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ABSTRACT Exchanging status information between closely located mobile agents is an underlying process
in numerous future Cyber Physical System (CPS). Real-time updates including positions of neighboring
nodes is performed when, for example, autonomous vehicles execute a cooperative maneuver, industrial
robots collaborate with each other on a task, or Unmanned Aerial Vehicles (UAVs) execute a mission in
a swarm. For the design of networked automatic control strategies in these scenarios, it is essential to
understand the performance of such Machine-to-Machine (M2M) communications from the information
freshness perspective. To this end, we introduce a mathematical framework which allows characterizing the
Age of Information (AoI) in networks governed by the Carrier-Sense Multiple Access (CSMA) protocol.
Differently from existing work, we take into account the fact that update packets sent by mobile nodes are not
necessarily periodic, since packet triggering is often coupled with agents’ mobility. Our approach is based
on the assumption that diverse mobility-triggered message generation patterns can be modeled by a wide
class of update traffic arrival processes. We apply Discrete Markovian Arrival Process (DMAP), which is a
versatile arrival model able to fit arrival patterns that are modulated by a finite state machine, including bursty
traffic. We develop an accurate and efficient analytical model of nodes exchanging one-hop broadcast update
messages with bursty arrivals to evaluate the moments as well as entire probability distribution of several
performance metrics, including AoI. An asymptotic analysis for large networks suggests a simple way to
control the update message rate to minimize the AoI. We show that the optimal update rate that minimizes
the mean AoI coincides with the optimum of the wireless channel utilization. Numerical examples point out
that the asymptotic theory provides accurate predictions also for small values of the number of nodes.

INDEX TERMS Age of information, CSMA networks, cyber-physical system, full connectivity,
MAC access delay, machine-to-machine communications, V2X networks.

I. INTRODUCTION
Cyber Physical System (CPS) stemming from the Internet
of Things (IoT) paradigm rely on monitoring and control
processes running on distributed agents interacting by means
of update message exchanges which convey locally col-
lected data. Examples of such Machine-to-Machine (M2M)
communication environments can be found in Coopera-
tive Intelligent Transport System (C-ITS) with cooperative
maneuvering of automated vehicles [1], where real-time
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updates are crucial for safe driving. Another instance of coop-
erating agents is provided by swarms of aerial vehicles that
move in a coordinated way, e.g., in rescue operations, surveil-
lance, exploration, and many other missions that require tight
cooperation among nodes [2]. Other notable examples can
be found in industrial processes automation, where teams of
robots and moving machines cooperate in assembly lines.
Also, logistics is increasingly automated and realized by
moving robots in large store plants [3].

In all mentioned examples, the generation of update mes-
sages can be either periodic or event-driven. The latter case
has received less attention in the literature so far and is
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a subject of our study. In this context, the notion of event can
be miscellaneous, but most often is coupled to the mobility
of agents. For example, if the change of the agent coordinate
since the last update exceeds a certain threshold, a new packet
will be triggered. This implies that the faster an agent moves,
more frequently it generates updates [4]. Such an approach
results in a bursty update traffic, which we assume is com-
municated via one-hop broadcast packets exchange between
the agents located in a close proximity.

Communications are supported via radio channels. Current
and foreseeable supporting technologies fall into two cate-
gories: wireless networking, e.g., the IEEE 802.11 family,
and cellular networking, currently dominated by 5G solu-
tions (e.g., see M2M or the Ultra-Reliable Low Latency
Communication paradigms). In this work we focus on
the Vehicle-to-Everything (V2X) network application case
and on Carrier-Sense Multiple Access (CSMA) networks,
as used specifically in the Wi-Fi amendment devised for
vehicular applications, IEEE 802.11p [5], and its evolution,
IEEE 802.11bd [6]. We consider one-hop broadcast mes-
sage exchange, which is the core functionality of cooperative
awareness among vehicle agents. The presented model has
however a broader range of applicability, e.g., in the IoT
framework, since the core assumptions of the model are that
the wireless channel is shared according to non-persistent
CSMA and packet traffic consists of one-hop broadcast
messages.

The most relevant performance metric in the context of this
study is the Age of Information (AoI) [7], a measure of data
freshness stored in each node’s local data base, updated upon
the reception of new messages from neighboring nodes. The
AoI requirements on advanced V2X use-cases are becoming
more and more stringent. Both IEEE 802.11p and upcoming
CSMA/CA based technologies, i.e. IEEE 802.11bd, should
be configured properly to support these requirements. As an
example, the 5GAutomotive Association (5GAA) defines the
latency requirements as low as 10ms (e.g., ‘‘automated inter-
section crossing’’ requires 10ms latency, ‘‘cooperative lane
merge’’ requirement is 20ms [8]). This strict requirement
must account for several sources of delay in the process that
encompasses data measurement, processing and delivering.
In-vehicle networking, interconnecting on-board sensors and
communication equipment, is one component of end-to-end
delay [9]. Another source of delay comes from security over-
head [10]. These delays could put pressure on the actual V2X
delay even more. When one sums up all the aforementioned
latency sources, it becomes obvious that, in order to fulfill
the stringent C-ITS requirements, V2X systems should be
accurately configured to meet AoI requirements and avoid
additional sources of delays in medium access, packet losses,
and collisions.

To this end, we aim at providing the following two main
original contributions:
• An analytical model characterizing one-hop broadcast
update messages in CSMA networks to evaluate the
probability distribution of AoI for nodes with bursty

traffic arrivals – a distinguishing feature of our proposed
solution compared to the state of the art;

• An asymptotic analysis for large CSMA networks that
suggests a simple way to control the update message rate
to minimize the AoI.

The proposed model is able to predict average values as
well as probability distributions with remarkable accuracy.
The model is fairly general to deal with correlated arrivals
and variable message sizes.

The rest of the paper is organized as follows. Section II
presents the relevant literature. Section III introduces the
modeling approach and the main assumptions. The proposed
model is analyzed in Section IV, where the Probability Den-
sity Functions (PDFs) of all mainmodel variables are derived,
and expressions of key performancemetrics are given, includ-
ing AoI. In Section V the model is validated against simula-
tions, while in Section VI the asymptotic analysis is provided
to derive, in particular, a closed form expressions of the
optimized message generate rate and the corresponding AoI.
Finally, conclusions are drawn in Section VII, including hints
at possible extensions of the model.

II. RELATED WORK
AoI has been first introduced by Kaul et al. [11] as a general
metric to evaluate the performance of status update systems.
The methods introduced in [11] can be applied to a wide
class of service systems that can be abstracted as consisting
of a source, a service facility, and a monitor. The authors
explore a First Come First Served (FCFS) queue discipline,
demonstrating that an optimal information generation rate
exists. A similar system abstraction is considered in [12],
where the authors focus on the stationary distribution of
AoI under FCFS and Last Come First Served (LCFS) queue
disciplines. The LCFS queue discipline is also considered by
Bedewy et al. [13], who analyze the AoI in interference-free
multi-hop networks. Since we consider a status update sys-
tem, in this work we assume single-packet queues (i.e., nodes
can keep only one message in the queue), since any updates
arriving from the application would simply substitute any
existing message in the queue.

Many related studies have focused on a specific class of
systems in which nodes send periodic updates to a central
monitoring station. For example, Kadota et al. [14] consider
the problem of minimizing the AoI under throughput con-
straints in a single-hopwireless network inwhich nodes trans-
mit information to a base station. The authors later extended
this work to address the link scheduling optimization problem
in networks with stochastic packet arrivals and unreliable
links [15]. Scheduling policies for minimizing the AoI in
single-hop multi-server queuing systems are also studied
in [16]. Liu and Bennis [17] use the Extreme Value Theory
(EVT) to characterize the maximal AoI in wireless industrial
networks. They formulate an optimization problem to mini-
mize the sensors’ transmit power and propose a dynamic pol-
icy for resource allocation and status updates. Chen et al. [18]
study the case when multiple packets form a certain piece of
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information. They propose a Whittle index-based scheduling
mechanism at the base station to minimize the AoI of such
systems with variable information size.

The AoI metric has been used in a number of different
application domains. In a recent work, Gómez et al. [19]
introduce the AoI concept in nanonetworks, in which
nanodevices exchange information over molecular communi-
cation channels. To analyze the trade-off between the trans-
mission rate and produced inter-symbol interference, the
authors focus on the peak AoI, which describes the maxi-
mum AoI for each packet. Abd-Elmagid and Dhillon [20]
exploit Unmanned Aerial Vehicles (UAVs) to act as mobile
relays in order to minimize the mean peak AoI for a source-
destination pair. To this end, they formulate an optimization
problem that jointly optimizes the UAV’s trajectory, as well
as energy and service time allocations. Bedewy et al. [21]
consider a wireless network in which low-power devices
send status updates to a common access point. The proposed
solution aims at minimizing the peak AoI while meeting
energy constraints. Sinha and Roy [22] study the concept
of AoI in the context of industrial Time-Division Multiple
Access (TDMA)-based wireless networks for cyber phys-
ical production systems. The authors propose two greedy
scheduling algorithms, analyzing their optimality via exten-
sive simulations. Hirosawa et al. [23] propose new resource
allocation algorithms to minimize the mean AoI in energy
harvesting wireless sensor networks, based on both TDMA
and Frequency-Division Multiple Access (FDMA) channels.
Their results show that the choice of TDMA versus FDMA
depends on available resources, data packet size, and time of
packet observation in the system. Wei and Deng [24] define a
mathematical framework to analyze the peak AoI in large-
scale wireless networks using rateless codes. The authors
model the spatial distribution of the information sources as
Poisson point process, while the traffic arrival as as an inde-
pendent Bernoulli process.

AoI has also been studied in CSMA-based communica-
tion systems [25]–[29]. In one of our previous works [25],
we propose an analytical model that characterizes the AoI
of a one-hop CSMA broadcast network with partial sensing.
We introduce a simpleM/D/∞ queuingmodel to account for
the effect of partial sensing. We demonstrate that the model
is able to capture the trade-off between channel load, AoI,
and fairness among nodes. Wang and Dong [27] consider
a slotted one-hop broadcast CSMA wireless network and
propose a model that characterizes the AoI from a transmitter
perspective.Maatouk et al. [26] tackle the problem of finding
the optimal back-off time for links in a CSMA network in
order to minimize the mean AoI. They propose closed-form
expressions for the average AoI of the network when packets
are generated at will or according to a stochastic process.
Moltafet et al. [28] analyze the average AoI and peak AoI
in simplified CSMA-based wireless sensor networks under
FCFS policy, by considering a tagged node with Poisson
arrivals and all other nodes having saturated queues. Their
results indicate that the AoI can be improved by optimizing

the contention window size and packet arrival rate. Zhou and
Saad [29] also assume Poisson arrivals in a CSMA-based IoT
monitoring system composed of pairs of IoT devices, i.e.,
each sender is associated with a corresponding receiver. The
authors derive closed-form expressions for the average AoI
of each device and analyze the asymptotic performance of
the system for an infinite number of devices.

Several studies analyze the AoI in the context of vehic-
ular networking and C-ITS [30]–[34]. Kaul et al. [30] were
among the first to propose adaptive beaconing strategies for
vehicular networks in order to minimize the AoI. Their pro-
posed solution aims at balancing the load on the wireless
network and the update sending frequency. In one of our
previous works [33], we compare the performance of the
algorithm proposed in [30] with the current Decentralized
Congestion Control (DCC) algorithms standardized by the
European Telecommunications Standards Institute (ETSI),
as well as with a centralized scheduling mechanism that
provides a bound on the performance in terms of AoI and con-
gestion level. In [33] we also analyze the trade-off between
AoI, reliability, and channel utilization efficiency. In [34],
we focus on a vehicular platooning use case and propose a
DCC state-machine and gatekeeper configuration to meet the
requirements in terms of AoI. The platooning use case has
also been considered in [32], where the authors suggest to
exploit the number of interfering vehicles to generate AoI
samples that can be used by cooperative driving applications.
In another study [31], we model the AoI in IEEE 802.11p
networks from a single node’s perspective, but also from a
network point of view. We demonstrate that both models are
accurate when evaluating the AoI, but also a number of other
relevant metrics.

The model proposed in this paper fits to an IoT environ-
ment, where a number of devices exchange update messages
with their neighbors, using a CSMA network. Differently
from most works, that refer to paradigms with multiple
devices uploading their update messages to a sink node or
pairs of sender-receiver nodes, we consider multiple sources
and multiple sinks. Namely, every node belonging to the
network originates updatemessages, directed to its neighbors.
In turn, every node receives update message from each of
its neighbors. This is the basic functionality used to build so
called cooperative awareness, i.e., to support those functions
that require cooperation of distributed agents, which coor-
dinate their efforts. Typical examples of such paradigm are
connected vehicles, industrial IoT, UAV swarms.

A major use case of the model presented in this paper is
vehicular networking based on IEEE 802.11p/bd technology.
The versatile model developed in the paper lends itself to
capturing burstiness of update message generation process.
To the best of our knowledge, this is a novel feature with
respect to the existing studies of one-hop broadcast mes-
saging for cooperative awareness. Our assumption is based
on previous experimental studies which have shown that the
generation process of update messages, e.g., in the vehicular
environment, is not simply periodic [35].
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III. SYSTEM MODEL
This section includes (i) notation and general definitions used
in the paper, (ii) main model assumptions, and (iii) definition
of the node traffic model, i.e., packet transmission times and
packet arrival process.

A. NOTATION
We denote random variables with capital letters. Given a
discrete-valued random variable X , we denote its Cumulative
Distribution Function (CDF), Complementary Cumulative
Distribution Function (CCDF) and Probability Distribution
Function (PDF) respectively with FX (k) = P(X ≤ k),
GX (k) = 1 − FX (k), and fX (k) = P(X = k). The
symbol E[g(X )] defines expectation, namely E[g(X )] =∑

k g(k)fX (k), where the summation extends over the entire
domain of the random variable X . Analogous definitions and
notation hold for continuous-valued random variables.

Generating Functions (GFs) of positive discrete random
variables are used. Given a random variable X , with PDF
fX (k), k ≥ 1, we define the GF of X as φX (z) = E[zX ] =∑

k≥1 z
k fX (k). The GF φX (z) is analytic (at least) for |z| ≤

1 and φX (1) = 1. We remind that the moments of X can
be obtained by deriving the GF. In particular, the first two
moments of X are derived as follows: E[X ] = φ′X (1) and
E[X2] = φ′′X (1) + φ

′
X (1). The variance of X is denoted with

σ 2
X . Analogous definitions hold for the Laplace transform

of the PDF of continuous-valued positive random variables.
Namely, given a positive continuous random variable X with
PDF fX (t), its Laplace transform is denoted with ϕX (s) =
E[e−sX ]. Moments are found here by deriving the Laplace
transform and setting s = 0, e.g., E[X ] = −ϕ′X (0) and
E[X2] = ϕ′′X (0).
Time is measured in units of back-off slot time δ. To high-

light normalization, we denote normalized time variables
with a hat. As a matter of example, if X denotes a time
variable, it is X̂ = X/δ.

Table 1 lists the main symbols used in the model and their
respective definitions.

B. ASSUMPTIONS
We consider n nodes sharing a wireless channel according
to non-persistent CSMA [36]. We sketch concisely the main
steps of non-persistent CSMA protocol in the following.
The node Medium Access Control (MAC) entity alternates
between an idle state, when no packet is to be transmitted,
and a backlogged state, when it has a packet ready to be
transmitted. A backlogged node senses the channel to assess
whether it is busy (another node already transmitting) or idle.
Sensing consists of measuring the energy on the channel and
comparing it to a threshold. It requires a time depending on
the physical layer technology (e.g., for WiFi it is in the order
of 10 µs). The time it takes a node to carry out sensing is usu-
ally referred to as back-off slot time. A node sensing a busy
channel waits for the channel to get back to idle. According
to non-persistent approach, as soon as the channel is sensed

idle, the node sets a counter to a randomly drawn integer
K and starts counting down, i.e., the node decrements the
counter by one for each sensed idle back-off slot (i.e., a back-
off slot time during which no node transmits on the channel).
As the counter eventually hits 0, the node starts transmitting.
If the channel is found busy during the countdown process,
the node freezes its counter until the channel becomes idle
again. At that point the countdown is resumed.

It is assumed that nodes are within each other’s range,
i.e., there are no hidden nodes. The time axis is divided
into virtual time slots – i.e., time intervals elapsing between
two successive idle back-off time slots. Since there are no
hidden nodes, all nodes are ‘‘synchronized’’ on virtual time
slot boundaries.

The probability of packet reception failure due to the phys-
ical layer issues is denoted with Packet Error Ratio (PER).
This parameter summarizes the effect of physical channel
impairments, taking into account that a packet can be decoded
with errors and hence discarded even if it does not incur in
a collision. This parameter is meant to be the worst case
probability of reception failure. Physical layer mechanisms
are assumed to be configured so that the probability that
packet decoding fails be no more than PER. The ensuing
analysis is therefore conservative under this respect. Note
that ACKs and re-transmissions are not envisaged, since we
consider broadcast update packets exchanged among nodes.

We refer to a symmetrical scenario, where the statistical
characteristics of the traffic offered by the nodes (statistics
of arrivals and transmission times) are the same for all the
nodes. The proposed model lends itself to being generalized
to heterogeneous settings, albeit at the cost of increased
complexity. We prefer leaving this issue for future work and
focusing on insight gained from the model in its simpler
symmetric form in this work.

The model is obtained by considering the point of view
of one node, which we refer to as the tagged node for ease
of presentation of the model. We drop the subscript denoting
the tagged node, unless required to avoid ambiguity. If not
stated explicitly, it is understood that any variable or quantity
refers to the tagged node. The impact of all other nodes is
summarized by means of their probability of transmitting in a
virtual time slot. This modeling approach falls into the ‘‘mean
field’’ approximation realm. It turns out that, in spite of the
strong simplification it brings about (the state space of the
model is reduced from being an n-dimensional random vari-
able to scalar random variables), it provides highly accurate
results. This is consistent with the fact that the mean field
approach was proved accurate for the analysis of CSMA in
case of saturated traffic regime [37].

C. NODE TRAFFIC MODEL
The traffic model considered in this work is consistent with
message flows exchanged by nodes that run distributed coop-
erative awareness applications that require a steady flow of
update messages. Therefore we consider one-hop broadcast
packets, i.e., each node sends update messages in broadcast
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TABLE 1. Main notation symbols and their definitions.

to all its neighbors. A typical use case of this traffic pattern is
found in vehicular networking, e.g., with Cooperative Aware-
ness Messages (CAMs). Since only broadcast traffic is used,
no ACK is envisaged, hence no re-transmission mechanism
is in place.

1) PACKET HANDLING AT NODE MAC LEVEL
Since we refer to update message traffic, where freshness of
information is the key requirement, it turns out that buffering
more than a single packet is deleterious [38]. Therefore,
we assume that at most one packet can be standing in the
node MAC entity. Newly arriving messages could overwrite
the packet standing in theMAC entity, waiting to be transmit-
ted (preemptive LCFS). In practice, decoupling between the
application level, where messages are generated, and MAC
level, where messages are handled to be transmitted over
the channel, makes preemptive LCFS not easy to implement.
Further, preemptive LCFS can only improve the access delay
component of the AoI metric. Numerical results suggest that
this is often a relatively small part of the overall value of
AoI, thus making the more complicate preemptive LCFS
not so valuable for reducing AoI Moreover, message inter-
arrival times are often much bigger than the time it takes the
MAC entity to carry out contention and transmit the message.

So, preemptive LCFS entails marginal differences1 with
respect to simpler FCFS with a queue limited to at most one
packet. The proposed model can be applied to either strategy,
the only key assumption being that at most one packet can be
standing in the MAC entity at any given time and no further
buffering is provided. In the following we assume a simple
non-preemptive policy at the one-packet node buffer.

2) PACKET TRANSMISSION TIMES
Let Toh be the fixed duration of overhead, i.e., preamble,
header and trailer, Arbitration Inter-Frame Spacing (AIFS).
The transmission time can be modeled as a random variable
T given by T = Toh + U , where U is the time required to
transmit the payload. It depends on the payload length and
selected air bit rate. In the following, it is assumed that T is
an integer multiple of the back-off slot time δ, i.e., T̂ = T/δ
is an integer-valued random variable. While allowing discrete
time models and some formal simplification, this assumption
has a negligible impact on accuracy, given the large mismatch
of numerical values between the back-off slot time (in the
order of several µs) and transmission time (typically ranging
between hundreds of µs to few ms). In general, T̂ is a discrete

1Except when the load offered to the network drives the channel to
saturation.
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random variable that can take a finite spectrum of values
{b1, . . . , b`}, where b1 < b2 < · · · < b`, and ` is the number
of different values of normalized transmission time.

3) PACKET ARRIVAL PROCESS
Arrivals occur according to aDiscreteMarkovianArrival Pro-
cess (DMAP), with time-step size equal to the back-off slot
time. DMAP is a Markov modulated arrival process, where
the probability of seeing an arrival in a slot is dependent on
the state of an underlying modulating finite Markov chain.

DMAP is a versatile arrival model, that encompasses
most well-known arrival processes, including renewal type
arrivals, ON-OFF arrivals, phase-type arrivals [39]. It offers
a modeling option often amenable to mathematical analysis.
It is a rich enough model to fit a large variety of arrival
patterns found in applications. Random arrivals whose mean
rate is a function of a finite state machine can be naturally
captured by the DMAP framework, by defining a modulating
Markov chain that models the finite state machine and assign-
ing suitable probability of arrivals in each state of the mod-
ulating process. We provide examples of DMAP instances
representing ON-OFF traffic sources with numerical example
in later sections.

Formally, DMAP is defined as a bi-dimensional random
process (A(t), J (t)), where t is the discrete time index. A(t)
is a binary random variable, equal to 1, if there is an arrival
in slot t , and 0 otherwise. J (t) is a finite, irreducible Markov
chain on the state space {1, . . . , r}, r being a positive integer
that gives the modulating Markov chain size. The probability
that A(t) is 1 depends on the modulating Markov chain state
J (t), which is often referred to as the phase of the DMAP
process.

DMAP is parametrized by two matrices: A0 and A1. Their
entries have the following meaning. The (i, j) entry a0,ij of
A0 is the probability that J (t) makes a transition from i to j
and no arrival occurs, i.e., we let for i, j = 1, . . . , r :

a0,ij = P(A(t + 1) = 0, J (t + 1) = j | J (t) = i) (1)

Analogously, the (i, j) entry a1,ij of A1 is the probability that
J (t) makes a transition from i to j and there is one arrival, i.e.,
we let for i, j = 1, . . . , r :

a1,ij = P(A(t + 1) = 1, J (t + 1) = j | J (t) = i) (2)

Note that A = A0 + A1 is the one-step transition probability
matrix of the Markov chain J (t). It is therefore an r × r
stochastic matrix. We assume further that A is irreducible.
The matrices A0 and A1 are sub-stochastic.

The following notation is introduced as well. Let I be the
r × r identity matrix and e a column vector of 1’s of size r .
The mean arrival rate of DMAP is denoted by λ̂. It is λ̂ =
πA1e, where π is the steady-state PDF of the Markov chain
J (t), i.e., πj = P(J (t) = j), j = 1, . . . , r . The PDF π is
found by solving the linear equation system π = πAwith the
normalization constraint πe = 1. Note that 1/λ̂ is the mean
number of back-slots between two consecutive arrivals.

FIGURE 1. Time evolution of the channel as seen by the tagged node and
definition of main time intervals of the model.

IV. MODEL ANALYSIS
Sections IV-A to IV-C introduce the main model variables
and derive the transforms of their respective probability dis-
tributions along with the first two moments. Section IV-D
is devoted to the derivation of expressions for all main per-
formancemetrics, including access delay andAoI. These four
subsections analyze the model in case of fixed transmission
times, which leads to more insightful mathematical expres-
sions. This restriction is relaxed in Section IV-E, which is
devoted to generalizing the model to the case of variable
packet transmission times.

A. VIRTUAL SLOT TIME AND SERVICE TIME
The time axis evolution as seen by the tagged node is sketched
in Figure 1. The main model variables are highlighted in the
figure and are formally defined in the following.

The probability that no other node transmits when the
tagged node is not transmitting is expressed as

q = (1− τ )n−1 (3)

where n is the number of nodes (including the tagged one)
and τ is the probability that a node transmits in a virtual slot
time. We will see later on that τ is computed by means of a
fixed point equation.

Let T = b1δ be the fixed transmission time, where b1 is an
integer. The virtual time slot duration as seen by the tagged
node is denoted with X̂ . This is the duration of the virtual
slot time when the tagged node is not transmitting. A virtual
slot consists of a single back-off slot of duration δ, if no node
transmits. On the contrary, if at least one node (other than the
tagged one) starts a transmission after sensing an idle back-
off slot time, the virtual slot lasts δ + T . Then

X̂ =

{
1 with probability q
1+ b1 with probability 1− q.

(4)

The GF of the PDF of X̂ is

φX̂ (z) = qz+ (1− q)zb1+1 (5)

Let Ĉ denote the packet service time, defined as the time
elapsing from the beginning of countdown after the arrival
of a new packet, until the packet transmission is completed
(including the ensuing AIFS required for any other action on
the wireless channel to be taken by any node).

The tagged node decrements its back-off counter by one
for each idle back-off slot time it sees on the channel. If we
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denote the initial counter level with K , the service time C
consists of K − 1 virtual slot times and a final transmission
time, where the tagged node transmits, possibly along with
other nodes (collision). Therefore, we have

Ĉ =
K−1∑
j=1

X̂ (j)+ 1+ b1 (6)

where K is a discrete random variable with uniform probabil-
ity distribution over the set {1, . . . ,W0}, W0 being a positive
integer that represents the contention window size.

The GF of the PDF of Ĉ is (see Equation (6))

φĈ (z) = zb1+1
1− φX̂ (z)

W0

W0[1− φX̂ (z)]
. (7)

The first two moments of Ĉ can be found by deriving the
GF of the PDF of Ĉ and setting z = 1 in the derivatives,
or directly from the definition of Ĉ in Equation (6) as the
sum of independent random variables. The result is:

E[Ĉ] = 1+ b1 +
W0 − 1

2
E[X̂ ] (8)

σ 2
Ĉ
=

W 2
0 − 1

12
(E[X̂ ])2 +

W0 − 1
2

σ 2
X̂

(9)

B. IDLE AND INTER-DEPARTURE TIMES
The time R̂ from a packet departure until the beginning of
the service time of the next arriving packet is the sum of N
consecutive virtual time slots:

R̂ =
N∑
j=1

X̂ (j) (10)

where N is a discrete random variable, defined as the number
of virtual slots since the end of transmission of a packet until
the beginning of countdown of the next arriving packet.

The GF of the idle time R is derived in Appendix. The final
result is

φR̂(z) = w
[
I− φX̂ (A0z)

]−1 e [φX̂ (z)− 1]+ 1 (11)

The first two moments of R are:

E[R̂] = w
[
I− φX̂ (A0)

]−1 eE[X̂ ] (12)

E[R̂2] = w
[
I− φX̂ (A0)

]−1 eE[X̂2]+

+2w
[
I− φX̂ (A0)

]−2 A0 φ
′

X̂
(A0)eE[X̂ ] (13)

To find w, we exploit the fact that the end of the trans-
mission of the tagged node is a renewal time for the phase
process of the tagged node, under the assumptions of the
model. The one-step transition probability matrix of DMAP
phase between two consecutive packet transmission ends is
given by:

M =
[
I− φX̂ (A0)

]−1 [
φX̂ (A)− φX̂ (A0)

]
φĈ (A) (14)

It can be verified that this is a stochastic matrix, i.e.,Me = e.
It is also irreducible, sinceA is. The probability distributionw

is found as the unique solution of the linear systemw = wM,
that satisfies the normalization constraint we = 1.

The packet inter-departure time Ŷ is the time elapsing since
the completion of transmission of a given packet until the end
of transmission of the next packet. It is given by:

Ŷ = R̂+ Ĉ (15)

The corresponding GF is

φŶ (z) = φR̂(z)φĈ (z) (16)

C. PROBABILITY OF TRANSMISSION
In order to find τ , we use the renewal reward theorem. Let
M be defined as the number of virtual slots between two
successive transmissions of the tagged node. We express τ
as 1 divided by E[M ]. It is M = N + K (for the definitions
of N and K see Equations (6) and (10)).

It is easy to check that N has a matrix-geometric probabil-
ity distribution [39]:

P(N = h) = wφX̂ (A0)h−1
[
I− φX̂ (A0)

]
e, h ≥ 1. (17)

while K has a uniform probability distribution between 1 and
W0. The mean ofM is therefore

E[M ] = E[N ]+ E[K ] = w
[
I− φX̂ (A0)

]−1 e+
W0 + 1

2
(18)

We have finally:

τ =
1

E[M ]
=

1

w
[
I− φX̂ (A0)

]−1 e+ W0+1
2

. (19)

Note that τsat = 2/(W0 + 1) is the probability of trans-
mission in a virtual slot in saturation. It can be checked that
τ → 0 as λ̂→ 0 (light traffic regime), while τ → 2/(W0+3)
for λ̂→∞ (heavy traffic regime).2

The transmission probability τ is found by solving a fixed
point equation, since the right hand side of Equation (19)
depends on q, which in turn depends on τ . Since the non-
linear equation τ = F(τ ), generated by Equation (19),
defines a continuous map of the interval [0, 1] onto itself,
we can appeal to Brouwer’s theorem to guarantee that the
fixed point exists.

D. PERFORMANCE METRICS
1) PDR, CBR AND THROUGHPUT
The Packet Delivery Ratio (PDR), i.e., the probability γ of a
successful reception, conditional on a transmission attempt, is

γ = (1− τ )n−1 (1− PER), (20)

where PER is the packet error ratio, i.e., the fraction of
packets that are detected with errors, given that no collision
occurred. In deriving γ , we assume that collision and suc-
cessful packet detection are independent events.

2The limiting value is slightly lower than τsat since a node is forced to
wait for the new message once it completes the transmission of a previous
message. This new arrival requires at least one virtual time slot.
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FIGURE 2. Inter-departure time and its relationship with idle time and
access delay. The idle time coincides with the residual inter-arrival time.

The Channel Busy Ratio (CBR) is the average fraction
of time that the channel is sensed busy by the tagged node,
including time when the tagged node is transmitting. It can
be expressed as:

ρ =
b1

E[Ŷ ]
+

(
1−

b1
E[Ŷ ]

)
E[X̂ ]− 1

E[X̂ ]
. (21)

We define also the normalized throughput θ , i.e., the aver-
age number of successfully delivered messages per unit time
divided by the offered rate of new messages. It is

θ =
γ /E[Ŷ ]

λ̂
, (22)

The throughput θ is less than 1 due to three sources of
degradation: (i) message dropping upon arrival due to the
node being already busy dealing with a previous message;
(ii) collisions on the wireless channel; (iii) reception failure.
The throughput in bit/s can be obtained by considering the
average message payload L, i.e., it is θbps = Lγ /(δE[Ŷ ]).

The coefficient of channel utilizationψ is the average frac-
tion of channel time used successfully to deliver messages.
We have

ψ =
b1γ

E[Ŷ ]
. (23)

2) ACCESS DELAY
The access time D̂ is defined as the interval between the
arrival time of a message that is not dropped and the end of
the transmission of that message.

Let V̂ denote the time since message arrival until the first
idle back-off slot that is counted down. After a time V̂ , the
countdown of the access procedure starts (see Figure 2). The
time it takes for the procedure to be completed with mes-
sage transmission (including any overhead) is Ĉ . Therefore,
we have D̂ = V̂ + Ĉ and

ϕD̂(z) = φĈ (z)φV̂ (z). (24)

Let us consider the virtual slot time X̂ where an
arrival occurs. The DMAP phase probability distribution
at the beginning of that virtual slot time is given by
w
[
I− φX̂ (A0)

]−1. Given that X̂ = k , the arriving packet has

to wait for h back-off slot times before seeing the end of the
virtual slot time with probability

P(V̂ = h|X̂ = k) = w
[
I− φX̂ (A0)

]−1Ak−h
0 A1Ah−1 e

(25)

for k ≥ h and h ≥ 1. This expression can be simplified
by observing that Ae = e, since A is a stochastic matrix.
Moreover, A1e = (A− A0)e = (I− A0)e.
Removing the conditioning, we have:

fV̂ (h) = w
[
I− φX̂ (A0)

]−1 ∞∑
k=h

fX̂ (k)A
k−h
0 (I− A0) e.

(26)

The mean value of V is

E[V̂ ] = E[R̂]− w [I− A0]−1 e (27)

Using the expressions of the mean access delay, the mean
inter-departure time and the mean of V̂ , it can be verified that
it is E[D̂] = E[Ŷ ] − w [I− A0]−1 e. This is consistent with
the fact that an inter-departure time is the sum of the residual
inter-arrival time of the new message, w [I− A0]−1 e, and
of the mean access delay, E[D̂]. The illustration in Figure 2
depicts an example of inter-departure time, highlighting the
relationship between the residual inter-arrival time, the resid-
ual virtual slot time V̂ , the access delay D̂ and the inter-
departure time Ŷ .

3) AGE OF INFORMATION
The AoI is the age of messages received from other nodes
at the tagged node. When a message is transmitted, it has
already accumulated an age corresponding to its access delay
D̂. The AoI Ĥ is akin to the excess time in a renewal process.
Its CDF, given D̂ = u, is

P(Ĥ ≤ x|D̂ = u) =


∑x−u

t=0
1− FẐ (t)

E[Ẑ ]
x ≥ u,

0 otherwise,
(28)

Here Ẑ is the time between the reception of two consecutive
successful messages from a given node. We have

Ẑ =
J∑
i=1

Ŷ (i) (29)

where P(J = k) = (1 − γ )k−1γ, k ≥ 1. The mean of Ẑ is
E[Ẑ ] = E[J ]E[Ŷ ] = E[Ŷ ]/γ , while the GF is given by

φẐ (z) =
γφŶ (z)

1− (1− γ )φŶ (z)
, (30)

Noting that D̂ is independent of Ẑ , under the assumptions
of our model, and removing the conditioning in Equation
(28), we get

FĤ (x) = P(Ĥ ≤ x) =
x∑

u=0

fD̂(u)
x−u∑
t=0

1− FẐ (t)

E[Ẑ ]
. (31)
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The GF of the PDF of Ĥ can be derived as

φĤ (z) = φD̂(z)
1− φẐ (z)

(1− z)E[Ẑ ]

= φD̂(z)
γ
[
1− φŶ (z)

]
(1− z)E[Ŷ ]

[
1− (1− γ )φŶ (z)

] (32)

The mean AoI is calculated by deriving Equation (32) and
setting z = 1:

E[Ĥ ] = E[D̂]+
E[Ŷ 2]

2E[Ŷ ]
−

1
2
+ E[Ŷ ]

(
1
γ
− 1

)
. (33)

We consider also the Peak AoI, denoted with ĤP, that is the
maximum age of data stored at a node, attained immediately
before the reception of a successful update message. It is easy
to check that ĤP = D̂+ Ẑ . Therefore, we have

E[ĤP] = E[D̂]+ E[Ẑ ] = E[D̂]+
E[Ŷ ]
γ

. (34)

Comparing the Peak AoI and the expression of the mean
AoI, it is apparent that

E[Ĥ ]− E[ĤP] =
E[Ŷ 2]

2E[Ŷ ]
−

1
2
− E[Ŷ ] = E[Ŷres]− E[Ŷ ]

(35)

where Ŷres is the residual inter-departure time. Let the Coef-
ficient of Variation (CoV) CY of Ŷ be defined as the ratio
of the standard deviation of Ŷ to the mean of Ŷ . It is well
know from renewal theory (inspection paradox) that CY < 1
implies that the mean of Ŷres is less than the mean of Ŷ
(Ŷ is said to be a smooth random variable). Conversely, for
CY > 1, the mean of Ŷres is larger than the mean of Ŷ (peaked
random variable). In case of bursty message arrivals, we are
in the case where CY > 1, hence the mean AoI turns out to
be larger than the Peak AoI, making the name of the latter
somewhat misleading. This seemingly paradoxical outcome
is analogous to inspection paradox in renewal process theory.
When evaluating the mean Peak AoI a large sample of Ẑ
(the time required to deliver a successful update) has the
same weight as a small sample of Ẑ in the mean. On the
contrary, in the evaluation of the mean AoI, a large Ẑ means
that AoI is large for a long time, while in case of a small
value of Ẑ the small value of the AoI only weighs for a short
time. In other words, the mean AoI is a time average that
emphasizes the large deviations of the successful delivery
time Ẑ . When the delivery process is bursty, this leads to a
larger value for the mean AoI with respect to the Peak AoI.
Note that, in case of geometric arrivals (CY = 1), the mean
residual inter-departure time coincides with the mean inter-
departure time, hence mean AoI and Peak AoI lead to the
same result.

E. GENERALIZATION TO VARIABLE TRANSMISSION TIMES
In this section we outline the extension to variable trans-
mission times. It is assumed that transmission time T
has a general discrete PDF, i.e., T = Toh + U , where

U ∈ {a1, . . . , a`} is the payload transmission time, ` being
the number of different values of the payload transmission
times. The indexing of the payload transmission times is
defined so that a1 < · · · < a`. Consistently, we also define
the normalized transmission time T̂ = T/δ, and assume
that T̂ is an integer. In the variable transmission time setting,
T̂ ∈ {b1, . . . , b`}, where bj = (Toh+ aj)/δ. The transmission
time PDF is denoted with fT̂ (j) = P(T̂ = bj), while the
corresponding CDF is denoted with FT̂ (j) = P(T̂ ≤ bj) =∑j

i=1 fT̂ (i), for j = 1, . . . , `.

The virtual time slot duration as seen by the tagged node
is still denoted with X̂ . For those virtual time slots where the
tagged node does not attempt transmission, given that k nodes
other than the tagged one transmit, we have

X̂ =

{
1 k = 0,
1+max{T̂1, . . . , T̂k} k = 1, . . . , n− 1.

(36)

The probability that k nodes other than the tagged one
transmit is

Pk =
(
n− 1
k

)
τ k (1− τ )n−1−k , k = 0, 1, . . . , n− 1 (37)

The probability that X̂ does not exceed 1+bj is denoted with
Ej = P(X̂ ≤ 1 + bj), for j = 1, . . . , `. It is derived from
Equations (36) and (37) as follows:

Ej = P0 +
n−1∑
k=1

PkP(max{T̂1, . . . , T̂k} ≤ bj)

= (1− τ )n−1 +
n−1∑
k=1

(
n− 1
k

)
τ k (1− τ )n−1−kFT̂ (j)

k

= (1− τ + τFT̂ (j))
n−1

Then, the probability distribution of X̂ is given by

P(X̂ = 1) = (1− τ )n−1 (38)

P(X̂ = 1+ bj) = Ej − Ej−1, j = 1, . . . , `, (39)

where we let FT̂ (0) = 0, and hence E0 = (1−τ )n−1, for ease
of notation.

The duration X̂ ′ of the virtual slot time where the tagged
node attempts its transmission, given that other k nodes trans-
mit simultaneously, is given by

X̂ ′ =

{
1+ T̂ k = 0,
1+max{T̂ , T̂1, . . . , T̂k} k = 1, . . . , n− 1.

(40)

where T̂ is the normalized transmission time of the tagged
node. Following the same analysis as with X̂ , it is found for
j = 1, . . . , `:

P(X̂ ′ = 1+ bj) = FT̂ (j)Ej − FT̂ (j− 1)Ej−1. (41)

for j = 1, . . . , `.
The GFs of the PDF of X̂ is (see Equation (4))

φX̂ (z) = qz+
∑̀
j=1

(Ej − Ej−1)zbj+1, (42)
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while for X̂ ′ we have:

φX̂ ′ (z) =
∑̀
j=1

[
FT̂ (j)Ej − FT̂ (j− 1)Ej−1

]
zbj+1. (43)

All expressions obtained in the fixed transmission time
analysis carry over to the variable transmission time case by
replacing the PDF and GF of the virtual slot time X̂ with the
generalized one in Equation (38), and the virtual slot time
consisting of the fixed transmission time of the tagged node
b1 + 1 with X̂ ′. More in depth, the definition of the service
time is modified to3 Ĉ =

∑K−1
j=1 X̂ (j) + X̂ ′, while nothing

changes for R̂ and Ŷ .
Performance metrics maintain their expressions, except

slight modifications for the CBR and the utilization coeffi-
cient. They become respectively

ρ =
E[X̂ ′]− 1

E[Ŷ ]
+

(
1−

E[X̂ ′]− 1

E[Ŷ ]

)
E[X̂ ]− 1

E[X̂ ]
(44)

and

ψ = E[T̂ ]γ /E[Ŷ ]. (45)

The expression of the PDF of AoI must be modified as
well. We let Ĉ = Ŵ + X̂ ′, where Ŵ is the countdown time.
We denote the virtual slot time X̂ ′, conditional on a collision,
with X̂ ′c, while X̂

′
s denotes the virtual slot time X̂ ′ conditional

on a successful attempt. The latter reduces to X̂ ′s = 1 + T̂ ,
while X̂ ′c must account for the multiple transmissions leading
to a collision, including the transmission of the tagged node.

The time elapsing between two successful transmissions of
the tagged node is

Ẑ =
J−1∑
j=1

[
R̂(j)+ Ŵ (j)+ X̂ ′c(j)

]
+ R̂(J )+ Ŵ (J )+ X̂ ′s, (46)

where J is a geometric random variable with PDF given by
P(J = k) = (1− γ )k−1γ, k ≥ 1.

The GF of Ẑ is obtained as:

φẐ (z) =
∞∑
k=1

(1− γ )k−1γFk−1c (z)Fs(z)

=
γFs(z)

1− (1− γ )Fc(z)
,

where

Fc(z) = φR̂(z)
1− [φX̂ (z)]

W0

W0
[
1− φX̂ (z)

] φX̂ ′c (z) (47)

Fs(z) = φR̂(z)
1− [φX̂ (z)]

W0

W0
[
1− φX̂ (z)

] ∑̀
j=1

zbj+1fT̂ (j). (48)

3We assume that a tagged node MAC layer entity is blocked and does
not accept new messages from upper layer, until the channel is first sensed
idle after the end of transmission of the tagged node. If no collision occurs,
this means that the MAC layer entity opens up its gate as soon as it ends
its transmission. If instead there is a collision and transmissions of other
colliding nodes last more than the tagged node transmission, then the tagged
node gate stays closed until all concurrent transmissions die out.

There remains to give the expression of φX̂ ′c (z). It is

φX̂ ′c
(z) =

∑̀
j=1

zbj+1[Ec(j)− Ec(j− 1)] (49)

with Ec(0) = 0 and

Ec(j) = FT̂ (j)

(
1− τ + τFT̂ (j)

)n−1
− (1− τ )n−1

1− (1− τ )n−1
(50)

for j = 1, . . . , `.
Once theGF of the PDF of Ẑ is computed, the expression of

the GF of the AoI Ĥ is the same as already found for the fixed
transmission time case, except that the access delay must be
computed by using the generalized expression of φX̂ (z).

V. NUMERICAL RESULTS AND MODEL VALIDATION
Weconsider a two-state DMAPmodeling anON-OFF source.
We characterize the node message source by means of three
parameters: the mean size of a burst of messages, b̄, the
activity factor (i.e., the average fraction of time that the source
is active), pon, and the mean message sending time Ŝ = 1/λ̂.
Then the mean duration of the ON and OFF times (i.e., time
intervals when messages are generated and time intervals
when the source is idle, respectively) are T̂on = ponb̄Ŝ and
T̂off = (1 − pon)b̄Ŝ. The phase process associated with the
DMAP has two states, OFF and ON. Its one-step transition
probability matrix is

A =
[
1− 1/T̂off 1/T̂off
1/T̂on 1− 1/T̂on

]
(51)

The matrix A1 is given by

A1 = D · A =
[
0 0
0 aon

] [
1− 1/T̂off 1/T̂off
1/T̂on 1− 1/T̂on

]
(52)

where aon = 1/(ponŜ). The matrix A0 is given by A0 = A−
A1. The stationary probability vector is π = [1− pon, pon].

In the following, we fix b̄ = 3 and pon = 1/3, while
S = Ŝ δ varies in the range between 1–100ms. The packet
payload is fixed to 500Byte. The resulting transmission
time with IEEE 802.11p, including all overheads (preamble,
MAC header, AIFS), assuming an air bit rate of 6Mbit/s, is
T = 0.8ms= 62·δ, where δ = 13µs is the back-off slot time.
It is therefore b1 = 62. The packet error ratio is assumed to
be PER = 0.1.
Simulations are obtained by means of a script realized in

MATLAB R©. The simulation model reproduces all details of
the IEEE 802.11pMACprotocol, including post-back-off and
immediate transmission, when a node resumes from idle state
and finds an idle channel for at least an AIFS time.

Figure 3 compares the AoI metric predicted by the model
with simulations. Figure 3a plots the mean AoI as a function
of the message generation time S for n = 10 nodes. The mean
AoI as a function of the number of nodes for S = 50ms is
shown in Figure 3b. The Peak AoI is plotted in Figure 3c as
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FIGURE 3. (a) Mean AoI as a function of the message generation time.
(b) mean AoI as a function of the number of nodes. (c) Mean Peak AoI as
a function of the message generation time. [square markers denote
simulations, with 95% confidence intervals] (d) CCDF of the AoI for
message generation time S = 10 ms (solid blue line: model; dashed red
line: simulations).

a function of S. The CCDF of the AoI for n = 10 nodes
and S = 10ms is shown in Figure 3d. In all cases, the
agreement between model results and simulations is very
good. As expected, the mean AoI as a function of S exhibits
a minimum, i.e., there is an optimal value of the message
sending rate λ = 1/S.
An interesting remark stems from the comparison of the

mean AoI and the Peak AoI. It is apparent that the latter bears
smaller values as the message generation time S grows. For
large values of S, the dominant cause of packet loss comes
from the decoding error floor (the assumed PER value), while
collisions are rare. Hence, the second moment of the inter-
departure time that differentiates the mean AoI and the Peak
AoI has a dominant weight among all contributes. This is
a consequence of the burstiness of the ON-OFF message
generation process.

CBR, mean access delay, normalized throughput and PDR
are plotted in Figure 4 as a function of S for n = 10.
Qualitatively similar behavior of these metrics are obtained
for other values of the parameters, e.g., number of nodes and
message payload length.

Besides the high accuracy of the model, it is apparent that
the systemmoves from a highly congested channel to a lightly
loaded channel when the message generation rate λ = 1/S
decreases from 1000msg/s down to 10msg/s. There is a kind
of phase transition phenomenon when the rate λ is varied,
as evidenced by the behavior of the CBR. It can be noted
also that the mean access delay is generally negligible, except
when a heavy load is generated, pushing the system towards
saturation.

Two important model variables are plotted in Figure 5. The
transmission probability is shown in Figure 5awhile themean
inter-departure time is plotted in Figure 5b. Besides the very

FIGURE 4. Throughput and delay performance as a function of the mean
message generation time S: (a) CBR; (b) Mean access delay;
(c) Normalized throughput; (d) PDR. (square markers denote simulations
with 95% confidence intervals).

FIGURE 5. (a) Probability of transmission τ as a function of message
generation time S. (b) mean inter-departure time E[Y ] as a function of
message generation time S. (square markers denote simulations, with
95% confidence intervals).

good model accuracy, we see that τ tends to the saturation
value (the level marked by the dashed horizontal line) as
λ grows (to the left of the plot). Conversely, when λ gets
small (to the right of the plots), the mean inter-departure time
tends to coincide with S = 1/λ. This is due to the fact that
packet dropping becomes negligible, so that most packets get
through shortly after their arrivals.

In Figure 6 we compare the AoI of three model configu-
rations: DMAP arrivals and fixed transmission times (left),
Geometric arrivals and fixed transmission times (middle),
Geometric arrivals and variables transmission times (right).
Plots in top row represent the mean AoI as a function of the
message generation time S. Middle row plots show the CCDF
of AoI for S = 10 ms. Bottom row plots show sample paths
of AoI. Plots in the first column are obtained with DMAP
arrival model, while plots in the second and third columns use
Geometric arrivals. The first two columns assume constant
transmission times, while the rightmost column considers
variable transmission times.

Geometric arrivals are a special case of DMAP, obtained
by letting A0 = [a0] and A1 = [1− a0], where a0 = e−λδ ≈
1− λδ is the probability of no arrivals in a back-off slot.
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FIGURE 6. Mean AoI (top row), CCDF of AoI (middle row), and sample path of AoI for S = 10 ms for three model configurations: DMAP
with fixed transmission times (left column), Geometric arrivals with fixed transmission times (middle column), Geometric arrivals with
variable transmission times (right column). (square markers denote simulations with 95% confidence intervals).

As for variable transmission times, message lengths and
relevant probabilities of occurrence are derived from the
empirical model presented in [35]. Packet payload lengths
are 200, 300, 330, 360, 455, 480, 600 and 800Byte, and the
corresponding probability distribution is [0.35, 0.15, 0.15,
0.15, 0.05, 0.05, 0.05, 0.05].

First, we underline once more how accurate the model
turns out to be, not only for mean AoI, but also for the entire
probability distribution of AoI. The behavior of the mean
AoI as a function of S points out that there exists an optimal
value of S, i.e., a message generation time that strikes an opti-
mal balance between the load on the wireless channel (and
hence collisions) and maintaining a sufficiently high rate of
update.

The CCDFs show a relatively slow decay, so that quantiles
of AoImight be quite bigger than themeanAoI. To appreciate
the plots of CCDFs it is to be noted that the mean AoI in
case of DMAP is 27ms, in case of Poisson arrivals with fixed
transmission times it is 13.43ms, in case of Poisson arrivals
with variable transmission times is 13.47ms. This suggests

that the mean AoI is possibly not enough when dealing
with critical safetymessages. AoI limit violation probabilities
should be evaluated, by using the probability distribution
of the AoI. It is therefore crucial to have an efficient and
accurate tool to evaluate the probability distribution of the
AoI, as enabled by the model defined in this work. Under
this respect, it is important to underline that the numerical
complexity of the evaluation of the model, including the
numerical inversion of GFs, is small. It scales nicely bothwith
n and S.

Finally, sample paths of the AoI are shown in the bottom
line of plots in Figure 6. These plots point out that bursty
arrivals due to ON-OFF sources generate a bursty behavior
of the AoI profile, as opposed to the simple Geometric arrival
process. The burstiness of theAoI is highlighted by sequences
of small peaks interleaved with quite large peaks in case of
DMAP arrivals.4

4Compare the y-axis scales of Figure 6g with those in Figure 6h and
Figure 6i.
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VI. ASYMPTOTIC ANALYSIS AND OPTIMIZATION
Building on the model, we aim at shedding light onto the
optimization of AoI. To this end, we follow a three step
strategy. First, we consider an asymptotic regime for n→∞,
i.e., we consider large networks, and we find out the leading
terms of the main model variables in that asymptotic regime.
Our main purpose in this first step (Section VI-A) is to show
that, at least asymptotically as n grows, the mean AoI is
minimized for that arrival rate λ̂ that maximizes the utilization
coefficient ψ defined in Equation (23).

Second, once established the link between E[Ĥ ] and ψ ,
we find out what is the value of λ̂ that maximizes ψ in the
asymptotic regime in Section VI-B.
Third, leveraging on the asymptotic analysis, we provide

an approximate expression of the optimized mean AoI, that
turns out to be accurate for essentially any n.

The value of the presented analysis lies in the insight it
provides aswell as in the possibility to obtain an explicit accu-
rate formula of the mean AoI which helps understanding the
impact of key system parameters (message payload length,
arrival pattern), as discussed in Section VI-C.

A. ASYMPTOTIC EXPANSION
To study the optimization of mean AoI in the asymptotic
regime as n → ∞, we let A1 = K1/n and hence A0 =

A − A1 = A − K1/n. Since it is λ̂ = πA1e = πK1e/n, the
mean arrival rate per node scales inversely proportional to the
number of nodes n, so that the aggregate arrival rate from all
nodes is a constant. This allows us to study the asymptotic
regime of large networks, maintaining the overall load on the
channel at a finite, given level.

Before identifying the AoI and utilization metrics in the
asymptotic regime, we need to establish a preliminary result,
namely the asymptotic behavior of the mean number of vir-
tual slot times in an idle time R (see Equation (10)). From
Equation (17), we find:

E[N ] = w[I− φX̂ (A0)]−1e (53)

Let ηi, ui and vi denote the eigenvalues, right- and left-
eigenvectors of A0, respectively, for i = 1, . . . , r . Since
A0 is sub-stochastic, all eigenvalues have modulus strictly
less than 1. Hence it is also |φX̂ (ηi)| < 1. Then, we have

E[N ] =
r∑
i=1

wui vi e
1− φX̂ (ηi)

(54)

all terms in the summation being finite.
In the following, we assume that eigenvalues are labeled

as |η1| ≥ |η2| ≥ · · · ≥ |ηr |, so that η1 is the dominant
eigenvalue. Since A is the one-step transition probability
matrix of an irreducible finite Markov chain, the eigenvalues
of A have modulus less or equal to 1 and only a single
eigenvalue equals 1 (this is the dominant eigenvalue, if we
restrict our attention to aperiodic Markov chains). The right
and left eigenvectors of A corresponding to the eigenvalue
1 are e and π respectively. As n grows, A0 = A − K1/n

tends to A, hence the dominant eigenvalue of A0, namely
η1, tends to the dominant eigenvalue of A, that is to say 1.
Consistently, the left and right eigenvectors of A0 associated
with η1, namely v1 and u1, tend to π and e respectively.
In the following we derive the asymptotic expansion to the
first order of these quantities, as n→∞.
We characterize the leading term of the asymptotic expan-

sion of η1, u1 and v1, by equating the constant terms and terms
inversely proportional to n in the identities A0u1 = η1u1 and
v1A0 = η1v1. Considering the former identity, we have(

A−
K1

n

)(
e−

δu1
n

)
=

(
1−

κ̂

n

)(
e−

δu1
n

)
. (55)

Since Ae = e (A is stochastic), equating the terms inversely
proportional to n, we get

A δu1 +K1e = κ̂e+ δu1. (56)

from which it can be found that

δu1 = (I− A+ eπ )−1K1e. (57)

Analogously, we have

δv1 = πK1(I− A+ eπ )−1. (58)

Pre-multiplying Equation (56) by π , it is easily found that
κ̂ = πK1e. Note that λ̂ = πA1e = πK1e/n = κ̂/n.
It is seen that the coefficient κ̂ is tied to the mean arrival
rate asymptotic expansion. More in depth, κ̂ = nλ̂ is the
aggregate (normalized) arrival rate of messages to all nodes.

Summing up, the asymptotic expansions of the dominant
eigenvalue of A0 and its eigenvectors as n → ∞ is given as
follows:

η1 ∼ 1−
κ̂

n
(59)

u1 ∼ e−
1
n
(I− A+ eπ )−1K1e (60)

v1 ∼ π −
1
n
πK1(I− A+ eπ )−1 (61)

As n → ∞, all summands in Equation (54) remain
bounded, except the term corresponding to i = 1. In that
special case we have limn→∞ φX̂ (η1) = φX̂ (1) = 1, while for
all i 6= 1 we have limn→∞ φX̂ (η1) 6= 1 (it is actually
limn→∞ |φX̂ (η1)| < 1), since ηi, i = 2, . . . , n, converge to
eigenvalues of A different from 1.

As a result, in the limiting regime, the sum in Equation
(54) is dominated by the term with i = 1, and we can use the
asymptotic expansions of η1, u1 and v1. We have

E[N ] ∼
wu1 v1e

1− φX̂ (η1)
=

(
we− wδu1

n

) (
πe− δv1e

n

)
1− φX̂

(
1− κ̂

n

) . (62)

It is we = πe = 1. Moreover, expanding φX̂ (·) in series
with starting point 1, we have

φX̂

(
1−

κ̂

n

)
∼ φX̂ (1)− φ

′

X̂
(1)
κ̂

n
= 1− E[X̂ ]

κ̂

n
. (63)
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Substituting into Equation (62), we get

E[N ] ∼
n

κ̂ E[X̂ ]

(
1−

wδu1 + δv1e
n

)
∼

n

κ̂ E[X̂ ]
+ constant (64)

Since limn→∞w = π , it is wδu1 → κ̂ . It is also easy
to check that δv1e = κ̂ . Then, the constant appearing in
Equation (64) equals −2/E[X̂ ].

Looking at the expressions of the first two moments of R,
it is easy to recognize that we have

E[R̂] ∼ E[X̂ ] ·
n

κ̂ E[X̂ ]
=
n
κ̂
,

E[R̂2] ∼ E[X̂2]
n

κ̂ E[X̂ ]
+ 2

(
E[X̂ ]

)2 n2

κ̂2
(
E[X̂ ]

)2 ∼ 2 n2

κ̂2
.

The transmission probability τ can be expanded in the
asymptotic regime as well. We have

τ =
1

E[N ]+ W0+1
2

∼
1

n
κ̂E[X̂ ]

+
W0+1

2

∼
κ̂E[X̂ ]
n

. (65)

The probability of successful message delivery becomes

γ ∼

(
1−

κ̂E[X̂ ]
n

)n−1
(1− PER) ∼ e−κ̂E[X̂ ](1− PER).

(66)

Since X̂ , Ĉ and D̂ have finite support, in the limit as n
grows, we have

E[Ŷ ] = E[R̂]+ E[Ĉ] ∼
n
κ̂
,

E[Ŷ 2] = E[R̂2]+ 2E[R̂]E[Ĉ]+ E[Ĉ2] ∼
2 n2

κ̂2
,

and, using the asymptotic expansion of the first two moments
of Ŷ , we get

E[Ĥ ] ∼
2 n2/κ̂2

2 n/κ̂
+
n
κ̂

(
1
γ
− 1

)
=

n
κ̂γ
∼

E[Ŷ ]
γ

(67)

From the right-most hand side, it is seen that the mean
AoI is asymptotically inversely proportional to the utilization
coefficient ψ = E[T̂ ]γ /E[Ŷ ]. This proves that the mean
AoI is minimized for the same value of λ̂ that maximizes the
utilization coefficient ψ . In other words, in the asymptotic
regime as n→∞, the mean AoI is dominated by a term that
is inversely proportional to the utilization coefficient. We will
see that the correspondence of the location of the maximum
of ψ and the minimum of E[Ĥ ] holds more generally, for
virtually any n.

This correspondence can be checked by comparing
Figure 7 with Figure 3a. In Figure 7 ψ is plotted against S
for n = 10 nodes. It peaks at a value of S that strikes an
optimal balance between excessive load of the channel (hence
toomany collisions) and too light load of the channel, whence
most of channel time goes idle.

FIGURE 7. Utilization coefficient ψ as a function of the message
generation time for n = 10 nodes. (square markers denote simulations
with 95% confidence intervals).

A similar connection between the extremal points of the
utilization coefficient of the communication channel and
the mean AoI has been observed for ALOHA-type multiple
access in [40].

B. MAXIMIZATION OF THE UTILIZATION IN THE
ASYMPTOTIC REGIME
To gain further insight, let us restrict to the case that the trans-
mission time (including any overhead) is a constant T = b1δ.
We also use non-normalized times in this section and in the
next one, which makes results more intuitively readable.

We have E[X ] = δ+(1−q)T and E[X ′] = δ+T . Themean
inter-departure time is the sum of the expected idle time R,
the mean countdown time ((W0−1)/2 times the mean virtual
slot time) and a final virtual slot time where the tagged station
transmits. Therefore

E[Y ] = E[R]+
W0 − 1

2
E[X ]+ δ + T

= w
[
I− φX̂ (A0)

]−1 eE[X ]+ W0 + 1
2

E[X ]+ qT

=
E[X ]
τ
+ (1− τ )n−1T =

δ + T − (1− τ )nT
τ

.

The utilization coefficient of the wireless channel can be re-
written as

ψ =
Tγ
E[Y ]

= τ
T (1− τ )n−1(1− PER)
δ + T − (1− τ )nT

=
τ (1− τ )n−1

β + 1− (1− τ )n
(1− PER) (68)

where β = δ/T . This expression is maximized for τ = τ ∗

equal to the unique solution in (0, 1) of the equation:

(β + 1)(1− nτ ) = (1− τ )n. (69)

We have seen in Equation (65) that τ ∼ κE[X ]/n = α/n,
where α is a non-dimensional constant. Substituting τ = α/n
into Equation (69) and letting n→∞, we have τ ∗ ∼ α∗/n,
where α∗ is the unique solution of the equation

(β + 1)(1− α) = e−α (70)
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for α ∈ (0, 1). Re-arranging terms in (70), we establish the
following identity, which we will use later:

α∗(1+ β) = β + 1− e−α
∗

. (71)

By letting τ = α/n into Equation (68), the overall channel
utilization coefficient 9 = nψ takes the following simple
asymptotic expression

9∞ = lim
n→∞

nψ =
αe−α

β + 1− e−α
(1− PER). (72)

This is maximized for α = α∗. From the result shown in
Section VI-A, we know that α = α∗, i.e., τ = τ ∗ = α∗/n,
also minimizes asymptotically the mean AoI.

The optimal message generation rate λ∗ must correspond
to the optimal value of the transmission probability τ ∗. In fact,
it is possible to make a connection between the leading term
of the asymptotic expansion of τ ∗ = α∗/n and λ = κ/n,
as follows:

α∗

n
∼

1
W0+1

2 +
1

κE[X ]/n

∼
κE[X ]
n

. (73)

Note that, in the asymptotic regime q = (1− α∗/n)n−1 ∼
e−α

∗

. Then, using the result in (71), we get

E[X ] = δ + T−qT ∼ T (β + 1− e−α
∗

)

= T (β + 1)α∗ = (δ + T )α∗. (74)

Equating the leading terms on both sides of (73) and using
(74), we get

α∗

n
∼
κE[X ]
n
=
κ(δ + T )α∗

n
. (75)

Hence, it must be κ = 1/(δ+ T ). Therefore, we find that the
asymptotically optimalmessage sending rate, i.e., the one that
maximizes the coefficient of utilization is:

λ∗ =
κ

n
=

1
(δ + T )n

. (76)

The optimal value of the average message generation time
interval is therefore equal to n times the packet transmission
time. This is a simple and insightful result.

C. EXPLICIT FORMULA OF THE MEAN AoI
The mean AoI consists of the sum of three terms: the mean
access delay E[D], the (asymptotically) dominating term that
is inversely proportional to the utilization factor, E[Y ]/γ , and
the remaining term, which is a result of the variation of the
inter-departure time, E[Y 2]

2E[Y ] − E[Y ]− δ
2 .

In the following, we find an expression for the minimum
attainable value of the mean AoI, denoted with H̄∗. Accord-
ing to the decomposition introduced above, we write H̄∗ =
D̄∗ + H̄∗dom + H̄∗var. We have learned that the minimum is
attained for 1/λ ∼ n(δ+T ).We exploit the asymptotic results
for large n, to derive approximations of the component terms
of the mean AoI for the optimal value of λ.
The mean access delay is approximated with the mean

service time E[C] = W0+1
2 E[X ] + qT , whose expression

is in turn obtained by approximating the probability q =
(1 − τ )n−1 ∼ (1 − α∗/n)n−1 ≈ e−α

∗

. Then, it is E[X ] ∼
δ + (1− e−α

∗

)T , and we have

D̄∗ = e−α
∗

T +
W0 + 1

2

[
δ + (1− e−α

∗

)T
]

=

(
1− α∗ +

W0 + 1
2

α∗
)
(δ + T ) (77)

As for the dominating term H̄∗dom = E[Ŷ ]/γ , we exploit
the asymptotic result E[Y ] ∼ E[R] ∼ n/κ . The minimum of
the mean AoI is attained with κ = κ∗ = 1/(δ + T ). Since
it is γ = q(1 − PER) ∼ e−α

∗

(1 − PER), we have H̄∗dom =
n(δ+T )

e−α∗ (1−PER)
.

A refined approximation can be obtained starting from the
expression of the transmission probability τ and substituting
the asymptotic expansions of τ = α/n and λ = κ/n. We get

α

n
=

1
W0+1

2 +
1

κE[X ]/n

(78)

Getting κ , we find

κ =
α/E[X ]

1− α(W0+1)
2 n

(79)

Under the optimal choice of α, we have (β+ 1)(1−α∗) =
e−α

∗

. Hence, E[X ] = δ+T−qT ∼ δ+T−eα
∗

T = α∗(δ+T ).
Substituting into Equation (79) we have

κ∗ =
1

(δ + T )
(
1− α∗(W0+1)

2 n

) (80)

Finally, using Equation (66), we find

H̄∗dom =
n
κ∗γ
∼

(
n− α∗W0+1

2

)
(δ + T )

e−α∗ (1− PER)
. (81)

The third component of the optimal AoI is found by noting
that, at least asymptotically for large n and hence small λ ∼
κ/n, we have Y ∼ R ∼ I , where I is the residual inter-arrival
time, starting from the end of a transmission. The probability
that an arrival occurs after h back-off slot times is fI (h) =
P(I = hδ) = wAh−1

0 A1e, h ≥ 1. Then it is routine (yet
long) calculation to derive that

E[I ] = δ
[
w(I− A0)−1e

]
,

E[I2] = δ2
[
2w(I− A0)−2e+ w(I− A0)−1e

]
.

Putting all pieces together, we have the following expres-
sion for the third component of the optimal mean AoI:

H̄∗var =
E[I2]
2E[I ]

− E[I ]−
δ

2

= δ

[
w(I− A0)−2e
w(I− A0)−1e

− w(I− A0)−1e
]
. (82)

There remains to find an expression for w. The phase of
the DMAP at the end of the transmission can be approxi-
mated with the phase upon an arrival, since the transmission
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ends ≈C time after the arrival and C � I with high proba-
bility. Then, the following approximation can be used:

w ≈ π(I− A0)−1A1, (83)

where π is the steady-state probability distribution of the
DMAP phase. Summing up, we have

H̄∗ = D̄∗ + H̄∗dom + H̄
∗
var, (84)

where the expressions of the three terms are given in
Equations (77)and (81) to (83).

In the special case of a Geometric arrival process, it isA0 =

[a0] andA1 = [1−a0], where a0 = e−λδ ≈ 1−λδ. It is easy
to check that the term H̄∗var cancels out. Then, we have

H̄∗ = D̄∗ +

(
n− α∗W0+1

2

)
(δ + T )

e−α∗ (1− PER)

≈
nT

(1− α∗)(1− PER),
(85)

where the last approximation is justified by the fact that both
the mean access delay and the offset correction −α∗W0+1

2
have a small impact on the numerical result.

The explicit expression of the optimal mean AoI is readily
evaluated, given the basic parameters of the system. It pro-
vides a lower bound of the attainable AoI performance, which
is actually achieved by setting the mean message generation
time to n(δ + T ). It also shows that the optimal mean AoI
grows proportionally to the number of nodes and proportion-
ally to the transmission time of messages.

For a numerical example, we consider a DMAP process
defined by a two-state Markov chain, OFF and ON state. The
mean time in ON state is 50ms, the mean fraction of time the
message source is in ON state is pon = 1/3. It is therefore

A =
[
0.99987 0.00013
0.00026 0.99974

]
(86)

Arrivals occur with probability λ̂/pon = 3λ̂ while in ON
state, with probability 0 in OFF state. Hence

A1 =

[
0 0
0 3λ̂

]
(87)

and A0 = A− A1.
Transmission times are constant, equal to T = 0.8ms. The

normalized transmission time is b1 = T/δ = 62.
We compare the approximation derived in this section for

the optimal mean AoI (curves labeled with ‘‘appx’’ in the
plots) with three other methods to evaluate the optimal mean
AoI:
• exhaustive search of the minimum of the mean AoI
as obtained from the evaluation of the exact model in
Section IV, i.e., not approximated with the asymptotic
expansion (curves labeled with ‘‘opt’’ in the plots).

• evaluation of the model in Section IV for λ = 1
n(δ+T ) =

1
63 δ n , the supposedly optimal value of the message gen-
eration rate (curves labeled with ‘‘asy’’ in the plots).

FIGURE 8. (a) optimal mean AoI as a function of the number of nodes n
in case of ON-OFF DMAP arrivals. (b) optimal mean AoI as a function of
the number of nodes n in case of Geometric arrivals. (red square markers
in Figure 8a denote simulations with 95% confidence intervals).

• Simulations obtained by the same simulation code used
in Section V.

Figure 8a shows the optimal mean AoI computed with the
three approaches described above in case of DMAP arrivals
and fixed transmission time. The square markers correspond
to the exact optimal values, found by numerical search on
the curve of E[H ] as a function of λ for each value of the
number of nodes n. The solid line represents the value of
E[H ] obtained from the analytical model for λ = λ∗ =

1/[n(δ + T )]. The dashed line shows the approximation in
Equation (84). Finally, simulations are shown by means of
square markers with 95%-level confidence intervals.

The good match between exact optimal values and approx-
imations obtained from the asymptotic theory is apparent.
Except of a marginal offset, it turns out that the approxima-
tion is almost exact for all considered values of n, not just
asymptotically for large n.

Figure 8b compares the three analytical methods to eval-
uate the optimal mean AoI in case of Geometric arrivals.
In this case it appears that there is an excellent match among
all three methods. In other words, the simple approximation
devised in Equation (85) provides an excellent prediction of
the exact value computed according to the model. Moreover,
it can be noted that optimal values of the mean AoI achieved
under Geometric arrivals are substantially smaller than in
case of DMAP. This is expected, given that ON-OFF DMAP
generates message in a bursty way, thus affecting adversely
timely delivery of message.

VII. CONCLUSION
Bursty traffic is a typical feature of CPS, where the generation
of updates is coupled with the variability of a communicated
parameter. For example, in V2X communications, mobility
of a node triggers update messages with a current position of
a vehicle. In this work we presented a new analytical model
of a one-hop broadcast update message exchange in a CSMA
network with bursty message arrivals. The model allows for
the evaluation of moments and probability distributions of
several metrics, including AoI. The model also lends itself
to an insightful asymptotic analysis as the number of nodes
grows. The asymptotic analysis suggests the optimal message
update rate to minimize the mean AoI, which is shown to
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coincide with the optimum of the wireless channel utiliza-
tion. The simple approximation provided by the asymptotic
analysis for large number of nodes is quite close to the exact
optimal rate also for relatively small values of the number of
nodes.

Further developments of the model can be in the direction
of heterogeneous case, where nodes use different message
generation rates. For this generalization we need to modify
the probabilities of a specific node to transmit in a virtual
time slot. These can be found by solving a system of non-
linear equations with an appeal to Brouwer’s theorem which
guarantees an existence of the fixed point.

APPENDIX
The expression in Equation (11) is hereby derived.

Let t0 denote the start time of the interval R̂. Let also
w denote an r-dimensional row vector whose i-th entry is
wi = P(J (t0) = i), i = 1, . . . , r , i.e., w is the probability
distribution of DMAP phase J (t) sampled at the end of packet
transmission times of the tagged node.

We have for the GF of R̂:

φR̂(z) = E[zR̂] =
r∑
i=1

r∑
j=1

∞∑
k=1

wiPij(k)zk (88)

where

Pij(k) = P(R̂ = k, J (t0 + R̂) = j|J (t0) = i) (89)

Let P denote the r × r matrix whose entry (i, j) is Pij(k).
Conditional on N = h and on X̂ (j) = xj, j = 1, . . . , h,

it is R̂ = k = x1 + . . . , xh. The conditioning event N = h
means that there is no arrival in the first h − 1 virtual slots,
then there is at least one arrival in the h-th slot time. Under
these conditioning events, it can be verified that

P = (A0)x1+···+xh−1 [Axh − Axh
0 ] (90)

Substituting into Equation (88), we have

φR̂(z) =
∞∑
h=1

∞∑
x1=0

· · ·

∞∑
xh=0

wPe zx1 fX̂ (x1) · · · z
xh fX̂ (xh)

=

∞∑
h=1

w [φX̂ (A0z)]h−1
[
φX̂ (Az)− φX̂ (A0z)

]
e

= w
[
I− φX̂ (A0z)

]−1 [
φX̂ (Az)− φX̂ (A0z)

]
e

= w
[
I− φX̂ (A0z)

]−1 e [φX̂ (z)− 1]+ 1 (91)

where

φX̂ (A0z) = qA0 z+ (1− q)Ab1+1
0 zb1+1 (92)

Since A0 is a sub-stochastic matrix, the eigenvalues of
φX̂ (A0z) are strictly less than 1 for |z| ≤ 1. Hence, the inverse
matrix appearing in Equation (91) exists.
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