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Abstract. We study the existence of distributional solutions for the boundary value

problems (1.1) and (1.2) if E does not belong to LN , namely |E| ≤ |A||x| , A ∈ R. The

size of A plays an important role: if α(N − 2) ≤ |A| < α(N − 1), we prove that if f ∈
L1(Ω) there exists a distributional solution u ∈W 1,q

0 (Ω), for every q < Nα
|A|+α <

N
N−1 ,

of (1.1) (the case |A| < α(N−2) is studied in [3]). We then use this result to prove the
existence of a bounded weak solution ψ of (1.2) if g(x) ∈ Lm(Ω), m > Nα

Nα−|A| ≥
N
2 .

1. Introduction

In this paper we prove the existence of distributional solutions for the boundary
value problems (the first with a convection term, the second with a drift term)

(1.1)

{
−div(M(x)∇u) = −div(uE(x)) + f(x) in Ω,

u = 0 on ∂Ω,

and

(1.2)

{
−div(M(x)∇ψ) = E(x)∇ψ + g(x) in Ω,

ψ = 0 on ∂Ω,

where we assume that
f, g ∈ Lm(Ω), m ≥ 1,

and, on the singular convection or drift term, that

(1.3) |E| ≤ |A|
|x|

, A ∈ R.

Here Ω is a bounded, open subset of RN , with 0 ∈ Ω, N > 2, and M : Ω → RN2
is a

measurable matrix such that (for α, β ∈ R+)

(1.4) α|ξ|2 ≤M(x)ξ ξ, |M(x)| ≤ β, a.e. in Ω, ∀ξ ∈ RN .

We note that, at least formally, the two above linear problems are in duality. Note
also that the above boundary problems are linear, but the differential operators may
be not coercive, unless one assumes that either the norm of |E| in LN(Ω) is small, or
that div(E) = 0.

In [2] and [9], the existence of u in W 1,2
0 (Ω) and ψ in W 1,2

0 (Ω) is proved if E belongs

to (LN(Ω))N and f and g are L
2N
N+2 (Ω), without restrictions on the norm of E.

For the problem (1.1) in [2] it is proved (despite the coercivity difficulty) the basic
a priori estimate

(1.5)

∫
Ω

|∇ log(1 + |u|)|2 ≤ 1

α2

∫
Ω

|E|2 +
2

α

∫
Ω

|f |;

on the other hand a basic a priori estimate for ψ is not known (see also Remark 3.4).
See anyway [9] and the more recent [11], [13] for an alternative approach based on the
so called slice technique.
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Nevertheless, in [2] (for u) and in [4] (for ψ), it is proved, under the assumption
E ∈ (LN(Ω))N :

1) (Stampacchia theory) existence of weak solutions u, ψ belonging to W 1,2
0 (Ω) ∩

Lm
∗∗

(Ω), m∗∗ = Nm
N−2m

, if 2N
N+2
≤ m < N

2
;

2) (Caldéron-Zygmund theory) existence of distributional solutions u, ψ belonging

to W 1,m∗

0 (Ω), m∗ = Nm
N−m , if 1 < m < 2N

N+2
;

that is the results proved by G. Stampacchia (see [16]), and in [8] ([7], if m = 1), under
the assumption E = 0.

We quote also [1], [14] where the Marcinkiewicz and Lorentz regularity of u, ψ is
studied by means of symmetrization arguments; for similar results on ∇u and ∇ψ see
[11], [12].

Although problem (1.1) is (at least formally) the dual problem of (1.2), it is not
possible to completely study problem (1.2) by a duality method, since estimate (1.5)
on the solution u of (1.1) is nonlinear. A duality approach (by contradiction) is used
in [6].

If E does not belong to (LN(Ω))N , the framework changes completely: differential
problems with E of form x

|x|2 (which does not belong to LN) are studied in [3] (where

the case E in L2(Ω) is also studied, thanks also to a very weak definition of solution)
and [15].

In particular, if E satisfies (1.3), which is an assumption slightly weaker than E ∈
(LN(Ω))N , the size of A plays an important role: under the assumption f ∈ Lm(Ω), in
[3] the following existence results are proved (recall the definition of p∗ = Np

N−p):

3) if |A| < α(N−2m)
m

, and 2N
N+2
≤ m < N

2
, then u ∈ W 1,2

0 (Ω) ∩ Lm∗∗(Ω);

4) if |A| < α(N−2m)
m

, and 1 < m < 2N
N+2

, then u ∈ W 1,m∗

0 (Ω);

5) if |A| < α(N − 2), and m = 1, then ∇u ∈ (M
N
N−1 (Ω))N and u ∈ W 1,q

0 (Ω), for
every q < N

N−1
.

Similar results on ψ are proved in [15], where the main assumption is |A| < αN(m−1)
m

.
We point out that, in the last three statements, a better summability assumption

on f does not improve the properties of u: only the size of A is important. Note that
in 3),

lim
m→N

2

|A| ≤ lim
m→N

2

α(N − 2m)

m
= 0.

We observe that the strict inequality in the assumptions on A in 3) and 4) is optimal,
as shown in the following example.

Example 1.1. Consider in 3) |A| = α(N−2)
2

, and note that if m = 2N
N+2

, then N−2m
m

=
N−2

2
. If u is a weak solution of −div(M(x)∇u) = α(N−2)

2
div(u x

|x|2 ) + f(x) then

α

∫
Ω

|∇u|2 ≤ α(N − 2)

2

∫
Ω

|u|
|x|
|∇u|+

∫
Ω

|f ||u|,

so that the use of Young and Hardy inequalities (see (2.2) below) gives, with B > 0,

(α−B)

∫
Ω

|∇u|2 ≤ α2(N − 2)2

16B

∫
Ω

|u|2

|x|2
+

∫
Ω

|f ||u| ≤ α2

4B

∫
Ω

|∇u|2 +

∫
Ω

|f ||u|.

Hence
4B α− 4B2 − α2

4B

∫
Ω

|∇u|2 ≤
∫

Ω

|f ||u|.
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However, 4B α− 4B2 − α2 = −(α+ 2B)2 ≤ 0 for every B, so that it is not possible to
prove standard a priori estimates.

In this paper, we will study the case |A| ≥ α(N − 2) and will prove, in Theorem 2.2
the existence of even more singular distributional solutions of (1.1) (note once more the
importance of the size of A) than the solutions presented in 5) above. More precisely
we prove the existence of a solution u ∈ W 1,q

0 (Ω), for every q < Nα
|A|+α <

N
N−1

, using a

sharp a priori estimate, which is not known in the case E ∈ (LN(Ω))N .
The existence result of Theorem 2.2 is then used to prove in Section 3 (by a duality

method and thanks to the sharp a priori estimate) the existence of bounded weak
solutions of (1.2) if α(N − 2) ≤ |A| < α(N − 1) and g(x) ∈ Lm(Ω), with m > Nα

Nα−|A| .

Note that, in this case, one always has that m > N
2

. Other contributions devoted to
the existence of unbounded solutions can be found in [1], [15], [11], [12].

In all the paper, we assume

(1.6) α(N − 2) ≤ |A| < α(N − 1).

2. The problem (1.1): convection terms

Our starting point is the following Dirichlet problem, similar to the starting point
of [3] (see also [2]).

(2.1) un ∈ W 1,2
0 (Ω) : −div(M(x)∇un) = −A div

(
un

x
1
n

+ |x|2

)
+ fn(x),

where

fn(x) =
f(x)

1 + 1
n
|f(x)|

.

Since both x
1
n

+|x|2 and fn(x) are bounded functions, the existence of a weak solution un

of (2.1) is proved in [2]; furthermore, every solution un is a bounded function, so that
it will be possible to use as test function nonlinear compositions of un.

We will use the following Hardy inequality (see e.g. [10], [17])

(2.2) H
(∫

Ω

|v|2

|x|2

) 1
2

≤
(∫

Ω

|∇v|2
) 1

2

, ∀ v ∈ W 1,2
0 (Ω),

where H = N−2
2

; we will also make use of the well known truncation

Tk(s) =

k
s

|s|
if |s| ≥ k,

s if −k < s < k.

Our first result is an a priori estimate on the sequence {un}.

Lemma 2.1. Assume (1.3), (1.4), (1.6), and

(2.3) f(x) ∈ L1(Ω).

Then the sequence {un} of solutions of (2.1) is bounded in W 1,q
0 (Ω), for every q < Nα

|A|+α ,

with

(2.4)

(∫
Ω

|∇un|q
) 1

q

≤ CE ‖f‖L1(Ω)
.

The constant CE depends on E (see (1.3)), α, Ω.
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Proof. Let

(2.5) θ > 1− α H
|A|

,

so that θ > 1
2

by the assumptions on A (see (1.6)). With this assumption, we have

1− θ < α H|A| , that is to say |A|(1−θ)H < α and so

|A|2 (1− θ)2

H2
< α2 .

Therefore, there exists R > 1 such that

(2.6) R
|A|2 (1− θ)2

H2
< α2.

In the weak formulation of (2.1), we use as test function

D(un) =
(1− |un|1−2θ)+

2θ − 1

un
|un|

.

Note that since θ > 1
2

by (2.5), we have that 1−2θ < 0, that D(un) = 0 where |un| ≤ 1,

and that D′(un) = |un|−2θ where |un| > 1. We then have, thanks to Young inequality
(with 0 < B < α)

(2.7)

∫
{|un|>1}

|∇un|2

|un|2θ
= α

∫
Ω

|∇un|2D′(un)

≤ |A|
∫

Ω

|un|
|x|
|∇un|D′(un) +

1

2θ − 1

∫
Ω

|f |

= |A|
∫

Ω

√
D′(un)

|un|
|x|
|∇un|

√
D′(un) +

1

2θ − 1

∫
Ω

|f |

≤ B

∫
{|un|>1}

|∇un|2

|un|2θ
+
|A|2

4B

∫
{|un|>1}

( |un|1−θ
|x|

)2

+
1

2θ − 1

∫
Ω

|f |.

Now we use the inequality (a + 1)2 ≤ Ra2 + R
R−1

, which holds for every a > 0, and
with R as in (2.6). Therefore,( |un|1−θ

|x|

)2

≤ R
( |un|1−θ − 1

|x|

)2

+
R

R− 1

1

|x|2
,

so that (2.7) becomes

(2.8)

(α−B)

∫
{|un|>1}

|∇un|2

|un|2θ

≤ R
|A|2

4B

∫
Ω

( |un|1−θ − 1

|x|

)2

+
R

R− 1

∫
Ω

1

|x|2
+

1

2θ − 1

∫
Ω

|f |

≤ R
|A|2

4B

(1− θ)2

H2

∫
{|un|>1}

|∇un|2

|un|2θ
+

R

R− 1

∫
Ω

1

|x|2
+

1

2θ − 1

∫
Ω

|f |.

Thus, we have that(
α−B −R |A|

2

4B

(1− θ)2

H2

)∫
{|un|>1}

|∇un|2

|un|2θ
≤ R

R− 1

∫
Ω

1

|x|2
+

1

2θ − 1

∫
Ω

|f | .

In order to have largest possible bound on |A| we are interested in maximizing the
function ψ(B) = B(α−B), and so we choose B = α

2
. Therefore,

(2.9)
(α

2
−R |A|

2

2α

(1− θ)2

H2

)∫
{|un|>1}

|∇un|2

|un|2θ
≤ R

R− 1

∫
Ω

1

|x|2
+

1

2θ − 1

∫
Ω

|f |.
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Thanks to the choice of R in (2.6), we have

α

2
−R |A|

2

2α

(1− θ)2

H2
=

1

2α

(
α2 −R |A|

2(1− θ)2

H2

)
> 0,

so that we have

(2.10)

∫
{|un|>1}

|∇un|2

|un|2θ
≤ C

(∫
Ω

1

|x|2
+

1

2θ − 1

∫
Ω

|f |
)
.

On the other hand the use of T1(un) as test function in (2.1) gives (see [2], [3])

(2.11)

∫
Ω

|∇T1(un)|2 ≤ 1

α2

∫
Ω

1

|x|2
+

2

α

∫
Ω

|f |.

If we put together (2.10) and (2.11), we deduce that∫
{|un|≤1}

|∇un|2 +

∫
{|un|>1}

|∇un|2

|un|2θ
≤ C

(∫
Ω

1

|x|2
+

∫
Ω

|f |
)

Let now 1 < q < Nα
|A|+α . We claim that there exists θ satisfying (2.5) such that

q =
2N(1− θ)
N − 2θ

.

Indeed, this is equivalent to

θ =
N(2− q)
2(N − q)

,

and we have q < Nα
|A|+α if and only if θ > 1 − αH

|A| , which is (2.5). Note that with this

choice of q (depending on θ), we have that

(2.12)
2θq

2− q
=

Nq

N − q
= q∗ and q∗

[1

q
− 1

2

]
=
N(2− q)
2(N − q)

= θ < 1.

Note also that the assumptions on A imply that

(2.13) q <
N

N − 1
.

Then (S denotes the Sobolev constant and 0 < δ < 1)
(2.14)∫

Ω

|∇un|q =

∫
{|un|≤1}

|∇un|q +

∫
{|un|>1}

|∇un|q

=

∫
{|un|≤1}

|∇un|q +

∫
{|un|>1}

|∇un|q

|u|qθ
|un|qθ

≤
(∫

{|un|≤1}
|∇un|2

) q
2

|Ω|1−
q
2 +

(∫
{|un|>1}

|∇un|2

|un|2θ

) q
2
(∫

Ω

|un|q
∗
) 1

q∗ q
∗[1− q

2
]

≤ C

(∫
Ω

1

|x|2
+

∫
Ω

|f |
) q

2

+
C

S

(∫
Ω

1

|x|2
+

∫
Ω

|f |
) q

2
(∫

Ω

|∇un|q
)q∗[ 1

q
− 1

2
]

≤ C

(∫
Ω

1

|x|2
+

∫
Ω

|f |
) q

2

+ δ

∫
Ω

|∇un|q +
C1

4δ

1

S
1

1−θ

(∫
Ω

1

|x|2
+

∫
Ω

|f |
) q

2
1

1−θ

.
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Therefore, since q
2

1
1−θ = N−q

N−2
,

(2.15)

(1− δ)
∫

Ω

|∇un|q

≤ C

(∫
Ω

1

|x|2
+

∫
Ω

|f |
) q

2

+
C

4δ

1

S
1

1−θ

(∫
Ω

1

|x|2
+

∫
Ω

|f |
) q

2
1

1−θ

≤ CE + C

(∫
Ω

|f |
) q

2

+ C

(∫
Ω

|f |
)N−q

N−2

.

Moreover, for t ∈ R+, we have

t un ∈ W 1,2
0 (Ω) : −div(M(x)∇(t un)) = −A div

(
(t un)

x
1
n

+ |x|2
)

+ t fn(x),

so that from (2.15) it follows that the sequence {t un} satisfies the estimate

(1− δ)
∫

Ω

|∇un|q ≤ CE t
−q + C t−q/2

(∫
Ω

|f |
) q

2

+ C t
N−q
N−2

−q
(∫

Ω

|f |
)N−q

N−2

.

Now we choose t = ‖f‖−1

L1(Ω)
and we deduce that

(1− δ)
∫

Ω

|∇un|q ≤ CE ‖f‖q
L1(Ω)

+ C ‖f‖q/2
L1(Ω)
‖f‖

q
2

L1(Ω)
+ C ‖f‖q−

N−q
N−2

L1(Ω)
‖f‖

N−q
N−2

L1(Ω)
,

that is (2.4). �

Once we have an a priori estimate, we can prove an existence result for problem
(1.1).

Theorem 2.2. Assume (1.3), (1.4), (1.6), (2.3). Then there exists a distributional
solution u of (1.1), with u ∈ W 1,q

0 (Ω), for every q < Nα
|A|+α ; that is

(2.16)

∫
Ω

M(x)∇u∇ϕ =

∫
Ω

uE(x)∇ϕ+

∫
Ω

f(x)ϕ, ∀ ϕ ∈ C1
0(Ω).

Moreover, u satisfies the a priori estimate

(2.17)

(∫
Ω

|∇u|q
) 1

q

≤ CE ‖f‖L1(Ω)
.

Proof. In the previous lemma we have proved the boundedness of the sequence {un}
in W 1,q

0 (Ω), where 1 < q < Nα
|A|+α . The reflexivity of W 1,q

0 (Ω) and Rellich theorem

imply the existence of a subsequence {unj} and a function u ∈ W 1,q
0 (Ω) such that unj

converges to u weakly in W 1,q
0 (Ω) and strongly in Lρ(Ω), for every ρ < q∗.

Thus we can pass to the limit in the weak formulation of (2.1)∫
Ω

M(x)∇un∇ϕ = A

∫
Ω

un
x

1
n

+ |x|2
∇ϕ+

∫
Ω

fn(x)ϕ(x), ∀ ϕ ∈ C1
0(Ω),

since ∇unj converges weakly in (Lq(Ω))N to ∇u (here we use the linearity of the

principal part), un
x

1
n

+|x|2 strongly converges in (L1(Ω))N to u x
|x|2 (note that 1

q∗
+ 1
N
< 1),

and fn strongly converges in L1(Ω) to f .
The weak lower semicontinuity of the norm in (2.4) implies the estimate (2.17). �

Remark 2.3. Note that if |A| = α(N − 2), then we have estimates on u ∈ W 1,q
0 (Ω),

for every q < Nα
|A|+α = N

N−1
; thus, the results of the above theorem are consistent with

those of the case |A| < α(N − 2) quoted in 5) of the introduction.
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Remark 2.4. Here we consider the boundary value problem (1.1) in the radial case
with Ω = B(0, 1), E = A x

|x|2 , and principal part the Laplace operator −∆. We rewrite

the differential operator as

−∆u+ div(E(x)u) = −div(∇u+ E(x)u) = −div
(
∇u+ A

x

|x|2
u
)
,

and we look for radial solutions. We claim that u = |x|−A−|x|2 is a solution wit datum
f = −N(A+ 2). Indeed ∇u = −A x

|x|A+2 − 2x, so that we have

−div
(
−A x

|x|A+2
−2x+A

x

|x|2
[
|x|−A−|x|2

])
= −div(−2x−Ax) = −N(A+2) = f(x).

Observe that if A < N − 1 then u belongs to W 1,q
0 (Ω), for every q < N

A+1
, as stated in

Theorem 2.2, and that, despite the datum f belongs to L∞(Ω), there is no “elliptic-
type” improvement of the summability of u.

3. The problem (1.2): drift terms

In this section, on the right hand side g(x) of (1.2) we assume

(3.1) g(x) ∈ Lm(Ω), m >
Nα

Nα− |A|
,

while on E and A we still assume (1.3) and (1.6).
In order to prove the existence of bounded weak solutions of the boundary value

problem (1.2), we will merge a duality method with an approximation approach, as in
[5] (see also Remark 3.3).

We start with the (nonlinear) boundary value problem

(3.2)

−div(M(x)∇ψn) = A
x · ∇ψn
1
n

+ |x|2
1

1 + 1
n
|∇ψn|

+ g(x) in Ω,

ψn = 0 on ∂Ω.

The Schauder fixed point theorem guarantees the existence of a weak solution ψn ∈
W 1,2

0 (Ω), since the secon term of the equation is bounded. Moreover the result by
Stampacchia (see [16]) yields the boundedness of every ψn, since the second term of
the equation is bounded and g ∈ Lm(Ω), m > N

2
, a a consequence of (3.1) and (1.6):

indeed,

m >
Nα

Nα− |A|
>
N

2
.

Consider now the following boundary value problem (dual of (3.2)).

(3.3)

−div(M(x)∇un) = −A div

(
un

x
1
n

+ |x|2
1

1 + 1
n
|∇ψn|

)
+ gn(x) in Ω,

un = 0 on ∂Ω,

with

gn(x) =
g(x)

1 + 1
n
|g(x)|

.

Since both fn(x) and
x

1
n

+ |x|2
1

1 + 1
n
|∇ψn|
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are bounded functions as in (2.1), the existence of a solution un of (3.3) follows as in
the previous section. Furthermore, since

1

1 + 1
n
|∇ψn|

≤ 1 ,

the same techniques used in order to prove Lemma 2.1 for solutions of (2.1) work also
for problem (3.3), so that the sequence un satisfies (2.4).

Lemma 3.1. Assume (1.3), (1.4), (1.6), (3.1). Then the sequence {ψn} is bounded in
W 1,2

0 (Ω) ∩ L∞(Ω), with

(3.4) ‖ψn‖L∞(Ω)
≤ CE ‖g‖Lm(Ω)

.

Proof. The use of un as test function in the weak formulation of (3.2) and the use of
ψn as test function in the weak formulation of (3.3) give∣∣∣∣ ∫

Ω

fn ψn

∣∣∣∣ =

∣∣∣∣ ∫
Ω

g un

∣∣∣∣.
Let now q be such that m′ = q∗; thanks to the assumptions on m, we have that
q < Nα

|A|+α . Let p > 1, and define fn = |ψn|p−2ψn; then we have, using (2.4),∫
Ω

|ψn|p ≤
∫

Ω

|g| |un| ≤ ‖g‖Lm(Ω)
‖un‖Lq∗ (Ω)

≤ CE ‖g‖Lm(Ω)
‖fn‖L1(Ω)

,

that is, recalling the choice of fn,∫
Ω

|ψn|p ≤ CE ‖g‖Lm(Ω)

∫
Ω

|ψn|p−1 ≤ CE ‖g‖Lm(Ω)

(∫
Ω

|ψn|p
) 1

p′

.

Thus,

(3.5)

(∫
Ω

|ψn|p
) 1

p

≤ CE ‖g‖Lm(Ω)
.

Letting p tend to infinity in (3.5), we obtain (3.4).
We now use of ψn as test function in the weak formulation of (3.2); then

α

∫
Ω

|∇ψn|2 ≤ |A|
∫

Ω

1

|x|
|∇ψn||ψn|+

∫
Ω

|g(x)||ψn|,

and

(3.6)
α

2

∫
Ω

|∇ψn|2 ≤
|A|
2α

(CE ‖g‖Lm(Ω)
)2

∫
Ω

1

|x|2
+ CE ‖g‖Lm(Ω)

∫
Ω

|g(x)|,

which is the desired estimate in W 1,2
0 (Ω). �

Theorem 3.2. Assume (1.3), (1.4), (1.6) and (3.1). Then there exists a bounded weak
solution ψ of the problem (1.2), that is∫

Ω

M(x)∇ψ∇v = A

∫
Ω

x · ∇ψ
|x|2

v(x) +

∫
Ω

g(x) v(x), ∀ v ∈ W 1,2
0 (Ω).

Moreover ψ satisfies the a priori estimate

(3.7) ‖ψ‖
L∞(Ω)

≤ CE ‖g‖Lm(Ω)
.
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Proof. In the previous lemma we proved the boundedness of the sequence {ψn} in
W 1,2

0 (Ω). The reflexivity of W 1,2
0 (Ω) and Rellich theorem imply the existence of a

subsequence {ψnj} and a function u ∈ W 1,2
0 (Ω) such that ψnj converges to ψ weakly

in W 1,2
0 (Ω) and strongly in Lρ(Ω), for every ρ < 2∗. Moreover, the right hand side of

(3.2) is bounded in Lσ(Ω), with σ < 2N
N+2

, so that we can use a result of [7] to conclude
that ∇ψnj(x) converges almost everywhere in Ω to ∇ψ(x).

Thus we can pass to the limit in the weak formulation of (3.2):∫
Ω

M(x)∇ψnj∇v = A

∫
Ω

x · ∇ψnj
1
nj

+ |x|2
1

1 + 1
nj
|∇ψnj |

v(x) +

∫
Ω

gnj(x) v(x),

which holds for every v ∈ W 1,2
0 (Ω), since ∇ψnj converges weakly in (L2(Ω))N to ∇ψ

(here we use the linearity of the principal part),
x·∇ψnj
1
nj

+|x|2
1

1+ 1
nj
|∇ψnj |

strongly converges

in (Lσ(Ω))N to x·∇ψ
|x|2 (recall the above almost everywhere convergence of the gradients),

and gnj strongly converges to g in Lm(Ω). Furthermore, assing to the limit in (3.4)
implies (3.7). �

Remark 3.3. We recall that in [5] it is proved the existence of bounded weak solutions
Ψ of the boundary value problem

(3.8)

{
−div(M(x)∇Ψ) + µΨ = E(x)∇Ψ +G(x) in Ω,

ψ = 0 on ∂Ω,

under the assumptions µ > 0, G ∈ L∞(Ω), E ∈ (L2(Ω))N .
It is not possible a comparison between this result and the existence result for (1.2),

since the assumptions µ > 0, G ∈ L∞(Ω) of (3.8) are stronger and the assumption
E ∈ (L2(Ω))N is weaker.

We point out that the existence of Ψ (in [5]) is proved by duality, thanks to the
estimate

(3.9) ‖µw‖
L1(Ω)

≤ ‖F‖
L1(Ω)

on the solution of the Dirichlet problem

(3.10) −div(M(x)∇w) + µw = −div(wE) + F.

The estimate (3.9) looks like the classical estimate of the Dirichlet problems with
E = 0; however, in the case E = 0 the estimate ‖µw‖

Lp(Ω)
≤ ‖F‖

Lp(Ω)
holds for every

p > 1, so that we can hope for the validity of this estimate even in the case E 6= 0.
Unfortunately the following radial example shows that such estimate is not true.

Consider the Dirichlet problem (3.10) in radial case with N > 6, Ω = B(0, 1),
µ = 4(N − 6), E = (N − 4) x

|x|4 , F = −4(N − 6)|x|6−N and principal part the Laplace

operator −∆. Thus, we are studying the differential problem

µw(r) = w′′(r) +
N − 1

r
w′(r) +

A(N − 4)w

r4
+
Aw′

r3
+ F, w(1) = 0.

The function r4−N − r6−N is a solution. Now we note that F ∈ Lρ(Ω), ρ < N
N−6

and

w ∈ Lσ(Ω), σ < N
N−4

and, of course, N
N−4

< N
N−6

; that is the summability of the solution
w is always (recall taht N is large) worse than the summability of F , except for the
case L1, proved in [3].
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Remark 3.4. In Theorem 3.2 we have proved that if N−2 ≤ |A| < N−1, if m > N
N−|A| ,

and if un is a solution of

−div(A(x)∇un) = A
x

1
n

+ |x|2
· ∇un

1 + 1
n
|∇un|

+ y ,

with y in Lm(Ω), then un belongs to L∞(Ω), and there exists a constant C > 0 such
that

(3.11) ‖un‖L∞(Ω)
≤ C ‖y‖

Lm(Ω)
.

Clearly, the same result holds for a sequence of data {yn} belonging to Lm(Ω), with
the estimate

‖un‖L∞(Ω)
≤ C ‖yn‖Lm(Ω)

,

which implies that if yn tends to zero in Lm(Ω), then un uniformly converges to zero
in Ω.

Let now q be in (0, 1), and A = −(N + q − 2), so that N − 2 < A < N − 1. Define

u(r) =
1

q
(1− rq).

It is easy to see that u(r) is such that

−∆u = (N + q − 2)
1

r2−q = −A 1

r2−q = A
x

|x|2
∇u .

In other words u, which is different from zero, is a solution of

−∆u = A
x

|x|2
∇u+ 0 .

This seems to be in contrast with (3.11), since one should have that the solution with
datum y = 0 is zero. However, u is also a solution of

−∆u = A
x

1
n

+ |x|2
· ∇u

1 + 1
n
|∇u|

+
[
A

x

|x|2
∇u− A x

1
n

+ |x|2
· ∇u

1 + 1
n
|∇u|

]
,

that is of

−∆u = A
x

1
n

+ |x|2
· ∇u

1 + 1
n
|∇u|

+ yn ,

where

yn = A
x

|x|2
∇u− A x

1
n

+ |x|2
· ∇u

1 + 1
n
|∇u|

.

It is easy to see that yn does not belong to Lm(Ω), with m > N
N−|A| . Indeed, in this

case,
N

N − |A|
=

N

N − (N + q − 2)
=

N

2− q
,

while

yn = (N + q − 2)
1

r2−q + an L∞(Ω) function,

so that yn only belongs Ls(Ω) for every s < N
2−q , and not better, due to the fact that

the L∞(Ω) part of yn does not improve the singularity at the origin. In other words,
yn tends to zero, but only in Ls(Ω), with s < N

2−q . Therefore, u solves the equation

−∆u = A
x

1
n

+ |x|2
· ∇u

1 + 1
n
|∇u|

+ yn ,
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with yn that does not tend to zero in Lm(Ω) with m > N
N−|A| . Hence, the results of

Theorem 3.2 does not apply, and there is no contradiction between the theorem and
the example presented in this remark.

Remark 3.5. Even if (1.1) and (1.2) are problems in duality, our approach in the
study of the two problems is different: for the first one we use a test function method
which gives a priori estimates; this method is not used in the study of the second
problem. The reason for this different approach is explained here: with the boundary
value problem (3.2) as starting point, we will show that is not possible to find a real
function Φ(s), such that the use of Φ(ψn) as test function yields a priori estimates on
the sequence {un} in some function space.

First of all, we consider the case E ∈ (LN(Ω))N , and g(x) smooth. Let ψn be a weak
solution of the Dirichlet problem (analogous to (3.2))

ψn ∈ W 1,2
0 (Ω) : −div(M(x)∇ψn) =

E(x) · ∇ψn
1 + 1

n
|∇ψn|

+ g(x),

and let Φ(s) be a real increasing Lipschitz continuous function, with Φ(−s) = −Φ(s).
If we use Φ(ψn) as test function in the weak formulation of (3.2), we have
(3.12)

α

∫
Ω

|∇un|2 Φ′(un) ≤
∫

Ω

|E(x)||∇un||Φ(un)|+
∫

Ω

gΦ(un)

≤ ‖E‖
LN (Ω)

[ ∫
Ω

|∇un|2 Φ′(un)

] 1
2
[ ∫

Ω

(
Φ(un)√
Φ′(un)

)2∗] 1
2∗

+

∫
Ω

gΦ(un)

≤
‖E‖

LN (Ω)

S

[ ∫
Ω

|∇un|2 Φ′(un)

] 1
2
[ ∫

Ω

|∇un|2
(

2[Φ′(un)]2 − Φ(un) Φ′′(un)

2 Φ′(un)
√

Φ′(un)

)2] 1
2

+

∫
Ω

gΦ(un)

In order to have a priori estimates, we suppose that there exists 0 < θ < αS
‖E‖

LN (Ω)
such

that (
2[Φ′(un)]2 − Φ(un) Φ′′(un)

2 Φ′(un)
√

Φ′(un)

)2

≤ θ2Φ′(un),

that is

{2[Φ′(un)]2 − Φ(un) Φ′′(un)}2 ≤ 4θ2Φ′(un)4,

which is equivalent to

−2θΦ′(un)2 ≤ 2[Φ′(un)]2 − Φ(un) Φ′′(un) ≤ 2θΦ′(un)2.

We prove now that it is not possible to find a nontrivial function Φ(s) satisfying the
inequality

2[Φ′(s)]2 − Φ(s) Φ′′(s) ≤ 2θΦ′(s)2.

Indeed, this inequality is equivalent to

(3.13) 0 ≤ d

ds
[log(Φ′(s))− 2(1− θ) log(Φ(s))].

We thus have the following chain of equivalences: (3.13) is equivalent to

log

(
Φ′(s)

Φ(s)2(1−θ)

)
is increasing, which is equivalent to

Φ′(s)

Φ(s)2(1−θ) is increasing,



12 LUCIO BOCCARDO - LUIGI ORSINA

and the last one is equivalent to

[Φ(s)]1−2(1−θ)

1− 2(1− θ)
is convex.

We note now that θ may be small, due to the fact that we do not want to impose bounds
on the norm of E in LN(Ω) (such bounds will yield a coercive differential operator);
therefore, we are interested in the cases when θ is close to 0, i.e., in the cases in which
1− 2(1− θ) < 0. Under this assumption, we have that Λ(s) = 1

[Φ(s)]2(1−θ)−1 is concave;

however,

lim
s→0+

Λ(s) = lim
s→0+

1

[Φ(s)]2(1−θ)−1
= +∞ ,

which contradicts the fact that Λ is concave.

Now, we consider the case in which (1.3) holds, with g(x) a smooth function. Let
ψn be a weak solution of the Dirichlet problem (3.2), and use Φ(ψn) as test function.
Then, if H is the Hardy constant, we have

α

∫
Ω

|∇un|2 Φ′(un) ≤ |A|
∫

Ω

|∇un|
|x|

Φ(un)

≤ |A|
[ ∫

Ω

|∇un|2 Φ′(un)

] 1
2
[ ∫

Ω

1

|x|2

(
Φ(un)√
Φ′(un)

)2] 1
2

+

∫
Ω

gΦ(un)

≤ |A|
H

[ ∫
Ω

|∇un|2 Φ′(un)

] 1
2
[ ∫

Ω

|∇un|2
(

2[Φ′(un)]2 − Φ(un) Φ′′(un)

2 Φ′(un)
√

Φ′(un)

)2] 1
2

+

∫
Ω

gΦ(un)

Thus we have again (3.12), even if with different constants; in this case, the condition
to impose on θ in order to have a priori estimates is

(3.14) θ
|A|
H

< α.

If |A| ≥ (N − 2)α, then |A|
H ≥ 2α; in order for (3.14) to hold, one must choose θ < 1

2
;

in this case, however, 1− 2(1− θ) < 0, which yields a contradiction as above. In other
words, if |A| ≥ (N − 2)α, which is the assumption of Theorem 3.2 above, it is not
possible to obtain estimates on the solution ψn using test functions depending on the
solution itself.
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