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Background: Spread through air spaces (STAS) has been reported as a negative prognostic factor in 
patients with lung cancer undergoing sublobar resection. Radiomics has been recently proposed to predict 
STAS using preoperative computed tomography (CT). However, limitations of previous studies included the 
strict selection of imaging acquisition protocols, leading to results hardly applicable to daily clinical practice. 
The aim of this study is to test a radiomics-based prediction model of STAS in a practice-based dataset.
Methods: A training cohort of 99 consecutive patients (65 STAS+ and 34 STAS−) with resected lung 
adenocarcinoma (ADC) was retrospectively collected. Preoperative CT images were collected from different 
centers regardless model and scanner manufacture, acquisition and reconstruction protocol, contrast phase 
and pixel size. Radiomics features were selected according to separation power and P value stability within 
different preprocessing setups and bootstrapping resampling. A prospective cohort of 50 patients (33 STAS+ 
and 17 STAS−) was enrolled for the external validation.
Results: Only the five features with the highest stability were considered for the prediction model building. 
Radiomics, radiological and mixed radiomics-radiological prediction models were created, showing an 
accuracy of 0.66±0.02 after internal validation and reaching an accuracy of 0.78 in the external validation.
Conclusions: Radiomics-based prediction models of STAS may be useful to properly plan surgical 
treatment and avoid oncological ineffective sublobar resections. This study supports a possible application of 
radiomics-based models on data with high variance in acquisition, reconstruction and preprocessing, opening 
a new chance for the use of radiomics in the prediction of STAS.
Trial Registration: ClinicalTrials.gov identifier: NCT04893200.
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Introduction 

Spread through air spaces (STAS) has been recently 
reported as a negative prognostic factor in patients with 
lung cancer (1,2). According to the 2015 World Health 
Organization classification (3), it is defined as the presence 
of micropapillary clusters, solid nests or single tumor 
cells spreading within air spaces beyond the edge of the 
main tumor. Several studies showed the impact of STAS 
on overall survival and risk of recurrence, particularly in 
patients with lung adenocarcinoma (ADC) undergoing 
limited resection (4,5). In fact, the presence of tumor cells 
beyond the main tumor edge could result in a non-radical 
surgical resection. Recently, sublobar resection of STAS-
positive tumors has been associated with a higher rate of 
both distant and loco-regional recurrence when compared 
to lobectomy (6-8). Therefore, preoperative prediction of 
STAS may provide crucial information to properly plan the 
surgical treatment (9). 

Previous studies suggested that STAS could be predicted 
by analysis of computed tomography (CT) imaging (10-12); 
it was associated with solid nodules, central low attenuation, 
ill-defined opacity, air bronchogram and high consolidation/
tumor ratio. However, qualitative CT features are inevitably 
biased by personal interpretation potentially leading to a 
misclassification. 

Radiomics is a process allowing the conversion of 
medical images characteristics into quantitative information. 
Using dedicated software, a large number of features are 
extracted from medical images, providing much more 
information than the “human eyes” and improving the 
accuracy of imaging decoding. Radiomics-based models 
to predict STAS in preoperative CT imaging have been 
recently proposed with encouraging results (13-15). 
However, in these studies both patients and CT images 
were highly selected, making the results strictly dependent 
on the quality and homogeneity of the data and, thus, 
hardly applicable in daily clinical practice.

The aim of this study is to test a radiomics-based 
prediction model of STAS using an unselected cohort 
of patients and images that are non-homogeneous for 
manufacture, model of scanner, pixel size, acquisition 
protocol, reconstruction and endovenous contrast phase. 
This unselected setting is more adherent to daily clinical 
practice and could help the future translation of radiomics. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-21-895/rc).

Methods

Patients’ selection and study design

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional ethics committee of 
Policlinico Umberto I, Sapienza University of Rome (No. 
Rif: 6453) and registered on clinicaltrials.gov (identifier: 
NCT04893200). Informed consent was taken from all 
individual participants. Our institutional database was 
searched for patients with diagnosis of lung ADC surgically 
treated at our Department from January 2018 to December 
2019. Clinical and radiological data were collected and 
patients were selected according to the following inclusion 
criteria: age older than 18 years, pathologically confirmed 
lung ADC, STAS status available from the pathological 
report; accessible preoperative CT images. Patients 
with incomplete surgical resection (R1), chest wall or 
mediastinal infiltration and patients receiving induction 
radio-chemotherapy were excluded from this study. Finally, 
a cohort of 99 patients (61 M, 38 F) was selected to train 
the radiomics based predictor. For the training and internal 
validation phase the predictor was aware of the STAS status 
for each patient.

According to the Checklist for Artificial Intelligence in 
Medical Imaging (16) and the Radiomics Quality Score (17),  
the validation of the predictive model was planned on a 
prospective setting. To this purpose, a further series of 
50 consecutive patients (24 M, 26 F) undergoing lung 
cancer surgery at our institution were prospectively 
enrolled as external validation cohort. Inclusion criteria 
were as follows: age older than 18 years; suspected or cito-
histologically proven lung ADC undergoing lung cancer 
surgery; available preoperative CT images. Chest wall or 
mediastinal infiltration, induction radio or chemotherapy 
and incomplete surgical resection were considered exclusion 
criteria. For the external validation phase the predictor was 
not aware of the STAS status and results were compared 
after histological assessment.

The prediction model had no rule in the clinical work up 
and patients were treated according to standard protocols, 
regardless the radiomics outcome. A flowchart reporting 
the methodology of the study is shown in Figure 1.

Histological evaluation

Multiple tissue samples were obtained from both the tumor 
and the surrounding lung parenchyma after formalin 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-21-895/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-21-895/rc
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Figure 1 Study flowchart. Accuracy in internal validation is reported as mean ±2 standard deviation. ROI, region of interest; Ac, accuracy; 
SE, sensibility; SP, specificity. 
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fixation. Several histological sections were then acquired 
from each paraffin block and stained with hematoxylin 
and eosin for light microscopy evaluation. A necessary 
requirement to reliably evaluate STAS on surgical samples 
was the presence of a rim of normal lung (at least 1 cm-
thick) surrounding the entire tumor circumference. The 
morphological features of STAS were described according 
to the 2020 World Health Organization classification. 
Moreover, STAS was also classified based on the degree 
of circumferential extension. All slides were separately 
evaluated by two experienced pathologists (AP and GDA). 
Any discrepancy was discussed until consensus was reached.

Imaging acquisition and segmentation

CT scan images were obtained from the picture archiving 
and communication system (PACS) in digital imaging and 
communications in medicine (DICOM) format. To build 
a dataset as adherent as possible to daily clinical practice, 
images were taken from the last preoperative CT scan 
acquisition, regardless of model and manufacture of scanner, 
acquisition protocol, reconstruction, intravenous contrast 
phase and pixel size. If possible, images with intravenous 
contrast in venous phase were taken at the thinnest slice 
available. The sharpest (B70–B60) reconstruction kernel 
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was chosen when possible.
Qualitative features were collected by two expert 

radiologists (MD and PR) including: tumor maximum 
diameter, density [solid, mixed, ground glass opacity 
(GGO)], consolidation-tumor ratio (C-T ratio), presence 
of air bronchogram, irregular margins, nodule excavation, 
pleural involvement and lymphadenopathy larger than 
1 cm. The open-source platform 3D-slicer v4.8.1 (www.
slicer.org) was used for tumor segmentation as already 
reported in previous studies (13-14). The tumor area was 
outlined independently by two different physicians with 
5-year experience in lung cancer imaging (MB and MD) 
using a semi-automatic segmentation editor and marked 
as region of interest (ROI). ROIs were then reviewed and 
discrepancies resolved by additional corrections. 

Imaging preprocessing and radiomics features extraction

Consider ing the  heterogenei ty  of  the  dataset ,  a 
preprocessing algorithm was used to normalize the data in 
terms of voxel size (1×1×2 mm3) and gray level discretization 
(25 bin width) (18). ‘PyRadiomics’, an open-source 
package for standardizing the extraction of radiomics data 
(https://pyradiomics.readthedocs.io/en/latest/), was used 
to automatically extract more than 800 radiomics features 
from non-filtered imaging and images filtered for edge 
enhancement (wavelet transform). Detailed description 
and the computing algorithms of the radiomics features are 
available at https://pyradiomics.readthedocs.io/en/latest/
features.html. 

Feature selection

Features were selected according to the following process 
in order to select only features as independent as possible to 
preprocessing steps, correlation and sampling bias.

To create a model as stable as possible to preprocessing, 
we extracted and tested the features using 4 different 
preprocessing setups: (I) original images; (II) images 
normalized only for voxel size; (III) images normalized only 
for gray level; (IV) images normalized for both voxel size 
and gray level. Finally, we considered for further analysis 
only features showing a significant association with STAS 
(P value <0.05) in all four setups. Similarly, we discarded 
features extracted from discrete wavelet transforms (19). 

To evaluate statistical significance stability in respect 
to subsampling, a bootstrap resampling algorithm was 

performed removing randomly 20% of the dataset. After 
discarding the outlier values (more than 3 sigma from the 
mean), each radiomics feature was compared using the 
Student’s t-test between STAS positive and STAS negative 
groups in the remaining dataset accordingly. Features 
showing a P value >0.05 after subsampling were removed 
from the analysis. The remaining features were sorted 
according to the P value of their respective univariate test. 
Moreover, when two features showed a high correlation 
(Pearson’s correlation >0.7), the one with the highest P 
value was excluded. At the end of this process, only the 5 
features with the lowest P value were considered for the 
further analysis. This bootstrap resampling algorithm was 
repeated 100 times, randomly removing 20% of the dataset 
each run. Finally, features were ranked according to the 
number of times that have passed the test. The 5 features 
with the highest rank were considered for the prediction 
model building.

Model building and internal validation

Four machine-learning (ML) methods (Naıve Bayes, 
k-Nearest Neighbors, Random Forest, Logistic Regression) 
were tested to build the predictive model by incorporating 
the aforementioned radiomics features. A 3-fold cross 
internal validation was performed considering 70% of the 
dataset for training and 30% for test. Finally, the best ML 
method was selected according to the accuracy and the 
associated confusion matrix. 

Statistical analysis

Statistical analysis was performed using Python (version 
3.8) and R platform (R version 3.5.1). Continuous 
data were reported as median and interquartile range 
(IQR); categorical variables as number and percentage. 
Continuous and categorical clinical variables were 
analyzed using the Mann Whitney U test and Fisher exact 
test respectively. Features were compared using Student’s 
t-test and results of the multivariate analysis reported 
as mean ±2 standard deviations. A P value of <0.05 
was considered statistically significant. To validate our 
predictor, the radiomics-based model was compared with 
the performance of a traditional radiological predictor and 
a mixed model. Accuracy, Sensitivity (SE) and Specificity 
(SP) were calculated after external validation according to 
the confusion matrix. 

http://www.slicer.org
http://www.slicer.org
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Results

Clinical data

Demographics and radiological characteristics of both 
training and external validation cohorts included in the 
study are shown in Table 1. The training cohort consists of 
99 patients (61 M, 38 F) with a median age of 68.0 years  
(IQR, 61.5–74.0). Tumor stage, according to the 8th edition 
of the American Joint Commission on Cancer Tumor-
Nodal-Metastasis (TNM) staging classification, was 
represented as follows: IA in 42 (42.4%) patients, IB in  
17 (17.2%) patients, IIB in 19 (19.2%) patients, IIIA in  
15 (15.2%) patients and IIIB in 6 patients (6.1%). STAS was 
present in 65 (65.7%) patients. No significant difference 
in terms of gender, smoking habits, histological subtype, 
tumor location, stage, N status and extent of surgical 
resection were found between STAS positive and STAS 
negative patients. However, STAS positive patients in 
training cohort were significantly associated with older age 
(P=0.04), larger tumor (P=0.03), solid nodule (P<0.01) and 
presence of lymphadenopathy larger than 1 cm (P=0.02) 
(Table 2).

The external validation cohort was prospectively enrolled 
and consists of 50 consecutive patients (24 M, 26 F) with 
a median age of 69.0 (IQR, 61.0–73.8). Tumor stage was 
represented as follows: 22 (44.0%) patients IA, 9 (18.0%) IB, 
2 (4.0%) IIA, 8 (16.0%) IIB, 7 (14.0%) IIIA, 2 (4.0%) IIIB, 
1 (2%) IV stage. No significant difference was found in the 
external validation group between STAS positive and STAS 
negative patients in terms of age, gender, smoking habits, 
tumor location, nodule diameter, stage, N status and extent 
of surgical resection. STAS was significantly associated with 
the presence of a solid nodule at preoperative CT images 
(P<0.01).

Internal and external validation

More than 40 radiomic features were found to be associated 
with the presence of STAS with a P value ≤0.05 after 
univariate analysis. According to the described selection 
process (i.e., subsection 2.5), the 5 most ranked features 
were considered for model building (Table 3). Three 
different predictors were created using respectively: (I) only 
radiomics features; (II) qualitative radiological features; (III) 
combined radiological and radiomics features. In the latter, 
radiological and radiomics features together entered the 
pipeline that automatically selected the best ones without 
knowing the origin of any single feature. Logistic regression 

was the ML method of choice in all cases. 
The radiomics predictor showed an accuracy of 0.66±0.02 

after internal validation and 0.68 after external validation 
(SE 77.4%; SP 52.6%). Similar results were shown by the 
radiological (0.66±0.02) and the mixed predictor (0.66±0.02) 
after internal validation with an accuracy at the external 
validation of 0.74 (SE 81.3%; SP 61.1%) and 0.78 (SE 
89.2%; SP 63.6%) respectively (Figure 2, Table 4). 

As additional exploratory investigation, the models were 
tested in the subgroup of 31 stage I patients belonging to 
the validation cohort showing an accuracy of 0.65 (radiomics 
model), 0.71 (radiological model) and 0.74 (mixed model).

Discussion

STAS has gained relevance in recent years as a negative 
prognostic factor in patients with lung cancer, particularly 
ADC; it was considered an independent poor predictor 
of progression free survival, overall survival and lung 
cancer specific survival (1,2). It is present up to 64.2% of 
patients with lung cancer (2). Several studies examined 
the impact of STAS in patients undergoing sublobar 
resections. These studies showed an increased rate of 
both distant and locoregional metastasis in STAS positive 
patients undergoing limited resections (6-8). Therefore, 
the prediction of STAS in patients undergoing lung cancer 
surgery may provide crucial information to the surgeon 
to properly plan surgery and to avoid oncologically 
ineffective sublobar resections. Recently, efforts have been 
made to predict the presence of STAS preoperatively 
using intraoperative frozen sections (20), airway secretion 
cytology (21) or preoperative CT imaging (10-12). 
However, none of these methods has shown satisfying 
results and their application is far from clinical use to date.

In this context, radiomics could allow a deeper imaging 
analysis and potentially improve the accuracy of prediction 
models. It is an emergent analytical tool codifying into 
quantifiable features the qualitative characteristics of 
radiological images, reducing errors due to personal 
interpretation of data. The analysis can be performed using 
open-sourced platforms that allow the extraction of a large 
number of features from common medical imaging. This 
provides more information than traditional interpretation, 
allowing a deeper analysis of the data and improving the 
accuracy of imaging decoding. For these characteristics, 
the use of radiomics in medical imaging has rapidly gained 
popularity worldwide, including in lung cancer research.

In 2020, two parallel studies firstly proposed a radiomics-
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Table 1 Baseline characteristics

Characteristics Training cohort External validation cohort P value

Patients (n) 99 50

Age (years) 68.0 (61.5–74.0) 69.0 (61.0–73.8) 0.48

Gender, n (%)  0.12

Male 61 (61.6) 24 (48.0)

Female 38 (38.4) 26 (52.0)

Smoker status, n (%) 0.67

Smoker history 77 (77.8) 41 (82.0)

Non-smoker 22 (22.2) 9 (18.0)

Histological subtype, n (%) 0.08

Acinar 53 (53.5) 23 (46.0)

Solid 24 (24.3) 10 (20.0)

Lepidic 11 (11.1) 5 (10.0)

Papillary 5 (5.1) 5 (10.0)

Others 6 (6.1) 7 (14.0)

T status, n (%) 0.66

T1 48 (48.5) 24 (48.0)

T2 29 (29.3) 11 (22.0)

T3 15 (15.1) 11 (22.0)

T4 7 (7.1) 4 (8.0)

N status, n (%) 0.29

N0 74 (74.7) 43 (86.0)

N1 9 (9.1) 3 (6.0)

N2 16 (16.2) 4 (8.0)

STAS status, n (%)  1.00

No 34 (34.3) 17 (34.0)

Yes 65 (65.7) 33 (66.0)

Tumor site, n (%) 0.46

RUL 33 (33.3) 12 (24.0)

RML 8 (8.1) 2 (4.0)

RLL 18 (18.2) 12(24.0)

LUL 25 (25.3) 12 (24.0)

LLL 15 (15.2) 12 (24.0)

Table 1 (continued)
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Table 1 (continued)

Characteristics Training cohort External validation cohort P value

Surgical resection, n (%) 0.21

Bilobectomy/pneumonectomy 5 (5.1) 3 (6.0)

Lobectomy 66 (66.7) 26 (52.0)

Sublobar resection 28 (28.3) 21 (42.0)

Radiological characteristics

Density, n (%) 0.06

Pure GGOs 4 (4.0) 7 (14.0)

Mixed 18 (18.2) 11 (22.0)

Solid 77 (77.8) 32 (64.0)

Tumor size (mm) 25.0 (17.0–42.0) 23.0 (16.0–31.8) 0.20

Nodule excavation, n (%) 19 (19.2) 7 (14.0) 0.50

Pleural invasion, n (%) 33 (33.3) 17 (34.0) 0.97

Air bronchogram, n (%) 32 (32.3) 10 (20.0) 0.13

Irregular margins 77 (77.8) 33 (66.0) 0.17

Lymphadenopathy >1 cm, n (%) 29 (29.3) 15 (30.0) 1.00

Continuous variables are reported as median (interquartile range); categorical variables as number (percentage). T, tumor; N, nodes; STAS, 
spread through air spaces; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; 
GGO, ground glass opacity.

based model to predict STAS using preoperative CT 
imaging. Chen et al. (13) retrospectively studied a group 
of 233 patients with stage I lung ADC. The authors built 
a predictor model based on 5 radiomics features using 
the Naıve Bayes ML method. The predictor showed 
encouraging results with an area under the curve (AUC) of 
0.63 (0.55–0.71) after internal validation and an accuracy of 
0.69 in the external validation group.

Jiang et al. (14) performed a retrospective study on 462 
patients surgically treated for lung ADC. They created a 
mixed random forest model including the age of patients 
and 12 radiomics features, showing an AUC of 0.75 (0.59–
0.88) after internal validation. No external validation was 
performed. The authors concluded that the radiomics-based 
model has the potential to become a promising imaging 
biomarker to preoperatively predict STAS, facilitating 
surgeons’ decision making. 

After that, a further study by Zhuo et al. (15) proposed a 
radiomics nomogram consisting of seven selected radiomics 
parameters and clinical features, showing good prediction 
in both training set (AUC, 0.98, 0.97–1.00) and test set 

(AUC, 0.99; 0.97–1.00). However, clinical features showed 
a high prediction power themselves (AUC, 0.98; 0.96–1.00), 
hiding the effective role of radiomics features.

Those studies presented some limitations that make the 
application of the predictor model difficult in daily clinical 
practice. First, all of them represent a single-institution 
study with highly selective criteria of CT imaging. In 
fact, images were taken from the same institution, with a 
controlled acquisition protocol and from the same scanners 
[“Brilliance 16” for Jiang et al. (14); “Somatom Definition 
AS” and “Brilliance 40” for Chen et al. (13)]. This helped 
to reduce the bias related to different acquisition protocols 
and scanners but makes the results strictly dependent on 
homogeneity of data. Second, Chen and Zhuo studied 
only stage I ADC, while Jiang did not assess the impact of 
tumor stage in relation to STAS. Third, only one study (13) 
reported an external validation, which has been performed 
on a retrospective cohort however. 

We aimed to build a dataset of images adherent to 
daily clinical practice, with CT imaging obtained from 
different scanners in different centers and, thus, different 
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Table 2 Characteristics of STAS positive and STAS negative patients in training cohort

Training cohort STAS positive STAS negative P value

Patients (n) 65 34

Age (years) 69.0 (62.0–75.0) 67.0 (57.8–72.5) 0.04

Gender (male), n (%) 38 (58.5) 23 (67.6) 0.39

Smoking habitus, n (%) 50 (76.9) 27 (79.4) 1.00

Histological subtype, n (%) 0.09

Acinar 33 (50.8) 20 (58.8)

Solid 19 (29.2) 6 (17.6)

Lepidic 5 (7.7) 6 (17.6)

Others 8 (12.3) 2 (5.9)

Tumor stage, n (%) 0.26

I 35 (53.8) 24 (48.0)

II 15 (23.1) 4 (22.0)

III 15 (23.1) 6 (22.0)

N status, n (%) 0.42

N0 46 (70.8) 28 (82.4)

N1 6 (9.2) 3 (8.8)

N2 13 (20.0) 3 (8.8)

Radiological characteristics

Density, n (%) <0.01

Pure GGOs 1 (1.5) 3 (8.8)

Mixed 7 (10.8) 11 (32.4)

Solid 57 (87.7) 20 (58.8)

Tumor size (mm) 27.0 (20.0–45.0) 18.5 (16.0–32.8) 0.03

Nodule excavation, n (%) 10 (15.4) 9 (26.5) 0.19

Pleural invasion, n (%) 24 (36.9) 9 (26.5) 0.37

Air bronchogram, n (%) 25 (38.5) 7 (20.6) 0.11

Irregular margins, n (%) 53 (81.5) 26 (76.5) 0.60

Lymphadenopathy >1 cm, n (%) 24 (36.9) 5 (14.7) 0.02

Continuous variables are reported as median (interquartile range). Categorical variables as number (percentage). STAS, spread through air 
spaces; N, nodes; GGO, ground glass opacity.

acquisition protocols. Finally, images were taken from 22 
different models of scanners from 5 distinct manufacturers, 
11 different institutions and 19 different reconstruction 
kernel. Slice thickness ranged from 0.63 to 5 mm, pixel size 
from 0.55 mm to 1 mm and intravenous contrast was taken 
in a venous phase in 94, arterial phase in 3 and basal in 3. 

Similarly, we consecutively included patients of any tumor 
stage to assess the trend of radiomics features regardless 
tumor characteristics.

The first issue with such heterogeneous data was the 
imaging normalization. This preprocessing is recommended 
to obtain more reproducible CT features since some of 
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Table 3 Specifics of the three different predictors

Type Machine learning algorithm Feature name
Accuracy on internal 

validation
Accuracy on external  

validation

Radiomics Logistic regression Autocorrelation 0.66±0.02 0.68

Cluster prominence

Dependence entropy

Gray level non-uniformity

Long run high gray level emphasis

Radiological Logistic regression Maximum diameter  0.66±0.02 0.74

Solid density

Bronchogram

Lymphadenopathy >1 cm

Pure GGO density

Mixed Logistic regression Autocorrelation 0.66±0.02 0.78

Cluster prominence

Gray level non-uniformity

Solid density

Pure GGO density

Accuracy in internal validation is reported as mean ±2 standard deviation. GGO, ground glass opacity. 

Table 4 Multivariate analysis results

Predictor Accuracy Sensitivity Specificity AUC

Clinical* 0.64 0.73 0.47 0.59

Radiomics 0.68 0.77 0.53 0.66

Radiological 0.74 0.81 0.61 0.72

Mixed 0.78 0.89 0.64 0.79

*, clinical variables include gender, age and smoking history. 
AUC, area under the curve.
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AUC radiological =0.72
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Figure 2 ROC curves for the radiomics predictor (black), 
radiological predictor (green) and mixed predictor (blue) after 
external validation. The AUC for the models is 0.66, 0.72 and 0.79 
respectively. AUC, area under the curve; ROC, receiver operating 
characteristics.

them were dependent on voxel size and gray-level (18). 
We decided to normalize all CT images to the largest pixel 
size in our dataset (1 mm) and the median slice thickness 
(2 mm). This was, in our opinion, the best compromise 
between losing data (e.g., choosing a thickest slice) and 
creating information (e.g., normalizing to the smallest pixel 
size and thinnest slice). Similarly, gray level distribution 
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Figure 3 Images after wavelet transform. The same computed tomography scan slide is reported after has been filtered for edge 
enhancement (wavelet transformation). (A) Original image; (B) image after L in both vertical and horizontal directions; (C) image after L 
in horizontal direction and H in vertical direction; (D) image after H in horizontal and L in vertical direction; (E) image after H in both 
directions. L, low pass filter; H, high pass filter.

B C D EA
Original Approximation (LL) Horizontal detail (LH) Vertical detail (HL) Diagonal detail (HH)

was normalized to 25 bin width, a good balance between 
complexity of the imaging and stability of the features’ 
extraction. Imaging was checked out after normalization 
and no clinical differences were appreciable. 

Secondly, we had to ensure that the features entering 
in the final model were stable over preprocessing setups 
and different acquisition protocols. To this purpose, we 
performed a univariate analysis in 4 different preprocessing 
setups and only features showing statistical significance 
stability in all configurations were considered for further 
analysis. Moreover, we discarded features extracted after 
discrete wavelet transform. In fact, this procedure may 
reduce the explainability of our final ML model generating 
images difficult to comprehend by clinicians (Figure 3).  

Third, in order to minimize the cohort selection bias, 
features were chosen after a bootstrapping subsampling 
algorithm and only the 5 features with the highest P 
value rank (e.g., more independent to subsampling) were 
considered for the predictor building. Interestingly, all 
5 features selected for the final model are second-order 
texture features. Probably, first-order features and shape 
features are less informative than texture features in this 
analysis. Considering that a second-order feature (Gray 
Level Non-Uniformity) shows a high correlation with the 
tumor volume, all the shape features were automatically 
excluded by the classifier.

Furthermore, we aimed to validate our prediction model 
on a prospective cohort that provides the highest level of 
evidence with regard to the clinical validity and usefulness 
of the radiomics biomarker (17). The best accuracy in the 
prospective validation cohort was reached by the mixed 
model (78%) with an AUC of 0.79.

Although reliability, SE and SP are not suitable for a 

prompt translation, the use of radiomics-based models to 
predict STAS in patients with lung cancer may provide 
crucial information to properly plan surgical treatment in 
the future. More studies assessing the role of radiomics 
in STAS prediction are needed, especially in stage I lung 
cancer. 

The classifiers should consider the heterogeneity of CT 
data in daily clinical practice and provide results that are 
reliable regardless of scanner model and manufacture and 
institutions’ protocols. This is the first study testing a model 
independent from radiological variance in image protocol 
acquisition, reconstruction and pre-processing. Moreover, 
this is the first radiomics study validating its prediction 
model of STAS on a prospective external cohort. 

This study presents several limitations. First of all, the 
number of patients is relatively small in both the training 
cohort and the external validation cohort. Further multi-
centric studies are needed to assess the reliability of our 
model. Second, we do not investigate the variability of 
features concerning different segmentation protocols nor 
the stability of the chosen features regarding segmentation 
discrepancies. Moreover, the effect of normalization process 
over the single features has not been investigated. Further 
studies are needed to state the stability of each feature in 
relation to different acquisition protocols and normalization 
settings.

Conclusions

Radiomics-based prediction models of STAS might be 
useful in the future to properly plan the surgical treatment 
and to avoid oncologically ineffective sublobar resections. 
This study supports a possible application of radiomics 
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models using data with high variance in acquisition 
protocols, reconstruction and preprocessing. These findings 
represent a new chance for the use of radiomics-based 
models in the prediction of STAS despite the high variety of 
preoperative radiological data and could help its translation 
to clinical practice.
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