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Abstract: The overproduction of eumelanin leads to a panel of unaesthetic hyper-pigmented skin
diseases, including melasma and age spots. The treatment of these diseases often requires the use of
tyrosinase inhibitors, which act as skin whitening agents by inhibiting the synthesis of eumelanin,
with harmful side effects. We report here that laccase from Trametes versicolor in association with
a cocktail of natural phenol redox mediators efficiently degraded eumelanin from Sepia officinalis,
offering an alternative procedure to traditional whitening agents. Redox mediators showed a syn-
ergistic effect with respect to their single-mediator counterpart, highlighting the beneficial role of
the cocktail system. The pro-oxidant DHICA sub-units of eumelanin were degraded better than
the DHI counterpart, as monitored by the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA) and
pyrrole-2,3-dicarboxylic acid (PDCA) degradation products. The most effective laccase-mediated
cocktail system was successively applied in a two-component prototype of a topical whitening cream,
showing high degradative efficacy against eumelanin.

Keywords: laccase mediator cocktail system; skin whitening agents; eumelanin decolorization

1. Introduction

The overproduction of eumelanin by melanocytes causes skin hyperpigmentation
disorders, such as melasma as well as age and post-inflammatory spots, which can affect
human health and social relationships [1,2]. Current methods for skin whitening are aggres-
sive and harmful to a person’s health [3,4]. Most of the commercial skin whitening agents
are inhibitors of melanogenesis at the cellular level, favoring skin turnover by melanosome
dispersion [5]. Among them, arbutin, aloesin, kojic acid, α-lipoic acid, hydroquinone,
and corticosteroids are characterized by side effects, including dermatitis, acne, allergy,
neuropathies, hypertension, and kidney damage [6–13]. Oxidative enzymes that are able to
degrade melanin, such as peroxidase (EC 1.11.1.7) and laccase (EC 1.10.3.2), have received
great interest as a topical alternative to common tyrosinase inhibitors [14,15]. The use of
peroxidase requires H2O2 as a primary oxidant, which favors skin irritation [16–25]. On the
contrary, laccase is able to activate dioxygen as a primary oxidant without the necessity for
peroxide intermediates [26]. In this latter case, low-molecular-weight redox mediators are
required for the degradation of melanin [27]. These compounds perform as redox shuttles
from the active site of the enzyme to the bulk of the solution, thus improving the overall
reactivity (laccase mediator system, LMS). In the absence of redox mediators, the treatment
with laccase increases the complexity of melanin due to the occurrence of oxidative radical
coupling processes [26]. Examples of the LMS degradation of melanin have been reported,
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as well as the use of a single redox mediator such as 1-hydroxybenzotriazole (HBT), 2,2′-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), acetosyringone, syringaldehyde,
p-coumaric acid, vanillin, vanillic acid, vanillyl alcohol, and acetovanillone, which are
discussed in detail in [28–31]. Irrespective of the experimental conditions, these processes
are affected by a low degree of efficacy as well as by the use of high-cost enzymes and long
reaction times. We report here that a laccase mediator cocktail system (LMCS) improves the
degradation of melanin from Sepia officinalis, a well-recognized human eumelanin model,
with respect to a single laccase mediator [32–34]. We used laccase from Trametes versicolor,
a low-cost and commercially available enzyme, and a pair of redox mediators—ABTS
and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO); alternatively, we also used natural
phenols such as vanillin (V), syringaldehyde (Syr), acetosyringone (As), acetovanillone (Av),
and vanillyl alcohol (Va). These compounds covered a wide range of possible oxidative
reaction mechanisms [35–37]. Eumelanin was degraded efficiently (up to 87%), the best
results being obtained with the pair, V/Va. The residual eumelanin was characterized by
scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FT-IR),
showing a high degradation of the polymer with the disappearance of typical spherical
nanostructures. The degradation was further increased to 96% by a second run of the
treatment. The formation of degradation markers, pyrrole-2,3,5-tricarboxylic acid (PTCA)
and pyrrole-2,3-dicarboxylic acid (PDCA), provided useful information about the reaction
pathway [38–44]. The optimal LMCS was applied in the preparation of a prototype of a
topical whitening cream, characterized by a degradative efficacy of up to 78%.

2. Results
2.1. Decolorization of Eumelanin from Sepia Officinalis by Laccase Mediator System (LMS)

Initially, we studied the degradation of eumelanin from Sepia officinalis by the tradi-
tional LMS using a single redox mediator [26]. The experiments were performed using
TEMPO and ABTS as synthetic compounds in comparison with five natural redox me-
diators from lignocellulose wastes: Syr, V, As, Av, and Va [45]. The selected mediators
were characterized by three alternative redox mechanisms, namely electron transfer ET
(ABTS) [35], ionic IM (TEMPO) [36], and hydrogen atom transfer HAT (Syr, V, As, Av,
and Va) mechanisms [37]. As a general procedure, eumelanin (800 µg) and three different
amounts of the selected redox mediator (0.4 µmol, 0.8 µmol, and 1.6 µmol) in NaOH (200 µL,
0.5 M) and citrate buffer (2.4 mL; 0.1 M, pH 6) were treated with laccase (0.79 U/mg) in
citrate buffer (pH 6.0, 400 µL) at 37 ◦C for 4 h. The degradation process was monitored by
measuring the absorbance of the sample at LMAX of eumelanin (540 nm) [46], while the
degradation efficiency DE (Table 1) was evaluated by applying the following equation [16]:

(DE) Decolorization E f f icency % =
Abs0(540 nm) − Abs f (540 nm)

Abs0 (540 nm)
× 100 (1)

where Abs0 is the initial value of absorbance, and Absf is the value of absorbance after 4 h.
The treatment of eumelanin in the absence of the redox mediator was performed as a refer-
ence [30]. In this latter case, the absorbance of the system increased with time (Figure S1),
suggesting the occurrence of the expected oxidative cross-coupling processes [26].

The highest value of DE was obtained in the presence of V (Table 1, entry 3), followed
by Va and ABTS (Table 1, entries 7 and 1, respectively). As a general trend, the value of
DE increased by increasing the amount of the redox mediator, with the only exceptions
showed by Syr and TEMPO. These data suggest that the degradation and oligomerization
pathways were both involved in the process, depending on the nature of the redox mediator.
In particular, the HAT (associated with V and Va) and ET (ABTS) mechanisms were the
most efficient processes in the degradation of eumelanin under LMS conditions. These
results are of particular relevance since V and Va are natural phenols from sustainable raw
materials [47]. Compounds V and Va were previously reported as redox mediators in the
degradation of synthetic melanin with laccase from Lentinus polychrous [28].
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Table 1. Decolorization efficiency of eumelanin by LMS at different amounts of mediators (0.4, 0.8,
and 1.6 µmol).

Entry LMS µmol DE%

1 ABTS (0.4) (0.8)(1.6) (10) 1 (18) 2 (26) 3

2 TEMPO (0.4) (0.8) (1.6) (20) 1 (21) 2 (16) 3

3 V (0.4) (0.8)(1.6) (12) 1 (13) 2 (36) 3

4 Syr (0.4) (0.8) (1.6) (17) 1 (25) 2 (10) 3

5 As (0.4) (0.8) (1.6) (16) 1 (9) 2 (9) 3

6 Av (0.4) (0.8) (1.6) (8) 1 (14) 2 (16) 3

7 Va (0.4) (0.8) (1.6) (15) 1 (16) 2 (28) 3

1 Percentage of decolorization efficiency (DE%) calculated after 4 h of reaction at amount of mediators of 0.4 µmol.
2 DE% after 4 h at amount of mediators of 0.8 µmol. 3 DE% after 4 h at amount of mediators of 1.6 µmol.

2.2. Decolorization of Eumelanin by Laccase Mediator Cocktail System (LMCS)

The laccase mediator cocktail system (LMCS) shows the contemporary presence of
(at least) two redox mediators, sometimes involving different reaction mechanisms. In
nature, LMCS is involved in the degradation of lignin by fungi through the cooperative
action of lytic polysaccharide monooxygenase and oligomers deriving from lignin degra-
dation [34,48,49]. In order to improve the efficacy of the degradation of eumelanin, we
studied the use of LMCS by combining the following pairs of redox mediators at different
ratios (0.5:1; 1:1; 2:1) in order to reach a total amount of 1.6 µmol: Va/V, ABTS/V, Syr/V,
TEMPO/V, As/V, Av/V, As/Av, Av/Syr, and As/Syr. As a general procedure, eume-
lanin (800 µg) and a selected pair of redox mediators (1.6 µmol) in NaOH (200 µL, 0.5 M)
and citrate buffer (2.4 mL; 0.1 M, pH 6) were treated with laccase (0.79 U/mg) in citrate
buffer (pH 6.0, 400 µL) at 37 ◦C for 4 h. The degradation of eumelanin was monitored by
measuring the absorbance of the system at the maximum melanin LMAX of 540 nm [46].
Irrespective of the experimental conditions, the highest value of DE was always obtained
using similar equivalents of redox mediators (ratio 1:1) (Table 2). The Va/V couple af-
forded the highest DE value (67%), followed by Syr/V (55%), ABTS/V (50%), TEMPO/V
(46%), and As/V (39%) (Table 2, entries 17, 8, 2, 5, and 11, respectively). Note that vanillin
was a common ingredient in the most effective LMCS, suggesting the major role of this
compound in the degradation of eumelanin. In addition, the Va/V and Syr/V couples
showed a synergistic effect. The LMCS treatment of eumelanin at the optimal ratio of
redox mediators (1:1 ratio) was repeated at 24 h and 48 h (Table 2, left column). At 24 h of
treatment, the highest value of DE (87%) was obtained in the presence of Va/V, confirming
the efficacy of this system in the degradation of eumelanin. A longer reaction time (48 h)
did not noticeably increase the DE value (the color intensity of eumelanin after treatment
with LMCS at 24 h is reported in Figure 1). In the case of the five most active couples,
Va/V, ABTS/V, Syr/V, TEMPO/V, and As/V (1:1 ratio), we afforded a second cycle of
treatment of eumelanin at 24 h (Table 2). It is worth noting that laccase in the presence of
Va/V quantitatively degraded eumelanin after the second run.

Table 2. Eumelanin decolorization with LMCS in different molar concentration ratios and at different
reaction times (4 h, 24 h, and 48 h).

Entry LMCS Molar Ratio
1 DE%(4 h) 2 DE%(24 h) 2 DE%(48 h) 2

1 ABTS/V 0.5:1 15 - -
2 ABTS/V 1:1 50 70 (76) 3 67
3 ABTS/V 2:1 18 - -
4 TEMPO/V 0.5:1 22 - -
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Table 2. Cont.

Entry LMCS Molar Ratio
1 DE%(4 h) 2 DE%(24 h) 2 DE%(48 h) 2

5 TEMPO/V 1:1 46 63 (76) 3 66
6 TEMPO/V 2:1 26 - -
7 Syr/V 0.5:1 24 - -
8 Syr/V 1:1 55 67 (78) 3 67
9 Syr/V 2:1 28 - -
10 As/V 0.5:1 19 - -
11 As/V 1:1 39 51 (61) 3 69
12 As/V 2:1 12 - -
13 Av/V 0.5:1 12 - -
14 Av/V 1:1 31 46 47
15 Av/V 2:1 14 - -
16 Va/V 0.5:1 28 - -
17 Va/V 1:1 67 87 (96) 3 71
18 Va/V 2:1 32 - -
19 As/Av 0.5:1 15 - -
20 As/Av 1:1 34 38 38
21 As/Av 2:1 10 - -
22 Av/Syr 0.5:1 2 - -
23 Av/Syr 1:1 3 9 6
24 Av/Syr 2:1 1 - -
25 As/Syr 0.5:1 8 - -
26 As/Syr 1:1 16 28 38
27 As/Syr 2:1 11 - -

1 Ratio applied in order to reach a total amount of 1.6 µmol of redox mediators. 2 Percentage of decolorization
efficiency calculated after 4 h, 24 h, and 48 h of reaction. 3 DE% calculated after the second cycle of LMCS,
expressed as total value of DE% obtained after the two treatments (referred to the initial mg of melanin).
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Figure 1. Comparison of the color intensity of eumelanin after treatment with LMCS at 24 h: (A) Sepia
melanin as reference; (B) LMCS As/V; (C) LMCS TEMPO/V; (D) LMCS Syr/V; (E) LMCS ABTS/V;
(F) LMCS V/Va.

2.3. Analysis of LMCS Oxidative Pathway

In order to gain information about the degradation pathway of eumelanin by LMCS,
we analyzed the sample after its treatment with the five best pairs of redox mediators by gas
chromatography associated with mass spectrometry (GC-MS), quantifying the formation
of PTCA and PDCA, which are considered the main degradation products of eumelanin.
The formation of these compounds is indicative of the degradation of specific melanin
sub-units, PTCA being correlated with the degradation of DHICA, whilst PDCA with that
of DHI [50,51]. The interaction between laccase and eumelanin produces a phenoxyl radical
at the DHICA and DHI sub-units through the abstraction of one electron from the substrate,
followed by oxidation and the successive ring opening of benzoquinone intermediates to
yield PTCA and PDCA [38]. As a general procedure, the residual eumelanin recovered
after the treatment with the five best LMCS was precipitated by adding HCl (2.2 mL, 6.0 M)
and the recovered solution extracted with ethyl acetate (20 mL; ×3) and evaporated under
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reduced vacuum. The residue was treated with bis-trimethyl silyl trifluoro acetamide
(BSTFA, 300 µL) in the presence of n-dodecane (7.8 µmol) as an internal standard and
analyzed by GC-MS. PTCA and PDCA were identified at 19 min and 21 min, respectively.
Mass fragmentation analysis confirmed the structure of these compounds [52]. Note that
PTCA and PDCA were absent in the original sample of eumelanin. Irrespective of the
experimental conditions, PTCA was detected in higher amounts than PDCA, suggesting the
preferential degradation of DHICA sub-units (Table 3), the highest amount being detected
after treatment with ABTS/V and TEMPO/V (Table 3 entry 1 and 2). These results are
similar to that obtained during the degradation of synthetic and natural eumelanin by
chemical procedures [40–44]. The prevalence of the degradation of DHICA with respect to
DHI is beneficial from the safety point of view. In fact, DHICA shows pro-oxidant activity
that is responsible for the emergence of oxidative damage in the cell [53,54].

Table 3. Amount of PDCA and PTCA recovered after treatment of eumelanin with LMCS.

Entry LMCS PTCA
(µg/mgmelanin)

PDCA
(µg/mgmelanin)

Ratio
PTCA/PDCA

1 ABTS/V 26.16 12.72 2.05
2 TEMPO/V 21.47 9.40 2.28
3 Syr/V 11.12 8.92 1.25
4 As/V 21.52 18.70 1.15
5 Va/V 6.11 5.14 1.18

2.4. Structural and Morphological Characterization of Eumelanin after Treatment with LMCS

Field emission scanning electron microscopy (FE-SEM) of residual eumelanin af-
ter LMCS treatment with ABTS/V, TEMPO/V, Syr/V, As/V, and Va/V are reported in
Figure 2A–F and compared with native eumelanin. Note that eumelanin is characterized by
small nanoparticles, with an average diameter of 100–150 nm (Figure 2A) [55]. The residual
eumelanin samples showed irregular morphology deprived of nanoparticles with a spheri-
cal shape (Figure 2B–F). These data confirm the efficacy of the polymer degradation [56].
Some residual nanoparticles were detected only in correspondence with the less efficient
LMCS containing the As/V couple (Figure 2E). An analysis of previous samples using
Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR) showed
the increase of the intensity of O-H and N-H stretching in accordance with data previ-
ously reported for degraded eumelanin (Figure 3). In addition, a novel band at 2884 cm−1,
1513 cm−1, and 1139 cm−1 were observed and assigned to alkyl groups [4].

2.5. Preparation of LMCS Based Whitening Cream Formulations

Whitening cream formulations based on LMCS were prepared by using three different
concentrations of the Va/V couple at a 1:1 ratio (1.6 µmol, 4.8 µmol, and 9.6 µmol), and three
concentrations of laccase (0.79 U/mg, 1X; 2.37 U/mg, 3X; and 4.74 U/mg, 6X), taking care
to separate laccase (chamber A) from the pair of redox mediators (chamber B) by an airless
dispenser (Figure 4A). Chamber A contained dimethyl isosorbide (5% w/w) and sodium
hyaluronate (1% w/w) and a variable amount of laccase in citrate buffer (94% w/w; pH 6.17,
0.1 M), whilst chamber B contained dimethyl isosorbide (5% w/w) and sodium hyaluronate
(1% w/w) as well as the V/Va couple in citrate buffer (94% w/w; pH 6.17, 0.1 M). The DE
of these formulations was evaluated by treating eumelanin (800 µg) dissolved in NaOH
(200 µL, 0.5 M) with 1.0 mL of the content of chamber A, followed by the addition of 1.0 mL
of the content of chamber B. The DE was calculated as described above and monitored by
measuring the change in the absorbance of the sample (LMAX 540 nm) at 37 ◦C after 24 h.
Irrespective of the experimental conditions, the whitening cream formulations showed
appreciable capacity to degrade eumelanin, with the highest DE value being obtained in
the case of the 6X sample (55%) (Figure 4). With the aim of further increasing the efficacy
of eumelanin degradation, we performed a second run of treatment, with the selected 6X
formulation obtaining an overall DE value of 78% (Figure 4). The stability of laccase in the
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6X sample at 4 ◦C and 25 ◦C was evaluated by the standard ABTS assay at 420 nm [57].
As a general trend, the activity of laccase in the 6X formulation was fully retained at 4 ◦C,
whilst the activity appreciably decreased at 25 ◦C.
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3. Discussion

As reported in Table 1, the simple LMS did not efficiently degrade eumelanin, with the
best result being obtained in the presence of V as a redox mediator (Table 1, entry 3). The ef-
fectiveness of the degradation increased in the presence of pairs of redox mediators (LMCS,
Table 2). In this latter case, the Syr/V and Va/V couples showed an unexpected synergic
effect (Table 2, entries 8 and 17) to yield DE values as high as 67% and 87%, respectively,
after only 24 h of treatment. This effect occurred with redox mediators characterized by a
high difference in redox potentials (Va/V: 0.77 V vs. 1.08 V and Syr/V: 0.66 V vs. 1.08 V),
and it was not observed in the case of similar values (As/Av: 0.58 V vs. 0.57 V) [58–60].
The degradation efficiency was further improved by repeating the treatment for a second
run under similar experimental conditions, affording the (almost) quantitative degradation
of eumelanin in the presence of the Va/V couple (Table 2, entry 17). The high level of
degradation was highlighted by the loss of the ordered and regular shape of eumelanin
nanoparticles, as well as by the increase of the intensity of IR bands characteristic of the
polymer degradation. In accordance with previous data, the degradation of eumelanin was
associated with the typical increase in the intensity of OH and NH stretching and with the
appearance of signals corresponding to alkyl groups [4]. The degradation pathway was
evaluated by GC-MS determination of PTCA and PDCA (Table 3). The prevalence of PTCA
suggested that the degradation of DHICA sub-units was more effective than their DHI
counterpart, highlighting the beneficial effect of LMCS treatment in the selective removal
of pro-oxidant residues in eumelanin. A similar trend was observed after the degradation
of eumelanin with hydrogen peroxide and KMnO4 [42]. It is worth noting that optimal
LMCS worked with high efficacy in the degradation of eumelanin, even when embedded
in whitening cream formulations that resembled a standard commercial product. The use
of an airless dispenser was essential to avoid the premature activation of laccase by redox
mediators. In this latter case, the 6X whitening cream formulation showed a DE value
similar to that of commercially available tyrosinase inhibitors such as 4-hexylresorcinol, vi-
tamin B3 (niacinamide), and 1-amino-ethylphosphinic acid [61,62]. In addition, the storage
temperature (4 ◦C) required for the stability of laccase is a normal feature of cosmeceutical
products based on enzymatic formulations [63].

4. Materials and Methods
4.1. Materials

Melanin from Sepia officinalis was purchased from Sigma-Aldrich (St. Louis, MO,
USA); laccase from Trametes versicolor, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)
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(ABTS), 2,2,6,6-Tetramethylpiperidin-1-yl-oxyl (TEMPO), Vanillin, 4-hydroxy-3-metho-
xybenzyl alcohol (Vanillyl alcohol), Acetosyringone, Syringaldehyde, and Acetovanillone
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and were used without any
further purification. All experiments were performed in a citrate buffer pH 6.0 (0.1 M).
Spectrophotometric measurements were taken with a Varian Cary 60 UV/Vis spectropho-
tometer equipped with a single-cell peltier thermostated cell holder. Spectrophotometric
data were analyzed with the Cary Win UV software.

4.2. Degradation of Melanin by Laccase Mediator System (LMS)

As a general procedure, different amounts of redox mediators (0.4 µmol, 0.8 µmol, and
1.6 µmol) were added to eumelanin (800 µg) in an NaOH (200 µL, 0.5 M) and citrate buffer
(2.4 mL; 0.1 M, pH 6) mixture, followed by the addition of laccase (0.79 U/mg) in buffer
citrate (pH 6.0, 400 µL) at 37 ◦C for 4 h. The degradation of eumelanin was monitored by
measuring the absorbance at the maximum melanin LMAX of 540 nm [46].

4.3. Degradation of Melanin by Laccase Mediator Cocktail System (LMCS)

As a general procedure, the selected redox mediator couple (1.6 µmol) was added to
eumelanin (800 µg) in an NaOH (200 µL, 0.5 M) and citrate buffer (2.4 mL; 0.1 M, pH 6)
mixture, followed by the addition of laccase (0.79 U/mg) in buffer citrate (pH 6.0, 400 µL) at
37 ◦C for 4 h. The degradation of eumelanin was monitored by measuring the absorbance
at the maximum melanin LMAX of 540 nm [46].

4.4. Analysis of LMCS Oxidative Pathway by Gas Chromatography/Mass Spectrometry
(GC/MS) Analysis

Mass spectrometry was performed with the use of a 450 GC-320 MS apparatus (VAR-
IAN, Palo Alto, CA, USA) in comparison with commercial samples. Regarding the prepa-
ration of the sample, the residue was treated with pyridine, bis-trimethyl silyl trifluoro
acetamide (BSTFA, 300µL) in the presence of n-dodecane (7.8 µmol) as an internal stan-
dard, under vigorous stirring conditions at room temperature for 2 h. The analyses were
performed using a VF-5MS column and an isothermal temperature profile of 100 ◦C for
2 min, followed by a 10 ◦C/min temperature gradient to 280 ◦C for 25 min. The injector
temperature was 280 ◦C. Chromatography-grade helium was used as the carrier gas, with
a flow of 2.7 mL/min. The mass spectra were recorded with an electron beam of 70 eV.

4.5. FE-SEM Characterization

The field emission scanning electron microscopy (FE-SEM) results of the eumelanin
samples were acquired by FE-SEM ZEISS GeminiSEM500 at 5 kV after a 20 mL drop
(with deionized water) of the sample dispersion onto the specimen stubs, which were
air-dried and coated with gold by sputtering with AGAR (Auto Sputter Coater). Before the
observations, the samples received a deposition of chromium thin film (5 nm) by sputter
coating with the use of a QUORUM Q 150T ES plus coater.

4.6. Fourier Transform Infrared Spectra (FT-IR)

Attenuated total reflection infrared (ATR-IR) spectroscopic analyses were performed
at room temperature with a Perkin−Elmer Spectrum One spectrometer equipped with an
ATR-IR cell. IR spectra were recorded by averaging 32 scans, with a resolution of 4 cm−1.

4.7. Activity Assay of Laccase

To determine the activity parameters of laccase from Trametes versicolor, we used
the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assay.
Laccase (0.79 U/mg) was added to citrate buffer (pH 6, 0.1 M, 3 mL) containing ABTS
(0.58 µmol). The absorbance of the cationic radical ABTS+ was measured at 420 nm (molar
extinction coefficient ε420 = 36 mM−1 cm−1). The increase of absorbance at 420 nm was
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measured at room temperature for 10 min. The enzyme activity was calculated, as described
in the following equation, from the slope of absorbance versus the time curve:

U/mL =
Abs/min ∗Vtot

εmM ∗Venz
(2)

One unit of specific activity was defined as 1.0 mg of the enzyme consumed by
1.0 µmol of the substrate per minute.

5. Conclusions

LMCS was an efficient tool for the degradation of eumelanin. We have demonstrated
that the degradation significantly increased in the presence of the Syr/V and Va/V couples.
In these cases, the degradation efficiency was 67% and 87%, respectively, after only 24 h
of treatment. Worthy of note is the fact that the couples Syr/V and Va/V showed a
synergic effect, probably due to their high difference in the value of the redox potential.
The quantitative degradation of eumelanin was obtained by repeating the treatment with
the selected LMCS in a second run. The prevalence of PTCA with respect to PDCA after the
LMCS treatment suggests that the degradation of the DHICA sub-units was more effective
than its DHI counterpart, favoring the removal of the more pro-oxidant residues in the
starting material. It is also worth noting that LMCS based on the Va/V couple worked with
high efficacy even when embedded in a whitening cream formulation that resembled a
standard commercial product. The use of the airless dispenser was necessary to avoid the
premature activation of laccase. The 6X whitening cream formulation performed similarly
to commercially available tyrosinase inhibitors, reaching high stability at 4 ◦C [63]. Overall,
these data suggest that LMCS is a potent tool for the development of alternative and
sustainable whitening agents.

6. Patents

Pending patent resulting from this work—Title: Procedure for the decolorization
of eumelanin based on laccase cocktail mediators system and cosmetic and cosmeceuti-
cal application in the field of whitening cream. Number: 102022000008453; Deposition:
28 April 2022.
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