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Abstract. In this paper we are going to prove existence and regularity results for
positive solutions of the following elliptic system:{

−div(M(x)∇u) + r ϕur−1 = f + ϕr ,

−div(M(x)∇ϕ) + r uϕr−1 = ur .

where Ω is a bounded open subset of RN , M is a bounded, uniformly elliptic matrix,
r > 1, and f ≥ 0 belongs to some Lebesgue space Lm(Ω), with m ≥ 1. We will also
prove the relationships of the solutions of the system with saddle points of the integral
functional

J(v, ψ) =
1

2

∫
Ω

M(x)∇v · ∇v − 1

2

∫
Ω

M(x)∇ψ · ∇ψ +

∫
Ω

|v|r ψ −
∫

Ω

|ψ|r v −
∫

Ω

f v

1. Introduction

In this paper we study the existence and main properties of the weak (or distribu-
tional) solutions of the semilinear elliptic system

(1.1)

{
u ∈ W 1,2

0 (Ω) : −div(M(x)∇u) + r ϕ ur−1 = f(x) + ϕr ,

ϕ ∈ W 1,2
0 (Ω) : −div(M(x)∇ϕ) + r uϕr−1 = ur ,

where Ω is a bounded open subset of RN , N > 2, r > 1, f is a positive function
belonging to some Lebesgue space Lm(Ω), with m ≥ 1, and M(x) is a measurable
matrix such that (for 0 < α ≤ β)

(1.2) M(x)ξ · ξ ≥ α|ξ|2 , a.e. in Ω, for every ξ in RN ,

(1.3) |M(x)| ≤ β , a.e. in Ω.

The motivations of the interest for the above system come from the paper [1], while
existence and properties of solutions of systems of Schrödinger-Maxwell equations have
also been studied in [4], [8], [11], where only the first equation of the system is semilinear.

A second motivation comes from a geometrical point of view: the solution (u, ϕ) of
(1.1) are saddle points of the integral functional

J(v, ψ) =
1

2

∫
Ω

M(x)∇v · ∇v − 1

2

∫
Ω

M(x)∇ψ · ∇ψ +

∫
Ω

|v|r ψ −
∫

Ω

|ψ|r v −
∫

Ω

f v ,

even if, at first sight, this fact is not so evident since some terms may not be well defined;
in this case, the regularizing effect on the solutions of the coupling of the equations in
system (1.1) plays an important role.

Our main results on system (1.1) are proved in the following theorem.
1
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Theorem 1.1. Let r > 1 and let f ≥ 0 be a function in Lm(Ω), with m ≥ 1. Then
there exist solutions u and ϕ of system (1.1), with ϕ ≤ u, and the following Sobolev
regularities depending on the values of r and m:

• if 1 < r ≤ N
N−2

:

– if m ≥ 2N
N+2

then u and ϕ belong to W 1,2
0 (Ω);

– if 1 < m < 2N
N+2

then u and ϕ belong to W 1,m∗

0 (Ω), where m∗ = Nm
N−m ;

– if m = 1 then u and ϕ belong to W 1,q
0 (Ω), for every q < N

N−1
;

• if N
N−2

< r < N+2
N−2

:

– if m ≥ 2N
N+2

then u and ϕ belong to W 1,2
0 (Ω);

– if N
2
r−1
r
≤ m < 2N

N+2
then u and ϕ belong to W 1,m∗

0 (Ω);

– if 1 < m < N
2
r−1
r

then u and ϕ belong to W 1,q
0 (Ω) with q = 2rm

r+1
;

– if m = 1 then u and ϕ belong to W 1,q
0 (Ω), for every q < 2r

r+1
;

• if r ≥ N+2
N−2

:

– if m ≥ r+1
r

then u and ϕ belong to W 1,2
0 (Ω);

– if 1 < m < r+1
r

then u and ϕ belong to W 1,q
0 (Ω) with q = 2rm

r+1
;

– if m = 1 then u and ϕ belong to W 1,q
0 (Ω), for every q < 2r

r+1
.

Furthermore, we have the following results for Lebesgue summability:

• if 1 < r < N
N−2

:

– if m > N
2
then u and ϕ belong to L∞(Ω);

– if 1 ≤ m < N
2
then u and ϕ belong to Lm

∗∗
(Ω), with m∗∗ = Nm

N−2m
;

– if m = 1 then u and ϕ belong to Ls(Ω), for every s < N
N−2

;

• if r ≥ N
N−2

:

– if m > N
2
then u and ϕ belong to L∞(Ω);

– if N
2
r−1
r
< m < N

2
then u and ϕ belong to Lm

∗∗
(Ω);

– if 1 ≤ m ≤ N
2
r−1
r

then u and ϕ belong to Lrm(Ω).

We point out that the results on u and ϕ in Lrm(Ω) are strongly related to some
results of [9] (see also [7]).

1 N
N−2

N+2
N−2

1

2N
N+2

2
m = N

2
r−1
r

m = r+1
r

W 1,2
0

W 1,q
0 , q = 2rm

r+1

W 1,m∗

0

r

m

1 N
N−2

1

N
2

m = N
2

r−1
r

L∞

Lm∗∗

Lrm

r

m

Dependence on r and m of the Sobolev and Lebesgue regularities of u and ϕ

The plan of the paper is as follows: in the next section we will prove an existence
result for bounded solutions un and ϕn of a “truncated” system which approximates
(1.1), while in Section 3 we will prove a result which will be fundamental in the sequel:
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namely, that ϕn ≤ un for every n. Sections 4 and 5 will be devoted to the proof of
Theorem 1.1 in the case m > N

2
and 1 < m < N

2
respectively, while the proof of the

case m = 1 of Theorem 1.1 is given in Section 6. Finally, in Section 7 we deal with the
case of measure data, and in Section 8 we prove that if m ≥ 2N

N+2
the solution of system

(1.1) given by Theorem 1.1 is a saddle point of the functional J defined above.

2. Existence of approximating solutions

We begin with an existence result for a problem which approximates (1.1). For n in
N, let us define the truncation at levels ±n as

Tn(s) = max(−n,min(s, n)) .

Theorem 2.1. Let r > 1, let F ≥ 0 be in Lm(Ω), with m > N
2
, and let n in N. Then

there exist solutions un and ϕn of the following system:

(2.1)

{
0 ≤ un ∈ W 1,2

0 (Ω) ∩ L∞(Ω) : −div(M(x)∇un) + r ϕn u
r−1
n = F + Tn(ϕrn) ,

0 ≤ ϕn ∈ W 1,2
0 (Ω) ∩ L∞(Ω) : −div(M(x)∇ϕn) + r un ϕ

r−1
n = Tn(urn) .

Furthermore, un and ϕn belong to L∞(Ω).

Proof. Let n in N, and let v ≥ 0 be a function in L2(Ω). Then there exists (see [2]) a
unique weak solution ψ in W 1,2

0 (Ω) of

−div(M(x)∇ψ) + r v |ψ|r−2ψ = Tn(vr) ,

that is ∫
Ω

M(x)∇ψ · ∇w + r

∫
Ω

v |ψ|r−2ψ w =

∫
Ω

Tn(vr)w , ∀w ∈ W 1,2
0 (Ω) .

It is easy to see, using the fact that v ≥ 0, that ψ ≥ 0, so that ψ is the solution of

(2.2) −div(M(x)∇ψ) + r v ψr−1 = Tn(vr) .

Furthermore, by the results of Stampacchia (see [12]), ψ belongs to L∞(Ω) and is such
that

(2.3) ‖ψ‖
W 1,2

0 (Ω)
≤ C n ,

for some positive constant C. Given ψ, let z be the unique weak solution in W 1,2
0 (Ω) of

−div(M(x)∇z) + r ψ |z|r−2z = F + Tn(ψr) ,

that is∫
Ω

M(x)∇z · ∇w + r

∫
Ω

ψ |z|r−2z w =

∫
Ω

F w +

∫
Ω

Tn(ψr)w , ∀w ∈ W 1,2
0 (Ω) .

Using again the fact that both F and ψ are positive, z is positive as well, so that it
solves

(2.4) −div(M(x)∇z) + r ψ zr−1 = F + Tn(ψr) .

Using once again the results by Stampacchia, one has that z belongs to L∞(Ω) and is
such that

(2.5) ‖z‖
W 1,2

0 (Ω)
≤ C

(
‖F‖

L2(Ω)
+ n
)
.

By Poincaré inequality, one thus has that

‖z‖
L2(Ω)

≤ C
(
‖F‖

L2(Ω)
+ n
)

= R ,
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which implies that the intersection of the positive cone of L2(Ω) with the ball BR(0) of
L2(Ω) is invariant for the map S : v 7→ z. We give now the (easy) proof that S is both
continuous and compact, so that it will have a fixed point by Schauder theorem. As
for compactness in L2(Ω), it easily follows from (2.5) and from Rellich theorem, so that
we only have to prove the continuity of S. To this aim, let vk be a sequence of positive
functions in L2(Ω) strongly convergent to v in the same space. If ψk is the solution of

−div(M(x)∇ψk) + r vk ψ
r−1
k = Tn(vrk) ,

then by (2.3) we have that ψk is bounded in W 1,2
0 (Ω). Therefore, up to subsequences,

still denoted by ψk, it converges weakly in W 1,2
0 (Ω) and strongly in L2(Ω) to some

function ψ. Since the sequence Tn(vrk) is strongly convergent to Tn(vr) in Lp(Ω) for
every 1 ≤ p < +∞ it is easy to see that ψ is the solution of

−div(M(x)∇ψ) + r v ψr−1 = Tn(vr) .

Let now zk = S(vk), which is the solution of

−div(M(x)∇zk) + r ψk z
r−1
k = F + Tn(ψrk) .

Using again (2.5), we have that zk is bounded in W 1,2
0 (Ω), so that, up to subsequences

still denoted by zk, it converges weakly in W 1,2
0 (Ω) and strongly in L2(Ω) to some

function z. Due to the strong convergence, in Lm(Ω), with m > N
2

, of the right hand
side F + Tn(ψrk), it is again easy to see that z is the solution of

−div(M(x)∇z) + r ψ zr−1 = F + Tn(ψr) ,

that is, z = S(v). Since the limit is independent of all the extracted subsequences, the
whole sequence S(vk) strongly converges in L2(Ω) to S(v), and so S is continuous, as
desired.

Thus, by Schauder theorem, there exists a fixed point un of S. If we define ϕn as the
positive weak solution of

ϕn ∈ W 1,2
0 (Ω) : −div(M(x)∇ϕn) + r un ϕ

r−1
n = Tn(urn) ,

we than have that un ≥ 0 solves

un ∈ W 1,2
0 (Ω) : −div(M(x)∇un) + r ϕn u

r−1
n = F + Tn(urn) ,

as desired, and that both un and ϕn belong to L∞(Ω).
�

3. Comparison between un and ϕn

Aim of this sections is the proof of the following result, which will be fundamental in
the sequel.

Theorem 3.1. Let r ≥ 2, and let un and ϕn be the weak solutions of system (2.1)
given by Theorem 2.1. Then

(3.1) ϕn ≤ un , ∀n ∈ N.

Proof. Subtracting the two equations, we have

−div(M(x)∇(ϕn − un)) + rϕnun[ϕr−2
n − ur−2

n ] + Tn(ϕrn)− Tn(urn) = −F .
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Taking (ϕn − un)+ as test function in the weak formulation of this equation, we have∫
Ω

M(x)∇(ϕn − un) · ∇(ϕn − un)+ + r

∫
Ω

ϕnun[ϕr−2
n − ur−2

n ](ϕn − un)+

+

∫
Ω

[Tn(ϕrn)− Tn(urn)](ϕn − un)+ = −
∫

Ω

F (ϕn − un)+ .

We remark now that the right hand side is negative (since F ≥ 0), while the second
and third term of the left hand side are positive (since un ≥ 0, ϕn ≥ 0, and r ≥ 2).
Therefore, by (1.2) we have that

α

∫
Ω

|∇(ϕn − un)+|2 ≤
∫

Ω

M(x)∇(ϕn − un) · ∇(ϕn − un)+ ≤ 0 ,

which implies that (ϕn − un)+ = 0, and so ϕn ≤ un, as desired. �

4. Proof of Theorem 1.1 if m > N
2

We begin this section proving that the sequences {un} and {ϕn} given by Theorem
2.1 are bounded in W 1,2

0 (Ω) ∩ L∞(Ω).

Theorem 4.1. Let r ≥ 2 and let F ≥ 0 be a function in Lm(Ω), with m > N
2
. Let

un and ϕn be the solutions of system (2.1) given by Theorem 2.1. Then there exists a
constant C > 0 such that

(4.1) ‖un‖W 1,2
0 (Ω)

+ ‖ϕn‖W 1,2
0 (Ω)

+ ‖un‖L∞(Ω)
+ ‖ϕn‖L∞(Ω)

≤ C ‖F‖
Lm(Ω)

.

Proof. We choose un as test function in the weak formulation of the first equation of
(2.1), and ϕn as test function in the second. We have∫

Ω

M(x)∇un · ∇un + r

∫
Ω

ϕnu
r
n =

∫
Ω

Fun +

∫
Ω

Tn(ϕrn)un ≤
∫

Ω

Fun +

∫
Ω

ϕrnun ,

and ∫
Ω

M(x)∇ϕn · ∇ϕn + r

∫
Ω

unϕ
r
n =

∫
Ω

Tn(urn)ϕn ≤
∫

Ω

urnϕn .

Using (1.2), and summing the two inequalities, we obtain

(4.2) α

∫
Ω

|∇un|2 + α

∫
Ω

|∇ϕn|2 + (r − 1)

∫
Ω

ϕnu
r
n + (r − 1)

∫
Ω

unϕ
r
n ≤

∫
Ω

Fun ,

which implies, dropping some positive terms, that

α

∫
Ω

|∇un|2 ≤
∫

Ω

Fun .

From this inequality, and since m > N
2
> 2N

N+2
, it is well known that one can prove there

exists a constant C > 0 such that

(4.3) ‖un‖W 1,2
0 (Ω)

≤ C ‖F‖
Lm(Ω)

,

so that (recalling (4.2)), one also has

(4.4) ‖ϕn‖W 1,2
0 (Ω)

≤ C ‖F‖
Lm(Ω)

.
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As for the estimate in L∞(Ω) of (4.1), we choose Gk(un) = (un − k)+ as test function
in the first equation to obtain, after using (1.2),

α

∫
Ω

|∇Gk(un)|2 + r

∫
Ω

ϕnu
r−1
n Gk(un) =

∫
Ω

F Gk(un) +

∫
Ω

Tn(ϕrn)Gk(un)

≤
∫

Ω

F Gk(un) +

∫
Ω

ϕrnGk(un)

=

∫
Ω

F Gk(un) +

∫
Ω

ϕn ϕ
r−1
n Gk(un)

≤
∫

Ω

F Gk(un) +

∫
Ω

ϕn u
r−1
n Gk(un) ,

where in the last passage we have used that ϕn ≤ un thanks to Theorem 3.1. Thus, we
have that

(4.5) α

∫
Ω

|∇Gk(un)|2 ≤ α

∫
Ω

|∇Gk(un)|2 + (r − 1)

∫
Ω

ϕn u
r−1
n Gk(un) ≤

∫
Ω

F Gk(un) .

Using this inequality, Stampacchia proved in [12] that there exists a constant C > 0
such that

‖un‖L∞(Ω)
≤ C ‖F‖

Lm(Ω)
.

From this estimate, and since ϕn ≤ un by Theorem 3.1, we also have that

‖ϕn‖L∞(Ω)
≤ C ‖F‖

Lm(Ω)
,

as desired. �

As a consequence of this result, one can prove Theorem 1.1 in the case r ≥ 2 and
m > N

2
.

Proof of Theorem 1.1, case r ≥ 2 and m > N
2
. Thanks to the estimate (4.1), if n is

large enough one has that Tn(urn) = urn and Tn(ϕrn) = ϕrn. Therefore, for such n,

one has that u
def
= un and ϕ

def
= ϕn are solutions of the equations in (1.1), and both

belong to W 1,2
0 (Ω) ∩ L∞(Ω). The fact that ϕ ≤ u follows from (3.1). �

Up to now, we have no results if 1 < r < 2. The next proof fills the gap.

Proof of Theorem 1.1, case 1 < r < 2 and m > N
2
. We go back to the approximating

solutions un and ϕn of (2.1):

(4.6)

{
0 ≤ un ∈ W 1,2

0 (Ω) ∩ L∞(Ω) : −div(M(x)∇un) + r ϕn u
r−1
n = F + Tn(ϕrn) ,

0 ≤ ϕn ∈ W 1,2
0 (Ω) ∩ L∞(Ω) : −div(M(x)∇ϕn) + r un ϕ

r−1
n = Tn(urn) .

Repeating the same steps of the proof of Theorem 4.1 we arrive (without using that
ϕn ≤ un) to (4.3) and (4.4): that is, both un and ϕn are bounded in W 1,2

0 (Ω). Therefore,
there exist u and ϕ, their weak limits in W 1,2

0 (Ω) up to subsequences. Since r < 2 < 2∗,
this means (by Rellich theorem) that, always up to subsequences,

urn strongly converges to ur in L1(Ω), ϕrn strongly converges to ϕr in L1(Ω),

and similar convergences hold for both ϕn u
r−1
n and un ϕ

r−1
n . Thus, it is possible to pass

to the limit in the weak formulations of (4.6) to find that u and ϕ belong to W 1,2
0 (Ω),
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and are such that∫
Ω

M(x)∇u · ∇w + r

∫
Ω

ϕur−1w =

∫
Ω

F w +

∫
Ω

ϕr w , ∀w ∈ W 1,2
0 (Ω) ∩ L∞(Ω) ,

and ∫
Ω

M(x)∇ϕ · ∇w + r

∫
Ω

uϕr−1w =

∫
Ω

ur w , ∀w ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

Subtracting the second equation from the first, and choosing w = T1((ϕ− u)+) as test
function (which is an admissible choice since it is in W 1,2

0 (Ω)∩L∞(Ω)), we obtain, after
using (1.2),

α

∫
Ω

|∇T1((ϕ− u)+)|2 + r

∫
Ω

uϕr−1 T1((ϕ− u)+)− r
∫

Ω

ϕur−1 T1((ϕ− u)+)

≤
∫

Ω

ur T1((ϕ− u)+)−
∫

Ω

ϕr T1((ϕ− u)+)−
∫

Ω

F T1((ϕ− u)+) ,

which can be rewritten as

(4.7)
α

∫
Ω

|∇T1((ϕ− u)+)|2 +

∫
Ω

[ϕr + r uϕr−1 − r ϕ ur−1 − ur]T1((ϕ− u)+)

≤ −
∫

Ω

F T1((ϕ− u)+) ≤ 0 ,

where the last inequality is due to the fact that both F and T1((ϕ− u)+) are positive
functions. Let us define the function

G(ϕ, u) = ϕr + r uϕr−1 − r ϕ ur−1 − ur ,
which we will only consider on the set where ϕ ≥ u. Since Q(t) = tr is convex being
r > 1, we have, for every s and t in R,

Q(t) ≥ Q(s) +Q′(s) (t− s) ,
so that

ϕr ≥ ur + r ur−1 (ϕ− u) .

Therefore,

G(ϕ, u) =ϕr + r uϕr−1 − r ϕ ur−1 − ur

≥ur + r ur−1 (ϕ− u) + r uϕr−1 − r ϕ ur−1 − ur

= r uϕr−1 − r ur = r u (ϕr−1 − ur−1) ≥ 0 ,

where ϕ ≥ u ≥ 0, since t 7→ tr−1 is increasing. Thus, from (4.7) we have that

α

∫
Ω

|∇T1((ϕ− u)+)|2 ≤ α

∫
Ω

|∇T1((ϕ− u)+)|2 +

∫
Ω

G(ϕ, u)T1((ϕ− u)+) ≤ 0 ,

which implies that ϕ ≤ u.
Once we have that ϕ ≤ u, it follows that both u and ϕ belong to L∞(Ω). Indeed, if

w ≥ 0 is a function in W 1,2
0 (Ω) ∩ L∞(Ω), we have∫

Ω

M(x)∇u · ∇w + r

∫
Ω

ϕur−1w =

∫
Ω

F w +

∫
Ω

ϕr w ≤
∫

Ω

F w +

∫
Ω

ϕur−1w ,
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so that∫
Ω

M(x)∇u · ∇w + (r − 1)

∫
Ω

ϕur−1w ≤
∫

Ω

F w , ∀w ≥ 0 , w ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

Since u, ϕ and w are positive, one thus has that∫
Ω

M(x)∇u · ∇w ≤
∫

Ω

F w , ∀w ≥ 0 , w ∈ W 1,2
0 (Ω) ∩ L∞(Ω) .

Recalling that u is in W 1,2
0 (Ω), and F is in Lm(Ω), with m > N

2
> 2N

N+2
, we have by

density that ∫
Ω

M(x)∇u · ∇w ≤
∫

Ω

F w , ∀w ≥ 0 , w ∈ W 1,2
0 (Ω) .

Choosing w = Gk(u) = (u− k)+ we can then proceed as in [12] to prove that u belongs
to L∞(Ω), and then that ϕ belongs to L∞(Ω) as well since ϕ ≤ u. This concludes the
proof. �

5. Proof of Theorem 1.1 if 1 < m < N
2

In this section we are going to prove Theorem 1.1 if f belongs to Lm(Ω), with 1 <
m < N

2
. Our first result yields a priori estimates on the solutions u and ϕ given by

Theorem 1.1 for L∞(Ω) data, depending on the norm of f in Lm(Ω). To obtain such
estimates, will use some techniques used in [11] in a similar framework.

Theorem 5.1. Let r > 1, let F ≥ 0 be a function in L∞(Ω), and let m > 1. Then, if
u and ϕ are the solutions of (1.1) given by Theorem 1.1, the following holds:

a) if 1 < m < N
2
, then there exists a constant C > 0 such that

(5.1) ‖u‖r
Lrm(Ω)

+ ‖ϕ‖r
Lrm(Ω)

≤ C ‖F‖
Lm(Ω)

.

b) if r+1
r
≤ m < N

2
, then there exists a constant C > 0 such that

(5.2) ‖u‖2

W 1,2
0 (Ω)

+ ‖ϕ‖2

W 1,2
0 (Ω)

≤ C ‖F‖
r+1
r

Lm(Ω)
;

c) if 1 < m < r+1
r
, then there exists a constant C > 0 such that

(5.3) ‖u‖q
W 1,q

0 (Ω)
+ ‖ϕ‖q

W 1,q
0 (Ω)

≤ C ‖F‖m
Lm(Ω)

, with q =
2rm

r + 1
.

Proof. Let γ > 0, let ε > 0, and choose v = [(u + ε)γ − εγ] as test function in the first
equation of (1.1). We obtain

(5.4)
γ

∫
Ω

M(x)∇u · ∇u (u+ ε)γ−1 + r

∫
Ω

ϕur−1[(u+ ε)γ − εγ]

=

∫
Ω

F [(u+ ε)γ − εγ] +

∫
Ω

ϕr[(u+ ε)γ − εγ] .

Recalling that ϕ ≤ u and that F ≥ 0, we have that∫
Ω

F [(u+ ε)γ − εγ] +

∫
Ω

ϕr[(u+ ε)γ − εγ] ≤
∫

Ω

F (u+ ε)γ +

∫
Ω

ϕur−1[(u+ ε)γ − εγ] ,
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so that (5.4) becomes, after using (1.2),

(5.5)

α γ

∫
Ω

|∇u|2(u+ ε)γ−1 + (r − 1)

∫
Ω

ϕr(u+ ε)γ

≤ α γ

∫
Ω

|∇u|2(u+ ε)γ−1 + (r − 1)

∫
Ω

ϕur−1(u+ ε)γ

≤
∫

Ω

F (u+ ε)γ + (r − 1)εγ
∫

Ω

ϕur−1 .

Choosing ϕ (u+ε)γ−1 as test function in the second equation yields (always using (1.2))
that

α

∫
Ω

|∇ϕ|2(u+ε)γ−1+r

∫
Ω

uϕr(u+ε)γ−1 ≤
∫

Ω

ϕur(u+ε)γ−1+C

∫
Ω

|∇ϕ||∇u|(u+ε)γ−2ϕ .

We now have∫
Ω

ϕur(u+ ε)γ−1 =

∫
Ω

ϕ
ur

u+ ε
(u+ ε)γ ≤

∫
Ω

ϕur−1(u+ ε)γ ,

and∫
Ω

|∇ϕ||∇u|(u+ ε)γ−2ϕ ≤
∫

Ω

|∇ϕ||∇u|(u+ ε)γ−1 ϕ

u+ ε
≤
∫

Ω

|∇ϕ||∇u|(u+ ε)γ−1 ,

since ϕ ≤ u ≤ u+ ε. Thus, by Young inequality, and dropping a positive term, we have

α

∫
Ω

|∇ϕ|2(u+ ε)γ−1≤C
∫

Ω

F (u+ ε)γ + C εγ
∫

Ω

ϕur−1

+
α

2

∫
Ω

|∇ϕ|2(u+ ε)γ−1 + C

∫
Ω

|∇u|2(u+ ε)γ−1

≤C
∫

Ω

F (u+ ε)γ + C εγ
∫

Ω

ϕur−1 +
α

2

∫
Ω

|∇ϕ|2(u+ ε)γ−1 .

Therefore,

(5.6)
α

2

∫
Ω

|∇ϕ|2(u+ ε)γ−1 ≤ C

∫
Ω

F (u+ ε)γ + C εγ
∫

Ω

ϕur−1 .

We follow now the ideas of [11], and use (u + ε)γ − εγ as test function in the second
equation of (1.1) to obtain, after reversing the identities∫

Ω

ur[(u+ ε)γ − εγ] = r

∫
Ω

uϕr−1[(u+ ε)γ − εγ] + γ

∫
Ω

M(x)∇ϕ · ∇u (u+ ε)γ−1 .

By Young inequality with exponents r and r′ and by (5.5) we have

r

∫
Ω

uϕr−1[(u+ ε)γ − εγ]≤ 1

2

∫
Ω

ur[(u+ ε)γ − εγ] + C

∫
Ω

ϕr[(u+ ε)γ − εγ] ,

≤ 1

2

∫
Ω

ur[(u+ ε)γ − εγ] + C

∫
Ω

F (u+ ε)γ ,

and, by (5.5) and (5.6),∣∣∣∣γ ∫
Ω

M(x)∇ϕ · ∇u (u+ ε)γ−1

∣∣∣∣ ≤ C

∫
Ω

F (u+ ε)γ + C εγ
∫

Ω

ϕur−1 .
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Therefore, we have

1

2

∫
Ω

ur[(u+ ε)γ − εγ] ≤ C

∫
Ω

F (u+ ε)γ + C εγ
∫

Ω

ϕur−1 .

Letting ε tend to zero, and using both Fatou lemma and Lebesgue theorem (note that
every function in the above inequality is positive and bounded), we arrive at∫

Ω

ur+γ ≤ C

∫
Ω

F uγ ≤ C ‖F‖
Lm(Ω)

(∫
Ω

uγ m
′
) 1

m′

.

Choosing γ so that r+γ = γ m′ yields γ = r(m−1), which is positive by the assumptions
on r and m. Therefore, we have (using that ϕ ≤ u) that∫

Ω

ϕrm ≤
∫

Ω

urm ≤ C ‖F‖m
Lm(Ω)

,

which is (5.1). Letting ε tend to zero in (5.5) and (5.6), we obtain (dropping some
positive terms), recalling the value of γ, and using (5.1)

(5.7)

∫
Ω

|∇u|2 ur(m−1)−1 +

∫
Ω

|∇ϕ|2 ur(m−1)−1 ≤ C

∫
Ω

F ur(m−1) ≤ C ‖F‖m
Lm(Ω)

.

Suppose now that r(m−1) < 1, which is true if and only if 1 < m < r+1
r

, and let q < 2.
We then have, following [6],∫

Ω

|∇u|q =

∫
Ω

|∇u|q

u
q
2

(1−r(m−1))
u

q
2

(1−r(m−1)) ≤
(∫

Ω

|∇u|q

u1−r(m−1)

) q
2
(∫

Ω

u
q

2−q
(1−r(m−1))

) 2−q
2

.

Let q be such that

q

2− q
(1− r(m− 1)) = rm ⇐⇒ q =

2rm

r + 1
,

and note that q < 2 since m < r+1
r

. Thus, by (5.1) and by (5.7),∫
Ω

|∇u|q ≤ C ‖F‖
mq
2

Lm(Ω)

(∫
Ω

urm
) 2−q

q

≤ C ‖F‖
mq
2

Lm(Ω)
‖F‖

m (2−q)
2

Lm(Ω)
= C ‖F‖m

Lm(Ω)
,

which is half of (5.3). The other half, the estimate on ϕ in W 1,q
0 (Ω) for the same value

of q, can be obtained in the same way starting from (5.7).
Suppose now that r(m− 1) = 1, that is m = r+1

r
. In this case, (5.7) becomes

(5.8)

∫
Ω

|∇u|2 +

∫
Ω

|∇ϕ|2 ≤ C ‖F‖
r+1
r

L
r+1
r (Ω)

,

which is (5.2) in this case. If r(m−1) > 1, that is if m > r+1
r

, then by Hölder inequality
one has

‖F‖
L

r+1
r (Ω)

≤ C ‖F‖
Lm(Ω)

.

Thus from (5.8), and the above inequality, it follows that∫
Ω

|∇u|2 +

∫
Ω

|∇ϕ|2 ≤ C ‖F‖
r+1
r

Lm(Ω)
,

which is (5.2) in this case. This concludes the proof. �

Once the a priori estimates have been obtained, we can prove the existence result of
Theorem 1.1 in the case 1 < m < N

2
, reasoning by approximation.
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Proof of Theorem 1.1, case 1 < m < N
2
. Given f as in the statement, let Fn = Tn(f).

Then Fn belongs to L∞(Ω), and strongly converges to f in Lm(Ω). Let un and ϕn
be the solutions of (1.1) with data Fn, whose existence is guaranteed by Theorem 1.1.
Thanks to the results of Theorem 5.1, the sequences un and ϕn are bounded in Lrm(Ω),
and in either W 1,2

0 (Ω) (if m ≥ r+1
r

) or in W 1,q
0 (Ω), with q = 2rm

r+1
(if 1 < m < r+1

r
).

On the other hand, since both {urn} and {ϕrn} are bounded in Lm(Ω), as is {Fn},
classical elliptic regularity results (see for example [12], [5], [6]) yield that both {un}
and {ϕn} are bounded in W 1,2

0 (Ω) if m ≥ 2N
N+2

, and in W 1,m∗

0 (Ω) if 1 < m < 2N
N+2

; as for

Lebesgue summability, both the sequences {un} and {ϕn} are bounded in Lm
∗∗

(Ω).
Therefore, comparing the exponents, we have the following results depending on the

values of r:

• if 1 < r ≤ N
N−2

, then {un} and {ϕn} are bounded in W 1,2
0 (Ω) ∩ Lm∗∗(Ω) if

m ≥ 2N
N+2

, and in W 1,m∗

0 (Ω) if 1 < m < 2N
N+2

;

• if N
N−2

< r < N+2
N−2

, then {un} and {ϕn} are bounded in W 1,2
0 (Ω) ∩ Lm∗∗(Ω) if

m ≥ 2N
N+2

, in W 1,m∗

0 (Ω) if N
2
r−1
r
≤ m < 2N

N+2
, and in W 1,q

0 (Ω) ∩ Lrm(Ω), with

q = 2rm
r+1

, if 1 < m < N
2
r−1
r

;

• if r ≥ N+2
N−2

, then {un} and {ϕn} are bounded in W 1,2
0 (Ω) ∩ Lrm(Ω) if m ≥ r+1

r
,

and in W 1,q
0 (Ω) ∩ Lrm(Ω), with q = 2rm

r+1
, if 1 < m < r+1

r
.

Thus, up to subsequences, they weakly converge respectively to u and ϕ in the
various Sobolev and Lebesgue spaces where they are bounded, and almost everyhwere.
Thanks to these convergences, and to the fact that m > 1, the sequence urn is strongly
convergent in L1(Ω) to ur; since it dominates the sequences ϕrn, un ϕ

r−1
n and ϕn u

r−1
n

(being ϕn ≤ un), we have strong convergence in L1(Ω) of ϕrn, un ϕ
r−1
n and ϕn u

r−1
n to

their respective almost everyhwere limits. All these results allow to pass to the limit in
the weak formulation of the equations for un and ϕn, that is:∫

Ω

M(x)∇un · ∇w + r

∫
Ω

ϕn u
r−1
n w =

∫
Ω

Fnw +

∫
Ω

ϕrnw , ∀w ∈ C1
0(Ω) ,

and ∫
Ω

M(x)∇ϕn · ∇w + r

∫
Ω

un ϕ
r−1
n w =

∫
Ω

urnw , ∀w ∈ C1
0(Ω) ,

to have that∫
Ω

M(x)∇u · ∇w + r

∫
Ω

ϕur−1w =

∫
Ω

f w +

∫
Ω

ϕrw , ∀w ∈ C1
0(Ω) ,

and ∫
Ω

M(x)∇ϕ · ∇w + r

∫
Ω

uϕr−1w =

∫
Ω

urw , ∀w ∈ C1
0(Ω) ,

as desired. �

Remark 5.2. If f belongs to Lm(Ω), with m such that u and ϕ are in W 1,2
0 (Ω), then

we can choose test functions w in W 1,2
0 (Ω) ∩ L∞(Ω) in the formulations for u and ϕ,

which thus become weak solutions (instead of “only” distributional ones).

6. Proof of Theorem 1.1 if m = 1

In this section we prove Theorem 1.1 in the case m = 1. We begin, as usual, with
some a priori estimates on the solutions u and ϕ given by Theorem 1.1 with L∞(Ω)
data.
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Theorem 6.1. Let r > 1 and F ≥ 0 be a function in L∞(Ω). Then, if u and ϕ are the
solutions of (1.1) given by Theorem 1.1, the following holds:

‖u‖
W 1,q

0 (Ω)
+ ‖ϕ‖

W 1,q
0 (Ω)

+ ‖u‖
Lr(Ω)

+ ‖ϕ‖
Lr(Ω)

≤ C ‖F‖
L1(Ω)

, ∀q < 2r

r + 1
.

Proof. We choose Tk(u) as test function in the first equation; after using (1.2), and that
ϕ ≤ u, we obtain

α

∫
Ω

|∇Tk(u)|2+(r−1)

∫
Ω

ϕrTk(u) ≤ α

∫
Ω

|∇Tk(u)|2+(r−1)

∫
Ω

ϕur−1Tk(u) ≤
∫

Ω

F Tk(u).

Dividing by k, we have that

(6.1)
1

k

∫
Ω

|∇Tk(u)|2 +

∫
Ω

ϕr
Tk(u)

k
≤
∫

Ω

F
Tk(u)

k
.

Choosing Tk(ϕ) as test function in the second equation yields, after dividing by k, using
(1.2) and the fact that ϕ ≤ u, that

α

k

∫
Ω

|∇Tk(ϕ)|2 + r

∫
Ω

uϕr−1Tk(ϕ)

k
≤
∫

Ω

ur
Tk(ϕ)

k
≤
∫

Ω

ur
Tk(u)

k
.

Therefore,

(6.2)
α

k

∫
Ω

|∇Tk(ϕ)|2 ≤
∫

Ω

ur
Tk(u)

k
.

We now choose Tk(u) as test function in the second equation of system (1.1); after
reversing the identity, and dividing by k, we have∫

Ω

ur
Tk(u)

k
= r

∫
Ω

uϕr−1Tk(u)

k
+

1

k

∫
Ω

M(x)∇ϕ · ∇Tk(u) .

We now remark that the last integral is on the set {0 ≤ u ≤ k}; since ϕ ≤ u, on this
set we have ϕ ≤ k too, so that ∇ϕ = ∇Tk(ϕ). Therefore, using Young inequality twice,
we have∫

Ω

ur
Tk(u)

k
≤ 1

4

∫
Ω

ur
Tk(u)

k
+ C

∫
Ω

ϕr
Tk(u)

k
+

α

4k

∫
Ω

|∇Tk(ϕ)|2 +
C

k

∫
Ω

|∇Tk(u)|2 .

Using both (6.1) and (6.2) we thus have

(6.3)
1

2

∫
Ω

ur
Tk(u)

k
≤ C

∫
Ω

F
Tk(u)

k
.

Letting k tend to zero, we obtain

(6.4)

∫
Ω

ur ≤ C ‖F‖
L1(Ω)

,

which then implies (since ϕ ≤ u) that

(6.5)

∫
Ω

ϕr ≤ C ‖F‖
L1(Ω)

.

Now we follow [3]: recalling (6.1) and dropping a positive term, we have that

(6.6)

∫
Ω

|∇Tk(u)|2 ≤ C k ‖F‖
L1(Ω)

.

Let λ > 0. Then

{|∇u| ≥ λ} = {|∇u| ≥ λ , u ≤ k} ∪ {|∇u| ≥ λ , u ≥ k} .
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Therefore,

|{|∇u| ≥ λ}| ≤ |{|∇u| ≥ λ , u ≤ k}|+ |{|∇u| ≥ λ , u ≥ k}|

≤ |{|∇u| ≥ λ , u ≤ k}|+ |{u ≥ k}| .

Thus, from (6.4) and (6.6) it follows that

|{|∇u| ≥ λ}| ≤ C ‖F‖
L1(Ω)

k

λ2
+ C ‖F‖

L1(Ω)

1

kr
≤ C ‖F‖

L1(Ω)

(
k

λ2
+

1

kr

)
.

Choosing kr+1 = λ2, we obtain

|{|∇u| ≥ λ}| ≤ C ‖F‖
L1(Ω)

1

λ
2r
r+1

,

which yields an estimate on ∇u in the Marcinkiewicz space M
2r
r+1 (Ω); thanks to the

well known inclusions between Marcinkiewicz and Lebesgue spaces, we thus have

‖u‖q
W 1,q

0 (Ω)
≤ C ‖F‖

L1(Ω)
, ∀q < 2r

r + 1
,

as desired. The analogous estimate for ϕ is proved in the same way, using that ϕ ≤
u. �

We can now conclude the proof of Theorem 1.1.

Proof of Theorem 1.1, case m = 1. Let f ≥ 0 be as in the statement, and let Fn =
Tn(f). Then, if un and ϕn are the solutions of (1.1) with data Fn, from Theorem 6.1 it
follows that

(6.7) ‖un‖q
W 1,q

0 (Ω)
+ ‖ϕn‖q

W 1,q
0 (Ω)

≤ C ‖f‖
L1(Ω)

,

∫
Ω

urn +

∫
Ω

ϕrn ≤ C ‖f‖
L1(Ω)

,

for every q < 2r
r+1

.

On the other hand, since both {urn} and {ϕrn} are bounded in L1(Ω), as it is {Fn},
classical elliptic results (see for example [5], [6]) yield that both {un} and {ϕn} are
bounded in W 1,q

0 (Ω), for every q < N
N−1

. Therefore, comparing the exponents, we have
the following, depending on the values of r:

• if 1 < r < N
N−2

, then both {un} and {ϕn} are bounded in W 1,q
0 (Ω) ∩ Ls(Ω), for

every q < N
N−1

, and every s < N
N−2

;

• if r ≥ N
N−2

, then both {un} and {ϕn} are bounded in W 1,q
0 (Ω)∩Lr(Ω), for every

q < 2r
r+1

.

Thus, there exist u and ϕ, such that un and ϕn weakly converge, up to subsequences,
to u and ϕ respectively, in the Sobolev and Lebesgue spaces as above, as well as almost
everyhwere in Ω.

From the boundedness of un in Lr(Ω) it follows that

lim
h→+∞

|{un ≥ h}| = 0 , uniformly in n in N,

which then, since f belongs to L1(Ω), implies that

(6.8) lim
h→+∞

∫
{un≥h}

f = 0 , uniformly in n in N.
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Going back to (6.3) written for un we have, since Fn ≤ f , and since Tk(un) = k where
un ≥ k,

(6.9)

∫
{un≥k}

urn ≤
∫

Ω

urn
Tk(un)

k
≤ C

∫
Ω

Fn
Tk(un)

k
≤ C

∫
Ω

f
Tk(un)

k

Let now 0 < δ < 1; then∫
Ω

f
Tk(un)

k
=

∫
{un≤k δ}

f
Tk(un)

k
+

∫
{un≥k δ}

f
Tk(un)

k
≤ δ

∫
Ω

f +

∫
{un≥k δ}

f .

Using (6.8), we have that

lim
k→+∞

∫
{un≥k δ}

f = 0 , uniformly in n in N,

so that

lim sup
k→+∞

∫
Ω

f
Tk(un)

k
≤ δ

∫
Ω

f , uniformly in n in N.

Since δ is arbitrary,

lim
k→+∞

∫
Ω

f
Tk(un)

k
= 0 , uniformly in n in N.

Using this fact, let ε > 0, and let k be such that∫
Ω

f
Tk(un)

k
≤ ε , ∀n ∈ N .

Therefore, thanks to (6.9), and if E is a measurable subset of Ω with |E| < k−r ε, we
have∫
E

urn =

∫
E∩{un≤k}

urn +

∫
E∩{un≥k}

urn ≤ kr|E|+ C

∫
Ω

f
Tk(un)

k
≤ (C + 1)ε , ∀n ∈ N .

From the previous inequality, it follows that the sequence {urn} is uniformly equi-
integrable; since it is almost everywhere convergent to ur, by Vitali theorem we have
that

urn strongly converges to ur in L1(Ω).

Since ϕn ≤ un, we have that urn dominates the sequences ϕrn, un ϕ
r−1
n and ϕn u

r−1
n ,

which are thus strongly convergent in L1(Ω) to their respective limits by the generalized
Lebesgue theorem. These convergences, together with the weak convergence of un to u
in W 1,q

0 (Ω), for every q < 2r
r+1

, and of ϕn to ϕ in the same spaces, allow to pass to the
limit in the distributional formulation of the two equations of (1.1):∫

Ω

M(x)∇un · ∇w + r

∫
Ω

ϕn u
r−1
n w =

∫
Ω

Fnw +

∫
Ω

ϕrnw , ∀w ∈ C1
0(Ω) ,

and ∫
Ω

M(x)∇ϕn · ∇w + r

∫
Ω

un ϕ
r−1
n w =

∫
Ω

urnw , ∀w ∈ C1
0(Ω) ,

to have that∫
Ω

M(x)∇u · ∇w + r

∫
Ω

ϕur−1w =

∫
Ω

f w +

∫
Ω

ϕrw , ∀w ∈ C1
0(Ω) ,

and ∫
Ω

M(x)∇ϕ · ∇w + r

∫
Ω

uϕr−1w =

∫
Ω

urw , ∀w ∈ C1
0(Ω) ,
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as desired. �

7. Measure data

In this section we briefly deal with existence and nonexistence of solutions for system
(1.1) if the datum f is a bounded positive Radon measure, instead of a function in
L1(Ω).

We begin with the existence result, which holds if r is “small”.

Theorem 7.1. Let 1 < r < N
N−2

, and let µ ≥ 0 be a bounded Radon measure on
Ω. Then there exist distributional solutions u and ϕ of (1.1) with datum f = µ.
Furthermore, u and ϕ belong to W 1,q

0 (Ω), for every q < N
N−1

.

Proof. As for the case of L1(Ω) data, we reason by approximation; let {fn} be a sequence
of positive L∞(Ω) functions which converges to µ in the weak∗ topology of measures,
and let un and ϕn be the solutions of (1.1) with data fn. Then, as in the proof of
Theorem 1.1 in the case m = 1, we have that

‖un‖q
W 1,q

0 (Ω)
+ ‖ϕn‖q

W 1,q
0 (Ω)

≤ C ‖fn‖
L1(Ω)

≤ C ,

since the sequence {fn} is bounded in L1(Ω). Therefore, up to subsequences, un and
ϕn converge to some functions u and ϕ weakly in W 1,q

0 (Ω), for every q < N
N−1

, and,

thanks to Rellich theorem, strongly in Ls(Ω) for every s < N
N−2

. In particular, un and

ϕn strongly converge to u and ϕ in Lr(Ω), so that urn, ϕrn, ϕn u
r−1
n and un ϕ

r−1
n strongly

converge in L1(Ω) to their respective limits.
These convergences are enough in order to pass to the limit in the distributional

formulation of the two equations in (1.1) with data fn, so that u and ϕ are distributional
solutions of (1.1) with datum µ, as desired. �

We prove now that if r is “large”, and the datum µ is the Dirac delta concentrated
at a point x0 in Ω, then existence of solutions for (1.1) fails.

Theorem 7.2. Let r > N
N−2

, let x0 in Ω, and let {fn} be a sequence of positive L∞(Ω)
functions which converges to the Dirac delta concentrated at x0, that is,

lim
n→+∞

∫
Ω

fn ψ = ψ(x0) , ∀ψ ∈ C0(Ω) .

Let un and ϕn be the solutions of (1.1) with data fn. Then un and ϕn weakly converge to
zero in W 1,q

0 (Ω), for every q < 2r
r+1

, and there is no solution obtained by approximation
of (1.1) if the datum is the Dirac delta concentrated at x0.

Proof. Recalling (6.7), we have that {un} and {ϕn} are bounded in W 1,q
0 (Ω), for every

q < 2r
r+1

, so that, up to subsequences, they weakly converge to u and ϕ in the same

spaces. We recall that {x0} has zero W 1,p
0 -capacity for every 1 < p < N (see e.g. [10]);

since 2r
r−1

< N by the assumptions on r, {x0} has zero s-capacity, for some s > 2r
r−1

.
Therefore (see [10]), for every δ > 0 there exists a function ψδ in C∞0 (Ω), such that

(7.1)

∫
Ω

|∇ψδ|s ≤ δ , 0 ≤ ψδ ≤ 1 , ψδ(x0) = 1 .
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We now choose T1(un) (1−ψδ) as test function in the first equation of (1.1). We obtain∫
Ω

M(x)∇un · ∇T1(un) (1− ψδ)−
∫

Ω

M(x)∇un · ∇ψδ T1(un)

+r

∫
Ω

ϕn u
r−1
n T1(un) (1− ψδ) =

∫
Ω

fn T1(un) (1− ψδ) +

∫
Ω

ϕrn T1(un) (1− ψδ) .

Recalling that ϕn ≤ un, we have that∫
Ω

ϕrn T1(un) (1− ψδ) ≤
∫

Ω

ϕn u
r−1
n T1(un) (1− ψδ) ,

so that we have, also using (1.2) and that un and ϕn are positive,

(7.2)
α

∫
Ω

|∇T1(un)|2(1− ψδ) + (r − 1)

∫
Ω

ϕn u
r−1
n T1(un) (1− ψδ)

≤
∫

Ω

fn (1− ψδ) +

∫
Ω

M(x)∇un · ∇ψδ T1(un) .

We now recall that T1(un) is bounded in W 1,2
0 (Ω) (see (6.6)). Therefore, up to subse-

quences, it weakly converges in W 1,2
0 (Ω) to T1(u). Passing to the limit in (7.2) as n

tends to infinity, and dropping a positive term, we therefore obtain

α

∫
Ω

|∇T1(u)|2(1− ψδ) ≤ (1− ψδ(x0)) +

∫
Ω

M(x)∇u · ∇ψδ T1(u) .

Recalling that ψδ(x0) = 1, we thus have that

α

∫
Ω

|∇T1(u)|2(1− ψδ) ≤
∫

Ω

M(x)∇u · ∇ψδ T1(u) .

Now we let δ tend to zero. Since |∇u| belongs to Lq(Ω) for every q < 2r
r+1

, and |∇ψδ|
tends to zero in Ls(Ω) for some s > 2r

r−1
=
(

2r
r+1

)′
, we have that

lim
δ→0+

∫
Ω

M(x)∇u · ∇ψδ T1(u) = 0 ,

which implies that

0 ≤ α

∫
Ω

|∇T1(u)|2 ≤ lim
δ→0+

α

∫
Ω

|∇T1(u)|2(1− ψδ) ≤ 0 .

Thus T1(u) = 0, which implies that u = 0. We have therefore proved that un tends to
zero. Since 0 ≤ ϕn ≤ un, we have that ϕn tends to zero too. Clearly, the functions
u = 0 and ϕ = 0 solve problem (1.1) with datum f = 0, and do not solve problem (1.1)
with datum the Dirac delta concentrated at x0: such a problem does not therefore have
a solution obtained by approximation. �

Remark 7.3. As a consequence of the fact that un and ϕn converge to zero, one also
has

lim
n→+∞

∫
Ω

[r ϕn u
r−1
n − ϕrn]ψ = ψ(x0) , ∀ψ ∈ C∞0 (Ω) .

In other words, the Dirac delta disappears as n tends to infinity, since it is “hidden” in
the lower order terms.



A SEMILINEAR SYSTEM OF SCHRÖDINGER-MAXWELL EQUATIONS 17

8. Saddle points of J

If f belongs to Lm(Ω), with m ≥ 2N
N+2

, then there exist solutions u and ϕ of (1.1),

with both u and ϕ in W 1,2
0 (Ω)∩Lrm(Ω). We are going to show that, in this case, (u, ϕ)

is a saddle point of the functional J defined in the introduction, in the sense that

J(u, ψ) ≤ J(u, ϕ) ≤ J(v, ϕ) ,

for every v and ψ in W 1,2
0 (Ω) such that

(8.1)

∫
Ω

ϕ |v|r and

∫
Ω

u |ψ|r are finite.

Note that since ur, ϕr, ϕur−1 and uϕr−1 belong to Lm(Ω), the assumption m ≥ 2N
N+2

implies that∫
Ω

ur ψ ,

∫
Ω

ϕur−1 v ,

∫
Ω

uϕr−1 ψ and

∫
Ω

ϕr v are finite for every v, ψ in W 1,2
0 (Ω),

so that both J(u, ψ) and J(v, ϕ) are well defined if (8.1) holds.
Recall that u is a solution of

−div(M(x)∇u) + r ϕ ur−1 = f + ϕr .

Choosing u− v as test function, with v in W 1,2
0 (Ω) such that (8.1) holds, we have that

(8.2)

∫
Ω

M(x)∇u · ∇(u− v) + r

∫
Ω

ϕur−1 (u− v) =

∫
Ω

f (u− v) +

∫
Ω

ϕr (u− v) .

We observe now that we have, since M is uniformly elliptic,

(8.3)

∫
Ω

M(x)∇u · ∇(u− v) =
1

2

∫
Ω

M(x)∇u · ∇u− 1

2

∫
Ω

M(x)∇v · ∇v

+
1

2

∫
Ω

M(x)∇(u− v) · ∇(u− v)

≥ 1

2

∫
Ω

M(x)∇u · ∇u− 1

2

∫
Ω

M(x)∇v · ∇v .

On the other hand, since t 7→ |t|r is convex, and u ≥ 0, we have

|v|r ≥ |u|r + r |u|r−2 u (v − u) = ur + r ur−1 (v − u) ,

which is equivalent to

r ur−1 (u− v) ≥ ur − |v|r .
Therefore, since ϕ is positive, we have

(8.4) r

∫
Ω

ϕur−1 (u− v) ≥
∫

Ω

ϕur −
∫

Ω

ϕ |v|r ,

with the last integral being finite thanks to (8.1). Recalling (8.2), we thus have from
(8.3) and (8.4) that

1

2

∫
Ω

M(x)∇u · ∇u+

∫
Ω

ϕur −
∫

Ω

uϕr −
∫

Ω

f u

≤ 1

2

∫
Ω

M(x)∇v · ∇v +

∫
Ω

ϕ |v|r −
∫

Ω

v ϕr −
∫

Ω

f v ,
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for every v in W 1,2
0 (Ω) such that (8.1) holds. Thus, J(u, ϕ) ≤ J(v, ϕ) for every v in

W 1,2
0 (Ω) such that (8.1) holds. A similar technique yields that J(u, ψ) ≤ J(u, ϕ) for

every ψ in W 1,2
0 (Ω) such that (8.1) holds, as desired.
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