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Abstract
Recently, Hopfield and Krotov introduced the concept of dense associative 
memories [DAM] (close to spin-glasses with P-wise interactions in a disordered 
statistical mechanical jargon): they proved a number of remarkable features 
these networks share and suggested their use to (partially) explain the success 
of the new generation of Artificial intelligence. Thanks to a remarkable ante-
litteram analysis by Baldi & Venkatesh, among these properties, it is known 
these networks can handle a maximal amount of stored patterns K scaling as 
K ∼ NP−1.

In this paper, once introduced a minimal dense associative network as 
one of the most elementary cost-functions falling in this class of DAM, we 
sacrifice this high-load regime -namely we force the storage of solely a linear 
amount of patterns, i.e. K = αN  (with α > 0)- to prove that, in this regime, 
these networks can correctly perform pattern recognition even if pattern signal 
is O(1) and is embedded in a sea of noise O(

√
N), also in the large N limit. To 

prove this statement, by extremizing the quenched free-energy of the model 
over its natural order-parameters (the various magnetizations and overlaps), 
we derived its phase diagram, at the replica symmetric level of description and 
in the thermodynamic limit: as a sideline, we stress that, to achieve this task, 
aiming at cross-fertilization among disciplines, we pave two hegemon routes 
in the statistical mechanics of spin glasses, namely the replica trick and the 
interpolation technique.

Both the approaches reach the same conclusion: there is a not-empty 
region, in the noise-T versus load-α phase diagram plane, where these 
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networks can actually work in this challenging regime; in particular we 
obtained a quite high critical (linear) load in the (fast) noiseless case resulting 
in limβ→∞ αc(β) = 0.65.

Keywords: artificial neural networks, statistical mechanics of spin glasses, 
mean field methods

(Some figures may appear in colour only in the online journal)

1. Introduction

Due to an increase in the GPU processing power [34, 44], availability of large data-sets for 
training stages and the (deep) multi-layer architectures where neural networks can finally be 
embedded [45, 46], their impressive skills -overall termed deep learning [38]- keep achieving 
successes in the most disparate fields of science and technology [17, 33, 37, 39, 40, 48–50] 
(particularly outperforming at work in biomedical imaging, where they -noawadays- detect 
patterns possibly earlier than humans [29]).

Despite a number of remarkable progresses (e.g. [2, 5, 9, 13, 18, 20, 21, 23, 27, 28, 31, 
32, 41–43]), these computational successes yet lack a full theoretical bulk behind (e.g. as 
made available in the pairwise limit of shallow networks as Hopfield and Boltzmann machines 
[19]), hence the quest for a rationale where different know-how(s) possibly merge is nowa-
days mandatory in the agenda of several research groups, ranging from computer science 
to applied mathematics (possibly crossing theoretical physics at its proliferative intersection 
offered by statistical mechanics of spin glasses).

In these regards, recently, Hopfield and Krotov proposed as an underlying bridge between 
deep neural networks and dense associative memories [24, 35, 36] (the latter being P-spin 
extensions [4, 25] of the celebrated Hopfield classical pairwise limit [30]) proving how these 
higher-order cost functions are more robust against adversarial and rubbish inputs.

Furthermore, this class of neural networks was deeply analyzed by Venkatesh & Baldi 
and Bovier & Niederhauser in the past [8, 16] and it is known that -calling K the number of 
patterns to handle, N the amount of neurons to accomplish the task and P the order of their 
interactions- their critical capacity scales as K ∝ NP−1 (and collapses to the standard one, i.e. 
K  =  0.14N, in the known pairwise limit of P  =  2 [7]).

Recently some of the authors addressed the statistical mechanical analysis of a generalized 
RBM introduced in the literature by Terrence Sejnowski in 1984 [47] and proved that it was 
able to perform pattern recognition of patterns whose intensity stays O(1) even in a sea of 
noise O(

√
N) in the large N limit [6]. It was also shown a dual representation of this network 

in terms of a peculiar form of the class of models suggested by Hopfield and Krotov [6]: as 
in the pairwise counterpart [1, 11], this duality played as a crucial step to explain this skill of 
these machines as they can be obtained by keeping the network’s load away from the maxi-
mal regime (the Baldi & Venkatesh limit [8]). We stress that the inspection of the low-storage 
regimes for these networks already started in [10].

Here we continue along this investigation [6, 10], focusing on pattern recognition 
at extremely low signal-to-noise ratios, by proving that such a skill is not peculiar to the 
Sejnowski machine (see appendix C): still focusing on four-wise interactions among discrete 
neurons, it holds for a broader class of Hopfield and Krotov models (w.r.t. one used in [6]) 
that we call minimal dense associative memory (MDAM). In particular we provide a phase 
diagram for the MDAM, at the replica symmetric level of description and in the linear-storage 
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regime, to show that there is a huge region in the plane of the two tunable parameters -load α 
and noise β- where this phenomenon happens (here limβ→∞ αc(β) = 0.65).

For the sake of cross-fertilization, we present our results paving at first the standard route 
of the replica trick [19], then confirming the picture obtained by the RS-ansatz by suitably 
adapting to the case a Guerra’s interpolation scheme [3, 12].

2. Minimal dense associative memory

Here we introduce a minimal cost function of the form suggested by Hopfield and Krotov, 
namely the minimal dense associative memory (MDAM).

Definition 1. 

H(σ|η) = − 1
2N3

K∑
µ=1

( N∑
i,j=1

ηµij σiσj

)2

 (2.1)

where σi = ±1, i ∈ (1, ..., N), are Ising spin and ηµij  is the symmetric synaptic tensor.

Our goal is to prove how this model can retrieve patterns of information also when they are 
immersed in a background of a O(

√
N) Gaussian noise. This result can be achieved by requir-

ing the network to store only O(N) patterns instead of the theoretical upper limit of O(N3). In 
order to do that, we introduce the following decomposition of the synaptic tensor

Definition 2. The load of the network α, as anticipated, is defined as

α = lim
N→∞

K
N

, (2.2)

while, the signal+noise decomposition reads

ηµij =
1√

1 + α
(ξµij +

√
KJµij ), (2.3)

where ξµij  is the tensor, with entries ±1, constituting the ‘matrix’ signal, while the noise is 
embedded in the symmetric tensor Jµij , whose entries are i.i.d. N (0, 1) variables.

Remark 1. The noise is given by the product 
√

KJµij , which in the thermodynamic limit 
globally scales as O(

√
N), as K ∼ N .

We are interested in the study of the retrieval phase of the network; for simplicity we 
restrict ourselves to the study of the retrieval of pure states. The retrieved pattern is arbitrary: 
we just denote it by ξ1

ij; the remaining states ξµij , with µ > 1, will then constitute a quenched 
noise for the system. Hence, we perform a quenched average over the P  −  1 remaining states 
ξµij  together with the amplified Jµij  noise, by introducing the following expectation operator

E ≡
( N,N,K∏

i,j,µ>1

1
2

∑
ξµij =±1

)( N,N,K∏
i,j,µ�1

∫
DJµij

)
. (2.4)

As usual, all the thermodynamic properties can be derived from the quenched pressure5

5 Notice that the pressure is strictly related to the quenched intensive free energy f  as A = −βf .
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Definition 3. In the thermodynamic limit, the quenched pressure reads

AN = lim
N→∞

1
N
E ln ZN , (2.5)

where ZN is the partition function, defined as

ZN =
∑
σ

exp (−βH) =
∑
σ

exp
( β

2N3

K∑
µ=1

( N∑
i,j=1

ηµij σiσj
)2
)

. (2.6)

Remark 2. The partition function ZN can be written by introducing auxiliary Gaussian vari-
ables as follows

ZN =

∫
Dz

∑
σ

exp
(√ β

N3

K∑
µ=1

N∑
i,j=1

ηµij σiσjzµ
)

, (2.7)

where 
∫

Dz ≡
∫ ∏K

µ=1 Dzµ and Dzµ the N (0, 1) measure relative to the µ component of the 
vector zµ. We stress that, written in this form, the partition function is equivalent to that of 
a bi-partite system, with the hidden layer z added to the visible one, σ. The hidden layer is 
therefore filled with real valued gaussian N (0, 1) neurons.

In the following two sub-sections, we will tackle the problem of finding an explicit expres-
sion for the above pressure in the thermodynamic limit in terms of the natural order param-
eters of the model, defined only after having introduced n replicas of the system (as usual in 
the context of replica trick and interpolation technique calculations).

Definition 4. The overlap qab among two replicas (a, b = 1, .., n) of the system is defined as

qab =
1
N

N∑
i=1

σa
i σ

b
i . (2.8)

Equivalently, the overlap relative to the hidden layer is defined as:

pab =
1

K − 1

K∑
µ=2

za
µzb

µ. (2.9)

The Mattis magnetization, for a generic pattern ξµi , and for a generic replica a of the system, 
reads:

ma
µ =

1
N

N∑
i=1

ξµi σ
a
i . (2.10)

We here introduce the matrix magnetization (also relative to the ath replica):

Ma
µ =

1
N2

N∑
i,j=1

ξµij σ
a
i σ

a
j . (2.11)

F Alemanno et alJ. Phys. A: Math. Theor. 53 (2020) 074001
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2.1. Route one: replica trick

The replica trick is based on the following identity:

A = lim
N→∞

1
N
E ln ZN = lim

N→∞
lim
n→0

lnEZn
N

nN
.

 (2.12)
Introducing the decomposition (2.3), the EZn

N  partition function becomes

EZn
N =

( n∏
a=1

∑
σa

)∫ ( n∏
a=1

Dza
)
E exp

(√ β

(1 + α)N3

n∑
a=1

K∑
µ=1

N∑
i,j=1

ξµij σiσjzµ

+

√
βα

(1 + α)N2

n∑
a=1

K∑
µ=1

N∑
i,j=1

Jµij σiσjzµ
)

.

 (2.13)
We now assume that only a single pattern (say ξ1) is candidate for retrieval. Therefore, all 
patterns with µ � 2 will contribute to the noise. We can therefore factorize the signal (µ = 1) 
from the global noise (µ > 1) in the partition function. Thus, the quenched average of the nth 
power of the partition function reads

EZn =
( n∏

a=1

∑
σa

)
E exp

[ β

2(1 + α)

n∑
a=1

(√
NMa

1 +

√
α

N

N∑
i,j=1

J1
ijσ

a
i σ

a
j

)2]
×

×
∫ ( n∏

a=1

D{za}µ>1

)
exp

(√ β

(1 + α)N3

n∑
a=1

K∑
µ>1

N∑
i,j=1

(
ξµij +

√
αNJµij

)
σa

i σ
a
j za

µ

)
.

 (2.14)

In the first line, we can simply drop out the Gaussian contribution from the signal term, since

1
N

∑
i,j

J1
ijσ

a
i σ

a
j ∼ O(1), (2.15)

for each a = 1, . . . , n6. Then, the we can split the nth power of the partition function as

EZn =
( n∏

a=1

∑
σa

)
ZsignalZnoise, (2.17)

where

Zsignal = exp
[ βN

2(1 + α)

n∑
a=1

(Ma
1)

2
]
,

Znoise =

∫ ( n∏
a=1

D{za}µ>1

)
E exp

(√ β

(1 + α)N3

n∑
a=1

K∑
µ>1

N∑
i,j=1

(
ξµij +

√
αNJµij

)
σa

i σ
a
j za

µ

)
.

 (2.18)

First, we focus on the signal term. The matrix magnetization (2.11) measures the over-
lap of the product σiσj in the direction specified by the matrix ξij

7. However, the network 

6 Recall that only terms that are linear extensive in N do contribute in the exponent, as lower order terms disappear 
in the thermodynamic limit. The 

√
NMa

1 term has the correct scaling

1
N3/2

∑
i,j

ξ1
ijσ

a
i σ

a
j ∼ O(N1/2), (2.16)

which becomes O(N), given the presence of the square in equation (2.14) and for this reason it cannot be ne-
glected: it represents the signal in the network.
7 We omit the ‘upper’ index in ξ1

ij, since it plays no role in what follows.
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configuration is fixed by specifying the value of the N variables σi, while the ξij has ∼ N2 
degrees of freedom. This means that the network configuration could not retrieve a general 
tensor8. This issue is removed by working directly with factorized information patterns, i.e. in 
the form ξij ≡ ξiξj . This has an interesting consequence: the matrix magnetization factorizes 
in the square of the Mattis magnetization:

Ma =
( 1

N

N∑
i=1

ξiσ
a
i

)2
= (ma)

2. (2.19)

Hence, the signal term is simply9

Zsignal =

∫ (∏
a

dmadm̂a

)
exp

(
− iN

∑
a

mam̂a − i
∑

a

m̂a

∑
i

ξiσ
a
i + N

β

2(1 + α)

∑
a

m4
a

)
,

 (2.20)
where m̂a is the conjugated momentum of ma, and naturally arises from the Fourier representa-
tion of the Dirac delta

1 =

∫ ∏
a

dmaδ(ma −
1
N

∑
i

ξiσ
a
i ). (2.21)

Concerning the noise term, it can be evaluated as (see appendix A.1)

Znoise =

∫ (∏
a,b

dqabdpabdq̂abdp̂ab

)
exp

(
− αN

2
ln det(I+ 2iP̂)

)

× exp
(

iN
∑
a,b

qabq̂ab − i
∑

i

∑
a,b

q̂abσ
a
i σ

b
i + iαN

∑
a,b

pabp̂ab +
βα2

2(1 + α)

n∑
a,b=1

q2
abpab

)
.

 (2.22)
Again, the parameters q̂ab and p̂ab are the conjugate momenta of qab and p ab. Putting together 
our results, we end up with the following expression:

EZn =

∫ (∏
a,b

dqabdpabdq̂abdp̂ab

)(∏
a

dmadm̂a

)
exp

(
− αN

2
ln det(I+ 2iP̂)

+ iN
∑
a,b

qabq̂ab + iαN
∑
a,b

pabp̂ab +
βα2

2(1 + α)

n∑
a,b=1

q2
abpab

+ iN
∑

a

mam̂a + N
β

2(1 + α)

∑
a

m4
a

)

×
( n∏

a=1

∑
σa

)
exp

(
− i

∑
i

∑
a,b

q̂abσ
a
i σ

b
i − i

∑
a

m̂a

∑
i

ξiσ
a
i

)
.

 (2.23)
The last line in the latter equation can be written as

8 It can be shown that, when the pattern ξij is not fully factorized in the product of two copies of the same vector ξi, 
there are no possible spin configurations σ giving |M| = 1. Roughly speaking, this is due to the fact that the matrix 
ξij has O(N2) degrees of freedom, in contrast to the solely O(N) of a N-spin network.
9 We neglect the irrelevant term 

( N
2π

)
2n, as it gives no contribution in equation (2.12).

F Alemanno et alJ. Phys. A: Math. Theor. 53 (2020) 074001
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( n∏
a=1

∑
σa

)
exp

(
− i

∑
i

∑
a,b

q̂abσ
a
i σ

b
i − i

∑
a

m̂a

∑
i

ξiσ
a
i

)

= exp
[
N

〈
ln
( n∏

a=1

∑
σa=±1

)
exp

(
− i

∑
a,b

q̂abσ
aσb − i

∑
a

m̂aξσ
a
)〉

ξ

] (2.24)

where the average over ξ has been defined as

〈g(ξ)〉ξ ≡ lim
N→∞

1
N

N∑
i=1

g(ξi). (2.25)

Assuming the commutativity of the two limits N → ∞ and n → 0 (following the replica trick 
paradigm [15]), we can compute the statistical pressure in the thermodynamic limit through 
the saddle point method, which gives

A = lim
n→0

1
n

Extrφ, (2.26)

where φ is the argument of the exponential in the partition function (see equations (2.23) and 
(2.24)), i.e.:

φ = i
∑
a,b

qabq̂ab + iα
∑
a,b

pabp̂ab +
βα2

2(1 + α)

n∑
a,b=1

q2
abpab −

α

2
ln det(I− 2iP̂)

+ i
∑

a

mam̂a +
β

2(1 + α)

∑
a

m4
a +

〈
ln
∑
σ

exp
(
− i

∑
a,b

q̂abσ
aσb − i

∑
a

m̂aξσ
a
)〉

ξ

.
 (2.27)

We can drop out the conjugates momenta by imposing the saddle point conditions on p ,q and 
m respectively, which correspondingly give

p̂ab =
i
2

βα

1 + α
q2

ab, q̂ab = i
βα2

1 + α
qabpab, m̂a = 2i

β

1 + α
m3

a. (2.28)

With these conditions, we obtain a simpler form for φ, namely:

φ =− βα2

1 + α

∑
a,b

q2
abp2

ab −
α

2
ln det(I+

βα

1 + α
Q)− 3

2
β

1 + α

∑
a

m4
a

+

〈
ln
∑
σ

exp
( βα2

1 + α

∑
a,b

qabpabσ
aσb − 2β

1 + α
ξ
∑

a

m3
aσ

a
)〉

ξ

,
 

(2.29)

where the matrix Q has been defined as Qab ≡ q2
ab.

Definition 5. The replica symmetric ansatz (RS) for this network model reads

qab = δab + q(1 − δab), pab = pDδab + p(1 − δab), ma = m. (2.30)

We are now able to enunciate the following proposition regarding the quenched pressure 
(2.5) in the RS ansatz:

Proposition 1. The replica symmetric expression of the quenched pressure related to the 
model (1) reads

F Alemanno et alJ. Phys. A: Math. Theor. 53 (2020) 074001
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ARS = ln 2 − βα2

1 + α
(qp − q2p)− α

2
ln

(
1 − βα

1 + α
(1 − q2)

)
+

α

2
βα

1 + α

q2

1 − βα
1+α (1 − q2)

− 3
2

β

1 + α
m4 +

∫
Dx ln cosh

(√
2
βα2

1 + α
pq x +

2β
1 + α

m3
)

.

 (2.31)

Proof. The details of the RS ansatz computations are reported in appendix A.2. □ 

2.2. Route two: interpolation method

We now proceed to check the validity of the replica trick computation with an alternative 
route, i.e. the Guerra’s interpolation method. Given the expression of ZN in equation (2.7), and 
substituting the explicit form of η (according to definition 2) in terms of signal and noise, the 
statistical pressure in the thermodynamic limit reads

A = lim
N→∞

1
N
E ln

∑
σ

∫
Dz exp

(√ β

(1 + α)N3

K∑
µ=1

N∑
i,j=1

ξµij σiσjzµ

+

√
βα

(1 + α)N2

K∑
µ=1

N∑
i,j=1

Jµij σiσjzµ
)

.

 (2.32)

Again, we isolate the signal (µ = 1) from the noise (µ > 1), always neglecting the irrelevant 
term because of equation (2.15). Thus

A = lim
N→∞

1
N
E ln

∑
σ

∫
Dz exp

(√ β

(1 + α)N3

K∑
µ>1

N∑
i,j=1

ξµi ξ
µ
j σiσjzµ

+

√
βα

(1 + α)N2

K∑
µ>1

N∑
i,j=1

Jµij σiσjzµ +
βN

2(1 + α)

( 1
N

N∑
i,j=1

ξ1
i σi

)4
)

.

 (2.33)
Notice that we already adopted the signal factorization ξij = ξiξj , which allows us to directly 
express everything in terms of the Mattis magnetization m1 associated to the retrieved pattern 
µ = 1.

We are now ready to set up the interpolation strategy. We introduce an interpolating param-
eter t ∈ (0, 1) such that (in its extrema) it compares the original model (recovered for t  =  1) 
and a simpler model at t  =  0. Hence we introduce the next

Definition 6. The Guerra’s interpolating pressure for the MDAM coded by the cost func-
tion (1) reads as

A(t) = lim
N→∞

1
N
E ln

∑
σ

∫
Dz exp

(√
t

√
β

(1 + α)N3

K∑
µ>1

N∑
i,j=1

ξµi ξ
µ
j σiσjzµ

+
√

t

√
βα

(1 + α)N2

K∑
µ>1

N∑
i,j=1

Jµij σiσjzµ + t
βN

2(1 + α)
m4

1 +
√

1 − tW + (1 − t)D
)

,

 (2.34)

F Alemanno et alJ. Phys. A: Math. Theor. 53 (2020) 074001
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where W  and D are defined as

W =

√
β

1 + α
C1

∑
i

Jiσi +

√
β

1 + α
C2

∑
µ

Jµzµ, (2.35)

D = C3
β

1 + α

∑
µ

z2
µ

2
+ C4

βN
(1 + α)

m1, (2.36)

and C1, ..., C4 are constants whose explicit values will be set later, see equation (2.45).
The interpolating variables Ji and Jµ are, respectively, N-component and K-component 

vectors of i.i.d. N (0, 1) variables. Therefore, the expectation E is now extended to include 
these new degrees of freedom.

Proposition 2. The quenched pressure related to the model (1) can thus be recovered using 
the fundamental theorem of calculus:

A = A(t = 1) = A(t = 0) +
∫ 1

0
dt ∂tA(t). (2.37)

Following the scheme used in [12, 14, 22, 26], we can evaluate separately ∂tA and A(0). 
Tackling the t-streaming first and keeping as order parameters those defined in equations (2.8), 
(2.9) and (2.11), we obtain

∂tA(t) =
β

2(1 + α)
E
[
α2〈p11〉 − α2〈p12q2

12〉 − C2
1 + C2

1〈q12〉 − αC2
2〈p11〉+ αC2

2〈p12〉

− αC3〈p11〉+ 〈m4
1〉 − 2C4〈m1〉

]
,

 (2.38)

where we use the standard notation 〈.〉 for the Boltzmann average10. The terms involving the 
Mattis magnetizations for µ > 1 do not appear in the streaming equation since their contrib-
ution is subleading in the thermodynamic limit.

The expected Boltzmann averages 〈q12〉, 〈p12〉, 〈p11〉 and 〈m1〉 are difficult to compute, but 
recall that we are interested in the replica symmetric evaluation of the quenched free energy 
(and, thus, also of the replica symmetric expression of all the order parameters). Introducing 
the fluctuations of the order parameter (centered around their quenched mean values q, p  and 
m, see equation (2.30))

∆q = q12 − q, (2.39)

∆p = p12 − p, (2.40)

∆m = m1 − m, (2.41)

and recalling that, in the RS approximation, they vanish in the thermodynamic, we can rewrite 
the interaction terms in equation (2.38) as

〈p12q2
12〉 = −2pq2 + q2〈p12〉+ 2pq〈q12〉,

〈m4
1〉 = −3m4 + 4m3〈m1〉.

 (2.42)

10 Notice that the Boltzmann average has a functional dependence from the interpolating parameter t, as every ther-
modynamic observable is computed from the general interpolating pressure (2.34).
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By substitution inside the streaming equation we obtain

∂tA =
β

2(1 + α)
E
[
α2〈p11〉+ 2α2pq2 − α2q2〈p12〉 − 2α2pq〈q12〉 − C2

1 + C2
1〈q12〉 − αC2

2〈p11〉

+ αC2
2〈p12〉 − αC3〈p11〉 − 3m4 + 4m3〈m1〉 − 2C4〈m1〉

]
.

 (2.43)
Recall that we have four free parameters: C1, C2, C3 and C4. They can be chosen a fortiori in 
order to eliminate the expected Boltzmann averages 〈q12〉, 〈p12〉, 〈p11〉 and 〈m1〉 in favour of 
their replica-symmetric expectations in the thermodynamic limit. With this idea in mind, we 
rewrite the latter equation as

∂tA =
β

2(1 + α)
E
[
(α2 − αC2

2 − αC3)〈p11〉+ (αC2
2 − α2q2)〈p12〉+ (C2

1 − 2α2pq)〈q12〉

+ (4m3 − 2C4)〈m1〉 − C2
1 + 2α2pq2 − 3m4].

 (2.44)

It is now clear that, with the following choice:

C1 =
√

2α2pq, C2 =
√
αq, C3 = α(1 − q2), C4 = 2m3, (2.45)

we can achieve our goal and simplify the streaming term further, obtaining

∂tA = − β

2(1 + α)

[
2α2pq(1 − q) + 3m4]. (2.46)

Now we are left with the one body term:

A(0) = lim
N→∞

1
N
E ln

∑
σ

∫
Dz exp

(√ β

1 + α
C1

∑
i

Jiσi +

√
β

1 + α
C2

∑
µ

Jµzµ

+ C3
β

1 + α

∑
µ

z2
µ

2
+ C4

β

1 + α

N∑
i=1

ξ1
i σi

)
.

 (2.47)
It can be easily computed, returning

A(0) =− α

2
ln

(
1 − βα

1 + α
(1 − q2)

)
+

α

2
βα

1 + α

q2

1 − βα
1+α (1 − q2)

+

∫
Dx ln cosh

(√
2
βα2

1 + α
pq x +

2β
1 + α

m3
)

.

 

(2.48)

Combining equations  (2.46) and (2.48), after some rearrangements we get the same result 
already derived through the replica trick for the RS pressure (2.31).

2.3. Phase diagram

Before moving on, we rewrite here the RS pressure for the reader’s convenience:

ARS = ln 2 − βα2

1 + α
(qp − q2p)− α

2
ln

(
1 − βα

1 + α
(1 − q2)

)
+

α

2
βα

1 + α

q2

1 − βα
1+α (1 − q2)

− 3
2

β

1 + α
m4 +

∫
Dx ln cosh

(√
2
βα2

1 + α
pq x +

2β
1 + α

m3
)

.

 

(2.49)
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Extremizing the statistical pressure with respect to the parameters q, p and m, we end up with 
the self-consistency equations

m =

∫
Dx tanh

(√
2
βα2

1 + α
pq x +

2β
1 + α

m3
)

,

q =

∫
Dx tanh2

(√
2
βα2

1 + α
pq x +

2β
1 + α

m3
)

,

p =

βα
1+αq2

(
1 − βα

1+α (1 − q2)
)2 .

 

(2.50)

We numerically solve these equations and paint the phase diagram reported in figure 1(left 
panel), made by three different phases: the retrieval (R), characterized by non-zero values of 
the two order parameters m and q, i.e. m �= 0 and q �= 0; the spin glass phase (SG), where 
m  =  0, q �= 0, and the ergodic phase (E), with m  =  q  =  0. In the retrieval region pure states 
are always global minima for the free energy. Since mixture states (which are present as well 
as pure ones) are not global minima of the free energy, we refer to the R phase as a ‘pure 
retrieval’ phase. We argue that this is due to the decomposition (2.3).

Furthermore we performed Monte Carlo simulations in order to check out our assumptions 
(e.g. the RS ansatz). In particular, we focused on the E-R critical line (see the phase diagram, 
figure 1(left)). We performed a finite size scaling analysis (see figure 1, (right)), which led to 
the critical temperatures for different values of α depicted in the bottom right panel, figure 1, 
(right): numerical outcomes are in excellent agreement with the theoretical predictions.

20 40 60 80 100 120 140 160
N

0.70

0.75

0.80

0.85

0.90

T
N

α = 0.05, T = 0.938 ± 0.005
α = 0.10, T = 0.895 ± 0.007
α = 0.15, T = 0.866 ± 0.012
α = 0.20, T = 0.816 ± 0.004

Figure 1. (left) The phase diagram of the MDAM obtained by solving the self-
consistencies, see equations (2.50). We highlight three regions: a pure ergodic one (E), a 
spin glass phase (SG) and a retrieval one (R). (right) Different critical lines TN depicting 
the E-R transition relative to different loads of the network, i.e. for α = 0.05, 0.10, 0.15 
and 0.20, as function of N. For each load α we performed Monte Carlo simulations 
for different sizes N, ranging from N  =  20 to N  =  160, with leaps of ∆N = 20, thus 
obtaining the different points interpolated in the right panel of the figure. The critical 
temperatures T (for different values of α) in the bottom right legend of the figure are so 
obtained; they are consistent with our theoretical results.
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3. Conclusions

Along the lines of our recent research [6, 10], in this paper we extensively relied upon tools 
typical of the statistical mechanics of spin-glasses to quantify the high pattern recognition 
capacity of, possibly, the simplest neural network falling in the class of dense associative 
memories. The latter were recently proposed by Hopfield and Krotov [35, 36] as a candidate 
benchmark to inspect for possibly explaining (part of) the impressive skills that artificial neu-
ral architectures experience nowadays.

In particular we have shown that such a network, equipped with solely a linear storage 
of patterns K—in the volume N—but where patterns are split in a O(1) signal term and an 
O(

√
N) noisy term, is able to extensively de-noise the perceived inputs such as to accomplish 

pattern recognition despite the prohibitive level of noise: this is ultimately due to the dense 
connections where redundant representations of patterns are possible [6]. The critical capac-
ity in this regime of operation -at least at the replica symmetric level of description- is quite 
huge, resulting in αc(β → ∞) ∼ 0.65 (and we checked numerically that the replica symmet-
ric assumption is tolerated as shown by extensive Monte Carlo runs). In particular, at present 
-to our knowledge- this is the largest critical capacity for networks presenting this high pattern 
recognition skill, (the network of [6] has to respect αc � 0.5).

Furthermore the retrieval region is characterized by the fact that pure states are always 
global minima for the free energy. We conjecture this is a consequence of the choice of the 
decomposition (2.3). We also notice that the phase diagram resembles that of the Sherrington–
Kirkpatrick model (with the role of J0, the mean value for the Gaussian fields Jij in the S-K 
model, here played by some decreasing function of the load α); this is not casual, as, in this 
model, the quenched noise given by the boolean fields ξµ, for µ > 1, is negligible in the 
thermodynamic limit (see appendix A.1). Therefore, the only ‘seen’ by the network is the 
Gaussian noise (given by the fields Jµij , still for µ > 1). Consequently, the model can be seen 
as a spin glass (a P  =  4 generalization of the Sherrington–Kirkpatrick model) able to retrieve 
a pattern ξ from the Gaussian noise.

Finally, with the aim of promoting cross-fertilization among the two disciplines of Machine 
Learning and Disordered Statistical Mechanics, we collected the outlined results by using two 
among the most used methods to deal with spin-glasses, namely the replica trick [19] and the 
interpolation method [12], discussing both of them in great detail. The authors are grateful 
to Unisalento, Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, and CNR-Nanotec, 
Sezione di Lecce, for partial fundings.
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Appendix A. Replica trick computations: details

In this appendix, we report some details on the replica trick computation.

A.1. Evaluation of the noise term

In this section, we evaluate the noise term in the splitted partition function (2.17), which we 
report here for convenience:
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Znoise =

∫ ( n∏
a=1

D{za}µ>1

)
E exp

(√ β

(1 + α)N3

n∑
a=1

K∑
µ>1

N∑
i,j=1

(
ξµij +

√
αNJµij

)
σa

i σ
a
j za

µ

)
.

 (A.1)
Because of the independence of the signal and noise term in the pattern decomposition (2.3), 
we can perform the averages separately. We start with performing the average over the ξ’s, 
which leads to

exp
( ∑

i,j,µ>1

ln cosh
(
√

β

(1 + α)N3

∑
a

σa
i σ

a
j za

µ

))
. (A.2)

In the large N limit, we can expand in powers of 1/N the ln cosh function, keeping only the 
leading contribution (as all higher order corrections vanish in the thermodynamic limit). Then, 
we are left with

exp
( β

2(1 + α)N3

∑
i,j,µ>1

(∑
a

σa
i σ

a
j za

µ

)2
)

. (A.3)

However, the exponent in the latter equation is of order O(1), thus it is a subleading contrib ution 
w.r.t. to the Gaussian part of the noise term. Therefore, it can been neglected in the large N limit; 
this is an important result, as it means that the quenched noise given by the boolean fields ξµ, for 
µ > 1, is totally hidden by the Gaussian noise, introduced by the decomposition (2.3). The result is

Znoise =

∫
DJ

∫ ( n∏
a=1

D{za}µ>1

)
exp

(√ βα

(1 + α)N2

n∑
a=1

K∑
µ>1

N∑
i,j=1

Jµij σ
a
i σ

a
j za

µ

)
.

 (A.4)
Now, we can directly average over the J variables, obtaining

Znoise =

∫ ( n∏
a=1

D{za}µ>1

)
exp

( βα

2(1 + α)N2

K∑
µ>1

N∑
i,j=1

( n∑
a=1

σa
i σ

a
j za

µ

)2
)

=

∫ ( n∏
a=1

D{za}µ>1

)
exp

( βα

2(1 + α)N2

K∑
µ>1

N∑
i,j=1

n∑
a,b=1

σa
i σ

b
i σ

a
j σ

b
j za

µzb
µ

)
.

 (A.5)
In the last line, the dependence on the order parameters qab and p ab is clear. Hence, we can 
now introduce a product of delta functions by using

1 =

∫ (∏
a,b

dqabdpab δ
(
qab −

1
N

N∑
i=1

σa
i σ

b
i

)
δ
(

pab −
1

K − 1

K∑
µ=2

za
µzb

µ

))
. (A.6)

After this manipulation, we get

Znoise =

∫ ( n∏
a=1

D{za}µ>1

)(∏
a,b

dqabdpab δ
(
qab −

1
N

N∑
i=1

σa
i σ

b
i

)
δ
(

pab −
1

K − 1

K∑
µ=2

za
µzb

µ

))

× exp
(

N
βα2

2(1 + α)

n∑
a,b=1

q2
abpab

)
.

 

(A.7)

At this point, we use the Fourier representation of the Dirac delta:

δ
(
qab −

1
N

∑
i

σa
i σ

b
i

)
=

N
2π

∫
dq̂ab exp

(
iNq̂ab

(
qab −

1
N

∑
i

σa
i σ

b
i

))
, (A.8)
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and similarly for p ab. Then, the noise term now reads11:
∫ (∏

a,b

dqabdpabdq̂abdp̂ab

)(∏
a

D{za}µ>1

)
exp

(
− i

∑
µ>1

∑
a,b

p̂abza
µzb

µ

+ iN
∑
a,b

qabq̂ab − i
∑

i

∑
a,b

q̂abσ
a
i σ

b
i + iαN

∑
a,b

pabp̂ab +
βα2

2(1 + α)

n∑
a,b=1

q2
abpab

)
.

 (A.9)
The integral over the z variables can be easily performed, leading to

∫ (∏
a

D{za}µ>1

)
exp

(
− i

∑
µ>1

∑
a,b

p̂abza
µzb

µ

)
=

K∏
µ>1

det(I+ 2iP̂)−1/2,

 (A.10)
where Iab = δab is the n × n identity matrix and P̂ab ≡ p̂ab. We therefore end with the final 
expression for the noise term

Znoise =

∫ (∏
a,b

dqabdpabdq̂abdp̂ab

)
exp

(
− αN

2
ln det(I+ 2iP̂)

)

× exp
(

iN
∑
a,b

qabq̂ab − i
∑

i

∑
a,b

q̂abσ
a
i σ

b
i + iαN

∑
a,b

pabp̂ab +
βα2

2(1 + α)

n∑
a,b=1

q2
abpab

)
.

 (A.11)

A.2. The replica symmetric ansatz

In this section, we compute term by term the contributions appearning in (2.29) after adopting 
the RS ansatz. Since the statistical pressure presents an overall factor 1/n in (2.26), only the 
O(n) terms are relevant for our purposes (since we have to evaluate the n → 0 limit). For the 
first term, the leading contribution is

∑
a,b

q2
abp2

ab ∼ n( pD − pq2). (A.12)

For the second one, we have

ln det

(
I− βα

1 + α
Q
)

∼ n ln
(

1 − βα

1 + α
(1 − q2)

)
− n

βα

1 + α

q2

1 − βα
1+α (1 − q2)

.

 (A.13)
The m-dependent contribution is trivial, and reads

∑
a

m4
a = n m4. (A.14)

Finally, the last term can be straightforwardly evaluated as follows
〈
ln
∑
σ

exp
( βα2

1 + α

∑
a,b

qabpabσ
aσb +

2β
1 + α

ξ
∑

a

m3
aσ

a
)〉

ξ

= n
βα2

1 + α
( pD − pq) + n ln 2 + n

∫
Dx ln cosh

(√
2
βα2

1 + α
pq x +

2β
1 + α

m3
)

.

 (A.15)
Putting all these results in the expression for the statistical pressure, we get the result (2.31).

11 Again, we neglect the irrelevant factors 
( N

2π

)
n2 (αN

2π

)
n2

, as they give no contribution in equation (2.12).

F Alemanno et alJ. Phys. A: Math. Theor. 53 (2020) 074001



15

Appendix B. Zero-temperature critical capacity analysis

In order to estimate the zero-temperature critical capacity αc(T = 0), we start from the self-
consistency equations (2.50). Upon eliminating the conjugate parameter p , we get

m =

∫
Dx tanh

(
β

1 + α

( √
2α3q3

1 − βα
1+α (1 − q2)

x + 2 m3
))

,

q =

∫
Dx tanh2

(
β

1 + α

( √
2α3q3

1 − βα
1+α (1 − q2)

x + 2 m3
))

.

 (B.1)

In the limit β → ∞, it is easy to check that q → 1, then 1 − q2 → 0 in the zero temperature 
limit. The quantity C = β(1 − q2), which satisfies the self-consistency equation

C = β − β
(

1 − 1 + α

2β
∂

∂(m3)

∫
Dx tanh(g(m, q))

)2
, (B.2)

where g(m, q) is the argument of the hyperbolic tangent in (B.1), is finite in the β → ∞ limit. 
Using tanh(βx) → sgn(x) in the large β limit, then the self-consistency equations  can be 
evaluated as

m = erf
(

m3

α3/2

(
1 − α

1 + α
(1 − C)

))
,

C = (α+ 1)
1 − α

1+αC

α3/2

2√
π
exp

(
− m6

α3 (1 − α

1 + α
C)2

)
.

 (B.3)

Figure B1. Comparison between the l.h.s. (black dashed line) and r.h.s. (blue solid 
curves) of equation (B.5) for α = 0.55, 0.65, 0.85.
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By introducing the quantity

t =
m3

α3/2

(
1 − α

1 + α
(1 − C)

)
, (B.4)

after some rearrangements, we end up with a single equation

t =
1

α3/2 erf3(t)− 2t√
απ

exp(−t2). (B.5)

Then, the critical storage capacity is the value of α leading to non-trivial solutions for equa-
tion (B.5). A comparison between the two sides of the equation for various α values is reported 
in figure B1. By numerically solving the equation (B.5), we found a critical storage capacity 
αc(T = 0) � 0.651, which is in perfect agreement with the phase diagram.

Appendix C. Signal-to-noise analysis

We here perform a signal-to-noise analysis, motivating the decomposition equation  (2.3). 
Introducing the ‘internal’ field hi seen by the ith spin σi, defined as

hi =
1

2N3

K∑
µ=1

N∑
j,k,l=1

ηµij η
µ
klσjσkσl, (C.1)

we can write the hamiltonian of the model as:

H = −
N∑

i=1

hiσi. (C.2)

By virtue of the pattern decomposition, this field can be rewritten as

hi =
1

2N3

K∑
µ=1

N∑
j,k,l=1

(
ξµi ξ

µ
j ξ

µ
k ξ

µ
l +

√
Kξµi ξ

µ
j Jµkl +

√
Kξµk ξ

µ
l Jµij + KJµij Jµkl

)
σjσkσl.

 (C.3)

Probing the alignment to the pattern ξ1 = (ξ1
1 , .., ξ1

N), we set σ = ξ1, by which the following 
standard decomposition holds (we simply separate the ‘signal’ characterized by µ = 1 from 
the ‘noise’ µ > 1):

hiσi = S +N (C.4)

where

S =
1
2


1 +

√
K

N

∑
j

J1
ijξ

1
i ξ

1
j +

√
K

N2

∑
k,l

J1
klξ

1
k ξ

1
l +

K
N3

∑
j,k,l

ξ1
i ξ

1
j ξ

1
k ξ

1
l J1

ilJ
1
kl




 (C.5)
is the ‘signal’ and

N =
1

2N3

K∑
µ>1

N∑
j,k,l=1

(
ξµi ξ

1
i ξ

µ
j ξ

1
j ξ

µ
k ξ

1
k ξ

µ
l ξ

1
l +

√
Kξµi ξ

1
i ξ

µ
j ξ

1
j ξ

1
k ξ

1
l Jµkl +

√
Kξµk ξ

1
k ξ

µ
l ξ

1
l ξ

1
i ξ

1
j Jµij + Kξ1

i ξ
1
j ξ

1
k ξ

1
l Jµij Jµkl

)

 (C.6)

the ‘noise’. Recall that the Jµij  tensors are all i.i.d. variables distributed as N (0, 1). In order to 
compute the signal-to-noise ratio S/N , we firstly perform the standard Gaussian expectation 
E over the signal S . This results in
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E [S] = 1
2

(
1 +

K
N2

)
→ 1

2
 (C.7)

as N → ∞ in the thermodynamic limit. In order to get this result we consider that

E
[
J1

ij

]
= E

[
J1

kl

]
= 0 (C.8)

and

E
[
J1

ijJ
1
kl

]
= δikδjl (C.9)

and the fact that the products similar to J1
ijξ

1
i ξ

1
j  give new i.i.d N (0, 1) variables as the J’s are.

Consider now the noise N . The first term in the parenthesis (C.6) can be decomposed in 
a sum of various contributions, given the four summations in µ, j, k, l. We get a contribution 
by setting j   =  k  =  l  =  i, which is of order O(N−2) given the overall factor 1/N3 in front of 
each term in the noise; we have several contributions from l �= k with k  =  j   =  i, and cyclic 
permutations (i.e. l �= j with k  =  j   =  i and so on), which overall give a contribution of order 
O(N−2); then we have to consider the terms coming from l �= i, k �= i, j = i and similar, giving 
O(N−3/2) contributions and, the remaining ones coming from l �= i, k �= i, j �= i and similar, 
which are O(N−1). We see therefore that, in the thermodynamic limit, the first term in the 
noise is zero.

The remaining terms have to be evaluated via the Gaussian expectation operator, therefore 
we can easily apply similar considerations to those used in the evaluation of E [S]. This results 
in vanishing contributions from the second and the third term in the noise decomposition in 
the thermodynamic limit. The only non-zero contribution comes from the last term, the fourth, 
which however is non-zero only for k = i, j = l, giving α2/2.

The ratio S/N  can now easily computed, giving 1/α2, which is of order O(1). It can be 
shown that this is the minimal S/N  value given the decomposition in equation (2.3): attempt-
ing to overtake the linear load K = αN  (e.g. by considering super-linear regimes such as 
K ∼ N2) leads to a vanishing signal to noise ratio in the thermodynamic limit. Hence, in 
super-linear regimes the network cannot retrieve any pattern of information: our decomposi-
tion equation (2.3) is therefore the worst scenario from the network’s point of view, i.e. it gives 
the maximal noise to the network maintaining its retrieval capability.
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