
Explaining Link Prediction Systems based on Knowledge Graph
Embeddings

Andrea Rossi
andrea.rossi3@uniroma3.it

Roma Tre University
Rome, Italy

Donatella Firmani
donatella.firmani@uniroma1.it

Sapienza University
Rome, Italy

Paolo Merialdo
paolo.merialdo@uniroma3.it

Roma Tre University
Rome, Italy

Tommaso Teofili
tommaso.teofili@uniroma3.it

Roma Tre University
Rome, Italy

ABSTRACT
Link Prediction (LP) aims at tackling Knowledge Graph incomplete-
ness by inferring new, missing facts from the already known ones.
The rise of novel Machine Learning techniques has led researchers
to develop LP models that represent Knowledge Graph elements
as vectors in an embedding space. These models can outperform
traditional approaches and they can be employed in multiple down-
stream tasks; nonetheless, they tend to be opaque, and are mostly
regarded as black boxes. Their lack of interpretability limits our
understanding of their inner mechanisms, and undermines the
trust that users can place in them. In this paper, we propose the
novel Kelpie explainability framework. Kelpie can be applied to
any embedding-based LP models independently from their archi-
tecture, and it explains predictions by identifying the combinations
of training facts that have enabled them. Kelpie can extract two
complementary types of explanations, that we dub necessary and
sufficient. We describe in detail both the structure and the imple-
mentation details of Kelpie, and thoroughly analyze its performance
through extensive experiments. Our results show that Kelpie sig-
nificantly outperforms baselines across almost all scenarios.

CCS CONCEPTS
•Computingmethodologies→Machine learning; • Informa-
tion systems;

KEYWORDS
Knowledge Graphs; Machine Learning; XAI; Link Prediction
ACM Reference Format:
Andrea Rossi, Donatella Firmani, PaoloMerialdo, and Tommaso Teofili. 2022.
Explaining Link Prediction Systems based onKnowledgeGraph Embeddings.
In Proceedings of the 2022 International Conference on Management of Data
(SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3514221.3517887

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3517887

1 INTRODUCTION
Knowledge Graphs (KGs) are structured representations of real-
world information where nodes embodying entities are linked by
directed edges denoted by labels conveying semantic relations form-
ing triples called facts. In time, several KGs have achieved web-scale
size, e.g., Freebase [7], DBPedia [4], Yago [50], and, in industry, the
Google KG [48]. Nonetheless, all KGs are plagued by incomplete-
ness, as they only hold a small fraction of the information they
should encompass [2, 58]. Link Prediction (LP) tackles this issue
by analyzing the already known facts to infer the missing ones;
for instance, knowing facts ⟨Barack_Obama, born_in, Honolulu⟩
and ⟨Honolulu, located_in, USA⟩, one may deduce ⟨Barack_Obama,
nationality, USA⟩ (assuming it was unknown in the KG).

Most LP systems map KG elements to low-dimensional vectors,
dubbed KG embeddings, that are automatically learned applying
Machine Learning (ML) techniques to leverage the known facts in
the KG. Since the seminal work by Bordes et al. [9] embedding-
based LP has rapidly become a sparkling topic, with dozens of new
models proposed every year (see the works by Nguyen [37] and
Wang et al. [56], for recent surveys). The most effective models
relying on embeddings have been shown to outperform traditional
rule-based counterparts onmost research datasets [43], thus gaining
even further traction. These systems have already been successfully
applied to numerous downstream tasks, such as fact checking [21]
and recommendation [61]. Approaches related to LP have also
influenced other linking problems in the Data Management field:
in Entity Matching, whose goal is identifying which entries in a
data store refer to the same concepts [14, 28, 36], word embeddings
have been recently coupled with entity embeddings with promising
results [26, 35]. Moreover, embedding-based LPmodels have proved
effective in Entity Alignment, finding pairs of entities from different
KGs that refer to the same notion [53]. Given the progress witnessed
so far, this trend is likely to grow even stronger in the future.

Like most ML systems, embedding-based LP models are not
directly interpretable, and despite the growing body of literature
on novel LP approaches, so far not much research has been devoted
to explaining their outcomes. Shedding light on the behaviour and
predictions of opaque AI systems is the purpose of eXplainable
AI (XAI) [34]: with the widespread adoption of non-transparent
ML-based models in data management, explaining their predictions
has become an urgent, yet often very challenging, task [20].

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2062

https://doi.org/10.1145/3514221.3517887
https://doi.org/10.1145/3514221.3517887

In the case of LP, identifying which training facts have been
most influential to a prediction amounts to revealing which pieces
of evidence the model is leveraging: this, in turn, enables the users
to assess whether the model can be trusted or not. For instance, in
the previous example ⟨Barack_Obama, nationality, USA⟩, obtaining
an explanation that matches human intuition, e.g., ⟨Barack_Obama,
born_in, Honolulu⟩, would increase our trust in the model; on the
contrary, an obscure explanation like ⟨Barack_Obama, handedness,
left-handed⟩ would reveal that the model is probably influenced by
spurious correlations.

This kind of interpretability is not just useful in KG completion,
where we need to ensure the reliability of our sources: in several
domains of application of LP research it may even be an inherent
requirement. For example, as reported by Bonner et al. [8], LP sys-
tems have been recently used in the biomedical field with promising
results. Tasks such as drug discovery and repurposing can be suc-
cessfully modeled as the prediction of missing links between drugs
and diseases [32]; LP models have been shown to correctly predict
therapeutical relations between various gene proteins and Rheuma-
toid Arthritis [38]. In these scenarios, as highlighted by Gaudelet et
al. [16], the capability to explain predictions is strongly desired, but
seldom provided by the current LP models. As yet another example,
it has been recently highlighted by Pezekshpour et al. [40] that LP
explainability frameworks can support the identification of biases
and even errors in the original KGs. In this regard, we report in our
experimental section an example of bias revealed by explanations.

In this paper, we propose a full-fledged framework for explaining
embedding-based link predictions, that we name Kelpie (Knowledge
graph Embeddings for Link Prediction: Interpretable Explanations).
The Kelpie framework can be applied to any LP model based on
embeddings, independently of their architecture and components.
Given a prediction, Kelpie explains it by computing the subset of
training facts enabling the model to return it. In this regard, we
identify two complementary approaches: the explanation can be
seen as either the set of facts in absence of which the model would
not have been capable to yield that prediction; or as the set of
facts that, if featured by any entity, would lead the model to yield
that prediction. We dub these two settings necessary and sufficient
scenarios, and we design Kelpie to support both of them.

Following the taxonomy by Guidotti et al. on XAI methods [17],
Kelpie belongs to the category of local Black Box Explanation,
also called local post-hoc interpretability methods. In other words,
Kelpie explanations address specific outcomes of a trained model
rather than its global behaviour.
Contributions Our main contributions are the following:
• We provide a formal definition of explanation for the LP task, and

introduce the concepts of necessary and sufficient explanations
in this context.

• We introduce the Kelpie framework, which is specifically de-
signed to extract both sufficient and necessary explanations, and
which can support any embedding-based LP model.
• We accompany our framework with a full fledged implementa-

tion suited for the vast majority of LP systems in literature.
• We report extensive experiments assessing the effectiveness of

Kelpie on multiple models and datasets, and compare its results
to those obtained by pre-existing techniques.

Our code, datasets, trained models, and all the resources used in
our work are publicly available in our GitHub repository. 1

Paper Outline Section 2 provides an overview of how embedding-
based models tackle the LP task, and formulates the concept of
explanations for this setting. Section 3 discusses related work. Sec-
tion 4 describes the Kelpie framework, both in its architecture and in
its implementation. Section 5 reports the experimental evaluation,
discussing the obtained outcomes also in comparison to pre-existing
methods in literature. Section 6 provides concluding remarks.

2 PROBLEM OVERVIEW
This section defines key preliminary concepts that we refer to in our
work, and introduces the problem of explaining Link Prediction.

2.1 Link Prediction in Knowledge Graphs
We define a Knowledge Graph (KG) as a labeled directed graph
𝐾𝐺 = (E,R,G): E is a set of nodes representing entities; R is a set
of labels representing relations; and G ⊆ E ×R ×E is a set of edges
representing facts that link entities via relations. Each fact is thus a
triple ⟨h, r, t⟩ where h is the head, r is the relation, and t is the tail.

Link Prediction (LP) leverages the known facts in a graph to infer
the missing ones. The currently most popular approach to LP is by
far to use ML techniques to learn KG embeddings, i.e., vectorized
representations of entities and relations. Embeddings embody the
semantics of the original KG elements, and can thus be used to
predict new links in the graph. In the following, we will denote KG
elements in italics and the corresponding embeddings in bold.

Embedding-based LP models typically define a scoring function
𝜙 to estimate the plausibility of facts based on the embeddings of
their elements. In training, models learn embeddings that optimize
the scores of the known facts: ideally, they should generalize and
deem unseen true facts as highly plausible as well. In the following,
we report formulations where higher 𝜙 values convey better plausi-
bility; symmetric formulations can be derived for models that work
in the opposite way. In addition to entity and relation embeddings,
models may learn shared parameters not directly linked to any KG
element (e.g., the weights of neural layers). Once the training is over,
predictions are performed by identifying which entities, if added
to incomplete triples as heads or tails, yield the best scores. A tail
prediction ⟨ℎ, 𝑟, 𝑡⟩ is the process that finds 𝑡 as the best scoring tail
(i.e., the most plausible answer) for the incomplete triple ⟨ℎ, 𝑟, ?⟩:

𝑡 = argmax
𝑒∈E

𝜙 (ℎ, 𝑟, 𝑒). (1)

Head predictions can be defined analogously. For the sake of sim-
plicity, in the following we mostly refer to tail predictions; all our
methods and algorithms can be applied to head predictions as well.

Research on LP is typically run on datasets sampled from real-
world KGs; in each dataset the set of facts G is further split into
a training set G𝑡𝑟𝑎𝑖𝑛 , a validation set G𝑣𝑎𝑙𝑖𝑑 , and a test set G𝑡𝑒𝑠𝑡 .
Evaluation is performed by running head and tail prediction on
each fact in G𝑡𝑒𝑠𝑡 : for each prediction the entity actually featured
in the test fact, that we dub target entity, is ranked against all the
other entities in E. The equation for the tail rank of any fact is thus:

𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘 (ℎ, 𝑟, 𝑡) = |{𝑒 ∈ E|𝜙 (ℎ, 𝑟, 𝑒) >= 𝜙 (ℎ, 𝑟, 𝑡)}| (2)
1https://github.com/AndRossi/Kelpie

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2063

https://github.com/AndRossi/Kelpie

Head ranks are computed analogously. Ideally, the target entity
should obtain the best plausibility, so its rank should be 1.

In a prediction, multiple entities may be "correct" answers, i.e.,
multiple entities, if used to answer the prediction, may result in a
fact in G. This leads to two possible settings:
• raw setting: correct answers outscoring the target entity are still

deemed wrong, so they are treated as any other entity;
• filtered setting: correct answers outscoring the target entity are

not seen as mistakes and do not contribute to its rank.
Filtered metrics are generally preferred in literature [9]; in our work
we always use filtered metrics.

LP models are usually evaluated by aggregating the head and
tail ranks obtained on G𝑡𝑒𝑠𝑡 into global metrics:
• Hits@K (H@K): it is the fraction of ranks 𝑇 with value ≤ 𝑘 :

𝐻@𝐾 =
|{𝑡 ∈ 𝑇 : 𝑡 ≤ 𝑘}|

|𝑇 | . (3)

Kadlec et al. [23] have recently suggested to focus on 𝐻@1, as it
better highlights the differences among models.

• Mean Reciprocal Rank (MRR): it corresponds to the average of
the inverse of all the obtained ranks 𝑇 :

𝑀𝑅𝑅 =
1
|𝑃 |

∑
𝑡 ∈𝑇

1
𝑇
. (4)

Both metrics are always between 0 and 1, and the higher their value,
the better the result they convey.

2.2 Explaining Link Predictions
Given a tail prediction ⟨ℎ, 𝑟, 𝑡⟩, a Kelpie explanation consists intu-
itively in the smallest set of training facts featuring ℎ that have en-
abled us to predict the tail 𝑡 . For instance, when explaining why the
top ranking tail for ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, ?⟩ is𝑈𝑆𝐴, Kelpie
searches for the smallest set of 𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎 facts allowing the
model to predict 𝑈𝑆𝐴. Analogously, to explain a head prediction
⟨ℎ, 𝑟, 𝑡⟩ we search for the most relevant combination of 𝑡 facts.
Under this broad definition we define the following two scenarios:
Necessary Explanations. Given a tail prediction ⟨ℎ, 𝑟 , 𝑡⟩ we de-
fine a necessary explanation as the smallest set of training facts
featuring ℎ that, if removed from G𝑡𝑟𝑎𝑖𝑛 , lead the model to change
the top ranking prediction for ⟨ℎ, 𝑟, ?⟩ to any entity 𝑒 ≠ 𝑡 . In other
words, a necessary explanation is the smallest set of facts featuring
ℎ that made possible for the model to pick the correct tail 𝑡 in the
first place. Analogous explanations can be extracted for head.
Sufficient Explanations. Given a tail prediction ⟨ℎ, 𝑟, 𝑡⟩ and
a set 𝐶 of random entities for which the model does not predict
⟨𝑐, 𝑟, 𝑡⟩, 𝑐 ∈ 𝐶 , we define a sufficient explanation as the smallest
set of training facts featuring ℎ that, when added to any 𝑐 ∈ 𝐶 ,
lead the model to switch the top ranking tail for ⟨𝑐, 𝑟, ?⟩ to 𝑡 . In
other words, a sufficient explanation contains the ℎ training facts
that, if added to any 𝑐 ∈ 𝐶 by replacing ℎ with 𝑐 , lead the model to
switch its tail prediction for 𝑐 to the same tail 𝑡 predicted for ℎ. The
formulation for head predictions is analogous.We call the prediction
switch undergone by entities 𝑐 ∈ 𝐶 a conversion. For example, when
explaining the tail prediction ⟨Barack_Obama, nationality,USA⟩, we
identify the Barack_Obama training facts that, if transferred to other
entities, make the model predict them as American. For example,

we may find that adding the fact ⟨Xi_Jinping, president_of, USA⟩ to
G𝑡𝑟𝑎𝑖𝑛 is enough to change the predicted nationality of Xi_Jinping
to USA, accomplishing the conversion. Despite having a global
scope in regard to the entities 𝑐 to convert, sufficient explanations
are still a local approach: they only take into account training facts
featuring ℎ and thus only identify which parts of ℎ enable the
prediction to explain.

As observed by Watson, Gultchin et al. [57], necessity and suffi-
ciency are the building blocks of any successful explanation. Neces-
sary and sufficient explanations are complementary to each other:
given a source entity, a relation and the predicted target entity:
• necessary explanations provide a deeper insight on the source

entity with respect to that prediction: they investigate which,
among the training facts of the source entity, lead to the predic-
tion of the target entity;

• sufficient explanations provide a deeper insight on the prediction
with respect to that source entity: they investigate how the same
prediction can be replicated across the entire dataset using the
facts of the source entity.
Kelpie can successfully extract both necessary and sufficient

explanations. The type of explanation to choose depends on the
user’s goal: necessary explanations can find why a specific entity
has been predicted in a certain way, whereas sufficient explanations
embody rules that imply that prediction, describing the behaviour
of themodel on a broader scale. Both scenarios can also be leveraged
to explain wrong predictions: necessary explanations can identify
which training facts of the wrongly predicted entities have misled
the model; sufficient explanations can isolate which facts those
entities may have lacked, i.e., which facts, if transferred to them
from other entities, can convert them to the correct prediction.

We indicate with 𝑋 the generic candidate explanation and with
𝑋 ∗ the explanation we identify and return. When discussing the
necessary scenario we denote𝑋 as𝑋𝑛 and𝑋 ∗ as𝑋 ∗𝑛 ; in the sufficient
scenario we denote them as 𝑋𝑠 and 𝑋 ∗𝑠 respectively.

3 RELATEDWORKS
Among post-hoc explanation methods, the works most related to
ours form two main categories: general purpose and LP-specific.

3.1 General Purpose Frameworks
General Purpose XAI frameworks propose techniques that can be
applied in a variety of domains; among the most popular systems
in this family, we discuss LIME [41], SHAP [30] and ANCHOR [42].

The LIME framework [41] perturbs the input features of the pre-
dicted sample, and checks the effects on the prediction confidence.
It then uses Lasso regression [51] to obtain an interpretable local ap-
proximation of the original model, with a relevance weight for each
feature. Identifying which features of a sample have led to a certain
prediction corresponds to our concept of necessary explanation.

Recently, LIME seems to have been outclassed by frameworks
that formulate the relevance of input features in terms of Shapley
values [46]. As observed by Watson, Gultchin et al. [57] these meth-
ods, such as SHAP [30], have gained popularity due to their solid
theoretical backing derived from Game Theory. We provide a de-
tailed comparison between SHAP and our approach in Section 4.3.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2064

The ANCHOR framework [42] explains a prediction by identify-
ing anchors, i.e., sets of input features that, if transferred to other
samples, “lock” the model to yield the same prediction. Anchors are
closely related to the sufficient explanations we use in our work: if
a sample displays the features of the anchor, the model will return
the same prediction, regardless of what the other features look like.

The aforementioned frameworks identify saliency explanations,
i.e., the most relevant features from the input samples [3]. They
have been successfully adapted to many vertical scenarios: in the
case of Entity Matching (EM), for example, Mojito [11] works as
a direct extension of LIME, adding a new type of perturbation in
which an attribute of one of the two entries to compare is copied
into the other entry. Analogously, Landmark [5] extends the LIME-
like post-hoc approach with the idea of introducing perturbations to
just one entry at a time, keeping the other as a term for comparison.

Unfortunately, those frameworks cannot be similarly adapted to
the LP task. Saliency explanations require the input features to be
human-interpretable, otherwise feature-based explanations will not
be understandable by humans. While this requirement is met when
dealing with images, sentences, or even pairs of entries as in EM,
it does not apply to LP, where the input samples are just triplets
of embeddings representing the head, the relation, and the tail of
the fact to score. In our scenario, saliency-based approaches would
just identify which components in those vectors are most relevant
to the outcome to explain, which is not truly informative from a
human point of view. Kelpie, on the contrary, is specifically tailored
for embedding-based LP: when explaining a prediction, rather than
focusing on the input features, it identifies which training facts
have been most responsible for that prediction in the first place.

In this regard Kelpie is more akin to the framework by Koh and
Liang [25], which identifies the most influential training samples
for the prediction to explain. Their approach is not based on local
perturbations, but rather on Influence Functions, a classic technique
from robust statistics [19]. Unfortunately, this makes the algorithm
computationally very expensive; despite the authors’ efforts of op-
timization, Pezeshkpour et al. [40] have observed that computation
times degrade rapidly when the number of entities in the dataset
exceeds even a few hundreds. Ultimately, this makes the framework
impractical for explaining LP on KGs.

3.2 Link Prediction Specific Tools
Despite the extensive body of literature regarding LP models for
KGs, so far only a few works have dealt with their explainability.

Themost recent approaches in this regard follow a data poisoning
technique: given a prediction ⟨ℎ, 𝑟, 𝑡⟩, their purpose is to identify
the one fact that, if added or removed to the training set, worsens
𝜙 (ℎ, 𝑟, 𝑡) the most (thus "poisoning" the prediction).

The Criage framework [40] achieves this goal by approximating
the variation in 𝜙 (ℎ, 𝑟, 𝑡) with Influence Functions, similarly to the
above mentioned work by Koh and Liang [25]. Criage successfully
overcomes the computational issues that plagued its predecessors
by applying first order Taylor approximations. Unfortunately, it
is unclear how this formulation can be consistently adapted to
the scoring functions of non-multiplicative models; another major
limitation is that it can only take into account facts whose tail is
either the head ℎ or the tail 𝑡 of the fact to explain.

The framework by Zhang et al. [62] performs a similar task
by following an embedding perturbation approach. They slightly
shift the embedding of ℎ towards − 𝜕𝜙 (ℎ, 𝑟, 𝑡)

𝜕ℎ
, i.e., in the direction

that would worsen 𝜙 (ℎ, 𝑟, 𝑡); they then identify the training facts
featuring ℎ whose score worsens the most when using the shifted
version of ℎ. These facts agree with ⟨ℎ, 𝑟, 𝑡⟩ on how to improve or
worsen 𝜙 , so they are assumed to work in its favour during training.
A symmetric approach can be used to identify the fake adversarial
samples that, if added to the dataset, worsen 𝜙 (ℎ, 𝑟, 𝑡) the most.

While still in the spectrum of interpretability techniques, data
poisoning frameworks do not aim at explaining predictions, but
rather at investigating the robustness of models to single-fact adver-
sarial modifications. Nonetheless, the way in which they identify
the one most influential sample to remove from the dataset can be
seen as analogous to our concept of necessary explanations.

When it comes to full-fledged explainability tools, though, LP
models can rely on such diverse architectures that researching
model-independent techniques is a very challenging task. Authors
have thus tried to circumvent the issue in a number of creative ways.
For instance, Zhang et al. [64] extract explanations using the dataset
topology rather than the model behaviour: to explain a prediction
⟨ℎ, 𝑟, 𝑡⟩ they identify the most relevant paths connecting ℎ to 𝑡 ,
i.e., the paths that most frequently connect other entities linked
by the same relation 𝑟 . In their approach the model is only used
to filter out relations and entities with embeddings too different
from the ones of the fact to explain. Other authors have developed
inherently interpretable LP models based on embeddings, such as
XTransE [63] or the recent model by Bhowmik and De Melo [6]. We
also acknowledge the existence of tools that only support models
based on a specific architecture, such as GNNExplainer [60], that is
only suitable for Graph Neural Networks systems.

4 THE KELPIE FRAMEWORK
The Kelpie framework can be applied by design to LP models based
on embeddings. As already mentioned, given any prediction Kelpie
can identify the smallest set of training facts enabling it, both in
the sufficient and in the necessary scenario.

We find that extracting combinations of facts longer than 1 is
often vital for effective explanations. For instance, when extract-
ing necessary explanations for the tail prediction ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎,
𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦,𝑈𝑆𝐴⟩, removing only the one most influential training
fact featuring 𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, e.g., ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡_𝑜 𝑓 ,
𝑈𝑆𝐴⟩, will likely not affect the prediction, because it is still enabled
by other facts, e.g., ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, 𝑝𝑎𝑟𝑡_𝑜 𝑓 , 109𝑡ℎ_𝑈𝑆_𝐶𝑜𝑛𝑔𝑟𝑒𝑠𝑠⟩.
Models can yield predictions by leveraging multiple pieces of evi-
dence: a correct explanation should encompass them all.

The high-level architecture of the Kelpie framework, as depicted
in Figure 1, is based on the interaction of three main modules: a
Pre-Filter, a Relevance Engine and an Explanation Builder. In the
following we describe them in the context of explaining a tail pre-
diction ⟨ℎ, 𝑟, 𝑡⟩; head predictions can be handled analogously.

When explaining a tail prediction ⟨ℎ, 𝑟, 𝑡⟩, the Pre-Filter analyzes
the set of all training facts featuring ℎ: we call it Gℎ

𝑡𝑟𝑎𝑖𝑛
. The Pre-

Filter aims at reducing the search space for the following steps,
so it discards the least promising facts from Gℎ

𝑡𝑟𝑎𝑖𝑛
; we denote the

resulting set as Fℎ
𝑡𝑟𝑎𝑖𝑛

. We discuss this component in Section 4.1.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2065

Relevance Engine

Pre-filter Explanation Builder
𝒢!"#$%& ℱ!"#$%&

𝑋% or 𝑋'𝜉%(! or 𝜉'("

𝑋%∗ or	𝑋!∗

Figure 1: High-level architecture of the Kelpie framework,
depicting the interactions to explain a tail prediction ⟨h, r, t⟩.

The Explanation Builder combines the Pre-Filtered facts to build
candidate explanations 𝑋 ; it then explores the resulting space
searching for the smallest combination impactful enough on the pre-
diction to explain, i.e., the correct explanation 𝑋 ∗. The Explanation
Builder analyzes increasingly long combinations with an ad-hoc
algorithm described in Section 4.3. Each analyzed 𝑋 is submitted to
the Relevance Engine, which estimates its effect on the prediction to
explain. The process goes on until either a candidate explanation 𝑋
is accepted as 𝑋 ∗, or a size limit is exceeded. If multiple same-sized
𝑋 satisfy the acceptance criteria, they all adhere to the definitions
in Section 2, so we just return the first one we have encountered.

The Relevance Engine can estimate how adding or removing
training facts from an entity would affect a specific prediction.
We call the estimated effect relevance; in our work we provide
distinct formulations for necessary relevance, denoted with b𝑛𝑋𝑛

,
and sufficient relevance, denoted with b𝑠𝑋𝑠

. Our implementation
of Relevance Engine relies on a ML technique that we dub post-
training; we describe it in detail in Section 4.2.

4.1 Pre-Filter
Given a tail prediction ⟨ℎ, 𝑟, 𝑡⟩ the Pre-Filter has the role to preemp-
tively discard the least promising facts in Gℎ

𝑡𝑟𝑎𝑖𝑛
to limit the space of

candidate explanations to combinations of presumably meaningful
ℎ facts. It has been observed that in all LP datasets the distribution
of facts per entity is extremely skewed [45]; Pre-Filtering prevents
combinatorial explosion when the degree of ℎ, i.e., the number of
its training facts, is very large (e.g, from hundreds to thousands).

To achieve this goal the Pre-Filter computes, for each fact in
Gℎ
𝑡𝑟𝑎𝑖𝑛

, a promisingness value 𝛾 . Our implementation measures
promisingness based on the graph topology. In a KG, topologically
close entities bear a stronger semantic relationship: intuitively,
a training fact connecting ℎ to an entity 𝑞 close to 𝑡 has a higher
chance to be meaningful with respect to ⟨ℎ, 𝑟, 𝑡⟩. Therefore, for any
⟨ℎ, 𝑠, 𝑞⟩ (or ⟨𝑞, 𝑠, ℎ⟩) in Gℎ

𝑡𝑟𝑎𝑖𝑛
we compute 𝛾 ⟨ℎ, 𝑠, 𝑞⟩ (or 𝛾 ⟨𝑞, 𝑠, ℎ⟩)

as the length of the shortest non-oriented path connecting 𝑞 to 𝑡 ;
lower values convey better promisingness and thus higher prior-
ity in the filtering selection. We provide an example in Figure 2
explaining tail prediction ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝑈𝑆𝐴⟩. We
analyze all 𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎 training facts:
• ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡_𝑜 𝑓 , 𝑈𝑆𝐴⟩ has promisingness 0 (the

best possible value), because it features the tail entity USA itself.
• ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, 𝑏𝑜𝑟𝑛_𝑖𝑛, 𝐻𝑜𝑛𝑜𝑙𝑢𝑙𝑢⟩ has promisingness 1, be-

cause there is a fact linking directly 𝐻𝑜𝑛𝑜𝑙𝑢𝑙𝑢 and𝑈𝑆𝐴.
• ⟨𝐵𝑖𝑙𝑙_𝐺𝑎𝑡𝑒𝑠, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑, 𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎⟩ has promisingness

2, as the shortest path from 𝐵𝑖𝑙𝑙_𝐺𝑎𝑡𝑒𝑠 to 𝑈𝑆𝐴 has length 2:
[⟨Bill_Gates, born_in, Seattle⟩, ⟨Seattle, located_in, USA⟩].

Barack Obama

Honolulu

supported

Bill Gates

Seattle

born_inborn_in

located_in

president_of

nationality

located_in

Figure 2: An example of a small KG; the tail prediction
⟨Barack_Obama, nationality, USA⟩ is highlighted in red.

We identify the shortest path from any entity 𝑞 to 𝑡 by operat-
ing Breadth-First Searches (BFS) on the training graph using 𝑞 as
starting node. We do not take into account fact orientation, and
we ignore any paths including ⟨ℎ, 𝑟, 𝑡⟩ as we want to measure the
closeness of 𝑞 independently of the prediction to explain.

Another possibility to compute promisingness, inspired by the
works of Shiralkar, Ciampiglia et al. [10, 47], would be to prioritize
the facts ⟨ℎ, 𝑟, 𝑞⟩ in which𝑞 has a similar type to 𝑡 . We have verified
that this option yields results similar to our original formulation;
we report our experiments in this regard in our online repository.

Independently of how promisingness is measured, we build the
set Fℎ

𝑡𝑟𝑎𝑖𝑛
of the most promising facts applying a simple top-k

policy on the promisingness values. The value of 𝑘 can be tweaked
depending on the desired trade-off between the computation time
and the certainty to keep all the meaningful facts. In our end-to-
end experiments we use 𝑘 = 20, that we have verified to be a fine
trade-off; we report tests varying the value of 𝑘 in our repository.

4.2 Relevance Engine
The Relevance Engine has the responsibility to estimate how the
addition or removal of certain training facts would affect a specific
prediction if the model was retrained from scratch; we call this
estimate relevance. Considering as usual a generic tail prediction
⟨ℎ, 𝑟, 𝑡⟩, the role of the Relevance Engine is to receive from the Ex-
planation Builder candidate explanations 𝑋 composed of facts from
Fℎ
𝑡𝑟𝑎𝑖𝑛

and to return the corresponding relevances. The necessary
and sufficient scenarios require different formulations of relevance:
• in the necessary scenario, relevance b𝑛𝑋𝑛

quantifies the effect of
removing from ℎ the facts in 𝑋𝑛 ;

• in the sufficient scenario, relevance b𝑠𝑋𝑠
measures the effect of

adding the facts in 𝑋𝑠 to a set 𝐶 of entities 𝑐 to convert.
Ideally, relevance could be computed by retraining the whole

model from scratch after adding or removing the facts in 𝑋 . In
practice, this is clearly unfeasible. We thus design a more scalable
methodology that we call post-training. Post-training consists in
adding a new entity to an already trained model; the corresponding
embedding is trained on a set of purposefully chosen facts while
keeping all the other embeddings and parameters frozen. For any
entity 𝑒 , running a post-training using a replica of G𝑒

𝑡𝑟𝑎𝑖𝑛
results in

an alternate variant of 𝑒 that we dub amimic. Post-training a mimic
is a lightweight process, because it optimizes only one embedding

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2066

(instead of |E + R|) on a training set comparable to G𝑒
𝑡𝑟𝑎𝑖𝑛

(instead
of the entire G𝑡𝑟𝑎𝑖𝑛 , which is always orders of magnitude larger).
We identify two types of mimics:
• A homologous mimic of 𝑒 approximates the behaviour of 𝑒 with-

out introducing variations;
• A non-homologous mimic of 𝑒 approximates the behaviour that 𝑒

would show if its training facts had been slightly different since
the beginning.
A homologous mimic is created as a new, fictitious entity 𝑒 ′ with

a set of training facts G𝑒′
𝑡𝑟𝑎𝑖𝑛

that is an exact replica of G𝑒
𝑡𝑟𝑎𝑖𝑛

. Its
embedding 𝒆′ is initialized randomly (as for any entity), and then
post-trained on G𝑒′

𝑡𝑟𝑎𝑖𝑛
. After this process is over 𝑒 ′ is expected

behave similarly to 𝑒 . This is a safe assumption because, as described
in Section 2, KG Embeddings are trained to optimize the 𝜙 scores of
the training facts mentioning them. This implies that the embedding
of any entity is only directly influenced by (i) the training samples
mentioning it, (ii) the embeddings of the neighbouring KG elements,
and (iii) any potential shared parameters trained alongside said
embeddings. Since the samples mentioning 𝑒 ′ are the same as those
mentioning 𝑒 , and since the other embeddings and parameters have
remained unchanged, we can expect 𝑒 ′ to be a good proxy for 𝑒 . We
do not expect from 𝑒 ′ an identical behaviour to 𝑒 : fluctuations may
occur, e.g., due to the inherent randomness of training steps such
as embedding initialization and random shuffle of training samples.
What we are after is just an approximation of the behaviour of 𝑒 .

A non-homologous mimic is created following a similar pipeline,
but after initializingG𝑒′

𝑡𝑟𝑎𝑖𝑛
as a replica ofG𝑒

𝑡𝑟𝑎𝑖𝑛
, a specific variation

is purposefully injected before post-training 𝑒 ′. The variation can
consist in either removing or adding a set𝑀 of facts; we denote the
mimic as 𝑒 ′−𝑀 in the former case, or 𝑒 ′+𝑀 in the latter. After the post-
training is over, the mimic should approximate the behaviour that
the original entity 𝑒 would have displayed if the injected variation
had been present since the very beginning.

We provide in Figure 3 an example of homologous and non-
homologous mimics. Given the same ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦,
𝑈𝑆𝐴⟩ example as in Section 4.1, a homologous 𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎
mimic will be featured in the same facts as the original; on the
contrary, a non-homologous mimic will display variations, such as
the removal of the link with relation 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡_𝑜 𝑓 and tail𝑈𝑆𝐴.

Post-trainingmay remind of the popular technique of fine-tuning,
as they both operate on a model after its original training is com-
plete; however, while fine-tuning updates most (or all) the param-
eters in the model, typically to adapt it to a new scenario, post-
training just extends the set of KG elements represented by the
model without modifying any of the pre-existing parameters.

Intuitively, given a prediction involving an entity 𝑒 we can es-
timate the effect of adding (or removing) to 𝑒 a set 𝑀 of facts by
comparing the outcome obtained using a non-homologous mimic
𝑒 ′−𝑀 (or 𝑒 ′+𝑀) with the outcome of the original 𝑒 . In practice, we
find it more effective to compare the result of the non-homologous
mimic with the result of a homologous mimic 𝑒 ′: this seems to erase
small fluctuations that post-training may introduce in some cases,
e.g., when 𝑒 has an exceedingly low degree, or when its embedding
had not fully converged in the original training. More specifically,
given a tail prediction ⟨ℎ, 𝑟, 𝑡⟩ and a candidate explanation 𝑋
containing facts from Gℎ

𝑡𝑟𝑎𝑖𝑛
we compute relevance as follows.

Algorithm 1: Compute necessary relevance b𝑛𝑋𝑛

Input: A tail prediction ⟨ℎ, 𝑟, 𝑡 ⟩ to explain;
a candidate necessary explanation 𝑋𝑛

Output: The corresponding necessary relevance b𝑛𝑋𝑛

1 h′ ← 𝑝𝑜𝑠𝑡𝑇𝑟𝑎𝑖𝑛 (Gℎ
𝑡𝑟𝑎𝑖𝑛

)
2 h′−Xn ← 𝑝𝑜𝑠𝑡𝑇𝑟𝑎𝑖𝑛 (Gℎ

𝑡𝑟𝑎𝑖𝑛
\𝑋𝑛)

3 𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘𝑡
ℎ′ ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑇𝑎𝑖𝑙 (h′, r, t)

4 𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘𝑡
ℎ′−𝑋𝑛

← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑇𝑎𝑖𝑙 (h′−Xn , r, t)

5 b𝑛𝑋𝑛 ← 𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘𝑡
ℎ′−𝑋𝑛

− 𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘𝑡
ℎ′

6 return b𝑛𝑋𝑛

Algorithm 2: Compute sufficient relevance b𝑠𝑋𝑠

Input: A tail prediction ⟨ℎ, 𝑟, 𝑡 ⟩ to explain;
a candidate sufficient explanation 𝑋𝑠 ;
a set𝐶 of entities to convert

Output: The corresponding sufficient relevance b𝑠𝑋𝑠

1 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑠 ← []
2 for 𝑐 ∈ 𝐶 do
3 c′ ← 𝑝𝑜𝑠𝑡𝑇𝑟𝑎𝑖𝑛 (G𝑐

𝑡𝑟𝑎𝑖𝑛
)

4 c′+Xs ← 𝑝𝑜𝑠𝑡𝑇𝑟𝑎𝑖𝑛 (G𝑐
𝑡𝑟𝑎𝑖𝑛

∪𝑋𝑠)
5 𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘𝑡

𝑐′ ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑇𝑎𝑖𝑙 (c′, r, t)
6 𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘𝑡

𝑐′+𝑋𝑠

← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑇𝑎𝑖𝑙 (c′+Xs , r, t)

7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡b𝑠𝑋𝑠 ← (𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘𝑡𝑐′ − 𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘
𝑡

𝑐′+𝑋𝑠

)/(𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘𝑡
𝑐′ − 1)

8 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡b𝑠𝑋𝑠)
9 b𝑠𝑋𝑠 ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑠)

10 return b𝑠𝑋𝑠

Necessary relevance. We define the necessary relevance b𝑛𝑋𝑛
of

𝑋𝑛 as the expected tail rank deterioration caused by the removal
of the facts in 𝑋𝑛 from ℎ. We report our procedure in Algorithm 1.
We first post-train a homologous mimic ℎ′ and a non-homologous
mimic ℎ′−𝑋𝑛

(lines 1-2). We then compute the tail ranks of ⟨ℎ′, 𝑟 , 𝑡⟩
and ⟨ℎ′−𝑋𝑛

, 𝑟 , 𝑡⟩ (lines 3-4): their difference is the estimated tail rank
deterioration b𝑛𝑋𝑛

(line 5). b𝑛𝑋𝑛
is always between 0, indicating

no expected tail rank variations, and |E | − 1, indicating that the
original tail 𝑡 is expected to become the least predicted entity.
Sufficient relevance. In the sufficient scenario we first identify a
set𝐶 of random entities 𝑐 for which the tail prediction ⟨𝑐, 𝑟, 𝑡⟩ has
rank greater than 1: for any 𝑐 ∈ 𝐶 , a sufficient explanation should
convert 𝑐 , i.e., make 𝑡 become the top-ranking tail for 𝑐 . We compute
the sufficient relevance b𝑠𝑋𝑠

of any 𝑋𝑠 as shown in Algorithm 2. For
each 𝑐 ∈ 𝐶 we estimate how adding the facts of 𝑋𝑠 to 𝑐 improves
the rank of 𝑡 as a tail by: (i) post-training a homologous mimic 𝑐 ′
and a non-homologous one 𝑐 ′+𝑋𝑠

(Lines 3-4); (ii) comparing the tail
ranks of ⟨𝑐 ′ 𝑟 𝑡⟩ and ⟨𝑐 ′+𝑋𝑠

, 𝑟 , 𝑡⟩ (Lines 5-6): their difference is the
actual rank improvement associated to 𝑋𝑠 for 𝑐 . Unlike necessary
explanations, for which any rank worsening is acceptable, sufficient
explanations have a specific goal: converting all 𝑐 ∈ 𝐶 . We thus
formulate the effect of adding the 𝑋𝑠 facts to any 𝑐 ∈ 𝐶 as the ratio
of the actual rank improvement over the ideal rank improvement,
which we know to be 𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘 (𝑐 ′, 𝑟 , 𝑡) − 1 (line 7). The sufficient
relevance b𝑠𝑋𝑠

is obtained by averaging such rank improvement
ratios across all 𝑐 ∈ 𝐶 (line 9). b𝑠𝑋𝑠

is typically between 0 (if 𝑋𝑠 is
not expected to produce any effects) and 1 (if 𝑋 is expected to fully
convert any 𝑐 ∈ 𝐶); exceptionally, it can be lesser than 0 if 𝑋𝑠 is
expected to worsen ranks rather than to improve them.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2067

Barack Obama

Honolulu

supported

Bill Gates

Seattle

born_inborn_in

located_in

president_of

nationality

located_in

Homologous
Mimic

Honolulu

supported

Bill Gates

Seattle

born_inborn_in

located_in

president_of

located_in

Non-Homologous
Mimic

Honolulu

supported

Bill Gates

Seattle

born_inborn_in

located_in

president_of

located_in

nationality nationality

Figure 3: An example of homologous and non-homologous mimics.

Relying on post-training grants to our Relevance Engine some
very desirable properties. Pre-existing approaches, such as those
mentioned in Section 3, can only estimate the significance of single
facts. On the contrary, post-training successfully estimates the ef-
fects of adding or removingmultiple facts, enabling Kelpie to extract
more expressive explanations. To the best of our knowledge, our
technique is the first attempt in LP literature to effectively compute
the consequences of adding or removing multiple training facts.

The Relevance Engine is the one Kelpie module that requires
awareness over the original model, as its post-training processes
take directly into account the underlying embedding mechanism.
The other Kelpie modules, on the contrary, are completely model-
independent. Treating the model as a transparent box, incidentally,
is a trait shared by other LP-interpreting works, such as those men-
tioned in Section 3.2. We find that, in the case of Kelpie, the best
way to add support to new models is to provide model-specific im-
plementations of simple interfaces; we include a detailed technical
description in this regard in our online repository.

In describing the post-training process, we have assumed that
the original model only leverages individual facts, which is by far
the dominant approach in literature. A few recent methods can
also exploit contextual information, such as paths [18, 55], tempo-
ral details [29], or types [59]. While our current implementation
focuses on fact-based models, the formulation of Kelpie can indeed
be applied to these contextual models too: the Pre-Filter and the Ex-
planation Builder, which are model-independent, would just work
as usual, and the Relevance Engine could easily include contextual
information in its post-training processes. We further discuss the
opportunities of contextual models in Section 6.

4.3 Explanation Builder
Given the usual tail prediction ⟨ℎ, 𝑟, 𝑡⟩ to explain, the role of the
Explanation Builder is to guide the search for its explanation 𝑋 ∗.
This amounts to: (i) combining the Pre-Filtered Fℎ

𝑡𝑟𝑎𝑖𝑛
into candi-

date explanations 𝑋 ; (ii) exploring the resulting space, selecting the
𝑋 to submit to the Relevance Engine; (iii) deciding, based on the
obtained relevances, whether any 𝑋 can be accepted as 𝑋 ∗.

Since Kelpie supports combinations of facts longer than 1, the
space of candidate explanations can rapidly become overwhelming:
even Pre-Filtering the ℎ facts down to the 𝑛 most promising ones,
the number of 𝑖-sized combinations is still

(𝑛
𝑖

)
, making brute-force

approaches unfeasible. We thus model the identification of 𝑋 ∗ as
a search problem in the space 𝑆 of the candidate explanations 𝑋
sized between 1 and a maximum value 𝑖𝑚𝑎𝑥 ; in our experiments
we set 𝑖𝑚𝑎𝑥 to 4, having observed that longer explanations hardly
ever provide meaningful contributions to the process. Rather than
exploring 𝑆 as a whole, we partition it into subsets 𝑆𝑖 based on the
size 𝑖 of candidate explanations. We treat each 𝑆𝑖 as the space of a
separate search problem, that we tackle with an algorithm inspired
by Adaptive Simulated Annealing [22]. As soon as we find an 𝑋
satisfying specific acceptance criteria the search is interrupted and
we return𝑋 as𝑋 ∗. On the contrary, if evidence is found that no𝑋 in
𝑆𝑖 satisfies the acceptance criteria, we prematurely stop exploring
𝑆𝑖 and we move to 𝑆𝑖+1. If the explorations of all 𝑆𝑖 up to 𝑆𝑖𝑚𝑎𝑥

are
unsuccessful, we follow a best-effort policy and return the 𝑋 with
the highest relevance found so far. In the following we describe in
detail our acceptance criteria and visit algorithm.
Acceptance Criteria. As described in Section 4.2, the relevance
of any candidate explanation𝑋 is an estimate of how the prediction
would change when applying 𝑋 to Gℎ

𝑡𝑟𝑎𝑖𝑛
. For any analyzed 𝑋 , we

can thus use its relevance to decide whether 𝑋 can be accepted as
𝑋 ∗ or not. In practice we set relevance thresholds:
• In the sufficient scenario our ideal goal would be to achieve, for

all entities 𝑐 ∈ 𝐶 , the ideal rank improvement, corresponding to
b𝑠𝑋𝑠

= 1. In our experiments we accept room for some approxi-
mation and set the threshold b𝑠0 to 0.9, indicating an expected
tail rank improvement of 90% or greater.

• In the necessary scenario we just aim at worsening the prediction
rank by 1 or more. Hence, the threshold b𝑛0 can be tweaked
depending on the desired effect: higher values can lead more
effective explanations at the cost of longer computations. We
report in our repository a study on how varying our b𝑛0 affects
explanations; we find that b𝑛0 = 5 is usually a fine trade-off.

Visit Algorithm. As mentioned above, in the search for 𝑋 ∗ we
explore the subsets 𝑆𝑖 of the space 𝑆 separately. Within any 𝑆𝑖 ,
identifying the most relevant 𝑋 is a problem of combinatorial op-
timization, a well-known topic addressed by algorithms such as
Simulated Annealing, Tabu Search, Evolutionary methods [39], or
multi-armed bandit solutions [24] (e.g, in the ANCHOR framework).
Unfortunately, such general-purpose solutions tend to require a
large number of iterations to converge, as they are designed for
scenarios where no assumptions can be made on the composition

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2068

of the search space. This makes them impractical in our case, where
visiting a candidate explanation 𝑋 involves advanced analyses.

To overcome this issue we observe that relevant explanations
are usually combinations of facts that, when used as 1-sized expla-
nations, are individually relevant. For any 𝑋 we can thus compute
a preliminary relevance as the average of the individual relevances
of its facts. In our experiments, we have observed that preliminary
and true relevance do globally correlate: high preliminary relevance
usually implies high relevance and vice versa. We report in Figure 4
an example for the candidate sufficient explanations of a TransE
FB15k prediction; we have found analogous pattern in different
predictions and settings as well. We stress that the 𝑋 with the high-
est preliminary relevance is not necessarily the one with highest
relevance. Furthermore, a longer 𝑋 is not necessarily more relevant
than a shorter one, proving that it not enough to just combine more
facts to achieve more effective explanations. These observations,
mixed with inspiration from the Adaptive Simulated Annealing
technique [22], result in the iterative method in Algorithm 3.

We first compute the individual relevance of each fact in Fℎ
𝑡𝑟𝑎𝑖𝑛

when used as a 1-sized explanation (Lines 1-3). Before exploring any
𝑆𝑖 with 𝑖 > 1, we compute the preliminary relevance of each 𝑋 ∈ 𝑆𝑖
as the average relevance of its facts. (Lines 7-9) We then traverse 𝑆𝑖
by scanning its candidate explanations 𝑋 in descending order of
preliminary relevance; for each visited 𝑋 we have the Relevance
Engine compute its true relevance (Line 13), and we check if it
satisfies the acceptance criteria (Line 14). If it does, we stop and
return 𝑋 as 𝑋 ∗; otherwise, we need to decide whether 𝑆𝑖 is still
worth-exploring, or we should rather move to 𝑆𝑖+1.

To make this decision, we need to assess how likely it is to have
already met the most relevant 𝑋 in 𝑆𝑖 . As a simple proxy to such
likeliness we use the ratio 𝜌𝑖 between the relevance of the current
𝑋 and the highest relevance encountered so far in 𝑆𝑖 (Line 19).2
The value of 𝜌𝑖 is always in [0, 1] as long as relevances are positive;
as the iterations go on, due to the correlation between preliminary
and true relevance the current 𝑋 will tend to become less and
less relevant, inevitably making 𝜌𝑖 smaller and smaller. After a
while, it may become reasonable to stop exploring 𝑆𝑖 and move to
𝑆𝑖+1. We decide this stochastically, using 1 − 𝜌𝑖 as the probability
to interrupt the search in 𝑆𝑖 and to move to 𝑆𝑖+1 (Lines 20-21).
Probabilistic solutions are common in search algorithms due to their
flexibility [49]; in our case, we observe that among different models,
datasets, or even just different subsets 𝑆𝑖 for the same prediction,
the relevances of the visited candidate explanations may decay with
very different paces; hence other strategies, e.g., fixed thresholds
or top-𝑘 , do not work well compared to a probabilistic approach.
ComparisonWith Shapley Value Methods. The Relevance En-
gine, with its post-training technique, allows us to add or remove
from G𝑡𝑟𝑎𝑖𝑛 the facts of candidate explanations in a way similar
to how saliency-based XAI frameworks inject perturbations into
the input features of samples; the Explanation Builder guides the
exploration in the vast space of resulting candidate explanations.

As long as the Relevance Engine is employed, it is technically
possible to replace the Explanation Builder with the exploration
methods of other XAI frameworks. In this regard, we have tested

2In practice, to achieve greater robustness to outliers, in our experiments we use the
average relevance of the last 10 visited candidate explanations

Preliminary Relevance

T
ru

e
R

el
ev

an
ce

Figure 4: Preliminary vs true relevance correlation: each
point is a candidate explanation for the same prediction.

Algorithm 3: Explanation Builder algorithm for identify-
ing the smallest valid explanation 𝑋 ∗

Input: The set Fℎ
𝑡𝑟𝑎𝑖𝑛

of training samples to combine into explanations;
the Relevance Engine object 𝑒𝑛𝑔𝑖𝑛𝑒 ;
the acceptance threshold b0 ;
the explanation size limit 𝑖𝑚𝑎𝑥

Output: The smallest combination 𝑋 ∗ whose relevance exceeds b0 ;
1 𝑓 𝑎𝑐𝑡2𝑟𝑒𝑙 ← {}
2 for 𝑓 𝑎𝑐𝑡 ∈ Fℎ

𝑡𝑟𝑎𝑖𝑛
do

3 𝑓 𝑎𝑐𝑡2𝑟𝑒𝑙 [𝑓 𝑎𝑐𝑡] ← 𝑒𝑛𝑔𝑖𝑛𝑒.𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑜𝑟 ([𝑓 𝑎𝑐𝑡])
4 for 𝑖 ← 2 to 𝑖𝑚𝑎𝑥 do
5 𝑆𝑖 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (Fℎ

𝑡𝑟𝑎𝑖𝑛
, 𝑖)

6 𝑝𝑟𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑠 ← []
7 for 𝑋 ∈ 𝑆𝑖 do
8 𝑝𝑟𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 ← 𝑎𝑣𝑔 ([𝑓 𝑎𝑐𝑡2𝑟𝑒𝑙 [𝑓] for 𝑓 in 𝑋])
9 𝑝𝑟𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑠.𝑎𝑑𝑑 (𝑝𝑟𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒)

10 𝑆𝑖 ← 𝑠𝑜𝑟𝑡 (𝑆𝑖 , 𝑝𝑟𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑠)
11 𝑏𝑒𝑠𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 ← 𝑁𝑜𝑛𝑒

12 for 𝑋 ∈ 𝑆𝑖 do
13 𝑐𝑢𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 ← 𝑒𝑛𝑔𝑖𝑛𝑒.𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑜𝑟 (𝑋)
14 if 𝑐𝑢𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 > b0 then
15 return 𝑋

16 if 𝑏𝑒𝑠𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 == 𝑁𝑜𝑛𝑒 or
𝑐𝑢𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 > 𝑏𝑒𝑠𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 then

17 𝑏𝑒𝑠𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 ← 𝑐𝑢𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒

18 else
19 𝜌𝑖 ← 𝑐𝑢𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒/𝑏𝑒𝑠𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒
20 if 𝑟𝑎𝑛𝑑𝑜𝑚 (0, 1) > 𝜌𝑖 then
21 break

the SHAP framework strategy [30], appreciated for its theoreti-
cal guarantees. As mentioned in Section 3.1, SHAP approximates
Shapley Values [46] to identify the most relevant input features.

We run tests with KernelSHAP, i.e., the one model-agnostic
method introduced by the SHAP authors, using their own imple-
mentation.3 We find that, to explain the same predictions, while
our Explanation Builder only takes a few dozens or hundreds visits
in the space of candidate explanations (i.e., post-trainings), Ker-
nelSHAP always requires hundreds of thousands, making it unfea-
sible for our task; we report detailed results of these experiments
in our repository. Our results confirm the observations of recent
works raising concerns on the tractability of SHAP in specific do-
mains [12]. Our Explanation Builder, in contrast, is remarkably
efficient. This is mostly due to its preliminary relevance heuristics,
3https://github.com/slundberg/shap

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2069

Entities Relations Train
Facts

Valid
Facts

Test
Facts

FB15k 14951 1345 483142 50000 50971
FB15k-237 40943 18 141442 5000 5000
WN18 14541 237 272115 17535 20466
WN18RR 40943 11 86835 3034 3134
YAGO3-10 123182 37 1079040 5000 5000

Table 1: Statistics of the LP datasets we employ.

tailored specifically for the LP scenario, which allow us to start
the search from the facts that will most probably produce the best
explanations, and to enact effective early termination policies.

We also point out that most Shapley Values approaches assume
feature independence, which may not be always guaranteed in the
LP context. To the best of our knowledge, the work by Aas et al. [1]
is the only SHAP version supporting dependent features; unfortu-
nately, as the authors themselves report, this comes at a significant
cost in computation times, which would make it even worse in LP.

5 EXPERIMENTAL RESULTS
In this section, we describe in detail the experiments run in our
work. We first discuss our environment and general setup, and then
report the performed experiments and the corresponding results.

5.1 Experimental Setup
We provide here an overview of the computational environment of
our experiments, as well as the involved LP datasets and models.
Environment. All of our experiments, including the original train-
ings and evaluations of our models, have been run on a server with
88 CPUs Intel Core(TM) i7-3820 at 3.60GHz, 516GB RAM and 4
NVIDIA Tesla with 16GB VRAM. The operating system is Ubuntu
18.04, with CUDA Version 11.2 (Driver 460.73.01) and PyTorch 1.7.1.
Datasets. We evaluate the Kelpie framework conducting experi-
ments on the 5 best-established datasets in LP literature; we report
their main features in Table 1. FB15k andWN18 have been created
by the TransE authors [9] focusing on the most mentioned enti-
ties in the Freebase [7] and WordNet [33] KGs respectively. These
datasets have been proven to suffer from test leakage due to the
presence of inverse and equivalent relations; they are thus generally
coupled with their subsamples FB15k-237 and WN18RR, created
respectively by Toutanova and Chen [52] and by Dettmers et al. [13]
removing such relations. Finally, YAGO3-10 has been sampled by
Dettmers et al. [13] from the YAGO3 [31] KG extracting the facts
that mention entities linked by at least 10 different relations.
Models. As already mentioned, the Kelpie framework supports
any LP model based on embeddings. To showcase its flexibility we
run our experiments on three models representative for the three
different families recently identified by Rossi et al. [43] in their
taxonomy, and trained with three different Loss functions.
• TransE [9] is a pioneering geometric model that interprets re-

lations as translations in the embedding space; its simple for-
mulation cannot model correctly one-to-many and many-to-one
relations [15]. Our implementation is faithful to the original
paper, and optimized with Pairwise Ranking Loss.

FB15k WN18 FB15k-237 WN18RR YAGO3-10

H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR

TransE 0.259 0.401 0.371 0.553 0.134 0.208 0.035 0.181 0.066 0.121

ComplEx 0.826 0.857 0.944 0.950 0.270 0.365 0.440 0.484 0.499 0.575

ConvE 0.612 0.703 0.941 0.945 0.225 0.311 0.392 0.424 0.466 0.544

Table 2: LP performance of themodels we employ across all
datasets, using metrics H@1 and MRR.

• ComplEx [54] is a tensor decomposition model that learns em-
beddings in the C space. Its scoring function is a Hermitian
product, allowing ComplEx to model asymmetric relations. Our
implementation is based on the one by Lacroix et al. [27], which
has been recently shown to surpass most LP models [43]; it is
trained with a Multiclass Negative Log-Likelihood Loss.

• ConvE [13] is a deep Learning model; when computing the score
for any fact ⟨ℎ, 𝑟, 𝑡⟩ it applies convolutional layers to process the
concatenation of 𝒉 and 𝒓 ; the output is combined with 𝒕 through
dot product. Our implementation is faithful to the one by the
original authors, and trained with Binary Cross-Entropy Loss.

Table 2 reports the LP performance of each model on each dataset.4

5.2 Baselines
We compare the performance of Kelpie with two very recent sys-
tems for LP interpretation: the work by Zhang et al. [62], which
we denote as Data Poisoning (DP), and the Criage framework by
Pezeshkpour et al. [40]. The former system is not open source, so
we have re-implemented it from scratch; our implementation is
available in our code repository. For the latter, we have adapted the
code from their Github repository.5

As mentioned in Section 3 both systems perform data poisoning:
given a prediction ⟨ℎ, 𝑟, 𝑡⟩ they identify the one fact that, if removed
or added to G𝑡𝑟𝑎𝑖𝑛 , worsens 𝜙 (ℎ, 𝑟, 𝑡) the most. Our necessary
scenario is analogous to their removal node, so in this setting we
can directly compare our results to theirs. The sufficient scenario
is more problematic: these systems do not study how to improve
predictions, so, as they are, they cannot identify which facts should
be added to other entities 𝑐 to convert them. Nonetheless, we find
that in this regard their formulations and code can be adapted:
• Data Poisoning, in its removal mode, would normally shift 𝒉
to worsen𝜙 (ℎ, 𝑟, 𝑡) and search for the training fact featuring
ℎ whose score degrades the most. We adapt this formula-
tion to the sufficient scenario by applying it symmetrically:
when trying to convert prediction ⟨𝑐, 𝑟, 𝑡⟩ we shift 𝒄 in the
direction that would improve the prediction score, and verify
which fact to add to 𝑐 displays the greatest improvement.
• Criage uses Taylor-approximated Influence Functions to es-
timate the score variation caused by adding or removing a
fact; therefore we can just reprogram Criage to choose the
fact that, if added to the entity 𝑐 to convert, would improve
the score of ⟨𝑐, 𝑟, 𝑡⟩ the most, instead of worsening it.

4Details on the hyperparameters used in training are available in our online repository.
5https://github.com/pouyapez/criage/tree/master/CRIAGE

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2070

The code provided by the Criage authors only supports mul-
tiplicative models such as ConvE and ComplEx, but not TransE;
hence, in our TransE experiments we only compare Kelpie to DP.

5.3 End-to-end Experiments
In this section, we report the end-to-end effectiveness of Kelpie
necessary and sufficient explanations, for each model and dataset.

Methodology and Metrics. In both the necessary and the suffi-
cient scenario, for each model and dataset we randomly sample a set
𝑃 of 100 correct test tail predictions, we extract the corresponding
explanations and we apply them to the training set G𝑡𝑟𝑎𝑖𝑛 ; then,
following to the methodology used by Criage [40], we measure their
effectiveness as the variation of 𝐻@1 and 𝑀𝑅𝑅 on the involved
predictions, i.e., Δ𝐻@1 and Δ𝑀𝑅𝑅. More specifically:
• In the necessary scenario, after extracting explanations for all pre-

dictions in 𝑃 , we remove their facts from G𝑡𝑟𝑎𝑖𝑛 and retrain the
model. Since the original model correctly inferred those predic-
tions, their original 𝐻@1 and𝑀𝑅𝑅 are both 1.0; if the extracted
explanations are indeed necessary, on the contrary, the retrained
model should be unable to infer the predictions in 𝑃 . Therefore,
we measure the effectiveness of necessary explanations as the
worsening in the𝐻@1 and𝑀𝑅𝑅 over 𝑃 : themore negative Δ𝐻@1
and Δ𝑀𝑅𝑅, the greater the effectiveness of the explanations.

• In the sufficient scenario, for each prediction ⟨ℎ, 𝑟, 𝑡⟩ ∈ 𝑃 we draw
a set𝐶 of 10 random entities 𝑐 and extract sufficient explanations
that should convert them, i.e., that should lead the model to
predict ⟨𝑐, 𝑟, 𝑡⟩ as described in Section 4.2. We call 𝑃𝐶 the set of
these fictitious 10 × 100 = 1000 predictions ⟨𝑐, 𝑟, 𝑡⟩. Since the
original model did not infer the predictions in 𝑃𝐶 by construction,
their original 𝐻@1 is 0.0 and their𝑀𝑅𝑅 is ∼ 0.0; if the extracted
explanations are indeed sufficient, on the contrary, after adding
their facts to the corresponding entities to convert, the re-trained
model should infer the predictions in 𝑃𝐶 . Therefore, we measure
the effectiveness of sufficient explanations as the improvement in
the 𝐻@1 and𝑀𝑅𝑅 over 𝑃𝐶 : themore positive Δ𝐻@1 and Δ𝑀𝑅𝑅,
the greater the effectiveness of the extracted explanations.

An analogous methodology can be defined for head predictions.

Results. We report in Tables 3 and 4 the effectiveness of necessary
and sufficient explanations respectively, and compare the results
obtained by Kelpie with those obtained running analogous pipelines
on the baselines DP and Criage. We also include the results of a
Kelpie version limited to single-fact explanations, that we call 𝐾1.

Across all scenarios, datasets and models, Kelpie almost always
outperforms baselines, confirming the effectiveness of the proposed
framework. Our baselines, and in particular DP, still achieve com-
petitive performance especially in the necessary scenario, while
the gap from Kelpie widens in the sufficient scenario.

The 𝐾1 version of Kelpie usually obtains results comparable to
the best baselines, often exceeding them in the sufficient scenario.
Since both 𝐾1 and baselines extract explanations with only 1 fact,
this is a further confirmation that the post-training process is indeed
effective at identifying the most relevant facts to a prediction. On
the other hand, the performance achieved by 𝐾1 is almost always
worse than "full" Kelpie: this proves that supporting combinations
longer than 1 fact is key to obtain satisfactory explanations.

FB15k WN18 FB15k-237 WN18RR YAGO3-10

ΔH@1 ΔMRR ΔH@1 ΔMRR ΔH@1 ΔMRR ΔH@1 ΔMRR ΔH@1 ΔMRR

T
ra

ns
E K1 -0.360 -0.211 -0.860 -0.771 -0.380 -0.253 -0.790 -0.714 -0.640 -0.466

Kelpie -0.490 -0.321 -0.920 -0.857 -0.540 -0.356 -0.920 -0.904 -0.740 -0.580

DP -0.380 -0.258 -0.900 -0.859 -0.460 -0.303 -0.770 -0.701 -0.670 -0.533

C
om

pl
E
x

K1 -0.580 -0.466 -0.680 -0.530 -0.440 -0.244 -0.700 -0.538 -0.870 -0.718

Kelpie -0.850 -0.695 -0.910 -0.827 -0.590 -0.413 -0.980 -0.913 -0.960 -0.858

DP -0.540 -0.458 -0.800 -0.742 -0.340 -0.185 -0.750 -0.650 -0.810 -0.714

Criage -0.030 -0.020 -0.050 -0.045 -0.090 -0.050 -0.180 -0.150 -0.05 -0.030

C
on

vE

K1 -0.360 -0.228 -0.700 -0.581 -0.290 -0.191 -0.780 -0.622 -0.860 -0.735

Kelpie -0.710 -0.516 -0.930 -0.860 -0.430 -0.284 -0.980 -0.914 -0.980 -0.884

DP -0.350 -0.232 -0.790 -0.752 -0.290 -0.195 -0.850 -0.750 -0.880 -0.799

Criage -0.080 -0.056 -0.160 -0.146 -0.290 -0.196 -0.170 -0.156 -0.070 -0.042

Table 3: End to end effectiveness of necessary explanations.
More negative values correspond to higher effectiveness.

FB15k WN18 FB15k-237 WN18RR YAGO3-10

ΔH@1 ΔMRR ΔH@1 ΔMRR ΔH@1 ΔMRR ΔH@1 ΔMRR ΔH@1 ΔMRR

T
ra

ns
E

K1 +0.249 +0.445 +0.205 +0.370 +0.057 +0.088 +0.075 +0.114 +0.027 +0.082

Kelpie +0.319 +0.516 +0.259 +0.434 +0.128 +0.218 +0.117 +0.169 +0.048 +0.109

DP +0.273 +0.461 +0.183 +0.350 +0.051 +0.080 +0.082 +0.116 +0.036 +0.117

C
om

pl
E
x

K1 +0.943 +0.921 +0.953 +0.962 +0.320 +0.408 +0.834 +0.877 +0.847 +0.885

Kelpie +0.945 +0.920 +0.953 +0.962 +0.377 +0.490 +0.834 +0.877 +0.858 +0.892

DP +0.910 +0.888 +0.931 +0.940 +0.245 +0.334 +0.836 +0.878 +0.835 +0.878

Criage +0.068 +0.069 +0.105 +0.137 +0.035 +0.038 +0.110 +0.147 +0.000 +0.000

C
on

vE

K1 +0.662 +0.632 +0.893 +0.891 +0.161 +0.138 +0.857 +0.882 +0.807 +0.847

Kelpie +0.677 +0.649 +0.903 +0.900 +0.225 +0.203 +0.827 +0.856 +0.799 +0.848

DP +0.234 +0.199 +0.396 +0.412 +0.202 +0.169 +0.373 +0.419 +0.366 +0.391

Criage +0.106 +0.065 +0.164 +0.166 +0.132 +0.094 +0.150 +0.164 +0.019 +0.020

Table 4: End to end effectiveness of sufficient explanations.
More positive values correspond to higher effectiveness.

It is interesting to take a closer look at the predictions that the
baselines fail to explain and that Kelpie tackles successfully. For
instance, let us consider the YAGO3-10 tail prediction ⟨Penarth,
located_in,Wales⟩. Our baselines identify, as a necessary explana-
tion, the fact that Penarth is in South_Wales; this explanation is
ineffective, as removing this fact and retraining the model does
not affect the prediction. The reason is that the prediction is en-
abled by multiple Penarth facts, and no one among them can, by
itself, fully explain it. Kelpie, in addition to Penarth being located_in,
South_Wales, also identifies that it is in Glamorgan (a Welsh region)
and in Vale_of_Glamorgan (a Welsh county). We have verified that
the Kelpie explanation is indeed effective: removing its facts, the
original prediction is not inferred anymore. Analogously, when
extracting a sufficient explanation for the prediction that actor Ut-
pal_Dutt has Indian nationality, our baselines just yield the fact that
he is married; this explanation is not effective, because adding this
fact to other entities does not convert their nationality to Indian. On
the contrary, Kelpie extracts an effective explanation observing that

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2071

Dutt has lived in the Indian city of Kolkata, believes in Hinduism,
and has Indian and Bengali ethnicity.
𝐾1 results get closer to "full" Kelpie results (and, in one instance,

they even surpass them) on datasets where predictions are known
to mostly depend on the presence of one specific training fact. This
phenomenon is particularly prominent in WN18, that is known
to feature inverse relations [13], and in WN18RR, where test facts
seem to be only predictable if their symmetric version is present in
the training set [43]. This is also reflected in the size of the extracted
explanations, that we discuss in Section 5.4.

Interestingly, on all models, all frameworks appear less effective
on FB15k-237 than on the other datasets. We explain this by consid-
ering that many test predictions in FB15k-237 have been observed
to be affected by forms of bias that make entities artificially easier
to predict independently of their training facts [44]. This makes
those predictions harder to interpret for local post-hoc frameworks,
whose explanations are formulated in terms of those facts.

We also observe that the TransE sufficient explanations of both
Kelpie and DP seem quite ineffective on WN18RR and YAGO3-10.
This most likely depends on TransE itself having extreme difficul-
ties on these datasets (see Table 2), as if it could not generalize
any patterns to infer predictions: trying to identify patterns to
convert entities 𝑐 is bound to be unsuccessful as well. Among our
baselines, DP obtains good results on ComplEx and TransE experi-
ments, whereas its performance significantly degrades on ConvE.
We explain this by considering that ComplEx and TransE have
very simple scoring functions where 𝜕𝜙 (ℎ, 𝑟, 𝑡)

𝜕𝒉 does not depend
on the value of 𝒉.6 This embodies the best-case scenario for DP,
which estimates relevances by translating 𝒉 by a constant 𝜖 in the
direction of that derivative. ConvE, on the other hand, relies on a
more recent architecture based on multi-layered deep learning, so
the derivative of its scoring function is far less stable: in this setting
the DP approach of applying an arbitrary constant 𝜖 perturbation
can be significantly less effective.

We finally observe that the baseline Criage seems to perform
rather poorly, only achieving results comparable to the other sys-
tems with the ConvE model on FB15k-237.

To confirm the reliability of our results, we have repeated a
subset of our end-to-end experiments on 10 different samples of
100 tail predictions each, obtaining similar values to those in this
section. We report this procedure in detail in our online repository.

5.4 Explanation Lengths and Minimality
In this section we analyze the lengths of the explanations obtained
in our end-to-end experiments and verify that they are indeed the
smallest sets of facts explaining the original predictions.

We display in Table 5 the average explanation length (𝐴𝑉𝐺) and
corresponding StandardDeviation (𝑆𝑇𝐷) for eachmodel and dataset
both in the necessary and in the sufficient scenario. Under the
same model and dataset, necessary explanations are always longer
than sufficient ones. This is reasonable: for instance, as already
mentioned in Section 4, the necessary explanation for tail prediction
⟨Barack_Obama, nationality, USA⟩ would probably feature multiple
facts, e.g., ⟨Barack_Obama, president_of, USA⟩ and ⟨Barack_Obama,

6In ComplEx 𝜕𝜙 (ℎ, 𝑟, 𝑡)
𝜕𝒉 is a constant function; in TransE it is a step function, so it can

be considered constant with respect to the small perturbations applied by DP.

FB15k WN18 FB15k-237 WN18RR YAGO3-10

AVG STD AVG STD AVG STD AVG STD AVG STD

N
ec

es
sa

ry TransE 2.78 1.13 2.17 1.24 2.50 1.15 1.67 0.96 1.99 1.20

ComplEx 3.40 1.10 3.39 1.00 3.83 0.57 3.16 1.08 2.27 1.31

ConvE 3.36 0.89 2.91 1.20 2.26 1.24 2.66 1.21 1.73 0.97

Su
ffi

ci
en

t TransE 1.89 1.03 1.02 0.14 3.43 0.83 1.67 0.79 1.45 0.73

ComplEx 1.40 0.75 1.00 0.00 2.51 1.20 1.00 0.00 1.04 0.31

ConvE 1.83 1.23 1.01 0.10 3.09 1.10 1.04 0.24 1.18 0.48

Table 5: Lengths of the extracted explanations.

FB15k WN18 FB15k-237 WN18RR YAGO3-10

H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR

N
ec

es
sa

ry TransE -51.0% -55.6% -65.2% -73.1% -51.9% -57.5% -76.1% -80.0% -67.6% -70.4%

ComplEx -55.3% -63.2% -46.2% -54.9% -39.0% -49.1% -44.9% -52.9% -61.5% -71.9%

ConvE -45.1% -51.1% -59.1% -64.8% -44.2% -48.6% -46.9% -54.5% -72.5% -77.0%

Su
ffi

ci
en

t TransE -61.8% -60.6% -96.9% -96.4% -35.4% -35.8% -76.1% -75.0% -68.8% -76.3%

ComplEx -79.2% -75.0% -100.0% -99.9% -42.8% -40.1% -100.0% -99.7% -99.3% -98.2%

ConvE -67.9% -64.8% -99.5% -98.2% -38.6% -19.4% -98.7% -98.0% -89.9% -89.6%

Table 6: Loss in effectiveness when sub-sampling our end-
to-end necessary and sufficient explanations.

part_of, 109𝑡ℎ_US_Congress⟩; on the contrary, to convert any other
entity 𝑐 to have nationality USA it is probably enough to just add ⟨c,
president_of, USA⟩. We also observe that in many cases the average
explanation length is lesser than 2: this suggests that Kelpie does
indeed identify the smallest sets of facts constituting an explanation.

We conduct in this regard a thorough study on explanation mini-
mality, and we verify that, removing subsets from the explanations
extracted in our end-to-end experiments, they lose their effective-
ness. We remove from each explanation 𝑋 ∗ a random subset whose
size is extracted from a uniform distribution [1, 𝑙𝑒𝑛(𝑋 ∗))7; we then
re-train the model applying the sub-sampled explanations instead
of the complete ones, and measure the consequent loss of effective-
ness. In both the necessary and the sufficient scenario, the more
negative the value, and the greater the loss in effectiveness:
• In necessary explanations, the effectiveness is the decrease they

cause in the H@1 and MRR of the predictions to explain. For
example, if the original explanations caused a -0.90 H@1 drop
and the sub-sampled ones just a -0.30 H@1 drop, the loss in H@1
effectiveness is (−0.30 − (−0.90))/(−0.90) = −66.7%.

• In sufficient explanations, the effectiveness is the increase they
cause in the H@1 and MRR of the predictions to convert. For ex-
ample, if the complete explanations caused a +0.80 H@1 increase
and the sub-sampled ones just cause a +0.20 H@1 increase, the
loss in H@1 effectiveness is (0.20 − 0.80)/0.80 = −75.0%.
We report our results in Table 6. In both scenarios, across all

models and datasets we observe quite high percentages, proving
that Kelpie does indeed identify in most cases minimal explana-
tions. As an extreme example, ComplEx sufficient explanations on
datasets WN18 and WN18RR always amount to a single fact: this
shows that Kelpie does stop the explanation extraction as soon as

7Explanations of length 1 are minimal by definition: when in this experiment we
subsample them, they result in null explanations that do not affect prediction ranks.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2072

ComplEx ConvE TransE

102

103

Ne
ce

ss
ar

y e
xp

lan
at

ion
av

g
ex

tra
cti

on
 tim

e

FB15k
FB15k-237
WN18
WN18RR
YAGO3-10

(a) Average times in seconds to extract a necessary explanation

ComplEx ConvE TransE

102

103

Su
ffic

ien
t e

xp
lan

at
ion

av
g

ex
tra

cti
on

 tim
e

FB15k
FB15k-237
WN18
WN18RR
YAGO3-10

(b) Average times in seconds to extract a sufficient explanation

Figure 5: Extraction times across all models and datasets.

the combination of identified facts is satisfying, rather than just
piling up as many facts as possible. We notice that in FB15k-237,
compared to the other datasets, Kelpie is more prone to finding
slightly longer explanations than required in both the necessary
and the sufficient scenario. This is consistent to our previous obser-
vations about FB15k-237: the presence of the aforementioned types
of bias, in addition to affecting the capability of all frameworks
to identify viable explanations, also makes it harder for Kelpie to
correctly assess the length of the explanation to extract.

5.5 Execution Times
We provide here insights on the computational cost of running
Kelpie, and on how the Pre-Filter module affects our efficiency.

End-to-end average times. In Figures 5a, 5b we report the aver-
age explanation extraction times across our end-to-end experiments.
Across all datasets and models, Kelpie generally manages to extract
successful explanations in seconds or minutes. These times mostly
depend on: (i) the average number of training facts per entity, which
determines the space of candidate explanations to explore (e.g., in
FB15k entities tend to be featured in more training facts than in the
other datasets, leading to longer computations); and (ii) the model
hyperparameters, which directly affect the post-training duration.
In general, extracting sufficient explanations tends to require longer
times than necessary explanations: this is understandable, as in
the sufficient scenario all the analyzed candidate explanations are
applied to additional random entities to estimate their relevance.

Efficiency of the Pre-Filtering step. As described in Section 4.1
our Pre-Filter directly affects our execution times by reducing the
space of candidate explanations. When explaining a tail predic-
tion ⟨ℎ, 𝑟, 𝑡⟩ we start our exploration assessing with post-training
the individual relevances of the 𝑘 most promising facts in Gℎ

𝑡𝑟𝑎𝑖𝑛
;

in absence of Pre-Filtering, we would have to cover all of them,
which might affect execution times for high-degree entities. Even
worse, without Pre-Filtering the space of 𝑙-long combinations would
become

(|Gℎ
𝑡𝑟𝑎𝑖𝑛

|
𝑙

)
instead of

(𝑘
𝑙

)
; even with the early termination

policies enacted by Explanation Builder, the presence of many facts

0 50 100 150 200 250 300 350
Training mentions of the entity to post-train

0

5000

10000

15000

20000

Ne
ce

ss
ar

y e
xp

lan
at

ion
ex

tra
cti

on
 tim

e

Not Using Pre-Filter
Using Pre-Filter

Figure 6: Extraction times with and without the Pre-Filter.

with medium-low relevance can make the preliminary relevance
distribution much larger and noisier, slowing the exploration down.

We report in Figure 6 the average times required to extract,
both with and without Pre-Filtering, explanations for ComplEx
FB15k-237 tail predictions in which the head occurs between 5 and
350 times in training. Our results are averaged across 10 different
sets of tail predictions to obtain more reliable results. Without
Pre-Filtering, we observe an almost exponential trend with respect
to the degree of the head entity: this is in line with the binomial
computational complexity mentioned above. On the contrary, using
Pre-Filtering the extraction times remain remarkably stable, and
almost unaffected by the degree of the head entity.

5.6 Kelpie in action
We show in this section a few qualitative examples of the useful
insights that Kelpie explanations can provide.
Example 1. We use Kelpie to extract necessary explanations for
three YAGO3-10 tail predictions with structure ⟨actor, acted_in,
movie⟩, and obtained respectively with TransE, ConvE and Com-
plEx; we report the predictions and their explanations in Table 7.
In each of the three cases our explanation consists in a set of other
movies in which the same actor performed. We find that, in all three
predictions, the known actor (i.e., the head entity) is part of a recur-
ring acting group: the Dead End Kids for Billy Halop; Our Gang for
Mickey Daniels; the Three Stooges for Moe Howard. The obtained
explanations reveal that our models could predict the correct movie
because, in training, they had seen the same actor working together
with the other cast members of that movie in multiple occasions
(i.e., the films mentioned in the explanations). Intriguingly, in our
dataset there is no explicit mention of any of these acting groups:
the models were able to identify the correlation among their mem-
bers by just observing that all of them worked together several
times. Observations like this are key to understanding the inner
mechanisms of models, and they are only possible in presence of
explainability tools like Kelpie.
Example 2. As mentioned in Section 1, Kelpie can also unveil bi-
ases in the training data. We show this by taking into account some
correctly predicted YAGO3-10 test facts and the corresponding
Kelpie sufficient explanations, reported in Table 8. All predictions
follow the pattern ⟨person, born_in, city⟩; surprisingly, they are al-
ways explained with the person either playing for or being affiliated
to a football team from that city or nation. Despite the loose seman-
tic correlation between the football team of players and their their
place of birth, these explanations are correct, i.e., they do convert
other entities. These explanations reveal that our models, instead of

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2073

Prediction to explain Sufficient Explanation

Billy_Halop, acted_in, Hell’s_Kitchen
Billy_Halop, acted_in, The_Angels_Wash_Their_Faces
Billy_Halop, acted_in, On_Dress_Parade
Billy_Halop, acted_in, Crime_School

Mickey_Daniels, acted_in, The_Big_Show

Mickey_Daniels, acted_in, A_Quiet_Street
Mickey_Daniels, acted_in, July_Days
Mickey_Daniels, acted_in, Stage_Fright
Mickey_Daniels, acted_in, The_Champeen

Moe_Howard, acted_in, Income_Tax_Sappy

Moe_howard, acted_in, Higher_Than_a_Kite
Moe_howard, acted_in, Hello_Pop!
Moe_howard, acted_in, Booby_Dupes
Moe_howard, acted_in, Bedlam_in_Paradise

Table 7: An example of Kelpie necessary explanations.

Prediction to explain Sufficient Explanation
Benedict_Vilakazi, born_in, Soweto Benedict_Vilakazi, plays_for, Mpumalanga_Black_Aces

Nikola_Jerkan, born_in, Split Nikola_Jerkan, affiliated_to, Croatia_Football_Team
Gabriel_Gómez, born_in, Panama_City Gabriel_Gómez, plays_for, Tauro_f.c.
Pablo_Menéndez, born_in, Montevideo Pablo_Menéndez, plays_for, Club_Nacional_Football

Ljubiša_Spajić, born_in, Belgrade Ljubiša_Spajić, plays_for, Budućnost_Podgorica
Otto_Hemele, born_in, Prague Otto_Hemele, affiliated_to, Slavia_Prague

İskender_Alın, born_in, Istanbul İskender_Alın, affiliated_to, Bakırköyspor

Table 8: An example of dataset bias unveiled by Kelpie.

leveraging reasonable correlations, are being affected by data bias.
In YAGO3-10 facts rarely convey personal data, so predicting the
place of birth of a person is very challenging; in our case the best
pattern that models can leverage seems to be the slight preference
that football players may have towards teams from their birthplace;
this phenomenon is further fueled by YAGO3-10 being strongly
focused on the football domain. Kelpie has thus highlighted that the
dataset is imbalanced, and does not accurately represent real-world
semantics; this can allow researchers to correct it, e.g., enriching it
to make it more akin to production KGs.

5.7 End-user Study
We report here an end-user study on the usability of Kelpie expla-
nations and on how they affect on trust in LP models. We take into
account 36 ComplEx and TransE correct test predictions on YAGO3-
10, extract the corresponding Kelpie explanations and formulate,
for each prediction-explanation pair, three questions:

(1) “How clear is the notion of necessary/sufficient explanation
from 1 to 10 in the current case?”. This question measures
the conceptual comprehension of necessity and sufficiency.

(2) “What would happen if we removed/added the facts of this
explanation to the training set?” (i.e., applying the defini-
tions in Section 2.2). The possible answers are (𝑖) the actual
effect of the explanation; (𝑖𝑖) "Nothing would change"; (𝑖𝑖𝑖)
"I don’t know"; and (𝑖𝑣) a nonsensical wrong answer. This
question measures the practical comprehension of the effect
of necessary/sufficient explanations.

(3) “Based on the current explanation, how reliable is the model
from 1 to 10?”. This question measures how revealing the
reasons behind the predictions affects the trust in the model.

We submit the overall 108 questions to 44 participants, of which
22 female and 22 male, aged between 23 and 79 years old, and
with education ranging from High School to University. The vast
majority of our participants are not Computer Science practitioners.

Question 3
ComplEx trust: 7.08/10
TransE trust: 5.61/10

Question 1 Question 2

: 8.60/10Explanation
understanding

84.9%

5.4%

6.6%
3.0%

Correct
Answer

Nothing
would
change

Do not
know

Wrong
Answer

Figure 7: End user study results.

The 1𝑠𝑡 and 2𝑛𝑑 question focus on the usability of Kelpie explana-
tions. In the first question we usually obtain very high values, with
an average of 8.6 out of 10. Similarly, in the 2𝑛𝑑 question we obtain
correct answers in the vast majority of cases: we report the distri-
bution of answers in across the 40 predictions in Figure 7. These
observations confirm that the explanations extracted by Kelpie are
generally easy to understand, proving their strong usability.

The 3𝑟𝑑 question focuses on how the perceived reliability of the
LP model changes when its behaviour is explained: as mentioned
in Section 1, explanations allow users to assess whether a model
can be trusted or not. We find that, on average, the participants rate
their trust in ComplEx and TransE as 7.1 and 5.6 out of 10 respec-
tively. These findings are intriguing, as they imply that ComplEx
is more prone than TransE to leveraging patterns that match hu-
man intuition. As reported in Table 2, in general ComplEx achieves
much better predictive performance than TransE: this suggests that
the capability to leverage human-like correlations may be key to
yielding more accurate link predictions.

6 CONCLUSIONS
Motivated by fast-growing body of literature regarding Link Pre-
diction (LP) on Knowledge Graphs we have presented Kelpie, a full-
fledged explainability framework for embedding-based LP models.
We have formally defined the complementary concepts of neces-
sary and sufficient explanations in the LP domain; we have then
proposed a novel framework capable of extracting both types of ex-
planations. We have described in detail the framework components,
discussing their implementations. We have conducted extensive
experiments applying Kelpie on models representative for the three
main families of LP approaches, and on the five best-established
datasets in literature. We have compared Kelpie to baselines per-
forming data poisoning via adversarial modifications, that we have
adapted to our scenario when needed; we have shown that Kelpie
significantly outperforms them in the vast majority of conditions.
Future Works. As pointed out in Section 5.1, while in our paper
and implementation we focus on fact-based models, the Kelpie
methodology can be applied to any embedding-based LP models,
including those that leverage contextual information. For these
systems, it would be intriguing to extend Kelpie to also extract
context-based explanations. For example, given a path-based model,
post-training may allow us to identify entire paths enabling its
predictions in addition to the most relevant head (or tail) training
facts. We plan investigate this research direction in the future.

ACKNOWLEDGMENTS
We thank proff. Alessandro Micarelli, Fabio Gasparetti and Alberto
Paoluzzi for providing the computational resources for our work.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2074

REFERENCES
[1] K. Aas, M. Jullum, and A. Løland. Explaining individual predictions when features

are dependent: More accurate approximations to shapley values. Artif. Intell.,
2021.

[2] F. Akrami, M. S. Saeef, Q. Zhang, W. Hu, and C. Li. Realistic Re-evaluation of
Knowledge Graph Completion Methods: An Experimental Study. In SIGMOD,
2020.

[3] V. Arya, R. K. E. Bellamy, P. Chen, A. Dhurandhar, M. Hind, S. C. Hoffman,
S. Houde, Q. V. Liao, R. Luss, A. Mojsilovic, S. Mourad, P. Pedemonte, R. Raghaven-
dra, J. T. Richards, P. Sattigeri, K. Shanmugam, M. Singh, K. R. Varshney, D. Wei,
and Y. Zhang. One explanation does not fit all: A toolkit and taxonomy of AI
explainability techniques. CoRR, abs/1909.03012, 2019.

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In The semantic web. Springer, 2007.

[5] A. Baraldi, F. D. Buono, M. Paganelli, and F. Guerra. Using landmarks for explain-
ing entity matching models. In EDBT, 2021.

[6] R. Bhowmik and G. de Melo. Explainable link prediction for emerging entities in
knowledge graphs. In ISWC, 2020.

[7] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collabo-
ratively created graph database for structuring human knowledge. In SIGMOD,
2008.

[8] S. Bonner, I. P. Barrett, C. Ye, R. Swiers, O. Engkvist, and W. L. Hamilton. Under-
standing the performance of knowledge graph embeddings in drug discovery.
arXiv preprint arXiv:2105.10488, 2021.

[9] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating
embeddings for modeling multi-relational data. In NIPS, 2013.

[10] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen, F. Menczer, and A. Flammini.
Computational fact checking from knowledge networks. PloS one, 2015.

[11] V. D. Cicco, D. Firmani, N. Koudas, P. Merialdo, and D. Srivastava. Interpreting
deep learning models for entity resolution: an experience report using LIME. In
aiDM@SIGMOD, 2019.

[12] G. V. den Broeck, A. Lykov, M. Schleich, and D. Suciu. On the tractability of
SHAP explanations. In AAAI, 2021.

[13] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional 2d knowledge
graph embeddings. In AAAI, 2018.

[14] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and N. Tang. Deeper
- deep entity resolution. CoRR, abs/1710.00597, 2017.

[15] J. Feng, M. Huang, M. Wang, M. Zhou, Y. Hao, and X. Zhu. Knowledge graph
embedding by flexible translation. In KR, 2016.

[16] T. Gaudelet, B. Day, A. R. Jamasb, J. Soman, C. Regep, G. Liu, J. B. Hayter, R. Vick-
ers, C. Roberts, J. Tang, et al. Utilizing graph machine learning within drug
discovery and development. Briefings in Bioinformatics, 2021.

[17] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A
survey of methods for explaining black box models. ACM Comput. Surv., 2018.

[18] L. Guo, Z. Sun, and W. Hu. Learning to Exploit Long-term Relational Dependen-
cies in Knowledge Graphs. In ICML, 2019.

[19] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust statistics:
the approach based on influence functions. John Wiley & Sons, 2011.

[20] A. Holzinger, P. Kieseberg, E. R. Weippl, and A. M. Tjoa. Current advances, trends
and challenges of machine learning and knowledge extraction: From machine
learning to explainable AI. In CD-MAKE, 2018.

[21] V. Huynh and P. Papotti. A Benchmark for Fact Checking Algorithms Built on
Knowledge Bases. In CIKM, 2019.

[22] L. Ingber. Very fast simulated re-annealing. Mathematical and computer modelling,
1989.

[23] R. Kadlec, O. Bajgar, and J. Kleindienst. Knowledge Base Completion: Baselines
Strike Back. In Rep4NLP@ACL, 2017.

[24] E. Kaufmann and S. Kalyanakrishnan. Information complexity in bandit subset
selection. In S. Shalev-Shwartz and I. Steinwart, editors, COLT, 2013.

[25] P. W. Koh and P. Liang. Understanding black-box predictions via influence
functions. In D. Precup and Y. W. Teh, editors, ICML, 2017.

[26] N. Kolitsas, O. Ganea, and T. Hofmann. End-to-end neural entity linking. In
CoNLL, 2018.

[27] T. Lacroix, N. Usunier, and G. Obozinski. Canonical Tensor Decomposition for
Knowledge Base Completion. In ICML, 2018.

[28] Y. Li, J. Li, Y. Suhara, A. Doan, andW. Tan. Deep entity matching with pre-trained
language models. Proc. VLDB Endow., 2020.

[29] Y. Liu, W. Hua, K. Xin, and X. Zhou. Context-aware temporal knowledge graph
embedding. InWISE, 2019.

[30] S. M. Lundberg and S.-I. Lee. A unified approach to interpretingmodel predictions.
In NIPS, 2017.

[31] F. Mahdisoltani, J. Biega, and F. M. Suchanek. YAGO3: A knowledge base from
multilingual wikipedias. In CIDR, 2015.

[32] T. B. Malas, W. J. Vlietstra, R. Kudrin, S. Starikov, M. Charrout, M. Roos, D. J.
Peters, J. A. Kors, R. Vos, P. AC‘t Hoen, et al. Drug prioritization using the
semantic properties of a knowledge graph. Scientific reports, 2019.

[33] G. A. Miller. Wordnet: a lexical database for english. CACM, 1995.
[34] D. Monroe. AI, explain yourself. CACM, 2018.
[35] J. G. Moreno, R. Besançon, R. Beaumont, E. D’hondt, A.-L. Ligozat, S. Rosset,

X. Tannier, and B. Grau. Combining word and entity embeddings for entity
linking. In ESWC. Springer, 2017.

[36] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Ar-
caute, and V. Raghavendra. Deep learning for entity matching: A design space
exploration. In SIGMOD, 2018.

[37] D. Q. Nguyen. An overview of embedding models of entities and relationships
for knowledge base completion. CoRR, abs/1703.08098, 2017.

[38] S. Paliwal, A. de Giorgio, D. Neil, J.-B. Michel, and A. M. Lacoste. Preclinical vali-
dation of therapeutic targets predicted by tensor factorization on heterogeneous
graphs. Scientific reports, 2020.

[39] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[40] P. Pezeshkpour, Y. Tian, and S. Singh. Investigating robustness and interpretability
of link prediction via adversarial modifications. In NAACL-HLT, 2019.

[41] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why Should I Trust You?": Explaining
the Predictions of Any Classifier. In SIGKDD, 2016.

[42] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic
explanations. In AAAI, 2018.

[43] A. Rossi, D. Barbosa, D. Firmani, A. Matinata, and P. Merialdo. Knowledge graph
embedding for link prediction: A comparative analysis. TKDD, 2021.

[44] A. Rossi, D. Firmani, and P. Merialdo. Knowledge graph embeddings or bias
graph embeddings? a study of bias in link prediction models. In DL4KG, 2021.

[45] A. Rossi and A. Matinata. Knowledge Graph Embeddings: Are Relation-Learning
Models Learning Relations? In PIE, 2020.

[46] L. S. Shapley. A value for n-person games. Princeton University Press, 2016.
[47] P. Shiralkar, A. Flammini, F. Menczer, and G. L. Ciampaglia. Finding streams in

knowledge graphs to support fact checking. In ICDM, 2017.
[48] A. Singhal. Introducing the knowledge graph: things, not strings, 2012. Blogpost

in the Official Google Blog.
[49] J. C. Spall. Introduction to stochastic search and optimization: estimation, simulation,

and control. John Wiley & Sons, 2005.
[50] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.

In WWW. ACM, 2007.
[51] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 1996.
[52] K. Toutanova and D. Chen. Observed versus latent features for knowledge base

and text inference. In CVSC, 2015.
[53] R. Trivedi, B. Sisman, X. L. Dong, C. Faloutsos, J. Ma, and H. Zha. LinkNBed:

Multi-Graph Representation Learning with Entity Linkage. In ACL, 2018.
[54] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex Embed-

dings for Simple Link Prediction. In ICML, 2016.
[55] H. Wang, H. Ren, and J. Leskovec. Relational message passing for knowledge

graph completion. In KDD, 2021.
[56] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey

of approaches and applications. TKDE, 2017.
[57] D. S. Watson, L. Gultchin, A. Taly, and L. Floridi. Local explanations via necessity

and sufficiency: Unifying theory and practice. In UAI, 2021.
[58] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and D. Lin. Knowledge base

completion via search-based question answering. InWWW, 2014.
[59] R. Xie, Z. Liu, and M. Sun. Representation learning of knowledge graphs with

hierarchical types. In IJCAI, 2016.
[60] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating

explanations for graph neural networks. In NIPS, 2019.
[61] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma. Collaborative knowledge base

embedding for recommender systems. In SIGKDD, 2016.
[62] H. Zhang, T. Zheng, J. Gao, C. Miao, L. Su, Y. Li, and K. Ren. Data poisoning

attack against knowledge graph embedding. In IJCAI, 2019.
[63] W. Zhang, S. Deng, H. Wang, Q. Chen, W. Zhang, and H. Chen. Xtranse: Ex-

plainable knowledge graph embedding for link prediction with lifestyles in
e-commerce. In JIST, 2019.

[64] W. Zhang, B. Paudel, W. Zhang, A. Bernstein, and H. Chen. Interaction embed-
dings for prediction and explanation in knowledge graphs. InWSDM, 2019.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2075

	Abstract
	1 Introduction
	2 Problem Overview
	2.1 Link Prediction in Knowledge Graphs
	2.2 Explaining Link Predictions

	3 Related Works
	3.1 General Purpose Frameworks
	3.2 Link Prediction Specific Tools

	4 The Kelpie Framework
	4.1 Pre-Filter
	4.2 Relevance Engine
	4.3 Explanation Builder

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Baselines
	5.3 End-to-end Experiments
	5.4 Explanation Lengths and Minimality
	5.5 Execution Times
	5.6 Kelpie in action
	5.7 End-user Study

	6 Conclusions
	References

