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Abstract. This paper investigates the pure rocking of a rigid block with horizontal restraints. 

The model simulates the behavior of a masonry wall connected to transverse walls and/or steel 

tie-rods, very frequently adopted as safety measures against seismic actions. From the system 

rotational stiffness, found for a Winkler-type model and for a single restraint, the resonance 

conditions of the horizontally restrained blocks are defined. The role of the horizontal restraint 

can be unilateral (acting only one direction of rotation) and/or bilateral (restraint with similar 

stiffness in both directions). Real earthquakes or Ricker’s wavelets, representing near-fault 

ground motions, are assumed as input parameters. It is found that in the bilateral case the 

response is more predictable, as response spectra are monotonic curves whit a reduction of 

normalized rotation obtained for higher values of restraint stiffness. Moreover, the effect of 

horizontal restraints is beneficial for the range of frequency parameters valid for typical ma-

sonry walls.  These considerations allow to define a design strategy to ensure the rocking sta-

bility of restrained masonry walls, through a self-centered rocking behavior.
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1 INTRODUCTION 

The out-of-plane assessment of masonry walls is generally faced through kinematic approaches 

[1], [2] or global models where those modes are suggested by a specific deformation pattern of 

the structure [3]. Nevertheless, a rocking analysis cannot be neglected when assessing the seis-

mic vulnerability of a masonry wall [4]. Rocking behavior is one of the reasons why many 

ancient structures survived for centuries in highly seismic areas. It can be indeed used as method 

for stabilizing rigid objects or free structures, in addition to traditional or innovative techniques 

of dissipation in masonry buildings [5]. Despite their apparent instability under horizontal 

ground motions, rocking structures exhibit earthquake resistance [6]. The stability condition of 

the rocking block can be different depending on its boundary conditions: it can be free-standing 

[7], vertically restrained [8] or horizontally restrained [9]. Moreover, external actions such as 

thrust of a roof on masonry panels can play a relevant role in the response [10]. The model of 

a block with horizontal restraints is based on two types of restraints [9]: (i) single spring at a 

certain depth of the block and (ii) Winkler-type spring bed. Case (i) is representative of anti-

seismic devices such as steel tie-rods, very frequently used to impede out-of-plane movements 

of masonry walls [11], [12] . Case (ii) models the role of transverse walls connected to the 

rocking wall itself. In this paper, the effect of the horizontal restraints under sine pulse, Ricker 

wavelets and real seismic records is analyzed and discussed. Indeed, the response of the rocking 

block is particularly sensitive to the input motion. The period of the excitation significantly 

affects the response and the possibility of collapse: near-field ground motions, that contain long-

period directivity pulses, might bring these structures to collapse [13]. Recently, numerical ap-

proaches were proposed to identify ground motions capable to cause ‘rocking resonance’ [14]–

[16]. 

This paper illustrates the dynamics and the system stiffness of horizontally restrained rocking 

blocks, defining the resonance condition. The dimensionless variables �, function of the spring 

bed and the single restraint stiffness, are also derived. Afterwards, the attention focuses on the 

analysis on a rocking façade under different typologies of pulses. By analyzing the behavior in 

unilateral and bilateral conditions and widening the analysis for different walls, a design strat-

egy is conceived to reach a rocking behavior for which the response is more controllable and 

predictable.  

2 DYNAMICS AND STIFFNESS OF THE HORIZONTALLY RESTRAINED 

ROCKING BLOCK 

2.1 Equation of motion 

The Housner block can be detained by two typologies of restraints: (i) single spring at a certain 

depth of the block and (ii) closely spaced independent flexible supports (Figure 1). Case (ii) is 

a simplification of transverse masonry walls connected to the rocking panel. This assumption 

is an approximation of the real mechanical behavior of transverse masonry walls: indeed, it 

ignores frictional and multidimensional elasticity effects. Let us assume that in the clockwise 

(CW) rotation the steel tie-rod is active, as in Figure 1, due to the tensile force acting on it. 

When the block rotates counter-clockwise (CCW), the tie-rod becomes inactive due to the buck-

ling phenomenon. For what concerns transverse walls, the stiffness is different in CW and CCW 

rotations: in particular, in CW rotation it should take into account friction forces for the inter-

locking between the bricks of the rocking wall and those of the transverse walls. Nevertheless, 

this contribution is neglected and for CW rotation the transverse walls are assumed to not rotate. 

By contrast, in CCW these are active and offer a stiffening contribution limiting the rocking 

motion of the wall.  
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Active transverse walls (a)                       Active tie-rods (b) 

  
Figure 1: Housner block simulating a masonry wall with transverse walls (a) and steel tie-rods (b). The two struc-

tural elements are modeled with closely spaced independent flexible supports smeared out through the depth of 

the block (a) and single spring with the radius vector �� (b).  

 

The complete equation of motion of the block restrained by a single restraint (of stiffness �) 

and by a spring bed (of stiffness �’) is: 

 ���	 + ��
������ sin �� + 

+��
��� ����� cos ��,�  [��
 �� − sin ��,�] + ��
��� �!ℎ#  $� + %ℎ#2 + 'ℎ#�
3 )

− � *	+� cos �� = 0 

(1) 

 

 

where: �� = � − ��
���� ��,� = �� − ��
���� 

(2) 
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� is the block radius vector, whereas �� is the single spring radius vector. Moreover, ℎ# is the 

height along which the spring bed is effective. This value may obviously be lower than the 

block height ℎ. *	+ is the seismic excitation and � defines the single spring position.  

This equation can be also expressed in function of the frequency ratio .� = ���/�� by divid-

ing it by ��: 

 

�	 = −��
��� .� 0sin �� + ���R�� cos ��,�  2��
 �� − sin ��,�3
+ 2 cos � �!

��   $� + %ℎ#2 + 'ℎ#�
3 )4 + .� *	+� cos �� 

(3) 

 

 

where the terms multiplied by �! are: � = ��
��� �� sin � cos � �1 − cos ��; % = � �sin� � cos � − cos6 � + cos� ��; ' = ��
��� sin � cos� �. 

 

For values of radius vectors valid for masonry walls, namely 0 < � < 10 m, where the larger 

values are typical of large façades of monumental buildings, the frequency ratio ., assuming 

rectangular block, varies as displayed in Figure 2.  

 

 

 

Frequency ratio p: . = 8���/�� 

 

For rectangular blocks: 

. = 9 ���43 ��� = 93�4� 

 
Figure 2: Frequency ratio . for rectangular blocks in the range of interest of � values valid for masonry façades. 

 

 

The integration of Equation (2) expresses the time-history response of the restrained rocking 

block, which is function of the following parameters: 

� = f <., �, �� , ���R�� , �!
��   $� + %ℎ#2 + 'ℎ#�

3 )=  (4) 
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Those terms depend only on the geometry of the block and on the type of restraints, with the 

exception of �, %, ' (Equation (3)) that need to be further modified as reported in the following 

paragraph.   

  

2.2 Ricker wavelets and derivation of dimensionless terms for the restrained block 

The seismic action, enclosed in the term *	+ of Equation (2), generally has different frequency 

contents and amplitudes. Nevertheless, several authors considered the rocking response to 

pulses described as simple trigonometric functions and explained why rocking structures are 

particularly vulnerable to pulse-type earthquakes. In [17], it is observed that small blocks over-

turn with short period pulses, whereas larger blocks overturn due to the long-duration pulse.  

The detrimental role of long-period pulses inherent in near-fault ground motions is also ob-

served [18]. The Authors consider that under cycloidal pulses a free-standing block can over-

turn with two distinct modes: (1) by exhibiting one or more impacts; and (2) without exhibiting 

any impact. For the second mode, it can be determined a safe region that is located on the 

acceleration-frequency plane above the minimum overturning acceleration spectrum. The shape 

of this region depends on the restitution coefficient. 

For pulse-type earthquakes, the use of dimensionless variables is very advantageous. 

The Ricker wavelet [19] or its time derivative well approximate coherent pulses of several 

pulse-like ground motions [20]: 

>�?� = aA  $1 − 2B�?�
CA� ) DEF� $�GHIHJKH )  (5) 

 

where LA is the amplitude of the acceleration pulse. The value of CA = �GMK  is the period that 

maximizes the Fourier spectrum of the wavelet, being NA the circular frequency of the acceler-

ation pulse. A relevant value correlated to those parameters is the characteristic length scale of 

the ground excitation. This parameter, OA = LACA�,  gives a measure of the persistence of the 

most energetic pulse capable to generate inelastic deformation. 

If one considers then pulse-type excitations, the response can be expressed in function of: 

� = f 2., �, �, �!, LA, NA, � 3  (6) 

assuming that, for the sake of simplicity, � = �� (slender blocks). The number of dimension-

less products that completely describe the motion, according to the Vashy-Buckingham � the-

orem [8], [21], is given by the number of variables (8) minus the number of reference 

dimensions (2, namely the time and the length). One has then 6 dimensionless products, which 

are: 

�� = �;  �M = NA. ; �Q = tan � ; �+ = LA� ; �S = ������  ; �S! = �!��
��  

(7) 

 

The validation of a MATLAB code used herein to generate the rocking curves and spectra solve 

a 4th-5th order is  performed by comparing the results with those obtained by [8]. The integra-

tion of Equation (3) is performed with the Runge-Kutta method [22]. 

By considering the following dimensionless parameters: 

�M = 1.0; �+�Q = 2; �U = 0.176; �X = 0 − 2; �S = �SY = 0, (8) 
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it is possible to obtain rocking spectra. In Equation (8), �X refers to a rocking frame, made by 

a set of Z columns of mass �[ and a cap beam of mass �\. The frequency ratio of a rocking 

frame is given by .̂ = .8�1 + 2^� 1 + 3^⁄ , where ^ = �\ �Z�[�⁄  [23]. The dimensionless 

parameter �X correspond to the value of ^. The obtained rocking spectra are displayed in Figure 

3. 

 

 
Figure 3: Rocking spectra for �M = 1.0; `a`b = 2; �U = 0.176; �X = 0 − 2, results compared with Figure 3 of  

[8]. 

2.3 System rotational stiffness for smeared and single horizontal restraints 

By expressing the work made by the springs in the two models, the resisting moment-rotation 

relationship is obtained, which is for case (i) [9]:  

 c���� = ��� sin�� − �� +  ����� cos�� − �� [��
 � −  sin�� − ��] (9) 

 

By assuming a constant spring stiffness �’ smeared out through the whole depth of the block, 

the dimensionless resisting moment-rotation relationship for the spring bed model is [9]: 

c���� = ��� sin�� − �� +  �!ℎ d� + 2%� cos � + efgH hijH Q6 k (10) 

where: 

 � = ��
��� �� sin � cos � �1 − cos ��; % = � �sin� � cos � − cos6 � + cos� ��; ' = ��
��� sin � cos� � 
(11) 

 

The function ��
��� expresses the sign ± depending on the rotation sign, clockwise or coun-

terclockwise. Let us assume here a positive rotation. Equations (9) and (10) are valid for any 
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rotation, whereas for small rotation, for which sin � ≅ �, cos � ≅ 1 and second order terms are 

neglected, the system rotational stiffness reads [9]: 

 �mnm = ���op�� dSqHgr+ op�� − 1k (12) 

 

for the single spring model.  

 

Figure 4: System rotational stiffness �mnm in the dimensionless resisting moment-rotation relationship and curve 

variation with increased values of spring bed stiffness �’ and single spring stiffness � (masonry wall with γ=18 

kN/m3, α=0.15 rad and �=2.0 m), Equations (9) and (10). 

 

In case of the spring bed model one has: 

 �mnm! = ��� cos � ds6 SYgH
r+ cos� � − 1k. (13) 

 

Both Equations (13) and (14) allow to express the moment-rotation law in a simplified way: 

 

c���� =  c��0� + �mnm ϑ 

c���� =  c��0� + �mnm! ϑ 

(14) 

  

where  c��0� = mgR sin�. The rotational stiffness �mnm or �mnm!  is the slope of the line in Fig-

ure 4, increasing for higher values of either � or �!. 
In the hypothesis of small rotations, one can easily define the value of the single spring stiffness 

in order to equate the two system rotational stiffness, by equating Equation (12) to Equation 

(13): 

 

�mnm = �mnm!  → � = 83�� �! ∙ �op�� (15) 
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Higher the spring bed stiffness, higher the stiffness of the single restraint. The latter is also 

proportional to the radius vector and to the cosine of the slenderness ratio. For what concerns 

the single spring position, lower the position (lower z�, higher its stiffness value, as expected. 

3 RESONANCE CONDITION 

The resonance condition is obtained when the rotational frequency of the rocking block equates 

that of the excitation, namely N� = NA. In particular, for the case of spring bed the square of 

rotational frequency is: 

 

N�� = S{|{Y
}~ = r+g hij Q ����Y�H

�a hijH QEF�
}~   =  .� cos � ds6 SYgH

r+ cos� � − 1k. (16) 

Therefore: 

 

N� = .�cos � ds6 SYgH
r+ cos� � − 1k  M��ϑ� = mgR sin�α-ϑ� +

Kβ�R� cos�α-ϑ� [sinα- sin�α-ϑ�]. (17) 

 

For the single horizontal restraint one has: 

 

N�� = S{|{}~ = r+g[�mQ ���H��a [�mQEF�
}~ = .� cos �  dSqHgr+ op�� − 1k (18) 

and 

 

N� = .�cos �  dSqHgr+ op�� − 1k .  (19) 

 

Both circular frequencies linearly depend on the frequency parameter .. For a slender column, cos � ≅ 1 and the circular frequencies at resonance become: 

 

N�,mr = .�ds6 SYgH
r+ − 1k ; N�,m��+�� = .� dSqHgr+ − 1k  . (20) 

 

That, in dimensionless terms, can be expressed as: 

�M,mr = �s6 �S! − 1 ; �M,m��+�� = 8�S − 1 , (21) 

 

respectively for smeared and single restraints. It is worthy to notice that these dimensionless 

terms do not depend on the slenderness ratio �. 

 

4 DYNAMIC RESPONSE WITH UNILATERAL OR BILATERAL RESTRAINTS 

The dynamic response is strongly different if unilateral (mainly acting in one side of the block) 

or bilateral restraints (stiffness equal or at least of the same order of magnitude for both direc-

tions).  

Let us assume a masonry façade connected with transverse walls, with analysis parameters re-

ported in Table 1. The wall is the main façade of the Santa Gemma Church in Goriano Sicoli 

(L’Aquila), whose damage suggested a rocking motion during the L’Aquila earthquake [9].  
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To evaluate the influence of the horizontal restraints in the motion, the façade is subjected first 

to a sin pulse type action and then to a seismic-type excitation. The façade has two configura-

tions: (a) spring bed modeling transverse walls acting only in one direction (non linear, NLin) 

and (b) spring bed with the same stiffness as that of the transverse walls in the two directions 

(linear, Lin). 

A parametric analysis is performed by assuming a range of spring bed stiffness values �’ be-

tween 0 and 1E10 N/m2 and three types of input action: sin pulse, real seismic records, Ricker 

wavelets. For all the analyses the restitution coefficient adopted is that of Housner, depending 

only on the slenderness ratio � [7]. 

 
Parameter Value Definition 

R (radius vector) 5.726 m Geometric survey  

α (slenderness ratio) 0.0778 rad  Geometric survey 

s (thickness) 0.89 m Geometric survey 

e (restitution coefficient) 0.9909 Derived by D = 1 − 6� sin� � 

[7] 

L (depth of the wall) 10.10 m Geometric survey 

γmas (specific weight) 18 kN/m3 Literature value (brick ma-

sonry, from [2]) 

Ey (vertical direction) 1700 MPa Masonry elastic modulus (in-

situ flat jack test) 

Ex (horizontal direction) 2125 MPa Derived by Ey/0.8 [24]. �J�J!  (transverse stiffness of the 

spring bed) 

5.07E9 N/m2 Derived as in [9]. 

Table 1: Geometric and mechanical parameters of the analyzed masonry façade. 

 

4.1 Response to sine pulse-type action 

The pulse has an acceleration L = 2.5 tan��� � ∙ sin �N?� and duration of 1 sec, after which the 

motion is on free vibration. The response is displayed in Figure 5. 

The frequency of the pulse is N = 5.8 rad/sec. The dynamic response is monitored for 10 sec-

onds. 

In the non-linear case (Figure 5a), the motion is oscillatory up to �’ values of about 1E6 N/m2, 

whereas for higher values the rebound effect is clear. The rotation amplitude slightly decreases 

when the motion is oscillatory and the frequency increases for higher �’ values. This consider-

ation is also valid for the linear case (Figure 5b), where the response is more controllable being 

symmetric. In this case the reduction of the rotation amplitude and of the vibration period are 

more evident. For instance, a value of �’ value of 1E6 N/m2 is needed to obtain a reduction by 

40% of the initial maximum rotation amplitude for the case without restraints. Correspondingly, 

a tripled frequency of vibration occurs. The measured value of transverse walls stiffness is about 

5.07E9 N/m2 (calculated in elastic range). For this value, if one assumes the linear case, the 

normalized rotation is close to zero (Figure 5b). By contrast, in case of unilateral restraint, the 

maximum rotation amplitude is about the same as that without restraints (≅ 0.7� and the fre-

quency of vibration is nearly the same ((Figure 5a). 
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(a) 

 
(b) 

Figure 5: Normalized rotation time-history of the façade under a sin pulse-type action: (a) unilateral spring bed 

simulating transverse walls; (b) bilateral spring bed. Stiffness values are expressed in N/m2. 

4.2 Response to real seismic records 

In this paragraph the response of the façade subjected to real earthquakes is discussed. The 

façade undergoes seismic records that it actually experienced during the L’Aquila main shock 

(Italy, 2009), whose acceleration time-histories are featured in [9]. The response of the façade 

is similar to that of the sine pulse for both unilateral and bilateral restraints. Indeed, if one 

considers the real case, that is unilateral restraints (spring bed with ℎ# = 4.90 ≠ ℎ), the over-

turning is not predictable, as for some �’ ranges (e.g., 1�6 < �! < 1�7 N/m2, and  �! > 1�11 

N/m2 - AQV record, Figure 6a) the façade overturns. The overturning phenomenon is due to a 

rebound effect due to the sensitive difference between restraints stiffness in the two directions 

of rotation. By contrast, when bilateral restraints participate to the motion, the behavior is much 

more predictable: a decreasing maximum amplitude ratio �rU�/� can be observed for higher 

stiffness values (Figure 6b). This monotonic behavior suggests a design strategy for anti-seis-

mic devices, based on reaching similar values of stiffness in the two directions of rotation.  
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(a) (b) 
Figure 6: Response of the masonry façade to real seismic records: (a) unilateral spring bed; (b) bilateral spring bed 

[9].  

4.3 Response to Ricker wavelets 

The façade frequency parameter . is equal to 1.134 rad/s and �U = 0.078. To widen the results 

in case of Ricker wavelets, a parametric analysis is performed for the dimensionless parameters  �M = 0.5 − 8 and 
`a`b = 2 − 3. Only the spring bed restraint is considered, varying the dimen-

sionless �S! values from 0 to 10. An oscillation motion is observed for the free rocking façade 

(�S! = 0) and in case of bilateral restraints, as shown in the response spectra of Figure 7a, the 

curves are monotonic and the overturning domain reduces for higher �S! values. By contrast, 

when restraints act unilaterally (in only one direction it is �S! ≠ 0, in the other one it is zero), 

the response is not so predictable, as for some values of �S!  (e.g. �S! =+1.0, Figure 7), there 

is not a monotonic trend (Figure 7b).  

(a) (b) 

Figure 7: Rocking spectra of the façade under Ricker wavelets with  `a`b = 2: (a)  bilateral case and (b) unilateral 

case.  

 

Moreover, the beneficial role of horizontal restraints is valid only for a range of Πω lower than 

a limit value, in this case about 3.8 for both cases, inasmuch for higher values the response with 

and without horizontal restraints tends to be similar. An analogous results was found for the 

rocking response of panels with vertical restraints [8]. 
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 �M = 2.5 

 �M = 3.5 
 �M = 4.5 

Figure 8: Response in unilateral case of the masonry façade to Ricker wavelets with 
`a`b = 2: �S! = +10.0. 

 

 

 �M = 2.5 

 

 �M = 3.5 
 �M = 4.5 

Figure 9: Response in bilateral case of the masonry façade to Ricker wavelets with 
`a`b = 3: �S! = 1. Resonance 

condition for �M = 1.28. 

 

When a unilateral restraint is assumed, for 
`a`b = 2 the time-history rotation displayed in Figure 

8 highlights that the rebound effect is clear but the value of stiffness is not such as to cause 

overturning.  
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If the same analysis is carried out by increasing the excitation amplitude to 
`a`b = 3, lower the 

spring bed stiffness value, higher the amplitude for the same frequency parameter  �M (Figure 

9 for �S! = 1 and Figure 10 for �S! = 10) in case of bilateral restraints.  

 

 

 �M = 2.5 

 

 �M = 3.5 
 �M = 4.5 

Figure 10: Response in bilateral case of the masonry façade to Ricker wavelets with 
`a`b = 3: �S! = 10. Resonance 

condition for �M = 5.04. 

  

(a) (b) 

Figure 11: Rocking spectra of the façade under Ricker wavelets with  `a`b = 3: (a)  bilateral case and (b) unilateral 

case.  
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The value of �M in resonance condition increases when higher stiffness value of �S! are as-

sumed. However, an oscillatory motion is always registered for the bilateral restraints, while 

for unilateral restraints the difference of stiffness depending on the rotation sign causes the 

block overturning for rebound effect. In Figure 11 the response spectra of the façade under 

Ricker wavelets with   Πg/Πα =3 are displayed. As occurred for the lower value of excitation 

amplitude, the response in the bilateral case is predictable with a monotonic trend, while in the 

unilateral case for some �S! values the façade overturns. In the case of bilateral restraints, the �M value above which the restraints are not effective is about 5.5 (Figure 11a). In the unilateral 

case, the range of �S! included between 2.5 and 5.5 is associated to unstable conditions. 

5 DESIGN STRATEGY: TARGET POINTS AND CONFIDENT RANGE 

The use of Equation (15) is related to a possible design strategy for anti-seismic devices (such 

as steel tie-rods), whose stiffness is �. The following procedure can be adopted to define a � 

value to have the same (or a similar value) system stiffness as that of the spring bed model. 

Once that the transverse stiffness of the wall is defined, depending on the radius vector and the 

slenderness ratio of the rocking wall, it is straightforward to determine the system stiffness from 

Equation (13). In a graph, valid for a specific value of slenderness ratio α, the radius vector � 

of the block under examination intersects a curve (Equation (12)) describing the dimensionless 

system stiffness (on the ordinates) in function of �. This curve corresponds to the target value 

of the single restraint stiffness � (Figure 12). From this value, it is therefore possible to easily 

calculate the diameter of the steel tie rods [9]. The position of the single restraint, denoted with 

β, is given by the curve itself (Equation (12)). 

For instance, if one has a transverse walls stiffness equal to K’=5E7 N/m2, R=4 m and α =0.15 

rad, to get roughly the same system stiffness, a single restraint stiffness has to be about 1E8 

N/m (Figure 13). 

From these parametric curves one can obtain range of values of the single restraints stiffness 

associated to steel tie-rods able to ensure a predictable behavior of the masonry walls, searching 

for an oscillatory motion. 

 

 

 

 
Figure 12 Procedure to define the value of the single restraint stiffness � that equates the system stiffness ���� 

depending on an assigned spring bed stiffness �’. 
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Figure 13: Variation of the system stiffness Ksys depending on the geometric parameters and on the values of single 

spring K (β=1) or spring bed stiffness K’: α=0.15 rad (a) and R=2.5 m (b). 

 

6 LIMITATIONS OF THE METHOD 

The illustrated method, for which it is possible to identify a target value of the single restraint 

stiffness to promote a self-centered (oscillatory) restrained motion, has some limitations, mainly 

related to correctly define the stiffness of transverse masonry walls. Indeed, the behavior of 

masonry is non-linear, but in this work only constant (for each sign of rotation) values of stiff-

ness have been considered. Moreover, the determination of the elastic stiffness is not easy, in-

asmuch before an earthquake the diagonal cracks on transverse walls are generally unknown. 

Furthermore, if a portion of transverse walls rotates about a plastic hinge together with the 

rocking wall, their stiffness obviously does not affect motion. In this case, the role of transverse 

walls is only related to an increased masonry volume, an increased radius vector (of the complex 

system wall + transverse walls) and consequently a reduction of frequency parameter. 

  

7 CONCLUSIONS 

The model assumed in the paper simulates the behavior of a masonry wall connected to trans-

verse walls and/or steel tie-rods, very frequently adopted as safety measure against out-of-plane 

modes due to seismic actions. From the system rotational stiffness, found for a Winkler-type 

model and for a single restraint, the resonance condition of the horizontally restrained block has 

been defined. The unilateral (restraint acting in only one direction of rotation) and the bilateral 

cases (restraints with similar stiffness in both directions) have been discussed. Real earthquakes, 

sine pulses or Ricker’s wavelets were assumed as input parameters, obtaining results both for 

dimensionless parameters and for a real masonry façade. It is found that in the bilateral case the 

response is more predictable, as response spectra are generally monotonic curves able to en-

hance the response with a sensitive reduction of amplitude rotation. In particular, the effect of 

horizontal restraints is beneficial for the range of frequency parameters valid for typical ma-

sonry walls.  These considerations allow to define a design strategy for ensure the rocking sta-

bility of restrained masonry walls, through a self-centered (oscillatory) rocking behavior. 

Indeed, once that the transverse stiffness of the wall is defined, it is straightforward to determine 

the value of � that equates the normalized system stiffness. From this values, dynamic analyses 
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have to be performed to draw rocking spectra in order to estimate the safety coefficient reached 

with the anti-seismic intervention. 
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