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Abstract
We examine the duality relating the equilibrium dynamics of themean-field p-spin ferromag-
nets at finite size in theGuerra’s interpolation scheme and the Burgers hierarchy. In particular,
we prove that—for fixed p—the expectation value of the order parameter on the first side
w.r.t. the generalized partition function satisfies the p − 1-th element in the aforementioned
class of nonlinear equations. In the light of this duality, we interpret the phase transitions in
the thermodynamic limit of the statistical mechanics model with the development of shock
waves in the PDE side. We also obtain the solutions for the p-spin ferromagnets at fixed N ,
allowing us to easily generate specific solutions of the corresponding equation in the Burgers
hierarchy. Finally, we obtain an effective description of the finite N equilibrium dynamics of
the p = 2 model with some standard tools in PDE side.

Keywords p-spin · Statistical mechanics · Burgers hierarchy · Nonlinear systems ·
Mean-field theory · PDE

1 Introduction

During the last decades, Statistical Mechanics of disordered systems has acquired a promi-
nent role in describing complex phenomena and emerging properties of system with highly
non-trivial dynamics. In particular, one of the major success is the possibility to analyze
the relaxation and the equilibrium dynamics of spin-glass models [62,75], i.e. systems of
simple degrees of freedom (the spins, adopting the physics jargon) whose interaction are
frustrated (or, in other words, spins in the system can compete with each others) and known
only through their probability distribution. Random and frustrated interactions are respon-
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sible for a rich phenomenology (e.g. the existence of multiple timescales for the relaxation
toward the equilibrium), which is due to the complex structure of the free-energy land-
scape (see for example [62]). The analysis of spin-glass equilibrium dynamics is commonly
accomplished by computing the so-called quenched free-energy1 in the thermodynamic
limit (whose analysis is motivated by its self-averaging property [53,54]) in terms of few
order parameters (in particular, the so-called Edward-Anderson overlap [40]) and tracing
the phase diagram in the parameter space. Remarkably, Statistical Mechanics of disordered
systems has gained a renewed interest with the advent of Deep Learning [60], since it
offers the ideal tool for investigating information processing in neural networks (see for
example [2,3,17,19,23,35,38,43,56,58,71]). In particular, Statistical Mechanics commonly
deals with the Machine Retrieval regime, i.e. the long-term relaxation of neural networks
which are fed with some inputs to be classified according to some previously learnt features.
Focusing on the methods, the solution of such complex systems can be found by means
of the straightforward (but unfortunately non-rigorous) replica trick approach. At the same
time, rigorous and mathematically transparent approaches can be developed, see for example
[13,47,49,51,67,68,70,80–82]. For our concerns, themost important one is theGuerra’s inter-
polation scheme, which makes use of sum rules for the computation of relevant quantities
[3–5,14,24,50] or taking benefit of mechanical analogy or relation with PDEs [1,9,19–22]. In
the latter approach, the quenched free-energy can be interpolated in an effective mean field
scheme, in which the interpolation parameters can be interpreted as coordinates of a fictious
spacetime (t, x). In this case, it is possible to use the entire set of PDE technology in order to
solve the thermodynamics of the model, also for finite N . Even if such interpolation methods
were initially developed in the context of spin-glass, they are quite general, and by this they
can be easily brought to similar (and possibly simpler) models, such as p-spin ferromag-
nets. The latters are spin systems in which the spins interact with coupling of order p and
cooperatively (i.e. they are not spin-glasses). In this paper, we study the relation of Guerra
interpolated partition functions of p-spin ferromagnets and prove that the expectation values
of the order parameter (the global magnetization) w.r.t. to the associated Boltzmann–Gibbs
measure is in 1–1 correspondence with the elements of the Burgers hierarchy [59,66,74,83].
This duality can be explored in both sense: for instance, we can generate specific solutions of
the Burgers hierarchy by exploiting the finite size solution of the p-spin systems; on the other
hand, we can achieve informations about the thermodynamics of the ferromagnets from the
PDE side.

Despite being interesting by itself, this duality could be a promising tool for investigating
the principles of information processing in biological phenomena. Indeed, as firstly suggested
in [84], Statistical Mechanics turned out to be an effective tool in the description of universal
phenomena in biological systems, see also [7,12,16,29,57,63,72,78]. For instance, kinetics
of biochemical reactions can be framed in a purely statistical mechanics picture in terms
of the Curie-Weiss ferromagnetic model, see [8,11]. However, since in standard statistical
mechanics one considers the thermodynamic limit N → ∞, this scenario is a good approx-
imation only for systems with large size. As opposite to this picture, recently the research in
biochemical information processing has focused on phenomena involving system with small
size [73], for which the statistical mechanics scenario loses its predictive power. Thus, for

1 With quenched free-energy, we mean the expectation value w.r.t. to the intrinsic disorder (the couplings) is

performed after taking the logarithm, i.e. the intensive free energy is f QN (β) = −(βN )−1
E log ZN (β), to be

compared with its annealed counterpart, i.e. f AN (β) = −(βN )−1 logEZN (β). Thus, the disorder in the two
versions of the free energy is treated in a substantial different way. The relevant quantity for spin-glass models
is the former, since it deals with the equilibrium dynamics of the system at fixed couplings realization.
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such practical application one has to consider the thermodynamics at finite size N . On the
other side, it has been established [31] that the binding of spins in systems such as long chain
molecules (such as proteins) can takes place with multisite interactions (i.e. p > 2) beyond
the pairwise scenario, see also [39]. In this picture, our duality can thus provide rigorous
mathematical tools to investigate these interesting biological situations.

The paper is organized as follows. In Sect. 2, we provide the basic tools of statistical
mechanics for p-spin ferromagnetic models, also discussing the thermodynamic solution
of the free-energy (both with physical and mathematically rigorous methods, i.e. Guerra’s
interpolation scheme). In Sect. 3, we provide the fundamental notions about the Burgers
hierarchy and the reduction to linear PDEs through Cole–Hopf transforms. In Sect. 4, we
prove the duality between the two sides and some results (such as the interpretation of phase
transition in the ferromagnets as the development of shock waves in the PDE side and the
search of solutions of the Burgers hierarchy by means of finite size solutions). We also give
a description of p = 2 ferromagnetic model with the tools offered by the Burgers equation.

2 A Cursory Look at Mean-Field p-Spin Ferromagnetic Models

In this Section, we will introduce the fundamental notions about the p-spin ferromagnetic
models. In particular, we will discuss the solution of the model, both with purely physics
arguments and Guerra’s interpolation schemes. We will also discuss the existence of the ther-
modynamic limit for the free-energy of the models. Let us start by introducing the following

Definition 1 Let σ ∈ �N = {−1,+1}N be a general configuration of the system at finite
size N , and let J > 0 be the interaction strength. The Hamilton function of the p-spin
ferromagnetic model is defined as

HN (σ |J ) = − J

N p−1

N∑

i1,i2,...,i p=1

σi1σi2 . . . σi p . (2.1)

Remark 1 The normalization factor 1/N p−1 is inserted in order to ensure the linear exten-
sivity of the Hamilton function, meaning that the energy of the system scales linearly in its
volume:

HN (σ |J ) = NεN (σ |J ),

where εN (σ ) (the energy per site of the model associated to the configuration σ ) is finite in
the infinite-size limit N → ∞.

Remark 2 Traditionally, the Hamilton function of a p-spin ferromagnetic model is given by

H ′
N (σ |J ) = − J

N p−1

∑

1≤i1<i2<···<i p≤N

σi1σi2 . . . σi p .

However, the difference between the two formulations is negligible in the thermodynamic
limit. Indeed, by noticing that

N∑

i1,i2,...,i p=1

≡ p!
∑

1≤i1<i2<···<i p≤N

,
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holding in N → ∞ limit (see for example [33]), it is easy to see that

H ′
N (σ |J )

N
= HN (σ |J )

p!N + corrections vanishing at N → ∞,

thus the thermodynamics of the systems within the two frameworks are equivalent (and they
differ only up to a trivial rescaling of the temperature by a factor p!).
Definition 2 Let β ∈ R

+ the level of thermal noise (i.e. the inverse temperature β = T−1).
Then, the partition function of the ferromagnetic p-spin model is defined as

ZN (β, J ) =
∑

σ

exp
( − βHN (σ |J )

) ≡
∑

σ

exp

(
β J

N p−1

N∑

i1,i2,...,i p=1

σi1σi2 . . . σi p

)
, (2.2)

where
∑

σ ≡ ∑
σ∈�N

is the sum over all possible configurations of the system. The Boltz-
mann factor corresponding to the partition function (2.2) is defined

BN (σ ) = exp

(
β J

N p−1

N∑

i1,i2,...,i p=1

σi1σi2 . . . σi p

)
, (2.3)

where of course ZN (β, J ) = ∑
σ BN (σ ).

Definition 3 The global magnetization of the ferromagnetic p-spin model is defined as

mN (σ ) = 1

N

N∑

i=1

σi . (2.4)

Remark 3 Since the model is ferromagnetic, this is the only order parameters we need to
fully describe the equilibrium of the model.

Remark 4 The expression of the Hamilton function in terms of the global magnetization is

HN (σ |J ) = −J N
( 1

N

N∑

i=1

σi

)p = −J NmN (σ )p. (2.5)

Remark 5 Notice that, as usual, the ferromagnetic strength J has the only effect of rescaling
the thermal noise in the system. Therefore, without loss of generality, we can set J = 1. In
this way, we will denote HN (σ ) ≡ HN (σ |J = 1) and ZN (β) ≡ ZN (β, J = 1).

Definition 4 Given a function F(σ ) of the spins in the system, its expectation value is defined
as

ω[F(σ )] =
∑

σ F(σ )BN (σ )

ZN (β)
. (2.6)

Remark 6 We stress that, for odd p, the Hamilton function is not invariant under gauge
transformations σ → −σ . This means that, as opposite to the even p cases, there are no
gauge-equivalent solutions.

Definition 5 The intensive statistical pressure AN (β) of the system is defined as

AN (β) = 1

N
log ZN (β). (2.7)
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Remark 7 The intensive statistical pressure is related to the usual (intensive) Helmholtz free
energy fN (β) as AN (β) = −β fN (β). Let us denote with P(σ ) the Boltzmann-Gibbs dis-
tribution of the system, which is of course defined as

P(σ ) = 1

ZN (β)
exp(−βHN (σ )).

Given the energy per site at fixed system configuration

εN (σ ) = HN (σ )

N
,

and

sN (σ ) = log P(σ )

N
,

we can write down the equality

AN (β) = ω[sN (σ )] − βω[εN (σ )], (2.8)

which, a part for a factor−β, is the relation between the (intensive)Helmholtz free energy and
the expectation values of the relevant thermodynamic observables for the system. Indeed, the
first contribution is nothing but the entropy per site, since, according to the definition (2.6),
we have

ω[sN (σ )] = − 1

N

∑

σ

P(σ ) log P(σ ).

Clearly, SN [P] = −∑
σ P(σ ) log P(σ ) is the Shannon entropy associated to the probability

distribution P(σ ). Thus, Eq. (2.8) exactly paints the relation between the intensive pressure
AN (β) and the intensive Helmoltz free energy fN (β).

For our concerns, it is relevant the statistical pressure in the thermodynamic limit

A(β) = lim
N→∞

1

N
log ZN (β). (2.9)

The solution of the p-spin ferromagnetic models can be straightforwardly obtained by purely
statistical tools. The expression of the expectation value of the energy per site follows directly
from (2.5), and reads

ω[εN (σ )] = −ω[mN (σ )p].
Regarding the entropy per site, due to the mean-field nature of the model we make the
assumption that the equilibrium probability distribution to observe the system in a given
configuration can be factorized as product of probabilities of independent sites P(σ ) =∏N

i=1 P(σi ), and the spin orientation is driven by the global magnetization. Then, in the
thermodynamic limit we can write

P(σi ) = 1 + m̄

2
δσi ,1 + 1 − m̄

2
δσi ,−1, (2.10)

where m̄ is the thermodynamic value of the magnetization:

m̄ = lim
N→∞ ω[mN (σ )].
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Remark 8 When working at finite size N , the computation of the expectation value of the
energy per site requires evaluating correlation functions of the form ω[σi1σi2 . . . σi p ], which
is in general a non-trivial task. However, due to the mean-field nature of the ferromagnetic
model, simplifications occur in the thermodynamic limit. Indeed, as remarked above, in this
limit the probability distribution in the configuration space factorizes, i.e. P(σ ) = ∏

i P(σi ),
so that the evaluation of the aforementioned correlation functions becomes trivial. Likewise,
it is possible to achieve the same result by assuming the self-averaging property for the
global magnetization. In simple words, we require the fluctuations of the order parameter
w.r.t. its equilibrium value m̄ to vanish as N → ∞. This is translated in mathematical
terms by requiring that the probability distribution of the global magnetization converges to
a Dirac-delta distribution which is centered around the equilbrium value, i.e.

lim
N→∞ PN (mN (σ )) = δ(m − m̄),

β almost everywhere, with m being the global magnetization in the thermodynamic limit.
The self-averaging assumption is a reasonable hypothesis for ferromagnetic systems, see
for example [18], as the number of pure states does not depend on the system size. As a
consequence, the expectation value of a general function F of the global magnetization can
be simply evaluated:

ω[F(m(σ ))] ≡
∫

dmN PN (mN )F(mN ) →
N→∞

∫
dm δ(m − m̄)F(m) = F(m̄).

The previous remark implies that the expectation value of the energy per site in the
thermodynamic limit can be evaluated as

lim
N→∞ ω[εN (σ )] = −m̄ p.

Regarding the entropy contribution, the mean-field assumption (2.10) allows us to discard
correlations between the spins and then reduces the problem to one-body computations. Then,
with this expression of the probability distribution we can write down the entropy using the
Shannon prescription:

ω[sN (σ )] = − 1

N

∑

σ

P(σ ) log P(σ ) = −
(
1 + m̄

2
log

1 + m̄

2
+ 1 − m̄

2
log

1 − m̄

2

)
,

which is valid in the thermodynamic limit. Then, putting everything together we get

A(β) = βm̄ p − 1 + m̄

2
log

1 + m̄

2
− 1 − m̄

2
log

1 − m̄

2
. (2.11)

By imposing the extremality condition for the intensive pressure ∂m̄ A(β) = 0, we have

β pm̄ p−1 − arctanh(m̄) = 0 ⇒ m̄ = tanh(β pm̄ p−1), (2.12)

which is exactly the self-consistency equations for the p-spin ferromagnetic model [18].

2.1 Existence of the Thermodynamic Limit

In the previous Section, it was tacitly supposed the existence of the thermodynamic limit
for the p-spin ferromagnetic models as described by the partition function (2.2). For the
sake of simplicity, we rigorously prove the existence of the thermodynamic limit for even p
(however, this results can be carried out also for models with Hamilton functions which are
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polynomial in the global magnetization mN (σ ), therefore including also the odd p case, see
for example [26]). The key idea is to separate the ferromagnetic models with N interacting
spins in two distinct non-interacting subsystems respectively with N1 and N2 spins, such that
N = N1 + N2. Then, we introduce an interpolating partition function with the following

Definition 6 Let σi = ±1 for i = 1, . . . , N be the binary spins of the model and t ∈ [0, 1] an
interpolating parameter. Let us build two separate, non-interacting subsystems by collecting
respectively the spins σi with i = 1, . . . , N1 and σi for i = N1 + 1, . . . N1 + N2, with
corresponding order parameters

m1(σ ) = 1

N1

N1∑

i=1

σi , m2(σ ) = 1

N2

N1+N2∑

i=N1+1

σi . (2.13)

Then, the interpolating partition function is defined as

ZN (β, t) =
∑

σ

exp
(
t NβmN (σ )p + (1 − t)N1βm1(σ )p + (1 − t)N2βm2(σ )p

)
. (2.14)

The Boltzmann factor associated to the partition function (2.14) is

BN (σ , t) = exp
(
t NβmN (σ )p + (1 − t)N1βm1(σ )p + (1 − t)N2βm2(σ )p

)
,

so that ZN (β, t) = ∑
σ BN (σ , t). The statistical pressure of the model is defined as

AN (β, t) = 1

N
log ZN (β, t). (2.15)

Remark 9 We stress that, within the Guerra’s interpolating framework, we do not divide the
system of size N in two subsystems with resp. N1 and N2 spins. Indeed, in order for this
decomposition to hold in the previous interpretation, one has to discard mutual interaction
(the surface term) between the two subsystems (at least in the thermodynamic limit), which
is only possible in finite-dimensional (i.e. non-fully connected) models. In fully connected
spin systems, the surface and volume terms are of the same order, thus the former cannot
be neglected. In order to avoid this, the Guerra’s generalized partition function (2.21) works
by interpolating between the original model and two independent systems with sizes N1 and
N2, such that N1 + N2 = N . In this way, surface terms are not present.

Remark 10 The global magnetization of the composite system is a convex linear combination
of the order parameters of each component, i.e.

mN (σ ) = ρm1(σ ) + (1 − ρ)m2(σ ), (2.16)

where ρ = N1/N . Further, the interpolating free energy satisfies the boundary conditions

AN (β, t = 1) = AN (β), (2.17)

AN (β, t = 0) = ρAN1(β) + (1 − ρ)AN2(β), (2.18)

where of course AN (β) is the same as (2.7).

Definition 7 Given a function F(σ ) of the spins in the system, its expectation value for the
interpolating system (2.14) is defined as

ωt [F(σ )] =
∑

σ F(σ )BN (σ )

ZN (β, t)
. (2.19)
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Having introduced the central quantities, we are now in position to state the following

Theorem 1 The thermodynamic limit of the model (2.2) for even p exists and it is given by

A(β) = lim
N→∞ AN (β) = inf

N
AN (β), (2.20)

where inf stands for the infimum.

Proof First of all, we show that, for fixed β ∈ R
+, the intensive pressure AN (β) is bounded

from below for each N ∈ N. To see this, we write down its explicit expression:

AN (β) = 1

N
log

∑

σ

exp(βNmN (σ )p).

Now, since mN (σ ) ∈ [−1, 1] for each σ ∈ �N , we have in particular mN (σ )p ≥ −1 for
each p ∈ N. Thus, we can bound the intensive pressure as

AN (β) ≥ 1

N
log

∑

σ

exp(−βN ) = 1

N
log 2N exp(−βN ) = log 2 − β.

Thus, since the sequence {AN (β)}N∈N is bounded from below for each β ∈ R+, we have
limN→∞ AN (β) is finite. Next, we consider the intensive pressure associated to the interpo-
lating partition function (2.14). Its t-derivative is

∂

∂t
AN (β, t) = βωt

(
mN (σ )p − ρm1(σ )p − (1 − ρ)m2(σ )p

)
.

Provided that p is even, the mapping x → x p is convex, meaning that

mN (σ )p = (ρm1(σ ) + (1 − ρ)m2(σ ))p ≤ ρm1(σ )p + (1 − ρ)m2(σ )p,

∀ρ ∈ [0, 1] and for all values of m1(σ ) and m2(σ ). This directly implies that

∂AN (β, t)

∂t
≤ 0,

thus the interpolated intensive pressure is a decreasing function w.r.t. the interpolating param-
eter t . As a straightforward consequence, we have

N AN (β) ≤ N1AN1(β) + N2AN2(β).

In other words, the sequence {N AN (β)}N is sub-additive, and by virtue of the Fekete’s
lemma, we easily get

lim
N→∞ AN (β) = inf

N
AN (β) ≡ A(β)≥ log 2 − β.

This proves our statement. ��

2.2 SolutionVia Guerra’s Interpolating Scheme

The solution of the model can be equivalently carried out via the interpolating techniques
originally developed in the context of spin-glass as alternative to the replica trick route. The
key idea of the method is to introduce a generalized partition function interpolating between
the original model and an effective field scenario (i.e. this limit is a 1-body model). Then, we
introduce
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Definition 8 Let t ∈ [0, 1] an interpolating parameter. Then, the Guerra’s generalized parti-
tion function is defined as

ZN (β, t) =
∑

σ

exp
(
tβNmN (σ )p + N (1 − t)ψmN (σ )

)
, (2.21)

where ψ is a constant to be set a posteriori. The Boltzmann factor associated to this partition
function is

BN (σ , t) = exp
(
tβNmN (σ )p + N (1 − t)ψmN (σ )

)
.

The associated generalized intensive statistical pressure is therefore

AN (β, t) = 1

N
log ZN (β, t). (2.22)

The key idea of the interpolating program is resumed in the

Proposition 1 The intensive free energy of the model in the thermodynamic limit is obtained
by means of the sum rule

A(β) ≡ A(β, t = 1) = lim
N→∞

(
AN (β, t = 0) +

∫ 1

0
dt ′∂t ′ AN (β, t ′)

)
. (2.23)

Proof The proof is a straightforward application of the fundamental theorem of integral
calculus. ��
Definition 9 Given a function F(σ ) of the spins in the system, its expectation value w.r.t. to
the partition function (2.21) is defined as

ωt [F(σ )] =
∑

σ F(σ )BN (σ , t)

ZN (β, t)
. (2.24)

Let us call again m̄ the thermodynamic limit of the value of the global magnetization at
the equilibrium, i.e.

m̄ = lim
N→∞ ωt [mN (σ )]. (2.25)

Remark 11 The equilibrium value m̄ of the global magnetization in the thermodynamic limit
can can depend on the interpolating parameter t . However, it is possible to show that in the
thermodynamic limit, the free parameter ψ can be conveniently chosen in order for m̄ to be
independent on t almost everywhere (see next Proposition). To do this, we shall again assume
the self-averaging property of the order parameter

lim
N→∞ P(mN (σ )) = δ(m − m̄). (2.26)

β almost everywhere and for all t ∈ [0, 1]. This again implies that the variance of the global
magnetization vanishes in thermodynamic limit, i.e. limN→∞(ωt [m2

N ] − ωt [mN ]2) = 0.
Further, we make the assumption that the variance of the order parameter scales as N−1, i.e.

lim
N→∞

∣∣N (ωt [m2
N ] − ωt [mN ]2)∣∣ < +∞, almost everywhere, (2.27)

or, in other words, fluctuations around the thermodynamic value of the order parameter scales
as 1/

√
N . In the physics jargon, this is equivalent to require that the magnetic susceptibil-

ity diverges only at the critical point, which is reasonable for ferromagnetic systems. The
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assumption (2.27)will be very useful in Proposition 2, sincewe can introduce a function�(σ )

accounting for fluctuations around the thermodynamic value of the global magnetization:

ωt [(mN − ωt [mN ])2] = O
(
1

N

)
⇔ mN (σ ) = ωt [mN (σ )] + �(σ )√

N
, (2.28)

for sufficiently large N and β almost everywhere. The function �(σ ) has zero mean
(ωt [�(σ )] = 0, which trivially follows from taking the expectation value of both the terms
in the expansion) and finite variance ωt [�(σ )2], even in the thermodynamic limit. In other
words, by restricting ourselves to the pure state with positive magnetization (without loss of
generality), we can express the global magnetization of a general configuration σ in terms
of fluctuations [the second term on the right side in (2.28)] around the expectation value
ωt [mN ]. The two sides of (2.28) are compatible, since with the expansion (2.28) it is easy to
show that

ωt [(mN − ωt [mN ])2] = ωt [�(σ )2]
N

,

for sufficiently large N , thus satisfying the assumption (2.27).

Now, we have all of the ingredients needed to prove the following

Proposition 2 It is possible to suitably choose the parameter ψ ∈ R such that the expec-
tation value in the thermodynamic limit of the global magnetization is independent on the
interpolating parameter almost everywhere, i.e.

dm̄

dt
= 0 a.e. (2.29)

Proof First of all, we assume the decomposition (2.28), which we report here for the sake of
completeness:

mN (σ ) = ωt [mN (σ )] + �(σ )√
N

. (2.30)

The t-derivative of the expectation value of the global magnetization is clearly

d

dt
ωt [mN (σ )] = βN

(
ωt [mN (σ )p+1] − ωt [mN (σ )]ωt [mN (σ )p])

− ψN
(
ωt [mN (σ )2] − ωt [mN (σ )]2) . (2.31)

Adopting the expression (2.30), we can now compute this quantity term by term at the non-
trivial order in the 1/N expansion. In particular

ωt [mN (σ )p+1] = ωt

[(
ωt [mN (σ )] + �(σ )√

N

)p+1
]

=
p+1∑

k=0

(
p + 1

k

)
ωt [mN (σ )]p+1−kωt

[(�(σ )√
N

)k]
.

We are interested in considering only the contributions up to the 1/N order (the subleading
terms will vanish in the thermodynamic limit). Then

ωt [mN (σ )p+1] = ωt [mN (σ )]p+1 + (p + 1)√
N

ωt [mN (σ )]pωt [�(σ )]

+ p(p + 1)

2N
ωt [mN (σ )]p−1ωt

[
(�(σ ))2

]
+ R1(mN (σ )), (2.32)
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where R1(mN (σ )) accounts for the rest of the expansion, i.e.

R1(mN (σ )) =
p+1∑

k=3

(
p + 1

k

)
ωt [mN (σ )]p+1−kωt

[(�(σ )√
N

)k]
. (2.33)

The leading contribution inR1 is of order N−3/2, thus the whole quantity will not contribute
to (2.31) in the limit N → ∞. Since the fluctuations have zero mean, the second term in
(2.32) identically vanishes, leaving us only with

ωt [mN (σ )p+1] = ωt [mN (σ )]p+1 + p(p + 1)

2N
ωt [mN (σ )]p−1ωt [�(σ )2] + R1(mN (σ )).

(2.34)
In a similar fashion, it is easy to prove that

ωt [mN (σ )]ωt [mN (σ )p] = ωt [mN (σ )]p+1

+ p(p − 1)

2N
ωt [mN (σ )]p−1ωt [�(σ )2] + R2(mN (σ )), (2.35)

where also in this case R2(mN (σ )) accounts for the subleading corrections scaling at least
as N−3/2 for large N . Finally, it is clear that

ωt [mN (σ )2] − ωt [mN (σ )]2 = 1

N
ωt [�(σ )2]. (2.36)

Putting (2.34), (2.35) and (2.36) in (2.31), we easily get

d

dt
ωt [mN (σ )]=βN

(
ωt [mN (σ )]p+1+ p(p + 1)

2N
ωt [mN (σ )]p−1ωt [�(σ )2]+R1(mN (σ ))

− ωt [mN (σ )]p+1 − p(p − 1)

2N
ωt [mN (σ )]p−1ωt [�(σ )2] − R2(mN (σ ))

)

− ψωt [�(σ )2] = (β pωt [mN (σ )]p−1 − ψ)ωt [�(σ )2] + NQ(mN (σ )),

(2.37)

where we defined Q(mN (σ )) = R1(mN (σ )) − R2(mN (σ )) whose leading contribution
scales itself as N−3/2 in the large N limit (thus, NQ(mN (σ ) scales as N−1/2), and therefore
it is negligible in the N → ∞ limit). The r.h.s. of the last line in (2.37) is well-defined in
the thermodynamic limit, thus - calling m̄ = limN→∞ ωt [mN [σ ]], we have (recall that the
variable � has finite variance in the N → ∞ limit)

lim
N→∞

d

dt
ωt [mN (σ )] = (β pm̄ p−1 − ψ) lim

N→∞ ωt [�(σ )2]. (2.38)

Here, we used the fact that NQ → 0 in the limit N → ∞, since the leading contribution
of the quantity Q is of order N−3/2. This means that the sequence { dωt [mN (σ )]

dt }N converges
almost everywhere to the r.h.s. of the previous equation, so by virtue of Egorov’s theorem
[41], it is almost uniformly convergent. As a consequence, the relation

lim
N→∞

d

dt
ωt [mN (σ )] = d

dt
lim

N→∞ ωt [mN (σ )]

holds almost everywhere, which means

dm̄

dt
= (β pm̄ p−1 − ψ) lim

N→∞ ωt [�(σ )2] (2.39)
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Then, it is simple to note that the requirement dm̄
dt = 0 can be consistently fulfilled almost

everywhere by choosing

ψ = β pm̄ p−1,

which proves our assertion. ��
Proposition 3 The expectation value of the p-th power of the global magnetization can be
written in terms of the centered momenta with degree lower or equal to p.

Proof The proof is a straightforward application of binomial theorem. Indeed

ωt [mN (σ )p] = ωt [(m̄ + mN (σ ) − m̄)p] =
p∑

k=0

(
p

k

)
ωt [(mN (σ ) − m̄)k]m̄ p−k .

��
Remark 12 We stress that we can also extract the lower two terms from the sum, in order to
get

ωt [mN (σ )p] = m̄ p + p m̄ p−1 ωt [(mN (σ ) − m̄)] +
p∑

k=2

(
p

k

)
ωt [(mN (σ ) − m̄)k]m̄ p−k,

or in other words

ωt [mN (σ )p]−pm̄ p−1ωt [mN (σ )] = (1−p)m̄ p+
p∑

k=2

(
p

k

)
ωt [(mN (σ )−m̄)k]m̄ p−k . (2.40)

With all of these ingredients in our hand, we can prove the following

Theorem 2 The thermodynamic limit of the intensive statistical pressure for the model (2.2)
is given by

A(β) = β(1 − p)m̄ p + log 2 + log cosh(β pm̄ p−1). (2.41)

Proof First of all, we compute the derivative of the statistical pressure. In this case, we have

∂AN (β, t)

∂t
= βωt [mN (σ )p] − ψωt [mN (σ )].

We notice that, recalling our choice ψ = β pm̄ p−1, we have

∂AN (β, t)

∂t
= β

(
ωt [mN (σ )p] − pm̄ p−1ωt [mN (σ )]) ,

so that we can apply the Remark 12. Indeed, using the relation (2.40), we easily get

∂AN (β, t)

∂t
= β(1 − p)m̄ p + β

p∑

k=2

(
p

k

)
ωt [(mN (σ ) − m̄)k]m̄ p−k .

We stress that, by assuming the self-averaging property (2.26) of the order parameter, the sum
in r.h.s. clearly vanishes in the thermodynamic limit (since centered momenta will disappear
in the N → ∞ limit), therefore leaving us only with

lim
N→∞

∂AN (β, t)

∂t
= β(1 − p)m̄ p, (2.42)
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which is independent on t (due to Proposition 2). Thus, its t-integration is trivial. On the
other side, the t = 0 is easy to handle with, since it is a 1-body computation. Indeed

AN (β, t = 0) = 1

N
log

∑

σ

exp
(
NψmN (σ )

) = 1

N
log

∑

σ1=±1

· · ·
∑

σN=±1

exp
(
ψ

∑

i

σi
)
,

which leads to

AN (β, t = 0) = 1

N
log 2N coshψ = log 2 + log cosh(β pm̄ p−1), (2.43)

where we recalled our choice ψ = β pm̄ p−1. Now, using the sum rule (2.23), we obtain the
thermodynamic limit of the intensive pressure

A(β) = β(1 − p)m̄ p + log 2 + log cosh(β pm̄ p−1), (2.44)

as claimed. ��
Corollary 1 The self-consistency equation for the global magnetization is

m̄ = tanh(β pm̄ p−1). (2.45)

Proof Thederivation of the self-consistency equation immediately follows from the extremal-
ity condition for the statistical pressure ∂m̄ A(β) = 0. ��

This is in agreement with the results coming from purely statistical mechanics arguments
(2.12).

3 FewWords on Burgers Hierarchy

The Burgers equation [25,30,87] is one of the most studied nonlinear evolutive equations,
and it can be written in the form

ut + 2uux + αuxx = 0, (3.1)

whereα is the viscosity parameter and (. . . )t ≡ ∂t (. . . ), (. . . )x ≡ ∂x (. . . ), (. . . )xx ≡ ∂2x (. . . )

and so on. This equation is known to emerge as a 1 + 1-dimensional reduction of Navier-
Stokes equations for an incompressible fluid in absence of pressure gradient [86,87]. The
most important peculiarity of this equation is that it can be linearized in the heat equation
via Cole-Hopf transform [34,55]. Furthermore, it is one of the simplest models describing
the development and propagation of shock waves. A related and well-studied equation is the
Sharma-Tasso-Olver (STO) equation [66,74,83], which can be written as

ut + 3u2ux + 3αu2x + 3αuuxx + α2uxxx = 0. (3.2)

This equation is known to be integrable (in particular, it presents infinitely many symmetries,
a bi-Hamiltonian structure, solitary wave solution and an infinite number of conservation
laws [66,74,83,85]).

These two equations are the lowest elements of the so-called Burgers hierarchy, which
can be presented in the form

∂u(t, x)

∂t
+ ∂

∂x

(
α

∂

∂x
+ u(t, x)

)n

u(t, x) = 0, n = 1, 2, . . . . (3.3)
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12 Page 14 of 28 A. Fachechi

The next two higher equations in the hierarchy are respectively

ut + 4u3ux + 12αuu2x + 6αu2uxx + 10α2uxuxx + 4α2uuxxx + α3uxxxx = 0,

ut + 5u4ux + 30αu2u2x + 15α2u3x + 10αu3uxx + 50α2uuxuxx + 10α3u2xx (3.4)

+10α2u2uxxx + 15α3uxuxxx + 5α3uuxxxx + α4uxxxxx = 0. (3.5)

It is clear that the complexity of the elements in the Burgers hierarchy dramatically increases
with the index n. However, all of these equations share the same property of Burgers equation,
see also [66].

Remark 13 Notice that the Burgers hierarchy is also commonly written in the form

∂u(t, x)

∂t
+ δ

∂

∂x

(
∂

∂x
+ u(t, x)

)n

u(t, x) = 0. (3.6)

This is related to the form given in (3.3) is given by applying on the former the transformation
x → δx with δ = 1

α
.

Lemma 1 The following identity holds:
(

∂

∂x
+ �x

�

)n
�x

�
= �n+1,x

�
, (3.7)

where �n+1,x = ∂n+1
x �.

Proof The proof of this Lemma works in the same way of Lemma 1 in [59]. However, in
order to make this Section self-contained, we reported here for the sake of completeness. The
proof works by induction, so let us prove it for n = 1 first:

(
∂

∂x
+ �x

�

)
�x

�
= �xx

�
− �2

x

�2 + �2
x

�2 = �xx

�
. (3.8)

Assuming now that the identity holds for n, we will prove it for n + 1. Indeed:
(

∂

∂x
+ �x

�

)n+1
�x

�
=

(
∂

∂x
+ �x

�

) (
∂

∂x
+ �x

�

)n
�x

�
. (3.9)

Using the thesis for n, the last member of the equation is
(

∂

∂x
+ �x

�

)
�n+1,x

�
=

(
∂

∂x
+ �x

�

)
�n+1,x

�

=
(

�n+2,x

�
− �x�n+1,x

�2 + �x�n+1,x

�2

)
= �n+2,x

�
, (3.10)

which proves our assertion. ��
Lemma 2 The following identity holds:

∂

∂t

�x

�
= ∂

∂x

�t

�
. (3.11)

Proof The proof works by straightforward computation. Indeed

∂

∂t

�x

�
= �x,t

�
− �x�t

�2 , (3.12)
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while

∂

∂x

�t

�
= �t,x

�
− �x�t

�2 . (3.13)

Assuming that the function � is analytic in x and t , then �x,t = �t,x , leading to

∂

∂t

�x

�
= ∂

∂x

�t

�
. (3.14)

��
We are now in position to state the following

Theorem 3 Each element of the Burgers hierarchy can be linearized via Cole-Hopf transform
into linear equations.

Proof First, we perform the Cole–Hopf transform

u(t, x) = α
�x

�
≡ α(log�)x . (3.15)

By plugging it into the Burgers hierarchy (3.3) we have

∂

∂t
α

�x

�
+ ∂

∂x

(
α

∂

∂x
+ α

�x

�

)n

α
�x

�
= α

(
∂

∂t

�x

�
+ ∂

∂x

(
α

∂

∂x
+ α

�x

�

)n
�x

�

)
. (3.16)

Now, using Lemmas 1 and 2, we have

∂u(t, x)

∂t
+ ∂

∂x

(
α

∂

∂x
+ u(t, x)

)n

u(t, x) = α
∂

∂x

(
�t

�
+ αn �n+1,x

�

)
= 0. (3.17)

By setting the argument of the derivative to zero and assuming that � �= 0 for all x and t ,
we finally get the linear equations

�t + αn�n+1,x = 0. (3.18)

��

4 Guerra’s mechanical scheme and Relation with the Burgers Hierarchy

This final Section is devoted to prove the connection between the Guerra’s interpolated
partition function of the p-spin ferromagnets and the Burgers hierarchy. Before proceeding,
it isworth tomention that relations betweenPDEs and statisticalmodels have been extensively
analyzed in the literature, for instance by Ellis and Newman [42] and Bogolyubov and co-
workers [27,28]. More recently, PDE methods have gained a consistent role in the analysis
of statistical spin models, especially for disordered systems, see for example [20,22,32,46]
and references therein.

Having introduced both the players in the duality, we are now in position to prove it. We
will start by defining the generalized quantities in the Guerra’s interpolation scheme.

Definition 10 The Guerra’s generalized partition function is defined as

ZN (t, x) =
∑

σ

exp
(

− t NmN (σ )p + NxmN (σ )
)
, (4.1)
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with associated Boltzmann factor

BN (t, x) = exp
(

− t NmN (σ )p + NxmN (σ )
)
.

The intensive statistical pressure of the model is

AN (t, x) = 1

N
log ZN (t, x). (4.2)

Remark 14 We interpret the variable t and x respectively as temporal and spatial coordinates
in a 1+1-dimensional space. This interpretation will be clear in a moment.

Remark 15 Westress that the original p-spinmodel (2.2) (without external fields) is recovered
with the choice t = −β and x = 0. The inclusion of a (uniform) magnetic field is reproduced
by setting x = h �= 0, so that the present framework will still work.

Definition 11 Given a function F(σ ) of the spins, its expectation value for the interpolating
system (4.1) is defined as

ωt,x [F(σ )] =
∑

σ F(σ )BN (t, x)

ZN (t, x)
. (4.3)

We assume that the function AN (t, x) is a differentiable function w.r.t. the space-time
coordinates. We can therefore compute its derivatives. In particular, we have

∂AN (t, x)

∂t
= −ωt,x [mN (σ )p], (4.4)

∂AN (t, x)

∂x
= ωt,x [mN (σ )]. (4.5)

In order to find differential equations, we also need higher spatial derivative of the generalized
statistical pressure [or equivalently, derivatives of the magnetization expectation value by
virtue of (4.5)]. It is trivial to note that differentiating the expectation value of the global
magnetization would generate expectation values of polynomial in the magnetization itself.
This is due to the fact that the x-derivative should increase of a unity the power. This is clear,
for example, by considering the first derivative of the expectation value of the magnetization.
Indeed, it is clear that

∂ωt,x [mN (σ )]
∂x

= N (ωt,x [mN (σ )2] − ωt,x [mN (σ )]2).
A similar relation holds for the expectation value of a generic power of the magnetization:

∂ωt,x [mN (σ )q ]
∂x

= N (ωt,x [mN (σ )q+1] − ωt,x [mN (σ )q ]ωt,x [mN (σ )]).
If we call uq(t, x) = ωt,x [mN (σ )q ], then we have the following
Proposition 4 The structure of the expectation values of the powers of magnetization is
resumed in the following relation

∂uq(t, x)

∂x
= N (uq+1(t, x) − uq(t, x)u1(t, x)). (4.6)

Proposition 5 The functions uq(t, x) satisfy the recurrence relation

uq+1(t, x) = 1

N

∂uq(t, x)

∂x
+ uq(t, x)u1(t, x). (4.7)
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Proof The proof of this Proposition follows from a trivial rearrangement of Eq. (4.6). ��
Practically,wegenerate the expectationvalue by repeatedly applying the operator N−1∂x+

u1(t, x) on the expectation value of the magnetization u1(t, x) = ωt,x [mN (σ )]:

uq+1(t, x) =
(
1

N

∂

∂x
+ u1(t, x)

)q

u1(t, x). (4.8)

Now, taking q + 1 = p and recalling that u p(t, x) = −∂t AN (t, x), we have

∂AN (t, x)

∂t
+

(
1

N

∂

∂x
+ u1(t, x)

)q

u1(t, x) = 0.

Further, taking the x-derivative of the entire equation, commuting the derivatives ∂t and ∂x
acting on AN (t, x) and recalling that ∂x AN (t, x) = u1(t, x) (which we simply call u(t, x)
for the sake of simplicity), we arrive to state the following

Theorem 4 For each p ≥ 2, the expectation value of the global magnetization u(t, x) of
the p-spin model described by the Guerra’s generalized partition function (4.1) satisfies the
equation of the Burgers hierarchy

∂u(t, x)

∂t
+ ∂

∂x

(
α

∂

∂x
+ u(t, x)

)p−1

u(t, x) = 0, (4.9)

where α = N−1 is the viscosity parameter.

Remark 16 An alternative route for the proof of the duality is to start with the partition
function ZN (t, x) and compute the space-time derivatives. It is easy to see that

∂ZN (t, x)

∂t
+ 1

N p−1

∂ p ZN (t, x)

∂x p
= 0.

In this setup, the relation between the expectation value of the magnetization ωt,x (mN ) and
the partition function ZN (t, x) is precisely the Cole–Hopf transform, then the duality is easily
understood.

4.1 The Inviscid Limit and Gradient Catastrophe

From the point of view the duality with the Burgers hierarchy, the thermodynamic limit
corresponds to the inviscid limit of the Burgers hierarchy α → 0. Then, the whole class of
non-linear equations dramatically simplifies, so that we get

∂u(t, x)

∂t
+ ∂

∂x
u(t, x)p = ∂u(t, x)

∂t
+ pu(t, x)p−1 ∂u(t, x)

∂x
= 0.

In order to solve this equation, we also need the initial profile of the solution u0(x) = u(t =
0, x). Again, this is a trivial computation, since the initial profile is a 1-body problem. Indeed,
we have

u0(x) = ∂

∂x

1

N
log ZN (t = 0, x) = ∂

∂x

1

N
log

∑

σ

exp(NxmN (σ ))

= ∂

∂x

1

N
log

∑

σ

exp
(
x

N∑

i=1

σi
) = ∂

∂x

1

N
log 2N coshN (x) = tanh(x).

Therefore, we can state the following
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Proposition 6 The solution of the self-consistency equation in the thermodynamic limit of
the model (4.1) is given by the solution of the initial value problem

{
∂u(t,x)

∂t + p u(t, x)p−1 ∂u(t,x)
∂x = 0

u0(x) = u(t = 0, x) = tanh(x)
. (4.10)

We stress that such a (first order) system describes the motion of traveling waves in 1 + 1
dimensions with effective velocity v(t, x) = p u(t, x)p−1. Then, as standard in this case, we
can look for solution in implicit form as u(t, x) = u0(x − v(t, x)t) = tanh(x − v(t, x)t).
Now, recalling that the original p-spin model is recovered with the choice x = 0 and t = −β

and that u(−β, 0) = limN→∞ ω−β,0(mN (σ )) = m̄ in the inviscid limit (here, we dropped
the dependency on t and x , but we again assume the self-averaging property of the order
parameter), we easily get the self-consistency equation

m̄ = tanh(β p m̄ p−1), (4.11)

in perfect agreement with previous results (2.12) and (2.45).

Remark 17 For each p, the model equilbrium dynamics [as resumed in (4.11)] undergoes
an ergodicity breaking transition. However, this phase transition is of second order (in the
standardErhenfest classification, i.e. the second derivative of the free energy is discontinuous)
only for p = 2, while for all p > 2 the phase transition is of first order (i.e. the first derivative
of the free energy is discontinuous).

On the Burgers’ side, the inviscid limit has the peculiarity of the appearance of the gradient
catastrophe and the related development of shock waves. Indeed, it is easy to understand that
these two phenomenons (i.e. gradient catastrophe and ergodicity breaking) are equivalent in
this mapping. To understand this, let us analyze the characteristic curves of the system (4.10),
given by the system

dt

1
= dx

pu(t, x)p−1 ,

while u is constant along the characteristic curves, i.e. du/dt = 0. The characteristic curves
are straight lines which can be parametrized in terms of a quantity ξ as xξ (t) = ξ + F(ξ)t ,
where ξ clearly is the x value at t = 0 and F(ξ) = v(u0(ξ)) = p tanh(ξ)p−1. It is well
known that the gradient of the solution of (4.10) diverges as tc(ξ) = −1/F ′(ξ), where the
characteristic lines start to cross each other.

Remark 18 By inspecting at its plot, we see that, for even p, the function F ′(ξ) is only
positive, meaning that the gradient catastrophe only takes place for t < 0. This is consistent
with our approach, since t = −β and β ∈ R

+. On the other hand, rigorously the solution
of (4.10) is defined for t > 0. This is not a problem, since the solution can be analytical
continuated for negative values of t just before the shock (i.e. for t > tc). A sketch of the
family of characteristic curves is depicted in Fig. 1, left panel.

Since we ultimate want to set x = 0 and t = −β, we should consider only the char-
acteristics for which the gradient catastrophe holds at x = 0. In order to ensure this, we
have to choose xξ̄ (tc) = 0 for some ξ̄ , meaning that ξ̄ = −F(ξ̄ )tc. By using the formula

tc(ξ) = −1/F ′(ξ), we have that ξ̄ = F(ξ̄ )/F ′(ξ̄ ). In other words, with the last formula we
find for the values of ξ for which the gradient explodes in the position x = 0, then with the
standard gradient formula we can compute the time at which the solution develops a shock
wave. Recalling that t = −β = − 1

T , we arrive at the following
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Fig. 1 (Left panel). Representation of characteristic curves for the system (4.10). In particular, we have p = 2
(upper left plot), p = 3 (upper right plot), p = 4 (lower left plot) and p = 5 (lower right plot). We see the
different patterns of the characteristics curve for even p (mutual crossing of characteristics only for t < 0)
and for odd p (mutual crossing of characteristics both for t < 0 and t > 0). Of course, only the t < 0
gradients catastrophes are relevant in this scenario. (Right panel). Numerical solution (black solid lines) of the
self-consistency Eq. (4.11) for p = 2, 3, 4, . . . , 10 (going from the left to the right). The red dashed vertical
lines represent the critical temperature for ergodicity breaking phase transition as predicted by the system
(4.12). Numerical results and theoretical predictions are in perfect agreement

Proposition 7 The critical temperature for the ergodicity breaking phase transition can be
identified resolving the following system:

{
ξ̄ = F(ξ̄ )/F ′(ξ̄ )

Tc = F ′(ξ̄ )
, (4.12)

where F(ξ) = p tanh(ξ)p−1.

The results are reported in Fig. 1, right panel.

4.2 Burgers Hierarchy Solution from p-Spin Thermodynamics

In this Section, we will take benefit of the duality in order to find explicit solutions of the
Burgers hierarchy with non-vanishing viscosity α and initial profile u0(x) = tanh x . To this
aim, we should find explicit expressions for the expectation value of the global magnetization
at finite N [86]. In this case, the global magnetizationmN (σ ) can only take discrete values. To
understand this,we can startwith a systemconfiguration inwhichσi = 1 for all i = 1, . . . , N ,
whose corresponding magnetization is trivially mN (σ ) = 1. All of the other values can be
obtained by progressively flipping all of the spins until the lower bound mN (σ ) = −1 is
reached (corresponding to a situation in which σi = −1 for all i = 1, . . . , N ). Every time we
flip a spin, there will be a net difference in the value of the magnetization whose magnitude
is 2/N . Therefore, the possible values of the magnetization are

mN ∈
{
1,

N − 2

N
,
N − 4

N
, . . . ,−N − 4

N
,−N − 2

N
,−1

}
, (4.13)

or in compact form mN ,k = 1
N (N − 2k) for k = 0, . . . , N . Each possible value of the

magnetization has a degeneracy given by

Deg(mN ,k) =
(
N

k

)
.
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With these ingredients, we can write the generalized partition function (4.1) at finite N as

ZN (t, x) =
N∑

k=0

(
N

k

)
exp

(
− t

N p−1 (N − 2k)p + x(N − 2k)
)
. (4.14)

Now, using the basic relation ωt,x [mN (σ )] = 1
N ∂x log ZN (t, x) and the duality result

u(t, x) = ωt,x [mN (σ )], we have

uN ,p(t, x) = 1

N

∑N
k=0

(N
k

)
(N − 2k) exp

(
− t

N p−1 (N − 2k)p + x(N − 2k)
)

∑N
k=0

(N
k

)
exp

(
− t

N p−1 (N − 2k)p + x(N − 2k)
) . (4.15)

In the last equation, we used the subscripts p to distinguish between different elements of
the Burgers hierarchy and N to stress that the corresponding viscosity parameter is fixed as
α = 1/N . As is clear from (4.15), the solutions we can build by explicit use of the duality
are rational functions in which both the numerator and denominator are linear combinations
(with coefficients not depending on x and t) of exponential waves of the form eAx+Bt . Other
solutions sharing this structure can be found in [59]. To conclude this analysis, we provide
some specific examples of solutions of the initial value problem for fixed N and p.

For p = N = 2, the function

u2,2(t, x) = −1 + e4x

1 + e4x + 2e2t+2x ,

is solution of the initial value problem
{
ut + 2uux + 1

2uxx = 0

u0(x) = u(t = 0, x) = tanh(x)
.

For p = 2, N = 3, the function

u2,3(t, x) = −1 + e6x − e
8
3 t+2x + e

8
3 t+4x

1 + e6x + 3e
8
3 t+2x + 3e

8
3 t+4x

,

is solution of the initial value problem
{
ut + 2uux + 1

3uxx = 0

u0(x) = u(t = 0, x) = tanh(x)
.

For p = 2, N = 4, the function

u2,4(t, x) = −1 + e8x − 2e3t+2x + 2e3t+6x

1 + e8x + 4e3t+2x + 6e4t+4x + 4e3t+6x ,

is solution of the initial value problem
{
ut + 2uux + 1

4uxx = 0

u0(x) = u(t = 0, x) = tanh(x)
.

We can also vary the value of the order p of the interactions. Indeed, for p = 3 and N = 2,
the function

u3,2(t, x) = −e2t + e2x

e2t + e2x
,
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is solution of the initial value problem
{
ut + 3u2ux + 3

2u
2
x + 3

2uuxx + 1
4uxxx = 0

u0(x) = u(t = 0, x) = tanh(x)
.

Finally, for p = 4 and N = 2, the function

u4,2(t, x) = −1 + e4x

1 + e4x + 2e2t+2x ,

is solution of the initial value problem
{
ut + 4u3ux + 6uu2x + 3u2uxx + 5

2uxuxx + uuxxx + 1
8uxxxx = 0

u0(x) = u(t = 0, x) = tanh(x)
.

4.3 A Representation for Finite-Size p = 2 Solution Through Burgers Duality

As mentioned above, the interesting feature in the duality between p-spin ferromagnets and
the Burgers’ hierarchy is that the analysis of the statistical model can be reduced to the study
of solutions of linear PDEs for finite N by means of the Cole-Hopf transform. By reversing
the duality, we can give a representation of the finite size solution of such spin systems by
means of purely PDE methods. In particular, for p = 2 we can take advantage of the heat-
kernel technology to find a description of the Curie-Weiss model by deriving an effective
self-consistency equation for the order parameter. However, we stress that, for these simple
systems, the Burgers duality route is not needed, as the solution is easily found even at finite
size N . Despite this, it is worth to analyze how the whole connection works in both senses.

Recall that the Guerra’s generalized partition function is

ZN (t, x) =
∑

σ

exp
(

− t NmN (σ )2 + NxmN (σ )
)
, (4.16)

with associated free energy

AN (t, x) = 1

N
log ZN (t, x). (4.17)

The spatial derivative u(t, x) = ∂x AN (t, x) satisfies the Burgers equation

ut + 2uux + 1

N
uxx = 0. (4.18)

The solution of (interpolated) Curie–Weiss model is equivalent to search the solution of the
Burgers equation with initial profile u0(x) = u(t = 0, x) = tanh x . Using the Cole-Hopf
transformation u(t, x) = 1

N (log�)x , the problem is reduced to the heat equation

�t + 1

N
�xx = 0. (4.19)

By using the previous definitions, we can identify AN (t, x) = 1
N log�(t, x), so that the �

function is nothing but the Guerra’s generalized partition function (4.16).
The heat equation can be solved via the heat kernel technology, so that the general solution

is given by

�(t, x) =
∫

dy �0(y)K (t, x − y), (4.20)
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where �0 is the initial profile of the Cauchy problem, and

K (t, x) =
√

− N

4π t
exp

(Nx2

4t

)
. (4.21)

Remark 19 We stress that solutions of the form (4.20) are well-defined for t < 0, due to the
“wrong” sign of the temporal derivative in the heat equation (4.19). However, this is coherent
with our setup, since the link with the thermodynamic model is achieved with t = −β with
β ∈ R+.

Now, since u(t, x) = 1
N (log�)x and the initial profile of the solution of Burgers equation

is u0(x) = tanh x , we immediately have that �0(x) = coshN (x), so that, according to the
duality, we have

AN (t, x) = 1

N
log

√
− N

4π t

∫
dy coshN (y) exp

(N (x − y)2

4t

)
, (4.22)

and then the argument of the logarithm is an integral representation of the partition function.
In order to make contact with the thermodynamic picture of the Curie–Weiss ferromagnet,
we should match the order parameter in terms of the relevant variable on the Burgers side.
To do this, we use the fact that ωt,x (mN ) = ∂x AN (t, x), so we take the spatial derivative of
the free energy (4.22). Then, we have

∂x AN (t, x) = 1

2t

∫
dy(x − y) coshN (y) exp

(
N (x−y)2

4t

)

∫
dy coshN (y) exp

(
N (x−y)2

4t

) . (4.23)

By performing the transformation y = −2t ȳ + x , we thus have

ωt,x (mN ) =
∫
d ȳ ȳ coshN (−2t ȳ + x) exp(Nt ȳ2)∫
d ȳ coshN (−2t ȳ + x) exp(Nt ȳ2)

. (4.24)

Then, it is proved the following

Proposition 8 The (finite-size) expectation value of the global magnetization for the (inter-
polated) Curie–Weiss model is equivalent to the first moment of the random variable ȳ
distributed according to the probability distribution

Pt,x (ȳ) = C coshN (−2t ȳ + x) exp(Nt ȳ2), t < 0, (4.25)

where C is a normalization constant.

Remark 20 Since the probability distribution (4.25) is the same associated to the partition
function (which in this setup is represented by the � function), we can exactly identify the
global magnetization with the random variable ȳ.

In terms of the ȳ variable, the intensive pressure is (4.22) is

AN (t, x) = 1

N
log

[
− t

√
− N

π t

∫
d ȳ coshN (−2t ȳ + x) exp(Nt ȳ2)

]
. (4.26)

We can now take the spatial derivative of the intensive pressure. To do this, we consider the
identity

∂x cosh
N (−2t ȳ + x) = N coshN (−2t ȳ + x) tanh(−2t ȳ + x).
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Thus, we have

ωt,x (mN ) ≡ ∂x AN (t, x) =
∫
d ȳ coshN (−2t ȳ + x) tanh(−2t ȳ + x) exp(Nt ȳ2)∫

d ȳ coshN (−2t ȳ + x) exp(Nt ȳ2)
. (4.27)

By denoting with 〈·〉t,x the average with respect to the probability distribution Pt,x (ȳ) and
comparing Eqs. (4.24) and (4.27), we arrive at the equality

〈ȳ〉t,x = 〈tanh(−2t ȳ + x)〉t,x . (4.28)

Remark 21 By setting t = −β and x = 0, we have formally similar self-consistency equa-
tions w.r.t. Eq. (2.45), i.e.

〈ȳ〉 = 〈tanh(2β ȳ)〉,
where 〈·〉 = 〈·〉−β,0. The substantial difference lies in the fact that in this case the average
is performed at finite N , so that the r.h.s. is not expressed as a function of the expectation
value of the magnetization, since the probability distribution is smooth (or equivalently, it
is not peaked on the equilibrium value of the magnetization). Indeed, we checked that the
probability distribution (4.25) at x = 0 and t = −β exhibits the behaviourwe expect from the
Curie-Weiss picture, see Fig. 3. In particular, below the critical temperature, the probability
distribution displays two different peaks (which are related by the symmetry transformation
y → −y) becoming sharper and sharper as N increase, ultimately tending to two Dirac
deltas. Above the critical temperature, there is a single peak centered at y = 0, mimicking
the fact that the system has lost its ferromagnetic behavior.

The comparison between the explicit solution (4.15) and the prediction of (4.24) [for
which we checked the equality (4.28)], is reported in Fig. 2.

5 Conclusions and Further Developments

Dualities are always powerful tools in mathematical and theoretical physics, since they allow
a two-faced investigation of apparently unrelated fields with new mathematical tools, often
making easier to derive non-trivial results. In this paper, we examined the relation between
the equilibrium dynamics of the p-spin ferromagnetic models and the Burgers hierarchy; in
particular, the expectation value of the order parameter in the first side is identified with the
solution of the initial value profile of the Burgers hierarchy. We also present some examples
of application of the duality on both sides. The methods here developed can in principle
be applied to other spin models. Indeed, particularly interesting extensions of the present
work would be the application of the PDE-statistical mechanics duality to p-spin systems
with random external field [15,61], as well as to diluted and finite-connected ferromagnets
[10,44,64,65]. Even more interesting would be the application of PDE-statistical mechanics
duality to disordered system (i.e. spin glass) models with interactions of order p. In this case,
as is easily understood, the situation is much harder than the simple p-spin ferromagnets,
due to the intrinsic complexity of such systems. Since the structure of pure state is strongly
dependent on the realization of the internal disorder and the system size, the structure of
Guerra’s generalized partition function has to be consistently adapted. For the Sherrington–
Kirkpatrick (SK) model, it reads [52]

ZN (t, x) =
∑

σ

exp
(√

t
1√
N

∑

1≤i< j≤N

Ji jσiσ j + √
x

N∑

i=1

J̄iσi
)
,
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Fig. 2 Comparison between the explicit solution (4.15) (solid curves) and the prediction of (4.24) (empty
squares) for x = 0.001 (upper left plot), x = 0.01 (upper right plot), x = 0.1 (lower left plot) and x = 1
(lower right plot). In all cases, we fixed the size of the system to N = 50. The results from the two sides of
the duality are in perfect agreement

Fig. 3 Example of probability distributions profile for different values of β = 1/T = 2 (left plot, below the
critical temperature) and β = 1/T = 0.1 (above the critical temperature). For each plot, we reported different
values of N : in particular, the three curves correspond (from the broadest to the sharpest) to N = 10, N = 50
and N = 100

and the associated intensive pressure is defined as AN (t, x) = 1
N E log ZN (t, x). Here, both

the couplings Ji j and the effective external fields J̄i are normally distributed, i.e. Ji j , J̄i ∼
N (0, 1) for all i, j = 1, . . . , N , and E stands for the average w.r.t. these random variables.
The presence of the square root of the “space-time” coordinates t and x is motivated by an
extensive use of theWick theorem in the computations, so that the derivatives of the intensive
pressure does not explicitly depend on t and x . However, for spin-glass models the present
methods can only be useful in the thermodynamic limit. This is due to the fact that generally
a comprehensive description of spin-glass models is possible in the limit N → ∞, where
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it is possible to use rigorous methods (such as TLCs theorems or concentration inequalities
[54,79]) to achieve the thermodynamic solution. On the technical side, even when working
at a replica symmetric level, the mapping of the spin-glass model to mechanical systems
explicitly depends on the fluctuation of the order parameter (the replica overlap) w.r.t. its
thermodynamic value (see for example [1] for transport-like PDEs for the SK and Hopfield
models), thus in general we can take benefit of the PDE-statistical mechanics duality only
in the thermodynamic limit (where fluctuations vanish). Further, replica symmetry breaking
within the Guerra’s interpolating framework can be conveniently addressed enriching the
interpolation structure. In particular, for the SKmodel, the K -stepRSB equilibriumdynamics
is achieved in terms of the generalized partition function

ZK (t, x) =
∑

σ

exp
(√

t
1√
N

∑

1≤i< j≤N

Ji jσiσ j +
K∑

a=1

√
x (a)

N∑

i=1

J̄ (a)
i σi

)
,

where now x = (x (1), x (2), . . . , x (K )) and again Ji j , J̄
(a)
i ∼ N (0, 1) for all i, j = 1, . . . , N

and a = 1, . . . , K , see [21]. The intensive pressure of the model is now obtained as
AN (t, x) = 1

N E0 log Z0(t, x), where Zk−1(t, x)θk = Ek(Zk(t, x)θk ) for each k = 1, . . . , K .

Here,Ek is the expectation valuew.r.t. the randomvariables J̄ (k)
i , whileE0 is the averagew.r.t.

the coupling realizations Ji j . Finally, the θk parameters quantify the intensity of each peak
in the N → ∞ K -RSB overlap distribution [1,21]. This implies that the K -RSB approxima-
tion of spin-glass equilibrium dynamics can in principle be mapped to K + 1-dimensional
mechanical systems. Also, the application of the whole technology to equilibrium dynamics
of neural networks would be highly desirable. To conclude, we strongly believe that PDE-
statistical mechanics duality can be, at least in the thermodynamic limit, a very useful tool
to investigate properties at the equilibrium of spin-glass models for each interaction order p
[33,36,37,45,69,76,77,87]. We leave this discussion open for future works.
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