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Abstract: Atherothrombosis is a frequent complication of the clinical history of patients with an-
tiphospholipid syndrome (APS). Both atherothrombosis and APS are characterized by increased
oxidative stress. Oxidative modifications are implicated in the formation of antiphospholipid anti-
bodies, which in turn may favour the oxidative imbalance by increasing the production of reactive
oxidant species (ROS) or by a direct interaction with pro-oxidant/antioxidant enzymes. As a result
of these processes, APS patients suffer from an oxidative imbalance that may contribute to the
progression of the atherosclerotic process and to the onset of ischemic thrombotic complications. The
aim of this review is to describe mechanisms implicated in the formation of ROS in APS patients
and their involvement in the atherothrombotic process. We also provide an overview of potential
therapeutic approaches to blunt oxidative stress and to prevent atherothrombotic complications in
these patients.

Keywords: oxidative stress; thrombosis; antiphospholipid syndrome; antioxidant treatment

1. Introduction

In the early 1980s, the term antiphospholipid syndrome (APS) was coined to describe
an autoimmune, multisystemic disorder characterized clinically by autoantibody-induced
thrombophilia [1]. Today, APS is considered an autoimmune, thrombo-inflammatory dis-
ease characterized by vascular thrombosis in the setting of one or more antiphospholipid
antibodies (aPLs) such as lupus anticoagulant (AL), anticardiolipin antibodies (aCL) and
anti-β2-glycoprotein1 antibodies (aβ2GPI) [2]. Beyond thrombosis, APS regularly man-
ifests with other morbid features including thrombocytopenia, cardiac dysfunction [3],
accelerated atherosclerosis, nephropathy, movement disorders, and cognitive decline [4,5].
This heterogeneous clinical presentation reflects the complex pathogenesis of APS, reinforc-
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ing the need for a deeper knowledge of mechanisms of aPL formation and of thrombotic
complications, to allow a better-tailored, integrated, multidisciplinary approach.

It is known that the pathogenesis of APS consists of two phases: “the first hit and
second hit”. According to this theory, the “first hit” is represented by the presence of
circulating aPL that destroy the integrity of the endothelium inducing a procoagulant
phenotype. Nevertheless, aPL alone are not enough to cause thrombosis, which takes place
only in the presence of a triggering factors (the “second hit”), which is usually represented
by smoking, acute infections, oxidative stress or inflammation [6].

Growing evidence from cellular, animal, and human studies provides the direct role
of oxidative stress in atherothrombosis. Therefore, oxidative stress, as a second hit, could
have a fundamental role in the progression of the APS.

In this review we will examine the contribution of oxidative stress in the pathogen-
esis of APS and in particular in the setting of atherothrombosis. Specifically, we will
describe (1) the role of oxidative stress in atherothrombosis development, (2) clinical and
experimental evidence of increased oxidative stress in these patients and (3) antioxidant
supplementation as a potential treatment.

2. Mechanisms of Atherothrombosis in APS: The Role of Oxidative Stress

The diagnosis of APS requires the concomitant presence of vascular thrombosis and/or
pregnancy morbidity [7], in addition to persistent positivity to at least one of the aPL
among LA, aCL and aβ2GPI. However, some patients may present noncriteria antibodies
or unusual clinical manifestations [8,9]. Venous thromboembolism is the most common
clinical presentation of the syndrome whereas arterial thrombosis is less frequent and
mainly affects younger adults. The clinical spectrum of arterial thrombosis may extend
from asymptomatic small ischemic lesions to fully ischemic stroke [10]. An observational
study in 1000 APS patients from 13 European countries, that were followed prospectively
for 10 years, showed that thrombotic events appeared in 16.6% during the first 5 years and
14.4% during the second 5 years. The most common events reported were strokes, transient
ischaemic attacks, deep vein thrombosis and pulmonary embolism [11].

It’s now well established that oxidative stress plays a major role in atherogene-
sis [12–14]. Oxidative stress is defined by an imbalance between reactive oxygen species
(ROS) production and impaired detoxification by antioxidant enzymatic and nonenzy-
matic systems [15–17]. This imbalance characterizes several cardiovascular diseases (CVD)
in which ROS are important mediators of endothelial damage leading to vascular in-
flammation and progression of the atherosclerotic plaque. The causal role of ROS in
atherosclerosis and other cardiovascular diseases is supported by several animal models of
oxidative stress.

Several mechanisms have been proposed as promoters of oxidative stress in APS
patients (Figure 1).

Gergely et al. [18] verified, in patients with systemic lupus erythematosus, the hypoth-
esis that the mitochondrial transmembrane potential and production of reactive oxygen
intermediates (ROIs) mediate the imbalance of apoptosis which may significantly con-
tribute to inflammation. In these patients, they found that mitochondrial transmembrane
potential and ROI production were elevated compared to healthy subjects. Moreover, intra-
cellular glutathione contents were diminished, and H2O2, a precursor of ROIs, increased
mitochondrial transmembrane potential and caused apoptosis [18].

Another mechanism of oxidative stress can be related to the interactions between
aCL antibodies and antioxidant enzymes in plasma, such as the paraoxonase-1 (PON1),
which is an antioxidant enzyme linked to HDLs that prevents LDL oxidation. Indeed, in
patients positive for aCL antibodies, the activity of PON1 was found to be dramatically
decreased [19]. Charakida et al. [20] also confirmed the interactions between aCL antibodies
and PON1. They showed that women with positive aPL antibodies have functional
and structural arterial abnormalities that were associated with reduced activity of PON1.
This implicates HDL and oxidative stress in the causal pathway for atherosclerosis in
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these patients. Moreover, in these patients, HDL has a “proatherogenic” phenotype by
reducing nitric oxide bioavailability and impairing anti-inflammatory and antioxidant
properties [20].
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and the decrease in intracellular glutathione contents; (2) the interactions between anticardiolipin 
antibodies (aCL) and the paraoxonase-1 (PON1) limiting its antioxidant properties; (3) aCL 
induction of nitric oxide (NO) and superoxide (O2−) production with increased levels of 
peroxynitrite (ONOO−) a pro-oxidant molecule. 
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Figure 1. Schematic representation of mechanisms promoting oxidative stress in APS patients.
Oxidative stress can be favoured by (1) the increase in the mitochondrial transmembrane potential
and the decrease in intracellular glutathione contents; (2) the interactions between anticardiolipin
antibodies (aCL) and the paraoxonase-1 (PON1) limiting its antioxidant properties; (3) aCL induction
of nitric oxide (NO) and superoxide (O2

−) production with increased levels of peroxynitrite (ONOO−)
a pro-oxidant molecule.

Finally, aCL seems to play an important role in promoting oxidative stress by inducing
nitric oxide (NO) and superoxide production. This reaction favours enhanced production
of plasma peroxynitrite, which is a powerful pro-oxidant substance. Indeed, in mice
injected with aCL antibodies, there was an increase in serum nitrotyrosine suggesting that
permanent pro-oxidant environment induces the activation of iNOS and results in long-
term downregulation of iNOS expression and subsequent endothelial dysfunction [21].

When oxidative stress is established, it contributes significantly to the pathophysiology
of APS by (1) inducing protein structural modification, and (2) interfering with nitric oxide
metabolism (Figure 2).
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Figure 2. Mechanisms mediated by oxidative stress contributing to thrombotic complication in
APS patients. (1) After oxidative modification, oxLDL binds β2GPI inside the arterial wall and
further increases inflammation, oxidation, and cell activation. (2) Autoantibodies to this complex
are produced resulting in circulating complexes (oxLDL/β2GPI/antibody). In the presence of anti-
oxLDL/β2GPI antibodies, the uptake of oxLDL/β2GPI complexes by macrophage is increased and
may further accelerate the development of atherosclerosis. (3) The endothelial nitric oxide synthase
(eNOS) in the endothelial cells is inactivated, reducing the nitric oxide (NO) bioavailability.

2.1. The Role of Oxidative-Mediated Modifications

Clinical and epidemiological studies suggested that the presence of anti-β2GPI anti-
bodies confers a significant risk of thrombosis, morbidity and mortality in young adults [22].
For this reason, anti-β2GPI antibodies have been widely investigated to better understand
the pathophysiology of APS and its complications.

β2GPI is a 50 kDa protein synthesized as a single polypeptide chain. It is mainly
produced in the liver and may be detected in the blood at a concentration of 200 µg/mL. [23].
β2GPI has a role in coagulation, fibrinolysis, angiogenesis, and apoptosis [24]. Oxidation
and nitrosylation of redox-sensitive cysteine residues are characteristic post-translational
modifications of β2GPI occurring under conditions of increased oxidative or nitrosative
stress. In particular, modifications of the sulfhydryl group (SH) alter the function of
proteins containing cysteines in their catalytic domain or as interface residues of interacting
proteins. ROS readily react with cysteine residues, especially redox-active cysteines, to
form reversible or irreversible oxidized forms.

S-nitrosylation refers to a chemical reaction that occurs spontaneously or enzymatically
in the presence of high NO concentrations. As a covalent post-translational modification
on the cysteine thiol residue, s-nitrosylation has emerged as an important mechanism for
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functional regulation of most or all main classes of protein and intracellular processes [25].
These post-translational modifications directly affect the function of β2GPI and also confer
an increase in the immunogenicity of β2GPI. In particular, the oxidation of β2GPI may
increase the immunogenicity of the molecule by (1) increasing the affinity of anti-β2GPI
antibodies to oxidised β2GPI; (2) causing immature monocyte-derived dendritic cells to
mature that secret interleukin (IL)-12, IL-1, IL-6, IL-8, tumour necrosis factor-α and IL-10;
(3) breaking immune tolerance [26].

The contribution of ROS to the development of APS has been studied in the context
of lipid peroxidation and the formation of oxidized LDL (oxLDL)/β2GPI complexes.
Indeed, patients with systemic autoimmune diseases displayed increased lipid peroxidation
and oxLDL production [27,28]. After oxidative modification, electrostatic forces initially
mediate the bind between oxLDL and β2GPI. After this initial interaction, more stable
complexes (non-dissociable) are formed and stabilized by covalent interactions. These
complexes are both proatherogenic and immunogenic. Indeed, the binding of β2GPI to
oxLDL may occur inside the intima microenvironment of the arterial wall and further
increase inflammation, oxidation, cell activation and macrophage uptake of oxLDL/β2GPI
complexes [29]. Moreover, patients with SLE and APS produce autoantibodies to this
complex [30], and the resulting circulating immune complexes (oxLDL/β2GPI/antibody)
may further accelerate the development of atherosclerosis. This was demonstrated in vitro
by the increased uptake of oxLDL/β2GPI complexes by macrophage in the presence of anti-
oxLDL/β2GPI antibodies [31,32]. These results provide an explanation for the accelerated
development of atherosclerosis in autoimmune patients.

2.2. Role of Oxidative Stress in Nitric Oxide Metabolism

Among the mechanisms potentially implicated in oxidative stress-mediated atherothrom-
botic complications in APS, the inactivation of endothelial nitric oxide synthase (eNOS) is
one of the most studied. eNOS is the predominant NOS isoform in the vasculature and is
responsible for most of the nitric oxide (NO) produced in this tissue. NO is a short-lived
gas molecule that is responsible for different biological actions in multiple tissues and cell
types, and is synthesized by eNOS to preserve vascular homeostasis [33]. Moreover, it
exerts an atheroprotective function, and it inhibits blood clots and platelets adhesion to the
endothelium [34].

A hypothetical connection between APS and alterations in the NO bioavailability
has been evaluated in several studies performed both in mice and humans [35–38]. The
evidence resulting from these studies showed a direct connection between the altered
production of NO and APS pathogenesis.

In patients with aPL, a negative correlation was found between urinary NO metabo-
lites (NOx) and IgG anticardiolipin, suggesting that aPL can negatively affect NO physio-
logical activities [39].

In mice, the injections of polyclonal aPL and β2GPI monoclonal antibodies isolated
from human patients can reduce the plasma concentration of NO metabolites. Moreover, the
injection of aPL suppressed eNOS-mediated vascular relaxation by acetylcholine. Finally,
in mice lacking eNOS, the increase in leukocyte adhesion to vascular endothelium and
thrombus formation induced by aPL was not observed [36].

In vitro studies carried out by Ramesh et al. showed the impact of aPL in endothelial
cells. In mice, aPL produced an increase of monocyte adhesion to endothelial cells, which
is a mechanism directly related to atherosclerosis [36]. The same authors examined the
role of β2GPI in aPL antagonism to eNOS by experiments that alternately included and
excluded β2GPI from the surface of endothelial cells. When these cells were deprived of
β2GPI, aPL did not cause eNOS inhibition, indicating that β2GPI is required for aPL full
functioning [36–38].

3. Oxidative Stress in APS: Clinical and Experimental Studies

Several clinical studies evaluated oxidative stress biomarkers in APS patients (Table 1).
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Table 1. Clinical, experimental, and in vitro studies describing changes of biomarkers of oxidative stress in APS patients.

HUMAN STUDIES

Author/(Year)/[Reference] Study Type (Setting) Markers of Oxidative Stress Main Results vs. Controls

Lambert et al., (2000) [19] n = 56 APS patients
n = 71 HS

PON1
MDA-LDL

↓ PON1
↑MDA-LDL

Delgado Alves et al., (2002) [40]

Cross-sectional study
n = 32 SLE

n = 36 with PAPS
n = 20 controls

HDL cholesterol
PON activity

TAC

↓ HDL
↑ anti-HDL antibodies
↓ PON activity
↓ TAC

Ferro et al., (2003) [41] n = 13 APL patients
n = 11 negative APL patients

Isoprostane ↑ 8-isoprostane

Matsuura et al., (2006) [42] n = 93 APS patients
n = 161 HS oxLDL/beta2GPI ↑ oxLDL/beta2GPI

Sciascia et al., (2012) [43] n = 45 APS patients
n = 75 HS Isoprostanes ↑ 8-isoprostane

↑ Prostaglandin E2 (PGE)

Perez-Sanchez et al., (2015) [44] n = 126 APS patients
n = 61 HS

TAC
MnSOD
Catalase

GPx

↓ TAC
↑MnSOD
↑ Catalase
↓ GPx

Stanisavljevic et al., (2016) [45]
Cross-sectional case–control

n = 140 APS patients
n = 40 HS

LOOH
AOPP
tSHG
PON1

↔ LOOH
↑ AOPP
↓ tSHG
↓ PON1

Lai et al., (2015) [46] n = 12 APS patients
n = 54 HS

mitochondrial mass
O2
− production

mTOR and FoxP3 expression

↑mitochondrial mass
↑ O2

− production
↔mTOR expression
↓ FoxP3 expression

Ibrahim (2017) [47] n = 75 APS patients
n = 120 HS polymorphisms of the PON1 ↔ PON1 polymorphisms

Nojima et al., (2020) [48] n = 58 APS patients
n = 312 HS OSI ↑ OSI

EXPERIMENTAL STUDIES

Delgado Alves et al., (2005) [49]
mice with SCID+

aCL and anti-aβ2-GPI
monoclonal antibodies

PON activity
TAC

↓ PON activity
↓ TAC

Benhamou et al., (2015) [50] APS mice gp91phox mRNA
GSH/GSSH ratio

↑ gp91phox mRNA
↑ left ventricular GSH/GSSH

Ding et al., (2015) [51] APS mice
wild-type mice p47phox ↑ p47phox mRNA

↑ p47phox phosphorylation

IN VITRO STUDIES

Ferro et al., (2003) [41]

Human monocytes from (HS)
and

anti-β2GP1 antibodies (50, 100,
200 µg/mL)

O2
− production ↑ O2

− production

Simoncini et al., (2005) [52]
HUVEC and

IgG (IgG-APS) from
12 APS patients

ROS production

↑ ROS production
MAP kinases pathway:
↑ p38 phosphorylation

↑ ATF-2

Abbreviations: healthy subjects (HS); Human umbilical vein endothelial cells (HUVEC); Mitogen-activated protein (MAP) kinases;
activating transcription factor-2 (ATF-2); Oxidized low-density lipoprotein (oxLDL); b2-glycoprotein I (2GPI); prostaglandin E2 (PGE);
Manganese-SOD, total antioxidant capacity (TAC); manganese-superoxide dismutase (MnSOD); glutathione peroxidase (GPx); lipid
hydroperoxydes (LOOH); advanced oxidation protein products (AOPP); total sulfhydryl groups (tSHG); paraoxonase 1 activity (PON1);
oxidation stress index (OSI); severe combined immunodeficiency (SCID); anticardiolipin (aCL); Total antioxidant capacity (TAC); ↑ increase;
↓ decrease;↔ no changes.

aPLs have been demonstrated to induce an increased expression of molecules able
to produce an expanded oxidative status in plasma, as demonstrated by high levels of
prostaglandin F2-isoprostanes in APS patients. F2-isoprostanes are arachidonic acid prod-
ucts formed on membrane phospholipids by the action of ROS. As F2-isoprostanes are
characterized by stability and specificity for lipid peroxidation, they represent a reliable
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marker for quantitative measurement of lipid peroxidation oxidative stress in vivo and pre-
diction of cardiovascular events [53,54]. Specifically, a study conducted on 45 APS patients
found higher values of 8-isoprostanes in the APS group than in the other groups. Moreover,
APS patients with enhanced inflammation and oxidative stress recorded more thrombotic
events compared to control group (69% vs. 6.5%). Similar results were showed by another
study that investigates the relationship between oxidative stress and monocyte tissue
factor (TF) expression in a cross-sectional comparison of aPL-positive and aPL-negative
patients [41]. In fact, in these patients, an upregulation of monocyte TF expression was
associated with thrombosis [55]. The results showed that compared with aPL-negative
subjects, in aPL-positive patients higher values of isoprostanes and monocyte TF antigen
and activity were observed [41].

PON1 is a hydrolytic enzyme with wide range of substrates, and a capability to protect
against lipid oxidation. There is a considerable in vitro and in vivo data that prove the
beneficial effects of PON1 in several atherosclerosis-related processes [56].

In an observational study, among 56 patients with APS, 37 presented arterial throm-
bosis, 16 presented venous thrombosis and all showed malondialdehyde-modified LDL
(MDA-LDL) at significantly higher levels than controls. Furthermore, basal serum of PON1
activity was dramatically decreased in a subgroup of patients in comparison with the
controls [19]. These results suggest that PON1 abnormalities that play a role in the APS
might be associated with a higher risk of arterial thrombosis. Genetic analysis confirmed
the role of PON1 in APS. In fact, PON1 L55M polymorphism resulted in an association
with APS [47].

Consistently with these results, a cross-sectional study showed that PON1 is reduced
in 36 patients with primary APS compared with 20 healthy subjects (HS) [40]. Additionally,
the total antioxidant capacity (TAC), which quantifies the overall antioxidant defence of
plasma, analysed in patients with primary APS did not differ significantly from levels in
the control group, but correlated positively with PON activity [40].

Chronic, autoimmune, vascular inflammation together with decreased PON activity
may contribute to oxidative stress, LDL modification (oxLDL) and oxLDL/2GPI complex
formation that reflect the oxidative stress degree. Matsuura et al. revealed that serum
levels of IgG anti-oxLDL/2GPI antibodies were significantly higher in systemic lupus
erythematosus (SLE) patients with APS compared to SLE controls without APS. In addition,
high concentrations of these IgG antibodies were observed in APS patients with a history
of arterial thrombosis. Therefore, the presence of circulating oxLDL/2GPI complexes and
IgG antibodies to these complexes indicates significant vascular damage and oxidative
stress as well as a significant role in autoimmune-mediated atherothrombosis [42].

A cross-sectional case–control clinical study, including a total of 180 patients with pri-
mary and secondary APS and a control group, investigated several oxidative stress markers
of endothelial damage measured by flow-mediated dilation (FMD). Biomarkers of oxida-
tive stress, lipid hydroperoxydes (LOOH), advanced oxidation protein products (AOPP),
total sulfhydryl groups (tSHG), and PON1 activity resulted altered in APS patients [45].

In addition to the evidence from human models, some studies on murine models supported
that enhanced oxidative stress occurs in APS and the role of oxidant/antioxidant balance.

Severe combined immunodeficiency (SCID) mice were injected with Hybridomas
producing human and murine aCL antibodies and β2GPI monoclonal antibodies. Results
showed that PON1 activity, NO levels, and expression of total antioxidant capacity (TAC)
were reduced. Conversely, peroxynitrite and superoxide concentration in plasma were
increased. These data confirm that aCL antibodies are associated with the decreased PON
activity and reduced endothelial function that may occur in the APS [49].

At the molecular level, it has been demonstrated that in the liver of the APS mouse
model, both mRNA and protein expression of 47phox, a protein involved in the upregu-
lation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, were
increased compared with the control group [51]. As NADPH oxidase is the main source
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of ROS [57], the results suggest that NADPH oxidase-mediated oxidative stress leads to
endothelial cell injury in APS.

The studies described so far analyse the oxidative stress at plasmatic levels. Perez-
Sanchez et al. studied oxidative stress at the cellular level by analysing biomarkers in
circulating leucocytes from APS patients. Higher peroxide production, the nuclear abun-
dance of Nrf2, antioxidant enzymatic activity, decreased intracellular glutathione, and
altered mitochondrial membrane potential were found in monocytes and neutrophils from
APS patients compared to healthy subjects [58]. Specifically, ROS production was markedly
increased in monocytes and neutrophils of APS patients compared with healthy donors, as
was the expression of Nrf2, the main regulator of antioxidant genes. Moreover, intracellular
reduced GSH was significantly decreased in both cell types and the activities of catalase
(CAT) and glutathione peroxidase (GPx) resulted in being strongly reduced. Furthermore,
a significant systemic reduction of total antioxidant capacity (TAC) in plasma from APS
patients was found compared to healthy donors, and might indicate a reduced ability to
counteract ROS production and oxidative damage [58].

According to the results of these studies, showing that oxidative stress is directly
involved in the pathophysiology of atherothrombosis in APS, the evaluation of oxidative
stress biomarkers could be used as serologic indicators to assess the APS patient’s risk
for vascular complications. Moreover, vascular, preventive strategies and more targeted
therapeutic interventions should be developed.

4. Antioxidant Treatment in APS Patients: The State of the Art

Common treatments for APS are long-term anticoagulation with vitamin K antag-
onists and antiplatelet drugs. To reinforce the effects of these therapies and to fight the
effects of oxidative stress in APS, several potential new therapeutic approaches are under
investigation. Strategies to inhibit oxidative stress involve drugs such as dabigatran and
statins that, with different molecular mechanisms, can reduce vascular oxidative stress and
inflammation and improve endothelial function.

A potential new therapeutic strategy should be represented by natural molecules such
as vitamins, CoQ10, and omega-3 polyunsaturated fatty acid (n-3 PUFA) (Table 2).

Table 2. Main characteristics and main results of supplementation studies with antioxidants in patients with APS, experi-
mental model of APS and in vitro studies.

INTERVENTION STUDIES

HUMAN STUDIES

Author/(Year)/[Reference] Study Type (Setting) Type of Intervention/Doses Main Results

Rossi et al., (1993) [59]
Patients with PAPS associated

with recurrent miscarriage
n = 22

EPA and DHA (5.1 g) Fish oil prevents recurrent miscarriage in
persistent APS

Carta et al., (2005) [60]

A prospective study
Patients with positive

antiphospholipid antibodies
n = 30

Fish oil derivates
vs.

low dose aspirin

No significant differences in adverse
pregnancy outcome after fish oil derivates.

Felau et al., (2018) [61]

Randomized double-blind
placebo-controlled trial

Women with primary APS
n = 22

EPA (1.8 g) and DHA (1.3 g)
16 weeks

↑ endothelial function
↓ circulating levels of interleukin-10

and TNF
↔ E- selectin, vascular adhesion
molecule-1, and fibrinogen levels

Ferro et al., (2003) [41]
Randomized clinical trial

APL positive patients
n = 11

Vitamin E (900 IU day)
Vitamin C (2000 mg day)

6 weeks

↓ Isoprostanes
↓Monocyte TF antigen
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Table 2. Cont.

INTERVENTION STUDIES

HUMAN STUDIES

Author/(Year)/[Reference] Study Type (Setting) Type of Intervention/Doses Main Results

Stopa et al., (2017) [62]

Clinical trial
Patients with persistently elevated

anti-phospholipid antibodies
n = 6

Isoquercetin (1000 mg)
4 h

↓ thrombin generation (decrease of 63.6%)
↓ platelet factor Va generation

Perez-Sanchez et al.,
(2017) [63]

Prospective, randomized,
crossover, placebo-controlled trial

n = 36

Qred (200 mg/d)
vs. placebo

1 month

↑ endothelial function
↓monocyte expression of prothrombotic

and proinflammatory mediators
↓ peroxides

EXPERIMENTAL STUDIES

Maalouly et al., (2017) [64]

Murine experimental models of
antiphospholipid syndrome:

BALB/c mice immunized with
beta-2-glycoprotein I

Omega-3 fatty acids (0.5 g/kg)
curcumin (200 mg/kg)

3 months in addition to the
treatment with enoxaparin

(1 mg/kg)

↓mortality

Ramadan et al., (2021) [65]

Murine experimental models of
antiphospholipid syndrome:

esiquimod-induced
(R848-induced) lupus

6-gingerol (20 mg/kg
intraperitoneal injection)

3 times per week

↓ NETs release
↓ Anti-dsDNA, anti-β2GPI, and total IgG

↓ thrombus length and weight

IN VITRO STUDIES

Author/(year)/[reference] Types of cells Type of antioxidant’s
treatment Main results

Ferro et al., (2003) [41]
Human healthy monocytes

treated with polyclonal
anti-b2GP1 antibodies

Vitamin E concentrations
(50, 100 µM)

↓ superoxide anion
↓ TF Ag and activity

Wei et al., (2020) [66] HUVECs treated with
anticardiolipin antibody (aCL) Hyperoside (10, 20, 50 mM)

↓ IL-1b, IL-8, TF, ICAM1, and VCAM1
↑ autophagy
↓mTOR/S6K

↓ TLR4/Myd88/NF-kB signalling
transduction pathways

Perez-Sanchez et al.,
(2017) [63]

Human healthy monocytes
treated with IgG-APS CoQ10

↓ oxidative stress
↓ TF
↓ VEGF

↓ Flt1 receptor

Wang et al., (2014) [67]

Human acute monocytic
leukaemia cell line treated with

anti-β2 glycoprotein I
(GPI)/β2GPI complex

Epigallocatechin-3-gallate
(0–50 µg/mL)

↓ TF expression
↓ TF activity

Legend: anticardiolipin (aCL); β2-glycoprotein I (2GPI); docosahexaenoic acid (DHA); eicosapentaenoic acid (EPA); fms-related tyrosine
kinase 1 (FLT1); glutathione peroxidase (GPx); human umbilical vein endothelial cells (HUVEC); intercellular adhesion molecule 1 (ICAM1);
myeloid differentiation factor 88 (Myd88); mechanistic target of rapamycin (mTOR); nuclear factor kappa-light-chain enhancer of activated
B cells (NF kB) primary antiphospholipid syndrome (PAPS); paraoxonase 1 activity (PON1); severe combined immunodeficiency (SCID);
tissue factor (TF); Toll-like receptor 4 (TLR4); tumour necrosis factor-α (TNF-α); vascular cell adhesion molecule 1 (VCAM1); vascular
endothelial growth factor (VEGF); ↑ increase; ↓ decrease;↔ no changes.

4.1. Human Studies

Even if there is convincing evidence showing that oxidative stress is directly involved
in the pathophysiology of atherothrombosis in APS, very few studies have evaluated the
potential effect of antioxidant supplementation in these patients.

One therapeutic approach could be represented by omega-3 polyunsaturated fatty acid
(n-3 PUFA) supplementation, which has been shown to improve endothelial function in
several diseases and could have a role also in APS. In a pilot study in 1993, 22 patients with
persistent APS associated with recurrent miscarriage were treated with fish oil, equivalent
to 5.1 g eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at a ratio of 1.5 EPA to
DHA. The results showed that fish oil prevents recurrent miscarriage in persistent APS [59].
Different results were revealed by Carta et al. Patients with at least two consecutive
spontaneous abortions and positive antiphospholipid antibodies on two occasions were



Antioxidants 2021, 10, 1790 10 of 14

assigned to treatment with low-dose aspirin or fish oil derivatives. Results showed that the
treatment of women with recurrent pregnancy loss associated with APS syndrome with
fish oil derivates or low-dose aspirin did not lead to significant differences with respect to
pregnancy outcome and complications [60].

More recently, a clinical trial involving 22 adult women with primary APS randomized
to receive placebo or n-3 PUFA (capsule, 1.8 g of EPA and 1.3 g of DHA). After 16 weeks
of supplementation, the ω-3 group showed significant increases in endothelial function
estimated by reactive hyperaemia index (RHI) when compared with placebo. In addition,
the ω-3 group showed decreased circulating levels of interleukin-10 (−4 vs. +45%) and
tumour necrosis factor (−13 vs. +0.3%) and a tendency toward a lower intercellular
adhesion molecule-1 response (+3 vs. +48%) after treatment when compared with placebo.
Conversely, no changes were observed for E-selectin, vascular adhesion molecule 1, and
fibrinogen levels [61].

The effect of combined antioxidant treatment with Vitamin E and Vitamin C was
investigated by Ferro et al. [41]. Eleven APS-positive patients were randomly supplemented
either with or without antioxidants (vitamin E at 900 IU/day and vitamin C at 2000 mg/day)
for 6 weeks. APL-positive patients showed increased oxidative stress that induced an
overexpression of monocyte tissue factor (TF), contributing to activate the clotting system.
Results showed that patients who received antioxidant supplementation had a significant
reduction in isoprostanes and monocyte TF antigen and activity [41].

Stopa et al. evaluated the effect of flavonoid quercetins in a cohort of patients with
persistently elevated antiphospholipid antibodies. Quercetin-3-rutinoside is a small, potent
inhibitor of protein disulphide isomerase (PDI) that plays a critical role in thrombus forma-
tion. Oral administration of 1.000 mg isoquercetin decreased by 64% platelet-dependent
thrombin generation in the antiphospholipid antibody cohort. Moreover, isoquercetin
ingestion resulted in a decrease in the generation of platelet factor Va [62].

Finally, in a prospective, randomized, crossover, placebo-controlled trial, Perez-
Sanchez et al. evaluated the short-term effects of in vivo ubiquinol, the reduced coen-
zyme Q10 [Qred], supplementation on biomarkers related to inflammation and thrombosis
in APS. Thirty-six patients with APS were randomized to receive Qred (200 mg/d) or
placebo for 1 month. Results showed that Qred (1) improved endothelial function and
decreased the expression of prothrombotic and proinflammatory mediators by monocyte,
(2) inhibited phosphorylation of thrombosis-related protein kinases, and (3) decreased
peroxides and percentage of monocytes with depolarized mitochondria. Moreover, Qred
significantly reduces the percentage of neutrophil extracellular traps released by activated
neutrophils, and in monocytes it downregulates peroxides production, intracellular elas-
tase, and myeloperoxidase expression [63].

4.2. Experimental and In Vitro Studies

Murine experimental models of antiphospholipid syndrome (eAPLS) were used to
test the effect of Omega-3 fatty acids and curcumin on neurologic severity. BALB/c mice
immunized with beta-2-glycoprotein I received omega-3 fatty acids (0.5 g/kg), and cur-
cumin (200 mg/kg) for 3 months in addition to treatment with enoxaparin (1 mg/kg).
The enoxaparin and omega-3 fatty acids combination was correlated with a reduction in
mortality, demonstrating an interesting therapeutic approach using omega-3 in eAPLS [64].
Another study evaluated the effect of 6-gingerol, one of the main functional compounds in
the extract of ginger. The administration of antiphospholipid antibodies to mice increased
thrombus length and weight, which returned to control levels upon administration of
6-gingerol (20 mg/kg, three times per week). The mechanism hypostatized is dependent
on NETs formation. Indeed, NETs contribute to APS pathophysiology as amplifiers of
inflammation and thrombosis. Indeed, the aPL administration increased serum NET levels,
which returned to baseline when mice were treated with 6-gingerol [65].

Other data are provided by in vitro experiments. Ferro et al. evaluated the effect
of Vitamin E on TF and oxidative stress in human healthy monocytes. When cells were
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treated with polyclonal anti-b2GP1 antibodies, a dose-dependent increase in oxidative
stress, as indicated by the increase in superoxide anion and TF Ag and activity production
compared to monocytes stimulated with IgG of normal healthy subjects, was observed.
The pretreatment with vitamin E concentrations (50, 100 µM) dose-dependently reduced
superoxide anion and TF Ag and activity production [41].

Wei et al. evaluated the effect of hyperoside, which is a flavonoid glycoside com-
pound mainly found in medicinal herbs, displaying antioxidative, anticancer, and anti-
inflammatory properties in many molecular pathways. Human umbilical vein endothelial
cells (HUVECs) were treated with anticardiolipin antibody (aCL) to induce a vascular en-
dothelial injury. When HUVECs were pretreated with hyperoside (10, 20, 50 mM) for 24 h,
the secretion of proinflammatory cytokines, such as IL-1b and IL-8, and endothelial adhe-
sion cytokines such as TF, ICAM1, and VCAM1, was significantly reduced. Mechanistically,
hyperoside activated autophagy and suppressed the mTOR/S6K and TLR4/Myd88/NF-k
B signalling transduction pathways [66].

Perez-Sanchez et al. evaluated the effect CoQ10 on mitochondrial dysfunction. The
preincubation of human healthy monocytes with CoQ10, followed by treatment with
IgG-APS, significantly decreased oxidative stress and the percentage of cells with altered
mitochondrial membrane potential, suggesting a positive effect on alterations in mito-
chondrial dynamics and metabolism. Moreover, CoQ10 reduced the expression of the
thrombotic and proinflammatory markers such as TF, vascular endothelial growth factor
(VEGF) and its receptor Flt1, which were increased after the treatment with IgG-APS [58].

Finally, Wang et al. tested the effect of Epigallocatechin-3-gallate (EGCG), which
is the major polyphenolic component of green tea, on blocking the effects of the anti-
β2 glycoprotein I (GPI)/β2GPI complex. This complex activates endothelial cells and
monocytes promoting TF activity, increasing the risk of thrombosis, and enhancing the
expression and secretion of proinflammatory cytokines. Human acute monocytic leukaemia
cell line (THP-1) treated with anti-β2 glycoprotein I (GPI)/β2GPI complex displayed
increased expression of TF and tumour necrosis factor-α (TNF-α). When the cells were
pretreated with EGCG (0–50 µg/mL) before the stimulation with the anti-β2GPI/β2GPI
complex, TF expression and activity were significantly reduced [67].

5. Conclusions and Future Perspective

Oxidative stress is directly involved in the pathogenesis of atherothrombosis in APS
patients. Several mechanisms have been proposed and have highlighted the role of aCL as
a key promoter of oxidative stress and mitochondrial dysfunction. Oxidative stress, in turn,
favours endothelial dysfunction, mainly associated with the alteration of NO metabolism,
and stimulates a prothrombotic and proinflammatory status in APS patients.

Since the role of oxidative stress is well established, oxidative stress biomarkers should
be used for thrombotic risk assessment in these patients and to plan antioxidant therapy for
the reduction of thrombotic risk. In vitro studies are consistent in supporting a beneficial
effect of treatment with antioxidants in reducing biomarkers of thrombosis. However, to
date, there are little data on the administration of antioxidants in these patients, with no
conclusive results. Therefore, further study with a more adequate methodology must be
performed to assess the validity of antioxidant supplementation in patients with APS.
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