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Abstract. In this paper we prove existence of solutions for an elliptic system related to the
stationary thermistor problem with sources, that is

− div(A(x, u)∇u) + u = B(x, u)∇ψ · ∇ψ in Ω,

− div(B(x, u)∇ψ) + ψ = g in Ω,

u = 0 = ψ on ∂Ω.

where g is a positive function in L∞(Ω), and A(x, t) and B(x, t) grow as powers of t.
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1. Introduction and statement of the results. A thermistor is a device in
which the electrical resistance is dependent on the temperature. If Ω is a bounded,
open subset of RN , N ≥ 2, representing the body of the device, u is the temperature of
the body, and ψ its electrical potential, following [2] we have that if A(u) is the thermal
conductivity, and B(u) is the electrical conductivity, then u and ψ are solutions of
the elliptic-parabolic system

−div(B(u)∇ψ) = 0 , d c ut −÷(A(u)∇u) = B(u) |∇ψ|2 .

If one considers the stationary problem, then ut = 0, so that u and ψ are solutions of
the system of elliptic equations

(1.1)

{
−div(A(u)∇u) = B(u) |∇ψ|2 in Ω,

−div(B(u)∇ψ) = 0 in Ω.

Adding suitable boundary conditions, for example assigning both u and ψ on some
subsets of ∂Ω, it is possible to prove existence and uniqueness of solutions, under
some assumptions on A(u) and B(u): see for example the papers [9] and [10], and the
references therein.

In this paper, we will study an elliptic system related to the stationary thermistor
problem (1.1), under a more general setting with respect to previous works, since we
will allow the functions A(x, t) and B(x, t), which will be matrix valued, to depend
not only on the unknown u but also on x in Ω, therefore allowing for anisotropic media
as well as different properties of the materials. Also, we will consider a positive and
bounded source term g for the equation involving the unknown ψ, and will suppose
that both u and ψ are zero on the boundary of Ω (that is, we will consider homogeneous
Dirichlet problems). Thus, we will study existence of solutions for the system

(1.2)


−div(A(x, u)∇u) + u = B(x, u)∇ψ · ∇ψ in Ω,

− div(B(x, u)∇ψ) + ψ = g in Ω,

u = 0 = ψ on ∂Ω.
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Note, with respect to (1.1), the presence of the lower order terms “+u” and “+ψ” in
the two equations, which could be used to approximate (using a semigroup theory ap-
proach) the corresponding parabolic equations related to the nonstationary thermistor
problem. Furthermore, since we will consider possibly degenerate elliptic operators
(as u tends to infinity), these terms will allow us to recover some coerciveness on the
two equations, yielding a priori estimates: see Section 5 below.

We now define the various terms of system (1.2). Let p and q be two real numbers
such that

(1.3) p > q − 1 ,

and define
ρ(t) = (1 + |t|)p , σ(t) = (1 + |t|)q .

We will suppose that A : Ω × R → RN×N and B : Ω × R → RN×N are two
Carathéodory matrix valued functions (that is, measurable for x in Ω and contin-
uous for t in R) such that

(1.4)
A(x, t) ξ · ξ ≥ αρ(t) |ξ|2 , |A(x, t)| ≤ β ρ(t) ,

B(x, t) ξ · ξ ≥ ασ(t) |ξ|2 , |B(x, t)| ≤ β σ(t) ,

for almost every x in Ω, for every t in R, and for every ξ in RN , where 0 < α ≤ β are
two real numbers.

Note that we do not assume sign conditions on p or q: they may be positive
or negative (in this latter case the differential operators degenerate as u becomes
unbounded). We will also define

(1.5) H(t) =

∫ t

0

ρ(s)

σ(s)
ds =

∫ t

0

(1 + |s|)p−q ds =
(1 + |t|)p−q+1 − 1

p− q + 1
sgn(t) .

Note that from assumption (1.3) it follows that H(t) behaves as a positive power of
t as t tends to infinity. On the function g we will assume that it is positive, and that
it belongs to L∞(Ω).

Our main result is the following.

Theorem 1.1. Let A(x, t) and B(x, t) be such that (1.4) holds, with p and q such
that (1.3) holds. Let g ≥ 0 be a function in L∞(Ω). Then there exist solutions u and
ψ of system (1.2), such that:

• u ≥ 0 belongs to W 1,2
0 (Ω), and, if H(t) is as in (1.5), then there exists

γ = γ(g) > 0 such that

eγ H(u) belongs to L1(Ω);

• ψ ≥ 0 belongs to W 1,2
0 (Ω) ∩ L∞(Ω);

• the vector fields A(x, u)∇u and B(x, u)∇ψ belong to (L2(Ω))N ;
• the function B(x, u)∇ψ · ∇ψ belongs to L1(Ω).

Furthermore, u and ψ are such that∫
Ω

A(x, u)∇u · ∇v +
∫
Ω

u v =

∫
Ω

B(x, u)∇ψ · ∇ψ v ,

for every v in W 1,2
0 (Ω) ∩ L∞(Ω) and∫

Ω

B(x, u)∇ψ · ∇φ+

∫
Ω

ψ φ =

∫
Ω

g φ ,



AN ELLIPTIC SYSTEM RELATED TO THE STATIONARY THERMISTOR PROBLEM 3

for every φ in W 1,2
0 (Ω).

Remark 1.2. We explicitly remark that the solution u of the first equation of
(1.2) belongs to W 1,2

0 (Ω) even if the right hand side B(x, u)∇ψ · ∇ψ only belongs to
L1(Ω); thus, the coupling of the two equations in the system yields a regularizing effect
on the solutions.

Remark 1.3. Assumption (1.4) has been done in order to fix the ideas; for the
existence proof to work, it is enough that H(t), defined in (1.5), behaves as a positive
power of t as t tends to infinity, and that for every γ > 0 the function eγ H(t) “domi-
nates” both ρ and σ as t tends to infinity (see Lemma 2.2, below). Note that if both
A(x, t) and B(x, t) are bounded functions, or if A(x, t) = B(x, t), then assumption
(1.3) holds since p = q > q − 1, and H(t) ≈ t as t tends to infinity.

Remark 1.4. We point out that the approach and the results of the present work
are related to those of [14] and [4]. In the paper [14] existence results for system (1.2)
are proved in dimension N ≤ 4, under the assumption p > q − 1, and q ≥ 0, with
both A(x, t) and B(x, t) independent on x, working in the context of weighted Sobolev
spaces. In the paper [4], existence results are proved in the case p ≥ q ≥ 0, but under
weaker assumptions on the datum g.

Remark 1.5. There are several results in the literature concerning with the ther-
mistor problem, which has been introduced in 1899 in the paper [17] (see also [13]).
Starting with the paper by Cimatti and Prodi ([12]), the stationary and the evolution
thermistor problem has been studied by Cimatti in [9, 10, 11]. The study has then been
continued by Chipot and Cimatti ([8]), Antontsev and Chipot ([2]), and Howison, Ro-
drigues and Shillon ([16]) among others: see also the references in these papers. More
recently, the problem has been studied in the evolutionary case in [15], and, in the case
of p-laplacian or p(x)-laplacian differential operators, in [18] and [7].

The plan of the paper is as follows: in the next section we will use Schauder’s fixed
point theorem to prove an existence result for a system which “approximates” system
(1.2), as well as a technical result concerning the function H(t) defined above. In
Section 3 we will prove Theorem 1.1, using the results of Section 2, while in Section 4
we will suppose that both A(x, t) and B(x, t) do not depend on x, proving the existence
of a bounded solution u for the first equation under the weaker assumption p ≥ q− 1.
The final Section 5 will contain some remarks on the case p < q− 1, which seems not
easy to deal with, and — at least in one case — cannot be solved without the lower
order term +u in the first equation of system (1.2).

2. Some preliminary results. In this section, we will prove existence of solu-
tions for a system which will be used to approximate (1.2). More precisely, we will
consider the following system:

(2.1)


−div(R(x, u)∇u) + u = S(x, u)T (x,∇ψ) · T (x,∇ψ) in Ω,

− div(S(x, u)∇ψ) + ψ = g in Ω,

u = 0 = ψ on ∂Ω.

Here we will assume the following: R : Ω × R → RN×N and S : Ω × R → RN×N

will be two Carathéodory matrix valued functions (that is, measurable for x in Ω and
continuous for t in R) such that

(2.2)
R(x, t) ξ · ξ ≥ AR |ξ|2 , |R(x, t)| ≤ BR ,

S(x, t) ξ · ξ ≥ AR |ξ|2 , |S(x, t)| ≤ BS ,
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for some 0 < AR ≤ BR and 0 < AS ≤ BS , for almost every x in Ω, for every t in
R and for every ξ in RN ; T : Ω × RN → RN will be a Carathéodory vector valued
function (that is, measurable for x in Ω and continuous for ξ in RN ) such that

(2.3) |T (x, ξ)| ≤ T ,

for some T > 0, for almost every x in Ω and for every ξ in RN . We will furthermore
assume that g ≥ 0 is an L∞(Ω) function. Our result is the following.

Theorem 2.1. Let g ≥ 0 be a function in L∞(Ω), and let R, S and T satisfy
(2.2) and (2.3). Then there exist weak solutions u and ψ to system (2.1), with u ≥ 0
in W 1,2

0 (Ω) ∩ L∞(Ω), and ψ ≥ 0 in W 1,2
0 (Ω) ∩ L∞(Ω).

Proof. We are going to prove existence of solutions using Schauder’s theorem.
To this aim, let v be a function in L2(Ω), and let φ be the unique weak solution in
W 1,2

0 (Ω) of
−div(S(x, v)∇φ) + φ = g .

Note that φ ≥ 0 since g ≥ 0. Following the ideas of [6], we choose (φ − k)+ as test
function, with k = ∥g∥

L∞(Ω)
, to have (after few straightforward passages)

0 ≤
∫
Ω

(φ− k) (φ− k)+ ≤ 0 .

From this inequality we obtain that (φ− k)+ = 0, so that, recalling the definition of
k

(2.4) ∥φ∥
L∞(Ω)

≤ ∥g∥
L∞(Ω)

.

Given v and φ as above, let w be the unique weak solution inW 1,2
0 (Ω) of the equation

− div(R(x, v)∇w) + w = S(x, v)T (x,∇φ) · T (x,∇φ) .

Note that w ≥ 0 since S(x, v)T (x,∇φ) ·T (x,∇φ) ≥ 0 by (2.2); furthermore, choosing
as test function (w − k)+, with k = BS T 2, and reasoning as above, we have that

(2.5) ∥w∥
L∞(Ω)

≤ BS T 2 =M .

Thanks to the above estimate, one also has that

∥w∥
L2(Ω)

≤M
√
meas(Ω) = M .

Thus, if S is the operator from L2(Ω) to L2(Ω) defined by S(v) = u, one has that
the ball BM of L2(Ω) is invariant for S. We are going to prove that S satisfies the
assumptions of Schauder’s theorem: that it is continuous from L2(Ω) into itself, and
that S(L2(Ω)) is pre-compact in L2(Ω).

Let {vn} be a sequence of functions in L2(Ω) which strongly converges to v in
L2(Ω), and let {φn} be the sequence of solutions of

−div(S(x, vn)∇φn) + φn = g .

Choosing φn as test function, and using (2.2), one has that the sequence {φn} is
bounded in W 1,2

0 (Ω); thus, up to subsequences, it converges to some function φ,
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weakly in W 1,2
0 (Ω), and strongly in L2(Ω). Using the continuity and the boundedness

of S(x, ·), one has that φ is the weak solution of the equation

−div(S(x, v)∇φ) + φ = g ,

so that, by uniqueness, the whole sequence {φn} converges to φ. Choosing φn − φ
as test function, one easily obtains that the sequence {φn} strongly converges to φ in
W 1,2

0 (Ω).
Let now {wn} be the sequence of solutions of

−div(R(x, vn))∇wn) + wn = S(x, vn)T (x,∇φn) · T (x,∇φn) ,

and choose wn as test function. Using (2.2) one obtains that the sequence {wn} is
bounded in W 1,2

0 (Ω). Thus, up to subsequences, it converges to some function w
weakly in W 1,2

0 (Ω) and strongly in L2(Ω); using the continuity and the boundedness
of R(x, t), S(x, t), T (x, ξ), and the strong convergence of {∇φn} in (L2(Ω))N , it is
easy to see that w is the weak solution of

−div(R(x, v)∇w) + w = S(x, v)T (x,∇φ) · T (x,∇φ) .

Thanks to uniqueness, the whole sequence {wn = S(vn)} strongly converges to
w = S(v) in L2(Ω), and this implies that S is continuous. As far as compactness
is concerned, if {vn} is bounded in L2(Ω), the same calculations performed above
imply that the sequence {wn = S(vn)} is bounded in W 1,2

0 (Ω), so that it strongly
converges in L2(Ω) up to subsequences by Rellich’s theorem.

Since S satisfies that assumptions of Schauder’s theorem, there exists u in L2(Ω)
such that u = S(u) (so that u actually belong to W 1,2

0 (Ω)). Thus, if ψ is the solution
of

− div(S(x, u)∇ψ) + ψ = g ,

then u is the solution of

−div(R(x, u)∇u) + u = S(x, u)T (x,∇ψ) · T (x,∇ψ) .

Hence, we have proved the existence of weak solutions u ≥ 0 and ψ ≥ 0 to the
equations of (2.1), with both u and ψ belonging to W 1,2

0 (Ω) ∩ L∞(Ω).

We conclude this section with a technical result concerning the function H(t)
defined in (1.5).

Lemma 2.2. Suppose that p and q are such (1.3) holds, and let H be as in (1.5).
Then for every γ > 0 and for every r in R there exists a constant C = Cγ,r,p,q > 0
such that

(2.6) (1 + t)r ≤ C eγ H(t) , ∀t ≥ 0 .

Furthermore, for every γ > 0 and every r in R there exists C = C(γ, r, p, q) > 0 such
that

(2.7) (1 + t)r eγ H(t) ≥ C , ∀t ≥ 0 .

Proof. If r ≤ 0, it is enough to choose C = 1 to have that (2.6) holds true, so
that it remains to prove that (2.6) holds if r > 0; since H(t) ≈ tp−q+1 as t tends to
infinity, one clearly has, for every γ > 0,

lim
t→+∞

(1 + t)r e−γ H(t) = 0 .
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This means that the function y(t) = (1+t)r e−γ H(t), which is positive, has a maximum
C = Cγ,r,p,q on [0,+∞); that is, one has y(t) ≤ C for every t ≥ 0, and this inequality
is exactly (2.6). As far as (2.7) is concerned, it is clearly true if r ≥ 0 (it is enough to
choose C = 1); if r < 0, the existence of a constant C > 0 as in the statement follows
from the fact that, since H(t) ≈ tp−q+1 as t tends to infinity, one has

lim
t→+∞

(1 + t)r eγ H(t) = +∞ ,

so that y(t) = (1 + t)r eγ H(t) has a (strictly positive) minimum C = Cγ,r,p,q on
[0,+∞).

3. Proof of the main result. As stated in the Introduction, we are going to
prove Theorem 1.1. During the proof, we will make use of the following result, whose
proof can be found in [5].

Lemma 3.1. Let {Γn(x)} be a sequence of uniformly elliptic, bounded matrices,
almost everywhere convergent to some uniformly elliptic matrix Γ(x), and let {Θn}
be a sequence of functions which is weakly convergent in (L2(Ω))N to some function
Θ. If the sequence {Γn(x)Θn ·Θn} is bounded in L1(Ω), then Γ(x)Θ ·Θ belongs to
L1(Ω) and

(3.1)

∫
Ω

Γ(x)Θ ·Θ ≤ lim inf
n→+∞

∫
Ω

Γn(x)Θn ·Θn .

During the proof we will also make use of the following functions of one real
variable, defined for k > 0 and t ≥ 0:

Tk(t) = min(t, k) , Gk(t) = t− Tk(t) = (t− k)+ .

In what follows, C will denote a quantity which may depend on α, β, Q, p, q, Ω
and N , while C(g) will denote a quantity that depends on (some or all of) the above
parameters and on the norm of g in L∞(Ω); in this case, the dependence of C(g)
on the norm will be bounded. Note that C and C(g) will never depend on the
“approximating parameter” n in N.

Proof. The proof will be divided in several steps.

Step 1: Approximation.

For n in N, there exist weak solutions un ≥ 0 and ψn ≥ 0, with both un and ψn

belonging to W 1,2
0 (Ω) ∩ L∞(Ω), of the system

(3.2)


−div(A(x, Tn(un))∇un) + un =

B(x, Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 in Ω,

−div(B(x, Tn(un))∇ψn) + ψn = g in Ω,

un = 0 = ψn on ∂Ω.

The existence of such solutions follows from Theorem 2.1 choosing

R(x, t) = A(x, Tn(t)) , S(x, t) = B(x, Tn(t)) , T (x, ξ) =
ξ

1 + 1
n |ξ|

,

which satisfy (2.2) with

AR = α min(1, (1 + n)p) , BR = β max(1, (1 + n)p) ,
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AS = α min(1, (1 + n)q) , BS = β max(1, (1 + n)q) ,

and

T = n .

Step 2: The sequence {ψn} is bounded in L∞(Ω).

This is a straightforward consequence of (2.4), which implies that

(3.3) ∥ψn∥
L∞(Ω)

≤ ∥g∥
L∞(Ω)

.

Step 3. A priori estimates on the sequence {Tn(un)}.

Let H(t) be as in (1.5), let γ > 0 and choose v = eγ H(Tn(un)) − 1 as test function
in the first equation of system (3.2). We obtain, using (1.4),

γ

∫
Ω

A(x, Tn(un))∇un · ∇Tn(un) eγ H(Tn(un))H ′(Tn(un)) +

∫
Ω

un (e
γ H(Tn(un)) − 1)

=

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 (eγ H(Tn(un)) − 1)

≤ β

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un)) .

Recalling (1.4), and the definition of H(t), from the above inequality we deduce that

(3.4)
αγ

∫
Ω

ρ2(Tn(un))

σ(Tn(un))
|∇Tn(un)|2 eγ H(Tn(un)) +

∫
Ω

un (e
γ H(Tn(un)) − 1)

≤ β

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un)) .

Choose now φ = ψn e
γ H(Tn(un)) as test function in the second equation of system

(3.2). We obtain

(3.5)

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn e
γ H(Tn(un)) +

∫
Ω

ψ2
n e

γ H(Tn(un))

=

∫
Ω

g ψn e
γ H(Tn(un))

−γ
∫
Ω

B(x, Tn(un))∇ψn · ∇Tn(un) eγ H(Tn(un))H ′(Tn(un))ψn .

Recalling (1.4), we have

(3.6) α

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un)) ≤
∫
Ω

B(x, Tn(un))∇ψn · ∇ψn e
γ H(Tn(un)) .
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On the other hand, again by (1.4), and by Young inequality, we have∣∣∣γ ∫
Ω

B(x, Tn(un))∇ψn · ∇Tn(un) eγ H(Tn(un))H ′(Tn(un))ψn

∣∣∣
≤ γ β

∫
Ω

σ(Tn(un)) |∇ψn| |∇Tn(un)| eγ H(Tn(un))H ′(Tn(un))ψn

≤ α

2

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un))

+C γ2
∫
Ω

σ(Tn(un)) |∇Tn(un)|2 eγ H(Tn(un)) [H ′(Tn(un))]
2 ψ2

n .

Recalling the definition of H, and estimate (3.3), we thus have

(3.7)

γ

∫
Ω

B(x, Tn(un))∇ψn · ∇Tn(un) eγ H(Tn(un))H ′(Tn(un))ψn

≤ α

2

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un))

+C γ2 ∥g∥2
L∞(Ω)

∫
Ω

ρ2(Tn(un))

σ(Tn(un))
|∇Tn(un)|2 eγ H(Tn(un)) .

Using (3.6) and (3.7) in (3.5) we obtain, dropping a positive term,

α

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un)) ≤
∫
Ω

g ψn e
γ H(Tn(un))

+
α

2

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un))

+C γ2 ∥g∥2
L∞(Ω)

∫
Ω

ρ2(Tn(un))

σ(Tn(un))
|∇Tn(un)|2 eγ H(Tn(un)) .

Simplifying equal terms, we have thus proved that

(3.8)

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un)) ≤ C

∫
Ω

g ψn e
γ H(Tn(un))

+C(g) γ2
∫
Ω

ρ2(Tn(un))

σ(Tn(un))
|∇Tn(un)|2 eγ H(Tn(un)) .

Using this inequality with (3.4), we have that

αγ

∫
Ω

ρ2(Tn(un))

σ(Tn(un))
|∇Tn(un)|2 eγ H(Tn(un)) +

∫
Ω

un (e
γ H(Tn(un)) − 1)

≤ C

∫
Ω

g ψn e
γ H(Tn(un)) + C(g) γ2

∫
Ω

ρ2(Tn(un))

σ(Tn(un))
|∇Tn(un)|2 eγ H(Tn(un)) .

We now choose γ small enough to have

C(g) γ =
α

2
,

which implies that γ ≈ ∥g∥−2

L∞(Ω)
; from the previous inequality it thus follows that

(3.9)

αγ

2

∫
Ω

ρ2(Tn(un))

σ(Tn(un))
|∇Tn(un)|2 eγ H(Tn(un)) +

∫
Ω

un (e
γ H(Tn(un)) − 1)

≤
∫
Ω

g ψn e
γ H(Tn(un)) .
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Since the first term of (3.9) is positive, we have∫
Ω

un (e
γ H(Tn(un)) − 1) ≤ C

∫
Ω

g ψn e
γ H(Tn(un)) ≤ C(g)

∫
Ω

eγ H(Tn(un)) ,

where in the last passage we have used (3.3). This inequality can be rewritten (adding
and subtracting the term C(g) meas(Ω)) as∫

Ω

(un − C(g)) (eγ H(Tn(un)) − 1) ≤ C(g) meas(Ω) = C(g) .

Splitting the integral on the set where un ≥ 2C(g) and un < 2C(g), we have

C(g)

∫
{un≥2C(g)}

(eγ H(Tn(un)) − 1) ≤
∫
{un≥2C(g)}

(un − C(g)) (eγ H(Tn(un)) − 1)

≤
∫
{un<2C(g)}

|un − C(g)| |eγ H(Tn(un)) − 1|+ C(g)

≤ C(g) eγ H(C(g)) meas(Ω) + C(g) = C(g) ,

which implies, recalling that γ depends on g, that

(3.10)

∫
Ω

eγ H(Tn(un)) ≤ C(g) .

This inequality, together with (3.9), yields that

(3.11)

∫
Ω

ρ2(Tn(un))

σ(Tn(un))
|∇Tn(un)|2 eγ H(Tn(un)) ≤ C(g) .

Now we apply (2.7) of Lemma 2.2 with r = 2p− q, and with γ as above to have that
there exists C > 0 such that

ρ2(t)

σ(t)
eγ H(t) = (1 + t)2p−q eγ H(t) ≥ C , ∀t ≥ 0 .

Thus, from (3.11) (and the fact that un ≥ 0) it follows that

C

∫
Ω

|∇Tn(un)|2 ≤
∫
Ω

g ψn e
γ H(Tn(un)) ≤ ∥g∥2

L∞(Ω)

∫
Ω

eγ H(Tn(un)) ≤ C(g) ,

so that we have proved that

(3.12) the sequence {Tn(un)} is bounded in W 1,2
0 (Ω).

Furthermore, applying (2.6) of Lemma 2.2 with r = −q and γ as above, we have
that

(1 + t)−q eγ H(t) ≥ C , ∀t ≥ 0 ,

so that (3.11), and the fact that un ≥ 0, imply that

C

∫
Ω

ρ2(Tn(un)) |∇Tn(un)|2 ≤ C(g) .
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From this inequality, and the assumptions on A(x, t) it follows that

(3.13) the sequence {A(x, Tn(un))∇Tn(un)} is bounded in (L2(Ω))N .

Step 4. A priori estimates on the sequence {ψn}.

Starting from (3.8), and using (3.10) and (3.11), as well as the boundedness of
the sequence {g ψn} in L∞(Ω), one has that

(3.14)

∫
Ω

σ(Tn(un)) |∇ψn|2 eγ H(Tn(un)) ≤ C(g) .

Using (2.7) of Lemma 2.2 with r = q and γ as above, one has that there exists C > 0
such that

σ(t) eγ H(t) = (1 + t)q eγ H(t) ≥ C , ∀t ≥ 0 .

Using this inequality in (3.14) (together with the fact that un ≥ 0), one has that∫
Ω

|∇ψn|2 ≤ C(g) ,

which implies that

(3.15) the sequence {ψn} is bounded in W 1,2
0 (Ω).

Furthermore, using again (2.7) of Lemma 2.2 with r = −q and γ as above, one has
that there exists C > 0 such that

eγ H(t)

σ(t)
= (1 + t)−q eγ H(t) ≥ C , ∀t ≥ 0 ,

which implies that

eγ H(t) ≥ C σ(t) , ∀t ≥ 0 .

Using this inequality in (3.14) (and using the fact that un ≥ 0), we thus have that∫
Ω

σ2(Tn(un)) |∇ψn|2 ≤ C(g) ,

which implies, recalling the assumptions on B(x, t), that

(3.16) the sequence {B(x, Tn(un))∇ψn} is bounded in (L2(Ω))N .

Step 5. Convergences of un and ψn.

Thanks to the results of Step 3, we have that the sequence {Tn(un)} is bounded
in W 1,2

0 (Ω); thus it converges, up to subsequences, to a function u in W 1,2
0 (Ω), weakly

in W 1,2
0 (Ω), strongly in L2(Ω) and almost everywhere.
Let now x in Ω be such that u(x) =M < +∞ and such that Tn(un(x)) converges

to u(x): almost every x in Ω is such that this happens. If n is large enough, one has
that Tn(un(x)) ≤M+1 (thanks to the convergence of Tn(un(x)) to u(x) < M); if n is
also larger thanM+1, from Tn(un(x)) ≤M+1 < n it follows that Tn(un(x)) = un(x);
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thus, the convergence of Tn(un(x)) to u(x) implies that un(x) converges to u(x). In
other words, we have proved that

the sequence {un} converges to u(x) almost everywhere in Ω.

Now we recall (3.10): ∫
Ω

eγ H(Tn(un)) ≤ C(g) .

Using the almost everywhere convergence of un to u, and Fatou lemma, we deduce
from the previous inequality that∫

Ω

eγ H(u) ≤ C(g) ,

so that u has exponential summability, as desired. Recalling (3.9), and using estimate
(3.10), one has that ∫

Ω

un (e
γ H(Tn(un)) − 1) ≤ C(g) ,

which implies that

(eγ H(n) − 1)

∫
{un≥n}

un ≤
∫
{un≥n}

un (e
γ H(Tn(un)) − 1) ≤ C(g) ,

so that

0 ≤ lim
n→+∞

∫
{un≥n}

un ≤ lim
n→+∞

C(g)

eγ H(n) − 1
= 0 ,

which implies that

(3.17) lim
n→+∞

∫
{un≥n}

un = 0 .

On the other hand, since {eγ H(Tn(un))} is bounded in L1(Ω) by (3.10), the sequence
{Tn(un)} is bounded in Ls(Ω) for every s < +∞, so that it strongly converges to u
in every Ls(Ω). In particular, it converges to u in L1(Ω). Thus, since∫

Ω

un =

∫
{un<n}

un +

∫
{un≥n}

un =

∫
{un<n}

Tn(un) +

∫
{un≥n}

un ,

using (3.17) and the strong convergence of Tn(un) to u one has that

lim
n→+∞

∫
Ω

un = lim
n→+∞

[ ∫
{un<n}

Tn(un) +

∫
{un≥n}

un

]
=

∫
Ω

u .

This limit, together with the fact that un almost everywhere converges to u, and that
un ≥ 0 implies that

(3.18) the sequence {un} strongly converges to u in L1(Ω).

Using again that Tn(un) converges to u strongly in Ls(Ω), for every s < ∞, and
assumption (1.4), we have that the sequences {A(x, Tn(un))} and {B(x, Tn(un))}
converge respectively to A(x, u) and B(x, u) strongly in (Ls(Ω))N×N , for every s <
+∞.
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The strong convergence of A(x, Tn(un)) to A(x, u) in every (Ls(Ω))N×N , and the
weak convergence of ∇Tn(un) to ∇u in (L2(Ω))N , imply that {A(x, Tn(un))∇Tn(un)}
converges to A(x, u)∇u weakly in (Lr(Ω))N , for every r < 2; on the other hand, by
(3.13) the same sequence weakly converges to some vector function G in (L2(Ω))N .
The uniqueness of the weak limit then implies that G = A(x, u)∇u, so that the
sequence

(3.19) {A(x, Tn(un))∇Tn(un)} weakly converges to A(x, u)∇u in (L2(Ω))N .

Since the sequence {ψn} is bounded in W 1,2
0 (Ω), then there exists ψ in W 1,2

0 (Ω)
such that, up to subsequences, ψn converges to ψ weakly in W 1,2

0 (Ω), strongly in
L2(Ω) and almost everywhere in Ω.

The strong convergence of B(x, Tn(un)) to B(x, u) in every (Ls(Ω))N×N , together
with the weak convergence of∇ψn to∇ψ in (L2(Ω))N , imply that {B(x, Tn(un))∇ψn}
weakly converges to B(x, u)∇ψ in (Lr(Ω))N , for every r < 2; on the other hand,
thanks to the results of Step 4, the sequence {B(x, Tn(un))∇ψn} is bounded in
(L2(Ω))N , so that it weakly converges in (L2(Ω))N to some vector function E; by
uniqueness of the limit, we have that E = B(x, u)∇ψ, so that the sequence

{B(x, Tn(un))∇ψn} weakly converges to B(x, u)∇ψ in (L2(Ω))N .

Step 6. Passage to the limit in the second equation.

Let now φ be a function in W 1,2
0 (Ω), and choose it as test function in the second

equation of (3.2) to obtain∫
Ω

B(x, Tn(un))∇ψn · ∇φ+

∫
Ω

ψn φ =

∫
Ω

g φ .

Thanks to the weak convergence of {B(x, Tn(un))∇ψn} in (L2(Ω))N , and the strong
convergence of {ψn} in L2(Ω), we can pass to the limit in the three terms, to obtain
that

(3.20)

∫
Ω

B(x, u)∇ψ · ∇φ+

∫
Ω

ψ φ =

∫
Ω

g φ , ∀φ ∈W 1,2
0 (Ω) .

Step 7. Passage to the limit in the first equation.

Recalling that ψ belongs to L∞(Ω), and choosing φ = ψ η, with η in W 1,2
0 (Ω) ∩

L∞(Ω) in (3.20), one has that

(3.21)

∫
Ω

B(x, u)∇ψ · ∇ψ η +
∫
Ω

B(x, u)∇ψ · ∇η ψ +

∫
Ω

ψ2 η =

∫
Ω

g ψ η .

On the other hand, choosing φ = ψn η as test function in the second equation of
system (3.2), one has∫

Ω

B(x, Tn(un))∇ψn · ∇ψn η +

∫
Ω

B(x, Tn(un))∇ψn · ∇η ψn +

∫
Ω

ψ2
n η =

∫
Ω

g ψn η ,

which can be rewritten as∫
Ω

B(x, Tn(un))∇ψn · ∇ψn η =

∫
Ω

g ψn η −
∫
Ω

B(x, Tn(un))∇ψn · ∇η ψn −
∫
Ω

ψ2
n η .
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Since all three terms on the right hand side are convergent (recall that the sequence
{B(x, Tn(un))∇ψn} is weakly convergent in (L2(Ω))N , and that {ψn} is bounded in
L∞(Ω)) we have

lim
n→+∞

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn η =

∫
Ω

g ψ η −
∫
Ω

B(x, u)∇ψ · ∇η ψ −
∫
Ω

ψ2 η .

Recalling (3.21) we thus have proved that

(3.22) lim
n→+∞

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn η =

∫
Ω

B(x, u)∇ψ · ∇ψ η ,

for every η in W 1,2
0 (Ω) ∩ L∞(Ω). Thus, if η ≥ 0 is a function in W 1,2

0 (Ω) ∩ L∞(Ω),
one has

lim sup
n→+∞

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 η ≤ lim sup

n→+∞

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn η

=

∫
Ω

B(x, u)∇ψ · ∇ψ η .

Recall now that the sequence {ψn} is bounded in W 1,2
0 (Ω) by the results of Step 4;

therefore

lim
n→+∞

1

n
|∇ψn| = 0 , strongly in L2(Ω).

Thus, one has that

lim
n→+∞

1(
1 + 1

n |∇ψn|
)2 = 1 , almost everywhere in Ω.

This fact allows to apply Lemma 3.1 with

Γn(x) =
η(x)B(x, Tn(un))(

1 + 1
n |∇ψn|

)2 ,

which almost everywhere converges to

Γ(x) = η(x)B(x, u) ,

and
Θn = ∇ψn ,

which is bounded in L2(Ω) since {ψn} is bounded in W 1,2
0 (Ω), and weakly converges

to ∇ψ; we thus have that

lim inf
n→+∞

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 η ≥

∫
Ω

B(x, u)∇ψ · ∇ψ η ,

so that we have proved that

(3.23) lim
n→+∞

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 η =

∫
Ω

B(x, u)∇ψ · ∇ψ η ,

for every η ≥ 0, η in W 1,2
0 (Ω) ∩ L∞(Ω).
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Let now v ≥ 0 be a function in W 1,2
0 (Ω) ∩ L∞(Ω), and choose it as test function

in the first equation of the system (3.2). We have∫
Ω

A(x, Tn(un))∇un · ∇v +
∫
Ω

un v =

∫
Ω

B(x, Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 v .

Recalling the weak convergence of {A(x, Tn(un))∇Tn(un)} in (L2(Ω))N , and the
strong convergence of {un} to u in L1(Ω) (see (3.18) and (3.19)) as well as (3.23)
(written with η = v), we can pass to the limit as n tends to infinity to obtain that∫

Ω

A(x, u)∇u · ∇v +
∫
Ω

u v =

∫
Ω

B(x, u)∇ψ · ∇ψ v ,

for every v ≥ 0 in W 1,2
0 (Ω) ∩ L∞(Ω). If v changes sign, splitting v = v+ − v− yields

that ∫
Ω

A(x, u)∇u · ∇v +
∫
Ω

u v =

∫
Ω

B(x, u)∇ψ · ∇ψ v ,

for every v in W 1,2
0 (Ω) ∩ L∞(Ω), as desired.

Remark 3.2. We remark that even though the right hand side B(x, u)∇ψ · ∇ψ
only belongs to L1(Ω), one can choose test functions in W 1,2

0 (Ω) in the first equation
of system (1.2), and not only in W 1,2

0 (Ω) ∩ L∞(Ω). Indeed, if v ≥ 0 is a function in
W 1,2

0 (Ω), and k > 0, one can choose Tk(v) as test function in the first equation of
system (1.2) to have that∫

Ω

A(x, u)∇u · ∇Tk(v) +
∫
Ω

uTk(v) =

∫
Ω

B(x, u)∇ψ · ∇ψ Tk(v) .

Since the term B(x, u)∇ψ ·∇ψ is positive, and the functions A(x, u)∇u and u belong
respectively to (L2(Ω))N and L2(Ω), we can pass to the limit on k in all terms (using
Lebesgue theorem on the left, and Beppo Levi theorem on the right) to have that∫

Ω

A(x, u)∇u · ∇v +
∫
Ω

u v =

∫
Ω

B(x, u)∇ψ · ∇ψ v ,

for every v ≥ 0 in W 1,2
0 (Ω); if v changes sign, splitting v = v+ − v− yields that∫

Ω

A(x, u)∇u · ∇v +
∫
Ω

u v =

∫
Ω

B(x, u)∇ψ · ∇ψ v ,

for every v in W 1,2
0 (Ω).

4. The case A and B independent on x, and p ≥ q−1. As a consequence of
Theorem 1.1 we have that the solution u of the first equation of system (1.2) belongs
to Ls(Ω) for every s < +∞, so that one may wonder whether u belongs to L∞(Ω)
or not. In our general case, with A(x, t) and B(x, t) depending also on x, we are not
able to do so.

However, if we assume that both A(x, t) and B(x, t) do not depend on x, then u
belongs to L∞(Ω). In this case, we follow the ideas of [9] (see also [10], [11] and [13]
and [17]), which will also allow to deal with the case p = q − 1.
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Lemma 4.1. Let A(t) and B(t) be two continuous matrix valued functions such
that

(4.1)
A(t) ξ · ξ ≥ αρ(t) |ξ|2 , |A(t)| ≤ β ρ(t) ,

B(t) ξ · ξ ≥ ασ(t) |ξ|2 , |B(t)| ≤ β σ(t) ,

with p and q such that p ≥ q − 1. Let g ≥ 0 be a function in L∞(Ω), and let {un}
and {ψn} be the sequence of solutions of

(4.2)


−div(A(Tn(un))∇un) + un =

B(Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 in Ω,

−div(B(Tn(un))∇ψn) + ψn = g in Ω,

un = 0 = ψn on ∂Ω,

whose existence is guaranteed by Theorem 2.1. Then there exists a constant C(g)
such that

(4.3) ∥un∥
L∞(Ω)

+ ∥ψn∥
L∞(Ω)

≤ C(g) .

Proof. Define

Hn(t) =

∫ t

0

A(Tn(s))

B(Tn(s))
ds , H(t) =

∫ t

0

A(s)

B(s)
ds

and

wn = Hn(un) +
ψ2
n

2
,

so that

∇wn =
A(Tn(un))

B(Tn(un))
∇un + ψn ∇ψn .

Let k > 0, and choose v = Gk(wn) = (wn − k)+ as test function in the first equation
of system (4.2). We obtain∫

Ω

A(Tn(un))∇un · ∇Gk(wn) +

∫
Ω

unGk(wn) =

∫
Ω

B(Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 Gk(wn) .

Defining Ak = {wn ≥ k}, we can rewrite the above identity as
(4.4)∫

Ak

B(Tn(un))
A(Tn(un))

B(Tn(un))
∇un ·

(A(Tn(un))
B(Tn(un))

∇un + ψn ∇ψn

)
+

∫
Ω

unGk(wn)

=

∫
Ω

B(Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 Gk(wn) ≤

∫
Ω

B(Tn(un))∇ψn · ∇ψnGk(wn) .

Choose now Gk(wn)ψn as test function in the second equation of (4.2) to obtain that∫
Ω

B(Tn(un))∇ψn · ∇ψnGk(wn) +

∫
Ω

B(Tn(un))∇ψn · ∇Gk(wn)ψn

+

∫
Ω

ψ2
nGk(wn) =

∫
Ω

g ψnGk(wn) ,
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which can be rewritten as∫
Ω

B(Tn(un))∇ψn · ∇ψnGk(wn) =

∫
Ω

g ψnGk(wn)

−
∫
Ω

ψ2
nGk(wn)−

∫
Ak

B(Tn(un))ψn ∇ψn ·
(A(Tn(un))
B(Tn(un))

∇un + ψn ∇ψn

)
.

Using this identity in (4.4) we obtain, after grouping similar terms,∫
Ak

B(Tn(un))
(A(Tn(un))
B(Tn(un))

∇un + ψn ∇ψn

)
·
(A(Tn(un))
B(Tn(un))

∇un + ψn ∇ψn

)
+

∫
Ω

(un + ψ2
n)Gk(wn) ≤

∫
Ω

g ψnGk(wn) .

Recalling once again the expression for ∇wn, the previous inequality implies that∫
Ak

B(Tn(un))∇wn · ∇wn +

∫
Ω

(un + ψ2
n)Gk(wn) ≤

∫
Ω

g ψnGk(wn) ,

so that, dropping a positive term, we have∫
Ω

(un + ψ2
n)Gk(wn) ≤

∫
Ak

g ψnGk(wn) ,

which implies, recalling that g belongs to L∞(Ω), that

(4.5)

∫
Ω

(un + ψ2
n − ∥g∥

L∞(Ω)
ψn)Gk(wn) ≤ 0 .

We now recall that from (2.4) it follows that

(4.6) ∥ψn∥
L∞(Ω)

≤ ∥g∥
L∞(Ω)

,

which gives the desired estimate on the sequence {ψn} in L∞(Ω); from (2.4) one has
that

−
∥g∥2

L∞(Ω)

4
≤ ψ2

n − ∥g∥
L∞(Ω)

ψn ≤ 0 ;

define M = 1
4 ∥g∥

2

L∞(Ω)
, so that (4.5) implies, recalling the definition of Gk(wn), that

(4.7)

∫
Ω

(un −M) (wn − k)+ ≤ 0 .

We are now going to prove that if n ≥M , there exists k > 0 large enough such that

(4.8) (wn − k)+ = 0 , on {0 ≤ un ≤M}.

Indeed, recalling the definition of wn one has, if 0 ≤ un ≤ M and n ≥ M , and using
the definition of M as well as (4.6) and the fact that Hn(t) is increasing,

wn = Hn(un) +
ψ2
n

2
≤ Hn(M) + 2M =

∫ M

0

A(s)

B(s)
ds+ 2M = H(M) + 2M .
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Thus, choosing k > H(M) + 2M = C(g) we have (4.8). We now write (4.7) as∫
Ω

(un −M) (wn − k)+ =

∫
{un>M}

(un −M) (wn − k)+ +

∫
{0≤un≤M}

(un −M) (wn − k)+

=

∫
{un>M}

(un −M) (wn − k)+ ,

where we have used (4.8) in the last passage. Thus, we have that

0 ≤
∫
{un>M}

(un −M) (wn − k)+ ≤ 0 ,

which implies that (un −M) (wn − k)+ = 0 almost everywhere on the set {un > M}.
We have now two possibilities: either n ≥M is such that the set {un > M} has zero
measure, or it is such that the function (wn − k)+ = 0 almost everyhwere on the set
{un > M}. In the first case, we have 0 ≤ un ≤ M in Ω almost everywhere in Ω, so
that

(4.9) ∥un∥
L∞(Ω)

≤M ∀n ≥M such that meas({un > M}) = 0.

In the second case, from (4.8) it follows that (wn − k)+ = 0 almost everywhere in Ω,
for every k > C(g) = H(M) + 2M . Therefore,

0 ≤ wn = Hn(un) +
ψ2
n

2
≤ C(g) , ∀n ≥M ,

which implies that

(4.10) 0 ≤ Hn(un) ≤ C(g) , ∀n ≥M such that (wn − k)+ = 0.

Recalling (4.1), we have that

Hn(t) =

∫ t

0

A(Tn(s))

B(Tn(s))
ds ≥

∫ Tn(t)

0

A(Tn(s))

B(Tn(s))
ds =

∫ Tn(t)

0

A(s)

B(s)
ds ≥ α

β

∫ Tn(t)

0

ρ(s)

σ(s)
ds ,

so that

Hn(t) ≥


α

β

(1 + Tn(t))
p−q+1 − 1

p− q + 1
if p > q − 1,

α

β
ln(1 + Tn(t)) if p = q − 1.

Thus, from (4.10) we have that either

α

β

(1 + Tn(un))
p−q+1 − 1

p− q + 1
≤ C(g) ,

if p > q − 1, or
α

β
ln(1 + Tn(un)) ≤ C(g) ,

if p = q− 1. In both cases, there exists a constant C(g), independent on n, such that

0 ≤ Tn(un) ≤ C(g) .
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Choosing n ≥ C(g), the above inequality implies that

0 ≤ un ≤ C(g) ,

so that

(4.11) ∥un∥
L∞(Ω)

≤ C(g) ∀n ≥M such that (wn − k)+ = 0.

Putting together (4.9) and (4.11), we have that for every n ≥ M the norm of un
in L∞(Ω) is bounded by a constant independent on n, so that the sequence {un} is
bounded in L∞(Ω), as desired.

Remark 4.2. Note that we used the assumption p ≥ q − 1 only at the end of the
proof, when dealing with the consequences of the fact that (wn − k)+ = 0 on the set
{un > M}.

As a consequence of Lemma 4.1, and of the proof of Theorem 1.1, we have that if
p > q − 1 the solution u of system (1.2) belongs to L∞(Ω) if both A(x, t) and B(x, t)
do not depend on x and satisfy (4.1). If p = q − 1, Lemma 4.1 allows us to prove an
existence result for system (1.2).

Theorem 4.3. Let A(t) and B(t) be such that (4.1) holds, with p = q − 1. Let
g ≥ 0 be a function in L∞(Ω). Then there exist solutions u and ψ of system (1.2),
such that:

• u ≥ 0 belongs to W 1,2
0 (Ω) ∩ L∞(Ω);

• ψ ≥ 0 belongs to W 1,2
0 (Ω) ∩ L∞(Ω);

Furthermore, u and ψ are such that∫
Ω

A(u)∇u · ∇v +
∫
Ω

u v =

∫
Ω

B(u)∇ψ · ∇ψ v ,

for every v in W 1,2
0 (Ω) ∩ L∞(Ω) and∫

Ω

B(u)∇ψ · ∇φ+

∫
Ω

ψ φ =

∫
Ω

g φ ,

for every φ in W 1,2
0 (Ω).

Proof. Let {un} and {ψn} be the sequences of solutions of system (4.2); by
Lemma 4.1, both sequences are bounded in L∞(Ω). Choosing un as test function
in the first equation, and ψn as test function in the second equation, we have that∫

Ω

A(Tn(un))∇un · ∇un +

∫
Ω

u2n =

∫
Ω

B(Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 un ,

and ∫
Ω

B(Tn(un))∇ψn · ∇ψn +

∫
Ω

ψ2
n =

∫
Ω

g ψn .

Since by (4.1), and by the boundedness of {un} in L∞(Ω), there exist constants A > 0
and B such that

A |∇un|2 ≤ A(Tn(un))∇un · ∇un ≤ B |∇un|2 ,

and
A |∇ψn|2 ≤ B(Tn(un))∇ψn · ∇ψn ≤ B |∇ψn|2 ,
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from the above identities we have that

A
∫
Ω

|∇ψn|2 ≤
∫
Ω

g ψn ≤ C(g) ,

and then that

A
∫
Ω

|∇un|2 ≤ BC(g)
∫
Ω

|∇ψn|2 = C(g) .

Hence, the sequences {un} and {ψn} are bounded in W 1,2
0 (Ω), so that there exist u

and ψ in W 1,2
0 (Ω) ∩ L∞(Ω) such that the sequence {un} converges to u (weakly in

W 1,2
0 (Ω) and strongly in Ls(Ω) for every s ≥ 1), and the sequence {ψn} converges to

ψ (weakly inW 1,2
0 (Ω) and strongly in Ls(Ω) for every s ≥ 1). Choosing ψn−ψ as test

function in the second equation, one easily obtains that the sequence {ψn} strongly
converges to ψ in W 1,2

0 (Ω), so that (recalling that the sequence {un} is bounded in
L∞(Ω)), Lebesgue theorem implies that

lim
n→+∞

B(Tn(un))∇ψn · ∇ψn(
1 + 1

n |∇ψn|
)2 = B(u)∇ψ · ∇ψ , strongly in L1(Ω).

Using these convergences, one can pass to the limit in the equations satisfied by un and
ψn to prove that u and ψ are weak solutions (in the sense specified in the statement)
of the equations of (1.2).

5. Some comments on the case p < q − 1. In this section we are going to
explain why the case p < q − 1 is very different from the case p ≥ q − 1 in terms
of a priori estimates, and of existence of solutions for system (1.2). We will confine
ourselves to the model cases:

A(x, t) = (1 + |t|)p I , B(x, t) = (1 + |t|)q I , p < q − 1 ,

where I is the N ×N identity matrix.
As a first remark, we observe that also in this case one can perform the same

arguments of the proof of Theorem 1.1 to obtain that (3.10) and (3.11) hold true;
however, if p < q − 1 then

H(t) =
1− (1 + |t|)p−q+1

q − p− 1
sgn(t) ,

is a bounded function; thus, the fact that the sequence {eγ H(Tn(un))} is bounded in
L1(Ω) is trivially true, and from (3.11) one can only obtain that∫

Ω

(1 + Tn(un))
2p−q|∇Tn(un)|2 ≤ C(g) .

This inequality, if p and q are such that 2p − q < 0, does not yield any estimate on
{Tn(un)} in W 1,2

0 (Ω), so that any solution of the first equation (if it exists) has not
finite energy. Furthermore, and worse, from (3.14) one only has that∫

Ω

(1 + Tn(un))
q |∇ψn|2 ≤ C(g) ,

which, even though it gives an estimate on {ψn} in W 1,2
0 (Ω) under the assumption

q > 0, does not allow to prove that the sequence {(1 + Tn(un))
q ∇ψn} is bounded in
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(L2(Ω))N , a key fact in order to pass to the limit in the approximate equations (see
Step 7 of the proof of Theorem 1.1). A possible, alternative approach, would be to
prove that the sequence {(1 + Tn(un))

q ∇ψn · ∇ψn} is strongly convergent in L1(Ω)
but, once again, the a priori estimates are too weak in order to prove that using any
of the known techniques.

Another possible approach is to prove that the sequence {un} of solutions in
bounded in L∞(Ω), so that existence of solutions for system (1.2) will easily follow
as in the proof of Theorem 4.3. Thus, one may think to apply to the case p < q − 1
the same ideas of the proof of Lemma 4.1. And indeed, the proof works, but the final
result is that the sequence {Hn(un)} is bounded in L∞(Ω). In our case, we have that

Hn(t) =


1− (1 + Tn(t))

p−q+1

q − p− 1
if 0 ≤ t ≤ n,

1− (1 + n)p−q+1

q − p− 1
+

t− n

(1 + n)p−q
if t > n,

which is an unbounded function. However, from the inequality 0 ≤ Hn(un) ≤ C(g)
one can only obtain that

0 ≤ un ≤ n+ (1 + n)q−p
[
C(g)− 1− (1 + n)p−q+1

q − p− 1

]
≈ C(g)nq−p ,

and q − p > 1 by the assumption p < q − 1. In other words, this method does not
yield an a priori estimate on the sequence {un} in L∞(Ω).

There is a further problem which arises in the case p < q − 1, and that mathe-
matically justifies the presence of the lower order terms “+u” and “+ψ” in the two
equations of the system. Indeed, under the assumption p < q − 1, among the pos-
sible values there are q = 0 and p < −1; in this case the matrix valued functions
A(t) = (1 + |t|)p I and B(t) = I, where I is the N × N identity matrix, satisfy
assumption (1.4). Therefore, setting γ = −p > 1, system (1.2) becomes

−div
( ∇u
(1 + |u|)γ

)
+ u = |∇ψ|2 in Ω,

−∆ψ + ψ = g in Ω,

u = 0 = ψ on ∂Ω,

with the two equations “uncoupled”. Since clearly the second equation has a solution
in W 1,2

0 (Ω) ∩ L∞(Ω), the question becomes whether the first one has a solution,
taking into account that the datum is an L1(Ω) function. In this case, there is a
sharp difference between the case where a lower order term “+u” is considered or not.
We quote here some results contained in [1] (for the “nonexistence” part) and [3] (for
the “existence” part).

(A) If the norm of g in L∞(Ω) is large enough, there is no solution w ≥ 0 of the
equation

(5.1) − div
( ∇w
(1 + w)γ

)
= |∇ψ|2 .

Indeed, suppose that g and Ω are smooth enough so that ψ belongs to W 1,∞
0 (Ω),

and let M be the norm of |∇ψ| in L∞(Ω). Let z be the weak solution in W 1,2
0 (Ω) of

(5.2) −∆z = |∇ψ|2 ,
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and suppose that M is large enough in order to have ∥z∥
L∞(Ω)

> 1
γ−1 . Since M

depends linearly on g, this can be done choosing the norm of g large enough. Suppose
now that there exists a solution w ≥ 0 of (5.1), and set

z =
1− (1 + w)1−γ

γ − 1
.

Since

∇z = ∇w
(1 + w)γ

,

one has that z solves (5.2). However, this is not possible, since by definition 0 ≤ z ≤
1

γ−1 , while the choice of g is such that ∥z∥
L∞(Ω)

> 1
γ−1 . Therefore, w does not exist

(actually, one can prove as in [1] that if one approximates equation (5.1), one obtains
a function which is infinite on a subset of positive measure).

(B) For every g in L∞(Ω) there exists a solution u ≥ 0 of the equation

(5.3) − div
( ∇u
(1 + u)γ

)
+ u = |∇ψ|2 .

Indeed, reasoning as above and setting

v =
1− (1 + u)1−γ

γ − 1
,

finding a solution of (5.3) is equivalent to find a solution of equation

(5.4) −∆v +
1

[1− (γ − 1) v]
1

γ−1

= |∇ψ|2 ,

which has a lower order term G(v) = 1

[1−(γ−1) v]
1

γ−1
such that

lim
t→( 1

γ−1 )
−
G(t) = +∞ .

This is exactly the case studied in [3], where it is proved that these equations have a
solution v, such that 0 ≤ v < 1

γ−1 almost everyhwere in Ω, for every datum in L1(Ω).

Thus, since |∇ψ|2 belongs to L1(Ω) for every possible datum g (since ψ belongs to
W 1,2

0 (Ω)), it turns out that equation (5.3), and so system (1.2) in this “uncoupled”
case, has a solution for every datum g.

In other words, in the case p < q−1 one can have that the differential operator of
the first equation is a really noncoercive one (noncoercive in general, and with respect
to the differential operator of the second equation). For this reason, the term “+u”,
which guarantees that at least one has some estimates in L1(Ω), is necessary, under a
mathematical point of view, in order to prove existence of solutions for system (1.2).
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