L, Scott DM. Identifying critical road segments and 

measuring system-wide robustness in transportation networks with isolating links : A link-
based capacity-reduction approach. Transportation Research Part A. 2010;44(5):323–36. 
Available from: http://dx.doi.org/10.1016/j.tra.2010.02.003 

 
10.  Rupi F, Bernardi S, Rossi G. The Evaluation of Road Network Vulnerability in Mountainous 

Areas : A Case Study. New Spatial Economy. 2015;15:397–411. 
  
11.  Xu X (Alex), Fakhrmoosavi F, Zockaie A, Mahmassani HS. Estimating Path Travel Costs for 

Heterogeneous Users on Large-Scale Networks: Heuristic Approach to Integrated Activity-
Based Model–Dynamic Traffic Assignment Models. Transportation Research Record. 2017 
Jan 1;2667(1):119–30. Available from: https://doi.org/10.3141/2667-12 

 
12.  Bagloee AS, Sarvi M, Wolshon B, Dixit V. Identifying critical disruption scenarios and a 

global robustness index tailored to real life road networks. Transportation Research Part E. 
2017;98:60–81. Available from: http://dx.doi.org/10.1016/j.tre.2016.12.003 

 
13.  Kermanshah A, Derrible S. Robustness of road systems to extreme flooding: using elements of 

GIS, travel demand, and network science. Natural Hazards. 2017;86(1):151–64. 
  
14.  Arrighi C, Pregnolato M, Dawson RJ, Castelli F. Preparedness against mobility disruption by 

floods. Science of the Total Environment. 2019;654:1010–22. Available from: 
https://doi.org/10.1016/j.scitotenv.2018.11.191 



Pucci, A., Puppio, M. L., Sousa, H. S., Giresini, L., Sassu, M., Matos, J. C.  

16 
 

 
15.  Khan SM, Islam S, Khan MDZ, Dey K, Chowdhury M, Huynh N, et al. Development of 

Statewide Annual Average Daily Traffic Estimation Model from Short-Term Counts: A 
Comparative Study for South Carolina. Transportation Research Record. 2018 Nov 
8;2672(43):55–64. Available from: https://doi.org/10.1177/0361198118798979 

 
16.  Zhang X, Chen M. Enhancing Statewide Annual Average Daily Traffic Estimation with 

Ubiquitous Probe Vehicle Data. Transportation Research Record. 2020 Jun 21;2674(9):649–
60. Available from: https://doi.org/10.1177/0361198120931100 

 
17.  Selby B, Kockelman KM. Spatial prediction of traffic levels in unmeasured locations : 

applications of universal kriging and geographically weighted regression. Journal of Transport 
Geography. 2013;29:24–32. Available from: http://dx.doi.org/10.1016/j.jtrangeo.2012.12.009 

 
18.  Alsobky A, Mousa R. Estimating free flow speed using Google Maps API: accuracy, 

limitations, and applications. Advances in Transportation Studies, an International Journal. 
2020;50:49–64.  

19.  Nair DJ, Gilles F, Chand S, Saxena N, Dixit V. Characterizing multicity urban traffic 
conditions using crowdsourced data. PLoS ONE. 2019;14(3):1–16. 

  
20.  Petrovska N, Stevanovic A. Traffic Congestion Analysis Visualisation Tool. In: 2015 IEEE 

18th International Conference on Intelligent Transportation Systems. Las Palmas de Gran 
Canaria: IEEE; 2015. p. 1489–94. 

  
21.  Sarvepalli A, Davis B. Multiple Uses of Big Data for Model Validation and Express Lanes 

Traffic Forecasts. Transportation Research Record. 2020 Aug 20;2674(11):87–100. Available 
from: https://doi.org/10.1177/0361198120942222 

 
22.  Pulugurtha S., Penmetsa P, Duddu VR. Travel time, reliability, additional trip time, 

willingness to pay and their values by socio-economic factors. Advances in Transportation 
Studies, an International Journal. 2019;49:31–46. 

  
23.  Zhang N, Alipour A. Two-Stage Model for Optimized Mitigation and Recovery of Bridge 

Network with Final Goal of Resilience. Transportation Research Record. 2020 Jul 
22;2674(10):114–23. Available from: https://doi.org/10.1177/0361198120935450 

 
24.  Togia H, Francis OP, Kim K, Zhang G. Segment-Based Approach for Assessing Hazard Risk 

of Coastal Highways in Hawai‘i. Transportation Research Record. 2019 Jan 1;2673(1):83–91. 
Available from: https://doi.org/10.1177/0361198118821679 

 
25.  Giresini L, Puppio ML, Sassu M. Collapse of corrugated metal culvert in Northern Sardinia: 

analysis and numerical simulations. Special Issue of International Journal of Forensic 
Engineering. 2016;3(1–2):69–85. 

  
26.  Kalendher Lebbe MF, Lokuge W, Setunge S, Zhang K. Failure mechanisms of bridge 

infrastructure in an extreme flood event. In: Proceedings of the First International Conference 
on Infrastructure Failures and Consequences. Melbourne: Emerald Group Publishing Limited; 
2014. p. 124–32.  

 
27.  Gervásio H, Simões L da S. Life-cycle social analysis of motorway bridges. Structure and 

Infrastructure Engineering. 2013;9(10):1019–39.  
 
28.  Jedlička K, Hájek P, Čada V, Martolos J, Šťastný J, Beran D, et al. Open Transport Map - 

Routable OpenStreetMap. In: Paul Cunningham and Miriam Cunningham, editor. IST-Africa 
2016 Conference Proceedings. Durban: IIMC International Information Management 



Pucci, A., Puppio, M. L., Sousa, H. S., Giresini, L., Sassu, M., Matos, J. C.  

17 
 

Corporation; 2016. p. 1–11.  
 
29.  Commissione Tecnica per la Microzonazione Sismica. Condizione limite per l’emergenza 

(CLE). Rome; 2014.  
 
30.  Schneck A, Nokel K. Accelerating Traffic Assignment with Customizable Contraction 

Hierarchies. Transportation Research Record. 2020;2674(1):188–96.  
 
31.  Pella H, Ose K. Network Analysis and Routing with QGIS. In: Baghdadi N, Mallet C, Zribi M, 

editors. QGIS and Applications in Water and Risks. First. London: ISTE Ltd and John Wiley 
& Sons, Inc.; 2018. p. 105–44.  

 
32.  National Institutes of Health. ImageJ [Internet]. 1997 [cited 2020 Nov 10]. Available from: 

https://imagej.nih.gov/ij/ 
 
33.  Transportation Research Board. Highway Capacity Manual. Washington D.C.; 2010.  
 
34.  Google LLC. Google Maps Platform FAQs [Internet]. 2020 [cited 2020 Nov 10]. Available 

from: https://developers.google.com/maps/faq 
 
35.  Gusev M. GNM plugin for QGIS [Internet]. 2015 [cited 2020 Nov 11]. Available from: 

https://github.com/nextgis/gnm_qgis 
 
36.  Sassu M, Giresini L, Puppio ML. Failure scenarios of small bridges in case of extreme 

rainstorms. Sustainable and Resilient Infrastructure. 2017;2(3):108–16. Available from: 
http://dx.doi.org/10.1080/23789689.2017.1301696 

 
37.  Bini C, Ciampi P, Cressanti S, Fattorini R, Fortini W, Lucchi C, et al. Cosa insegna il fiume 

[Internet]. Regione Toscana, editor. Florence: Toscana Notizie; 2012. 201 p. Available from: 
www.toscana-notizie.it 

 
38.  Bazzucchi F, Restuccia L, Ferro GA. Considerations over the Italian road bridge infrastructure 

safety after the Polcevera viaduct collapse: past errors and future perspectives. Frattura ed 
Integrità Strutturale. 2018;12(46):400–21.  

 
39.  Stochino F, Fadda ML, Mistretta F. Low cost condition assessment method for existing RC 

bridges. Engineering Failure Analysis. 2018;86(December 2017):56–71. Available from: 
https://doi.org/10.1016/j.engfailanal.2017.12.021 

 
40.  Stochino F, Fadda ML, Mistretta F. Assessment of RC Bridges integrity by means of low-cost 

investigations. Design of Civil Environmental Engineering. 2018;46(October):216–25.  
 
41.  Puppio ML. Safety Assessment and Strenghtening of Short Span Bridges in case of Extreme 

Rainstorms. PhD Thesis. University of Pisa; 2018.  
 


