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Abstract
The response of slender bridge piers to horizontal actions may be significantly influenced by geometric nonlinearities. In 
such conditions, the use of sophisticated models implemented in complex structural analysis software can be economically 
disadvantageous, especially in the preliminary design phases. This paper proposes a simple numerical procedure to compute 
the nonlinear pushover response of cantilever bridge piers subject to horizontal loads. The procedure is based on an iterative 
approach to enforce the element equilibrium under large displacements, efficiently accounting for P-Delta effects induced by 
vertical loads. Evaluation of the bending moment–curvature response of the pier base cross section is required and used as 
basic input data. For fast preliminary analyses, sectional response can be manually computed in simplified linearized form, 
thus completely eliminating the need to use structural analysis software. Indeed, the entire procedure can be implemented 
in standard programming codes, such as PythonTM or Matlab®, and used to evaluate the pushover response of piers with 
arbitrary cross section. Comparison with experimental test results and solutions based on Finite Element models shows that 
proposed procedure can be used to get a fast, yet accurate, estimate of the entire force–displacement curve and, in particular, 
of the pier ultimate displacement.

Keywords  Bridge piers · Reinforced concrete · Pushover · Moment–Curvature response · P-Delta effect · Geometric 
nonlinearity

Introduction

Cantilever Reinforced Concrete (RC) piers are a common 
solution to realize substructures for simply supported as 
well as continuous bridge decks. Thanks to advanced casting 
techniques such as slipforms, this type of piers may reach 
considerable heights and aspect ratios such that geometric 
nonlinearities become relevant.

Nonlinear structural modeling of bridges under earth-
quake actions is often carried out by modeling this type of 
piers as link elements. This approach simplifies the study of 
bridge behavior and reduces the computational efforts. The 
constitutive relations for such zero-dimensional elements are 
expressed in terms of base shear-top displacement curves 
that can be computed either by simplified methods based 
on sectional response and plastic hinge length assumptions 
or by explicit nonlinear pushover analysis of isolated piers 
(Priestley et al., 1996).

For slender geometries, nonlinear geometric effects must 
be considered, as horizontal loads usually produce large 
transverse deformations and induce significant P-Delta 
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effects that can significantly change the shape of the capacity 
curves with respect to the case of linear geometry (Priest-
ley et al., 1996; Fenwick et al., 1992; Dhakal & Maekawa, 
2000).

Several methods have been proposed to determine the 
response of cantilever beams subject to concentrated and 
distributed loads under nonlinear geometric effects. How-
ever, most of them assumes linear elastic material response, 
neglecting the effects of constitutive nonlinearities. A com-
prehensive review of the relevant scientific literature was 
discussed by Al-Saddler and co-authors (Dado & Al-Sadder, 
2005; AL-Sadder & Al-Rawi, 2006), including both analyti-
cal and numerical formulations. Earlier proposals adopted 
analytical methods based on the solution of elliptic integrals 
to analyze linear elastic structures (Bisshopp & Drucker, 
1945; Timoshenko & Gere, 1963), usually performed by 
imposing some limitations on the element geometry, loading 
conditions and maximum displacements. Only in few cases, 
e.g., Ohtsuki & Ellyin (2001), the approach was extended 
to the analysis of more complex structures, such as square 
frames. Recently, Zhang & Chen (2013), Tari et al. (2015) 
and Cammarata et al. (2019) extended the method to a wider 
range of geometric and loading configurations. Finally, 
Wang et al., (2018) introduced a new procedure based on 
the analysis of rocking effects to reproduce the behavior of 
post-tensioned precast piers.

Although analytical approaches are attractive, they are 
limited to simple material constitutive behavior. Hence, 
numerical methods have been preferred and widely devel-
oped in the last decades, due to their higher flexibility and 
applicability to complex geometries and loading conditions. 
In linear elastic material range, many authors, e.g., Wang & 
Kitipornchai (1992), Lee (2001) and Banerjee et al. (2008), 
proposed numerical procedures that iteratively solve the 
governing equations by assuming starting values of specific 
parameters. These are known as numerical integration meth-
ods based on iterative shooting techniques. Similar approach 
was also used by Dado & Al-Sadder (2005). Other numerical 
approaches were based on Finite Difference (Wang et al., 
1961; AL-Sadder & Al-Rawi, 2006) and Boundary Element 
Method (Katsikadelis & Tsiatas, 2003) and applied to the 
analysis of curved and non-prismatic beams.

For slender RC piers, accounting for both geometric and 
material nonlinearities, is essential to perform correct simu-
lation of structural response. Babazadeh et al. (2017) focused 
on nonlinear response of RC bridge piers and developed a 
new analytical model based on the evaluation of elastic and 
inelastic cross-sectional rotations along the pier height. The 
model provides closed form expressions for transverse dis-
placement, bending moment and curvature distributions, as 
well as length of the plastic region, for given values of the 
base bending moment induced by top concentrated loads. 
However, this is limited to bilinear monotonically increasing 

moment–curvature diagram of the element cross section and 
neglects pier self-weight.

For general cross-sectional response due to more real-
istic, but complex, nonlinear material behavior, Finite Ele-
ment (FE) method is usually employed, largely adopted in 
both professional practice and research works. In this case, 
piers are modeled with nonlinear beam–column FEs, using 
either lumped (Scott & Fenves, 2006) or distributed (Lee 
and Filippou, 2009; Di Re et al., 2018) plasticity approaches. 
Within this framework, common approach for inclusion of 
material nonlinearities is the adoption of cross-sectional 
fiber discretization (Spacone et al., 1996; Kostic & Filip-
pou, 2012; Poston, 1986; Kashani et al., 2016; Sessa et al., 
2019), where beam cross section is divided into multiple 
sub-areas (fibers) characterized by nonlinear constitutive 
laws. When Euler–Bernoulli beams are considered, one-
dimensional (1D) material constitutive relationships suffice 
to describe the fiber response and can be also exploited to 
account for corrosion of the material in existing structures 
(Kashani et al., 2016).

Among beam–column FE models, force-based and 
mixed formulations (Ciampi & Carlesimo, 1986; Taylor 
et al., 2003) have proven superior performances because 
of the advantages given by the exact interpolation of the 
internal forces (Spacone et al., 1996; Alemdar & White, 
2005). Hence, modeling of slender bridge piers with force-
based beam–column FEs is nowadays a consolidate proce-
dure (Mackie & Scott, 2019) that has been widely adopted 
in many recent studies, e.g., Su et al., (2020), Yang et al., 
(2021), Pozo et al., (2022) and Bernardini et al., (2021). 
However, in addition to pier strength assessment, bridge 
seismic design and safety check usually request the evalua-
tion of pier ductility capacity, which necessarily entails the 
correct evaluation of the element ultimate displacement. 
As force-based FEs rely on the exact interpolation of beam 
internal forces, they enforce the kinematic compatibility 
conditions in weak form and, therefore, may yield to approx-
imate results on strain and displacement values. Hence, 
accuracy on ultimate drift displacement can be obtained at 
the computational price of increasing the number of integra-
tion points or that of the FEs composing the mesh.

Moreover, nonlinear geometric effects are usually 
included in beam–column FEs through corotational 
approaches (Crisfield & Moita, 1996; Felippa & Haugen, 
2005; Di Re & Addessi, 2018) assuming the element able 
to undergo large nodal displacements, yet considering small 
strains at the sectional level. Similar simplified computa-
tional schemes are also adopted when the analysis only 
requires to include the main nonlinear contribution asso-
ciated to P-Delta effects (Gaiotti & Smith, 1989; Barros 
et al., 2010; Babazadeh et al., 2016; Burgueño et al., 2016; 
Babazadeh et al., 2016). In these cases, mesh refinement is 
required, i.e., single structural member is discretized into 
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multiple beam FEs to approximately account for second-
order effects due to large element deflection (P-� effects), 
in addition to those caused by large global displacements 
of the element ends (P-Δ effects) (Babazadeh et al., 2016).

This paper proposes a simple numerical procedure to 
evaluate nonlinear pushover behavior of slender cantilevered 
RC bridges piers under horizontal top loads. The procedure 
is based on the assumption that moment–curvature response 
( M-K ) of the pier base cross section is known for a constant 
value of the vertical compressive stress and can be used to 
uniquely determine the force–displacement curve response 
of the pier. Indeed, typical bridge pier M-K responses are 
characterized by a first monotonically increasing branch, 
up to the bending peak strength, Mp , followed by rapidly 
decreasing branch (Fig. 1), due to the element collapse 
(Babazadeh et al., 2016, 2017; Mackie & Scott, 2019).

Focusing on the first monotonically increasing part of 
the M-K curve, the procedure assigns bending curvature 

value at the pier base and iteratively determines the cor-
responding value of the top horizontal force, together with 
transverse cross-sectional displacements along the entire 
element height.

The proposed procedure is also applicable by assuming 
linearized M-K curves (Fig. 1) as starting data for the base 
cross-sectional response. This can be convenient for prelimi-
nary fast assessment of the pier seismic capacity and is one 
of the main advantages of the approach.

After describing the main assumptions and fundamental 
equations of the model (Sect. 2), the proposed procedure is 
described in Sect. 3. Finally, Sect. 4 shows three numerical 
applications. In the first one, the behavior of a circular pier 
is investigated to study the ability of the proposed model 
in capturing the nonlinear geometric effects and compare 
them with those of a fiber beam model. In the second one, 
the effects of variable axial forces are discussed. Finally, 
third test is used to validate the proposed procedure against 
experimental test results.

Basic equations for a geometrically 
nonlinear cantilever

A straight RC cantilever pier with height H is considered 
(Fig. 2). The pier is subject to its self-weight and, at the top, 
to a constant vertical concentrated force, P, and a variable 
horizontal concentrated force, F. Pier cross section is uniform 
along H and has slenderness ratio sufficiently high to neglect 
the effects associated to transverse shear deformations. Indeed, 
Euler–Bernoulli beam theory is considered to model the pier in 
the reference system (x, y, z), being x the vertical axis and y and 
z the axes lying on the cross-sectional plane, with y parallel 
to the direction of force F. Self-weight is defined as q = A � , 

Fig. 1   Typical M-K response of RC bridge pier cross section

Fig. 2   Schematic representation of the pier model: (a) geometry, (b) reference beam model and (c) general cross-sectional orientation
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where A is the cross-sectional area and � the weight per unit 
volume.

Equilibrium is defined in the element deformed configura-
tion, described by the transverse displacement profile, v(x), of 
the general cross section at x. As a result, full P-Delta analysis 
is performed, i.e., both P-Δ and P-� effects (Babazadeh et al., 
2016) are considered. Pier is assumed as infinitely rigid in the 
axial direction, i.e., vertical displacements and deformations 
are neglected in the equilibrium definition.

Proposed procedure is based on the hypothesis that 
moment–curvature response ( M-K ) of the cross section does 
not vary along H and is always equal to that of the pier base 
cross section. In other words, the procedure supposes that lin-
ear variation of the axial force due to the element self-weight 
produces negligible variation of the bending behavior of the 
cross sections along the height. Moreover, as usually occur in 
typical RC elements, M-K curve (Fig. 1) is assumed as char-
acterized by a monotonically increasing branch, going from 
zero to peak point (Kp,Mp) . The descending collapsing branch 
is neglected.

The equations governing the proposed numerical procedure 
are derived referring to the general deformed configuration of 
the pier, Fig. 2b. The equilibrium conditions of the pier por-
tion above the general cross section at x permits to compute 
the variation of bending moment, M(x), along the height of the 
pier. This results in the following local equilibrium conditions

where � is used as substitute variable of x to integrate the 
contribution of q along the portion of the pier above x. For 
the cross section at the base of the pier, bending moment 
results as

which represents the global element equilibrium equation.
Constitutive condition relates M(x) to the correspond-

ing curvature K(x). This is preliminary computed for the 
base cross section of the pier and is equivalently used for 
all cross section along H. Thus, the biunivocal expression 
giving M(x) as function of K(x), and vice versa, is written in 
closed form, that is

Finally, by imposing the element compatibility conditions, 
bending rotation, �(x) , and transverse displacement, v(x), of 

(1)

M(x) =F (H − x) + P [v̄ − v(x)]

+ q∫
H−x

x

[v(𝜉) − v(x)] d𝜉

(2)MB = M(0) = F H + P v̄ + q∫
H

0

v(x) dx

(3)M(x) = f [K(x)] and K(x) = f −1[M(x)]

the general cross section at x are derived through integration 
of curvatures K(x), that is

and

Numerical procedure for the computation 
of force–displacement curve

For cantilever piers under linear geometry, numerical deter-
mination of F-v̄ curve is straightforward when M-K response 
curve is monotonic. In this case, a step-by-step procedure 
can be followed, assuming force F as independent control-
ling variable. Increasing values of transverse force, F, are 
assigned and moment distribution along the pier, M(x), 
is determined as M(x) = F (H − x) . Corresponding cur-
vatures are obtained from Eq. 3 as K(x) = f −1[M(x)] and, 
thus, by solving the integrals in Eqs. 4 and 5, transverse 
displacements, v(x), and, thus, top displacement, v̄ , are eas-
ily computed. Under these assumptions, peak point of the 
F-v̄ response is reached when base cross section reaches its 
peak bending moment Mp , (Fig. 3) which, in this case, also 
coincides with the maximum pier capacity.

However, when P-Delta effects are included, same 
approach cannot be followed. In fact, for a given deforma-
tion state of the pier, nonlinear geometric effects produce 
an increase of bending moments along the pier. As a result, 
the peak of the global force, F, is reached when bending 
moment at the base cross section is lower than Mp (Fig. 3). In 
the post-peak part of the global response, force F is expected 
to decrease, while bending moments along the pier keep 
increasing. Hence, if force F is used as independent control-
ling variable of the computational algorithm, objectivity of 
the solution is lost.

To avoid this issue, a new approach is proposed in the 
following, where M-K response curve of the pier base cross 
section is followed and used as starting point of the analysis. 
In other words, the proposed numerical procedure permits 
the determination of pier behavior in terms of pushover 
force–displacement response curve, F-v̄ , based on the curve 
parametrization with respect to the curvature, KB , of the 
base cross section, which is assumed as given independent 
controlling variable of the analysis. This approach gives a 
significant advantage for the computational algorithm, when 
P-Delta effects are included.

(4)�(x) = ∫
x

0

K(�) d�

(5)v(x) = ∫
x

0

�(�) d�
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In the proposed numerical procedure, bending curva-
ture, KB , at the base of the pier is used as independent 
controlling quantity. This is increased in a step-by-step 
approach, up to the peak value, Kp . At each step, cor-
responding values of force, F, and displacement, v̄ , are 
determined. Hence, the following algorithm is applied, 
where superscripts n − 1 and n denote the previous and 
current step, respectively. However, when P-Delta effects 
are included in the analysis, moment distribution along 
the pier is influenced by the pier deformation, that is by 
the transverse displacement, v(x), to be determined at each 
step (Eq. 1). Hence, an iterative approach must be fol-
lowed to find, at step n , the values of v(x) that satisfy the 
equilibrium conditions in the deformed configuration. In 
the following, subscript i − 1 and i denote the previous and 
current iteration, respectively, performed at current step n.

The algorithm works as follows and is summarized in 
Table 1: 

	 1.	 K n
B

 is given;
	 2.	 Corresponding bending moment, Mn

B
 , at pier base cross 

section is computed from the constitutive relationship, 
Eq. 3, as: 

	 3.	 Iteration counter is set to one, i = 1 , and the initial val-
ues of the transverse displacements are recovered from 
previous step, v(x) n

0
= vn−1(x) , with v̄ n

0
= vn−1(x = H).

	 4.	 From the element equilibrium condition, horizontal 
force, F n

i
 , is obtained by inverting Eq. 2, and assum-

ing the deformation state of the pier as frozen at the 
previous iteration, that is 

Mn
B
= f [K n

B
]

Fig. 3   Relation between M-K cross-sectional response curve and F-v̄ global response curve

Table 1   Numerical algorithm

1) K n
B

 given and v(x) recovered from previous step
2) Mn

B
= f [K n

B
]

3) Iteration initialization ( i = 1):
v(x) n

0
= vn−1(x)

4)
F n

i
=

Mn
b
−P v̄ n

i−1
−q ∫ H

0
vn
i−1

(x) dx

H

5) Mn
i
(x) = F n

i
(H − x) + P [v̄ n

i−1
− vn

i−1
(x)] + q ∫ H−x

x
[vn

i−1
(𝜉) − vn

i−1
(x)] d𝜉

6) K n
i
(x) = f −1[Mn

i
(x)]

7) � n
i
(x) = ∫ x

0
K n

i
(�) d�

8) vn
i
(x) = ∫ x

0
� n
i
(�) d�

9) v̄ n
i
= vn

i
(x = H)

10)
r n
i
=

∫ H

0
Δvn

i
(x) dx

∫ H

0
Δvn

1
(x) dx

+
∫ H

0
ΔMn

i
(x) ΔK n

i
(x) dx

∫ H

0
ΔMn

1
(x) ΔK n

1
(x) dx

11) If r > tolerance → i = i + 1 and GO TO point 4)

else → State at n set equal to state of iteration i

and CONTINUE with step n + 1
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	 5.	 Bending moment distribution along the pier is deter-
mined from Eq. 1): 

	 6.	 Curvature distribution along the pier is determined 
for current iteration from the constitutive relationship, 
Eq. 3, as: 

	 7.	 Bending rotation variation along the pier is determined 
for current iteration from Eqs. 4, that is 

	 8.	 Updated transverse displacement variation along the 
pier is determined for current iteration from Eqs. 5, 
that is 

	 9.	 Top displacement is computed for current iteration as: 

	10.	 The following residual quantity is computed: 

 where Δ∙i = [∙ n
i
(x) − ∙ n

i−1
(x)] represents the quantity 

increment at iteration i with respect to iteration i − 1;
	11.	 If r is greater than a tolerance value, iteration coun-

ter increases, i = i + 1 , and procedure returns to point 
4); otherwise, response quantities of current step are 
stored and the procedure continues with next step, 
n + 1 , of the analysis.

To be noted is that, when nonlinear geometric effects are 
neglected, displacement-dependent terms in the Eqs. 1 and 
2, used at point 4) and 5), vanish, that means transverse 
displacement variation along H does not affect the equilib-
rium conditions. As a result, one iteration is required in the 
proposed procedure at each step of the analysis.

F n
i
=

Mn
b
− P v̄ n

i−1
− q ∫ H

0
vn
i−1

(x) dx

H

Mn
i
(x) =F n

i
(H − x) + P [v̄ n

i−1
− vn

i−1
(x)]

+ q∫
H−x

x

[vn
i−1

(𝜉) − vn
i−1

(x)] d𝜉

K n
i
(x) = f −1[Mn

i
(x)]

� n
i
(x) = ∫

x

0

K n
i
(�) d�

vn
i
(x) = ∫

x

0

� n
i
(�) d�

v̄ n
i
= vn

i
(x = H)

r n
i
=

∫ H

0
Δvn

i
(x) dx

∫ H

0
Δvn

1
(x) dx

+
∫ H

0
ΔMn

i
(x) ΔK n

i
(x) dx

∫ H

0
ΔMn

1
(x) ΔK n

1
(x) dx

Applications of the proposed procedure

To validate the proposed procedure and investigate its 
performance in determining the response of RC bridge 
piers, three numerical tests are presented in the following. 
First test is a benchmark conducted on the cylindrical pier 
numerically studied by Mackie & Scott (2019) under linear 
geometry assumption and neglecting the effects due to pier 
self-weight, i.e., under uniform axial force. Here, contribu-
tion of P-Delta effects is included and the performance of 
the proposed model in capturing the actual pier response 
is investigated, comparing the results with those obtained 
with a beam FE model with fiber cross-sectional discretiza-
tion. The second test considers a rectangular hollow pier. 
As proposed procedure assumes that M-K response does 
not vary along H, regardless of the axial force variation due 
to pier self-weight, this test discusses the validity of this 
assumption by comparing the responses obtained by includ-
ing and neglecting the pier self-weight. Finally, third test 
reproduces the behavior of a circular pier experimentally 
tested during the campaign described in Babazadeh et al. 
(2016), Burgueño et al. (2016) and Babazadeh et al. (2016) 
and aims at validating the proposed procedure against real 
specimen results.

Analyses are performed using a home-made 
PythonTM-based implementation of the procedure, where 
Simpson quadrature rule is used to solve all integrals defined 
along the pier axis.

Response under uniform axial force and comparison 
with fiber beam model

The RC circular pier depicted in Fig.  4 and originally 
studied in Mackie & Scott (2019) is considered first. This 

Fig. 4   Circular pier test: pier geometry, reference system and loading 
scheme
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application is used to compare the results of the proposed 
procedure with those obtained with force-based FE fiber 
models, aiming at reaching the accurate prediction of pier 
ultimate displacement capacity. Pier cross section has diam-
eter and clear cover equal to D = 50.8 cm and c = 2.54 cm , 
respectively, and is reinforced with eight equally spaced #8 
bars (Ø = 25.4mm ). Pier height is not given in Mackie & 
Scott (2019), but H = 6.1m is assumed, in accordance with 
the other reported data, corresponding to a aspect ratio H/D 
equal to 12.

A constant vertical load, P = 600.51 kN , acts at the top 
of the pier, while variable transverse force, F, is parallel to 
reference axis y, defining with z the cross-sectional plane. 
Pier self-weight, q, is neglected.

Same constitutive assumptions as in Mackie & Scott 
(2019) are adopted, i.e., concrete is modeled as an elas-
tic-no-tension material with compressive stiffness equal 
to Ec = 24855.61MPa and reinforcing steel is modeled 
as an elastic-perfectly-plastic material with elastic stiff-
ness and yielding stress equal to Es = 199948.04MPa and 
fy = 344.74MPa , respectively.

Analyses are conducted by considering both actual and 
linearized M-K cross-sectional responses shown in Fig. 5. 
Actual response (solid blue curve) is obtained through sec-
tional analysis performed in OpenSees software (2021), 
for a value of the axial compressive stress equal to P. The 
response coincides with that reported in Mackie & Scott 
(2019). In particular, a midpoint fiber cross-sectional 
discretization is used with a polar grid of 50 and 30 fib-
ers placed along the circumferential and radial directions, 
respectively, for the core and 50 and 5 fibers placed along 

the circumferential and radial directions, respectively, for 
the cover. Reinforcing bars are modeled as additional fibers.

In Fig. 5, points ( Ky,My ) and ( Kp,Mp ) indicate the curva-
ture–moment pairs at first steel yielding and at peak strength, 
respectively. These are used to construct the linearized M-K 
response (dashed black curve), by assuming equal area under 
the post-peak part of the curve. Peak strength curvature is 
assumed equal to Kp = 0.0880m−1.

Following the study in Mackie & Scott (2019), F-v̄ 
response curve is first computed for linear geometry hypoth-
esis and, then, nonlinear geometric effects are included.

Linear geometry analysis

Figure 6 shows the solution obtained with the proposed 
procedure (dotted black curve) by considering the actual M
-K cross-sectional behavior. The results are compared with 
those obtained by adopting the force-based Euler–Bernoulli 
beam–column FE with distributed plasticity available in 
OpenSees and same fiber cross-sectional discretization used 
for sectional analysis. FE model details coincide with those 
used in Mackie & Scott (2019), except for the number of 
Gauss–Lobatto quadrature points placed along the axis of 
the FE modeling the pier. A 6-points rule is considered in 
Mackie & Scott (2019), giving the results represented by the 
dashed red curve, while Fig. 6 also shows the those obtained 
with 10 (solid blue curve) and 7 (solid orange curve) points. 
For OpenSees FE model, analyses are carried out by moni-
toring the bending curvature attained at the pier base cross 
section and execution is stopped when this reaches the value 
KB = Kp = 0.0880m−1 . In this way, ultimate point of F-v̄ 
curve directly corresponds to ( Kp,Mp ) at the pier base, as 
happens in the proposed procedure.

Fig. 5   Circular pier test: assumed moment–curvature response for pier 
cross section ( Ky = 0.0066m−1 , My = 281.9 kNm , K�

y
= 0.0084m−1 , 

M�
y
= 361.5 kNm , Kp = 0.0880m−1 , Mp = 433.3 kNm , 

K∗ = 0.0210m−1 and M∗ = 380.8 kNm)

Fig. 6   Circular pier test: global response F-v̄ curves for linear geom-
etry hypothesis
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Although all model solutions agree very well with each 
other, OpenSees model underestimates pier ultimate defor-
mation when only 6 quadrature points are used and provides 
a lower ultimate displacement value ( 6% error) with respect 
to the solution obtained with the proposed procedure, which 
gives a more correct result. A higher number of quadrature 
points must be used in the beam FE model to capture the 
correct displacement capacity of the pier.

Nonlinear geometry analysis

When nonlinear geometric effects are included, force–dis-
placement curves are significantly different. Figure 7 com-
pares the F-v̄ response curve obtained with the proposed 

procedure (dotted black curve) with those evaluated through 
similar OpenSees beam FE model used for linear geometry 
analysis, yet accounting for P-Delta effects. Given the results 
in Fig. 6, this assumes a 7-points Gauss–Lobatto quadrature 
rule. However, mesh discretization considers 20 (solid blue 
curve), 10 (solid orange curve) or 5 (dashed red curve) FEs, 
to better capture the nonlinear phenomena due to P-� effects.

For this level of slenderness ( H∕D = 12.0 ), it turns out 
that geometric nonlinearities have strong influence on the 
force–displacement curve with respect to the case of linear 
geometry.

All solutions agree with each other also in this case, but 
FE models with coarser mesh discretization give stiffer non-
linear behavior with respect to the correct result obtained 
with the proposed procedure, up to 9% error for the ultimate 
displacement. However, all models provide identical peak 
strength. This is indicated in the figure by the green point 
( ̄v∗,F∗).

To be noted is that, under P-Delta effects, peak force, F∗ , 
is reached when bending moment at the base cross section 
is lower than its maximum value, Mp . This is confirmed by 
the plots in Fig. 8, showing the variation along pier height of 
transverse displacements, v(x), bending curvatures, K(x) and 
moments, M(x), at peak (solid red and dotted orange curves) 
and ultimate (solid blue and dotted black curves) point of 
the F-v̄ response. Indeed, when F = F∗ , curvature and bend-
ing moment distributions are such that KB = 0.0210m−1 and 
MB = 380.8 kNm at the pier base. These values are indicated 
in Fig. 5 by the green point ( K∗,M∗ ), to emphasize their 
distance from ( Kp,Mp ), which is reached only at the ultimate 
state of the analysis.

Finally, Fig. 9 shows the F-v̄ response curves obtained 
under both linear and nonlinear geometry, by assuming the 
linearized M-K cross-sectional behavior (dashed red curves). 
These are compared with previous results evaluated by 

Fig. 7   Circular pier test: global response F-v̄ curves under P-Delta 
effects ( ̄v∗ = 0.144m and F∗ = 48.3 kN)

Fig. 8   Circular pier test: variation along the pier of transverse dis-
placement, v(x), bending curvature, K(x) and bending moments, M(x), 
at peak ( ̄v = 0.144m ) and end ( ̄v = 0.425m ) of F-v̄ response

Fig. 9   Circular pier test: comparison solutions obtained for actual and 
bilinearized M-K responses
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considering the actual M-K response (dotted black curves) 
and OpenSees FE solutions (solid blue curves).

As expected, the model underestimates the initial stiffness 
of the pier and provides a sharper transition from the elastic 
to the inelastic material behavior, in accordance with the 
piecewise linear variation of the linearized M-K response. 
However, global behavior of the pier is well captured, pro-
viding similar peak strength, yet higher ultimate displace-
ment values.

Response under variable axial force: influence 
of pier self‑weight

The second application is the analysis of a rectangular 
hollow RC bridge pier. To investigate the influence of the 
simplifying assumption of uniform M-K  response made 
in the proposed procedure, the analysis is carried out 
by including and neglecting the pier self-weight. Speci-
men geometry is depicted in Fig. 10, where cross-sectional 
reinforcement arrangement and element loading scheme 
are also indicated. Cross-sectional dimensions are equal 
to Ly = 450 cm and Lz = 250 cm , along the strong, y, and 
weak, z, direction, respectively. Thicknesses are equal to 
sy = 50 cm and sz = 40 cm . Concrete clear cover is uniform 
for both external and internal edges and equal to c = 3 cm , 
measured from the external edge of the stirrups. Longi-
tudinal and transverse reinforcements are symmetrically 
arranged. Four rows of eighteen bars with diameter equal 
to 14mm are located along the small dimension, Lz , and 
four rows of 24 bars with diameter equal to 28mm are 
located along the large dimension, Ly . Stirrups have diam-
eter and spacing equal to 14mm and 20mm , respectively. 
Pier height is equal to H = 30m , corresponding to a aspect 
ratio of 6.67 and 12.0 for the strong, y, and weak, z, bend-
ing direction, respectively.

A constant vertical load, P = 7703.1 kN , acts at the top 
of the pier, while variable transverse force is alternatively 
applied in the strong, Fy , and weak, Fz , direction, respec-
tively, to study the response of the pier for two different 
slenderness ratios. Pier self-weight is assumed as equal to 
q = 132.5 kN/m.

M-K cross-sectional response is obtained through sec-
tional analysis performed in OpenSees software by adopt-
ing a detailed fiber discretization model. Cross section is 
divided into quadrilateral patches, as depicted in Fig. 11 and 
each patch is discretized in a regular grid of fibers, accord-
ing to midpoint integration rule. Yellow patches indicate 
the unconfined concrete regions, having thickness equal to 
5 cm , i.e., approximately the distance between the cross-
sectional edge to the center of the longitudinal bars, while 
blue patches indicate confined concrete. For the latter, con-
finement criteria adopted to compute material mechanical 
properties are based on Mander’s approach (Mander et al. 

Fig. 10   Geometry, reference system and loading scheme assumed for 
the rectangular hollow pier

Fig. 11   Cross-sectional discretization and number of fiber adopted for 
the rectangular hollow pier

Table 2   Mechanical parameters 
adopted for concrete model in 
rectangular hollow pier analysis

fpc �cp fpu �cu �c fct Ects

Concrete [MPa] [10−3] [MPa] [10−2] [-] [MPa] [GPa]

Unconfined − 38.00 − 2.00 − 7.6 − 1.00 0.1 0.50 4.222
Confined A − 41.66 − 2.96 − 7.6 − 2.63 0.1 0.50 4.222
Confined B − 41.75 − 2.99 − 7.6 − 1.95 0.1 0.50 4.222
Confined C − 44.19 − 3.63 − 7.6 − 2.75 0.1 0.50 4.222
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1988) and three levels of confinement are distinguished. 
Corresponding patches are labeled with symbols A, B and 
C in the figure.

The number of fibers considered in the different direc-
tions is indicated by the numbers in Fig. 11. One fiber is 
always placed across the unconfined concrete thickness, 
while six and three fibers are used in the confined regions 
across the cross-sectional thicknesses in the directions par-
allel to sy and sz , respectively. Seventy-two and ten fibers 
are placed along the central parts of the cross section in the 
directions parallel to Ly and Lz , respectively. Reinforcing 
bars are modeled as additional fibers.

Kent–Scott–Park model (’Concrete02’) is used to sim-
ulate the behavior of concrete fibers. Adopted mechani-
cal properties are reported in Table 2 for unconfined and 
confined regions, being fpc and �cp the compressive peak 
strength and strain, respectively, fpu and �cu the compres-
sive ultimate strength and strain, respectively, �c the ratio 
between unloading slope at compression peak and initial 
slope, fct the tensile strength and Ects the tension softening 
stiffness.

Table 3 reports the mechanical parameters assumed to 
reproduce the behavior of longitudinal bars, for which ’Rein-
forcingSteel’ model is used, being fsy and fsu the yield and 
ultimate stress, respectively, Es and Esh the initial elastic 
stiffness and the tangent stiffness at initial strain hardening, 

respectively, �sh the strain at initial strain hardening and �su 
the strain at peak stress.

Figure 12 shows the M-K response curves correspond-
ing to the axial forces acting on the top and base cross sec-
tions when self-weight is considered, i.e., N0 = 7703.1 kN 
(black curve—top cross section) and N30 = 11678.1 kN 
(blue curve—base cross section). If self-weight is neglected, 
axial force is uniform and equal to N0 . Corresponding axial 
compression ratios are equal to N0∕(fpc A) = 0.0354 and 
N30∕(fpc A) = 0.0536 for the two cases, respectively. M-K 
response curves are plotted for both strong y and weak z 
bending directions.

Figures 13 and 14 show the F-v̄ response curves for the 
strong and weak bending behavior, respectively. These 
are computed both neglecting ( q = 0 ) and accounting for 
( q ≠ 0 ) the pier self-weight, to highlight the effects due 
to axial force variation. Proposed model solution (dotted 

Table 3   Mechanical parameters adopted for longitudinal steel model 
in rectangular hollow pier analysis

fsy fsu Es Esh �sh �su

[MPa] [MPa] [GPa] [GPa] [−] [−]

507.80 776.28 201.880 3.206 0.0134 0.2152

Fig. 12   Moment–curvature responses assumed for the cross section 
of the rectangular hollow pier

0

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2 2.5

F y
[k

N
]

vy [m]

OpenSees - q = 0

OpenSees - q ≠ 0

Proposed - q = 0

Proposed - q ≠ 0

Fig. 13   Global response F-v̄ curves obtained for the rectangular hol-
low pier for bending in the strong y direction

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6

F z
[k

N
]

vz [m]

OpenSees - q = 0

Proposed - q = 0

OpenSees - q ≠ 0

Proposed - q ≠ 0

Fig. 14   Global response F-v̄ curves obtained for the rectangular hol-
low pier for bending in the weak z direction



465Asian Journal of Civil Engineering (2022) 23:455–469	

1 3

curves) are compared with those obtained using the force-
based Euler–Bernoulli beam–column FE with distributed 
plasticity available in OpenSees and same fiber cross-
sectional discretization used for sectional analysis. For 
this model, a fine mesh is used considering 15 FEs with 7 
Gauss–Lobatto quadrature cross sections, to obtain accurate 
comparison results also in terms of pier ultimate displace-
ment. As done in the previous test of the circular pier, F
-v̄ curves are computed by monitoring the bending curva-
ture attained at the pier base cross section and execution 
is stopped when this reaches the peak value, as plotted in 
Fig. 12, i.e., Kp = 0.0267m−1 for N0 and Kp = 0.0214m−1 
for N30.

As observed for the circular pier, when self-weight is 
neglected ( q = 0 ), proposed model results perfectly match 
those obtained with the FE model. However, a small over-
estimate of the nonlinear pier stiffness is observed for q ≠ 0 , 
i.e., lower values are obtained for the ultimate displacement 
( 5% error for the strong direction and 7% error for the weak 
direction). In fact, as axial force reduces moving from the 
pier base to the top, cross section above the base should fol-
low a more flexible M-K curve than that resulting at x = 0 . 
However, in the proposed procedure, same M-K response 
is used for all cross section along H. To better explain this 
issue, Fig. 15 plots the variation along pier height of bending 
curvatures, K(x), and moments, M(x), at ultimate point of 
the F-v̄ response, for bending in the weak direction, where 
the error is larger. Solid blue and black dotted curves repre-
sent the solution obtained with the FE and proposed model, 
respectively.

As observed, although the two models consider exactly 
the same moment distribution along the pier, in the plastic 

zone above the pier base, curvatures obtained with the pro-
posed procedure are slightly smaller than those resulting 
from the FE software.

To eliminate the error, different M-K responses can be 
used to determine the bending curvature values of the vari-
ous cross sections along the pier, at point 6) of the proposed 
procedure (see Table 1). However, this is more costly, as M
-K curve must be preliminary computed for many values of 
the axial force. Alternatively, an amplification factor could 
be used to correct curvature variation along the pier at each 
iteration of the procedure (point 6)). These solutions are 
not explored in this work, since the error resulting by the 
assumption of uniform response is in any case small.

Comparison with experimental results

As last validation analysis, one of the four circular RC 
piers tested during the experimental campaign conducted 
in Babazadeh et al. (2016), Burgueño et al. (2016) and 
Babazadeh et al. (2016) and labeled as pier M121505 is 
considered. The pier has height H = 7.315m and circular 
cross section with diameter D = 0.61m (Fig. 16). Steel 
reinforcements consist of sixteen equally spaced #6 longi-
tudinal bars (Ø = 19mm ) and a #4 spiral (Ø = 12.7mm ) 
with spacing equal to 76mm . Variable horizontal load is 
applied through a hydraulic actuator that acts at the center 
of the top loading block, while constant vertical load is 
applied using two external post-tensioning bars. Nominal 
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vertical load, i.e., axial force in the rods, is controlled by two 
hydraulic jacks located on the top of the pier and is equal 
to P∗ = 712 kN , corresponding to axial compression ratio 
of P∗∕(fpc A) = 0.05 . Top loading block has height equal to 
0.457m and pier self-weight is assumed as q = 7.09 kN/m.

Experimental test was conducted by applying the horizon-
tal force under quasi-static control of the pier top displace-
ment and following a fully reversed cyclic loading pattern 
consisting in 21 cycles with increasing level of deforma-
tion. Monotonic pier response was preliminary computed 
through fiber cross-sectional beam modeling, as reported 
in Burgueño et al. (2016). Hence, analyses reported in the 
following focus on the numerical evaluation of the mono-
tonic response of the pier obtained through the proposed 
procedure. This is compared with both monotonic and cyclic 
response behaviors reported in the reference works.

Due to the particular configuration of the test setup, load-
ing scheme of the pier slightly differs from that considered 
in Fig. 2 to develop the proposed procedure. In fact, the 
direction of the axial load is dictated by that of the post-
tensioning rods, that changes when pier deforms according 
to angle � , as depicted in Fig. 17. This result as (Babazadeh 
et al., 2016):

(6)𝛼 = tan−1
(

v̄

H + Lb

)

 
Hence, vertical force P varies during the loading process, 

resulting equal to

being Lb = 0.483m the height of the footing. Moreover, the 
effective horizontal force Feff  given by the actuator differs 
from the net horizontal force acting in the pier, i.e., the hori-
zontal base reaction F. Indeed, it results:

To account for the correct orientation of the loading forces, 
for this test, the proposed procedure scheme is slightly modi-
fied. Referring to Table 1, at each iteration, before evaluat-
ing force F n

i
 at point 4), angle � is computed according to 

Eq. 6 and using the last value, v̄ n
i
 , of the top displacement 

obtained at the previous iteration. Thus, vertical force P to 
be used at points 4) and 5) is computed according to Eq. 7. 

(7)P = P∗ cos �

(8)Feff = F + P∗ sin �

P*
F

H

Lb

P
P* sin α

v

α

F

eff

Fig. 17   Loading scheme for Babazadeh’s circular pier
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Finally, when convergence of the iterative process is reached 
for the current loading step (point 11)), effective force Feff  is 
obtained from Eq. 8.

Moment–curvature cross-sectional response is also 
reported in Babazadeh’s work, evaluated by means of fiber 
cross-sectional analysis. This is plotted in Fig. 18 and used 
to apply the proposed procedure.

Figure 19 shows the F-v̄ response curve obtained with 
the proposed procedure, distinguishing between the evo-
lution of the effective force, Feff  , applied at the top of the 
pier (dotted gray curve) and the base resisting force, F, 
(black dotte curve). These are compared with the cor-
responding monotonic responses (orange and blue solid 
curve, respectively) reported in Burgueño et al. (2016). 
Moreover, the experimental cyclic behavior of the pier is 
depicted as red solid curve.

Response curves obtained with the proposed proce-
dure are in very good agreement with reference results, 
confirming that monotonic evolution of the horizontal 
resisting force well approximates the envelope of the 
cyclic behavior, although a very slight increase in pier 
strength can be observed, if compared with the results by 
Babazadeh.

Good match with the experimental results is also 
observed by comparing the variation along pier height 
of bending curvatures, K(x), proving the accuracy of the 
proposed procedure in reproducing the correct behavior 
of real specimen. Variation of K(x) is plotted in Fig. 20 
for the ultimate loading step, corresponding to a value of 
v̄ = 0.48m.

Conclusions

A simple numerical procedure has been proposed to deter-
mine the structural response of RC bridge piers subject 
to constant vertical loads and variable transverse forces 
applied at the top, taking into account geometric nonlin-
earities arising under large displacements. The procedure 
considers the moment–curvature response curve of the 
cross section at pier base as input data and provides the 
force–displacement response curve of the pier as primary 
output. This is parametrized with respect to the base bend-
ing curvature, KB . At each step of the analysis, a simple 
and fast iterative approach is used to enforce the element 
equilibrium in the deformed configuration, so that trans-
verse displacement variation along the pier height is uni-
vocally determined.

If axial force is uniform over the height, the procedure 
converges to the exact solution. This allows the user to get 
a quick and reliable computation of both pier strength and 
ultimate displacement capacity. Comparison with force-
based FE fiber models shows that, to obtain the same level 
of accuracy in the determination of ultimate displacement, a 
fine pier discretization is required, either in terms of integra-
tion points or FE number.

If axial force varies along the height, the assumption of 
uniform sectional response leads to an approximate solu-
tion. The comparison with force-based FE fiber model 
results shows that, at least for axial force variations usu-
ally associated with the weight of typical piers, the error 
induced by this approximation is practically negligible. This 
is confirmed by the comparison with the experimental tests 
by Babazedeh, that showed very good agreement between 
measurements and numerical results obtained by the pro-
posed procedure.

The proposed procedure can be easily implemented with-
out resorting to full FE codes and is suitable for accurate 
prediction of the entire force–displacement curve of slender 
RC piers, with, in particular, a reliable estimate of the ulti-
mate displacement.

In this work, the analysis was limited to monotonically 
increasing M-K response curves, i.e., computation is per-
formed until base pier cross section reaches its maximum 
bending capacity. Extension to more complex behaviors of 
the cross section is currently ongoing and will be reported 
in future publications.
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